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ABSTRACT

There exist certain int1'insic relations betweell the 7.llt1'aviolel diver'!Jent graphs
und the convergenl ones at the saIne loop order in renonna/izable q7.1ant7.1'm field
theories. Where1tpOn we may establish a new method, the inirinsic regulanzation
method, to regulate those divergent graphs. In this note, we present aproposal,
the inserter proposal, to the method. The ej} Iheo'1'Y and QED at lhe one loop
order are dealt with in same detail. Inserters in the standa1'd model are given.
Some applications to SUSY-models are also made at ihe one loop order.

Introduction
As is weIl known, various regularization scheInes have been developed in the quantum

field theory. However, the topic is still olle of the important and fundarnental issues undel' in­
vestigation. One of the Inost challel1ging problems is perhaps how to preserve all symlnetries
and topological properties manifestly and consistently.

It has been found that there exist certain intrinsic relations between the ultraviolet
divergent graphs and the convergent ones at the same loop order in renormalizable QFT
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[1-5]. Whereupon we should bc able to establish a new method, the intrinsic regularization
method, for regularization of those divergent graphs. In this note, we present a proposal to
this method, the inserter proposal. vVe deal with the 4>4 theory and QED at the one loop
order. 'vVe also make some applications to SUSY-models at the one loop order by Ineans of
the SUSY version of the inserter proposal and explain how to apply it to other cases. This
proposal may shed light on that challenge.

The key point of the new method is, in fact, based upon the following simple observation:
For a given ultraviolet divergent function at certain loop order in a rcnornlalizable QFT, there
always exists a set of convergent functions at the same loop order such that their Feynman
graphs share the SalTIe loop skeleton and thc Inain difference is that the convergent ones have
additional vertices of certain kind and the original one is the case without these vertices. This
is, in fact, a certain intrinsic relation between the original ultraviolet divergent graph and the
convergent ones in the QFT. It is this relation that indicates it is possible to introduce the
regulated function for the divergent function with the help of thosc convcrgent ones so that
the potentially divergent integral of the graph can be rendered finite while for the Iilniting
case of the number of the additional vertices q -+ 0 the divergence again becOInes 1l1anifest
in pole(s) of q.

It is very silnple why there aiways exists such kind of intrinsic relations in renormalizable
QFTs. Let us consider SOlne Feynman graphs at the L Ioop order with I internal lines of
any kind and V vertices of any kind. The topological formula

L-/+\I=1

shows that for fixed L I increases the saUle as \I does so that the superficial degree of
divergence decreases. Therefore, for a given divergent Feynnlan graph at certain loop order,
the topological fornll.tla insures that one can always reach a set of convergent graphs in a
suitable perturpation expansion series in the order of sOlne coupling constant , which always
appears with a vertex of certain kind, as lang as the original divergent graph is included in
the series. In fact, this topological fonnula is a cornerstone of the intrinsic regularization
method. In general, however, the procedure lnay be very involved. The aim of the inserter
proposal to be presented in this note is just to simplify the procedure. In fact, by means
of this proposal the fore-mentioned limiting procedure allows us to unalnbiguously calculate
the various Feynman graphs.

To be concrete, let us consider a IPI graph with I internallines at one loop order in the
4>4 theory. Its superficial degree of divergences in the momenhlln space is

8 = 4 - 2f.

When I = 1 or 2, the graph is divergent. Obviotlsly, there exists such kind of graphs that
they have additional q four-eP-vertices in the internallines. Then the number of internalliries
in these graphs is / + q so that the divergent degree of the new IPI graphs become

S'=4-2(I+q).

Ir q is large enough, the new ones are convergent and the original divergent one is the case
of q = O. Thus, a certain intrinsic relation has been reached between thc original divergent
IPl graph anel the new convergent ones at the sanle Ioop order.
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In the inserter proposal, we take all external lines in the additional vcrtices wi th zero
momenta and call such a vertex a.n inse1'te1'. Thus those eonvergent graphs ean simply be
regarcled as the ones given by suitably inserting q-inserters in all internal lines in the given
divergent graph and the powers of the propagators are simply raised so as to those integrals
for the new graphs beeome eonvergent. It is clear that these new graphs share the same
loop skeleton with the original divergent one and the main elifferences between those graphs
are the nUlnber of inserters as weH as the dilnension in mass anel thc order in the coupling
constant due to thc insertions of the inserter. Thus it is possible to regttlate the divergent
graph based upon the intrinsie relations of this type as long as we may get rid of those
differences and deal with those eonvergent functions on an equal footing. In fact, to this end
we introduce a well-defined convel'gent IPI function, the regulated function, by taking the
arithmetical average of those convergent IPI funetions a.nd changing their dimension in mass,
their order in ,\ etc. to the ones in the original divergent fUl1ction. Thus this new function
renders the divergent integral in the original function finite. Evaluating it anel continuing q
analytically from the integer to the eOll1plex number, the divergent function o[ the original
IPI graph is recovered as the q --+ 0 limiting case of such a regulated funetion.

