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2 FERNANDO Q. GOUVEA AND NORIKO YUI

INTRODUCTION
Let X = X; be a smooth projective algebraic variety of dimension n defined over a
finite field £ = F, of characteristic p. The zeta-function of X (relative to k) has the form
P(X, g )B(X,q¢%) . .. P (X, ¢°
Z(A’, q—s) — 1( 7’q ) 3( !,q ) 2 1(, q )
Po(X, g7 )P (X, ¢ %) ... Pan(X,q7%)

where P;(X,T) € 1 + TZ[T] for every 7, 0 <1 < 2n, and has reciprocal roots of absolute
value ¢'/?. Taking ¢ equal to an even integer 2r, we see that for any integer r between 0
and n

Cx(r)

Z(X,q7) ~ Q=g ¢ =7

where Cx (r) is some rational number and p.(X) is an integer (called the r-th combinatorial
Picard number of X = Xj.) In this paper, we obtain information about these two numbers
for algebraic varieties that are especially simple.

There are standard conjectural descriptions of the numbers p.(X) and Cyx(r) that
connect them with arithmetic and geometric invariants of X. Let k be an algebraic closure
of k and let Xz := X x; k be the base change of X from k to k. Let £ be any prime
different from p = char(k}. Let p; ,(X) denote the dimension of the subspace of the £-adic
étale cohomology group H* (X%, Qe(r)), generated by algebraic cycles of codimension »
on X defined over &, and let

(X)) = (X)),
pr(X) = max pr ,(X)

(The numbers p/. ,(X) are in fact presumed to be independent of the choice of the prime
£.) We call p/(X) the r-th Picard number of X = Xj. [t is known that pL(X) < p.(X),
and one conjectures that they are in fact equal:

(0.1) The Tate Conjecture. With the definitions above, we have
pr(X) = p(X).

This is known to hold in a number of special cases (rational surfaces, Abelian surfaces,
products of two curves, and Fermat varieties under certain conditions, etc.)

Picard numbers are, of course, very sensitive to the field of definition. In various
contexts, we will want to compare the Picard number of a variety X over k to the Picard
number of its base change to extensions of &£. As one runs over bigger and bigger finite
extensions of k, the combinatorial Picard number eventually stabilizes. We will refer to
the latter number as the r-th (combinatorial) stable Picard number of X and denote it by
7.(X).

As for the rational number Cx(r), a series of conjectures has been formulated by Licht-
enbaum [L84, L87, L90] and Milne [Mil86, Mil88] (sece also Etesse [Ete88]). (The conjec-
tures concern the existence of “motivic cohomology” and in particular of certain complexes
of étale sheaves Z(r).)
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(0.2) The Lichtenbaum-Milne Conjecture. Assume that the complex Z(r) exists and
that the Tate Congecture holds for X = Xi. Then

Cx(r) = £x(X, Z(r)) - <X

where

X(X,0,7) 1= rx(X, Ox) = (r = (X, QL) + -+ £ x(X, 25")
and (X, Z(r)) is the Euler-Poincaré characteristic of the complezr Z(r).

For surfaces, this formula is equivalent to the Artin-Tate formula, which is known to be
true whenever the Tate conjecture holds. For higher dimensional varieties, the conjectural
formula has not yet been proved (or disproved) even for a single example. Therefore,
providing examples related to this conjecture seems to be of considerable interest.

The purpose of this paper is to offer a testing ground for the Lichtenbaum-Milne conjec-
ture for diagonal hypersurfaces, explicitly evaluating the special values of zeta-functions
at integral arguments. This is done by passing to the twisted Fermat motives associated
to such varieties.

We now proceed to set up the case we want to investigate. Let m and n be integers
such that m > 3, (p,m) = 1 and n > 1. Let ¢ = (cg,¢1, "+ ,cns1) be a vector where
cach ¢; € k*, such that coey -+ cuqy #0 € k. Let V = V7 (c) C Pi*' denote the diagonal
hypersurface of dimension n and of degree m defined over k£ = F, given by the equation

(].) CO.X’(;n+C|.X,;11+“'+C,1+1A’::_1 :0

We denote by A" := V(1) the Fermat variety of dimension n and of degree m defined by
the equation (1) with ¢ = (1,1---,1) = 1. We call the vector ¢ a twisting vector. Note
that the vector ¢ = (e, ¢1,-.. ,¢ny1) is only defined up to multiplication by a non-zero
constant, and further, that changing any of the coefficients by an element in £* which is
an m" power gives an isomorphic variety. We will call two such choices for ¢ equivalent.
We will denote the set of all vectors ¢ = (cg, ..., q41), considered up to equivalence, by
C.

Throughout the paper, we impose the hypothesis that & contains all the m-th roots of
unity, which is equivalent to the condition that ¢ =1 (mod m).

The diagonal hypersurface ¥V = V*(c) is a complete intersection, and its cohomology
groups are rather simple (cf. Deligne [D73]). Its geometry and arithmetic are closely
connected to those of the Fermat variety, X = V*(1). In fact, the eigenvalues of the
Frobenius endomorphism for X" are Jacobi sums, and those for V are twisted Jacobi sums,
that is, Jacobi sums multiplied by some m-th root of unity. Furthermore, the geometric
and topological invariants of V, such as the Betti numbers, the (7, 7)-th Hodge numbers,
the slopes and the dimensions and heights of formal groups are independent of the twisting
vectors ¢ for the defining equation for ¥V, and therefore coincide with the corresponding
quantities for A'. By contrast, arithmetical invariants of V (that are sensitive to the
fields of definition), such as the Picard number, the group of algebraic cycles, and the
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intersection matrix, differ from the corresponding quantities for X'. Relations between
these arithmetical invariants of ¥V and the corresponding invariants of A" are one of our
main themes.

To understand the arithmetic of a diagonal hypersurface V = V*(¢) of dimension n
and degree m with twist ¢, we use the natural group action to associate to it a family of
motives which correspond to a particularly natural decomposition of the cohomology of V,
which we call the motivic decomposition. We call these (not necessarily indecomposable)
motives twisted Fermat motives, and the direct sum of these motives is the motive attached
to V itself. The arithmetic of these motives “glues together” to form the arithmetic of V.

Let V4 denote a twisted Fermat motive. We say that V4 is supersingular if the Newton
polygon of V4 has a pure slope n/2 ; V4 is ordinary if the Newton polygon of V4 coincides
with the Hodge polygon of V4; and V4 is of Hodge—Witt type if the Hodge-Witt cohomol-
ogy group H™ ¥ (V4, W) is of finite type for every ¢, 0 < ¢ < n. (If V4 is ordinary, then it
is of Hodge-Witt type, but the converse is not true.) Then passing to diagonal hypersur-
faces V, we say that V is supersingular, ordinary, and of Hodge-Witt type if every twisted
Fermat motive V, is supersingular, ordinary, and of Hodge-Witt type, respectively. Note
that these properties are not disjoint at the motivic level (that is, motives can be ordinary
and supersingular at the same time).

The set of all diagonal hypersurfaces has a rather elaborate inductive structure, relating
hypersurfaces of fixed degree and varying dimension. We focus on two types of such: the
first relating hypersurfaces of dimension n and n+42, and the second relating hypersurfaces
of dimensions n + 1 and n 4 2. This inductive structure is independent of the twisting
vectors of the defining equation for V. As before, the inductive structure can be considered
at the motivic level, and the arithmetic and geometry of motives are closely related to
those of their induced motives of higher dimension. Cohomological realizations of these
structures shed light, for instance, on the Tate conjecture and on special values of (partial)
zeta-functions. (For details, see Chapter 4 helow.)

For diagonal hypersurfaces V = V*(c) of odd dimension n = 2d+1, the Tate conjecture
is obviously true (Milne [Mil86]). For diagonal hypersurfaces of dimension n = 2, the Tate
conjecture can be proved for any twist ¢ over & on the basis of the results of Tate [T65] and
Shioda and Katsura [Shi-K79] for Fermat surfaces X;*(1) over k. For higher dimensional
cases, we obtain the following results.

(0.3) Theorem. Let V = V™(c) be a diagonal hypersurface with twist ¢ and let X =

V(1) be the Fermat variety, both of degree m and dimension n = 2d over k = F,. Let

pa(V) and ps(X) denote the d-th Picard number of V and X, respectively, and lel py(V)

and py( ') be the corresponding stable Picard numbers. Then the following assertions hold:
(a) The stable Picard numbers are given by

PaV) =PX) =14 Ba(Va)

where the sum runs over all supersingular Fermal motives V4, and B,(Va4) denotes the
n-th Betti number of V4.
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(b) Assume that m is prime, m > 3. Then

pa(Xx) = pu(V).

That is, the actual d-th combinatorial Picard number of X, is stable.
(c) Assume that m is prime, m > 3. Then

pa(Vi) < pa(X4).

Furthermore, the following are equivalent:
(1) Vi and &) are isomorphic

(2) pa(Vi) = pa(A%)
(3) c is equivalent to the trivial twist 1.

Part (c) is false in general for composite m: for some values of m, one can find twists ¢
such that ps(Vi) > pa(AX%). One can also find nontrivial twists such that ps(Vi) = pa(A%).

Shioda [Shi82a] has obtained a closed formula for the stable Picard number for surfaces
of prime degree: if n = 2 and m is a prime, then:

2(V)=143(m—1)(m—-2).

Our computations lead us to conjecture similar formulas for higher-dimensional hypersur-
faces. When n = 4 and m is prime, we conjecture that

(V) = 14 5(m — 1)(3m? — 15m + 20),
and when n = 6 and m is prime, that

ps(V)=1+45-7(m —1)(3m® — 27m* + 86m — 75).

We say that a twisting vector ¢ = (co, ¢, -+, as1) is extreme if ¢® := ¢g°c* -+ - 7Y

(kXY™ for any a = (ag,ay, - ,an41) € AT with j(a) = ¢%. The reason these are interesting
is the following observation.

(0.4) Theorem. Let V = V*(c) be a diagonal hypersurface of dimension n = 2d and
prime degree m > 3 over k = F,. Suppose that c is extreme, then the Tate conjecture
holds for Vi, and we have

Py(Ve) = pa(Vi) = 1.

Since diagonal hypersurfaces V = V*(c) are complete intersections, their zeta-functions

have the form: 1
Q(v, )=

SRR R ()
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In our case, Q(V,T) is an integral polynomial of degree Z=L{(m — 1)"+' + (~1)"*?}, and
over C
QW)= [[ (1 =d(c,a)T)

acan

where the product is taken over all twisted Jacobi sums, J(c,a).

Studying the asymptotic behaviour of the zeta-function as s — » clearly boils down,
then, to studying the asymptotic behaviour of the polynomial Q(V,¢™*) as s tends to »,
0 < r < n. To do this, we first evaluate the polynomials @(Va,q™") corresponding to
motives V4 as s — 7, and then glue together the motivic quantities to yield the following
global results.

(0.5) Theorem. Let V = V*(c) be a diagonal hypersurface with twist ¢ and let X =
V(1) be the Fermat variety, both of dimension n and degree m over k=T,

(1) Let n = 2d and assume m prime, m > 3. Put Q*(V,T) = (1 —¢*T)Q(V,T). Define
quantities €4(Vi), 8a(Vi) and wy(r), as follows:

Ba(V) = pa(Vk)

m—1

_ palVe) — pa(Ve)
m—1

€a(Vi)

;o Oa(Vi) =

’

and for anyr, 0 <r <n,

r

wy(r) =Y (r— )R T(V).

1=0
Then the following assertions hold for the limit

lin’] Q‘(V, q‘a)
sord (1 — gi=#)pa)’

(a) IfV is supersingular (resp. strongly supersingular), then the limit is equal to £m®+(V+)
(resp. equal to 1).
(b) If V is of Hodge—Witt type, then the limit takes the following form:

Bd(v;;)?néd(v,‘)
qu(d)

Here B4(V}) is the global “Brauer number” of Vi.. Il is a positive integer (not necessarily
prime to mp), and is a square up to powers of m.
If ¢ is extreme, then B*(V;) is a square.

(I1) Let n = 2d + 1 and m prime > 3. Then for any integer r, 0 < r < d,

Dr(V)
qtﬂv(r)

Q(va q—r) =
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where D™(Vg) is a positive integer (not necessarily prime to mp), and D™(Vi) = D*"(Vy).

Detailed accounts of Theorem (0.5) can be found in Chapters 6 and 7 below. The
hypothesis of m being prime is not a subtle one, and is present mostly for technical
reasons. One expects that there are similar formulae for the cases of composite m. Our
calculations are in agreement with such an expectation; see the comments in Chapter 9.

For diagonal hypersurfaces V = V*(c) of dimension n = 2 and degree m > 3 with twist
c over k = [F,, the Tate conjecture holds for V over &, so that V satisfies the Artin-Tate
formula relative to k (cf. Milne [Mil75]). One of the motivations of the Lichtenbaum-
Milne conjecture is to generalize the Artin-Tate formula to higher (even) dimensional
varieties. For diagonal hypersurfaces V = V7*(c) of dimension n = 2d with twist ¢ over
k = [F,, Lichtenbaum and Milne have shown that assuming the existence of complexes of
étale sheaves Z(r) having certain properties yields the following formula:

(0.6) Theorem [Milne-Lichtenbaum]. Assume the étale complezes Z(r) exist. Lel
V = V™(c) be a diagonal hypersurface of dimension n = 2d and (prime) degree m > 3
with twist ¢ over k = F,. Then the validity of the Tate conjecture for Vi implies that V;
satisfies the Lichtenbaum-Milne formula:

* —s d d
L Q) #BEYldet A%y
s—+d (i — qd'ﬂ)ﬂ'd(vk) qﬂdv(d)

where Bri(Vy) = #H " (Vi, Z(d)) is the “Brauer” group of Vi and # Br?(Vy) its or-
der, A%(Vy) is the image of the d-th Chow group CH*(Vy) in H™( Vi, Z(d)), {Di | 1 =
L,- - ,pa(Vi)} is a Z-basis for A%(Vy), det A%(Vy) = det(D; - D;) is the determinant
of the intersection matriz on A4(Vy), and oy(d) = s*(d) — 2s™(d) + wy(d) where
wy(d) = Z?:o(d — RV with b = dimg HI(V, ), and s'(d) = dim H(V, Z,(d))
(as a perfect group scheme).

For the definition of H, see Milne [Mil86], pp. 307.)

We refer to the formula in this theorem as the Lichtenbaum-Milne formula. It is known
to hold for d = 1 or d = 2 whenever the Tate Conjecture holds. When the Brauver group
Bré(V;) exists, its order is a square, and this gives us a handle on the (otherwise quite
mysterious) value of this term in the formula.

Since we can get information about the special values directly from properties of twisted
Jacobi sums, we can compare these results with those predicted by the Lichtenbaum-Milne
formula.

(0.7) Theorem. The notations of Theorem (0.5) remain in force. If the complezes Z(r)
ezxist and the Tate Congecture holds, so that the Lichtenbaum—Milne formula (0.6) is valid,
then we have, for m prime:

(1) The following assertions hold:

(a) If Vi is supersingular, then

# Bl-d(v;_.” det Ad(v.k)l — qav(d)ﬂle“(v“).
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(b} If Vi is of Hodge-Witt type, then
# Bré(Vy)| det A%(Vy)| = BV )mP«V),

(11) For each prime € with (¢,m) = 1, the following assertions hold:
(a) For a prime € with (£, mp) =1,

1 if Vi is supersingular

d _
# Bré(Vi)e—tors = { B4V if Vi is of Hodge-Wilt type

and

| det Ad(Vk) Rz Zg| =1.
(b) For the prime p = char(k), if Vi ts of Hodge-Wilt type, then

#BrVipotons = [BU(Vi)l;' and | det AYWV) @2 Z,| = 1.

(1) The following divisibility assertions hold:

(a) If Vi is strongly supersingular, then Br*(Vy) is a p-group, and |det A%(Vg)| divides
a power of p.

(b) If Vi is of Hodge-Witt type, then # Br?(Vi) is a square (with a possible exception
of the m-part), and | det A%(V})| divides a power of m.

For extreme twists ¢, we get a more satisfactory result. The Tate Conjecture holds with
pa(Vi) = 1, and one can determine the contribution of the intersection pairing explicitly.

(0.8) Theorem. Let V = V*(c) be a diagonal hypersurface of prime degree m > 3 and
dimension n = 2d with an extreme twist ¢ over k = F,. Then CHY(V}) is generated over
Q by the only one class of algebraic cycles, consisting of hyperplane sections on Vi and
|det A4(Vy)| = m. Then the Lichtenbaum-Milne formula holds modulo the existence of
Br¢(Vy), in the sense that

lim @ 0ha) _ m T BV [ det AY(V)|
a—rd (l - qd—s)pa(\h) qadvh

where €4(Vi) is as in Theorem (0.5). The ezponent e4(Vi) — 1 is even, and B*(Vy) is a
square.

When it is defined, the actual order of the Brauer group relates to the motivic Braver
numbers by the formula

+ Bré(Vy) = me (V-1 H[Bd(VA)]

Va

where the product is taken over all non-supersingular twisled Fermal motives V4. # Brt(V,)
is a square (including the m-part) for every V4 in the product.

About the Lichtenbaum-Milne conjecture (0.2), we have:
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(0.9) Theorem. Let V = V*(c) be a diagonal hypersurface of dimension n and prime

degree m > 3 with twist ¢ over k = F,. Assume the ezistence of the complexes Z(r) for
r,0<r<n.

(I) Let n = 2d, and take an extreme twist c. If Vi is of Hodge-Witt type. Then, the
exponent of q in the residue Cy(d) of (0.2) is correct, that is,

d

X(V,0,d) = wy(d) = > _(d— i)™ (V).

1=0
Furthermore, x(Vi, Z(r)) is given by

(D4R TL (gf = 1)

X(Vi, Z{d)) = Ba(Vy,) - mbaVi)

€ Q.

(11) Let n = 2d + 1. Then for any r, 0 < r < d, V) satisfies the Lichtenbaum- Miine
formula. That is, for any r, 0 < » < d, we have p, (Vi) = 1, and the ezponent of q is
correct, i.e., x(V,0,7) = wy(r). Morcover, x(Vi, Z(r)) is given explicitly by

D™ (V)

S VAR POSEITN ) Ty e

Many of the results in this paper were previously announced in Gouvéa and Yui [G-Y92].
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LISTS OF NOTATIONS AND CONVENTIONS

Let p be a rational prime
k =T, : the finite field of ¢ elements of char(k) =p > 0
k* =< z > : the multiplicative group of k with a fixed generator z

k . the algebraic closure of &

(k)" = {c™ |c € k*}

' = Gal(k/k) : the Galois group of k over k

W = W(k) : the ring of infinite Witt vectors over k
K = K(k) : the field of quotients of W

v : a p-adic valuation of @, normalized by 1(g) = 1
[ : The Frobenius morphism

V' : The Verschiebung morphism

® : the Frobenius endomorphism

Let m and n be positive integers such that m > 3,(m,p) =1 and n > 1
£ : a prime such that (£,m) =1

Q : the field of ¢-adic rationals

Zy : the ring of {-adic integers

| |7': the f-adic valuation of @ normalized by
|z| : the absolute value of z € R

7t =

L = Q(¢) : the m-th cyclotomic field over Q where { = e2m/™

G = Gal(L/Q) : the Galois group of L over Q, which is isomorphic to (Z/mZ)*

@d(m) : the Euler function

€ =(Co,Cty. - Cns1) € KX x - X kKX (n + 2-coples) : the twisting vector

V = V(c) : the diagonal hypersurface it e; X7 = 0 C P}+! with the twisting vector
c of degree m and dimension n

X = V(1) : the Fermat variety 3 o0 X = 0 C P}*! of degree m and dimension n
with the trivial twist ¢ =1

pm : the group of m-th roots of unity in C (or in k)

® =@&7 = pult? /A : asubgroup of the automorphism group Aut(V) of ¥V

® : the character group of &

A=Am =
n+i
= {a = (ag,a1,...,an41) € & | ¢; € Z/mZ,a; 0 (mod m), Za,- =0 (mod m)}
=0
For a = (ag, a1,...,a,41) € AT,
lal| = S-i4) (%) — 1 where < @ > is the fractional part of ¢ € Q

Pa : the projector defined in (3.1)

j{a) : a Jacobi sum of dimension n and degree m

J(c,a) : a twisted Jacobi sum of dimension n and degree m
a : an induced character in 7, ; for some d > 1
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j(a) : an induced Jacobi sum of an appropriate dimension and degree m

d(c,a) : an induced twisted Jacobi sum of an appropriate dimension and degree m
A = [a] : the (Z/mZ)*-orbit of a

EA = [a] = ZaEA Pa

A = [a] : the (Z/mZ)*-orbit of &

M4 @ a Fermat motive of degree m and dimension n

V4 : a twisted Fermat motive of degree m and dimension n

M ; : an induced Fermat motive of degree m and an appropriate dimension

V; @ an induced twisted Fermat motive of degree m and an appropriate dimension

#S5 : the cardinality (resp. order) of a set (resp. group) S
Br={acA’|d(c,a)= q”’q} with 7 even

ﬁ:‘ = {a € A" | J(c,a)/q"? = a root of unity in L} with n even
Cr =%, \ By

DY =AT\BY

O(C?) : the set of (Z/mZ)*-orbits in

O(D7) : the set of (Z/mZ)*-orbits in D

ed(Vi) = #0(€1)

Aa(Vi) = #0(D7)

8a(Vi) = ea(Vk) + Xa(Vi)

Let M be a [-module where I' = Gal(k/k) with the Frobenius generator ®

MF : the kernel of the map ® —1: M — M
Mr : the cokernel of the map ® —1: M =+ M
Miors ¢ the torsion subgroup of M

O : the structure sheaf of ¥V and A’

2 : the sheaf of differentials on V and X

W : the sheaf of De Rham-Witt complexes on V and A’
G, : the sheaf of units

Arithmetical invariants of V and A" are rather sensitive to the fields of definition. When-
ever the fields of definition are to be specified, subscripts are adjoined to the objects in
question.

For instance,
p-(Vi) (vesp. p.(Vg) : the r-th Picard number of V defined over & (resp. k)

pr(Vi) (resp. p.(Vg)): the dimension of the subspace of H* (Vg, Qe(r)) generated by
algebraic cycles of codimension r on V defined over k (resp. k) where { is a prime # p

Br (Vi) (resp. Br"(Vg)): the »-th “Brauer” group of V over k (resp. k)
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1. TWISTED JACOBI SUMS

Let m > 3 and n > 1 be integers. Let & = F, be a finite field of characteristic p > 0
and let k denote its algebraic closure. Assume that % contains all the m-th roots of unity,
which is equivalent to the condition that ¢ =1 (mod m). We fix a multiplicative character
x of k of exact order m by choosing a generator z of £* and defining

Nk ={(z) = pn
by _
x(z) = emiim = ¢

Let A denote the image of the diagonal inclusion gy, < 2 and let

=67 = /A ={g=(C:C, - Cnp1) €2} /A

and let ® be its character group. Note that there is a natural action of & on the variety
V.

Let [ = Q(e*/™) = Q(() be the m-th cyclotomic field over Q. Then & can be
identified with the set

n+1
®~{a=(ap,a1,...,0n41) | &; € Z/mZ, Za; =0 (modm)}
1=0
under the pairing
n+1

Bx® oL (a,g) — alg) = HC'“
=0
Let 2™ be a subset of & defined by

AT = {a=(ag,a1,...n41) € B |a; £0 (mod m) for every i}.

If there is no ambiguity, we write 2 for A to make the notation lighter.
To each a = (ap, a1,...,a,41) € U, we will associate several objects that will later
prove to be closely related to the geometry of our varieties. First, we define the length of

a to be
n+l

(£ 4 .
lall = > (=2) -1,

7=0

where (z) = z — [z] is the fractional part of = € R.
Now let G = Gal(L/Q); as usual, we identily G with (Z/mZ)*. Let H = {p' mod m |
0 < ¢ < f} be the decomposition group of a prime ideal p in L lying above p, with
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Normyo(p) = p/. Let G/H = {s1,52,...,5:}, so that f -t = @(m) (where ¢ is the Euler
function). Then we define

An(a) = ) [lp'all = llall + lpall + - + [Ip/~"a].
peH
It is probably worth noting that if p = 1 (mod m), then f =1 and Ay(a) = ||«||. For
practical reasons, many of our computations were done under this hypothesis. Finally, we
define an element in the integral group ring of G,

t
w(a) =Y Au(sia)-s; € Z[G)].
p=1

For much of the paper, we will fix a twisting vector ¢ = (co,¢1,...,cp1) with n + 2
components ¢; € k*. Consider a diagonal hypersurface V = V™(¢) C P*! over k defined
by the equation

XD+ X 4 X 4 gy X, = 0.

It will occasionally be useful to consider the set of all possible vectors c. It is clear that
multiplying each ¢; by an m" power in kX gives an isomorphic V, and that multiplying
all the ¢; by a scalar will leave V unchanged. Hence, we will identify the set of all ¢’s
(considered up to equivalence) with the set

C = (K /(™)™ /A,
where A is the diagonal inclusion of £* /(£*)™ in the product. We will say that ¢ is trivial
when it is equivalent to (1,1,...,1), i.e., when V is isomorphic to the Fermat hypersurface
X.

The set C clearly has a group structure. In fact, since k contains the m'" roots of unity,
it is isomorphic to the group & of automorphisms of V; in particular, there is an action

ofaeAonC,
CxUA— B[R = p,

given by
(c,a) = ¢ = ¢gocht .. et
This map will be the main tool for comparing the arithmetic of V to that of the Fermat
hypersurface X'.
(1.1) Definition. The twisted Jacobi sum of dimension n and of degree m (relative to q

and y) associated to a = (ag, ay,... ,tn41) € ® and ¢ = (€0, CiyevnyCnyl) 18
d(c,a) = 3(c,a)g = X(cg"er" .- ;3 )i(a) = X(c*)j(a)
where j(a) is the Jacobi sum of dimension n and of degree m. That is,
5(8) = (=D 3 ) x(02)* - X(vngr)

where the sum is taken over all (n + 1)-tuples (vi,vq,...,0n41) € &% X -+ X k¥ subject
to the linear relation 1 + vy + -+ + vy = 0. We will often refer to the vector ¢ or to the

Go .1 ant1

root of unity ¥(cg°cl*...c 1) as “the twist.”
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(1.2) Properties of twisted Jacobi sums. Let J(c,a) be a twisted Jacobi sum of
dimension n and of degree m. Then J(c,a) has the following properties:

(a) d(c,a) is an algebraic integer in L: more precisely, if ged(a,m) = d > 1, then
J(c,a) is an algebraic integer in Q(¢?) € L. With respect to any complex embedding,
d(c,a) has the absolute value |J(c,a)| = ¢™/2.

(b) Let

G(x) =Y x(=)¥(z)

ek

denote a Gauss sum, where ¢ : k — 1, is the additive character of k defined by

'Qb('v) = 82”'.(’74'"--{-::9/?)/”-

Then for a = (ap,a1,...,an41) € AT,
1— a a n41 ! a 't a 1 a
d(c,a) = a,\'(cc,“c,‘ GG ()G (X)L G ().

(c) As above, let
G = Gal(L/Q) = {01 | 04(¢) = ¢ with t mod m} = {¢ mod m | (t,m) = 1}.
Then G acts on 3(c,a) by

d(c,a) = J(c,ta) = x(ciocl® ... cirit)j(ta),

where of course
ta = (tag,tay,. .. tanyy) € AT,
In other words, G' acts on J(c,a) via its natural action on AT,
(d) Let p C L = Q(¢) be any ideal lying above p. As an ideal in L, (J(c,a)) has the

prime ideal decomposition

(3(c,a)) = p*®,

where w(a) € Z[G} is the element defined above.
(e) For any prime € with ({,mp) =1, let | |, denote the {-adic absolute value normal-

ized by €7 = €. Then
d(c, a)le = |5(a)le.
(f) Let v denote the p-adic valuation of Q, normalized by v(q) = 1. Then

v(3(e,a)) = v(j(a)).

Proof. The twisted Jacobi sum J(c,a) differs from the Jacobi sums j(a) only by multi-
plication by an m-th root of unity. Thus, all assertions are clear. O
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There is an inductive structure in the twisted Jacobi sums which reflects an under-
lying geometric inductive structure (studied extensively by Shioda [Shi82b] for Fermat
varieties). Fix a positive integer m > 3 and let r, s be positive integers. Define a set

AT, = {(b,d) € AT x AT | b = (bo, by, .., bp11),d = (do, dy, ..., deyr)
with  by41 + dsy1 =0 (mod m)}.

Then a pair (b,d) € A, gives rise to a character in A, ;:

b#d := (bo, by, ..., by, do,dy,. .., d,) € AT,
On the other hand, a pair (b’,d’) € A | x AT, also yields a character in 7, :

bxd = (b, b, by dyydhy o)) € UT

Shioda [28] has shown that there is a bijection

AT DA U (AT, x AT ).

3

In other words, every Jacobi sum of dimension m = r + s can be obtained from Jacobi
sums of lower dimension by one of the two methods.

This inductive structure can be realized cohomologically. In fact, Shioda [Shi79a] has
done that with Hodge cohomology groups. Here we shall discuss how the inductive struc-
ture are realized at the level of Jacobi sums and twisted Jacobi sums.

(1.3) Lemma. For fized m > 3 and n > 1, choose v and s so thal r + s =n, so thal we
have a bijection
RIT «— AT VAT ) x AT,

(a) If a = b#d = (bo,by,..., b, do,ds,...,d,) with (b,d) € A",
7(a) of degree m and dimension n is given by
j(a) = x(=1)5(b)s(d).
(b) Ifa=b'sxd = (b,b),...,b.,do,dv,...,ds) with (b',d") € A™ | x A", then the

Jacobi sum j(a) of degree m and dimension n is given by

j(a) = q5(b")j(d").

then the Jacobi sum

Proof. This is an immediate consequence of the product expression for j(a) in terms of
Gauss sums, and the identity G(x)G(X) = qx(-1).
(a) We have

. 1 . .
j(a) = 5G(,\'”°) LG) - Glx®) . G(x™)

- f;[qj(b) GO MGG = x(=1)j(b)i(d),
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because ol the condition b4, + dyp1 =0 (mod m).
(b) We have

. 1 ¢ ! ’ ’ / Y l . "N - ’
j(a) = EG(X%) L GOG(X®) . Gx™) = qi(b)j(d). O

We will be particularly interested in the case when » = n — 1, s = 1, which will allow
us to obtain information on Jacobi sums of dimension n by putting together information
from dimensions n — 1, n — 2, 1, and 0. Notice that if d € 27, then 7(d) = x(—1), which
makes the formula in item () particularly simple. It is probably also worth pointing out
that when m is odd we must have y(—1) = 1, simplifying the formulas still further.

(1.4) Remark. Going down the inductive structure, we see that any character a € A7
can be expressed in terms of characters in AF (which are trivial to understand), AP and
A7,

There is another (much simpler, but still uselul) inductive structure on Jacobi sums
which depends on the degree.

(1.5) Lemma. Fizn > 1, and let m = m{ be a power of a prime my, and assume that
either mo > 3 and t > 2, ormg =3, 1 2 3. Leta = (ap,ay,...,ap4) € AT, Assume thal
ged(ag, @y ...y @ppr,m) > 1, and hence is a power of mg. Write a;/mo = &} for each i,

. . t—1 . .
0<i<n+1. Thena = (ay,aj,...,a,,,) is an element of AT . [ we write j.(a) for
the Jacobi sum of an element of AT, then we have

Jmy(R) = Jme-r (&)
Proof. This follows from the identity on Gauss sums:

G'mé(z\’a‘) = Gm;-‘(,\’u:—)' Q

Adding in the twist does not change much:

(1.6) Proposition. The inductive siructures above are realized al the level of twisted
Jacobi sums as follows:
(I) Fizm >3 and varyn > 1.

(a) Choose positive integers v and s such thal v + s = n. Let ¢ = (co,¢1,...,Cp1)
EX o X BX ((r4+2) — copies) and d = (do,di,. .., dey1) € K" X -+ x kX ((s+2) — copies

Let a = (ap, a1, ... 0r41) € AT and b = (by, by, ..., bsy1) € AT such that a,py + byyy =
m. Let & := a#b = (ag,a1,...,a,,bo,b1,...,b,) € AT be the induced character. For any
vectors ¢ and d, write ¢ = (co, ¢1,...,¢r,do, d1,...,ds). Then

€
).

d(¢€,a) = X(—dsp1/crp1)**8(c,a)d(d, b).
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(b) Let ¢ = (coyCiy. - y6r) € KXo X kX ((r+1)— copies) and let d = (do,dy,. .., d,) €
EXx. - xk* ((s+1)—copies), where, as above, r4+s =n. Put € = (co,c1y... ¢, do,dy,. .., ds).
Let a = (ag,1y...,a,41) € U™, and let b = (bo,by,...,b0,) € A" . Put a =

(ag, ry...,ar,b0,by,...,bs) € AT be the induced character. Then we have

d(¢,a) = ¢d(c,a)d(d,b).

(c) In particular, ifr =n—1,s=1,letc = (co,C1,...,Cn1) € KX X+ XEX (n—copics),
and a = (ap,1,...,an-1) € AT ,. Let a = (ag,a1,...,an41,a,m—a) € AT be an induced
character. For any vector (cu,cat1) € kX X k>, write € = (co, €1, -+ 5 Cne1,CnyCnt1)- Then
we have

a m-—a

d(€,a) = qx(—cheni )d(c, a) = gX(—cn/cat1)’d(c, a).
Consequently, for any integer r, 0 <r < n,

NOI’l'ﬂL/Q (1 - 3((‘., a)

q"

. L4(¢,a
) = NOl‘mL/Q (]» - ,\’(_Cn+2/0n+3) Elr+l )) )

(II) Fiz n and vary m. Suppose that m = m{ where mg is @ prime > 3 and t > 2, or
mo =3 andr > 3. Let ¢ = (cp,¢1y... Cnp1) € KX X --- X E* ((n 4+ 2) — copies). Leta =
ag, A1, ...,0npy) € U™ such that ged{ag,ay,...,an41, m 1. Pulm' = m/mg = m5™!

P g B + n g ) + 0

1 .
and let &' = (ag,al,...,a,,,) € AT where ¢ = ai/mo for each i. Then

H(C,a’))

q”

J(c,a)
Normg,.)/0(1 = pe ) = Normgy,..y/e(l ~

for any integer r, 0 < r < n.
Proof. (I) (a) We have from Lemma (1.3)(a)
3(&,3) = Xt . o dvd . &) j(aktb)
R o R b Ry oty jab)

X(—dsy1/cr41)**8(c,a)d(d, b).

(b) and (c) are proved in the same way.

(I1) Let x,, and x, be multiplicative characters of k* of exact order m and m/, respec-
tively. Just note that

X (€37 L ) = (0T el )™)
— LM Gug
—,\m'(Co o "‘Cn+l)'

This together with Lemma (1.5) then yields the assertion. O

In what follows, this inductive structure will have to be dealt with in two levels: one
may look only at the a vectors, or consider also the twists c. In the first case, as we shall
see, one obtains information about geometric properties of the diagonal hypersurface;
taking the coordinate vector ¢ into account is only necessary when looking for arithmetic
properties.
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(1.7) Proposition. If m is an odd prime power, then the twisted Jacobi sum J(c,a)
satisfies the congruence

d(c,a)=1 (mod (1 =),

where ¢ is an m*™® root of unity in L. If m > 3 and ¢® is an m*™™ power in k, then in fact
d(e,a)=j(a) =1 (mod (1 -1()?).

Proof. The twisted Jacobi sum g(c,a) differs from the Jacobi sums j(a) only by mul-
tiplication by an m-th root of unity. If m is prime, then Jacobi sum j(a) satisfies the
congruence

J(a)=1 (mod (1 -¢)*) with a€Z, a>2.