It is not harel to see that in any given QFT as long as a suitable kind of inserters are
eonstructcd with the help of the Feynman rules of the theory anel sorne intrinsic relations
between the divergent funetions anel eonvergent Olles at the salne loop order are founel by
inserting the inserters, this inserter proposal should work in principle. Of course, special
attention should be devotcd to each speeified ease. In QED, for exalnple, since the electron­
photon vertex carries a ,-matrix and is a Lorentz veetor, therefore, how to eonstruet a
suitable inserter is the first problem to be solved in addition to the above proeedure in the
4>4 theory. Otherwise, simply insertillg the vertex would increase the rank of the functions as
Lorentz tensors and the problein eould bee0l11e quite eomplicated. We will be back to this
point at the end of this note. In order to avoid this eOInplication, we borrow an inserter of
the Yukawa type for the I11assive fennions from the standard model ( see the appendix) and
employ it for the purpose in QED. By inserting this inserter to the internal fermion lines in
the graph of a given IPI n-point divergent function, a set of new convergent functions can be
obtained if the number of inserters, q, is large enough. Then we introduee a new eonvergent
function, the regulated functioll, it not only should have the same dilnension in mass, and
the same order in thc eoupling eonstant and so on as the original divergent funetion but also
should preserve the gauge invariance. Thus the potential infinity in the original IPI n-point
funetion may be reeoverecl as the q --+ 0 limiting case of that function.

In what follows, we eoneentrate on how to rcgttlate the. divergent graphs at one loop
order in tbe 4>4 theory and QED. 'rVe present the Il1ain steps and the results of the inserter
regularization proeedure for cach of them. We also describc brief1y the SUSY version of the
inserter proposal and make some applications to SUSY-n10dels at the one loop order. Finally,
we end with some diseussion and remarks. In the appendix, different kinds or inserters in
the standard model are given.

The wark by HYG was mastly done dun11.g his visiting lo The kfax-P/anck-Institut für
Mathematik, Bonn. He would like to t!tank Professors F. Hirzeb1'7.lch /01' warnt hospitality.
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He is also 9rateful to Profess0 l' lV. Nahm for valuable discussion and war,.,n hospitality. HYG
is supported in part by The National Natural Science Foundation of Chhla.

Intrinsie Regularization In ep4 Theory

The action of the 4>4 theory is

(1)

and its Feynman rules are weIl known.

The main steps of the inserter proposal for the 4>4 theory may 1110re concretely be stated
as follows. First, we ShOltld construct the inserter in the cjJ4 theory. As lnentioned above, it
is a four-</>-vertex with two zero momentuln external lines whose Feynman rule is the same
as the vertex

(2)

For a given IPI n-point divergent function at the one Ioop order r(n)(pI, "', Pn), we
consider all n + 2q-point functions r(n+2 Q)(Pl, "', Pn; q) which are the amplitudes of the
graphs corresponding to all possible q insertions of the inserter on the internallines of the
given n-point graph. If q is large enough, r(n+2q)(Pl, "', Po; q) become convergent. And
for q = 0 it is the case of original n-point function. This is a relation between the given
divergent function and those convergent ones. With the help of this relation, we introduce
a new function by taking the aritillnetical average of these convergent functions, i.e. the
summation of these functions divided by fllq , the total number of such inserted functions,
and let it have the same dimension in lTIasS and the same order in A as the original IPI
n-point function:

['rn) (Pt, "', Pn; q; I') = (_i,,2), (-i>' )-q~ L ['(n+2Q)(]Jt, ... ]Jn; q) (3)
q

where f-l is an arbitrary reference 111ass parameter. Note that this function is 110 longer an
n +2q-point function rather a regulated n-point function since it is at the sa1l1e order in the
coupling constant A as the original function. Now we evahiate it anel analytically continue q
from the integer to the complex number. Then the original potentially divergent 1FI n-point
function is recovered by

(4)

(5)

and the original infinity arises manifestly as pole in q. Obviously, this procedure should in
principle work for the cases at higher loop orders.