In fact, if m > 3 it is known that o > 3. (This is due to Iwasawa [Iwa75].) The Iwasawa
congruence can be generalized, using a result of Thara that covers the case n = 1, to prime
powers. This fact was stated in Shioda [Shi87] without proof. We shall include a short
proof here invoking the inductive structures, and the lhara congruence for Jacobi sums of
dimension one.

If m = m{ with mg prime and m > 3, then Ihara [lha86] has shown that a Jacobi sum
j(a) of dimension one satisfies the congruence

j(a)=1 (mod (¢* —1)(¢* = 1)(¢* — 1))

where a = (ag, a;,az) € AT with ged(ag, a1, az,m) =1 and ¢ is an m™ root of unity. This
implies at once that

ja)=1 (mod (¢ —1)%).

Now suppose that gcd(ag, a, @z, m) > 1. Then one can divide the a; by a power of mq
to get a character a’ = [ay, a}, ay] of degree m’ such that ged(eg, af, ay,m’) = 1, and the
lIhara congruence says that

Jw(@) =1 (mod (o —1)(¢H = 1)(¢% — 1)),

where (., is an m’-th root of unity (hence a power of {). Recalling that j(a) = j,..(a’),
we get, once again, that

J(a)=1 (mod (¢ —1)%).

To prove the congruence for higher dimensional Jacobi sums, we use Lemma (1.3) on
the inductive structure on j(a) with respect to dimensions. As we noted above, if we “go
down” the inductive structure we see that every higher-dimensional Jacobi sum can be
expressed as a product of

(1) Jacobi sums of dimension 1,

(2) a power of ¢, and
(3) a power of y(—1).
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(Note that a Jacobi sum of dimension zero is simply equal to x(—1)). Now, since m is
odd, y(—=1) = 1, and, since ¢ = 1 (mod m), we know that ¢ = 1 (mod (1 —¢)*™)). Since
m > 3 we have ¢(m) > 2, and, together with Thara’s result for dimension 1, this gives the
congruence we want.

Finally, writing J(c,a) = ¢'j(a) with some ¢, 1 <t < m, we get

dc,a)—1=C3() -1 =GR - 1) —(1=¢) =0 (mod (1—1)).
Notice that this computation in fact shows that
d(c,a)=1 (mod (1 -=¢)%)

also when m is not prime and (¢,m)>1. O

Even for prime m, the precise nature of the (1 — ¢)-adic expansion of Jacobi sums is
still unknown. Still, partial results are available.

Let suppose m is prime, and let # = ¢ — 1. Then (7) is a prime ideal in L = Q(()
with (m)™ = (m) and Normyg(—m) = m. The (r)-adic completion of L is the local
field Ly, := Qn(¢) equipped with a valuation v, (which extends the valuation ord,, of
Q.» normalized by ord,,(m) = 1) such that v,(7) = 1 and v,(m) = m — 1. Let p
be a prime ideal in L over p such that Normpg(p) = ¢. Then ¢ = 1 (mod m) and
Z[C)/p = F,. Let A: FY/(FX)™ — Z/mZ be the isomorphism. Now we define for each
i, (1 <i<(m=-3)/2),

o= Y Mz)*M1 - z) € Z/m.

z€F,

Further, we define functions TLog and TExp by the truncated power series of the classical
logarithm and exponential:

m—1 :
(X = 1)
TLogX = (_l)'-l(—“i—) € Zm[)\’]
i=1

and

m—] Xi
TExp X = Z € Zy[X].

=0 2!
Let ' be an element of L defined by 7’ = TLog ¢((mod #™). Then

, 7T2 Tl"j Wm-l

2 3 +m—1

(mod 7™)=mu (mod ™)
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where u is a unit in L,,. Then 7' is a prime element in L, satisfying (#')™~! = (m) and
Norm(—7") = Norm(—n) Norm(u) = m Norm(u) with (Norm(u),m) = 1. Now we make
use of the m-adic expansion of Jacobi sums proved by Miki [Mik87] (cf. Yui [Y94]): Let
a=(a)az, - ,ay41) € AT, Then

j(a) = l'I‘Exp}" (mod (7')™)
q

where
m-=3)/2 1 n41
)2 n+t (rr ) 1+1 +

2z+1 q—l m— 1 ml
Z [Z ﬁz'() + 1)! MM ( ¢

(where the a; and the [y are lifted to Z in any way, since two such liftings are congruent
mod (7)),
From this, we easily obtain:

(1.8) Theorem. (Cf. Yui [Y94]) Let m > 3 be prime. Let a = (o, a1, ,an41) € AT
Suppose that there is an integer i such that 1 < i < (m — 3)/2 satisfying

n+1

(Z G§i+l)ﬁ2i #£0 (modm).

J=0
Let ig be the least such i. Then
ord.(7(a) = 1) =20+ 1 > 3.

(For 15 = 1, this is the Iwasawa congruence in [Iwa75].)

Proof. From the above discussion, we have
ordn(7(a) — 1) =25+ 1 >3,
and since 7’ = 7w« with a unit u, the assertion follows. O

One can also see from Miki’s formula that the first few terms of the n’-adic expansion of
j(a)—1 involve only odd powers of 7’. On the other hand, the formula gives no information
about further terms in the expansion. In particular, if we have (Z:’:& (L?H'l)ﬁzf = 0 for
all 7 such that 1 <7 < (m — 3)/2, all we can conclude is that ord(j(a) — 1) > m — 1.
That one can have equality here is shown by the example m = 5, n = §, p = 11,
a=(1,1,1,1,1,1,1,1,1,1)—see (6.13) below.

In spite of this, it would not be too far-off to expect that the following would be true:
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(1.9) Conjecture. Fiz m, n, and q as above, bul assume m > 3 is prime and n = 2d is
cven. Let a = (ag, a1, ,ny1) € UT. Then

ord,(j(a) — ¢%) s always odd.

The situation for twisted Jacobi sums is simpler, since (for m prime) the Iwasawa
congruence clearly implies that ord(—¢)(d(c,a) — 1) = 1 unless J(c,a) = j(a).
Finally, we note one useful consequence of the Iwasawa-Thara congruence:

(1.10) Proposition. Let m be a prime power, m > 3, and lel n = 2d be even. Suppose
d(c,a) = ¢*. Then either

(a) j(a) = ¢¢ and c* € (K*)™, or

(b) e® & (k*)™, but has order strictly less than m as an element of k* [(k*)™.

If m is prime, we have §(c,a) = ¢ if and only if j(a) = ¢% and c* € (k*)™.

Proof. Let x(c*) = £ Then J(c,a) = ¢% if and only if j(a) = £¢%. Since ¢ =1 (mod m),
this implies that j(a) = £ (mod m). On the other hand, the Iwasawa-lhara congruence
says that j(a) = 1 (mod (1 — ¢)?). It follows that {1 — £) is divisible by (1 — ()%, which
can only happen if € is not a primitive m*™ root of unity, hence if ¢® has order strictly less
than m. O

(1.11) Remark. When m is not prime, one can indeed have j(a) # ¢¢, but g(c,a) = ¢*.
This occurs when x(c?) = j(a)/q?. We illustrate this phenomenon with an example. Take
m=9,n==6,p=1 (mod 9), and choose

a=[1,3,4,4,5,6,6,7] and c¢=[1,2,1,1,1,1,1,1].

2mif9

Then, setting ( = e , we have

j(a) = ¢*19° and d(c,a) = 19°.

n/2

The importance of the case when J(e,a) = ¢*/* should become clear as we go on to

look at the zeta-function of V.

(1.12) The zeta-function of V = V*(c). We now recall the basic facts about the zeta
functions associated to our varieties V = V*(c). For each integer : > 1, let k; = Fy: and
let N; denote the number of k;-rational points on V = V] (c). Then the zeta-function of

V = V2(c) is defined as
- N
Z(V,T) = exp( E= T (T)).

The following properties of Z(V,T") are well known:
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(a) The zeta-function Z(V,T) is a rational function of the form
QY, 1) .

7 = € Q(7
[Tl = ¢'T) AT
where Q(V,T) € 1 + TZ[T} with deg(Q) = Z={(m — 1)"+! + (=1)**+2}.

(b) Over Q(¢), Q(V,T) factors as

QY. T)= [[ (1 —8(c,a)T)

acAr

Z(\V,T) =

where
d(c,a) = X(cg°c} ... ¢ 3 )i(a)
is a twisted Jacobi sum of dimension n and of degree m with absolute value ¢"/2.
The fact that the zeta-function has this form follow from the Davenport—Hasse relation
on twisted Jacobi sums, which we recall briefly here. (See Davenport and Hasse {D-H35],

see also Weil [W49, W52].) For each k;, define the characters y; and #; by
xi(z) = x(Normy, 1(2)),  i(z) = p(Tracey, x(z)).
Then the Gauss sum relative to k; is
Glxi) = Glxin i) =Y _ tila)xi().
z€k;
The Davenport—Hasse relation describes the effect of base change on Gauss sums, that is,
G(xi) = (=1)7'G(x).
From this and (1.2)(b), we can deduce a relation among twisted Jacobi sums under base
change. Let J;(c,a) denote a twisted Jacobi sum relative to k; and y;, ¥; with J,(e,a) =
d(c,a). Then _
di(c,a) = d(c,a)’ for any : 2> 1.
Furthermore,

N‘.=1+qi+...+qi"+zai(c,a).

In what follows, we will be interested in the special value at T' = ¢~ for various integers
r. We set this up by writing

QW,T)=(1=qTy JJ(1-dc.a)7),
where the product is now taken only over those a for which g(c,a) # ¢" (note that the
equality can only occur if n is even and r = n/2.) Then we have

QW,a™) ~ (1 —¢ ) [[(1 = 8(c,a)g™)
as s — r. It is this last product we are particularly interested in computing. It is useful
to not that as a runs over the characters the twisted Jacobi sums will run over [ull Galois

conjugacy classes in Q((), so that the product can be broken up as a product of norms;
we will consider this fact more carefully in a later section.
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2. COHOMOLOGY GROUPS OF V = V(c)

The geometry and topology of ¥V = V(c) are closely linked to those of the Fermat
variety X' = V™(1), to which it is of course isomorphic over the algebraic closure k. In
fact, the phrase “geometric and topological invariants” of V usually refers to quantities
depending only on the base-change of V to k, which are therefore independent of the
twisting vector ¢ = (cg,¢p,---,Cne1) of the defining equation for V. We record this for
future reference.

(2.1) Lemma. Let V = V(c) denote the diagonal hypersurface as above. The following
cohomological constructions are independent (up to isomorphism) of twisting vector ¢ =

(Cﬂaclu ce :Cn+l)"

(a) for each prime { # p = char(k) and each 1 € Z, the {-adic étale cohomology group
H“(V!Qf(i));

(b) for each prime { # p = char(k) with ({,m) = 1 and each 1 € Z, the l-adic élale
cohomology group H'(V,Z(1));

(c) for each pair (i,7), the de Rham cohomology group HS;{(V/]:), and the Hodge spectral
sequence

EY = HI(V,(8) = HEH(V/E)
(d) for each 1 € Z, the crystalline cohomology groups

H (VW) and HY(V/W)g

(€) for each pair (1,7), the Hodge-Witt cohomology groups H?(V, W Q')
(f) the formal groups @i}n-i arising from H™ ™ (V,WQ), especially the Artin-Mazur
formal group @, = H*(V,G,).

Now we can use the known facts relating the cohomology of V to Jacobi sums to obtain
some of the invariants of V. We recall the definitions:

(2.2) Definition.
(a) The i-th Betti number of V, denoted B;(V), is defined by

dimg, H'(Vz, Qe(i)) #f¢#p
Bi(V) = { dimy HI(V/W)e — ifb=p

(b) The (i,7)-th Hodge number of ¥V, denoted h*¥(V), is defined by
h(V) = dimg HI(V, )

In particular, h®*(V) is the geometric genus, p,(V), of V.
The Hodge numbers of V are

KO = hON(V), Al = A'PTY(Y), L., R = AMO(V) |
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The Hodge polygon of V is the polygon in R? obtained by joining successively the line
segments with slope i connecting the points (Z;;:) hi, Z;;h 7h?) and (X =0 hi, Z}=0jlz,j)
for each i, 0 < i <n (with the convention that the empty sum equals zero, so that the first
point is the origin).

(c) The slopes of V are defined to be the slopes of the isocrystal H*(V /W ). Let

9.’0,...,0’9, 9’1,...,0'11, ey gy ooy Oy

v ~
Mo my me

be the slope sequence of V', ordered so that
0<ap<ayy <~ <y <n

and m; denotes the multiplicity of slope «;, respectively. Then the Newlon polygon of
V is the polygon in R? obtained by joining successively the line segments with slope oy

. . i—1 t—1 t 1 .
connecting the poinls (3o mj, 3 g aym;) and (375 mj, 2 i aymy) Jor each i, 0 <
i <t (with the same convention as to the emply sum).

The relation of the cohomology of V with twisted Jacobi sums allows us to essentially
reduce all questions regarding these invariants to combinatorial questions about the a
vectors.

(2.3) Lemma.
(a) The i-th Betti number of V is computed by

0 if 1t odd and 1 # n
1 if1 even and 1 #n
#AT 41 ifi =n even

#2A7 ifi=n odd

By(V) =

and #A2 = {(m — 1)**? £ (m — 1)}/m, with the sign depending on whether n is even or
odd.
(b) The (z,7)-th Hodge number of V is computed by

i [0 fit+g#n
0= yacaz o= ieson

Furthermore, we have B,(V) = > I_ k"7 (V).
(c) Let p be a prime in L lying above p, let H be a decomposition subgroup for p, and

let Norm(p) = p/. Then the slopes of V are the numbers

{Au(a)/f | a € AT}
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arranged in increasing manner. (Cf. Koblitz {K75}], and Suwa and Yui [S-Y88].)

Proof. Given what is known about the Fermat variety &' (see Suwa and Yui [S-Y88]),
we have only to explain the assertion on the slopes of V. The eigenvalues of the Frobenius
of V differ from those of X’ just by the m-th roots of unity

N(eg® .. eh) with ae 7.

Therefore, the p-adic ordinals of the eigenvalues of V are the same as those for the Fermat
variety X. O

We will later compute explicitly these invariants in a few specific cases. We also recall:

(2.4) Theorem. (Mazur [M72]) The Newton polygon of V lies above or on the Hodge
polygon of V.

We now consider formal groups arising from V, e.g., the Artin-Mazur formal groups

S = H*(V,Gp) of V.

(2.5) Lemma. (Artin and Mazur [A-M77] ; cf. Suwa and Yui [S-Y88)). There is
a connected smooth formal group ®3"7" over k whose Cartier module is isomorphic to
H™(V,WQY). In particular, the Artin-Mazur functor ®} = H*(V,G,,) is representable
by a connected smooth formal group 5" over k of dimension p,(V). Furthermore, ®}"™
has the following properties:

(a) QU is isomorphic over k to the corresponding formal group of the Fermal variety,
IV

(b) There is a canonical exact sequence of connected smooth formal groups

0 — U — B — DY — 0

where Uy™"" is unipolent and Dy

explicitly given as follows:

is p-divisible, whose dimension and the height are

dim Dy~ = Z ((t+1)—Agn(a)/f))

acAn
i<An(a)/f<i+1

dimUy™™ = T (V) = dim H™H(V, WQH/V,
and

ht DY = #{a e A" |i < Ay(a)/f <i+1}.

Proof. Since the cohomology groups H™*(V, W) arc isomorphic to H™™H{X, WQ),
the assertion follows from Suwa and Yui [S-Y88, Chapter 3]. O
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3. TwISTED FERMAT MOTIVES

Let V = VI*(c) be a diagonal hypersurface with twist ¢ over £ = F,. The polynomial
Q(V,T) has degree #2A™ (essentially the n** Betti number), which is in general a very
large number. However, one sees easily that it factors very highly over Z. This allows us
to break up the problem of studying special values into a series of similar problems for
factors of Q(V,T). Formally, this is done by introducing twisted Fermat motives, which
turn out to be attached to certain quotients of V. Here we regard the group & = &7 as
a subgroup of the automorphism group Aut(V) of V.

(3.1) Definition. For any a € &, let

pa= g5 LA 9= = S alo) Mg € 2 (8]

ge® gED

Recall that (Z /mZ)* acts on & by

t(ag,an, ... ,an41) = (tao,tay, ... ,lanyr),

and that this action is related to the Galois action on the twisted Jacobi sum corresponding
to a = (ap,a1,...,¢ns1). This suggests we consider the (Z/mZ)*-orbit of a, denoted
A = [a]. (It will be relevant later to note that the order of A is at most ¢(m).) Let

pa =Y pa € Z[1/m][®)].

acA

Then it is easily seen that p, and p4 are idempotents, and that

doma= Y pa=1,

ac® AEO(B)

where O(@) denotes the set of (Z/mZ)*-orbits in &. Identifying g € & C Aut(V) with
its graph Ty, we see that ps € End(V) ® Z[1/m] may be regarded as an algebraic cycle on
(V x V)i with coeflicients in Z[1/m]. Therefore, the pair (V,pa) := V4 defines a motive
over k, corresponding to the (Z/mZ)*-orbit of A in ®.

The same projector p4 defines the Fermat motive M 4 of dimension n and of degree m
corresponding to A = [a] (Shioda [Shi87]). Thus V4 is a twisted version of the Fermat
motive M 4. When c is fixed, we call V4 the twisted Fermat motive of dimension n and of
degree m corresponding to A = [a]. (For a general background on motives, see for instance
Soulé [Sou84).)

This construction gives a decomposition of the motive attached to the variety V, as

follows: 3
V=(V,ay)= @ Vpa)= P Va

AEO(8) AEO(B)
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corresponding to > pa = 1. We call this the motivie decomposttion of V. In cohomology,
this corresponds to the decomposition

H (V) = @) HM(V)(4) = @) H™(Va),

where H™ denotes any of the cohomology theories mentioned above, and where H*(V)( A)
is the part of the cohomology group fixed by the kernel of a. If we decompose H*(V)® L
according to the characters of &, so that

H*"(V)® L =P H*(V)(a),

aE(B

then we have

H (V)(A) = H*(V)[ED H"(V)(a).

acA

It is interesting to relate the motive V4 to a “real” geometric object. (Cf. Schoen
[Scho90].) This is not hard to do, since it suffices to construct the quotient V by an
appropriate subgroup of ®. Let Xo, Xy,..., X,41 be homogeneous coordinates on P}T!
and consider the hyperplane H defined by

(3.2.1) coXo+ a1 Xy + ka1 Xy = 0.
Then the morphism

n+1 n+1
Py — Py

(Xoy X1,y Xag) = (X0 X7, X))

realizes V = V™ as a finite Galois cover of H with Galois group &. The branch locus
consists of the (n+2)-hyperplanes X; =0 for 7=0,1,...,n+1. Now for each character
a € @, let &, denote the kernel of the map & — pu,, : g — a(g):

B, = {9 € Bla(g) =1}.

(Note that this depends only on the (Z/mZ)*-orbit of a.) Then of course &/B, =
Im(a) C (Z/mZ).

(3.2) Theorem. The quotient ®,\V is the normalization of the complete intersection in

P2 given by the equations

n+1 n+1

(3.3.1) yr=J[Xxe > aXi=0.

1=0 =0
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Proof. This is essentially clear. Let W, denote the complete intersection above. Then V
maps to Wy via

(-Xoa‘xl: .. '1‘Xﬂ+1) = (X(;n3‘xlm’ . '?‘le-}-l!H‘X?i)

and W, maps to the hyperplane H by projection on the first n 4+ 2 coordinates. It is a
trivial matter to see that ®, acts trivially on Wy, and that no other elements of ® do.
The rest follows. O

Thus, if W4 denotes the quotient, we have
H™(V)(A) = H"(W.)

for each ol the cohomology theorics above and each n > 1.

(3.3) Lemma. The Frobenius endomorphism ® of V relative to k commutes with the
motivic decomposition. That is, the endomorphism ®* induced from the Frobenius endo-
morphism on the cohomology groups defined in (2.1) acts semi-simply.

Proof. Note that
D" -psy =pas - .

a
(3.4) Lemma. The polynomial Q(V,T) fectors as

eV, 1) = ] QWaT)

A€O(B)

where

Qa,T) = [[(1 - 8(c,a)T) € 1 + Z[7].

acA

is the polynomial, not necessarily irreducible over Q, corresponding to the twisted Fermat
motive V4.

The numerical and geometric invariants of V4 are defined in the obvious way, and their
values can be computed analogously to those of V.

(3.5) Lemma.
(a) The 1-th Belti number of V, is

Bi(Va) = dimg, H'(Va,, Qe) = dimg H'(Va/W )
#A fi=nand ACAT
=<1 if i even and A =[(0,...,0)]

0 otherwise
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We have B,(Va) < ¢(m), with equality when ged(a,m) = gcd({(ao, @1,...,8n41),m) =1
(hence in particular when m is prime). Moreover, we have

Bn(v)z Z Bn(vA)

AEO(®)
(b) The (z,7)-th Hodge number of V4 is
RY(V,) i= dimyg HY (V4, Q)
_ #{ac€ A||a||=1} fi+j=nand ACUAT
1o otherwise

and moreover, we have

hH(V) = Zﬂ R (Vy)

A€0(®)
The Hodge numbers of V4 are defined by

RO(V4) = RO™(Va), BE(Va) = B (Va), ..., B (Va) = A™°(V4) .

In particular, hO™(V4) is the geometric genus, p,(Va), of Va. Furthermore, we have
Yico M (Va) = Ba(Va).
(c) The slopes of V4 are the slopes of the isocrystal H*(Va/W )k, and are given by

{An(a)/f |a€ A}

arranged in increasing order.

(d) Mazur’s theorem can be syphoned to motives, and indeed, the Newton polygon of V4
lies above or on the Hodge polygon of V4.

(e) The formal group ¢§5:_i of Va s defined by the formal group who_se Cartier module
is isomorphic over k to H™™'(Va, WQ') for each i, 0 < i < n. Let Dy " be the p-divisible
part of (I){}’:—i. Then

dmDR" = 3 (+1) - An()//],
iSAH('f)?de
codim 'Di,‘:'i = Z (Au(a)/f —1), and
I'SAH(ﬂnE)?J-:i-i-l
ht Dy~ =#{a € A|: < Au(a)/f <i+1}.

Proof. The assertions in Lemmas (2.2), (2.3) and (2.5) are passed onto motives by Lemma
(3.3). O

We can make the following definitions:
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(3.6) Definition.

(a) V4 is ordinary if the Newton polygon coincides with the Hodge polygon of V4.
(b) V4 is supersingular if the Newton polygon has the pure slope n/2.
(b’) V4 is strongly supersingular if 3(c,a) = ¢*/% for every a € A.

(c) Va is of Hodge-Witt type if H(V4, WQ') is of finite type over W for any pair (2, 7)
with 1 + 7 = n.

(3.7) Lemma. If V, is supersingular then j(a) = g2, where £ is an m-th rool of unily.
If m is a prime, m > 3, then in fact j(a) = ¢™/2.

Proof. The first assertion is well known. The second follows from Proposition (1.10). O

From the Lemma we see that if V4 is supersingular then J(c,a) differs from ¢*/2 by a
factor of a root of unity. This explains the term “strongly supersingular” above.

It will be useful for the subsequent discussions to give a combinatorial characterization
of ordinary, resp., of Hodge-Witt type, resp., supersingular twisted Fermat motives. Some
such results are easy to obtain; for example, it is clear from the above that when p =1
(mod m), so that f = 1, every motive will be ordinary. The following is a more precise
result:

(3.8) Proposition. (Cf. Suwa and Yui [S-Y88]). Let V4 denote a twisted Fermal motive
of dimension n and degree m.

(a) The following condilions are equivalent.
(i) V4 is ordinary.
(if) llpall = ljal| for any a € A.
(b) The following conditions are equivalent.
(i) Va is supersingular.
(i1) Ag(a) =nf/2 for anya € A.
(c) The following conditions are equivalent.
(1) V4 is of Hodge-Witt type.
(i) ||’a|l - ||a|| = 0, %1 for anya € A and for any 3, 0 < j < f.

Proof. The assertions of (a) and (b) follow immediately from the definition. For (c), see
Suwa and Yui [S-Y88], Chapter 3.

(3.9) Remarks.

(1) If V4 is ordinary, then V, is automatically of Hodge-Witt type. However, the
converse is not true. (See lllusie and Raynaud [I-R83].)

(2) V4 can be ordinary or of Hodge-Witt type, and at the same time supersingular.

(3) The relations among these properties for Fermat motives M4 and for twisted Fer-
mat motives V4 are as expected: If M, is ordinary (resp. of Hodge-Witt type, resp.
supersingular), then so is V4. This is, of course, clear from Proposition 3.8.
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(3.10) Proposition. Let V4 be a twisted Fermat motive of degree m and of even dimen-
stonn = 2d. Then the following statements are equivalent:

(1) Va is ordinary and supersingular,
(i) [lal| = d for everya € A,
(iii) h%*4(V4) = B.(Va).

Proof. Clear. O

(3.11) Proposition. Let Va be a twisted Fermat motive of degree m and of even dimen-
stonn = 2d. As above, let [ denote the order of the decomposition group H C G of an
ideal dividing p. If V4 is ordinary bul not supersingular, then

h*4(Va) < Ba(Va) = 2/.

Proof. Note, first, that if f = B,(Va) then V4 is automatically supersingular, so that
our statement does make sense.

Next, since V4 is ordinary, we have
lall = llpall = -+ = |/ ~'al| for every a€ A.
On the other hand, V4 is not supersingular, so that
An(a) = llall + lpall + - + [p~all £ & for some a € A.

This implies that
llal| #d for some a¢€ A.

Now, it is easy to see that we have
lla]l + ||ta]| = n = 2d for some ¢ € (Z/mZ)*

(which necessarily does not belong to H), and hence

I#a]| # d

for this £. This shows that there can be at most B,(V4) —2f vectors a for which ||«|| = d,
which proves our claim. O

Characterizations of ordinary twisted Fermat motives and twisted Fermat motives of

Hodge-Witt type in terms of formal groups can be deduced [rom Ekedahl’s result (Ekedahl
[Eke84]).
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(3.12) Proposition. Let V, be a twisted Fermat motive of degree m and dimension n.
(a) The following conditions are equivalent.
(1) Va4 is ordinary.
(i) (15;';’:_" is isomorphic over k to the multiplicative group Gm'; for each 1, 0 <1 <
(n—1)/2.
(b) The following conditions are equivalent.
(1) Va s of Hodge- Witt type.
(ii) (I)ijj_i is isomorphic over k to a p-divisible formal group for each 1,0 < i < (n—1)/2,
(iii) A9"1(V,4) = dim D"V, -+ codim 'Di,:""“{ﬂ foreach 1,0 <1< (n—1)/2.
(c) If V4 is supersingular, then Cb‘]-;:_i is unipolent for every 1.

(3.13) Examples. We have computed the invariants of various twisted Fermat motives.
A few examples of such computations are can be found in Table L.

Passing to the global situation, we can now make the following definitions for diagonal

hypersurfaces.
(3.14) Definition. Let V be a diagonal hypersurface of dimension n and of degree m.

(A) V is said to be ordinary il each twisted Fermat motive V4 is ordinary.

(B) V is said to be supersingular if each twisted Fermat motive V4 is supersingular.

(B’) V is said to be strongly supersingular if each twisted Fermat motive V4 is strongly
supersingular.

(C) V is said to be of Hodge- Wiit typeif each twisted Fermat motive V4 is of Hodge-Witt
type.

(3.15) Remarks.
(1) Most diagonal hypersurfaces are of mixed type. One easy case, however, was noted
above: diagonal hypersurfaces of degree m over F, are ordinary when p =1 (mod m).
(2) Diagonal hypersurfaces of degree m over F,, are supersingular when p = —1 (mod m).

(3.16) Remark. To simplify the calculations, one notes that many of our motives are
isomorphic, reducing greatly the number of cases to be considered. First of all, note
that two Fermat motives M, and My will be isomorphic whenever some character
a = (ap,a1,...,0h41) € A is equal to a permutation of a character in A’. Thus, for
computations which depend only on M4, one can simply work with a representative from
each isomorphism class, and keep a count of their multiplicity.

Computations involving the twist ¢ require a bit more care. If ¢ is particularly simple
however, similar ideas still apply. For example, if we have ¢ = (¢, 1,1,...,1}, which is
a case we will often want to consider, we need only break up the isomorphism classes
according to the first entries in the characters, so that the motive V4 determined by
a=(1,1,2,2,5,5) is isomorphic to that determined by a = (1,2,1,2,5,5), though not to
that determined by a = (2,1,1,2,5,5). This only slightly complicates keeping track of
the multiplicities.
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4. THE INDUCTIVE STRUCTURE AND THE HODGE AND NEWTON POLYGONS

Shioda [Shi79a,Shi82b} (cf. also Shioda and Katsura [Shi-IK79]) have studied geo-
metrically the inductive structure of Fermat varieties. We have described the inductive
structure of diagonal hypersurfaces in Lemma (1.3), Lemma (1.5) and Proposition (1.6).
In this section, we shall consider cohomological realizations of the inductive structure by
Hodge cohomology, étale (or crystalline) cohomology and Hodge-Witt cohomology. More
concretely, we shall see the effect of the inductive structure on the Hodge polygon, the
Newton polygon and the formal groups attached to motives M, and V,4.

To begin, we recall the inductive structure described in Section 1. Recall that A7
denotes the set of vectors a = (ag, a1, ..., @u41) such that > a; =0 (mod m) and «; 0
(mod m) for each . In particular, AT = {(a,m — a) | a € Z/mZ,a # 0}.

Then the inductive structure described above gives a map

m m m
an X Q‘lO = Ql'n.-{-?
by concatenation of vectors:

({agy@ry ...y angr), (a,m — @) = (ag, €1y .oy Ungr, @, — a).

We call this inductive structure the type [ inductive structure. We will refer to vectors in
A7, which are in the image of this map as induced characters of type I, and to twisted
Fermat motives corresponding to such vectors as type 1 motives. We note that for each
a € AT, there are exactly m — 1 induced characters a € A7, of type I. We view the
inductive structure of type | as a sort of “tree” beginning at dimensions n =0 and n = 2
and branching up through dimensions of the same parity (since each step adds two to the
dimension).

These do not exhaust A7, ,, as Shioda [Shi79a] has shown. The complement, however,
is also obtained from lower dimensions, e.g., n 4+ 1 and 1; it is isomorphic to the subset

A,y of A, x AT defined by
A7 = {((ao, a1, ..., @nyg2), (bo, b1, b2)) | tnga + by = m}.
Then the inductive structure gives a map
anm+1,1 = A

by assigning to a pair (a,b) the vector a#b = (ag,a1,..., up1,00,01). We call this
inductive structure the lype IT inductive structure. We will refer to vectors in 23!, , which
are in the image of this map as induced characters of type 11, and twisted IFermat motives
corresponding to such vectors as type Il motives. We note that for ecach a € AT}, |, there are
at most m — 2 induced characters of type Il with by b, = @p42, and at most m — a2 —1
induced characters of type I with by+b; = anp2+m. We may view the inductive structure
of type II as again sort of “tree” beginning at dimension » = 1 and branching up through
all dimensions each step adding one more dimension.
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One thing that makes the inductive structure especially useful is that the invariants
we are dealing with do not change if we permute the entries in the character vector
a = [ag,ay,...,aytt). This means that all that we prove about induced characters is also
true for characters that are “induced up to permutation”. Up to permutation, a character
may be induced from characters of lower dimension in many different ways, of course.

Let V = V™(c) be a diagonal hypersurface of dimension n and degree m with twist
c defined over £ = F, and let X = V*(1) be the corresponding Fermat varicty. We
fix m once and for all and vary n. In this section, we will be concerned with how the
inductive structure is reflected in properties of the Hodge and Newton polygons of V.
Such properties are, as remarked above, independent of the twist c¢. In other words, in
this section we are essentially dealing with Fermat hypersurfaces &',

(4.1) Theorem. Let m > 3 and n > 1 be as above. Then the following assertions hold:

(Type I) Let a € AT and let V4 be the corresponding twisted Fermat motive. Then a
twisted Fermat motive of dimension n + 2 of type | induced from a inherits the same
structure as that of V4. In other words, if V4 is ordinary (resp. of Hodge-Will type, resp.
supersingular), then any induced motive of type | is ordinary (vesp. of Hodge-Witt type,
resp. supersingular).

All m — 1 twisted Fermat motives of dimension n + 2 of type I induced from a are “co-
homologically isomorphic” in the sense that they have the same cohomological invariants
for Beltti cohomology, C-adic cohomology, crystalline cohomology, Hodge-Witl cohomology
elc.

More generally, any twisted Fermat motive of lype | of dimension n 4+ 2d with d > 1
induced from a inherits the structure of V4.

(Type I1) Let a € A7, and b € AP, and let V4 and Vg be the corresponding twisted
Fermat motive of dimension n+1 and 1, respectively, where B denotes the Z [mZ-ovbit of
b. If both V4 and Vg are ordinary (resp. supersingular), then so is their induced molive
of type 11 of dimension n + 2. [f V4 is of Hodge-Witl type and Vg is ordinary, or the
other way around, then the induced motive is of Hodge—Wilt lype.

However, not all twisted Fermat motives of dimension n + 2 of type Il induced from a
are “cohomologically isomorphic”.

More generally, for any posilive integers r,s, let a € AT” and b € AT, [f V4 and Vg
are both ordinary (resp. both supersingular), then so is the induced motive of dimension
r+s. If Va is of Hodge-Witt type and Vp is ordinary, or the other way around, then Vy
is of Hodge-Witt type.

The proof of Theorem (4.1) will be given bit-by-bit below, by looking into the effects
of the inductive structure on cohomology groups with various coefficients.

We first set up necessary notations: If & € 27, is a character of type | (resp. type II)
induced from a € A7 (resp. a € AT, ), let A denote the (Z /mZ)*-orbit of &, and Vi the
corresponding twisted Fermat motive of dimension n -+ 2 and degree m.
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We now discuss the effect ol the inductive structures of diagonal hypersurfaces on Hodge
polygons.

(4.2) Proposition. Let m >3 and n > 1. Then the following assertions hold:

(Type 1) Let a € AT and let V4 be the corresponding twisled Fermat motive of degree
m and dimension n. Suppose that a € ™7, is an induced character of type 1. Then the
slopes of the Hodge polygon of the corresponding twisted Fermat motive V3 increase by 1
from those of V4 while keeping the same multiplicities. In other words, if V4 has a Hodge
slope 3, 0 < 7 <n with multiplicity h?, then V5 has a Hodge slope 5 + 1 with multiplicity
he.

More generally, if a € U7 4, is an induced character of type 1, then the slopes of the
Hodge polygon of the corresponding twisted Fermat motive increase by d from those of V4
while keeping the same multiplicities.

(Type Il) Leta = (ag, a1, ..., anz2) € AT, and b = (bo, by, b2) € AP with anya+by =m
and let V4 and Vg denote the corresponding twisted Fermal motives. Suppose that a =
a#b € A, is the induced character of type 1. Then the slopes of the Hodge polygon of
the corresponding twisted Fermat motive V3 are given by ||al| + ||b|| where ||b|| € {0,1}.

More generally, let a € AT, is an induced character of type 11, say, & = a#b with
a €A™ and b € AT, Then the slopes of the Hodge polygon of V; are given by ||a|| + ||b]|
where ||b]| € {0,1,...,s}.

Proof. (Type 1) Let & = (ag,ay,...,an41,¢,m — a) € ATy be an induced character of

type I. Then
m-—a

I8l = llall + (=) + (=) = llall + 1.