At the one loop order there are only two divergent graphs in the ep4 theory, the tadpole
(t) and the fish (/). In thc mOlllenturll space, thc amplitude of (t) and (/) are

(t) = ~ J (;;~4 lL~m2'

(/) = ~ J (;:;4 (l2-rn2)((Pl~P2+1)2-rn2) + (P2 ---+ P3) + (P2 ---+ P4)'
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They are quadratically and logarithmically divergent respectively and neeeled to be regulated.

[n order to regulate the tadpole , we attach q inserters to the internal Ene of the graph.
Then (t) becomes a 2 + 2q-point function (t q ). For q large enough, (t q ) is convergent. We
now introduce a new function (t~) which has the same diIllension in mass anel the saIlle order
in A with (t) anel when q = 0, (t~)lq=o = (t).

The amplitude of (t~) can be expresseel as 5

(6)

It can be easily integratcel allel expressed in terms of the garnma functions of q:

(7)

Now we analytically continue q frOIll the integer to the cOIl1plex nUl11ber. The original tadpole
function (t) is then recovered as the q -t °limiting case of (t~):

(8)

In order to regulate the fish, we attach to its internat lines q inserters anel it turns to a
set of the graphs (fq,i) with i inserters inserted on one internalline while q - i on the other.
For q large enough, all (fq,i) are convergent. Let us introduce their arithmetical average
(fq) = ~q L~=o(lq,i), lVq = q + 1 and a new function (f~) which has the same dimension in

mass anel the same order in ,,\ with that of (f) and when q = 0, (f~)lq=o = (/).
The amplitude of (f~) can be expressed as

(9)

Anel we ean get

(/~) = 2(4
i
1r)J,,\2 J-12

q
q(q~l) fo

l
da[a(l-a)(Pl~P2)2-m2Jq + (P2 -t P3) + (]J2 --+ ]14)' (10)

We now analytically continue q [roln the integer to thc cOIl1plex number. Then the fish
[unetion (I) is reachecl by the q -+ °li Initing case of (f~),

(/) = lilnq-+o(f~)

= i (::)J [;q + ~ + ~ In (- -;; ) + A (PI, ... , P4) + o(q)],
(11 )

51n this note, the order of the inserted inserters in each inserted graph is always fixed so that the relevant
combinatory faetor is simply fixed to be one as weil.
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where

2 - /1 4m2 + 1
( )

1 4m V - (Pl+P2)2
APl,"',P4 =-2' 1-( + )2 1n ; 4m2 +(P2--+P3)+(P2--+P4)'

PI P2 1 - ( )2 - 1
Pl+P2

Thus we complete the regularization of the ep4 theory at the one loop order by means of
the inserter proposal.

Intrinsie Reg'lliarization In QED

The action of the QED is

J 4 1 1 2 - -
S[A,4;] = d x{ -"4FtlvFIlV - 2~(a. A) + 1/;(i~ - 1n)1/; - e1/;ift-1/;}. (12)

and the Feynman rules are wen known.

As was Inentioned above, we first employ an inserter borrowecl fron1 the standard model.
It is an f f ~vertex of the Yukawa type with a zero Inomentum Riggs external line. The
Feynman rule of such an inserter is

(13)

where AI takes value 111~f/Mn' in the standard model, hut here its value is irrelevant for

our purpose. Then for a given divergent IPI amplitude r(~/,ng)(pl"" ,Pn/; k1,"', kng ) of
rank * Lorentz tensor at the one loop order with n f external fennion lines and n g external

photon lines, we consider a set of IPI amplitucles r(~/ ,ng
,2q) (PI, ... , Pn /; k" ... , kng j q) which

correspond to the graphs with all possible 2q insertions of the inserter in the internal fermion
lines in the original graph. Because each insertion clecreases thc divergent degree by 1, the
divergent degree becomes:

S = 4 - (If + 2q) - 21g •

If q is large enough, r(:/,ng
,2

Q
)(Pll' ··,Pn/;kl,···,kng;q) are convergent and the original cli­

vergent function is the case of q = O. Thus we reach a relation between the given divergent
IPI function and a set of convergent IPI functions at the one loop order. In fact, the function
of inserting such an inserter to an internal fermion line is simply to raise the power of the
propagator of the line anel to decreasc the degree of divergence of given graph.