It is easy to see that
#alllall =3} = = #{a| |all = j + 1}

(Type I1) Let a = (ao, a1, . .., tny1, bo, by) be an induced character of type I1. Then

n+1 l
by

I8 = D% + 32 — 1= fall + bl = (Z22) 4 (2) ~ 1) = ] + b

. . 1
i—o —0 m

For higher dimensional cases, repeat the above argument sufficiently many times. 0O

(4.3) Examples. (Type 1) Let (m,n) = (5,2). The set A5 consists of 1 + 52 non-
trivial characters. Grouping those characters which belong to the same motives up to
permutation, we obtain three different “groups”: 16 characters are “like” a = (1,1,1,2),
24 are “like” a = (1,2,3,4) and 12 are “like” a = (1,1,4,4).

The Hodge polygon of V}; 1,129 has slopes 0,1,2 with multiplicities 1,2, 1, respectively.
Then the Hodge polygons of the induced twisted Fermat motives of type [ of dimensions
2 4 2d for any d > 1 have slopes 1 + d,2 + d,3 + d with the same multiplicity 1,2, 1.
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The Hodge polygons of V|1 2,34 and V| 1,44 have the pure slope 1 with multiplicity 4.
Then the Hodge polygons of the induced twisted Fermat motives of type I dimensions
2 + 2d for any d > 0 have pure slope ¢ with multiplicities 4.

Notice that [1,2,3,4] and [1,1,4, 4] are both induced from the dimension zero character
[1,4], so that one could obtain the information from the dimension zero case.

(Type 1) Let (m,n) = (7,n) withn > 1. Let a =(1,1,1,4) € A.. The Hodge polygon
of Vj1,1,1,4) has slopes 0, 1, 2 with respective multiplicities 2,2,2. Now let b = (1,3,3) € 2],
and let & = a#tb = (1,1,1,1,3) € 2] be an induced character of type I1. Then the Hodge
polygon of V|1 1,1,1,3 has slopes 0,1,2,3 with multiplicities 1,2,2,1, respectively.

Ifa=(1,1,2,4,6) € AL, then the Hodge polygon has slopes 1,2 with multiplicities 3, 3,
respectively. Let b = (1,5,1) € U] and let & = a#b = (1,1,2,4,1,5) € A7 be an induced
character of type II. Then the induced motive has the Hodge polygon with slopes 1,2,3
with multiplicities 2, 2, 2, respectively.

Now we shall discuss the effect of the inductive structures on Newton polygons.

(4.4) Proposition. Letm > 3 and let n 2 1. Let p be a prime not dividing m and let [
be the order of p mod m.

(Type 1) Let a € A and let V4 be the corresponding twisted Fermat motive of degree
m and dimension n. Suppose that & € 27}, is an induced character of type 1. Then lhe
slopes the Newton polygon of V3 increase by 1 from those of V4 while keeping the same
multiplicities. In other words, if V4 has a Newton slope o with multiplicity r, then Vz has
a Newlon slope o + | with multiplicity r.

More generally, if a € AT, is an induced character of type I from a € AT, then the
slopes of the Newton polygon of V; increase by d from those of V4 while the multiplicities
remain the same.

(Type'll) Ifa € A7, is of type 11, say, & = a#b wherea € AP, and b € AP, then
slopes of Vi are given by {Ay(a)/f + Au(b)/f}.

More generally, let a € AT, be an induced character of type 11, say, & = a#tb with a €
AT and b € AT, Then the slopes of the Newton polygon of Vi are given by {An(a)/f +

Au(b)/f}.
Proof. This follows from Lemma (1.3) and Lemma (2.3)(c).
(Type 1) Let a = (ao,a1,...,0n41) € A} and let & = (ag, ay,...,dnp1,a,m —a) € AT,

be an induced character of type I. Then the slopes of the Newton polygon of V; are given
by Au(a)/f where

Ap(a) =) ||tal.

teH

But for each t € H, we have

m 42

. a
l[tali = fltafl + () + ) = {ltall + 1.

m
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Hence the slopes of the Newton polygon of V3 are the slopes of V4 plus 1. The assertion
on the multiplicity is obvious.

(Type 1) Let a € A7, be an induced character of type II, i.e., & = a#b where a =
(ao, a1y ..., an42) and b = (bg, by, by) with any9 + by = m. Then

A}](é) _ A”(a) + Au(b) _ Au(a) n /IH(b)
f f f /o

Hence the slopes of the Newton polygon of Vy are given by {Ay(a)/f + Au(b)/f}.
For higher dimensional cases, repeat the above argument sufficiently many times. O

(4.5) Examples. (Type I) (1) Let (m,n) = (7,d) with d > 1, and let p be a prime such
that p=2or 4 (mod 7). Then f = 3. The set A} consists of one plus 186 characters: 24
likea = (1,1,1,4); 72 likea = (1,1,2,3); 18 likea = (1,1,6,6) and 12 likea = (1,2, 5, 6).

The Newton polygon of Vj | .4 has slopes 1/3,5/3 with multiplicities 2,2. Then the
Newton polygon of the induced twisted Fermat motive of type I of dimension 2 4 2d for
any d > 0 has slopes 1/3 + d,5/3 + d with the same multiplicities 2, 2.

The Newton polygons of V1,1 6,6 and V1 2,56 has pure slope 1 with multiplicity 4. Then
the Newton polygons of the induced twisted Fermat motives of type I dimension 2 + 2d
for any d > 0 have pure slopes 1 + d with multiplicity 4.

(2) Let (m,n) = (25,d) with d > 1. Let p be a prime such that p = 6 or 21 (mod 25).
Then f =35.

Let a = (1,1,5,18) or a = (1,3,5,16) € A2,. The Newton polygons V4 have slopes
3/5,4/5,6/5,7/5 with multiplicities 5,5, 5,5, respectively. Hence all the induced twisted
Fermat motives of type I of dimension 2 + 2d have Newton polygons with slopes 3/5 +
d,4/5 + d,6/5 + d,7/5 + d with multiplicities 5,5,5,5. Let a = (1,2,3,19) € A2°. The
Newton polygon of V4 has the pure slope 1 with multiplicity 20. Hence all the induced
twisted Fermat motives of type 1 of dumension 2 4 2d have Newton polygons with the pure
slope 1 + d with multiplicity 20.

(Type I1) Let (m,n) = (7,n) with n > 1, and let p be a prime such that p = 2 or 4
(mod 7), so that f = 3.

Let a = (1,1,1,2,2) € A]. The Newton polygon of Vi1,1,1,2) has slopes 2/3,7/3 with
multiplicities 3,3. Let b = (1,1,5) € A7 and let & = a#b = (1,1,1,2,1,1) € A’be an
induced character of type II. Then the Newton polygon of V5 has slopes 2/341/3,7/3+2/3
with multiplicities 3, 3.

Let a = (1,1,2,2,4,4) € 2A]. The Newton polygon of V| 122.4.4 has slopes 1,3 with
multiplicities 3,3. Let b = (bg,b1,3) € A7 with by + b, = 4. Then there are two choices
for b, up to permutation, namely b = (1, 3,3) and (2,2, 3).

Let a = a#(1,3,3) = (1,1,2,2,4,1,3) € AL. Then the Newton polygon of the corre-
sponding motive has slopes 5/3,10/3 with multiplicities 3, 3.

Let & = a#(2,2,3) € Y. Then the Newton polygon of the corresponding motive has
slopes 4/3,11/3 with multiplicities 3, 3.
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(4.6) Proposition. Let m > 3 and n > 1. Then the following assertions hold:

(Type 1) Let a = (ap, a1, ..., any1) € UL and let V4 be the corresponding twisted Fermal
motive of degree m and dimension n. Suppose that a € AT, , is an induced character of
type I. Then Vj inherit the struclure of Va, that is, if V4 is ordinary (resp. of Hodge- Witt
type, resp. supersingular), then so is V.

All m — 1 twisted Fermat motives V; of type | of dimension n + 2 branching oul from
the same V4 of dimension n inherit the structure of Vy.

(Type 1) Let @ = (ao,ar,...,0nq1,nq2) € AR, and b = (bp, by, b;) € AT wilh apyy +
by = m. Suppose that & € A7, be an induced character of type 11, say, a = a#b. Lel
Vg denote the twisted Fermat motive corresponding lo the Z/mZ-orbit B of b. [f bolh V4
and Vg are ordinary (resp. both are supersingular), then so is Vz. If V4 is of Hodge—Will
type and Vg is ordinary, or the other way around, then V3 is of Hodge-Will iype.

However, not all twisted Fermat motives V3 of lype 11 of dimension n + 2 induced from
the same V4 of dimension n + 1 are “cohomologically isomorphic”.

Proof. We use the combinatorial characterizations of ordinary (resp. of Hodge-Witt
type, resp. supersingular) motives given in Lemma (3.8).

(Type 1) If V4 is ordinary (resp. of Hodge-Witt type), then for any a € A and for any
7,0 < 7 < f, we have _
|l7all = |la]| =0 (resp. 0,%1).

Then [[p*al} = [p'all +1 for any j, 0 < j < /, and moreover,
I8l — IIa] = 7all - [lall =0 (resp. 0,:1).

This implies that Vj is ordinary (resp. of Hodge-Witt type). If V4 is supersingular, then
An(a) =nf/2 for any a € A, and hence Ay(a)/f = Ay(a)/[ +1 = (n+2)/2. So V; is
also supersingular.
(Type II) Recall that ’ ' _

lP’all = [|p"all + |I»’b]|.
for any j, 0 < 5 < f. Thus, if both V4 and Vp are ordinary, or if V4 is of Hodge-Witt
type and Vp is ordinary, then ||p’b|| = 0 for any j, 0 < 7 < f, so that

P&l —lall =0 or 0,41 foranyj,0<j<f.

This timplies that Vj; is also ordinary, or of Hodge-Witt type.
If both V4 and Vg are supersingular, then

Therefore, V; is supersingular. 0O
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(4.7) Remark. For type 1l induced motives, the property “of Hodge-Witt type” will
in general not be hereditary. Let (m,n) = (7,2) and let p be a prime such that p = 2
or 4 (mod 7). Let a = (1,1,1,4) € AT and b = (1,3,3) € A!, and let & = a#b =
(1,1,1,1,3) € AL Then it is easy to see that V4 is of Hodge-Witt type and so is Vg.
However, for a,

Jall = 0, 2]l =1 but [4al =2

This implies that V3 is not of Hodge-Witt type.

(4.8) Examples. (Type I) (1) Let (m,n) = (7,n) with » > 1. Let p be a prime such
that p=2or4 (mod 7). Take n = 2. Then V(11,14 is of Hodge-Witt type. Consequently,
all the induced twisted Fermat motives V; of type | of dimension 24-2d are of Hodge-Witt
type. While, the motive V}; 1 g ¢ is ordinary and supersingular. Therefore, all the twisted
Fermat motives of type 1 stemming [rom this motive are also ordinary and supersingular.

(2) Let (m,n) = (19,n) with n > 1. Let p be a prime such that p =4 or 5 (imod 19).
Take n = 2. Then V}y 45,9 is of Hodge-Witt type. Therefore, all the induced twisted
Fermat motives of dimension 2 + 2d are of Hodge-Witt type.

(Type II) Let (m,n) = (7,n) with n > 1.

(1) Let p be a prime such that p=2or4 (mod 7). So f = 3. Leta = (1,1,2,4,6) € 2.
Then V4 is ordinary. Let b = (bg,b,1) € A] with by -+ by = 6. There are, up to
permutation, three possible choices for b, namely, b = (1,5,1), or (2,4,1), or (3,3,1).
Let a = a#b € A}. If b = (2,4,1), Vg is ordinary and hence V; is also ordinary. If
b = (1,5,1) or (3,3,1), Vg has the Hodge polygon with slopes 0,1 while the Newton
polygon with slopes 1/3,2/3, so Vg is not ordinary. Consequently, V; is not ordinary
either.

(2) Let p be a prime such that p=2or4 (mod 7). So f =3. Leta = (1,1,1,5,6) € AL
Then V, is of Hodge-Witt type but not ordinary. Let b = (by, b;,1) € U] with bg+ b, = 6.
Again, as in (a), there are three possibilities for b. If b = (2,4,1), then Vg is ordinary.
Now & = a#b = (1,1,1,5,by,b;) € U7 satisfies

&l — |a]l =0, or £1for j =0,1,2.

Hence V; is of Hodge-Witt type. If b = (1,5,1) or (3,3,1), then Vg is of Hodge-Witt
type. However, V; is not of Hodge-Witt type as it violates characterization of Lemma
(3.8) for motives of Hodge-Witt type.

(3) Let p be a prime such that p = 3 or 5 (mod 7). Then f = 6. Any character
a € Al gives rise to a supersingular twisted Fermat motive V4. If & = a#b, then V; is
supersingular if and only if Vg is supersingular.

(4.9) Remark. There do exist characters a € A, and b € A such that neither V4 nor
Vg are supersingular, but the induced character & = a#b yields a supersingular motive
V3. For example, let m = 5, n = 2, and choose any p =1 mod m. Then neither a =
[1,1,2,3,3] € U3 nor b = [4,4,2] € A3 are supersingular, but a#b = [1,1,2,3,4,4] € A}
certainly is.
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The inductive structure can be realized also for formal groups arising from a twisted
Fermat motive V4 and those arising from the induced motive Vz. We denote by ©3,
denotes the formal group arising from V4 and let Dy}, be its p-divisible part. For Vy, (D{’z
and D:’X are defined similarly.

(4.10) Proposition. The hypotheses and the notations of Proposition (4.6) remain in
force. Then the following assertions hold:

(Type 1) Let V4 be a twisted Fermat motive of dimension n and degree m. Lel V; be
a type | twisted Fermat motive of dimension n + 2 induced from V4. Then for each 1,
0<1<n, D{il'"ﬁ_('ﬂ) is tsomorphic over k to D'\}:_‘.

(Type 1I) Let V4 be a twisted Fermat motive of dimension n+ 1 and degree m. Let V3
is a type 1l twisted Fermat motive of dimension n + 2 induced from V4 and Vg. Then if
'D;;:H“' is of multiplicative lype and Vg is ordinary, then D""t2=% is also of mulliplicative
type for each 1,0 <1 < n+ 1.

Proof. (Type I) The slopes of ’Di}:_i coincide with those of Di,tl‘"w_(i-"l). In fact, the

n—1i

slopes of D"~ are given by

{Ay(a)/[ —i}aca with < AHT@) <i+ 1

i+1,n+2—(i+1)
V-~

A

while the slopes of D are given by

{A[{(é)/f—-(i-’rl)}aej with ?+lSAHT(~a)<T+2

But Ay(a) = Ap(a) + 1, so that slopes of these formal groups arc equal. Therefore, the
assertion follows, as over k slopes determine completely the structure of p-divisible groups.

(Type II) For each 7, 0 < < n + 1, slopes of D;’-”H_i are given by {A—”f(-El —i+ A—”f@l}
where a € A such that 7 < Ay(a)/f < i+ 1 by Lemma (3.5)(e). If Vp is ordinary then
(I’;}L_' is of multiplicative type for any I by Proposition (3.12). Hence the assertion [ollows

from Proposition (4.6). O
(4.11) Examples. Let (m,n) = (7,n) with n > 1. Let p be a prime such that p = 1
(mod 7).

Let a = (1,1,1,4) € A;. Then ’D?,f has slope 0 with multiplicity 2. Let a =
(1,1,1,1,4,6) € A3 be an induced character of type I. Then ’D?,’; has slope 1 with mul-
tiplicity 2, while D{,; has slope 0 with multiplicity 2 and this is isomorphic to ’Dg’f over
k.

Let & = a#b = (1,1,1,1,3) € AL be an induced character of type II where b =
(1,3,3) € A]. Then D} has slope 0 with multiplicity 1.
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Let a = (1,1,2,4,6) € ] and b = (2,4,1) € A]. Then V4 and Vp are both ordinary.
Let & = agtb € 27 be an induced character of type 1. Then D}~ is isomorphic to a

copies of @m over k for each 1,0 < ¢ < 4.

5. TWISTING AND THE PICARD NUMBER

Let £ be a prime different from p = char(k).

For odd dimensional diagonal hypersurfaces V = V™ (c) with n = 2d + 1 over k = F,,
the Tate conjecture is obviously true for any twist ¢ as the £-adic étale cohomology group
H* (Vz, Q¢(r)) has dimension 1 for any r, 0 < r < d (Milne [Mil86]).

Therefore, in this section, we confine ourselves to even dimensional diagonal hypersur-
faces V = V™(c) of dimension n = 2d with twist c over k = F,. Let

Q(V,7) = (1 = ¢*T) T (1 - 8(c,)T).

agAy

(5.1) Definition. The d-th combinatorial Picard number p (Vi) is defined to be the
multiplicity of ¢¢ as a reciprocal root of the polynomial @*(V,T). That is,

pa(Vk) =1 + #B7
where
B = {a € AT | J(c,a) = ¢°}.

We say that pg(Vi) is stable if we have pg(Vi) = pa(Vir) for any finite extension &' of k.
There is always an extension Ay such that pg(Vy, ) is stable. We write py(V) for the stable
d-th combinatorial Picard number of V;.

One can think of the stable combinatorial Picard number of ¥V as the combinatorial
Picard number of the base change Vi of V to the algebraic closure.

(5.2) Lemma. We have

pa(Vi) = 1 + #{a € A7 | j(a)/q" = x(cgct .. i)}
For the stable Picard number, we have

il

ﬁd(v) =1+ #%n

where
B = {a €A™ | Ic,a)/q® = a root of unity in L},

Proof. The first assertion is just the definition. The second lollows at once from the
Davenport-Hasse relations. [

Let X = V(1) denote the Fermat variety of dimension n = 2d and degree m defined
over k. We want to compare the numbers pg(X%), pa(Vi), pz(X) and p, (V).
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(5.3) Lemma. For the stable Picard numbers, we have

Moreover, this quantity is equal to 1 + Y Bn(Va,) where the sum is taken over all super-
singular twisted Fermal motives Vg, .

Proof. The first assertion is clear, since over k we Vi = Xz. The second assertion follows
immediately from Definition (5.1) and Lemma (5.2). O

Our computations suggest that there are closed formulas for the stable d-th combina-
torial Picard number ,(V) of a diagonal hypersurface of dimension 2d.

(5.4) Conjecture. Assume that m is prime and let V be a diagonal hypersurface of
dimension n = 2d and of degree m. Then the following assertions hold:
(a) For d = 1, we have

p(V)=14+(m—-1)3m—6).

(This is in fact a theorem proved by Shioda [Shi82a]).
(b) For d = 2, we conjecture that

po(V) =14 5(m — 1}(3m? — 15m + 20)
(¢c) For d = 3, we conjecture that

P3(V) =145 7(m ~ 1)(3m® — 27m?* + 86m ~ 95).

To formulate a general conjecture, it would be interesting to identify the sequence of
polynomials 3m — 6, 3m? — 15m + 20, 3m3 — 2Tm? 4- 86m — 95, ... .

The following proposition gives a first result connecting Picard numbers and stable
Picard numbers in the case when m is a prime number.

(5.5) Proposition. Assume that m is prime. Then the following assertions hold:
(a) We have
palX) = BuV).
That is, the actual d-th combinatorial Picard number of X, is stable.
(b) We have
pa(Vi) < pa(Xs).

(c) The following are equivalent:
(1) pa(Vi) = pa(Xx),

Qo Q1 Tn41

1
(2) e® =cg°ct' .. .cpyy € (B*)™ for all supersingular a.
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Proof. This is pretty much a direct consequence of Proposition (1.10). We know that
j(a) = ¢* for every supersingular character a (Lemma (3.7)), which gives (a), and (b) and
(c) follow immediately. O

The condition that ¢* be an m-th power is closely connected, as in the proposition,
with the variation of the combinatorial Picard number under twisting. We introduce some
concepts intended to give a measure of this variation. For this discussion, we assume that
m > 3 is a prime throughout. Recall that in this case we can only have j(a) = £¢% (€ a
root of unity) if £ = 1, so that “supersingular” and “strongly supersingular” are equivalent
(for Fermat motives). The first important concern is to consider to what extent twisting
preserves this property.

(5.6) Definition. Suppose m is prime, m > 3. Let
§:={a€ U™ |j(a) = ¢'} = {a € AT | a is supersingular}.

so that § is the set of supersingular a’s.  Let ¢ = (co,¢1,- -+ ,cap1) be a twisting vector.
(a) We say that c is very mild if ¢* is an m*® power for all a € 8.

(b) We say that c is ezireme if there is no a € § for which ¢® is an m'" power.
The definitions are made so that the following assertions hold:

(5.7) Corollary. If m > 3 is prime, we have

(a) pa(Vi) = pa(X) whenever ¢ is a very mild twist, and

(b) pa(Vi) = 1 whenever c is an eztreme lwist.

We would like to have some idea about how often these boundary cases occur. The first
is in fact easy to decide:

(5.8) Proposition. The only very mild twist is the trivial twist.

Proof. As was pointed out above, the set C of all possible twisting vectors ¢ (considered
up to equivalence) is isomorphic to p’t?/A, where A is the diagonal inclusion of j,,.

m

Furthermore, we have a perfect pairing
Cx® -—pu,

where, as above,
&= {(ao,a1,...,anp1) € (Z/mZ)*+? | Z a; =0},

mapping (c,a) to ¢®. We can think of both C and ® as vector spaces over the field F with
m elements. Recall, finally, that 20 = Q" is the subset of ® given by the condition that
a; # 0 for all 7.

A twist ¢ is very mild if it annihilates every a € 8. If we denote by § the vector subspace

of ® generated by 8, it follows that ¢ annihilates every vector in 8. The proposition will
follow then, from the following claim:
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Claim: S = ®

To see this, note that the property of being supersingular is invariant under permuta-
tions of the entries ¢; in the vector a. From Lemma (5.9) below, this implies that § (which
is contained in 65) is either trivial, one-dimensional, or equal to ®. However, the estimate
in Lemma (5.10) shows that the first two cases cannot occur, and we are done. [J

(5.9) Lemma. Let V be a finite dimensional vector space of dimension d over « field F
of characteristic m. Let W C V' be a non-trivial subspace. Suppose thal there ezists a
basis for V' such that the action of the d-th symmetric group Sy satisfies o(W) = W for
all 0 € Sy4. Then either codim(W) =1 or dim(W) = 1.

Proof. Using the basis we have assumed exists, we may identify V with F¥, and the action
of Sy simply permutes the entries in a vector (z1,z2,...,24) € V. We may obviously
assume d > 4, since the conclusion is trivially true otherwise.

The subspace
W) = {(z,2,...,2) |z € F}

is then clearly the unique one-dimensional subspace which is fixed by all & € S;. Dually,
the subspace

"Vg = ($13$?1"':$d) | Zml = 0}

is also clearly the unique hyperplane in V which is invariant under all ¢ € S If m
does not divide d, we clearly have V = W, @ Wy, and this direct sum decomposition is
Sg-stable; on the other hand, if m does divide d, we have W, C W,.

By hypothesis, W is a non-trivial subspace which is invariant under the action of Sy.
We claim that we must have either W = W, or W = W,. For this, assume that W # W/,
L.e., that there exists a vector v € W whose entries are not all equal. We then proceed in
several steps:

Step 1: there ezxisls a vector vy € W of the form vy = (0,22, 23,...,24).

We are assuming there is a vector v € W not all of whose entries are equal. 1f any
of those entries is equal to zero, we are done after a permutation. If they are all non-
zero, let v = (y1,¥2,Y3,...,ya) € W. Since W is closed under permutations, we have
(Y2, y1, Y3, - -, ya) € W, and hence

Ui vi v

(yhy?aySu e ':yd) - _-(yzuyhy% cee ayd) = (anZ - _3(1 - _)y31' , ) € "Va
Y2 Y2 Y

and this last vector is non-zero because y3 # 0. This proves step 1.

Step 2: if W contains a vector of the form (0,0,...,0,1,1,...,1) consisting only of zeros
and ones, then W = Wy and m divides the number of ones in this vector.

Consider first the case when there is one zero and d — 1 ones. In this case, the space
gencrated by W and the vector (1,1,...,1) must be all of V, since it contains

(1,1,...,1) = (0,1,...,1) = (1,0,...,0)
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and all its permutations. Since W is nontrivial, it must be of codimension 1 in V, and
hence must be Wy (which, as we pointed out above, is the unique Sg-invariant hyperplane).
Next, suppose

(0,0,...,0,1,1,...,1) e W.

W—/
Let v — Vv denote the projection on F¥~**! given by the last d — 7 + 1 coordinates. The
image of W under this projection is an Sy_;4)-invariant subspace of F*~"*! which contains
a vector consisting of one zero and d—1 ones. By the argument in the preceding paragraph,
it must be the subspace defined by requiring that the sum of the entries be zero. Hence,
there is a linear combination

3" Ajoiv =(0,0,...,0,1,—1),
i

where A; € F and o; € Sy_i;1. Identifying Syg_iyy with a subgroup of S in the obvious
way, it follows that “the same” linear combination works in W:

Z Mo;v = (0,0,...,0,1,-1).
i

Since (0,0,...,0,1,—1) and its permutations clearly generate Wy, it follows that W D W,
and hence W = W, because it is a non-trivial subspace.

The claim about the characteristic clearly follows from this conclusion. This proves
Step 2.

Step 3 (induction): repeat until done.

By Step 1, we already know that W contains a non-zero vector of the form
(0,2, 23,...,24).

If all of the z; are equal, we can divide by their common value and apply Step 2 to conclude
that W = W,. Il not, we can repeat Step 1 as long as there are at least three non-zero
entries.

Hence, we can conclude that either W = Wy or W contains a non-zero vector with
at most two non-zero entries. If there is only one non-zero entry, then clearly W =
V, contrary to the hypothesis; hence there must be two. In addition, applying Step
1 must yield the zero vector (because it cannot give a vector with only one non-zero
entry). Hence, we must have either (0,0,...,0,1,1) € W, in which case Step 2 applies,
or (0,0,...,0,1,—1) € W, in which case clearly W O Wy. This proves the Lemma. O

(5.10) Lemma. Let m be a prime, m > 3, and let n = 2d be even. There exist ai leasl

3(m — 1)%(m —2) +1
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supersingular vectors a € U7

Proof. For d = 1, this is due to Shioda [Shi82a]. For larger d, it follows from the
inductive structure, since each supersingular vector a in dimension n yields m — 1 induced
supersingular vectors of type / in dimension n 4 2 (see Theorem (4.1)). (If the conjecture
in (5.4) hold for d > 2, we have much better lower bounds for #§.) O

This allows a strengthening of Proposition (5.5):

(5.11) Theorem. Assume that m is prime. Then the following assertions hold:
(a) We have

pa(Xe) = pu(V).
That s, the actual d-th combinatorial Picard number of X}, is stable.
(b) We have
pa(V) < pa(Xe).

1) Vi and X} are isomorphic,

2) pa(Vi) = pa(Xs),

3) ¢® =cfect . .ep € (BX)™ for all supersingular a,
4) c¢ is equivalent to the trivial twist.

Proof. It is clear that isomorphic varieties will have the same combinatorial Picard num-

ber, so (1) implies (2). The equivalence between (2), (3), and (4) follows at once from
Proposition (5.5) and Proposition (5.8). And (4) clearly implies (1). O

Understanding extreme twists is much harder. Note, first, that they do exist: if ¢ =
(co,1,1,...,1), then ¢® = ¢ cannot be an m-th power unless ¢y is already an m-th
power (since m is prime and a # 0 (mod m)). Hence, if ¢ is not an m-th power in & the

twist ¢ = (¢, 1,1,...,1) is extreme. In our computations, all extreme twists turn out to
be equivalent to twists of this form.

(5.12) Question. How many extreme twists are there for a given choice of m, n, and k?
Are all of them, up to equivalence, of the form ¢ = (¢, 1,1,...,1)?

We now proceed to relate this combinatorial game with matters of more serious import:

(5.13) Definition. Let V = V™(c) be a diagonal hypersurface of degree m, dimension
n = 2d with twist c over k = F,. The d-th £-adic Picard number, pg (Vi) of Vi is defined
to be the dimension of the f-adic étale cohomology group H**(Vi, Qi(d)), generated by
algebraic cycles of codimension € on V over k.

(5.14) The Tate Conjecture. Wilh the notations as above, we define the d-th Picard
number of Vi by

Py(Vi) == max pge(Vi),
EEp
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where ¢ runs over all primes not equal to p. Then pl(Vy) is a well-defined quantity, which
is equal to the rank of the Chow group of algebraic cycles of co-dimension d on Vi, modulo
rational equivalence, and

pa(Vk) = pa(V).
(As we pointed out before, it is known that p/ (Vi) < pa(Vi). So the Tate conjecture
claims the validity of the reverse inequality.).

(5.15) Definition. We say a diagonal hypersurface V = V*(c) over k is extreme if the
d-th Picard number p/(Vi) = 1.

(Observe that if V; is supersingular over £, it can never be extreme.)
(5.18) Theorem. Let V = V*(c) be a diagonal hypersurface of prime degree m > 3 and
dimension n = 2d with twist c over k = F,. If c is extreme, then V is exlreme, and in
this case, the Tate conjecture holds for Vi and we have

pa(Vi) = pa(Vi) = 1.

Proof. If c is extreme, then pg(Vi) = 1 by Corollary (5.7)(b). Since there is always an
obvious algebraic cycle of codimension d on V defined over k, namely, the algebraic cycles
of hyperplane sections of codimension d on Vj, the assertion follows from the inequality

pa(Vi) < pa(Vi). O

(5.17) Remark. Shioda [Shi83] constructed an example of hypersurfaces V', of degree m
and dimension 7 in IF’?;H, having Picard number p,/5(Y) = 1. Our examples are different
from those of Shioda.

For diagonal hypersurfaces V = V*(c) with non-extreme twists ¢ over k = F,, we have
the following rudimentary results on the Tate conjecture.

(5.18) Proposition. Let V = V*(c) be a diagonal hypersurface of dimension n = 2d
and degree m with twist ¢ over k = F,. Then the Tate conjecture holds for Vi in the
following cases:

(a) n =2 and m, ¢ and p arbitrary;

(b) Vi is supersingular.

Proof. Let &’ he a finite extension of & for which Vi = A},

(a) By Shioda and Katsura [Shi-IX79] the Tate conjecture holds for &X.. This implies that
H2 (X, Qe(1))9=1/5) is spanned by algebraic cycles (of codimension 1) over &’. Taking the
Gal(k'/k)-invariant subspace of this @, vector space, we see that Hz(X;;,Qg(l))GaI(E/k) is
also spanned by algebraic cycles (of codimension 1) over k. This establishes the bijection

NS(Wy) @z Q¢ — H2(Vg, Qe(1))C 378,

and hence the validity of the Tate conjecture for VJ*(c) for any twist c.

(b) By Tate [T65], the Tate conjecture holds for supersingular Fermat variety Xj.
Using the same argument as for (a), the validity of the Tate conjecture is established for
supersingular V. O
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(5.19) Remarks. .

(1) If the Tate conjecture is true for Fermat varieties X = VJi(1) over k, then the Tate
conjecture holds for A over & and also for diagonal hypersurfaces V = VJi(c) over & with
arbitrary twists €. This can be shown employing the same line of arguments as for the
case of surfaces, replacing NS(Vi) by the Chow group CH*(Vy), and H*(Vy, Qu(1)) by
H*(Vi,Qe(d)). Then the Tate conjecture for X' = X over & is equivalent to the validity
of the equality

PulXr) =143 Ba(Va)

Va
where the sum runs over all supersingular twisted Fermat motives V4p.

(2) Shioda [Shi79b] further reduced the validity of the Tate conjecture for Fermat vari-
eties to the verification of certain combinatorial conditions (P*(p)) on m, n and p.
(5.20) Picard numbers for composite m. Assume that V, has composite degree. In
this case, we observe that the stable and the actual Picard numbers are considerably
different from prime degree case. For instance, Proposition (5.5)(b) no longer holds; in
some cases one can find twists ¢ satisfying

pa(Vi) > pa(Xe),

pa(Vi) = #{a € AT | x(c*) = j(a)/¢"}.
The situation is less confusing when m is odd. See section (9.1) for some speculations
about this case.

(5.21) Tables of Picard numbers. In the appendix, we list examples of the actual
Picard numbers py(A%), pa(Vi) and the stable Picard numbers g (V) of V = V7 of dimen-
sion n = 2d with twists ¢ delined over the prime field £ = F,. The results are tabulated
in Table Ilc.

6. “BRAUER NUMBERS” ASSOCIATED TO TWISTED JACOBI SUMS

Let V = V*(c) be a diagonal hypersurface of dimension n and degree m with twist
c defined over k = F;. The evaluation of the polynomials @*(V,7) (for n = 2d) and
QV,T) (forn=2d+4 1) at T = ¢ for each integer , 0 < r < d, can be reduced to the
evaluation of the polynomials Q(Va,T') and hence to the computation of the norms of the

form
d(c,a)

NOI‘H]L/Q(I — -
ql

) = Q(Vﬂaq-r)
for each integer r, 0 <r < d.

We first recall some relevant notations. 1f £ is any prime let | |7' denotes the (-adic
valuation normalized by |{|;' = ¢. For the prime p = char(k) and k& = F,, let v denote a
p-adic valuation normalized by v(¢).= 1.
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(6.1) Lemma. Let Va be a twisted Fermal motive of dimension n and of degree m = mj,,
where mp is an odd prime and m > 3, with twist ¢ over k = F,. Suppose that V, is
supersingular. Then for any r, 0 <r <mn,

Normpo(1 — 3(c,a)) = H (1—q37"¢")

-
d te(Z/mZ)x

where £ is some m-th root of unity in L.
In particular, if Vy is strongly supersingular, then for anyr, 0 <7 < n,

d(c,a)

q"

Normp/q(1 — )= (L—g577)P 0,

If2r = n and Va is not strongly supersingular, the norm is divisible by mqg. In particular,
if m is prime and ¢ has the property that c® € (K*)™ for a € A, then the norm is equal
to m.

Proof. If V, is supersingular, then J(c,a) = ¢3¢ for some m-th root of unity & € L. If
2r = n, then the norm is equal to [],¢(z/mz)x(1 — &), which is obviously divisible by m.
If m prime c¢® ¢ (£*)™ for some (and hence any) a € A, then the norm is exactly equal

to m by Proposition (1.10). O
Note that if V4 is strongly supersingular and 2r = n the norm is simply equal to zero.

(6.2) Theorem. Let V4 be a twisted Fermat motive of dimension n and prime degree
m > 3 with twist ¢ over k = F,. Suppose that V4 is of Hodge-Witl type and is nol
supersingular. Then the following assertions hold.

(a) If n = 2d, then for anyr, 0 <r < n,

d(c, a)) _ B"(Va) - m

Normy,/g(1 —
/Q T )

where
r

w(r) = wy,(r)= Z(r — DA (V,), -

=0

and B"(V4) is a posilive integer (not necessarily prime to mp) satisfying

B'(Va) = B (V).

(b) Ifn=2d+ 1, then for anyr, 0 <r <n,

d(e, a)) _ Dr(va)
q - qw(r)

Normy, (1 -
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where D™(V,4) is a positive integer (not necessarily prime to mp) satisfying
D"(Va) = D" (Va),
and w(r) is the integer defined in (a).
Proof. Our proof will be divided into several parts. (Cf. Shioda [Shi87], Suwa and Yui
[S-Y88] and also Yui [Y91].)

(1) The p-part: By Lemma (3.4)(c), the slopes of V4 are given hy {a € A | Ag(a)/[}.
Then the exponent of ¢ in the norm is given by

r

_Zma‘x(O,r—AH(a)/f)=—Z(r—z)#{aeA|AH ) =1if}.

acA 1=0
If V4 is ordinary, then by Proposition (3.8)(a), we have
#{ac Al An(a) =if} =#{ae Al|la] =i} = 1" (Va).

If V4 is of Hodge-Witt type, then by Proposition (3.8)(c), |[p’al| — ||a|| takes values 0 or
+1. If ||p’a|| = ||a|| for every 7, 0 < j < n, then V4 is ordinary. So we assume that
l7al| = ||la|| + 1 for some j, and for each 7, 0 < i < n, define the following quantities:

i =#0,0< < S llall =i and |pall =i -1},

soi =#{5,0<j<flllall =7 and |pa| =1},

Sa=#0,0< i< flllal =i and [P =i+1}.