In order to regulate the given divergent function with the help of this relation, we neecl
to deal with those convergent functions on an equal footing and pay attention to their
differences due to the insertions. To this end, we introduce a new function:

r (n/,ng)(p p' k k· q' J-l)... 1 , •• " n f l 1 , •. " n g l ,

- ( , )2q( ',\ )-2Q 1 "r(n/,ng ,2Q
)( ·k k')- -1,J-l -1, J N

q
i...J... PI, ... ,Pn/, "'1,'" , "'ng , q

6
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where J-l is an arbitrary reference IUasS paran1eter as in the last section, the factor (-iAf )-2q

introduced here is to cancel the one coming [rom 2q-inserters and the sumlnation is taken over
the entire set of such Nq inserted functions. It is deal' that this function is the aritillnetical
average of those convergent fUllctions anel has the same dimension in Inass, the same order
in e with the original divergent Ipr function. Now we evaluate it and continue analytically
q [rom the integer to the complex number. Finally, the original IPI function should be
recovered as its q -t 0 limiting case:

r(n"n9)(p ... P . k ... k ) - lim r(n"ng)(p ... p . k ... k . q' 11.),. I , ,nI' I , ,ng - ,. t , ,nI' I, ,ng , 'r'
q-+O

(15)

(16)

and the original infinity would appeal' as pole in q. Silnilarly, this procedure should work
for the cases at the higher loop orders in principle.

The divergent 1PI graphs at the one loop order in QED are those contribute to the
vacuum polarization IIllv(k), the electron self-energy ~(p), the vertex function A~(p', p) anel
the photon-photon scattering function r Ilv pcr (PI, ... ,P4)' Their integral expressiol1s in the
momentun1 space are as follows ( For sin1plicity, we take the Feynman gauge ~ = 1. ):

2J d
4
p 1 1

n~v(k) = -e -(CI)4TT[fll jJ ft fV P ],
,t.1f - - 1n - 1n

\-, () _ 2J d
4
k (~1 ) 1

LJ P ßo - -e (21f)4 f f, _ m fit ßo (p - k)2'

I _ 3J d
4
l (p 1 1) 1

AIl(p,p)ßo - -e (27f)4 f J- ft--:'-1nf~J-rn {P ßa(p_l)2'

r Ilvpa (PI, ... ,P4) = _e
4f (g:~4 Tr{ fit ~~m {lI ~+v'~-m fP ~+P2~v'3-m{a ~-v'~ -m}

+(J-l H V,PI H P2) + (J-l H P,Pl H P3)

+(fl H O',PI H P4) + (v H P,P2 H P3)

+(p H (j,P3 H P4)

which are superficially quadratically, linearly anel logarithmically ultraviolet divergent re­
spectively. Let us now render theIn finite by means of the inserter procedure.

To regulate the divergent vacuum polarization function rr~l/(k), we attach to one internal
fern1ion line with i inserters and to the other with 2q-i ones. Then we get a set of 2+2q-point
functions n~~,i}(k;q). If q is large enough, all these 2 + 2q-point functions are convergent.
Then we introduce a new function

(17)

which has the salne dimension in mass, the sanle order in e with the original function nllv(k).
It is not hard to prove that this function can be expressed as

2 2 1 2q J d4P ( 1 ) i+ I ( 1 ) 2q -i+ I
il llv (k; q; It) = -I" q e N

q
~ (27f )4 Tr['1l jJ- J; _ rn {v jJ - m ]
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and satisfies the gauge invariant candi tion:

kJtII (k' q' 11) - 0Jtll , , r-- - .

Continuing q to the camplex nunlber, thus the original amplitude I1Jtll is recavered as

If we denate

by same calculatian, we get

TI(O) = e2
('1:)2 [;q +C + ~ ln( - 5-) + o(q)],

n!(k2 ) = -~:~ fa1 doo:(l - 0) ln[l- o(1:~)k2J.

(18)

(19)

(20)

(21)

where C is same canstaut. The finite part TI! (k 2 ) is the same as that derived in ather
regularizatian pracedures.