Then for each i, 0 <1 < n, s_;; + So; + s1; = f. Furthermore, for cach a € A with
lal| =1, 0 £ 7 < n, we have

An(a)
/

T -

L1 - -
=(r—-i)- 7(||a|| +lpall 4 lPall + -+ " al])

6+ (1= 500} = (=) = ol )
=r——{1 S1,—8-1)y=(r—1)— —=(s1:— s5-1,

7 1, i Tl 1,
Then the exponent of ¢ in the norm is given by

- Z(r — i)fa"’"-"(VA) + % Z(Sl,i - S—l,f)fl"'n_i(VA)-
=0

=0
But by the duality, we have for cach 1,
RN (Va) = A" (Va) and (51— S_14) + (S1mmi = S_1aei) = 0.

This implies that the second sum in the above expression is 0, and therefore, the exponent
of ¢ in the norm is

—Z —DETH(V,) = —w(7).

(2) The m-part: This follows from Proposition (1.7) that d(¢,a) =1 {imod (1 — ¢)).

Proof of the facts that for each r, 0 < r < n, B"(V4) = B* 7" (V4) (resp. D" (Va) =
D*7(V,4)) are deferred to Proposition (6.4) and its corollary below. O
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(6.3) Remarks.

(1) In Theorem (6.2)(a), il we take a twist ¢ with the property that ¢® ¢ (k*)™ for any
a € A, then the exponent of m in the norm Normp (1 — J(c,a)/q?) is precisely equal to
1. Therefore, BYV,) is relatively prime to m. This follows from Proposition (1.7) and
Proposition (1.10).

(2) In Theorem (6.2)(h), if we ease the assumption that V, is of Hodge-Witt type, the
invariant w(r) ought to be adjusted. That is, w(r) should be replaced by

TU(T') _ Tr-l,n-r-}-l(vA)

where 77171V, is the dimension of the unipotent formal group U™ (V4, Z,(r)) (cf.
Suwa and Yui [S-Y88], Remark (11.2.3)).

(6.4) Proposition. (Cf. Milne [Mil86], §10.) There is a duality between the norms.
That is, for each 7, 0 < r < [n/2],

Normpg(1 — d(c,a)/q") _ g =r)=u(r)
Normy,g(1 — d(c,a)/q™") .

Proof. This is essentially the results of Milne [Mil86], in §10, projected down to motives.
We sketch a proof here. We know (Weil [W49, W52]) that for any r, 0 < r < n, V satisfies
the functional equation
Z(Vaq(n_S)) — q(-g--r)ff

ZWV,q%)

limg_,,

where £ = 3.7 (=1)'Bi(V) is the self-intersection number of the diagonal V x V (which
is the BEuler Poincaré characteristic of V). Now the functional equation commutes with
the motivic decomposition, so we obtain, for each 7, 0 <1 < n,

Q(VA’([—’l) — q(r—%)Bn(vn)_
Q(VA: qﬂ_r)

But B,(Va) = 3.0, A" (V) by Lemma (2.3)(b). So by applying the same argument as
in Milne [Mil86], (10.1), we have

(r — g)Bn(VA) = Z(n — = DhTH(V,) — 2(7 — )R (Va)
=w(n —r) —w(r).
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(6.5) Corollary. For eachr, 0 <7 <n, B"(V4) = B" 7 (Va) and D" (V4) = D" (V).
Proof. Note that for each 1,0 <7 < n,

Q™) g0 _ -
Q) )

(6.6) Examples. Here are some examples. Let (m,n) = (5,4) and let ¢ = (1,1, 1,1, 1, 3).
Let ¢ = p € {11,31,41}. We compute the norms for 1 <r < 3 and different vectors a:

(1) Let a=(1,1,1,1,2,4). Then w(l) = 0,w(2) =1 and w(3) = 4.

5-41-71 for r=1
Normy (1l — d(c,a)/11") = ¢ 5/11 for r=2
5-41-71/11% for r=3.
5271 - 661 for r=1
Normp,;q(1 — d(c,a)/31") = ¢ 5/31 for r=2
5271 -661/31* for r=3.
3. 5%.281 for r=1
Normy (1 — d(c,a)/41") =  5°/41 for r=2
3" .5 .281/41" for »=3.
(2) Let a=(1,1,1,1,3,3). Then w(l) = 0,w(2) = 2, and w(3) = 4.
511271 for r=1
Normy (1 — d(c,a)/117) = ¢ 3*-5/11 for r=2
' 5-11-271/11* for »=3.
3511191 for r=1
Normp/g(1 — d(c,a)/317) = < 3*-5/31° for r=2
3t.5-11-191/31¢ for »=3.
53112131 for r=1
Normyp (1l — d(c,a)/41") = ¢ 3*-5°/41% for r=2
5%.11-2131/411 for r=3.

Cohomological interpretations of the integers B"(V4) and D" (V4) for any r, 0 <r <n
are given as follows. Let [' = Gal(k/k) denote the Galois group of k over k with the
Frobenius generator ®. For any [-module M, let MT (resp. M) denote the invariant
(resp. coinvariant) subspace of M under I, that is, the kernel (resp. cokernel) of & — 1 :
M — M. For any Abelian group M, M. denotes the torsion subgroup of M.

First we consider prime £ such that ({,mp) = 1. The results of Milne [Mil75, Mil86, Mil8§],
Schneider [Schn82] (cf. Bayer-Neukirch [B-N78}) and Etesse [Ete88] can be passed onto
twisted Fermat motives as the cohomology group functors appearing in their formulae
commute with the motivic decomposition.
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(6.7) Proposition. Let £ be a prime such that ({,mp) = 1. Let V4 be a twisted Fermat

motive of dimension n and degree m with twist ¢ over k =1TF,.
(1) Assume that Va is supersingular bul not strongly supersingular. Then for each
integer r, 0 < r < n,
3(c,a)

ql"

lNormL/Q(l - )|€_l = 1.

(1) Assume that m is a prime and thal Va is nol supersingular. Then for cach r,
0 < r < n, the following assertions hold:

(a) If n = 2d, then

#H"(Vag, Ze(r))r if r#d

r -1 _
|B (VA)|£ - { #[ n(VA“ZE(T))F,LOI's zf r = d.

(b) If n=2d +1, then

|D"(Va)lg! = #H(Vag, Ze(r))r.

In both cases, all the quantities appearing in the formulae are finite, and all cohomology
groups are with respect to étale topology.

The main idea in the prool of the above proposition is to observe that results of Milne
[Mil86], §6, Milne [Mil88],§6 and Schneider [Schn82] (cf. Bayer-Neukirch [B-N78]) can be

passed onto motives. We state those results, specialized to our case, as a Lemma:

(6.8) Lemuma. Let ¢ be a prime such that (€,mp) = 1. Then for any integerr, 0 < r < n,
we have the following formulee:

(a) Suppose that 2r # n. Then

o=t _ BFH (Vag, Ze(r))r
V , r 1 — k?
QO = Va2
where all the cohomology groups are finite.
(b) Suppose that 2r = n. Then
_ #H'n(VAEa Zl("‘))r,tors

1Q(Va, g )iz

B [#[{n(vﬁmzf(r)){om]?
where all the gquantities are finite.
Now we use this to prove the Proposition.

Proof of Proposition (6.7). (I) This is clear from Lemma (6.1).
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(I1) By Theorem (6.2), we have, for each 7, 0 < r < n,

|B"(Va)l;! il n=2d

Varg 7t =
1QVa 47, {|D'"(V,1)g_l if n=2d+1.

Now by Lemma (3.5)(a), #H'(Va,Z¢(r)) = 1 for any i # n,n 4+ 1. Moreover, there are
isomorphisms: ‘
H*(Va, Ze(r)) — H*(Vag, Zo(r))"

and
H"“(VA, Zg(?)) — [‘[n(VA“Zg(?‘))p.
Observe also that ¢ acts semi-simply on H*(Va,,Qe(r)) for any », 0 <7 < n.
(a) Let n = 2d. If r # d, then H™'(V4,Z¢(r)) = H*(Va,, Ze(r))r is linite, and if
r = d, then H"'(VA,Z(7))tors is finite. Furthermore, H™(V4,,Z(r)) is torsion-free so
that #H"(Va,Zy(r)) = #H"(Va,,Ze(r))' = 1. These facts together with Lemma (6.8)
yield the required formulae.

(b) Let n = 2d 4+ 1. Then the assertion follows from the same line of argument as for

(D)(a) withr #d. O

Now we consider the prime p = char(k).

(6.9) Proposition. Let V4 be a twisted Fermat motive of dimension n and degree m
with twist c over k =TF,.

(1) Assume that V4 is supersingular but not strongly supersingular. Then, for any r,

0<r<n,
d(c,a)

ql"

o= 1.

p

|N0rmL/Q(1 -

(I1) Assume that Va is not supersingular but of Hodge-Will lype. Then for any r,
0 < r < n, we have the following assertions:

(a) Let n =2d. Then

iy -1 _ | FHVao Zo(r))r i r#d
|B (VA)|p - { #H"(VA“Z;;(T))F,LON I'f r=d

(b) Let n =2d + 1. Then for each v, 0 <r < n,

|D"(Va)l;! = #H"(Vag, Zy(r))r-

Once again, we begin by noting that the results of Milne [Mil86], §6 (cf. Etesse [Ete88]
and Suwa and Yui [S-Y88]) can be passed onto motives, and state them as a Lemma.
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(6.10) Lemma. For anyr, 0 < r < n, we have the following formulae:
(a) Suppose that 2r # n. Then

— #Hn(v/l; ) ZP(T))
FHH(Va,, Zy(7))

[*0QVasq )y F gl T (D),

where all the quantities are finite.

(b) Suppose that 2r = n. Then

w(r —ryj—1 #[[n V 57Zp ) ,tors
R = e T

+ |q|;lTr—1,n—r+1(VA)

where all the quantilies are finite.
In both cases, if V4 is of Hodge-Witt type, then TT='"="+1(V,) = 0.

Proof. (a) The formula of Milne [Mil86), Proposition (6.4) is read for a twisted Fermat
motives V, as follows:

#H"(Va,, Zp(r))r _en(r)

W) =% iV, 2,0

where

P =TV = S (- MBle,a) = —wlr) + I,
acA ‘
u(ﬂ((fﬂ))(r
as T7™"(V4) = 0. This gives the required formula.

(b) If 2r = n, the formula of Milne [Mil88], Proposition (6.4) (see also Etesse [Ete88])

is read as follows:
VA Zo(M))eors — v

Q™) = i, 2o

where

ar(vA) — Tr-—l,n—r-f-l(VA) _ jwr,n_r(vA) + Z (7. _ U(S(C,a))
u(H&iﬁ)(r

— f["'_l'n_r+l(VA) + ’IU(T) . Tr—l,n—r+l(VA) — 'lU(?').
This gives the required formula. O

Proof of Proposition (6.9). (I) This is clear from Lemma (6.1).
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(I1) We have, for each r, 0 < r < n,

—ry|—1
IQ(VA;Q )lp =

=1 I e-Eeshp I o-EEE T a-ESuy

acA acA q" acA qf‘
v(d{c,a)))=r v(d(c,a))<r v(d(c,a))>r

First, observe that

_B(c,a) 1 _ { SR v(d(ea) <
qg 1 if v(d(c,a)) >r
Then using the identity in Remark (6.3), we have

|qw(r)Q(vA’q—r)|;l — |q|;1rjwr—l,n—r+l(vA) + | H (] _

a€A
v(d(c,a))=r

I

So we have only to interpret the term |H aca (1 — ﬂ;—al”;] in terms of some coho-
v(d(c,n))=r
mological quantities.

Now by Lemma (3.5)(a), H'(Va4,,Zy(r)) = 0 except for 1 = n and n 4 1. Moreover,
there is an isomorphism
HMVa, Zy(r)) — H"(Vag, Zy(7))"
and also there is an exact sequence

0 — H*(Va,, Zo(r))r — H™ ' (Va, Zp()) — H" ' (Va,, Zy(r))" — 0.
(a) Let n =2d. If » # d, then

I e-2 e gz,
u(ﬂ(f(l.‘ezﬁ):r !

and H"'(V4,Z,(r)) is finite, in fact, #H" 1 (Va,, Zy(r))T = ¢77""7" V4 and hence
so is H"(Vag, Zy(r))r. Further, #H™(V4,,Z,(r))7 = 1. These facts together with the
formula in Lemma (6.10)(a) then yields the required formula.

If » = d, then we have

T 0 -2 e 2 o

G
AEA
v(d(c.a))=r

and H" " (Va,, Zy(r))' is finite, in fact, #H" ' (Va,, Z,(r))" = ¢77""77"Va) Therefore,
H*(Vag, Z(r))r o 1s finite. Further, #H"(Va,,Z,(r)),,, = 1. Hence these combined

tors
with the formula in Lemma (6.10) (b) yield the required formula.

(b) If n = 2d+1, the same argument as for (a), 2r # n gives the formula in question. [
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(6.11) Theorem. Let V4 be a twisted Fermat motive of dimension n = 2d and prime
degree m > 3 with twist ¢ over k = F,. Suppose that V, is of Hodge-Witt type and not
supersingular. Then B*(V4) is a square, up lo powers of m.

If Conjecture (1.9) holds, or if c* & (K*)™ for a € A, then BY(V4) is a square.

Proof. Let ¢ be a prime such that (£, mp) = 1. Then the Poincaré duality on the f-adic
étale cohomology groups and Proposition (6.7)(11)(a) imply that |B4(V,)|;! is even.

For the prime p = char(k), the duality of p-adic cohomology groups and Proposition
(6.9)(11)(a) imply that |B*(Va)l;' is even.

For the m-part, il Conjecture (1.9) on the m—ad‘ic order of the Jacobi sums is true, then
|B(V4)|;! is also even. Furthermore, if ¢® ¢ (k*)™ for some (and hence any) a € A,
then B%(V,4) is relatively prime to m by Proposition (1.10)(h}, so that |B4(V4)|;! = L.
Therefore, B4(V,4) is a square. O

(6.12) Definition. Let V4 be a twisted Fermat motive of dimension n = 2d and degrec
m > 3 with twist ¢ over £ = F,. Suppose that V4 is of Hodge-Witt type but not
supersingular. Then the number BY(V4) in defined in Theorem (6.2)(a) is called the
Brauver number of V4.

This terminology was suggested to us bv B. Mazur. As we shall clarify below, B(V,)
should be equal to the the order of the “Brauer group” Br?(V,4). The existence of this
group, however, is yet to be established.

(6.13) Examples. We list some computational results on the Brauer numbers B*(V,)

defined over k& = F,. More examples and methods for computing B4(V,) can be found in
Table III.

(1) Let (m,n) = (5,8). Let ¢ = p € {11, 31, 41, 61, 71}.
(1) Let a=(1,1,1,1,1,1,1,1,1,1) € YA3. Then we write
4 .
Norm(1 — J(c,a)/p") = w
P
The following tabulates the values of B*(V4) for various values of the twist ¢:

twist, p=1l p=3l p=41 p=61 p=T1
e=[1,1,1,1,1,1,1,1,1,1] 54 56 34 54 51.109° 54
c=[1,1,1,1,1,1,1,1,1,3] 1392 24. 1092 3t. 54 3181% 39192
c=[1,1,1,1,1,1,1,1,3,3] 3 3. 3* .54 3. 4614 31.821°
c=[1,1,1,1,1,1,1,3,3,3) 21. 197 15112 34.54 192 . 2392 31%.592
c=1[1,2,3,4,1,2,3,4,1,2] 1392 5% 24117 212 21. 116
e=1[1,1,2,2,3,3,4,4,4,1] 24.192 1392 4012 54.1092 51
e=[1,1,1,1,2,2,2,3,3,3] 1812 58 4012 31812 30192
c=11,3,3,3,3,2,2,22,4] 1392 15112 9412 54 . 1092 54
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Recall that Iwasawa’s congruence implies that whenever the twist is trivial B4(V,)
will be divisible by m?; in this case, it is in fact divisible by m*. This implies that we
have ord1-¢)(1 — j(a)) = 4 = ord(_¢)(p* — 1) for each of the primes p in the table.
We have checked also that if p = 101 we have ord(;_¢)(1 — 7(a)) = 5 (and, of course,
ord(—¢)(p* — 1) = 8). Conjecture (1.9) is true in all cases.

The reader will note that 3 is a fifth power modulo 41, which explains several of the
entries in that column.

(2) Let a=(1,1,1,1,1,1,1,2,3,3) € A5. Then we write

BYV4) -5

Norm(1 — J(c,a)/p") = °

The following tabulates the Brauer numbers B*(V4) for various values of the twist c:

twist p=11 p=31 p=41 p=061 p=7Tl
c=[1,1,1,1,1,1,1,1,1,1] 24. 52 21.34.52 21.192 .52 24 .34 .52 21.5°
c=[1,1,1,1,1,1,1,1,1,3] 412 792 24,192 .52 1 74012
c=[1,1,1,1,1,1,1,1,3,3] 1 192 21.19% . 52 6912 281
c=[1,1,1,1,1,1,1,3,3,3) 412 792 24.192. 52 14 74112
c=1[1,2,3,4,1,2,3,4,1,2) 292 192 792 1 74112
c=1[1,1,2,2,3,3,4,4,4,1) 24.52 792 112.31° 691° 2812
c=1[1,1,1,1,2,2,2,3,3,3] 29° 21.34.52 892 6912 2812
c=11,3,3,3,3,22224] 24. 52 792 892 6012 112192

(1) Let (m,n) = (7,6) and let ¢ = p € {29, 43, 71, 113}.
(1) Let a=(1,1,1,1,1,1,4,4) € AZ. Then we write

B3 (Va) - T

pt

Norm(1 — 3(c,a)/p’) =

The following tabulates the Brauer numbers B*(V,) for various values of the twist c:
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twist r=29 p=43 p=TIl p=113
e=[1,1,1,1,1,1,1,1] 972 .72 292 . 72 412 .72 132.167% .72
c=1{1,1,1,1,1,1,1,3] 13 212.132 41% .83 41% . 83?2
c=[1,1,1,1,1,1,3,3] 35.412 35.132 35.13%. 292 912 3o
c=1[1,1,1,1,1,3,3,3] 212,132 292 . 972 432 . 2392 8112
c=11,2,3,4,56,1,2] 35.41° 2392 132 .3372 132.29%.712
c=[1,2,3,3,4,4,5,5) 1812 36. 134 35.13%.292 712.139°
c=[1,1,1,2,2,3,3,3] 36412 202 . 72 13%.1812 7121392
c=[1,4,4,4,4,1,1,1] 432 292 . 712 417 . 832 71%. 1392

(2) Let a =(1,1,1,2,3,3,5,5) € AL. Then we write

B¥(Va) -7

Norm(1 — 3((1,3)/?’3) = 2

The following tabulates the Brauer numbers B3(V,) for various values of the twist c:

twist p=29 p=43 p="T71 p=113
c=[1,1,1,1,1,1,1,1j 74 74 74 74
c=[1,1,1,1,1,1,1,3] 132 832 71% 97°
c=11,1,1,1,1,1,3,3] 1 132 26.132 432
c=[1,1,1,1,1,3,3,3) 1 29° 1 1
c=1[1,2,3,4,5,6,1,2] 1 132 74 432
c=1[1,2,3,3,4,4,5,5) 36 3° 1 26.36
c=[1,1,1,2,2,3,3,3) 74 25 712 432
c=[1,4,4,4,4,1,1,1} 71 74 7 71

(6.14) Remarks.

(1) Note that all twisted Fermat motives considered above are ordinary. More examples
and methods for computing the Brauer numbers of V4 can be found in Table 1V.

(2) N. Boston pointed out that all prime factors with the exception of small primes like

2,3 and p appearing in the Brauer numbers B(V,) are of the form 1 (mod m). There
is an elementary explanation of this fact.
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Let £ be a prime such that (£,m) = 1. Let A be a prime in L lying above £. If £ divides
the norm Normyg(1 — d(c,a)/q¢?), then some conjugate of A divides 1 — J(c,a)/¢?. This
implies that Norm()) divides Normy, q(1 — d(c,a)/q?). But Norm(}) = £/ where § is the
order of £ modulo m. So if £? exactly divides the norm, then f = 1 or f = 2. In these case,
€ is of the form £1 (mod m). (However if {* divides the norm with ¢ > 2, then £ is not
necessarily of the form 41 (mod m).) Since our numbers are relatively small, the order
of € will tend to be 2 except for small primes, and that is what we see in the table.

We now compare the Brauer numbers associated to twisted IFermat motives V4 and

those associated to Fermat motives M 4 of the dimension n and degree m belonging to
the (Z/mZ)*-orbit A.
(6.15) Proposition. Let V4 (resp. Ma) be a twisted Fermat motive of dimension n and
degree m with twist ¢ (resp. 1) over k = F,, belonging lo the same (Z/mZ)*-orbit A.
Then for any r, 0 < r < n, the following assertions hold:

(a) Normp o(1—3(c,a)/q") = Normyq(1—3(a)/q") if and only if c* = cg°c}* ... ¢} €
(K*)™ for all a € A.

(b) Let m be prime > 3, and n = 2d. If the conjecture (1.9) is true, then the m-part of
the quotient of the norms

Normy g1 — j(a)/q%)
Normpg (1l — d(c,a)/q?)

is of the form m?®® with e > 0.
If ¢ satisfies the property that ¢ € (K*)™ for a € A, then the asserlion is true uncon-
ditionally.

Proof. The assertions (a) follows immediately from Definition (1.1) that d(c, a) = ¥(c?)j(a).
For (b), note that both norms have the same p-adic order, and the m-part follows from
Proposition (1.7), Theorem (6.11) and Remark (6.3)(1). O

(6.16) Examples. (I) Consider the same ¢,a and p as in Example (6.6). Then

Normyg (1 —j(a)/p?) 5% ifp=11,31
Normy, (1 ~ d(c,a)/p?) 1 if p=41.

For p = 41, observe that c® € (F}, )°.

(II) Consider the same ¢, a and p as in Example (6.13)(11). Observe that the m-part of
the fraction
Normy/q(l — j(a)/p’)
Normy, /(1 — 3(c,a)/p?)

is of the form m?® with e > 0 for any twist c. (In lact, it equals either 72 or 74 in all cases
where ¢ is not an m-th power.)

Finally we discuss the effect of the inductive structures on the norms.
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(6.17) Proposition. (a) Leta € A" and let & = (ag, ¢y, ..., Guq1, ¢, — @) € AN, be
an induced character of type | from a. Then for any r, 0 < r < n,

32‘.:;5:‘)) = NOrmL/Q(l _ lg(z_:ra)

Normp (1 — )
if and only if,\'(—%f:)“ =1forallacA.

(b) Let m = m{ be a prime power where mg is a prime > 3 and t > 2, or if mg = 3,
t > 3. Let a = (ag,ay...,an41) € AT with ged(ao, @y, . . -y ngy) = mo. Let m' = mf!
and a' = (ao/ 1m0, a1 /Mo, ..., anp1 /o) €A™, Then

d(c,a)

q°

d(c, &)

qr

Normg,.)/q(1 — ) = Normgy, y/0(1 — )

foranyr, 0 <r < n.

Proof. (a) This follows immediately from Proposition (1.6)(I)(b).
(b) This follows immediately from Lemma (1.6)(11). O

7. EVALUATING THE POLYNOMIALS Q(V,T) AT T = ¢~

Let V = V*(c) be a diagonal hypersurface of dimension n and degree m > 3 with twist
cover k =F,.
First we consider even dimensional cases. Let n = 2d, and write

QW T) = (1 = T (1 - d(c, a)T)

where the product is taken over all twisted Jacobi sums d(c,a) such that J(c,a) # ¢*. We
can also write @*(V,T') in the following form

Q (v, 1) = (1 — ¢ Ty [ Q(Va,T)

where the second product is taken over all twisted Fermat motives V4 which are not
strongly supersingular.
We first recall, or further set up some relevant notations.
BT ={a€Ald(c,a)/q" =1},

e 11

B, ={acUAld(c,a)/q® isaroot of unity in L},
=B - BT,
o = a7 - B,

O(€7) = the set of (Z/mZ)*-orbits in €, and
O(D) = the set of (Z/mZ)*-orbits in DI
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IfV =V with n = 2d, we further put

ca(Ve) = #O(€™) (= M;)l:qﬂ if m is prime)

M(VE) = #0O(07) (= Bn(l:i : ll)d(v) if m is prime) and
6a(Vi) = ea(Vi) + Ma(Vy) (= Bn(ti__pld(v’c) if m is prime).

(7.1) Proposition. (n = 2d). Let V = V(c) be a supersingular diagonal hypersurface
of dimension n = 2d and prime degree m > 3 with twist ¢ over k =TF,. Then for each r,

0<r<d,
Q (V q d—r t
.lsl—]}} (]_ — qd"J Pd(vk - ]._I H (] 5 )

te(Z/mZ)x

AGO( )

Proof. This follows immediately from Lemma (6.1).

(7.2) Corollary. Under the same situation as in Proposition (7.1), the following asser-
tions hold for r = d:

(a) If Vi is strongly supersingular, then the limil is equal to 1.

(b) If Vi is supersingular, but not strongly supersingular, then the limit is equal lo
mfaVe)
(7.3) Theorem. (n = 2d) LetV = V(c) be a diagonal hypersurface of dimensionn = 2d
and prime degree m > 3 with twist ¢ over k = Fy. Suppose that Vi is of Hodge-Witt type.
Then for any integer v, 0 < r < d, we have

QUL _ B
_ (1 — g4=2)palVi) - qov(r) '

H (1 _ qd—rﬁt)ed(\h).

tE(Z/mZ)*

Where Aq and €4 are defined above, and the other gquantities in the formula are defined as
Jollows:

pa(Vi) =1+ #{a €A™ | d(c,a) = ¢*} (=1 for c extreme lwist),

psVe) =1+ Ba(Va)
where the sum is taken over all supersingular twisted Fermal motives V4, and

r

wy(r) =Y (r—)h"T(V).

i=0
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Here B"(Vy) is a positive integer (not necessarily prime to mp) satisfying

B (Vi) = B"7" (Vi)

Proof. For each twisted Fermat motive V4 which is not supersingular, we have

d(c,a) 1

r ) € qw(r)

Q(Va,q™") = Normp (1 - p

with
w(r) (=wy,(r) = rh®*(Va) + (r = DA™Y Va) + - + 7707 (Y
by Theorem (6.2)(a). By Lemma (3.5)(b), the functor Hi( Q%) with i4+ 5 = n commutes

);
with the motivic decomposition V = @®V,4. Therefore, gluing the results of Theorem
(6.2)(a), the exponent of ¢ in Q*(V,¢™") is given by

r

D D=V = ) (= hT(Y)

i=0
not s.s.
where the first sum in the left hand side runs over all twisted Fermat motives V4 which
are not supersingular.
If m is prime > 3, then Theorem (6.2)(a) and the hypothesis that ¢ = 1 (mod m) yield
the congruence

QRVa, ¢ ") =0 (modm).

Twisted Fermat motives V4 which are supersingular but not strongly supersingular gives
rise to the auxiliary factor

5d(vk)

H (1 — g% e (= m= V) ifp = d).

te(Z/mZ)x

There are altogether Ay(V;) twisted Fermat motives V4 which are not supersingular. Thus
the assertion on the m-part follows.

The assertion for B"(V;) follows from Proposition (6.4) and Corollary (6.5), noting that
B (Vi) = [I B"(Va4) where the product is taken over all twisted Fermat motives which
are not strongly supersingular. 0O

(7.4) Corollary. Under the same situation as in Theorem (71.8), the following assertion
holds: If Vi is of Hodge-Wilt type, then for v = d, the limit is equal to

BA (Vi) - mBa Vi) fquvld),
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(7.5) Theorem. (n = 2d) Let V = V*(c) be a diagonal hypersurface of dimension
n = 2d and prime degree m > 3 with twist ¢ over k = F,. Suppose that Vi is of Hodge-
Witt type and that Conjecture (1.9) holds for each a € AT such that ¢ is an m-th power.
Then the integer BY(Vy) is a square.

In particular, if ¢ is extreme, then B4(V}) is a square.

Proof. We have for any prime { (including ¢ = p),

1BVl =D 1BVl

where the sum is taken over all twisted Fermat motives which are not strongly supersin-
guwlar. Then the assertion follows from Theorem (6.11). O

Now we consider odd dimensional diagonal hypersurfaces V = V*(c) over k = F,. Let
n=2d+ 1. Foreachr, 0 <r < d,

Q(v: q—r) = H Q(vAa q—r)

where the product is taken over all twisted Fermat motives V.

(7.6) Theorem. (n =2d+1) Let m be a prime > 3. For any integerr, 0 <r < d, let
D* (Vi) = g7 QV, ™).
Then DT(Vi) is a positive integer (not necessarily prime to mp) such that
D'V = D (W)

and

wy(r) =Y _(r = )h"T(V).

Proof. Observe that

d(c,a)
q!‘

D" (Vi) = [] D"(Va) = [] Normy (1 - )

where the product is taken over all the motives V4. Then the assertton follows from
Lemma (6.1) and Theorem (6.2)(b). The duality on D"(V,) follows from Proposition
(6.4) and Corollary (6.5). O

Cohomological interpretations of the integers B"(Vy) and D™ (V) for r, 0 < r < n follow
from the results of Milne [Mil86, Mil88].
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(7.7) Proposition. Let V = V™(c) be a diagonal hypersurface of dimension n and degree
m > 3 with twist c over k = F,. Assume that V is of Hodge-Witt type. Then for any
integer v, 0 < r < n, the following assertions hold:

(1) Let n =2d. Then

+#H™(Vg, Z(r))r ifr#d

B = { AHH Ve, B0 ) raos i 7 =d.

(I1) Let n =2d + 1. Then
D"(Ve) = £#H (Vi Z(r))r.

All the cohomology groups appearing in the formulae are finite.
Proof. This follows from Proposition (6.7) and Proposition (6.9). O

(7.8) Examples. Some computations of the global “Brauer numbers” are tabulated in
table V.

We now compare the asymptotic values of the partial zeta-functions of a diagonal
hypersurface V = V*(c) and the Fermat variety X' = V*(1) over k = F,. An interesting
case is when n = 2d.

(7.9) Proposition. Let V = V7*(c) and X = V(1) be a diagonal and the Fermal
hypersurfaces of dimension n = 2d and prime degree m > 3 with twist ¢ and 1, respectively,
over k =TF,. Then the quotlient

QV,q7°) QX,q7°)
l_?j[( qd_?)p.,(v.‘)/(l gi—e)Pa(Re )]

s equal to
(1) ma(Ve)—eal(t) if both V and X' are supersingular, and
(2) ga—fv*% m& (V) =38 ) 47 hoth V and X are of Hodge-Witt type.

8. THE LICHTENBAUM~MILNE CONJECTURE

Consider diagonal hypersurfaces V = V]'(¢) of even dimension n = 2d > 2 and degree
m with twist c over & = F,. As a higher dimensional analogue of the Artin-Tate formula,
Milne [Mil86, Mil88} and Lichtenbaum [L84, 187, L90] have formulated a conjectural for-
mula on the special value of the partial zeta-function of V at T = ¢~%. In this section, we
compare our results with those predicted by their formula.

The Milne-Lichtenbaum conjecture concerns the residue of the zeta-function Z{V,T)
(or rather of the partial zeta-function Q(V,T)/(1 — ¢"T)?"V¥}) at integral arguments T =
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g~ for 0 < r < n. Particularly interesting is the case when r» = d. In this case, the
Milne [Mil86, Mil88] has a formula for the limit Q*(V, ¢7*)/(1 — ¢*=*)?(V) as s tends to d,
which hold if we assume the validity of the Tate conjecture, and the existence of certain
complexes of étale sheaves Z(d). Such complexes are to used to define some motivic
cohomology groups, and the candidates for them have been defined by Lichtenbaum for
d < 2. [L84,L87,1.90]. The existence of such complexes for d > 2 is still unknown.

We begin by stating the formula of Lichtenbaum and Milne for the partial zeta-function
of Vk.

(8.1) The Lichtenbaum—-Milne formula. Let V = V*(c) be a diagonal hypersurface
of dimension n = 2d > 2 and degree m with twist ¢ over k = F,. Let CHY(Vy) denote
the Chow group of algebraic cycles of codimension d on'V defined over k modulo algebraic
equivalence. Assume that

(1) there exists a complez Z(d) satisfying the axzioms, and that
(2) the cycle map CHY (W) = H™(Vi, Z(d))) is surjective.
Then, if the Tate conjecture holds for V., we have

f @) # BV det A%(Vy)
s—rd (1 _ qd s)pa(v.) quW)[#Ad(Vk),o,.]?

where the quantities on the right hand side are explained as follows:
Bri(Vy) = H¥' (Vi, Z(d)) denotes the “Brauer group” of Vi,
A4(Vy) = Im[CHA (VL) = H™(Vi, Z(d))] is the image of CHY(Vy) in H*(Vg, Z(d)),
{D;} is a Z-basis for A4(Vy) modulo torsion,
det A4(Vy) = det(D; - D;) is the delerminant of the inlersection pairing on A%(Vy),
AV )eor is the torsion subgroup of Ad(V;,.), and

ag(V) = " (d) = 25" (d) + 1, (y(c.n)<a(d = ¥(d(c, @), where s(d) =: dim H"(Vi, Z,(d))
(as a perfect group scheme).

(8.2) Remark. (Tate [T68], Milne [Mil86] and Milne [Mil88], Remark (6.7).) For n = 2,
the Tate conjecture holds for V = VJ* over k, and this formula in (8.1) is indeed the
Artin-Tate formula:

Al(V) = NS(V,)=the Néron-Severi group of V,

Br' (Vi) = H3(Vi, Z(1)) = H*(Vi, G, ) is the cohomological Brauer group of Vi (which
is 1somorphic to the algebraic Brauer group of Vy),

det A'(Vi) = disc NS(Vy), and
#Al(vk)l.or =1, Q'I(V) = Pg(v)'

From the Artin-Tate formula, we can deduce the following assertions.
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(8.3) Corollary. Let V = VJ*(c) be a diagonal hypersurface of dimension n = 2 and
degree m with twist ¢ over k = F,. Then the following assertions hold:
(a) If Vi is supersingular, then

# Br!(Vi)| dise NS(Vy)| = geMhns (Vo)

where €,(Vi) is the quantity defined in Chapter 7.

In particular, if Vy is strongly supersingular, then Br'(V}) is a p-group, and disc NS(Vy)
divides a power of p.

(b) Assume that m is a prime > 3. [f Vi is of Hodge-Wiit type, then

# Bri(Vo) disc NS(Vi)| = B' (V) - (V)
where B'(Vy) is defined as in Theorem (7.8), and §,(Vi) = (m — 3)2.

Some of the quantities in (8.1) can be computed for diagonal hypersurfaces.

(8.4) Proposition. Let V = V(c) be a diagonal hypersurface of dimension n = 2d and
degree m with twist c over k = F,. Then the following assertions hold :

(a) A%(Vy) is torsion-frec.

(b) If Vi is of Hodge-Witt type, then s"t'(d) = s™(d) = 0, so that ag(V) = wy(d).

(c) If Vi is supersingular, then wy(d) = 0 and ay(V) = s"t(d) — 25™(d).
Proof. (a) Since V is a complete intersection, A%(V) is torsion-free by Deligne [D73].

(b) If Vi is of Hodge-Witt type, then H*(Vi, Z,(d)) = 0 and H**'(Vy, Z,(d)) is finite.
So the assertion follows from Theorem (6.2) and Theorem (7.3).