Ta regulate the electran self-energy function ~(p), we attach ta the internal fenuion line
with 2q inserters and the graph ~(p) is turned to a 2 + 2q-point convergent function ~(Pi q)
if q is large enough. Then we introduce a new function:

(22)

which can be expressed as

Cantinuing q to the complex number, the original function ~(p) is reached by

(23)

Denoting
(24)

we luay finally get

A(p2) = -~{~ + 3 -ln p2:2m2 +~ In(l - ;;) + A!(p2)},

B(p2) = (4e;)2{~ + ~ +~ -ln p2:2m2 - (~)21n(1 - 5-)} +B!(p2
),

bath A! (p2) anel Bi (p2) are finite function.

Sirnilarly, to regttlate the vertex function, AJt(p', p), we attach to the internal fennion
lines with 2q inserters to get a set of (3 + 2q)-point functions A~q,i}(p',Pi q) with i inserters

8



on one internal fennion line and q - i inserters on the other. Then we introduce a new
function

A~(p', p; qj J1) = (-iJ1 )2
q

( -illJt 2q ~ I>tQ,i} (pi ,p; q),
q i=O

(25)

which is convergent if q is large enough and has the sanle dinlension in lnass, the sanle order
in e with the original vertex function A~(p',p). It can be expressed as

Continuing q to the complex nUillber, tbe original vertex function is then recovered as:

A~(p', p) = lim A~(p', p; q; p).
q--+O

Finally, we find that

A (') -ie3y;Q
~ p ,p = ('11r) {J'

(26)

[~ - ~ - fd do: fot-a dß In{ß(1 - ß)k2 + 0:(1 - 0:)p2 - 20:ßk . p - (1 - 0:)7n2 }] (27)

ie3 r l I rI - a dß ')'P[(ß-l){I+ap'+mh.. [ß{'+ay'+mhp + ( )
- 2(411'")'2 Jo (. 0: JO ß(t-ß)k2+a(l-a)p2-2aß.p-(I-a)m~ 0 q .

The observable part A~ of the vertex function is defined by

A~ = l(/~ + A~,

where !( contains the pole in q when q --+ 0 anel A~ is finite from which the anOInalous lnag­
netic moment of, the electron can be deriveel. The result is the salne as in other approacbes.

Silnilar procedure nlay also be applied to the photon-photon scattering r JlllPO" (Pt· .. P4)'
'rVe check its gauge invariance by the inserter proposal. Attaching 2q inserters to internal
fermion fines in all possible ways we get a set of convergent functions iE q is large enough.
Tben we introduce a new function

1 2q 2q-i 2q-i- j

r ( . . ) - ( . )2q( .,,\ )-2q '""' '""' '""' r{q,i,j,I}( )~VfX1 PI ... P4, ql J-L - -zp -Z J IV L...J L...J L...J JlllpO" PI" . P4 ,
q i=O j=O 1=0

(28)

...
which has required properties with respect to the original function. lt can be proved that
this function satisfies the gauge invariant condition. Continuing q to the cOInplex number,
the origina.l function is then recovered by

(29)

By some straightforward calculation, we may explicitly show that

(30)

9



This also coincides with the gauge invariance.

Thus we complete the regularization of QED at the one loop order by means of the
inserter proposal.

Same Applications to SUSY-Models

We now apply the insel'ter proposal for the intrinsic regularization to some SUSY-Inodels
at one-Ioop order. vVe will not present any detailed ca1culation here. The aim is to show
that the SUSY version of the inserter proposal should work anel presel've supersymmetry
manifestly and consistently by reexalning sonle well-known and simple examples at the one
loop order.

Let us first consider an exalnple in the massive Wess-Zumino Inodel. It is weIl known
that at the one loop level, the self-energy graph of antichiral-chiral superfield propagator 4>4>
is divergent. After some D-algebraic Inanipulation, it is left a divergent integral

(31)

where

(32)

To regldate this integral by means of the inserter proposal, we need first to construct an
antichiral-chiral superfield inserter. For such an inserter 1 we take a pair of vertices linked by
a 4>4>-internal line with a pair of chiral anel antichiral external legs carrying zero IllODlenta.
Its Feynman rule can easily be written down. Now we may utilize this inserter to insert
q-times the internal lines in the divergent graph. Then we get a set of convergent graphs
with i-inserters on one internalline anel q- i on the other. Similarly, after some D-algebraic
manipulation, the corresponding convergent function J{q,i}(p) is proportional to

(33)

where . J ~k 1A{q,t}(]J 1n) = -- (34)
, (2n)4 (k2+ 1n2)2i((p + kF + m.2F9-2i+1 .