(c) If Vg is supersingular, then wy(d) = 0 as the Newton polygon has the pure slope d.
In this case, the formal groups ®*(V) are all unipotent by Proposition (3.11). (As noted
by Milne [Mil86], Remark 3.5, the actual computation of the invariants s"*!(d) and s™(d)

seems very difficult. In fact, we need to determine the structure of the formal groups
attached to V, especially, the number of copies of G, occuring in the formal groups.) O
In the case of an extreme twist, we can also determine the contribution from the inter-
section pairing:
(8.5) Proposition. Let V = V' (c) be a diagonal hypersurface of dimension n = 2d,
prime degree m > 3 with an extreme twist ¢ defined over a finite field k = F,. Then
A4(Vy) is generated over Q by the single class, [H], consisting of hyperplane sections on
Vi of codimension d, and any hyperplane section H € [H| has the self-intersection number

(H, H) = m.

Proof. Since c is extreme, we know py(Vi) = pa(Vi) = 1, and hence A%(V;) is generated
by a hyperplane section. Let H be a hyperplane of dimension d 4 1 and let H =: VN H.
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Then we can compute the self-intersection number (4, H) by taking another hyperplane
H' of dimension d + 1 and looking at the multiplicities of the intersection ¥V N H and
VNH, that is, of VN HNH. Now VN H is a subvariety of degree m and dimension
d in projective space so that its intersection with a “generic” hyperplane H' consists of
exactly m points. Therefore (H, H) =m. O

Observe that the assertion of Proposition (8.5) remains valid for any field &, of any
characteristic as long as V has an extreme twist.

8.6) Corollary. Under the situation of Proposition (8.5), we have
Y I
| det A%(Vy)| = m.

The final quantity in (8.1) is the “Brauer group” Br®(Vy). This is not even known
to exist unless the complex Z(d) does, so we cannot compute its order explicitly. The
duality properties of Z(d) do imply, however, that this order (when it is defined) must be
a square, and this is what we exploit below. '

We consider first the case when V is of Hodge-Witt type.

(8.7) Theorem. Let V = V™(c) be a diagonal hypersurface of dimension n = 2d and
prime degree m > 3 with twist ¢ over k = F,. Suppose Vi is of Hodge-Witl type. Then
we have

# Bré(Vy)| det AT (V)| = m™ ™M) . BY(Y,),

where B (Vi) = [[ BUVa), the product being taken over all the non-supersingular motives.
The number BY(Vy) is a square up lo powers of m.

If, in addition, ¢ is extreme, then the Tate Conjecture is lrue for Vi, and |det A (V)| =
m, so that the Lichtenbawm-Milne formula holds if and only if we have

# Bri(V) = m&MI-1. gy
The exponent §3(Vi) — 1 is even, and B*(V}) is a square.

Proof. This is just a matter of putting together all that we have already proved. To see
that the exponent of m is even in the extreme case, recall that

_ Bn(V) — pa(Vi)

m—1

§(Vi)

and that 2
Bu(V) = (m—1) + (m — 1) Y

m

Since Vy is extreme, pg(Vi) = 1, and a direct calculation shows that §¢(Vi)—Lliseven. O

Note that when n = 2 the Tate Conjecture is known to hold and the complex Z(1) is
known to exist, so that the formula in Theorem (8.7) holds unconditionally.

We have computed the Brauer number B4(V;) for many different V (of prime degree).
In all cases, it turns out to be a square (including the m-part). It is natural, then, to
conjecture that this is always the case.
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(8.8) Conjecture. Let V = V2 (c) be a diagonal hypersurface of dimension n = 2d and
prime degree m > 3 with twist c over k = F,. Suppose Vi is of Hodge-Witt type. Then
the global “Brauer number” B4(V,4) is a square.

Note that conjecture (8.8) follows from Conjecture (1.9).

It is natural to ask about the exponent 64(Vi). In the non-extreme case, one can make
no predictions, since one doesn’t know the value of the determinant det A%(Vy). In fact,
even in the simplest case, one sees both odd and even exponents. For example, take m = 5,
n =2, p=11. In table (Ibl), one sees that for various twists one gets py(Vi) = 5 or 9,
which gives §4(Vy) = 12 and 11, respectively. For the trivial twist, we get pa(Xy) = 37
and §4(Vi) = 4.

Now we go on to consider the case where Vi is supersingular. This is a httle less
satisfactory, because we are unable to get an explicit value for ¢y(V). So our results are
necessarily partial.

(8.9) Theorem. Let V = V*(c) be a diagonal hypersurface of dimension n = 2d and
prime degree m > 3 with twist ¢ over k = F,. Suppose Vi is supersingular. Then the
Lichtenbaum-Milne formula holds for Vi if and only if we have

#Bl‘d(V;,-)| det A“’(vk” — qad(V)msd(v*).

In particular:
(a) If Vi is strongly supersingular, then §(Vi) = 0 and the Lichtenbaum-Milne formula
holds if and only if we have

# Bri(Vy)| det A4(V,)| = ),

In particular, Br*(V}) must be a p-group.
(b) If c is catreme, then we know that |det AY(Vy)| = m and the Lichtenbaum-Milne
formula holds if and only if we have

# Bré(Vy) = ¢« My W=t,

The m-part of this number is a square.
Proof. Clear from the above. O

Note that since the Tate Conjecture is known to hold when Vj is supersingular, we
know that the Lichtenbaum-Milne formula holds for n = 2 and n = 4 (since in those cases
the complex Z(d) has been constructed). Thus, for n = 2 and n = 4 the equalities in
Theorem (8.9) hold unconditionally.

(8.10) Examples. Let V = V{(c) with an extreme twist ¢ = (2,1,1,1,1,1,1,1) over Fa.
Then the global “Brauer number” of V is computed as follows. One produces a “minimal”
list of characters, i.e., a list of characters such that their associated motives make up a set
of representatives of the isomorphism classes ol motives V4. One then computes the norm
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for each of our characters a, and then it is simply a matter of putting the data together
(taking multiplicities into account). The m-part can be computed directly, since we have
_(m =12 4 (m—1)

S84(Vi) = o = 39991,

so that, as pointed out above, 64(Vi) — 1 is even.

As to the global “Brauer nuimber”, we can compute the motivic “Brauer numbers” and
then put them all together. The full list of values can be found in Table [V. Putting them
all together with the correct multiplicities gives

B3(V,) =2152220 325200 _ 52268 1353056 , 93024 4116576 4314392 , 711736,

834144 . 971120 . 223336 . 2815320 . 349168 . 379280 . 46]840 . 63156 . 953336

Thus, the Lichtenbaum-Milne formula will hold if we have
4 Brd(V,) =7999%0 . 9152220 325200 52268 1353050 93024 | 4116576 | 4314392 771736,

834144 i 9711'20 ) 223336 N 2815320 . 349168 . 379280 . 461840 . 63156 . 953336

More examples can be found in Table 1V.

Now we compare the above results with the Lichtenbaum-Milne conjecture (0.2) on the
residue of Z(V,¢™°) as s — d.
(8.11) Theorem. Let V = V3 (c) be a diagonal hypersurface of dimension n = 2d and
prime degree m > 3 with twist ¢ over k = ;. Suppose Vi is of Hodge-Wiit type. Then the
ezponent of q in the residue Cy(d) in the Lichtenbaum-Milne conjecture (0.2) is correct,

that is,
d

X(V,0,d) = Y (d = i) (V) = wy(d).
1=0
Furthermore, assume that the complexes Z(r) exist. Then
(_l)dq—d(d+1)/2 H“i—l(qi _ 1)—2
Bd(vk) - n'Lad(Vk)

X(Vi, Z(d)) = €Q

where §4(Vi) is as defined in Chapter 7.
Proof. This follows from Theorem (7.3) and Theorem (8.7). O

Now we consider odd dimensional diagonal hypersurface V = V2 (c) over k = F,. Let
n = 2d + 1 and m prime > 3. Then for each integer r, 0 < » < d, the Tate conjecture is
obviously true as H? (Vg, Q¢(r)) has dimension 1.

Now we are interested in the special value of Z(Vg,¢™*) at s = r. We obtain from
Theorem (7.6),

2d 2d

Ei_{r’} Z(V,q_’)(l _ qr—d) — Q(V,q_r) H(l _ qz—r)—l — q—-wv(r)Dd(Vk) H(l _ ([i_d)_l.
1=0 i=0
i#r i#r

Now we compare this with the Lichtenbaum-Milne conjecture (0.2).
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(8.12) Theorem. Let V = V7 (c) be a diagonal hypersurface of dimension n = 2d + |
and prime degree m > 3 with twist ¢ over k = ¥,. Assume that for any r, 0 < r < d,
the complezes Z(r) exist. Then Vi satisfies the Lichtenbawm-Milne formula, thal is, the

exponent of q is
-

X(V,0,7) =Y (d = )h"" (V) = wy(r),

=0
and x(Vi, Z(7)) is given explicitly by
D™ (Vi)

YV Z(r)) = , . —¢
B0 = e A I — 1 T (=) <

Proof. This follows from Theorem (0.1) of Milne and Theorem (7.6). O

9. REMARKS, OBSERVATIONS AND OPEN PROBLEMS

(9.1) The case of composite m. Many of the results obtained in this paper are re-
stricted to diagonal hypersurfaces of prime degree m. This restriction is not a subtle
one, but rather a technical one. In fact, we have some rudimentary results for diagonal
hypersurfaces of composite degree m.

Let Vi = Vi(c) be a diagonal hypersurface of degree m and dimension n with twist ¢
defined over k = F,.

(9.1.1) The Picard numbers. About the combinatorial Picard numbers for V. of even
dimension n = 2d, we note that the assertion of Proposition (5.5)(b) no longer holds;
indeed, in some cases there are twists ¢ satisfying

) pa(Vi) > pa(Xi)

where
pa(Vi) = #{a e AT | x(c*) = j(a)/q"}.

For instance, take (m,n) = (4,2), p = 5. Then p,(X}) = 8. Now choose twists ¢ =
(4,4,1,1) (resp. ¢ =(3,4,2,1)). Then py (Vi) = 16 (resp. (10)). As for another example,
take (m,n) = (10,4), p = 11. Then p,(A}%) = 4061, but for a twist ¢ = (10,10,10,1,1, 1),
we have p2(V;) = 5218.

We computed the actual Picard numbers for various twists in a number of cases (the
results are tabulated below). In each case, we pick a non—primitive root ¢ modulo p, and
consider twists of the form ¢ = (cg, ¢y, -+, cay1) where each component ¢; is of the form
¢’,1 <7 <m—1. Based on our computations, we observe the following facts:

(a) Extreme Twists: In the composite case, our definition of extreme twists does not
work. Instead, we simply say a twist is extreme if the combinatorial Picard number of the
resulting variety is 1. Such twists seem to be very hard to find. In our computations, they
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occurred only for n = 2 and m = 9, 14, or 15, and all of them were equivalent to twists of
the form (cg,1,1,...,1). For most values of m and n, we found no extreme twists at all.

(b) The inequality pq(Vi) < p(A%k): as we pointed out above, this does not hold for
general m. On the other hand, our computations suggest that it does hold when m is
odd.

For more examples, see the Tables llc in the appendix.

(9.1.2) The norms. We have computed the norms of algebraic numbers 1 — g(c,a)/¢"
for some selected twists c. Here we record some partial results, and observations based
on our computations.

(a) If m is odd and m = m{ where mg is an odd prime and r > 2, then, as pointed out
above, the [wasawa-lhara conjecture holds, and we have

dc,a)=1 (mod (1 —¢))
where ¢ is an m-th root of unity. Consequently, for any », 0 < r < n,

d(c, a)

q®

Normy,g(1 — ) =0 (mod my)

and higher powers of mg will occur when the twist is trivial.

(b) For general m, there seems to be no general pattern for the powers of the prime
divisors of m in the norm. See the tables below for various examples of this.

(¢c) For arbitrary m, and ¢, the p-part of the norms satisfies
d(c,a) 1

= ) € qw(r)Z forany r,0 <r <n

Normy,g(1 —~

where w(7) is as in Theorem (6.2).
(d) For arbitray m, c and n = 2d, we have
d(c,a)

qd)

q‘”(') NOI‘IHL/Q( 1 -

Is a square up to a factor involving only the primes dividing m.

(9.1.3) Examples. We compute norms for selected twisted Jacobi sums of composite
degree.
Ilach table below records the numbers

3(c,a))

q

gt Normy, (1 —

for various values of m, n, p, and a, and two different twists. Supersingular characters
are indicated by x.
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(a)m=6,n=2,p=T:

a w(r c=(2,1,1,1) | ¢=(2,3,51)
«(1,1,5,5) 0 3 3
«(1,2,4,5) 0 1 92
(1,1,1,3) 1 92.3 92.3
(3,1,1,1) 1 33 33
(1,1,2,2) 1 52 33
(2,2,1,1) 1 1 3

(bym=9,n=2,p=19:

a w(r c=(2,1,1,1) (2,3,5,1)
«(1,1,8,8) 0 3 3
+(1,4,6,7) 0 3 3
(1,1,1,6) 2 3 33
(6,1,1,1) P 37 3
(1,1,2,5) 2 3 3
(5,1,1,2) ) 3.172 3. 372
(1,2,%,3) i 3 33

(c)m=4,n=4,p=5
a wr) | e=@ L0510 | e=(2,3,51,1,1)
«(1,1,1,3,3,3) 0 2 2
+(1,1,2,2,3,3) 0 2 92
«(2,1,1,2,3,3) 0 92 2
(1,3,3,3,3,3) 1 2 2.3
(3,1,3,3,3,3) 1 2. 32 232
(1,1,1,1,2,2) I 2 2. 32
(2,1,1,1,2,1) | 92 2.3?

1 ? ? 1
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(dym=6,n=6,p="T:

a w(r) ce=1(2,1,1,1,1,1,1,1) c=(2,3,5,1,1,1,1,1)
%(1,1,1,2,4,5,5,5) 0 | 1
£(1,1,2,1,4,5,5,5) 0 1 3
%(1,1,1,3,3,5,5,5) 0 3 3
(1,5,5,5,5,5,5,5) 2 26.3 26.3
(5,1,5,5,5,5,5,5) 2 3.5° 33
(1,1,3,5,5,5,5,5) 1 3 33
(2,1,2,5,5,5,5,5) 1 1 3
(5,1,1,4,4,5,5,5) 1 5° 52
(1,1,1,1,1,1,2,4) 2 12 112
(2,1,1,1,1,1,2,3) 2 132 22
(1,1,1,3,3,3,3,3) 1 22.3 22.3
(1,2,2,2,2,2,3,4) 1 1 1
(1,2,3,2,2,2,2,4) 1 1 22.3
(2,2,2,2,2,2,3,3) 1 52 5°

(e) m=15,n =06, p=31:

a w(r) c=(2,1,1,,1,1,1,1) | ¢=1(2,3,51,1,1,1,1)
#(1,1,1,1,14, 14,14, 14) 0 52 0
(1,5, 14,14, 14, 14,14, 14) 5 29° . 5092 292 .509%
(1,14,5,14,14,14,14, 14) 5 292 . 5092 2392
(1,8,11,14,14,14,14, 14) 4 28 .421* 13812
(8,1,11,14,14,14, 14, 14) 4 1381° 31, 4792

(1,3,3,7,8,10, 14, 14) 1 51 52
(1,3,3,7,7, 11,14, 14) 4 51 28 .5%.29°
(3,1,3,7,7,11, 14, 14) 4 28 .5%. 292 2281°
(1,3,3,6,8,11,14,14) 1 29? 28
(14,3,3,6,8,11,14,1) 1 34 292

75
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(9.2) The plus norms. Let V4 be a twisted Fermat motive of dimension n and degree
m over k = F,. We should compute also the plus norms

Normyg(l -+ d(c,a)/q") 0<r<n

as done in Yui [Y94].

(9.2.1) Proposition. Assume thal V4 ts of Hodge-Wilt type. Then the following asser-
tions hold :

(I) Let m and n be arbitrary. Then for any r, 0 < r < n, the p-part of the norm is
equal to ¢va(").

(11) Assume that m is prime, and c is extreme.

(a) Assume that n is even. Then for anyr, 0 <r <n,
g - Normyp,g(1 + d(c,a)/q") = BL(Va)

where BY(V4) is a positive integer relatively prime to m, (but not necessarily prime to p).
(b) Assume that n is odd. Then for any r,0 <r <,

g+ Normy o1 + (e, a)/¢') = D - m

where D7 is a posilive integer relatively prime to m, (but not necessarily prime to p).

Proof. (I) This is true by the same reasoning as for the p-part in Theorem (6.2).

(I1) Let d2(c,a) denote a twisted Jacobi sum relative to k; = Fya. Note that da(c,a) =
d(c,a)?. Then

(*)  Normyg(l — 32(c, a)/q’") = Normy (1 — d(c,a)/q") - Normyo(1 + d(c,a)/q")

Observe that both Jacobi sums Ja(c,a) and J(c,a) satisly the congruence of Proposition
(1.7) :
d2(c,a) = d(c,a) =1 (mod (1 = )).

Moreover, the assertions of Theorem (6.2) are also valid for the minus norm for J;(c, a)
that is,

3

By(Va)-m ifnis even
2wva) . Normy,g(1 — d2(c,a)/¢*) = :
1 v/a(l = dx(c,2)/q”) D3(Va) if n is odd
where B}(V4) and D3(V4) denote the positive integers defined as in Theorem (6.2) for
the twisted Fermat motive V4 corresponding to da(c,a).
If n is even (resp. odd), the minus norms for Jd,(c,a) and J(c,a) have the m-adic order
1 (resp. 0). Therefore, the norm identity (*) vields the assertion on the plus norm. 0O
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Further questions. Our investigation raises a number of questions that seem

worthy of further investigation.

(1)
(2)

(3)

(4)
(5)

Conjecture (1.9) ought to be studied further.

We have made no use of the varieties constructed in Theorem (3.2). It might be
worthwhile to investigate their geometry.

Conjecture (5.4) seems very likely to be accessible, at least in terms of the combi-
natorial Picard number (it is clearly much harder to actually try to obtain enough
generators for the Chow group).

The question of the existence and frequency of extreme twists (see (5.12)) seems
interesting also.

When V is supersingular, one should be able to compute the invariants a4(V). This
is equivalent to the determination of the structure of the unipotent formal groups
attached to V. In particular, one would like to know the number of copies of G,’s
occuring in them (cf. (8.4)).

The obvious next step is to go on to study arithmetical properties of diagonal hy-
persurfaces over number fields. Some investigation along these lines has already
been started. Pinch and Swinnerton-Dyer [P-591] considered a diagonal quartic
surfaces over @ addressing these questions, in which case, the L-series was ex-
pressed in terms of Hecke L-series with Grossencharacters over Q(z). Harrison
[H92] analyzed the special value ol L-function of a diagonal quartic surface over Q
proving the Block-Kato conjecture on Tamagawa numbers for Grosssencharacters
over Q(:).

More generally, Shuji Saito [Sa89] considered arithmetic surfaces and proved
among other things the finiteness of the Brauer group. Also Parshin [Pa83] dis-
cussed special values of zeta—functions of function fields over number fields.

As an attempt to generalize the results for diagonal quartic surfaces by Pinch~
Swinnerton-Dyer and Harris, Goto, Gouvéa and Yui [G-G-Y94] have started con-
sidering the above questions for weighted diagonal K3-surfaces defined over number

fields.

We plan to consider these questions in subsequent papers.
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TABLES

Here we tabulate some of our computations.
CONTENTS

Table 1: Twisted Fermat motives and their invariants
Table 1I: The Picard numbers of V = V*(¢)

Table I1I: “Brauer numbers” of twisted Fermat motives
Table IV:“Global Brauer numbers” of V = V.™(c).

A NOTE ON THE COMPUTATIONS

The computations were done mostly at Colby College, using a variety of computer
equipment and several software packages. The preliminary computations were done with
Mathematica on a Macintosh Quadra 950. These provided us with a basic outline of what
the results should look like. The final computations were done with C programs using
the PARI library for number-theoretic functions and infinite-precision arithmetic. The
portability of both C programs and the PARI library allowed us to run the programs
on a VAX running Ultrix, a SparcStation, an Intel-based machine running OS/2, and on
a Macintosh Quadra 950. The software used included the PARI library (by H. Cohen
et. al.), the Gnu C Compiler (including the OS/2 port by Eberhard Mattes), and the
MPW C compiler on the Macintosh.

Most of the techniques used to do the computations were straightforward, requiring
mostly time and large amounts of computer memory. The full computations required
several months to be completed. Gaps in the tables above reflect cases where we were
unable to complete the computations. )

The more ambitious computations were greatly helped by a grant from Colby College,
which allowed us to upgrade one of our machines. In writing the programs themselves,
we received a great deal of help from a student at Colby College, Lynette Millett, who
was our research assistant over one summer and did much of the initial programming. We
also thank Henri Cohen for his help with the PARI library.

The fundamental strategy for organizing the computations was exploiting the motivic
decomposition, and in particular the fact that two Fermat motives are isomorphic when

Typeset by Apa8-TEX
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one character in the first is a permutation of a character in the second. Hence, for each m
and n, we began by generating a representative for each of the I'ermat motives. We then
eliminated from the list any “duplicates” (i.e., any character whose motive was isomorphic
to one already represented). This gave us our basic list of characters.

Many of the quantities we were looking for were independent of the twist, and hence
could be computed directly fromn our minimal list of characters. When a twist was present
and relevant, we took it into account by breaking the isomorphism class of motives (given
by permutation) into subclasses for which the twisted motives were isomorphic. For
example, for a twist of the form (¢, 1,1,...,1), we only need to consider how many
permutations have a certain entry in position 0, since other entries can be permuted
without changing the isomorphism class.

After computing our data for each isomorphism class, one needs to worry about the
multiplicity of each class. This is simply a matter of counting permutations, except for
cases when a motive is “self-isomorphic”, i.e., when there is a permutation of a which is
also a multiple of a. These occur fairly often, in fact.

Most of the computations are then straightforward. Jacobi sums were computed by
using their expression in terms of Gauss sums (see (1.2)), which were computed directly.
(This is by far the most time-consuming portion of the computations.) Norms were also
computed in a straightforward fashion.

For the most part, the tables below represent only a sampling of our output, chosen to
exemplify the various sorts of phenomena we observed.
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TABLE I: TWISTED FERMAT MOTIVES AND THEIR INVARIANTS

We will construct twisted Fermat motives of arbitrary degree and even dimension for

selected twists ¢. If ¢ = 1, then the characters x(c**) = 1 for all ¢t € (Z/mZ)*; these
will not be listed in the tables. The tables list twisted Fermat motives with twists ¢ and
their invariants, e.g., Hodge and Betti numbers, which are non-zero. We use { for ¢?™/™
in each case. Roots of unity are normalized in terms of a basis of Z[(].

(a) Let (m,n) = (8,4), and take a character a = (1,1,2,3,4,5) € 5. Choose p = 17.

Pick a twist ¢; = (11,15,13,10,9,1) and ¢, = (5,3,3,1,1,1). Then the twisted Fermat
motive V4 and its invariants are given as follows:

t e | we) | (el i

1§ (1,1,2,3,4,5) ¢? 1 1 B3 = p3 = |
3 | (3,3,6,1,4,7) —¢? 1 2 h22 =2

5 | (5,5,2,7,4,1) ¢? ! 2 By =4

7 | (7,7,6,5,4,3) e 1 3

(b) Let (mm,n) = (15,4). Take a character a = (1,1,1,2,2,8) € A}°. Let ¢ = p = 31.

Choose a twist ¢, = (17,19,27,3,9,1), and its permutation c; = (1,9,3,27,19,17). Then
the twisted Fermat motives V4 and their invariants are given as follows:

t ta X(el®) RC Il htd

1 (1,1,1,2,2,8) - -1 ¢? 0 R
2 (2,2,2,4,4,1) ¢s ¢ 0 AL = p3l =9
1 (4,4,4,8,8,2) -5 -1 T=CP+ ¢ =+ (1 I By =8

7 (7,7,7,14,14,11) =1 | =+ - +3-¢C+1 3

8 (8,8,8,1,1,4) % ¢ I

11 (11,11,11,7,7,13) % 7 3

13 (13,13,13,11,11, 14) -5 -1 5 —¢ 4

14 (14,14,14,13,13,7) s ST =+ 4

Observe that motives are not invariant under permutation of twists, though the geometric
invariants remain the same. Both motives are ordinary but not supersingular.
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(c) Let (m,n) = (25,4). Take a character a = (1 4,14) € A, Let ¢ = p = 101.

1,2,3
Choose twists ¢; = (8,4,2,4,8,1), and ¢ = (7,7, 1,’1,’1,’15.
t ta (5 X{c5?) [[tal] hid
1 (1,1,2,3,4,14) 1 ¢’ 0 RO = p40 = 9
2 (2,2,4,6,8,3) 1 ¢ 0 Wi =31 =4
3 (3,3,6,9,12,17) 1 B R L . 1 h22 =8
4 (4,4,8,12,16,6) 1 ¢ 1 By =120
6 (6,6,12,18,24,9) 1 ¢ 2
7 (7,7,14,21,3,23) 1 (19—l o e 9
8 (8,8,16,24,7,12) 1 8 2
9 (9,9,18,2,11,1) 1 ¢ 1
11 (11,11,22,8,19,4) 1 ¢? 2
12 (12,12,24,11,23,18) 1 ¢® 3
13 (13,13,1,14,2,7) 1 e 1
14 (14,14,3,17,6,21) 1 —CB 388 2
16 (16,16,7,23, 14, 24) 1 ¢L? 3
17 (17,17,9,1,18,13) 1 ¢re 2
18 (18,18,11,4,22,2) 1 ¢ 2
19 (19,19,13,7,1,16) 1 ¢® 2
21 (21,21,17,13,9,19) i =TT 3
22 (22,22,19,16,13,8) ! ¢t 3
23 (23,23,21,19,17,22) 1 ¢ 4
24 (24,24,23,22,21,11) 1 c8 4

The Hodge and Newton polygons have slopes {0,1,2,3,4} with respective multiplicities
2,4,8,4,2. These motives are ordinary, but not supersingular.

Now we take ¢ = p = 11, 16 (mod 25), then p* = 1 (mod 25), and both motives
become supersingular with Newton polygon having the pure slope 2.

There are many twists which give rise to isomorphic motives as ¢,, e.g.,
c=(2,4,4,4,8,1), (8,2,8,2,8,1), (4,8,2,4,8,1) and others.
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(d) Let (m,n) = (7,6). Choose a character a = (1,1,1,2,2,2,2,3) € A{. Let g=p =
29. Take a twist ¢, = (1,2,3,3,4,4,5,6), and its permutation ¢; = (5,6,1,2,3,4,3,4).
Then the twisted Fermat motlvcs are described as follows:

t ta X(e®) | X)) | lal hi

1] (1,1,1,2,2,2,2,3) s 3 1 RIS = B0 = |
2 1 (2,2,2,4,4,4,4,6) s ¢t 3 B4 = b = |
3 | (3,3,3,6,6,6,6,2) ¢ % 4 B33 = 9

4 | (4,4,4,1,1,1,1,5) I (5 9 Bs =6

5 | (5,5,5,3,3,3,3,1) ¢t ¢ 3

6 | (6,6,6,5,5,5,5,4) ¢t ¢ 5

These two motives are ordinary but not supersingular.

If we choose ¢ = p=2or4 (mod 7), then V, is of Hodge-Witt type but not ordinary,
as the Newton polygon has slopes {2,4} with each of multiplicity 3, while the Hodge
* polygon has slopes {1, 2,3,4,5,6} with each of multiplicity 1. If we choose ¢ = p =3 or
5 (mod T7), then Vy4 is supersmguldx, but not ordinary.

(e) Let (m,n) = (11,6). Choose a character a = (1,1,1,1,2,3,6,7) € A
23. Choose a twist ¢; = (2,1,2,1,2,1,2,1) and its permutation ¢, = (1,
Then the twisted Fermat motives V4 are described as follows:

.Letg=p=

t ta (™) | ®(cP) [la]| i

1 (1,1,1,1,2,3,6,7) ¢? (8 1 1S = p5l =2
2 (2,2,2,2,4,6,1,3) ¢t ¢s 1 A2t = g2 = |
3 (3,3,3,3,6,9,7,10) Ct ¢? 3 h33 =3

4 (4,4,4,4,8,1,2,6) ¢8 ¢lo 2 hd = 0 otherwise
5 (5,5,5,5,10,4,8,2) ¢Lo ¢7 3 Bs =10

6 (6,6,6,6,1,7,3,9) ¢ ¢l 3

7 (7,7,7,7,3,10,9,5) ¢ ¢ 4

8 (8,8,8,8,5,2,4,1) s ¢° 3

9 (9,9,9,9,7,5,10,8) 7 ¢t 5

10 (10,10,10,10,9,8,5,4) ¢® 3 5

In both cases, if we choose ¢ = p = {2,6,7,8} (mod 11), then V4 are supersingu-
lar; while if we choose ¢ = p = {3,4,5,9} (mod 11), then V4 are neither ordinary, nor
supersingular, nor of Hodge-Witt type.
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TaBLE IT: THE PICARD NUMBERS OF V = V[*(c)

(Ia) We compute the stable, and the actual Picard numbers of diagonal hypersurfaces
with trivial twist of dimension n = 2 and degree m where 4 < m < 49 choosing & = F,
with ¢ = p =1 (mod m).

m p pr(te) | A(V) m p pi(Xs) | Ai(V)
4 5 8 20 28 29 1064 2972
5 11 37 37 29 59 2269 2269
6 13 26 86 30 31 1226 5630
7 29 91 91 31 311 2611 2611
8 17 128 176 32 97 1352 3416
9 19 169 217 33 67 2977 3217
10 11 08 362 34 103 1538 3938
11 23 271 271 35 71 3367 3367
12 13 152 644 36 73 1856 5516
13 43 397 397 37 149 3781 3781
14 29 518 806 38 191 4862
15 31 547 835 39 79 4219 4507
16 17 296 872 10 41 2168 6224
17 103 721 721 4] 83 4681 4681
18 37 386 1658 42 43 2450 10418
19 191 919 919 43 173 5167 5167
20 41 1028 1988 44 89 6380
21 43 1141 1573 45 271 6205
22 23 602 1742 46 47 6998
23 47 1387 1387 47 283 6211 6211
24 73 1136 3080 48 97 9200
25 51 1657 1657 49 197 6769
26 53 1802 2378 50

27 109 1951 2143 51
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Our computational results are consistent with a closed formula for the stable Picard
number 7, (V) due to Shioda [30]. It is given by

7, (V)=1+4+3(m—1)(m—=2)+6,+ 24 Z glm/d).
d|m
1<d<m
Here é,, is 0 or 1 depending on m being odd or even, and ¢ is defined as follows: Let €3}(1)
denote the set of characters a = (ag, a1, aq,a3) € A2, such that a; + a; # 0 (mod m) for
any distinct pair (7,7) and |[tal]| =1 for all ¢ € (Z/mZ)*. Let

g(m) = Z Wy

agc? (1)
where sum runs over a up to permutation and

{ 1 if «; are all distinct
Wy

1/2 otherwise.

(Ib) We compute the actual Picard numbers of diagonal hypersurface ¥V = VJ*(¢) for
selected twists ¢. Fix m prime, and let p be a prime such that p =1 (mod m). Choose
a primitive root g modulo p. We will consider twists of the form ¢ = (g, ¢1, €2, ¢3) where
each component ¢; is of the form ¢7 with 1 < 7 < m—1. We observe from our computations
the following facts:

(a) All twists of the form (¢7,1,1,1) with 1 < j < m — 1 are extreme, and

(b) For any m prime, twists of the form (¢7,¢7,1,1) for any value of j, 1 < j <m —1
give the same Picard number 1 + (m — 1)2.

(These two types of twists will not be listed in the tables.)

(Ibl) Let m = 5, n = 2 and p = 11, and take ¢ = 2. Recall that the stable Picard
number is 37.

c p1(Vk) c p1{Vy) c p1(Vk)
(4,2,1,1) 9 (8,8,2,1) 5 (5,8,1,1) 9
(4,2,2,1) 5 (8,8,4,1) 9 (5,8,2,1) 9
(4,4,2,1) 9 (5,2,1,1) 5 (5,8,4, 1) 9
(8,2,1,1) 9 (5,2,2, 1) 9 (5,5,2, 1) 9
(8,4,1,1) 5 (5,4,1,1) 9 (5,5,4,1) 9
(8,4,2,1) 9 (5,4,2,1) 9 (5,5,8,1) 5
(8,4,4, 1) 9 (5,4,4,1) 5 (2,1,1,1) |
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(Ib2) Let m =7, n =2 and p = 29, and g = 2. In this case, the stable Picard number

s 91.

(1b3) Let m =17, n = 2 and p = 103, and g = 5. The stable Picard number is 721.

c p1(Ve) c o1 (Vi) c p1 (Vi)
(4,2,1,1) 13 (3,2,1,1) 13 (6,8,4, 1) 13
(8,2,1,1) 13 (3,4,1,1) 7 (6,16,2, 1) 19
®,4,1,1) 13 (3,4,2,1) 19 (6,3,2,1) 13
(8,4,2,1) 13 (3,16,4,1) 13 (6,3,4,1) 19
(4,4,2,1) 13 (3,16,8, 1) 19 (6,3,8,1) 19
(16,4,2,1) 19 (6,2,1,1) 7 (6,3, 16, 1) 13
(16,8, 1,1) 7 (6,4,2,1) 13 (6,6,2,1) 13
(16,8,2, 1) 13 (6,8,1,1) 13 (6,6,4,1) 13
(16,16,2, 1) 7 (6,8,2,1) 19 (6,6,3,1) 7

c p1(Ve) c p1{Vr) c p1(Vie)
(25,5,1,1) 33 (39,35,7,1) 33 (26, 35,7, 1) 49
(22,5,1,1) 33 (39,49, 1, 1) 17 (26,48, 49, 1) 33
(7,25,5,1) 49 (92,72,7,11) 33 (26, 67,35, 1) 49
(7,22,5, 1) 33 (92,51, 1,1) 17 (27,25, 1, 1) 17
(35,22, 25, 1) 49 (92,39,51,1) 49 (27,51,22, 1) 49
(35,5, 1, 1) 33 (48,72,1,1) 17 (27,92, 35, 1) 33
(72,7,5,1) 49 (48, 38,49, 1) 49 (27, 26,67, 1) 49
(72,35,5, 1) 33 (34,35, 1, 1) i7 (32,5,1,1) 17
(51,35,25,1) 33 (34,48, 92, 1) 49 (32,51,7,1) 49
(51,72,7,1) 49 (67,7,1,1) 17 (32, 48,35, 1) 33
(49,72, 5, 1) 49 (67,49, 35, 1) 33 (32,92, 49, 1) 49
(49,35,22,1) | 33 (26,22,1,1) 17 (32,27, 26, 1) 33




(
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Ib4) Let m = 29, n = 2 and p = 59, and take g =

9.

t)

L.
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The stable Picard number is

c p1(Vk) c p1 (V) ¢ p1(Ve)
(4,2,1,1) 57 (46,50,1,1) 29 (47,7,33,1) 85
(8,2,1,1) 57 (46,23,2,1) 57 (47,28,41,1) 57
(8,4,2,1) 57 (46,23,41,1) 85 (35,32,1,1) 29
(16,4,2,1) 85 (33,21, 10,1) 57 (35,7,1,1) 57
(16,8,2,1) 57 (33,25,1,1) 20 (35,14,32,1) 57
(32,2,1,1) 57 (33,41,25, 1) 85 (35,53, 16, 1) 85
(32,16,8,1) 85 (7,8,1,1) 57 (35,47, 53, 1) 85
(5,16,4, 1) 57 (7,42,1,1) 29 (11,16,1,1) 29
(5,32, 16, 1) 85 (7,23,10, 1) 85 (11,5,1,1) 57
(10,8,4,1) 85 (14,21,1,1) 29 (11,42,10,1) 57
(10,5,2,1) 57 (14,25,4,1) 57 (11,7,10,1) 57
(20,16,4,1) 85 (14,7,33,1) 85 (11,35,47,1) 85
(20,10,2,1) 57 (28,40,1,1) 29 (22,8,1, 1) 29
(40,5,16,1) 85 (28,41,21, 1) 85 (22,7,23,1) 57
(40,20, 2, 1) 57 (28,7,4,1) 57 (22,53,1,1) 57
(21,5, 16, 1) 57 (56,20, 1,1) 29 (22,11,2,1) 57
(21,20, 5, 1) 85 (56,40, 2, 1) 57 (22, 11,35, 1) 85
(42,5, 1,1) 57 (56, 25,16, 1) 57 (44,4, 1, 1) 29
(42,21,5,1) 85 (56,7,1,1) 57 (44,41, 25, 1) 57
(25,5,16,1) 85 (56, 28,5, 1) 85 (44,56, 5, 1) 57
(25,42,2,1) 57 (53,5,1,1) 57 (44,471, 1) 57
(50,20,2, 1) 85 (53,10,1,1) 20 (44,35,53,1) | s7
(50, 42,4, 1) 57 (53,21,8,1) 57 (44,22,11,1) 85
(41,40,8,1) 85 (53,7,16,1) 57 (29,2,1,1) 29
(41,50,2, 1) 57 (53,56, 28, 1) 85 (29,7,5,1) 85
(23,40,5,1) 57 (47,5,1,1) 29 (29, 14,40, 1) 57
(23,41,1,1) 29 (47,25,1,1) 57 (29,44,1, 1) 57

(23,41, 50, 1) 85 (47,46, 21, 1) 57 (29,44,22,1) 57
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(Ic) We compute the actual Picard numbers of diagonal hypersurfaces V;, of dimension
n = 2 and degree m where m is composite. We choose k = F, with ¢ = p =1 (mod m),
and pick a non—primitive root g modulo p. We will consider twists ¢ = (g, ¢y, €2, ¢3) such
that each component ¢; is of the form ¢?, 1 < j < m~—1. Here we observe the the following
facts from our computations:

(a) When m = m[ where mg is an odd prime > 3 and r > 2, some (but not all) twists
of the form (¢?,1,1,1) are extreme. For instance, if m = 9 (resp. 25), then c is extreme
for 7, 1 <j<m—1 with j =2 (mod 3).