It is very similar to the ones in thc case of inserted fish functions, accept the sign of the mass
due to the convention. Now we Inay almost repeat the proccdure in the 4>4 theory to define
the regulated function and so on. The original elivergent function is recovered in the linliting
case of q -+ 0 anel the divergence Illanifestly appears as a pole of q. It is so analogous to the
case of the fish in the 4>4 theory that we do not need to repeat it here.

It is easy to see that the SUSY version of the inserter proposal n1ay also bc applied to the
massless vVess-Zumino lnodel as weil as other I110clels. Let us now consider a most general
IV = 1 supersymmetric renofInalizable Inodel invariant under a gauge group G contains
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chiral superfields cjJa in a representation R of G anel N = 1 Yang-Mills fielel contained in the
general superfield V.

The one-loop correction to the cPa~a propagator are given by two divergent graphs. One is
the same as in the \rVess-Zumino model while the other is the one with an interna] antichiral­
chiral line replaced by a \I-line. They lead to the expression:

(35)

where A(p) = A(p, 1n = 0) anel
2 2sa dbce 19 b = (. ace,

dbce are the couplings or the cP3-terru. the cancellation condition Sb = C2 (R)og should
hold luuch safer if the divergent integrals A(p) in two graphs can be regulated in a way of
preserving supersymIuetry manifestly anel consistently. This can be done by nleans of the
SUSY-version of the inserter proposal. To this end, in addition to the inserter for the chiral
superfield constructed above ( the internal representation indices should be paired here ),
we need an inserter for the V-internalline as weIl. In fact, it luay be constructed in such a
way that two 'I<pqr.vertices linked by an internal antichiral-chiralline with hvo external <pa,
~b legs carrying zero IuomelÜa anel paired representation indices. Then it is easy to see that
by inserting these two inserters to the internal V line and the internal antichiral-chiral line
respectively, we can always get the same regulated functions for the both graphs. Therefore,
the cancellation can be insured at the regulated function level as weil.

The one-loop correction to the vector superfield propagator is given by three graphs with
V-loop, qr.loop and the ghost Ioop respectively. The SUSY version of the inserter proposal
also ensures the corresponding cancellation conelition holels at the regulateel function level as
long as we employ the ghost inserter as a pair of the ghost-V vertices linkeel by an internal
ghost antichiral-chiral line with two external V legs carrying zero mon1enta in addition to
the fore-mentioned inserters for the internal V line anel the internal antichiral-chiralline.

The SUSY version of the inserter proposal may also be combined with the background
approach. For example, in the background field approach the above olle-Ioop contribution
to the V self-energy froIn a massive chiral superfield leads to one divergent integral only:

~C2(R) tr Jd40 W"(p, O)f,,(-p, 0) A(p, m), (36)

where H!a (p, 8) is the superfield strength anel r a ( -p, 8) the background field connection.
Again, we Inay utilize the an antichiral-chiral superfield inserter in the background field to
get a set of convergent integrals anel to regulate this divergent one in the way of preserving
sllpersymInetry manifestly anel consistently.

It should be noticed that all construction for the superfield inserters anel regularization
for the divergent graphs are made with the help of the sllper-Feynman rules. lt is natural
to expect that the SUSY version of the inserter proposal does preserve supersymmetry
manifestly and consistently not only for the one-loop cases but also für the high-Ioop cases.
\Ve will explore this issue in detail elsewhere.
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Further Remarks

We have shown the main steps and results for the regularization of the divergent 1PI
functions at the one loop order in both <jJ4 theory and QED by nleans of the inserter proposal
for the intrinsic regularization Inethod. SOIne applications to SUSY-models are also Iuade
at the one loop order by Ineans of the SUSY version of the inserter proposal. The results
are satisfactory. It is naturally to expect that this proposaJ ShOltld be available to the cases
at higher loop orders in principle.

The crucial point of this approach, in fact, is very simple hut fundalnental. That is, the
entire procedure is intrinsic in the QFT. There is nothing changed, the action, the Feynman
rules, the spacetime diIuensions etc. are all the salue as that in the given QFT. Although for
QED, the inserter we have employed is borrowed froIU the standard model, QED is in fact
unified with the weak interaction in the standard luodel. Therefore, it is still intrinsic in the
standard model. Consequently, in applying to other cases all synl111etries and topological
properties there sholtld be preserved in principle. This is a very inlportant property which
should shed light on that challenging problem. It is reasonable to expect that this proposal
should be ahle to apply consistently to those cases where the sYll1Iuetries and topological
properties are sensitive to the spacetilue diluensions, the nunlber of fermionic degrees of
freedom, such as chiral syluIuetry, anOlualies, SUSY theories etc.. As was shown in the
last section, it is the case for some SUSY-Illodels at the one loop order. Of course, for
each case some special care should be taken. For the non-A belian gauge theories, like QCD
and the standard model, for instance, special attention should be devoted to the Lorentz
indices and those indices of the internal gauge symmetries in constructing the inserters. The
Lorentz indices can be handled by contracting pairly by the spacetiIl1e nletric. Sinlilarly, the
internal gauge synlmetry indices mayaiso be dumbed by the Killing-Cartan Iuetrics in the
corresponding representations. In the appendix, we construct the insertcrs in thc standard
luodel. lt is straightforward to apply them at the one loop order. For higher Ioop orders
and other theories, we will study them in detail elsewhere.

The renormalization of the QFT under consideration in this scheme should be the same
as in usual approaches. Naluely, we may subtract the divergent part of the n-point functions
at each loop order by adding the relevant counterterms to the action. The renormalized
n-point functions are then evaluated from the renormalized action. In the lillliting case, we
get the finite results for all correlation functions.

In our proposal the inserters play an inlportant role. The zero-lllomentulll-line(s) in
the inserters do not of course correspond to realistic particles. Hut, it Inay have sOlue
physical explanation. NaIllely, for each inserted internal line, tbe virtual particle always
emits and/or absorbs via the inserters other far-infrared "particles" that carry zero mOluenta
froIn the vacuum. In othcr wards, the vacuum is full of such far-infrared "particles" that
they always have or pair together with the vacuunl quantum nunlbers, i.e. zero momenta,
singlet(s) in all internal symmctries ( including gauge symmetries ) and scalar(s) in the
spacetime symmetries. The ill-definess of those divergent graphs can be handled by taking
into account the role played by these far-infrared "particles". This is just what has been
done in the intrinsic insertcr proposal. An analogous explanation lllay also be made for the
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SUSY version of the inserter proposal in tenns of the superspace anel superfields.

vVe have not devoted any attention in this note to the infrared divergences at all. It
is in fact another most challenging problelll to the regularization scheInes. In the course
of application to QED, the internal photon lines are the same as the original ones. lt
is intriguing to see, however, as far as the vacuuln picture is concerned, certain kind of
inserters should be constructed and sonle intrinsic relation between the divergent function
and convergent ones mayaiso be established in the infrarecl region. Then the intrinsic inserter
proposal may work in this region as weIl. We will also investigate this issue elsewhere.

On the other hand, howcver, as was fore-mentioned, although the inserter proposal works
it is still a simplifiecl procedure fronl the point of view of the intrinsic regularization method.
In fact, what have been taken into account is a proper set of all convergent IPI functions
which share the same loop skeleton with the given divergent IPI functions. Not all of then1.
It is obvious that the silnplification of the insel'ter proposal certainly leads to a question what
role should be played by other convergent functions which can not be given by inserting the
inserters. As a matter of fact, we may propose an alternative approach to the method. For
the 4>4 theory and for sonle SUSY-models, for example, the ( Inassive ) vVess-Zomino Inod~l,

it is the sarne as the inserter proposal 01' its SUSY-version. But for QED, it is different:
In spite of the cOlnplication mentioned before, we first sinlply attach 2q fermion-photon
vertices with zero ITIOnlentum photon lines to the internal fermion line(s) in the graph of
given divergent IPI n-point function with rank l' as a Lorentz tensor. By doing so, if q is
large enough, we can get a set of convergent IPI n +2q-point functions of rank l' +2q Lorentz
tensors. And the original one is the case of q = O. Thus we also reach an intrinsic relation
between the original divergent function anel those convergent ones. Although not only they
are at different order in the coupling constant e but also they have different ranks as Lorentz
tensors, it is still possible to define a regulated function with the help of this relation. To
this end, we may take all possible ways of contracting those additional Lorentz indices in
convergent functions by the spacetime Inetric to reduce the rank of Lorentz tensor to the
one in the original Lorentz tensor function. Then we may employ the same procedure as
that in the inserter proposal to introduce the regulatecl function. It is easy to see that the
total number of the convergent graphs in this approach could be different froln and larger
than that in the inserter proposal. While the total nlllnber of the convergent functions after
contracting the additional Lorentz indices is even much bigger than the one in the inserter
proposaJ. Of course, this approach is lnuch nl0re cOlnplicated than the inserter proposal
anel the calculation is also more tedious. But, as far as the topological fonnula and those
intrinsic relations are concernecl, this alternative approach mayaiso be availahle. Thus, it is
of course interesting to see whether there are SOlne essential differences between these two
approaches. vVe would leave this classification problein for further investigation.