(b) When m = mg-m, where mg and m, are odd and relatively prime, then some (but
not all) twists of the form ¢ = (¢%,1,1,1) are extreme.

(c) In both cases (1) and (2), the equality p;(Vi) < p1(X%) hodls.

(d) When m is even, there are twists ¢ for which p;(Vi) > p1(A%). We are not able
to detect any pattern on the actual Picard numbers. The situation seems rather wild
especially when (m,6) > 1.

Here are some computational results.

(Icl) Let (m,n) = (4,2), p =5 and take g = 2. The stable Picard number is 20.

c p1(Vk) c p1(V) c P1( Vi)
(1,1,1,1) 8 (3,2,1,1) 6 (3,3,2,1) 3
(2,2,1,1) 6 (3,2,2,1) 3 (3,3,4,1) 6
4,2,1,1) 3 (3,4,1,1) 3 (2,1,1,1) 7
(4,2,2,1) 6 (3,4,2,1) 10 (4,1,1,1) 8
(4,4,1,1) 16 (3,4,4,1) 3 (3,1,1,1) 7
(4,4,2,1) 3 (3,3,1,1) 6 (2,3,1,1) 3

(Tc2) Let (m,n) = (9,2), p = 19 and take g = 2. The stable Picard number is 217.

c p1(Vi) c p1(Vi) c p1(Vi)
(1,1,1,1) 169 8,4,1,1) 25 (7,7,7,1) 43
(2,2,1,1) 65 (8,8,1,1) 15 (14,14, 14, 1) 1
(2,2,2,1) 1 (8,8,8, 1) 79 (14,7,13,1) 33
(4,2,1,1) 27 (16,4,2, 1) 33 (9,9,2, 1)) 27
(4,2,2,1) 21 (16, 16,16, 1) ] (9,9,14,1) 21
(4,4,2,1) 15 (7,8,1,1) 61 (4,1,1,1) ]
(4,4,4,1) 13 (7,8,2,1) 31 (13,1,1,1) !
(8,2,2,1) 29 (7,8,4,1) 19 (9,1,1,1) I




(1c3) Let (m,n) = (12,2), p = 13 and take g = 2. The stable Picard number is 644.

c p1 (Vi) ¢ p1 (Vi) c p1( V)
(1,1,1,1) 152 (3,3,8,1) 93 (12,12,12,1) 188
2,2,1,1) 106 (3,3,3,1) 44 (11,4,2,1) 80
2,2,2,1) 43 (6,2,1,1) 60 (11,8,8, 1) 51
(4,2,1,1) 37 (6,2,2,1) 69 (11,3,1,1) 113
(4,2,2,1) 48 (6,4,1,1) 57 (11,3,3, 1) 47
(4,4,1,1) 164 (6,8, 1, 1) 38 (11,6,2,1) 45
(4,4,2,1) 49 (6,8,4,1) 18 (11,6,3,1) 46
(4,4,4, 1) 98 (6,8,8,1) 27 (11,12,2,1) 174
(8,2,1,1) 76 (6,3,2,1) 46 (11,12, 4, 1) 29
(8,2,2,1) 89 (6,3,8,1) 42 (11,12,3,1) 8|
(8,4,1,1) 35 (6,3,3,1) 33 (11, 11,8, 1) 61
(8,4,2,1) 70 (6,6, 1,1) 106 (11,11,3,1) 66
(8,4,4,1) 77 (6,6,6,1) 91 (11,11,11,1) 19
(8,8,1,1) 154 (12,2,2,1) 110 (9,4,1,1) 128
(8,8,2,1) 47 (12,4,4,1) | 120 (9,3,1,1) 50
(8,8,4,1) 54 (12,8,1,1) 107 (9,12,4, 1) 196
(8,8,8, 1) 79 (12,8,2,1) 116 (9,12,8, 1) 31
(3,2,1,1) 65 (12, 8,8, 1) 134 (9,11,1,1) 49
(3,2,2,1) 50 (12,3,4,1) 102 (9,11,3, 1) 51
(3,4,1,1) 62 (12,3,8,1) 71 (9,9,8, 1) 13
(3,4,2,1) 35 (12,3,3,1) | 128 9,9,9,1) 62
(3,8,1,1) 115 (12,6,1,1) I5 (5,8,1,1) 134
(3,8,2,1) 82 (12,6,2, 1) 48 (5,8,4,1) 74
(3,8,4,1) 39 (12,6,4,1) 69 (5,12,8, 1) 222
(3,8,8, 1) 96 (12,6,8, 1) 74 (5,5,5, 1) 197
(3,3,1,1) 92 (12,12,1,1) | 288 (10,10, 10, 1) 56
(3,3,2,1) 23 (12,12,2,1) 55




92

(lcd) Let (m,n) =

(15,2}, p = 31 and take ¢ = 3. The stable Picard number is 835.

c p1(Vi) c p(V) c p1{Vi)
(1,1,1,1) 547 (19,9,9,1) 23 (16, 16,1, 1) 295
(3,3,1,1) 213 (19,19,1,1) | 213 | (6,16,27,1) 103
(3,3,3,1) 1 (26,3,3,1) 91 (16, 16, 16, 1) 79
9,3,1,1) 27 (26,9,1,1) 69 (17,26,27, 1) 39
(9,3,3,1) 15 (26,9,9,1) 73 (17, 16,9, 1) 51
(9,9,1,1) 197 (26,27, 1,1) 17 (17,17,1,1) 197
(27,3,1,1) 33 (26,27,9, 1) 57 (20,26,27, 1) 101
(27,3,3,1) 53 (26,19, 1,1) 19 (20, 16,27, 1) 37
(27,9,1,1) 45 (26,19,19,1) | 75 (29,27,27, 1) 103
(27,9, 3, 1) 35 (26,26,1,1) | 207 | (29,26,97,1) 65
(27,9,9, 1) 61 (26,26,26,1) | 157 (25,26,1,1) 167
(27,27,1,1) 247 (16,3,1,1) 89 (25,16,3,1) 117
(27,27,3,1) 29 (16,9,3,1) 31 (3,1,1,1) 25
(27,27,9,1) 25 (16,27,1,1) 127 (27,1,1,1) 79
(27,27,27,1) | 151 (16,27,27,1) | 115 (19,1,1,1) 1
(19,3,1, 1) 49 (16,19,1,1) 21 (26,1,1,1) 157
(19,3,3,1) 41 (16,19,3,1) 7 (16,1,1,1) 103
(19,9, 3, 1) 43 (16,26, 3, 1) 83 (20,1,1,1) )
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(lla) We compute the stable, and the actual Picard numbers of diagonal hypersurfaces
with trivial twist of dimension n = 4 and degree m where 4 < m < 49 choosing k = F,
with ¢ = p =1 (mod m).

m p p2A() | pa(V) m p p2( %) p2(V)
4 5 92 142 28 29 139412 644122
5 11 401 401 29 59 295121 265121
6 13 591 1752 30 31 209811 2106432
7 29 1861 1861 31 311 365701 365701
8 17 3482 5882 32 97 727202
9 19 5121 8001 33 67 5557601
10 11 4061 19882 34 103 909922
11 23 10901 10901 35 71 543221
12 13 10152 52992 36 73 1923972
13 43 19921 19921 37 149 642961 642961
14 20 32942 77402 38 191 1241822
15 3l 32901 78261 39 79 923781
16 17 29762 87992 40 41 2016682
17 103 30561 50561 41 83 889601 889601
18 37 34041 264672 42 43 5679132
19 191 73621 73621 43 173 1033621 1033621
20 41 90542 346382 44 89 1850792
21 43 102801 215121 45 271 1543041
22 23 60551 277102 46 47 2207482
23 47 138821 138821 47 283

24 73 159222 745212 48 97

25 51 1946 185281 49 197

26 53 439082 50

27 109 301941 o1

For m prime, our computational results are consistent with a conjectural closed formula
for the stable Picard number p,(V) given in Conjecture (5.5)(b):

p2(V) =14 5(m — 1)(3m? — 15m + 20).
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(ITb) We compute the actual Picard numbers of diagonal hypersurface ¥V = V*(c) for
selected twists c¢. Fix m prime, and pick a prime p such that p = 1 (mod m). Choose
a primitive root g modulo p. We will be considering twisting vectors of the form ¢ =
(co, €1, €2, €3, Cq,¢5) where each ¢ is of the form ¢7 with 1 < 7 < m — 1. We observe the
following facts from our computations:

(a) Twists of the form (¢7,1,1,1,1,1), 1 <7 <m—1 are all extreme (these will not be
listed in the tables), and

(b) Twists of the form (¢7,¢%,¢°,1,1,1) give the same Picard number for any j, 1 <
7 <m —1, and similarly, this is true for for twists of the form (¢’,¢?,1,1,1,1).

(1Ib1) Let m = 5, n = 4 and p = 11, and take ¢ = 2. Recall that the stable Picard
number is 401.

c p2(Vi) c p2(Vk) c p2(Vs)
(2,2,1,1,1,1) 145 (8,8,2,1,1,1) 61 (5,8,2,1,1,1) 85
2,2,2,1,1,1) 37 (8,8,4,4,2,1) 77 (5,8,4,2,1,1) 81
(4,2,1,1,1,1) 97 (5,2,1,1,1,1) 65 (5,8,8,2,1,1) 77
(4,2,2,1,1,1) 61 (5,2,2,1,1,1) 85 (5,5,2,1,1,1) 85
(8,2,1,1,1,1) 97 (5,4,1,1,1,1) 97 (5,5,4,4,1,1) 97
(8,4,1,1,1,1) 65 (5,4,2,1,1,1) 85 (5,5,8,1,1,1) 61
(8,4,2,1,1,1) 85 (5,4,4,1,1,1) 61 (5,8,4,2,1,1) 81
(8,4,4,2,1,1) 77 (5,8,1,1,1,1) 97 (5,5,8,8,8,1) 61

(11h2) Let m = 7, n = 4 and p = 29, and take ¢ = 2. In this case, the stable Picard
number is 1861.

c p2(Vk) c p2(Vi) c p2(Vi)
(2,2,1,1,1,1) 541 3,4,1,1,1,1) 169 (6,3,4,2,1,1) 265
(2,2,2,1,1,1) 127 (3,3,2,1,1,1) 235 (6,3,8,4,2,1) 259
(4,2,1,1,1,1) 289 (3,8,2,1,1,1) 253 (6,3,16,2, 1, 1) 283
(4,2,2,1,1,1) 199 (3,16,8,1,1,1) 307 (6,3,3,3,4,1) 313
(4,4,2,2,1,1) 361 (3,16,4,2,1,1) | 259 (6,3,16,8,4,1) 259
8,4,2,1,1,1) 253 (3,16,4,2,2,1) | 265 (6,18,8,1,1,1) 271
(16,8,4,1,1,1) 307 (3,3,8,8,1,1) 361 (6,6,4,4,1,1) 337
(16,8,8,1,1,1) | 271 (6,8,4,2,1,1) 283 (6,16,2,1,1,1) 307

(16,8,8,2,2,1) 247 (6,3,3,3,1,1) 235 (6,6,3,1,1,1) 199




(I1h3) Let m = 13, n = 4 and p = 53, and take g = 2

number is 19921.
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. In this case, the stable Picard

¢ pa(Vk) c p2(Vk) c p2(Vi)
(2,2,1,1,1,1) 4753 (22,11,4,1,1,1) 1693 (16,8,4,4,2,1) 1537
(2,2,2,1,1,1) 685 (4,4,2,2,1, 1) 2593 (32,8,4,2,1,1) 1561
(4,2,1,1,1,1) 1441 (8,4,2,2,1,1) 1525 (32,8,4,4,2,1) 1573
(4,2,2,1,1,1) 1045 (8,4,4,2,1,1) 1453 (32,8,8,4,4,1) 1621
(4,4,2,1,1,1) 1333 (8,4,4,2,2,1) 1549 (32,16,4,2,1,1) 1489
(8,4,2,1,1,1) 1369 (8,8,4,4,1,1) 2545 (32,16,8,2,2,1) 1609
(16,4,2,1,1,1) 1657 (8,8,4,2,1,1) 1501 (32,16,8,8,8,1) 1705
(32,16,16,1,1,1) 1381 (16,4,4,2,1,1) 1477 (11,8,4,2,1,1) 1685
(11,16,8,1,1,1) 1705 (16,4,4,2,2,1) 1429 (11,11,8,4,2,1) 1465
(22,11,1,1,1,1) 769 (16,8,4,2,1,1) 1513
(22,11,2,1,1,1) 1405 (16,8,4,2,2,1) 1597

(I1b4) Let m = 17, n = 4 and p = 103, and take g = 5. The stable Picard number is

50561.
¢ pa(Vi) c p2(Vk) ¢ p2(Vi)
(5,5,1,1,1,1) 11521 | (72,7,22,22,25,1) | 2881 (34,35,7,5,1, 1) 3025
(5,5,5,1,1,1) 1297 (51,22,25,5,1,1) 3009 (34,49,51,72,5,1) | 2045
(25,5,1,1,1,1) 2689 (51,7,7,5,1, 1) 2705 (67,51,35,25,5,1) | 2993
(25,5,5,1,1,1) 1969 (51,35,22,22,1,1) | 2833 | (67,49,51,51,51,1) | 3233
(25,25,5,5,1,1) 5761 (49,25,5,5,5, 1) 3217 (67,67,7,7,7,1) 2545
(22,25,5,5,1,1) 2929 (49,7,25,5,1, 1) 2977 (26,7,5,5,5,1) 2593
(22,22,5,5,1, 1) 5697 (49,72, 35,5,5, 1) 3073 (26,35,7,25, 1, 1) 3073
(22,22,25,25,25,1) 2609 (39,7,22,22,22,1) 3169 (26,26,22,22,1,1) 5761
(7,25,5,1,1,1) 3169 (39,72,22,25,5,1) | 2913 (27,7, 25, 25,25, 1) 2641
(7,25,95,5,1,1) 2865 (92,5,1,1,1,1) 1409 (27,35,7,22,5,1) 2945
(7,22,25,5,5, 1) 3080 | (92,35,22,22,25,1) | 3009 (27,72,25,5,5, 1) 3057
(35,22,25,5,1,1) 3041 (92,51,7,25,5, 1) 2961 (32,51,72,22,5, 1) 2977
(35,7,22,5,5,1) 3105 (48,35,7,22,5,1) 2977 (32,49,5,5,5,1) 3169
(72,22,25,5,5,1) | 3025 | (48,92,39,72,22,1) | 2013 (32,49,7,5,1, 1) 2093
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(Tlc) We compute the actual Picard numbers of diagonal hypersurfaces Vi of dimension
n =4 and degree m where m is composite. We choose k = F, with ¢ = p =1 (mod m),
and pick a primitive root ¢ modulo p. We will consider twists ¢ = (¢, 1, €2, €3, 4, C5)
such that each component ¢; is of the form ¢, 1 < 5 < m — 1. Here we observe the the
following facts from our computations:

(a) For any composite m € {4,6,8,9,10}, there were no extreme twists.

(b) When m =9, the equality p2(Vi) < p2(A%) holds.

(c) When m € {4,6,8,10}, there are twists ¢ for which pa(Vi) > pa(X%).

We are not able to detect any pattern on the actual Picard numbers. Here are some
computational results.

(IHcl) Let (m,n) = (6,4), p =7 and take g = 3. The stable Picard number is 1752.

c p2(Vi) c p2(V) c p2( Vi)
(1,1,1,1,1,1) 591 (4,6,6,6,6,1) | 177 (6,2,1,1,1,1) 258
(3,3,3,3,1, 1) 343 (4,4,6,6,6,1) | 448 (6,6,2,1,1,1) 309
(3,3,3,3,3,1) | 282 4,4,4,2,3,1) | 208 | (6,6,6,1,1,1) 666
(2,3,3,3,3,1) | 229 (5,2,3,3.3,0) | 273 | (4,3,1,1,1,1) 318
(2,2,3,3,3,1) 394 (5,2,2,2,2, 1) 164 (4,4,2,1,1,1) 357
(2,2,2,3,1,1) 230 (5,6,2,2,2,1) | 320 (5,4,2,1,1,1) 216
(2,2,2,2,1,1) 447 (5,6,6,2,1,1) | 472 (5,52,1,1,1) 227
(2,2,2,2,3,1) 190 (5,4,3,3,3,1) | 235 (5,5.6,1,1,1) 430
(6,3,3,3,1,1) 227 (5,4,6,6,2,1) | 328 (5,5,4,1, 1, 1) 231
(6,2,3,3,1,1) 382 (5.4,4,4,3,10) | 259 | (5551,1,1) 342
(6,2,2,3,3,1) 14 (5,5,5,5,1,1) | 351 (2,1,1,1,1,1) 441
(6,6,6,3,1,1) 133 (5,5,5,5,5,1) | 92 (6,1,1,1,1,1) 442
(4,2,2,2,3,1) | 216 33,3011 | 342 | @111, 201
(4,6,6,3,1,1) 502 (2,2,1,1,1,1) | 423 (5,1,1,1,1, 1) 282




(1c2) Let (m,n) = (9,4), p = 19 and take g = 2. The stable Picard number is 8001.
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c p2(Vk) c p2 (Vi) c P2 (Vi)
(1,1,1,1,1,1) 5121 (13,8,4,4,1,1) 813 (7,7,7,7,1,1) 3441
(2,2,2,2,1,1) 1537 (13,16,8,4,2, 1) 891 (14,2,2,2,2, 1) 553
(2,2,2,2,2,1) 121 (13,13,4,4,4,1) 619 (14,7,13,16,8,1) | 877
(4,4,2,2,1, 1) 1089 (13,13,13,13,1,1) | 1489 (14,14,7,16,2,1) | 1009
(4,4,4,4,4,1) 601 (7,8,8,8,1, 1) 2451 (9,4,4,4,1,1) 1039
(8,4,2,2,2,1) 841 (7,13,4,4,1,1) 77 (9,14,7,16,1,1) 901
(8,8,8,8,1,1) 3297 (7,13,13,13,16,1) | 907 (2,2,1,1,1,1) 1489
(8,8,8,8,2,1) 529 (7,7,8,8,8, 1) 2631 (4,2,2,1,1,1) 781
(16,4,4,4,1,1) 745 (7,7,13, 16,4, 1) 925 (4,4,1,1,1,1) 1537
(16,8,4,2,2,1) 883 (7,7,13,13,1,1) 1201 (7,1,1,1,1,1) 3081
(16,16,8,8,1,1) | 1225 (7,7,7,4,1,1) 535 (9,1,1,1,1,1) 121

(1c3) Let (m,n) = (10,4), p = 11 and take g = 2. The stable Picard number is 19882.

¢ p1(Ve) ¢ P1(Vi) c p1(Vk)
(1,1,1,1,1,1) 4061 (3,5,8,4,2,1) 1905 (10, 10,4, 1,1,1) 1057
(2,2,2,2,1,1) 2221 (3,10,10,8,1,1) | 3826 (10,10,10,1,1,1) | 5218
(4,4,4,4,1,1) 3053 (3,7,9,5,8,,1) 2001 (9,10,1,1,1,1) 1258
(8,8,8,8,8, 1) 722 (3,3,3,3,8,1) 1058 (7,5,1,1,1,1) 1082
(5,5,8,4,1,1) 1510 (6,4,4,4,4,1) 1130 (3,3,7,1,1,1) 1178
(5,5,5,2,1, 1) 1462 (6,10,8,4,4, 1) 2626 (6,7,2,1,1,1) 2474
(10,5,4,4,4,1) | 1202 (6,7,10,5,4,1) | 3018 (2,1,1,1,1, 1) 1322
(9,8,8,2,1,1) 2818 (6,3,3,9,10, 1) 1925 (4,1,1,1,1,1) 1241
(9,10,8,4,1,1) | 2001 6,6,6,7,7,1) 1294 8,1,1,1,1,1) 1682
(9,9,5,8,4,1) 1526 (4,4,1,1,1,1) 3261 (5,1,1,1,1,1) 2201
(7,4,2,2,1,1) | 2558 (8,4,1,1,1,1) 1130 (10,1,1,1,1,1) 3522
(7,8,8,8,8,1) | 1082 (8,8,8,1,1,1) 2994 (9,1,1,1,1,1) 1921
(7,7,7,4,1,1) 3306 (5,5,2,1,1,1) 1506 (3,1,1,1,1,1) 2481
(3,8,2,2,1, 1) 2826 (5,8,4,1,1,1) 1478 6,1,1,1,1,1) 1442
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(IT1a) We compute the stable, and the actual Picard numbers of diagonal hypersurfaces
with trivial twist of dimension n = 6 and degree m where 4 < m < 25 choosing k£ = F,
with g = p =1 (mod m).

m | op ] o) | om0 | om | | e pa(V)
| 5 492 1108 15 31 2570051 8970851
5 11 4901 4901 16 17 11328760
6 13 9158 38166 17 103 4649681 4649681
7 29 44731 44731 18 19 50590794
8 17 118400 219872 19 191 7792471 7792471
9 19 190121 343001 20 41 73206212
10 11 190794 1225450 21 43 38846501
11 23 551951 551951 22 23 60330622
12 13 765284 4882180 23 47 18557771 18557771
13 43 1281421 1281421 24 73 226084280
14 29 2719670 8729366 25 51 28377721
26 53 116261546

For m prime, our computational results are consistent with a conjectural closed formula
for the stable Picard number p5(V) described in Conjecture (5.5)(b):

p3(V)=1+5-7(m — 1)(3m® — 27m?* + 86m — 75).

(IIIb) We compute the actual Picard numbers of diagonal hypersurface V = V¥*(c) for
selected twists c. Fix m, and choose a prime p such that p =1 (mod m). Pick a primitive
root g modulo p. As above, we confine ourselves to twists of the form ¢ = (cg, ¢, , ¢7)
where each component runs over elements of the form ¢7, 1 < 7 < m — 1. Again extreme
twists of the form (g7, 1,1,1,1,1,1,1), 1 < § <m — 1 will not be listed in the tables. We
observe that twists of the form (¢’,¢’,1,1,1,1,1,1) give the same Picard number for any
7, 1 <3 <m —1 (and similarly, so do twists of the form (¢7,¢%,¢%,1,1,1,1,1)).

(I1Ib1) Let m = 5, n = 6 and p = 11, and take ¢ = 2. Recall that the stable Picard
number is 4901.
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c pa(Vi) c #3{(Vs) ¢ pa(Vs)
(2,2,1,1,1,1,1,1 1601 (4,4,2,1,1,1,1,1) 901 (4,2,2,2,2,1,1,1) 881
(2,2,2,1,1,1,1,1 601 (8,4,2,1,1,1,1,1) | 1001 (4,4,2,2,1,1,1,1) 1081
(4,2,1,1,1,1,1,1 1201 (2,2,2,2,1,1,1,1) 1361 (4,4,2,2,2,1,1,1) 061
(4,2,2,1,1,1,1,1 801 (4,2,2,2,1,1,1,1) 1061 (5,8,4,2,1,1,1,1) 981

1IIb2) Let m = 7, n = 6 and p = 29, and take ¢ = 2. In this case, the stable Picard
( ) p ; g ;

number is 44731.

c p3(Vk) ¢ pa( Vi) c p3(Vk)
(2,2,1,1,1,1,1,1) 11161 (8,2,2,2,2,1,1,1) 6253 (16,8,4,4,2,1,1,1) 6409
(2,2,2,1,1,1,1,1) 4141 (®,4,2,2,1,1,1,1) 6391 (16,8,4,4,4,1, 1, 1) 6667
(4,2,1,1,1,1,1,1) 7201 (8,4,2,2,2,1,1,1) 6379 (16,8,8,4,2,1,1,1) 6529
(4,2,2,1,1,1,1,1) 5341 (8,4,4,2,1,1,1,1) 6421 (16,16,8,2,1,1,1,1) | 6469
(4,4,2,1,1,1,1,1) 5701 (8,4,4,2,2,1,1, 1) 6403 (16,16,8,2,2,1,1,1) 6313
8,4,2,1,1,1,1,1) 6121 (8,8,2,2,1,1,1,1) 7021 (16,16,8,8,1,1,1,1) 7279
(8,4,4,1,1,1,1,1) 6151 (8,8,2,2,2,1,1,1) 6193 (16,16,8,8,4,1,1,1) | 6241
(16,4,2,1,1,1,1, 1) 6931 (8,8,4,2,1,1,1, 1) 6493 (16,16,16,4,2,1,1,1) | 6721
(16,8,1,1,1,1,1,1) | amm1 (8,8,4,2,2,1,1,1) 6301 (3,8,4,2,1,1,1,1) 6517
(16,8,2,1,1,1,1,1) | 6541 (8,8,4,4,2,1,1,1) 6319 (3,8,4,2,2,1,1,1) 6367
(16,8,4,1,1,1,1,1) | 6901 (16,4,2,2,1,1,1,1) | 6325 (3,8,4,4,2,1,1,1) 6331
(2,2,2,2,1,1,1,1) 9061 (16,4,2,2,2,1,1,1) | 6721 (3,16,4,4,2,1,1,1) 6325
(4,2,2,2,1,1,1,1) 6757 (16,4,4,2,2,1,1,1) | 6217 (3,16,8,8,4,1, 1, 1) 6373
(4,2,2,2,2,1,1,1) 5569 (16,4,4,4,1,1,1,1) | 6757 (3,3,4,4,4,1,1,1) 6175
4,4,2,2,1,1,1,1) 7357 (16,4,4,4,4,1,1,1) | 5569 (3,3,8,8,1,1,1,1) 7357
(4,4,2,2,2,1,1,1) 6175 | (16,8,2,2,1,1,1,1) | 6265 (6,16,8,4,2,1,1,1) 6337
(4,4,4,2,1,1,1,1) 6343 (16,8,4,2,1,1,1,1) | 6277 (6,3,8,8,2,1,1,1) 6409
(4,4,4,2,2,1,1,1) 5851 | (16,8,4,2,2,1,1,1) | 6523 (6,6,6,8,8,1,1, 1) 5851
(8,2,2,2,1,1,1,1) 6613 | (16,8,4,4,1,1,1,1) | 6097 (6,6,6,2,1,1,1,1) 5569
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TABLE III: “BRAUER NUMBERS” OF TWISTED FERMAT MOTIVES

In this section, we shall compute the “Brauer numbers” of selected twisted Fermat
motives for V = V7*(c) with n = 2d > 4. When m is prime (and to some extent when
m is an odd prime power), the norms of Jacobi sums (and hence the Brauer numbers)
are well understood. However, when m is composite, these numbers are still mysterious.
Partially, this is due to the fact that the Iwasawa type congruences are not known for
composite cases. For composite cases, we list some of our computational results.

(I) The case of m prime. Recall the definition of the “Brauer numbers” of twisted
Fermat motives V4: If V4 is not supersingular, the norm of a twisted Jacobi sum is of the

form
d(c,a) B4(Va)-m
¢ )=

where By(Va) is a square which may be divisible by m. If V4 is supersingular, but not
strongly supersingular, the norm is equal to m. In the tables below, we list B4{(V,) for
non-supersingular V4, and the Norm/m for supersingular V4.

NOr[nL/Q(l - qwd(vA)

(a) Let (m,n) = (13,4). Choose ¢ = p = 53. We take several characters {(none super-
singular), and tabulate their Brauer numbers B,;(V,4). The Milne-Lichtenbaum formula is
known to hold in this case if the twist is extreme, as in the first column of the table;they
are squares up to powers of m in general. Note that we get squares in all cases.

a\c (17,1,1,1,1,1) (15,22,11,32,4,1) | (2,2,2,2,1,1) (4,2,2,2,2,1)
(1,2,3,5,6,9) 5712 1 16632 79?
(1,2,4,5,7,7) 5472 212 60072 12492
(1,1,3,4,6,11) 54 1 1 532
(1,1,2,2,3,4) 64732 29632 3132 6473°
(1,1,1,3,9,11) 8837 79% . 4672 79% - 4672 53%. 11177
(1,1,1,5,8,10) 259992 89692 2332 5712
(1,1,1,1,3,6) 1312 1312 288072 2332
(1,1,1,1,1,8) 1812 . 3377 3892 . 10932 1312 . 88672 3892 . 10932
(1,2,5,7,12,12) 1 54 1 1
(1,4,4,6,12,12) 1312 5477 1812 1812

(1,5,10,12,12,12) 54 79% 36 RE
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(b) Let (m,n) = (7,6). Choose ¢ = p = 29. We take several characters (none supersin-
gular) and twists

c; =(3,1,1,1,1,1,1,1) C2=(4,4,2,2,1,],1,1)
C3 = (834,43212,1:151) Cq = (636:31 16,1, 1a1:1)

In each case, we tabulate the Brauer number B3(V4). Again, these numbers are known
to be squares for extreme twists (first column); they are squares up to powers of m in
general. Note that we get squares in all cases.

a\c c c2 c3 c4
(1,2,4,4,6,6,6,6) ! 74 38 RE
(1,3,3,3,3,3,6,6) 2232 1 72 832
(1,4,4,4,5,5,6,6) 36 1 74 26
(1,1,1,1,4,4,4,5) 379? 1972 379° 1972
(1,1,1,1,2,2,2,4) 2932 21432 1132 26 . 832

(IT) the cases m composite. For composite m, we do not have the Iwasawa congru-
ence for twisted Jacobi sums, though when m is a power of an odd prime and is greater
than 3, there seems to be some pattern. We know the denominator of each norm is of the
form ¢*) for any r, 0 < » < n. In the table below we list the numbers

d(c,a)
q )

for twisted Fermat motives V4 of even dimension n = 2d. Again observe that all primes
of exact exponent 2 occuring in the tables are of the form 41 modulo some proper divisor

dof m.
(a) Let (m,n) = (9,4). Choose ¢ = p = 19.

d)NOI‘]TIL/Q(] -

a\c (17,1,1,1,1,1) (15,3,11,13,4,1) | (2,2,2,2,1,1) (4,2,2,2,2,1)
(1,3,8,8,8,8) 3 3-73% 3.19? 3-19°
(1,5,6,8,8,8) 3 33 3 3
(1,2,4,4,8,8) 3.372 3192 3.17? 3172
(1,1,1,1,1,4) 3.56 3.712 3892 b
(1,1,1,1,7,7) 3-179° 3.1792 31072 35
(1,1,2,2,6,6) 3.2332 3172 3. 712 3.28.17°
(1,2,6,6,6,6) 3 3. 532 33 3.37%
(3,3,3,3,3,3) 33 .55 33 .58 33 .55 39
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(b) Let (m,n) = (20,4). Choose g =p =1 (mod 20), e.g., p = 41.

a\c (17,1,1,1,1,1) (15,3,11,13,4,1) | (2,2,2,2,1,1) (4,3,2,2,2,1)
(1,3,19,19,19,19) 792 24 41? 612
(1,8,14,19,19,19) 2412 212 79° 192
(1,4,18,19,19,19) 4612 592 | 592
(1,5,17,19,19,19) 4192 54 24. 57 24.101°
(1,11,11,19,19,19) 3592 3792 3792 3592
(1,3,3,15,19,19) 1 24 412 24
(1,2,8,11,19,19) 461° 28 612 212
(1,4,5,12,19,19) 1 24.5°2 24. 52 51
(1,3,9,9,19,19) 792 2%.5%.19° 5°.61° 612
(4,4,4,4,12,12) 52.314 52 . 594 52 52 . 591
(4,4,4,5,8,15) 52 24 114 38
(4,4,5,5,10,12) 28 . 192 612 412 41*
(4,5,5,5,5, 16) 6192 14392 52 .419° 1439*
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TABLE IV: GLOBAL “BRAUER NUMBERS” OF V = V(c)

Finally we are ready to compute the global “Brauer numbers” of diagonal hypersurfaces
V = V7 (c).

(I) The case of prime degree

(a) Let (m,n) = (5,4). We choose ¢ = p = 11 and a twist ¢ = (¢, €1, €2, €3, €4, C5).
We compute the “Brauer numbers” of all twisted Fermat motives for V = V?(c). There
are altogether 820 characters a € Qli. For the trivial twist ¢ = 1, they are divided
into 5 non-isomorphic types of motives, all of dimension 4. The isomorphism types are
represented by the characters [1,3,4,4,4,4], [1,1,1,4,4,4], [1,1,2,3,4,4], [1,2,2,2,4,4],
and [1,1,1,1,3,3]. We know that pz(t}) = 401

[f we introduce a non-trivial twist ¢, this is no longer true. In fact, each equivalence
class is further divided into subclasses. We compute the “Brauer numbers” for Fermat
motives with twists ¢; = (2,1,1,1,1,1). In this case, the non-isomorphic subclasses are
distinguished simply by their ¢g components, which we list in the table.

Under the condition that p = 1 (mod 5), all motives are ordinary; the second and
third motives are ordinary and supersingular. These are distinguished by an asterisk in
the tables. For completeness, we have also included the strongly supersingular motives,
which can be recognized by the fact that they have 0 in the column for the “Brauer
number” (because the norm is zero in that case).

The table below lists the “Brauer numbers” B M 4) and B*(V,4).

number a w(2) g muitiplicity B*(M,) B*(Vy)
la (1,3,4,4,4,4) 1 1 20 52 24
1b (1,3,4,4,4,4) 1 3 20 52 1
le (1,3,4,4,4,4) 1 4 80 52 1
2a +(1,1,1,4,4,4) 0 1 20 0 1
2b x(1,1,1,4,4,4) 0 4 20 0 1
3a «(1,1,2,3,4,4) 0 1 120 0 1
3b «(1,1,2,3,4,4) 0 9 60 0 I
3¢ «(1,1,2,3,4,4) 0 3 60 0 ]
3d «(1,1,2,3,4,4) 0 4 120 0 I
4a (1,2,2,2,4,4) 1 1 40 5° ]
4b (1,2,2,2,4,4) 1 2 120 5 I
4c (1,2,2,2,4,4) 1 4 80 52 1
5a (1,1,1,1,3,3) 2 1 40 52 94
5b (1,1,1,1,3,3) 2 3 20 52 192
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In this case, the global “Brauer numbers” are:

B*( &) = 5% and B*(V,) = 22%19%.

(b) Now choose ¢ = p =11 and let the twist be ¢ = (2,2,1,1,1,1). The corresponding
Picard numbers po(Vi) is 145. The isomorphism classes are now divided into subclasses
corresponding to the first two entries ap,a,. We list the “Brauer nubmers” B2(V,).

number a w(2) ag, a1 multiplicily B2(Va)
la (1,3,4,4,4,4) 1 1,3 4 !
16 (1,3,4,4,4,4) 1 1,4 16 52
le (1,3,4,4,4,4) 1 3,1 4 1
1d (1,3,4,4,4,4) 1 3,4 16 1
le (1,3,4,4,4,4) 1 4,1 16 5°
if (1,3,4,4,4,4) 1 4,3 16 1
lg (1,3,4,4,4,4) 1 4,4 48 1
2a «(1,1,1,4,4,4) 0 1,1 8 1
2b *(1,1,1,4,4,4) 0 1,4 12 0
2 ¥(1,1,1,4,4,4) 0 4,1 12 0
2d *(1,1,1,4,4,4) 0 4,4 8 ]
3a *(1,1,2,3,4,4) 0 1,1 24 I
3b *(1, 1,2,3,4,4) 0 1,2 24 r
3¢ x(1,1,2,3,4,4) 0 1,3 24 I
3d +(1,1,2,3,4,4) 0 1,4 48 0
e +(1,1,2,3,4,4) 0 2,1 24 I
3f «(1,1,2,3,4,4) 0 2,3 12 0
3g ¥(1,1,2,3,4,4) 0 2,4 24 [




number a w(2) ag, aj multiplicity B%(Va)
3h *(1,1,2,3,4,4) 0 3,1 24 1
3 x(1,1,2,3,4,4) 0 3,2 12 0
3j *(1,1,2,3,4,4) 0 3,4 24 1
3k «(1,1,2,3,4,4) 0 4,1 48 0
31 ¥(1,1,2,3,4,4) 0 4,2 24 1
3m x(1,1,2,3,4,4) 0 4,3 24 1
3n x(1,1,2,3,4,4) 0 4,4 24 1
4a (1,2,2,2,4,4) | 1,2 24 24
4b (1,2,2,2,4,4) | 1,4 16 52
dc (1,2,2,2,4,4) 1 2,1 24 24
4d (1,2,2,2,4,4) 1 2,2 48 1
4e (1,2,2,2,4,4) 1 2,4 48 1
4f (1,2,2,2,4,4) 1 4,1 16 52
4g (1,2,2,2,4,4) 1 4,2 48 I
4h (1,2,2,2,4,4) 1 4,4 16 24
5a (1,1,1,1,3,3) 2 1,1 24 I
5b (1,1,1,1,3,3) 2 1,3 16 34
5c¢ (1,1,1,1,3,3) 2 3,1 16 34
5d (1,1,1,1,3,3) 2 3,3 4 24

The global “Brauer number” is

BE(V};) — 227231285128.
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(c) Let (m,n)
(3,1,1,1,1,1).

= (7,4) Here we choose ¢ = p = 29 and twists ¢ = 1 and ¢ =
We compute the “Brauer numbers” of all twisted Fermat motives for
V = V](c), and the global “Brauer number” B*(V;). There are altogether 6,666 char-
acters a € AL For the trivial twist ¢ = 1, one needs to consider 14 representatives of
isomorphism classes of Fermat motives. If we have the extreme twist ¢ as above, each iso-
morphism class is further divided into subclasses which are distinguished by their ag entry..
We compute the “Brauer numbers” for the Fermat motives and for the twisted Fermat
motives with twist ¢ = (3,1,1,1,1,1). Again with our choice of p with p = 1 (mod 7),
all motives are ordinary; motives which are ordinary and supersingular are indicated an

asterisk.
number a w(2) ag multiplicity B%(M4) B(V4)
la (1,3,6,6,6,6) 2 1 30 72 412
16 (1,3,6,6,6,6) 2 3 30 7° 412
lc (1,3,6,6,6,6) 2 6 120 72 28
2a x(1,1,1,6,6,6) 0 1 30 0 1
2 «(1,1,1,6,6,6) 0 6 30 0 1
3a (1,4,5,6,6,6) 1 1 120 72 ]
3b (1,4,5,6,6,6) 1 4 120 72 26
3¢ (1,4,5,6,6,6) 1 5 120 72 132
3d (1,4,5,6,6,6) 1 6 360 72 1
da (1,1,2,5,6,6) 0 1 180 0 !
4b «(1,1,2,5,6,6) 0 2 90 0 1
4c (1,1,2,5,6,6) 0 5 90 0 1
4d «(1,1,2,5,6,6) 0 6 180 0 1
5a «(1,1,3,4,6,6) 0 1 180 0 1
5b +(1,1,3,4,6,6) 0 3 90 0 1
He x(1,1,3,4,6,6) 0 4 90 0 1
5d «(1,1,3,4,6,6) 0 6 180 0 1
6a (1,2,2,4,6,6) 1 1 180 72 1
6b (1,2,2,4,6,6) 1 2 360 7 |
6e (1,2,2,4,6,6) 1 4 180 72 132
6d (1,2,2,4,6,6) 1 6 360 72 26




number a w(2) g multiplicity B*(M,) B%(V4)
Ta (1,2,3,3,6,6) 1 1 180 7? 1
7b (1,2,3,3,6,6) 1 2 180 72 28
Tc (1,2,3,3,6,6) 1 3 360 7° 1
7d (1,2,3,3,6,6) 1 6 360 7* 132
8a (1,5,5,5,6,6) 2 1 60 72 1
8b (1,5,5,5,6,6) 2 5 180 7 26
8¢ (1,5,5,5,6,6) 2 6 120 7? 412
9a (1,1,1,1,1,2) 3 1 30 74 832
9b (1,1,1,1,1,2) 3 2 6 T 432
10a (1,1,1,1,5,5) 3 1 60 7° 832
106 (1,1,1,1,5,5) 3 5 30 72 132
Ila (1,1,1,2,4,5) 2 1 360 7% 26
116 (1,1,1,2,4,5) 2 2 120 7* 132
lle (1,1,1,2,4,5) 2 4 120 7° 412
11d (1,1,1,2,4,5) 2 5 120 72 43*
12a (1,1,1,3,3,5) 2 1 180 74 412
126 (1,1,1,3,3,5) 2 3 120 74 1
12¢ (1,1,1,3,3,5) 2 5 60 74 132
13a (1,1,2,2,4,4) 3 1 60 212.72 71°
136 (1,1,2,2,4,4) 3 2 60 212.72 712
13¢ (1,1,2,2,4,4) 3 4 60 212. 72 712
l4a (1,2,3,4,5,6) 0 1 120 0 1
14b x(1,2,3,4,5,6) 0 2 120 0 1
14c *(1,2,3,4,5,06) 0 3 120 0 1
l4d x(1,2,3,4,5,6) 0 4 120 0 1
14e (1,2,3,4,5,6) 0 5 120 0 1
14f #(1,2,3,4,5,6) 0 6 120 0 1

We obtain the global “Brauer numbers”

82({1;‘:) — 2‘2160710332

and

B?(vk) —_ 2792013174041960432527136083180
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(d) Let (m,n) = (7,6). We choose p = 29, and compute the global “Brauer number”
of V = V{(c) over Fy for ¢ = 1 and for ¢ = (2,1,1,1,1,1,1,1). We compute “Brauer
numbers” of all the twisted Fermat motives in each case. The notations in the tables :
w(3) and B*(V,) are as defined in Theorem (6.2). Supersingular motives are indicated
by an asterisk.

a w(3) o multiplicity B3(M,) B3(Va)

la (1,5,6,6,6,6,6,6) 3 1 C42 7 26
16 (1,5,6,6,6,6,6,6) 3 5 42 7? 58
le (1,5,6,6,6,6,6,6) 3 6 252 7 13% . 29%
2a (1,1,3,6,6,6,6,6) 2 1 252 72 412
26 (1,1,3,6,6,6,6,6) 2 3 126 7° 432
2¢ (1,1,3,6,6,6,6,6) 2 6 630 72 1
3a (1,2,2,6,6,6,6,6) 3 1 126 72 3492
3b (1,2,2,6,6,6,6,6) 3 2 252 7? 83?
3c (1,2,2,6,6,6,6,6) 3 6 630 7* 2817
4a %(1,1,1,1,6,6,6,6) 0 I 105 0 I
4b x(1,1,1,1,6,6,6,6) 0 6 105 0 I
5a (1,1,4,5,6,6,6,6) I I 1260 7* 1
5b (1,1,4,5,6,6,6,6) 1 4 630 72 132
5¢ (1,1,4,5,6,6,6,6) 1 5 630 72 1
5d (1,1,4,5,6,6,6,6) 1 6 2520 72 26
Ga (1,2,3,5,6,6,6,6) 2 ! 1260 72 412
6b (1,2,3,5,6,6,6,6) 2 2 1260 7? 26
6c (1,2,3,5,6,6,6,6) 2 3 1260 72 432
6d (1,2,3,5,6,6,6,6) 2 5 1260 72 412
Be (1,2,3,5,6,6,6,6) 2 6 5040 72 1
Ta (1,2,4,4,6,6,6,6) 2 l 630 74 26
7b (1,2,4,4,6,6,6,6) 2 2 630 74 412
7c (1,2,4,4,6,6,6,6) 2 4 1260 74 36
7d (1,2,4,4,6,6,6,06) 2 6 2520 74 1




a w(3) agp multiplicity B3 (My) B3(V,4)
8a (1,3,3,4,6,6,6,6) 2 1 630 7° 412
8b (1,3,3,4,6,6,6,6) 2 3 1260 7 432
8¢ (1,3,3,4,6,6,6,6) 2 4 630 7 132
8d (1,3,3,4,6,6,6,6) 2 6 2520 72 1
9a x(1,1,1,2,5,6,6,6) 0 1 1260 0 1
9b «(1,1,1,2,5,6,6,6) 0 2 420 0 !
9c *(1,1,1,2,5,6,6,6) 0 5 420 0 l
9d *(1,1,1,2,5,6,6,6) 0 6 1260 0 I
10a ¥(1,1,1,3,4,6,6,6) 0 1 1260 0 I
108 +(1,1,1,3,4,6,6,6) 0 3 420 0 !
10¢ *(1,1,1,3,4,6,6,6) 0 4 420 0 |
10d %(1,1,1,3,4,6,6,6) 0 6 1260 0 I
lla (1,1,2,2,4,6,6,6) 1 1 2520 7? [
114 (1,1,2,2,4,6,6,6) 1 2 2520 72 26
11l¢ (1,1,2,2,4,6,6,6) 1 4 1260 72 I
1ld (1,1,2,2,4,6,6,6) 1 6 3780 72 132
12a (1,1,2,3,3,6,6,6) 1 1 2520 7° 1
126 (1,1,2,3,3,6,6,6) 1 2 1260 7° 132
12¢ (1,1,2,3,3,6,6,6) 1 3 2520 72 26
12d (1,1,2,3,3,6,6,6) 1 6 3780 72 |
13a (1,1,5,5,5,6,6,6) 2 1 840 72 132
13b (1,1,5,5,5,6,6,6) 2 5 1260 7° I
13¢ (1,1,5,5,5,6,6,6) 2 6 1260 7? 432
l4a (1,2,2,2,3,6,6,6) 2 1 840 74 132
14b (1,2,2,2,3,6,6,6) 2 2 2520 74 |
14¢ (1,2,2,2,3,6,6,6) 2 3 840 74 412
14d (1,2,2,2,3,6,6,6) 2 6 2520 74 3¢
15a (1,2,4,5,5,6,6,6) 1 1 2520 72 |
156 (1,2,4,5,5,6,6,6) 1 2 2520 72 1
15¢ (1,2,4,5,5,6,6,6) 1 4 2520 72 132
15d (1,2,4,5,5,6,6,6) 1 5 5040 72 I
15¢ (1,2,4,5,5,6,6,6) 1 6 7560 72 26
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a w(3) ap multiplicity | B3(M.a) B3(Va)
16a (1,3,3,5,5,6,6,6) 3 1 1260 212.72 712
166 (1,3,3,5,5,6,6,6) 3 3 2520 212.72 132
16¢ (1,3,3,5,5,6,6,6) 3 5 2520 212. 72 132
16d (1,3,3,5,5,6,6,6) 3 6 3780 21272 132
17a (1,3,4,4,5,6,6,6) 1 1 2520 7° 1
17h (1,3,4,4,5,6,6,6) ! 3 2520 72 1
17c (1,3,4,4,5,6,6,6) 1 4 5040 72 132
17d (1,3,4,4,5,6,6,6) 1 5 2520 7° 1
17e (1,3,4,4,5,6,6,6) 1 6 7560 72 26
18a (1,4,4,4,4,6,6,6) 3 1 210 72 134
18b (1,4,4,4,4,6,6,6) 3 4 840 7% 2812
18¢ (1,4,4,4,4,6,6,6) 3 6 630 72 832
19a %(1,1,2,2,5,5,6,6) 0 1 1890 0 1
195 %(1,1,2,2,5,5,6,6) 0 2 1890 0 1
19¢ *(1,1,2,2,5,5,6,6) 0 5 1890 0 1
19d %(1,1,2,2,5,5,6,6) 0 6 1890 0 1
20a x(1,1,2,3,4,5,6,6) 0 1 7560 0 1
20b %(1,1,2,3,4,5,6,6) 0 2 3780 0 1
20¢ %(1,1,2,3,4,5,6,6) 0 3 3780 0 1
20d %(1,1,2,3,4,5,6,6) 0 4 3780 0 1
20e %(1,1,2,3,4,5,6,6) 0 5 3780 0 1
20f %(1,1,2,3,4,5,6,6) 0 6 7560 0 ]
2la (1,1,2,4,4,4,6,6) 2 1 2520 72 412
21b (1,1,2,4,4,4,6,6) 2 2 1260 72 432
21c¢ (1,1,2,4,4,4,6,6) 2 4 3780 7? 1
21d (1,1,2,4,4,4,6,6) 2 6 2520 7° 26
22a (1,2,2,3,3,5,6,6) I 1 3780 72 1
226 (1,2,2,3,3,5,6,6) I 2 7560 72 132
22¢ (1,2,2,3,3,5,6,6) 1 3 7560 7° 26
22d (1,2,2,3,3,5,6,6) 1 5 3780 7° 1
2%e (1,2,2,3,3,5,6,6) 1 6 7560 7% I




a w(3) ag multiplicity | B*(M,) B3(Va4)
23a (1, 3,3,6,6) 3 1 126 7 832
23b (1,3,3,3,3,3,6,6) 3 3 630 7? 132 . 29°
23¢ (1,3,3,3,3,3,6,6) 3 6 252 72 5%
24q (1,3,4,5,5,5,6,6) 2 1 2520 72 132
24b (1,3,4,5,5,5,6,6) 2 3 2520 7° 412
24c (1,3,4,5,5,5,6,6) 2 4 2520 7 26
24d (1,3,4,5,5,5,6,6) 2 5 7560 72 1
24e (1,3,4,5,5,5,6,6) 2 6 5040 7° 432
25a (1,4,4,4,5,5,6,0) 2 1 1260 74 1
25b (1,4,4,4,5,5,6,6) 2 4 3780 7 1
25¢ (1,4,4,4,5,5,6,6) 2 5 2520 7 36
25d (1,4,4,4,5,5,6,6) 2 6 2520 7 412
26 (1,1,1,1,1,1,3,5) 4 1 252 1972 9532
266 (1,1,1,1,1,1,3,5) 4 3 42 1972 6317
26¢ (1,1,1,1,1,1,3,5) 4 5 42 72.1972 13%2.712
27a (1,1,1,1,1,1,4,4) 4 1 126 72.97° 432
27b (1,1,1,1,1,1,4,4) 4 4 42 72,972 41% . 432
28a (1,1,1,1,1,2,3,4) 3 1 1260 7? 13% . 292
28b (1,1,1,1,1,2,3,4) 3 2 252 7° 55
28¢ (1,1,1,1,1,2,3,4) 3 3 252 7 432
28d (1,1,1,1,1,2,3,4) 3 4 252 72 2232
29a (1,1,1,1,1,3,3,3) 3 1 210 26.7° 43*
206 (1,1,1,1,1,3,3,3) 3 3 126 26.72 1
30a (1,1,1,1,2,2,2,4) 4 1 840 72 . 417 26 .832
306 (1,1,1,1,2,2,2,4) 4 2 630 72412 4612
30¢ (1,1,1,1,2,2,2,4) 4 4 210 72412 35.132
3la (1,1,1,1,2,2,3,3) 2 1 1260 7? 132
31b (1,1,1,1,2,2,3,3) 2 2 630 7° 212
31c (1,1,1,1,2,2,3,3) 2 3 630 72 132
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a w(3) ag multiplicity { B3(M,) B3(Va)
32a (1,1,1,1,3,4,5,5) 3 I 2520 72 2817
32b (1,1,1,1,3,4,5,5) 3 3 630 72 212
32¢ (1,1,1,1,3,4,5,5) 3 q 630 72 132
32d (1,1,1,1,3,4,5,5) 3 5 1260 72 832
33a (1,1,1,1,4,4,4,5) 3 1 840 72132 97°
33b (1,1,1,1,4,4,4,5) 3 4 630 72137 1
33c (1,1,1,1,4,4,4,5) 3 5 210 72.132 3792

Observe that the prime factors of B3(V4) with exception of 2, 3 and 5 are all of the

form 7k 4 1.

Putting together all these motivic “Brauer numbers” counted with correct multiplicities,
we obtain, as pointed out in the main text,

4 BY(V,) =2157220 325200 52208 | 353056, 9g3024 , 4116576 _ q14392 71736,
834144 . 9711‘20 , 993336 . 2815320 . 349168 . 379280 . 461840 . 63156 . 953336
(II) The case of composite degree
Finally, we do a few computations in the composite case. Since we do not, for m

composite, have precise information as to the m-part of the norm, we prefer to record in
each case the value of

3(0,3))

pt 7
There are two cases to consider. First, if m = m] is an odd prime power, the Iwasawa
congruence is known to hold, and therefore contributes to the norm an odd power of the
prime mg. We can observe this below, in the case m = 9.

If, on the other hand, m is not an odd prime power, things seem to be much less clear.
In particular, we list, below, the results for m = 6, n = 4. In this case, we see that
the norm is sometimes divisible by 2, sometimes by 3, sometimes by both, sometimes by
neither. The prime 2 always occurs to an even power, while 3, when it occurs, appears
with an odd power.

p*@ Norm(1 —

(a) Let m =9, n =2, p=19. In this case, the twist ¢ = (4,1,1,1) is extreme, in the
sense that p(Vi) = 1. The following table records the values of

d(c,a)
P

) Norm(1 —

)

for the trivial twist ¢, = 1 and for ¢ = (4,1,1,1), with a running through a list of
representatives of the isomorphism classes of twisted Fermat motives. As usual, we break
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the nine isomorphism classes of Fermat motives into subclasses determined by the first
coefficient, ap. Supersingular motives are marked by an asterisk.

a w(l ag multiplicity ci=1 ca
la x(1,1,8,8) 0 1 9 0 3
1% +(1,1,8,8) 0 8 9 0 3
2a (1,1,1,6) 2 1 18 26. 33 3.172
2b (1,1,1,6) 2 6 6 26. 43 33
3a (1,1,2,5) 2 1 36 37 3
3b (1,1,2,5) 2 2 18 37 3
3c (1,1,2,5) p) 5 18 37 3.19°
4a (1,1,3,4) I 1 36 33 25.3
4b (1,1,3,4) 1 3 18 33 38
4c (1,1,3,4) 1 4 18 33 3
S5a (1,2,3,3) 1 1 18 35 3
5b (1,2,3,3) 1 2 18 3° 3172
5¢ (1,2,3,3) 1 3 36 35 33
Ba *(1,2,7,8) 0 | 18 0 3
6b x(1,2,7,8) 0 2 18 0 3
6c +(1,2,7,8) 0 7 18 0 3
6d +(1,2,7,8) 0 8 18 0 3
Ta *(1,3,6,8) 0 ) 18 0 3
7b *(1,3,6,8) 0 3 18 0 32
Te %(1,3,6,8) 0 6 18 0 33
7d x(1,3,6,8) 0 8 18 0 3
8a x(1,4,6,7) 0 1 12 33 3
8b «(1,4,6,7) 0 4 12 33 3
8¢ £(1,4,6,7) 0 6 12 33 33
8d «(1,4,6,7) 0 7 12 33 3
9a «(3,3,6,6) 0 3 3 0 33
96 (3,3,6,6) 0 6 3 0 33
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(b) Let m =9, n =6, p=19. The following table records the values of

fore; =1 and e; = (4,1,1,1,1,1,1,1) and a running through a list of representatives of
the 1somorphism classes of twisted Fermat motives. As usual, we break the 129 isomor-
phism classes of Fermat motives into subclasses determined by the first coefficient, «ao.

p*® Norm(1

3 d(c,a)

)

p°

Supersingular motives are marked by an asterisk.

a w(3) ao multiplicity ;=1 o
la (1,5,8,8,8,8,8,8) 3 1 42 43 . 109? 3.71°
1b (1,5,8,8,8,8,8,8) 3 5 42 3%.109% 3532
le (1,5,8,8,8,8,8,8) 3 8 252 1092 20.3
2a (1,1,3,8,8,8,8,8) 2 I 252 26 . 33 3192
2b (1,1,3,8,8,8,8,8) 2 3 126 25 .33 33
2 (1,1,3,8,8,8,8,8) 2 8 630 26.33 3.17?
3a (1,2,2,8,8,8,8,8) 3 1 126 33172 3
3b (1,2,2,8,8,8,8,8) 3 2 252 33172 26.3.17?
3c (1,2,2,8,8,8,8,8) 3 8 630 33172 3.17°
4a (16788888) 3 | 252 3? 3. 89?
4b (1,6,7,8,8,8,8,8) 3 6 252 32 3% .17
4dc (1,6,7,8,8,8,8,8) 3 7 252 33 3.5
4d (1,6,7,8,8,8,8,8) 3 8 1260 32 3. 532
5a *(1,1,1,1,8,8,8,8) 0 1 105 0 3
56 +(1,1,1,1,8,8,8,8) 0 8 105 0 3
6a (1,1,4,7,8,8,8,8) 2 1 1260 37 3.37%
6b (1,1,4,7,8,8,8,8) 2 4 630 37 3.192
6c (1,1,4,7,8,8,8,8) 2 7 630 37 3
6d (1,1,4,7,8,8,8,8) 2 8 2520 37 3




a w(3) ag multiplicity c;=1 Ca
Ta (1,1,5,6,8,8,8,8) 1 1 1260 33 3
7b (1,1,5,6,8,8,8,8) 1 5 630 3% 3
7c (1,1,5,6,8,8,8,8) 1 6 630 33 35
7d (1,1 5,6,8,8,8,8) 1 8 2520 33 26.3
8a (1,2,3,7,8,8,8,8) 2 1 1260 26 . g3 3.192
8b (1,2,3,7,8,8,8,8) 2 2 1260 2633 3. 732
8¢ (1,2,3,7,8,8,8,8) 2 3 1260 26 .33 33
8d (1,2,3,7,8,8,8,8) 2 7 1260 26.33 3.37°
8e (1,2,3,7,8,8,8,8) 2 8 5040 26 .33 3. 172
9a (1,2,4,6,8,8,8,8) 3 1 1260 33.717 3. 1072
0b (1,2,4,6,8,8,8,8) 3 2 1260 33.712 3172
9¢ (1,2,4,6,8,8,8,8) 3 4 1260 3%. 712 3
od (1,2,4,6,8,8,8,8) 3 6 1260 33.717 RE
e (1,2,4,6,8,8,8,8) 3 8 5040 3%.712 3. 2332
10« (1,2,5,5,8,8,8,8) 1 1 630 33 3.172
105 (1,2,5,5,8,8,8,8) 1 2 630 33 3
10c (1,2,5,5,8,8,8,8) 1 5 1260 33 25.3
10d (1,2,5,5,8,8,8,8) 1 8 2520 33 3
lla (1,3,3,6,8,8,8,8) 2 1 630 26.33 3-19°
116 (1,3,3,6,8,8,8,8) 2 3 1260 20.33 33
llc (1,3,3,6,8,8,8,8) 2 6 630 26.33 37
11d (1,3,3,6,8,8,8,8) 2 8 2520 2038 3172
12a (1,3,4,5,8,8,8,8) 2 1 1260 20.38 3- 19
126 (1,3,4,5,8,8,8,8) 2 3 1260 26.32 33
12¢ (1,3,4,5,8,8,8,8) 2 4 1260 20.33 3
12d (1,3,4,5,8,8,8,8) 2 5 1260 26.33 3
12e (1,3,4,5,8,8,8,8) 2 8 5040 26 .33 3.17?
13a (1,4,4,4,8,8,8,8) 4 1 210 26 .39 3.1272
136 (1,4,4,4,8,8,8,8) 4 q 630 26.39 172 . 71°
13¢ (1,4,4,4,8,8,8,8) 4 8 840 26.3° 39192
l4a (1,7,7,7,8,8,8,8) 4 1 210 26.39 1632
14b (1,7,7 7,8,8,8,8) 4 7 630 26.3° 1.9192
14¢ 1,7,7,7,8,8,8,8) 4 8 840 26 .39 172.712

11
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a w(3) ag multiplicity | ¢; =1 cs
15a ¥(1,1,1,2,7,8,8,8) 0 | 1260 0 3
156 x(1,1,1,2,7,8,8,8) 0 2 420 0 3
15¢ ¥(1,1,1,2,7,8,8,8) 0 7 420 0 3
15d «(1,1,1,2,7,8,8,8) 0 8 1260 0 3
16a «(1,1,1,3,6,8,8,8) 0 1 1260 0 3
16b +(1,1,1,3,6,8,8,8) 0 3 420 0 33
16¢ «(1,1,1,3,6,8,8,8) 0 6 420 0 33
16d +(1,1,1,3,6,8,8,8) 0 8 1260 0 3
17a «(1,1,1,4,5,8,8,8) 0 ! 1260 0 3
175 £(1,1,1,4,5,8,8,8) 0 4 420 0 3
17¢ +(1,1,1,4,5,8,8,8) 0 5 420 0 3
17d +(1,1,1,4,5,8,8,8) 0 8 1260 0 3
18a (1,1,2,2,6,8,8,8) 1 L 2520 3% 3.17¢
186 (1,1,2,2,6,8,8,8) 1 2 2520 33 2.3
18¢ (1,1,2,2,6,8,8,8) 1 6 1260 33 35
184 (1,1,2,2,6,8,8,8) 1 8 3780 33 3
19a «(1,1,2,3,5,8,8,8) 0 1 5040 33 3
195 «(1,1,2,3,5,8,8,8) 0 2 2520 33 3
19¢ «(1,1,2,3,5,8,8,8) 0 3 2520 3 37
19d £(1,1,2,3,5,8,8,8) 0 5 2520 33 3
19¢ ¥(1,1,2,3,5,8,8,8) 0 8 7560 33 3
20a (1,1,2,4,4,8,8,8) 2 1 2520 37 3.17°
206 (1,1,2,4,4,8,8,8) 2 2 1260 37 3192
20c (1,1,2,4,4,8,8,8) 2 4 2520 37 3
20d (1,1,2,4,4,8,8,8) 2 8 3780 37 3
2la (1,1,3,3,4,8,8,8) 1 1 2520 35 28.3
21b (1,1,3,3,4,8,8,8) 1 3 2520 38 39
2le (1,1,3,3,4,8,8,8) i 4 1260 35 3
21d (1,1,3,3,4,8,8,8) 1 8 3780 33 3-17°




a w(3) ap multiplicity ci=1 Ca
22a (1,1,5,7,7,8,8,8) 2 1 2520 37 3.73°
22b (1,1,5,7,7,8,8,8) 2 5 1260 37 3
22¢ (1,1,5,7,7,8,8,8) 2 7 2520 37 3
22d (1,1,5,7,7,8,8,8) 2 8 3780 37 3.19?
23a (1,1,6,6,7,8,8,8) 1 1 2520 3s 3
23b (1,1,6,6,7,8,8,8) 1 6 2520 38 32
23c¢ (1,1,6,6,7,8,8,8) 1 7 1260 35 3172
23d (1,1,6,6,7,8,8,8) 1 8 3780 38 3
24a (1,2,2,2,5,8,8,8) 1 1 840 33 3
24b (1,2,2,2,5,8,8,8) 1 2 2520 33 3
24¢ (1,2,2,2,5,8,8,8) 1 5 840 33 3
24d (1,2,2,2,5,8,8,8) 1 8 2520 33 25.3
25a (1,2,2,3,4,8,8,8) 2 1 2520 33 3
256 (1,2,2,3,4,8,8,8) 2 2 5040 33 3.372
25¢ (1,2,2,3,4,8,8,8) 2 3 2520 33 26 . 33
25d (1,2,2,3,4,8,8,8) 2 4 2520 33 3.732
25e (1,2,2,3,4,8,8,8) 2 8 7560 33 3. 192
26a (1,2,3,3,3,8,8,8) 1 1 840 33 3
266 | (1,2.3,3,3,8,8,8) 1 2 840 33 3
26¢ (1,2,3,3,3,8,8,8) 1 3 2520 33 33
26d (1,2,3,3,3,8,8,8) 1 8 2520 32 3.
27a (1,2,4,7,7,8,8,8) 2 1 2520 37 3372
27b (1,2,4,7,7,8,8,8) 2 2 2520 37 3.17°
27c (1,2,4,7,7,8,8,8) 2 4 2520 37 3.19?
27d (1,2,4,7,7,8,8,8) 2 7 5040 37 3
27e (1,2,4,7,7,8,8,8) 2 8 7560 37 3
28a (1,2,5,6,7,8,8,8) 1 1 5040 33 3
28b (1,2,5,6,7,8,8,8) 1 2 5040 33 3
28¢ (1,2,5,6,7,8,8,8) 1 5 5040 33 3
28d (1,2,5,6,7,8,8,8) 1 6 5040 33 38
28e (1,2,5,6,7,8,8,8) 1 7 5040 39 3
28f (1,2,5,6,7,8,8,8) 1 8 15120 32 26.3
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a w(3) ap multiplicity cg=1 co
29a (1,2,6,6,6,8,8,8) 2 1 840 33 3.19?
20b (1,2,6,6,6,8,8,8) 2 2 840 33 3532
29¢ (1,2,6,6,6,8,8,8) 2 6 2520 33 35
29d (1,2,6,6,6,8,8,8) 2 8 2520 33 3
30a (1,3,3,7,7,8,8,8) 3 1 1260 35 3.172
300 (1,3,3,7,7,8,8,8) 3 3 2520 RE 33.172
30c (1,3,3,7,7,8,8,8) 3 7 2520 35 26.3.17?
30d (1,3,3,7,7,8,8,8) 3 8 1780 35 3-107?
3la (1,3,4,6,7,8,8,8) 2 1 5040 37 3372
31b (1,3,4,6,7,8,8,8) 2 3 5040 37 2 .33
3¢ (1,3,4,6,7,8,8,8) 2 4 5040 37 3.197
31d (1,3,4,6,7,8,8,8) 2 6 5040 37 33
3le (1,3,4,6,7,8,8,8) 2 7 5040 37 3
31f (1,3,4,6,7,8,8,8) 2 8 15120 37 3
32a (1,3,5,5,7,8,8,8) 2 1 2520 33 3-17%
326 (1,3,5,5,7,8,8,8) 2 3 2520 33 28 . 33
32¢ (1,3,5,5,7,8,8,8) 2 5 5040 33 3192
32d (1,3,5,5,7,8,8,8) 2 7 2520 33 3.73%
32e (1,3,5,5,7,8,8,8) 2 8 7560 33 3-37%
334 (1,3,5,6,6,8,8,8) 1 1 2520 33 3
33b (1,3,5,6,6,8,8,8) 1 3 2520 33 33
33¢ (1,3,5,6,6,8,8,8) 1 5 2520 33 3
33d (1,3,5,6,6,8,8,8) 1 6 5040 33 3%
33e (1,3,5,6,6,8,8,8) 1 8 7560 33 26.3
3da (1,4,4,5,7,8,8,8) 2 1 2520 37 3372
34b (1,4,4,5,7,8,8,8) 2 4 5040 37 3.19°
34c (1,4,4,5,7,8,8,8) 2 5 2520 37 3.737
34d (1,4,4,5,7,8,8,8) 2 7 2520 37 3
3de (1,4,4,5,7,8,8,8) 2 8 7560 37 3




a w(3) ap multiplicity cg=1 Co
35a (1,4,4,6,6,8,8,8) 3 1 1260 35 31792
35b (1,4,4,6,6,8,8,8) 3 4 2520 38 3.107?
35¢ (1,4,4,6,6,8,8,8) 3 6 2520 35 33172
35d (1,4,4,6,6,8,8,8) 3 8 3780 35 26.3.17°
36a (1,4,5,5,6,8,8,8) 1 1 2520 33 3
366 (1,4,5,5,6,8,8,8) 1 4 2520 33 3.17%
36¢ (1,4,5,5,6,8,8,8) 1 5 5040 33 3
36d (1,4,5,5,6,8,8,8) 1 6 2520 33 35
36e (1,4,5,5,6,8,8,8) 1 8 7560 33 26.3
37a (1,5,5,5,5,8,8,8) 3 1 210 33172 3-107?
376 (1,5,5,5,5,8,8,8) 3 5 840 3. 72 3172
37c (1,5,5,5,5,8,8,8) 3 8 630 33172 26.3. 172
38a (1,1,2,2,2,3,8,8) 2 1 2520 26 . 33 3
38b (1,1,2,2,2,3,8,8) 2 2 3780 26.33 3. 172
38¢ (1,1,2,2,2,3,8,8) 2 3 1260 26 . 33 33
38d (1,1,2,2,2,3,8,8) 2 8 2520 26.33 3
39a *(1,1,2,2,7,7,8,8) 0 1 1890 0 3
396 £(1,1,2,2,7,7,8,8) 0 2 1890 0 3
39¢ £(1,1,2,2,7,7,8,8) 0 7 1890 0 3
39d +(1,1,2,2,7,7,8,8) 0 8 1890 0 3
40a x(1,1,2,3,6,7,8,8) 0 1 7560 0 3
406 «(1,1,2,3,6,7,8,8) 0 2 3780 0 3
40¢ (1,1,2,3,6,7,8,8) 0 3 3780 0 33
40d %(1,1,2,3,6,7,8,8) 0 6 3780 0 33
40e «(1,1,2,3,6,7,8,8) 0 7 3780 0 3
40f «(1,1,2,3,6,7,8,8) 0 8 7560 0 3
4la ¥(1,1,2,4,5,7,8,8) 0 1 7560 0 3
41b x(1,1,2,4,5,7,8,8) 0 2 3780 0 3
4le #(1,1,2,4,5,7,8,8) 0 4 3780 0 3
41d *(1,1,2,4,5,7,8,8) 0 5 3780 0 3
d4le x(1,1,2,4,5,7,8,8) 0 7 3780 0 3
41f *(1,1,2,4,5,7,8,8) 0 8 7560 0 3
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a w(3) ao multiplicity =1 cy
42a (1,1,2,4,6,6,8,8) 1 1 7560 35 3
426 (1,1,2,4,6,6,8,8) i 2 3780 3° 3
42¢ (1,1,2,4,6,6,8,8) I 4 3780 35 3.17?
42d (1,1,2,4,6,6,8,8) | 6 7560 3% 33
42¢ (1,1,2,4,6,6,8,8) 1 8 7560 35 3
43a (1,1,2,5,5,6,8,8) 1 1 7560 33 3
43b (1,1,2,5,5,6,8,8) 1 2 3780 33 3
43¢ (1,1,2,5,5,6,8,8) 1 5 7560 33 2.3
43d (1,1,2,5,5,6,8,8) 1 6 3780 33 RE
43¢ (1,1,2,5,5,6,8,8) 1 8 7560 3? 3
44a x(1,1,3,3,6,6,8,8) 0 1 1890 0 3
44b (1,1,3,3,6,6,8,8) 0 3 1890 0 33
44¢ %(1,1,3,3,6,6,8,8) 0 6 1890 0 33
44d %(1,1,3,3,6,6,8,8) 0 8 1890 0 3
45a (1,1,3,4,5,6,8,8) 0 1 7560 0 3
456 %(1,1,3,4,5,6,8,8) 0 3 3780 0 33
45¢ (1,1,3,4,5,6,8,8) 0 4 3780 0 3
45d (1,1,3,4,5,6,8,8) 0 5 3780 0 3
45e %(1,1,3,4,5,6,8,8) 0 6 3780 0 33
45f .| =(1,1,3,4,5,6,8,8) 0 8 7560 0 3
46a (1,1,3,5,5,5,8,8) 2 1 2520 26 .33 3372
46b (1,1,8,5,5,5,8,8) 2 3 1260 98 . 3% 33
46¢ (1,1,3,5,5,5,8,8) 2 5 3780 26 . 33 3-17°
46d (1,1,3,5,5,5,8,8) 2 8 2520 26 .33 3.732
47a (1,2,2,2,2,2,8,8) 3 1 126 331092 358
47b (1,2,2,2,2,2,8,8) 3 2 630 33 . 109° 26.3
47c (1,2,2,2,2,2,8,8) 3 8 252 33.109? | 3.53°%
48a «(1,2,2,3,5,7,8,8) 0 1 7560 33 3
48b +(1,2,2,3,5,7,8,8) 0 2 15120 33 3
48¢c ¥(1,2,2,3,5,7,8,8) 0 3 7560 33 33
48d x(1,2,2,3,5,7,8,8) 0 5 7560 33 3
48e x(1,2,2,3,5,7,8,8) 0 7 7560 33
A8f ¥(1,2,2,3,5,7,8,8) 0 8 15120 38 3