Finally, it should be Inentioned that sonle idea of the inserter proposal was first presentecl
for the 4>4 theory in [1] by ZH\tV anel I-IYG as what is called the intrinsic vertex regularization.
Later, the intrinsic loop regularization Inethod has been studied in [2-5]. 1\10st results for
the 4>4 theory and QED at the one Ioop order in [2,3,5] are very sinli1ar to what have been
given in this note. The mass shifting in that approach, however, is not really intrinsic anel
do not completely work for the theories with self-interacting massless particlcs, like QCD,
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the standard model, SUSY-models etc.. The approach presented here should be able to get
riel of all those problems.

Appendix: Inserters In The Standard Model

In order to apply the intrinsic inserter proposal to SM, different kinds of inserters are
needed for inserting the internallines of quarks, leptons, gauge bosons, Riggs anel ghosts in
the Feynman graphs with divergent a111plitudes to be regulated. T'o construct appropriate
inserters we choose suitablely a vertex or a pair of vertices linked by an internal line and
lnake merely use of the Feynman rules in SM. In all inserters, the externalleg or legs are all
being managed in such a way that they always carry the vaCUUln quanttlln numbers, i.e. zero
mOlnentum, singlet in internal anel gauge symmetries, anel scalar in the spacetime symmetry.
For same specified illternalline(s), different inserter 111ay be elnployed for different purpose.

1. The fennion-inserters:

There are two types of inserters. The Yukawa-inserters for lnassive fermions anel the one
for the neutrinos. For the Yukawa-inserters, we take them as corresponding f f4>-vertices
with zero-momentum Higgs lines. The Feynman rule is:

For each neutrino-inserter, we take a pair of VtvtZ-vertices linked by an internal neutrino
line such that two ,-nlatrices are contracted anel Z-external lines carry zero ffiOlnenta. The
Feynman rule is then:

2 .

I{Vj} ( ) _ 9 I (_ )
p - 4 20 j +' 1 /5·cas w) l€

2. The gauge-bosoll-illserters:

For the gauge bosons such as gluons, VV± anel Z, there are some options. We tnay take an
inserter as a 4-gauge-boson vertex with two zero-moillentulnlines whose indices are dumbed
by the spacetime metric and the Killing-Cartan metric of the gauge algebra respectively.
Their Feynman rules are easily be given. For example, für the gluon-inserter:

r{gl~:b(p) = -6ig~C2(8)g1LVOab,

where C2(8) is the sccond Casimir operator valued in the adjoint representation of SUc (3)
algebra. On the other hand, we mayaiso take a pair of 3-gauge-boson vertices linked by an
internal gauge-boson line with two zero-momentum lines anel dumbed pairly indices.

3. The Higgs-inserters:

Similar to the one in the 1J4 theory, each I-liggs-inserter may bc takell as a suitable 4-4>­
vertex with two zero momentum lines. Their Feynlnan rules are easily be given as weIl. For
exampIe, the insel-ter füf 1Ji, i = 1, 2, is

2
{.l.i} . 2 Il

I 'f' (p) = - 3z9 2N1tv'
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On the other hand, a pair of 3-</>-vertices may also make a Higgs-insertcr.

4. The ghost-inserters:

For the ghost-inserter in QCD, for example, we take a tree graph with two ghost-gluon
verticcs linked by a ghost line with two gluon lines carrying zero rnonlcnta whose Lorentz
indices and color indices are contracted by the spacetirne nletric anel thc Killing-Cartan
Inetric respectively. Hs Feynlnan rule is given by

For other ghost-inserters , it is easy to construct in a sinlilar way.
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