a w(3) ag multiplicity cp=1 Co
49a (1,2,2,3,6,6,8,8) 1 1 3780 33 3.17%
49b (1,2,2,3,6,6,8,8) 1 2 7560 33 26.3
49¢ (1,2,2,3,6,6,8,8) 1 3 3780 33 33
49d (1,2,2,3,6,6,8,8) 1 6 7560 33 35
49¢ (1,2,2,3,6,6,8,8) 1 8 7560 33 3
50a (1,2,2,4,4,7,8,8) 2 1 3780 37 3172
50b (1,2,2,4,4,7,8,8) 2 2 7560 37 3.192
50¢ (1,2,2,4,4,7,8,8) 2 4 7560 37 3
50d (1,2,2,4,4,7,8,8) 2 7 3780 37 3-732
50e (1,2,2,4,4,7,8,8) 2 8 7560 37 3
5la (1,2,2,4,5,6,8,8) 1 1 7560 33 3172
51b (1,2,2,4,5,6,8,8) 1 2 15120 33 20.3
5lc (1,2,2,4,5,6,8,8) 1 4 7560 33 3
51d (1,2,2,4,5,6,8,8) 1 5 7560 33 3
51e (1,2,2,4,5,6,8,8) 1 6 7560 33 3°
51f (1,2,2,4,5,6,8,8) L 8 15120 33 3
52a (1,2,2,5,5,5,8,8) l 1 1260 33 3
52b (1,2,2,5,5,5,8,8) [ 2 2520 33 26.3
52¢ (1,2,2,5,5,5,8,8) 1 5 3780 33 3
52d (1,2,2,5,5,5,8, 8) 1 8 2520 33 3
53a (1,2,3,3,4,7,8,8) 1 1 7560 35 26.3
53b (1,2,3,3,4,7,8,8) l 2 7560 3% 3
53c (1,2,3,3,4,7,8,8) 1 3 15120 RE 33
53d (1,2,3,3,4,7,8,8) | 4 7560 38 3
53¢ (1,2,3,3,4,7,8,8) 1 7 7560 RE 3
53f (1,2,3,3,4,7,8,8) 1 8 15120 35 3.17°
54a %(1,2,3,3,5,6,8,8) 0 1 7560 33 3
54b x(1,2,3,3,5,6,8,8) 0 2 7560 33 3
5de x(1,2,3,3,5,6,8,8) 0 3 15120 33 33
54d x(1,2,3,3,5,6,8,8) 0 5 7560 33 3
54e %(1,2,3,3,5,6,8,8) 0 6 7560 33 0
54f *(1,2,3,3,5,6,8,8) 0 8 15120 33 3
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a w(3) ag multiplicity cp=1 €y
55a (1,2,3,4,4,6,8,8) 2 1 7560 37 3172
556 | (1,2,3,4,4,6,8,8) 2 2 7560 37 3-192
55¢ (1,2,3,4,4,6,8,8) 2 3 7560 37 33
55d (1,2,3,4,4,6,8,8) 2 4 15120 37 3
55e (1,2,3,4,4,6,8,8) 6 7560 37 28.3%
55 f (1,2,3,4,4,6,8,8) 2 8 15120 37 3
56a (1,2,6,6,7,7,8,8) 1 1 3780 35 3
56b (1,2,6,6,7,7,8,8) ! 2 3780 3° 26.3
56¢ (1,2,6,6,7,7,8,8) 1 6 7560 38 33
56d (1,2,6,6,7,7,8,8) 1 7 7560 3% 3-17°
56e (1,2,6,6,7,7,8,8) 1 8 7560 3% 3
57a (1,3,3,3,3,7,8,8) 2 1 630 35 3532
57b (1,3,3,3,3,7,8,8) 2 3 2520 35 3%.17%
57c (1,3,3,3,3,7,8,8) 2 7 630 35 3.37%
57d (1,3,3,3,3,7,8,8) 2 8 1260 38 3-19?
584 (1,3,3,3,4,6,8,8) 1 1 2520 35 26.3
586 (1,3,3,3,4,6,8,8) 1 3 7560 3% 33
58¢ (1,3,3,3,4,6,8,8) ! 4 2520 3® 3
58d (1,3,3,3,4,6,8,8) l 6 2520 35 33
58e (1,3,3,3,4,6,8,8) 1 8 5040 35 3-17°
5% (1,3,3,3,5,5,8,8) 1 1 1260 33 26.3
596 (1,3,3,3,5,5,8,8) 1 3 3780 33 33
59¢ (1,3,3,3,5,5,8,8) 1 5 2520 38 3
59d (1,3,3,3,5,5,8,8) 1 8 2520 33 3
60a (1,3,4,4,4,4,8,8) 3 1 630 33 26.3
60b (1,3,4,4,4,4,8,8) 3 3 630 33 35.17°
60c (1,3,4,4,4,4,8,8) 3 4 2520 33 3.532
60d (1,3,4,4,4,4,8,8) 3 8 1260 3° 3.5°




a w(3) to multiplicity cg=1 c2
8la (1,3,4,7,7,7,8,8) 3 1 2520 33.712 | 28.3.172
61b (1,3,4,7,7,7,8,8) 3 3 2520 33.712 35
6lc (1,3,4,7,7,7,8,8) 3 4 2520 33712 3.17?
61d (1,3,4,7,7,7,8,8) 3 7 7560 33.712 3. 2332
6le (1,3,4,7,7,7,8,8) 3 8 5040 33.712 3
62a (1,3,5,6,7,7,8,8) 2 1 7560 37 3.732
626 (1,3,5,6,7,7,8,8) 2 3 7560 37 33
62c (1,8,5,6,7,7,8,8) 2 5 7560 37 3
62d (1,3,5,6,7,7,8,8) 2 6 7560 37 26 .33
62e (1,3,5,6,7,7,8,8) 2 7 15120 37 3
62f (1,3,5,6,7,7,8,8) 2 8 15120 37 3192
63a (1,3,6,6,6,7,8,8) 1 1 2520 35 3
636 (1,3,6,6,6,7,8,8) 1 3 2520 38 33
63c (1,3,6,6,6,7,8,8) 1 6 7560 3 33
63d (1,3,6,6,6,7,8,8) 1 7 2520 35 3177
63¢ (1,3,6,6,6,7,8,8) 1 8 5040 35 3
64a (1,4,4,6,7,7,8,8) 2 1 3780 33 3
64b (1,4,4,6,7,7,8,8) 2 4 7560 33 3.372
64c (1,4,4,6,7,7,8,8) 2 6 3780 33 26 .33
64d (1,4,4,6,7,7,8,8) 2 7 7560 33 3192
64e (1,4,4,6,7,7,8,8) 2 8 7560 32 3. 732
65 (1,4,5,6,6,7,8,8) j 1 7560 3° 3
655 (1,4,5,6,6,7,8,8) 1 4 7560 35 3
65¢ (1,4,5,6,6,7,8,8) 1 5 7560 38 3
65d (1,4,5,6,6,7,8,8) 1 6 15120 3% 33
65¢ (1,4,5,6,6,7,8,8) 1 7 7560 35 3172
65/ (1,4,5,6,6,7,8,8) 1 8 15120 35 3
66a (1,4,6,6,6,6,8,8) 2 1 630 35 3.37?
666 (1,4,6,6,6,6,8,8) 2 4 630 3% 3.19°
66c (1,4,6,6,6,6,8,8) 2 6 2520 38 33. 172
66d (1,4,6,6,6,6,8,8) 2 8 1260 38 33717
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a w(3) ag multiplicity e =1 Ca
67a (1,5,5,5,6,7,8,8) 3 1 2520 33.712 31792
67b (1,5,5,5,6,7,8,8) 3 5 7560 3%.712 32337
67c (1,5,5,5,6,7,8,8) 3 6 2520 33712 35
67d (1,5,5,5,6,7,8,8) 3 7 2520 3. 712 3
67e (1,5,5,5,6,7,8,8) 3 8 5040 33.712 3.172
68a (1,5,5,6,6,6,8,8) 2 1 1260 33 3.37¢
68b (1,5,5,6,6,6,8,8) 2 5 2520 33 3
68¢ (1,5,5,6,6,6,8,8) 2 6 3780 33 3°
68d (1,5,5,6,6,6,8,8) 2 8 2520 33 3.532
6%a (1,1,1,1,1,1,1,2) 5 1 42 34,9332 3. 20542
69b (1,1,1,1,1,1,1,2) 5 2 6 33 . 2332 3.2393?
70a (1,1,1,1,1,1,5,7) 5 1 252 3% . 1632 3. 8632
700 (1,1,1,1,1,1,5,7) 5 5 42 3%.163° 3-6029°
70¢ (1,1,1,1,1,1,5,7) 5 7 42 33 . 1632 31721272
Tla (1,1,1,1,1,1,6,6) 4 1 126 21233 3.37°
716 (1,1,1,1,1,1,6,6) 4 6 42 212 .33 37172
T2a (1,1,1,1,1,2,4,7) 3 1 1260 3% . 1092 26.3
72b (1,1,1,1,1,2,4,7) 3 2 252 331092 3.89?
T2c (1,1,1,1,1,2,4,7) 3 4 252 33 . 1092 3.53°
72d (1,1,1,1,1,2,4,7) 3 7 252 33 . 1092 3-532
73a (1,1,1,1,1,2,5,6) 4 1 1260 33 . 892 3.374
736 (1,1,1,1,1,2,5,6) 4 2 252 33 . 89? 3-73%
T3¢ (1,1,1,1,1,2,5,6) 4 5 252 33.89° 31092
73d (1,1,1,1,1,2,5,6) 4 6 252 33 . 892 212 .33
T4a (1,1,1,1,1,3,3,7) 4 1 630 33172 3. 3592
74b (1,1,1,1,1,3,3,7) 4 3 252 3. 172 332712
Tde (1,1,1,1,1,3,3,7) 4 7 126 33172 33072
75a (1,1,1,1,1,3,4,6) 3 1 1260 33.109? 2.3
75b (1,1,1,1,1,3,4,6) 3 3 252 33 . 1092 34
75¢ (1,1,1,1,1,3,4,6) 3 4 252 33 . 1092 3. 532
75d (1,1,1,1,1,3,4,6) 3 6 252 33 . 1092 35172




a w(3) ap multiplicity c=1 Co

76a (1,1,1,1,1,3,5,5) 5 1 630 33.3792 26.3.1072
76b (1,1,1,1,1,3,5,5) 5 3 126 33.3792 35 . 4332
76¢ (1,1,1,1,1,3,5,5) 5 5 252 3%.3792 34332
77a (1,1,1,1,2,2,4,6) 4 1 2520 331792 3.127%
77h (1,1,1,1,2,2,4,6) 4 2 1260 331792 31632
77c (1,1,1,1,2,2,4,6) 4 4 630 3%.179° 3-17°.712
77d (1,1,1,1,2,2,4,6) 4 6 630 33 . 1797 33.372
78a (1,1,1,1,2,2,5,5) 4 1 1260 37. 172 3.17%.192
78b (1,1,1,1,2,2,5,5) 4 2 630 37172 3. 1092
78¢ (1,1,1,1,2,2,5,5) 4 5 630 37.17? 3.17%. 532
79a (1,1,1,1,2,3,3,6) 3 1 2520 33 3.53°
79b (1,1,1,1,2,3,3,6) 3 2 630 33 3.5°
79¢ (1,1,1,1,2,3,3,6) 3 3 1260 33 3517
79d (1,1,1,1,2,3,3,6) 3 6 630 33 33.109?
80a (1,1,1,1,2,3,4,5) 3 1 5040 33 3532
806 (1,1,1,1,2,3,4,5) 3 2 1260 33 355
80c (1,1,1,1,2,3,4,5) 3 3 1260 33 3% 172
80d (1,1,1,1,2,3,4,5) 3 4 1260 33 3532
80¢ (1,1,1,1,2,3,4,5) 3 5 1260 33 3-71°
8la (1,1,1,1,2,4,4,4) 3 1 840 33 3. 269°
816 (1,1,1,1,2,4,4,4) 3 2 210 33 3172
8lc (1,1,1,1,2,4,4,4) 3 4 630 33 31632
82a (1,1,1,1,3,3,3,5) 4 1 840 33,9712 3.233°
82b (1,1,1,1,3,3,3,5) 4 3 630 332717 35372
82¢ (1,1,1,1,3,3,3,5) 4 5 210 33. 2712 3.37¢
83a (1,1,1,1,3,3,4,4) 2 1 1260 33 3.17%
83b (1,1,1,1,3,3,4,4) 2 3 630 33 39192
83c (1,1,1,1,3,3,4,4) 2 4 630 33 3.19?
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a w(3) ap multiplicity cy = cy
84a (1,1,1,1,3,6,7,7) 3 1 2520 3.7 3172
84b (1,1,1,1,3,6,7,7) 3 3 630 33172 33.712
84c (1,1,1,1,3,6,7,7) 3 6 630 33.172 35
84d (1,1,1,1,3,6,7,7) 3 7 1260 33172 26.3.172
85a (1,1,1,1,4,5,7,7) 3 1 2520 33172 3172
85b (1,1,1,1,4,5,7,7) 3 4 630 33172 3. 2332
85¢ (1,1,1,1,4,5,7,7) 3 5 630 33.172 31792
85d (1,1,1,1,4,5,7,7) 3 7 1260 33172 26.3.172
86a (1,1,1,1,4,6,6,7) 2 1 2520 33 3.73°
86b (1,1,1,1,4,6,6,7) 2 | 630 34 3172
86¢ (1,1,1,1,4,6,6,7) 2 6 1260 33 37
86d (1,1,1,1,4,6,6,7) 2 7 630 33 3
87a (1,1,1,1,5,5,6,7) 4 1 2520 33. 372 3
876 (1,1,1,1,5,5,6,7) 4 5 1260 33.372 3. 2512
87¢c (1,1,1,1,5,5,6,7) 4 6 630 33.37¢ 1792
87d (1,1,1,1,5,5,6,7) 4 7 630 33372 31632
88a (1,1,1,1,5,6,6,6) 3 1 840 33 3172
88b (1,1,1,1,5,6,6,6) 3 5 210 33 3. 2697
88¢ (1,1,1,1,5,6,6,6) 3 6 630 33 33 . 532
89a (1,1,1,2,2,2,3,6) 4 1 2520 AR 172 . 712
89b (1,1,1,2,2,2,3,6) 4 2 2520 26 .3¢ 3.919?
89¢ (1,1,1,2,2,2,3,6) 4 3 840 26.3° - 377
89d (1,1,1,2,2,2,3,6) 4 6 840 2639 33 . 1792
90a (1,1,1,2,2,2,4,5) 4 1 2520 268 .39 3172712
90b (1,1,1,2,2,2,4,5) 4 2 2520 26 .3° 1.9192
90c (1,1,1,2,2,2,4,5) 4 4 840 26 . 3¢ 32517
90d (1,1,1,2,2,2,4,5) 4 5 840 26.39 3
9la (1,1,1,2,2,3,3,5) 3 1 3780 35. 172 3. 532
91b (1,1,1,2,2,3,3,5) 3 2 2520 35172 3-71°
91c (1,1,1,2,2,3,3,5) 3 3 2520 35172 33 . 1092
9ld (1,1,1,2,2,3,3,5) 3 5 1260 35172 3 - 892




a w(3) o multiplicity c;=1 cy
92a (1,1,1,2,2,3,4,4) 3 1 3780 33.532 3-163°
92b (1,1,1,2,2,3,4,4) 3 2 2520 33 . 532 3. 892
92¢ (1,1,1,2,2,3,4,4) 3 3 1260 33 . 532 3
92d (1,1,1,2,2,3,4,4) 3 4 2520 33 . 532 26.3
93a (1,1,1,2,3,3,3,4) 2 1 2520 33.19° 3192
93b (1,1,1,2,3,3,3,4) 2 2 840 33. 192 3.17°
93¢ (1,1,1,2,3,3,3,4) 2 3 2520 33.192 39
93d (1,1,1,2,3,3,3,4) 2 4 840 33. 192 3172
94a (1,1,1,2,3,6,6,7) 2 1 7560 26 .33 3.17°
94b (1,1,1,2,3,6,6,7) 2 2 2520 26 .33 3.37?
94c (1,1,1,2,3,6,6,7) 2 3 2520 26.33 37
94d (1,1,1,2,3,6,6,7) 2 6 5040 26 .33 33
94e (1,1,1,2,3,6,6,7) 2 7 2520 26 .38 3-732
95a (1,1,1,2,4,5,6,7) 2 1 15120 25.33 3172
95b (1,1,1,2,4,5,6,7) 2 2 5040 26 .33 3.37*
95¢ (1,1,1,2,4,5,6,7) 2 q 5040 26.33 3
95d (1,1,1,2,4,5,6,7) 2 5 5040 26.33 3
95e (1,1,1,2,4,5,6,7) 2 6 5040 26 . 33 33
95 f (1,1,1,2,4,5,6,7) 2 7 5040 26 .38 3732
960 (1,1,1,2,4,6,6,6) 3 1 2520 3317t 3.1792
966 (1,1,1,2,4,6,6,6) 3 2 840 33172 3172
96¢ (1,1,1,2,4,6,6,6) 3 4 840 33172 | 3.107?
96d (1,1,1,2,4,6,6,6) 3 6 2520 3172 3.712
97a (1,1,1,2,5,5,6,6) 3 1 3780 3° 31792
a7h (1,1,1,2,5,5,6,6) 3 2 1260 30 32692
97¢ (1,1,1,2,5,5,6,6) 3 5 2520 3% 26.3
97d {1,1,1,2,5,5,6,6) 3 6 2520 35 32
98a (1,1,1,3,3,3,3,3) 3 1 126 33. 172 3.307°
98b (1,1,1,3,3,3,3,3) 3 3 210 33172 | 28.37
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a w(3) ag multiplicity ¢ = cy
99a (1,1,1,3,3,4,7,7) 2 1 3780 3172 3.532
996 (1,1,1,3,3,4,7,7) 2 3 2520 33 . 172 32
99¢ (1,1,1,3,3,4,7,7) 2 4 1260 33.17? 3
99d (1,1,1,3,3,4,7,7) 2 7 2520 33172 3.372
100a (1,1,1,3,3,5,6,7) 3 1 7560 33712 3.2332
1006 (1,1,1,3,3,5,6,7) 3 3 5040 =710 3°
100¢ (1,1,1,3,3,5,6,7) 3 5 2520 33. 712 3
100d (1,1,1,3,3,5,6,7) 3 6 2520 33.712 33072
100e (1,1,1,3,3,5,6,7) 3 7 2520 33.712 3.17°
101a (1,1,1,3,3,6,6,6) 2 1 1260 26.33 3172
101b (1,1,1,3,3,6,6,6) 2 3 840 2633 37
101¢ (1,1,1,3,3,6,6,0) 2 6 1260 26 .33 RE
102a (1,1,1,3,4,4,6,7) ] 1 7560 33 3
1026 (1,1,1,3,4,4,6,7) L 3 2520 33 33
102¢ (1,1,1,3,4,4,6,7) 1 4 5040 33 26.3
102d (1,1,1,3,4,4,6,7) 1 6 2520 33 35
102e (1,1,1,3,4,4,6,7) 1 7 2520 33 3
103a (1,1,1,3,4,5,6,6) 2 1 7560 26.33 3.17?
1036 (1,1,1,3,4,5,6,6) 2 3 2520 98 . 33 37
103¢ (1,1,1,3,4,5,6,06) 2 4 2520 26.33 3
103d (1,1,1,3,4,5,6,06) 2 5 2520 26.33 3
103e (1,1,1,3,4,5,6,6) 2 6 5040 28.33 33
104a (1,1,1,4,4,4,6,6) 2 1 1260 26.33 3
1045 (1,1,1,4,4,4,6,6) 2 4 1260 26.33 3377
104¢ (1,1, 1,4,4,4,6,6) 2 6 840 26.33 37
105a (1,1,2,2,3,3,3,3) 2 1 630 35 3-172
1056 (1,1,2,2,3,3,3,3) 2 2 630 38 3
105¢ (1,1,2,2,3,3,3,3) 2 3 1260 3% 33
106a (1,1,2,2,3,6,6,6) 3 1 2520 35 3-107?
1066 (1,1,2,2,3,6,6,06) 3 9 2520 38 25.3.172
106¢ (1,1,2,2,3,6,6,6) 3 3 1260 35 33.71°
106d (1,1,2,2,3,6,6,6) 3 6 3780 35 33172




a w(3) ag multiplicity c1=1 ca
107a (1,1,2,2,4,5,6,6) 3 1 7560 3% 3-107*
1075 (1,1,2,2,4,5,6,6) 3 2 7560 38 26.3.17*
107¢ (1,1,2,2,4,5,6,6) 3 4 3780 38 3
107d (1,1,2,2,4,5,6,6) 3 5 3780 3% 3.2332
107e (1,1,2,2,4,5,6,6) 3 6 7560 3% 33.172
108a (1,1,2,3,3,4,6,7) 1 1 15120 43 26.3
1085 (1,1,2,3,3,4,6,7) 1 2 7560 33 3
108¢ (1,1,2,3,3,4,6,7) 1 3 15120 33 3%
108d (1,1,2,3,3,4,6,7) 1 4 7560 33 3
108e (1,1,2,3,3,4,6,7) 1 6 7560 33 33
108f (1,1,2,3,3,4,6,7) 1 7 7560 33 3
109a (1,1,2,3,3,5,6,6) 2 I 7560 37 3
1094 (1,1,2,3,3,5,6,06) 2 2 3780 37 3
109¢ (1,1,2,3,3,5,6,6) 2 3 7560 37 33
109d (1,1,2,3,3,5,6,06) 2 5 3780 37 3.192
109e (1,1,2,3,3,5,6,6) 2 6 7560 37 26 . 33
110a (1,1,2,3,4,4,6,6) 2 1 7560 33 3377
110b (1,1,2,3,4,4,6,6) 2 2 3780 33 3.732
110¢ (1,1,2,3,4,4,6,6) 2 3 3780 33 37
110d (1,1,2,3,4,4,6,6) 2 4 7560 RE 3.19?
110¢ (1,1,2,3,4,4,6,6) 2 6 7560 33 26 .38
111la (1,1,3,3,3,3,6,7) p) 1 1260 33 3
1116 (1,1,3,3,3,3,6,7) 2 3 2520 3 35
11lc (1,1,3,3,3,3,6,7) 2 6 630 33 33172
111d (1,1,3,3,3,3,6,7) 2 7 630 33 3.53°
112a (1,1,3,3,3,4,5,7) 2 1 5040 33 3
112b (1,1,3,3,3,4,5,7) 2 3 7560 33 35
112¢ (1,1,3,3,3,4,5,7) 2 4 2520 33 3.37°
112d (1,1,%,3,3,4,5,7) 2 5 2520 33 26.3
112e (1,1,3,3,3,4,5,7) 2 7 2520 33 3-532

129



130

a w(3) aop multiplicity cp=1 c2
113a (1,1,3,3,3,4,6,6) | 1 2520 33 26.3
1135 (1,1,3,3,3,4,6,6) 1 3 3780 32 35
113¢ (1,1,3,3,3,4,6,6) 1 4 1260 33 3
113d (1,1,3,3,3,4,6,6) 1 6 2520 32 33
1l4a (1,1,3,6,6,6,6,7) 1 1 1260 3P 3
114b (1,1,3,6,6,6,6,7) 1 3 630 33 35
114c¢ (1,1,3,6,6,6,6,7) 1 6 2520 33 32
114d (1,1,3,6,6,6,6,7) 1 7 630 33
115a x(1,1,4,4,6,6,7,7) 0 ] 1260 33 3
1156 +(1,1,4,4,6,6,7,7) 0 4 1260 33 3
115¢ %(1,1,4,4,6,6,7,7) 0 6 1260 33 0
115d *(1,1,4,4,6,6,7,7) 0 7 1260 33 3
116a (1,1,4,5,6,6,6,7) 1 1 5040 33 3
1166 (1,1,4,5,6,6,6,7) 1 4 2520 32 3.17?
116¢ (1,1,4,5,6,6,6,7) 1 5 2520 33 3
116d (1,1,4,5,6,6,6,7) 1 6 7560 33 33
116e (1,1,4,5,6,6,6,7) 1 7 2520 33 3
117a (1,1,4,6,6,6,6,6) 2 1 252 33.17? 3372
1176 (1,1,4,6,6,6,6,6) 2 4 126 33172 3-19°
117¢ (1,1,4,6,6,6,6,6) 2 6 630 33.17% 33
118a (1,2,3,3,3,3,4,8) 2 1 1260 35 3
1186 (1,2,3,3,3,3,4,8) 2 2 1260 35 3.19?
118¢ (1,2,3,3,3,3,4,8) 2 3 5040 3° 33 .72
118d (1,2,3,3,3,3,4,8) 2 4 1260 3° 3.37°
118e (1,2,3,3,3,3,4,8) 2 8 1260 35 26.3
119a (1,2,3,3,3,3,6,6) 1 1 630 3% 3
1196 (1,2,3,3,3,3,6,6) 1 2 630 35 3172
119¢ (1,2,3,3,3,3,6,6) 1 3 2520 38 33
119d (1,2,3,3,3,3,6,6) 1 6 1260 35 32




a w(3) dg multiplicity =1 c2
120a (1,2,3,3,3,4,5,6) 1 1 5040 35 3
1206 (1,2,3,3,3,4,5,6) 1 2 5040 35 3172
120c (1,2,3,3,3,4,5,6) 1 3 15120 35 33
120d (1,2,3,3,3,4,5,6) t 4 5040 30 3
120e (1,2,3,3,3,4,5,6) 1 5 5040 30 3
120f (1,2,3,3,3,4,5,6) 1 6 5040 3° 33
121a *(1,2,3,3,6,6,7,8) 0 1 3780 0 3
1216 x(1,2,3,3,6,6,7,8) 0 2 3780 0 3
121¢ %(1,2,3,3,6,6,7,8) 0 3 7560 0 33
121d %(1,2,3,3,6,6,7,8) 0 6 7560 0 33
121e x(1,2,3,3,6,6,7,8) 0 7 3780 0 3
121f x(1,2,3,3,6,6,7,8) 0 8 3780 0 3
122a %(1,2,3,4,5,6,7,8) 0 1 5040 0 3
1226 %(1,2,3,4,5,6,7,8) 0 2 5040 0 3
122¢ *(1,2,3,4,5,6,7,8) 0 3 5040 0 33
122d %(1,2,3,4,5,6,7,8) 0 4 5040 0 3
122e (1,2,3,4,5,6,7,8) 0 5 5040 0 3
1225 (1,2,3,4,5,6,7,8) 0 6 5040 0 33
122¢ x(1,2,3,4,5,6,7,8) 0 7 5040 0 3
122h (1,2,3,4,5,6,7,8) 0 5040 0 3
123a (1,2,3,6,6,6,6,6) 2 1 252 3° 3.19%
1230 (1,2,3,6,6,6,6,6) 2 2 252 3% 3-372
123c¢ (1,2,3,6,6,6,6,6) 2 3 252 35 33
123d (1,2,3,6,6,6,6,6) 2 6 1260 RE 33.17?
124a (1,3,3,3,3,3,3,8) 3 ] 42 3° 3.73%
124b (1,3,3,3,3,3,3 8) 3 3 252 3° 26.33
124¢ (1,3, 3,3,3,8) 3 8 42 39 3.17°
1254 (1,3,3,3,3,3,4,7) 3 1 84 33. 56 3.732
1256 (1,3,3,3,3,3,4,7) 3 3 420 33 .58 39
125¢ (1,3,3,3,3,3,4,7) 3 4 84 33 .56 3.732
125d (1,3,3,3,3,3,4,7) 3 7 84 33 .58 3.73°
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a w(3) g multiplicity ci=1 co
126a (1,3,3,3,6,6,6,8) 0 1 420 0 3
126 %(1,3,3,3,6,6,6,8) 0 3 1260 0 33
126¢ +(1,3,3,3,6,6,6,8) 0 6 1260 0 33
126d (1,3,3,4,6,6,6,8) 0 8 420 0 3
127a (1,3,3,4,6,6,6,7) 0 1 840 33 3
127b *(1,3,3,4,6,6,6,7) 0 3 1680 33 0
127¢ x(1,3,3,4,6,6,6,7) 0 4 840 33 3
127d %(1,3,3,4,6,6,6,7) 0 6 2520 33 33
127e *(1,3,3,4,6,6,6,7) 0 7 840 33 3
128a (3,3,3,3,3,3,3,6) 3 3 14 39 26.33
128b (3,3,3,3,3,3,3,6) 3 6 2 3° 33 .56
129a (3,3,3,3,6,6,6,6) 0 3 35 0 33
1296 %(3,3,3,3,6,6,6,6) 0 6 35 0 33




133

(b) Let m=6,n=4, p=7. The followiné table records the values of

p¥® Norm(1 — B(C;a))
P

for ¢c; = 1 and ¢; = (5,1,1,1,1,1), with a running through a list of representatives of
the isomorphism classes of twisted Fermat motives. As usual, we break the 24 isomor-
phism classes of Fermat motives into subclasses determined by the first coefficient, «q.
Supersingular motives are marked by an asterisk.

number a w(2) ag multiplicity cp=1 co
la (1,3,5,5,5,5) 1 1 10 1 3
16 (1,3,5,5,5,5) ] 3 10 B 33
le (1,3,5,5,5,5) 1 5 |- 40 1 223
2a x(1,1,1,5,5,5) 0 1 10 2? 3
2b x(1,1,1,5,5,5) 0 5 10 22 3
3a (1,4,4,5,5,5) 1 1 20 22.3 1
3b (1,4,4,5,5,5) 1 4 40 22.3 33
de (1,4,4,5,5,5) 1 5 60 22.3 52
4a x(1,1,2,4,5,5) 0 1 60 0 1
4b *(1,1,2,4,5,5) 0 2 30 0 3
4c x(1,1,2,4,5,5) 0 4 30 0 3
4d %(1,1,2,4,5,5) 0 5 60 0 1
ba *(1,1,3,3,5,5) 0 1 30 2* 3
56 *(1,1,3,3,5,5) 0 3 30 22 0
5e¢ +(1,1,3,3,5,5) 0 5 30 22 3
6a +(1,2,2,3,5,5) 0 1 60 3 1
6b +(1,2,2,3,5,5) 0 2 120 3 0
bc *(1,2,2,3,5,5) 0 3 60 3 1
6d %(1,2,2,3,5,5) 0 5 120 3 22
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number a w(2) ao multiplicity ¢y =1 Co
7a (1,1,1,1,1,1) 2 1 2 132 3.52
8b (1,1,1,1,4,4) 1 1 20 3 |
8¢ (1,1,1,1,4,4) 1 4 10 3 33
9a (1,1,1,2,3,4) 1 1 120 33 24
9 (t,1,1,2,3,4) 1 2 40 33 3
9¢ (1,1,1,2,3,4) 1 3 40 33 1
od (1,1,1,2,3,4) 1 4 40 33 22.3
10a (1,1,1,3,3,3) 1 1 20 1 2.3
106 (1,1,1,3,3,3) 1 3 20 ] 33
1la (1,1,2,2,2,4) 1 1 40 21 3
116 (1,1,2,2,2,4) 1 2 60 24 1
llc (1,1,2,2,2,4) 1 4 20 24 5°
12a (1,1,2,2,3,3) 1 1 60 27.3 5
126 (1,1,2,2,3,3) 1 2 60 22.3 33
12¢ (1,1,2,2,3,3) 1 3 60 22.3 24
13a x(1,1,4,4,4,4) 0 1 10 i 3
136 x(1,1,4,4,4,4) 0 4 20 | |
14a (1,2,2,2,2,3) 1 1 10 52 33
146 (1,2,2,2,2,3) 1 2 40 5% 24
14c (1,2,2,2,2,3) 1 3 10 52 3
15a ¥(1,2,2,4,4,5) 0 1 30 2° 3
156 x(1,2,2,4,4,5) 0 2 60 22 L
15¢ x(1,2,2,4,4,5) 0 4 60 22 1
15d x(1,2,2,4,4,5) 0 5 30 22 3
16a *(1,2,3,3,4,5) 0 1 60 0 |
165 (1,2,3,3,4,5) 0 2 60 0 3
16¢ x(1,2,3,3,4,5) 0 3 120 0 2?
16d *(1,2,3,3,4,5) 0 4 60 0 3
16¢ ¥(1,2,3,3,4,5) 0 5 60 0 1




number a w(2) ap multiplicity ci=1 Co
17a *(1,2,3,4,4,4) 0 1 40 1 0
176 *(1,2,3,4,4,4) 0 2 40 1 1
17¢ %(1,2,3,4,4,4) 0 3 40 1 3
17d *(1,2,3,4,4,4) 0 4 120 1 22
18a *(1,3,3,3,3,5) 0 1 5 22 3
185 *(1,3,3,3,3,5) 0 3 20 2? 0
18¢ *(1,3,3,3,3,5) 0 5 5 22 3
19¢ *(1,3,3,3,4,4) 0 1 20 3 22
196 *(1,3,3,3,4,4) 0 3 60 3 1
19¢ *(1,3,3,3,4,4) 0 4 40 3 0
20a (2,2,2,2,2,2) 1 2 2 33 3
2la %(2,2,2,4,4,4) 0 2 10 3
216 *(2,2,2,4,4,4) 0 4 10 0 3
22a *(2,2,3,3,4,4) 0 2 30 2? 1
22b x(2,2,3,3,4,4) 0 3 30 2? 0
22¢ %(2,2,3,3,4,4) 0 4 30 22 1
23a %(2,3,3,3,3,4) 0 2 5 0 3
23b *(2,3,3,3,3,4) 0 3 20 0 2?
23c %(2,3,3,3,3,4) 0 4 5 0 3
24a *(3,3,3,3,3,3) 0 3 1 2° 0
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