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Abstract

A probabilistic test for equality a = be for given n-bit integers a,b,c is
designed within complexity n(loglogn)exp{O(log" n)}.
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1 Test for multiplication

Denote by M(n) the complexity of multiplication of two n-bit integers. It is well-
known [3] that
M (n) = n(logn) exp{O(log" n)},

improving upon the algorithm given in [5].!

We consider here probabilistic testing of the equality a = be for given n-bit
integers a, b, c¢. In this context, it may be worth mentioning that a probabilistic test
for matrix product A = BC within linear complexity has been described in [2].

Lemma 1.1. The complexity of division with remainder of n-bit integer a by m-bit
integer d does not exceed n(logm)exp{O(log*m)}.

Proof. Let a € N* be an n-bit integer and, for 1 < m < n, write the 2™-ary
expansion of a, namely a = Zogign/m a;2™ with 0 < a; < 2™ (1 < i < n/m).
Each of remainder u; := Rem(2™,d) € [0,d[ may be computed within complexity
O(M(m)) [1]. Subsequently one can calculate each v; := Rem(a;u;,d) (1 < i < n/m)
again within complexity O(M (m)). Finally, Rem ( > _0<i<n/m Vi> d) can be computed
within complexity O(n). 0

To perform a probabilistic test of the validity of the equation a = be, the
algorithm picks randomly an integer 2 < d < n?, calculates @’ := Rem(a,d),

'Recall the definition log* n := min{j > 0 : loghln < 1}, where logh! is the j-fold iteration of
the logarithm to the base 2, denoted by log.
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b := Rem(b,d), ¢ := Rem(c,d) and finally tests the equality ' = Rem(b'¢’,d). This
test has complexity less than n(loglogn)exp{O(log*n)} by virtue of Lemma 1.1
and has an error less than 1/2 due to the following result.

Theorem 1.2. Let ¢ > 1 —In2. Then any sufficiently large n-bit integer has at
most than cn? divisors in the interval [1,n?].

Remark 1.3. More precisely, the bounds established in the next section show that,
for any € > 0, the test can be defined by picking the random divisor d in the interval
[2, nVeFe], but not by picking d in the interval [2,nVee].

2 Bounds for the number of small divisors

We designate by Inj the k-fold iteration of the Neperian logarithm function In = In;.

Let P(n) denote the largest prime factor of an integer n > 1, with the convention
that P(1) = 1. For x > 1, y > 1, we define S(z,y) := {n < z : P(n) < y} as
the set of y-friable integers not exceeding z, and denote by ¥(x,y) its cardinality.
We designate by ¢ Dickman’s function, which is defined as the unique continuous
solution on R of the difference-differential equation

uo' (u) + o(u—1)=0 (u>1)

with initial condition p(u) =1 (0 < u < 1). For further information and references
on the Dickman function, see, e.g., [6], chapter IIL5.

Given a function Z : [1,00[—]1,00] and a real number ¢ > 3, we let Z(¢; Z)
denote the unique solution in ]1, 00| of the equation

Z(aj)g(ln—x> =1

1112 t
Put
7(n, x) ::21 (neN*" z>1).
dn
d<z

Theorem 2.1. Let Z : [1,00[—]1, 00 be a non-decreasing function satisfying
(1) In Z(x) < (Inz)/(Ing 3z)? (x >1).

For all € > 0 and sufficiently large n, we have

(2) x>E(n;(1+e)2) = 1(n,z) < x/Z(x).

Under the extra condition

(3) InZ(z) =o(VIinz) (x — 00),

there exists a strictly increasing integer sequence {ny}7° , such that

(4) T(ng, xg) > xK/Z(TK) (k> 0),

with zy, == EZ(ng; (1 —€)Z).
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Before embarking on the proof, we note a simple corollary obtained by consid-
ering the case when Z is a constant. For fixed v > 1, we let x,(v) denote the least
real number such that

T(n,z) < x/v (n>1,z>x,(v)).
Theorem 1.2 follows by specializing v = 2 in the next statement, and Remark 1.3
by selecting v =1/(1 — In2).
Theorem 2.2. For 1 <v<1/(1—1In2), w:=exp{l —1/v}, we have

(5) Zn(v) < (Inn)wtold (n — 00).

Moreover, in the above upper bound, the exponent w is optimal in the following
sense: given any € > 0, there exists a strictly increasing integer sequence {”j};')io
such that

(6) T, (v) > (Inny)*—e (7 =0).
Proof. We select Z(x) = v in Theorem 2.1 and note that, since o(u) = 1 — Inu for
1 <u <2, we have ZE(n;v) = (logn)* forn >3 and 1 <v < 1/(1 — log2). 0

Proof of Theorem 2.1. We first establish (2).

Let pi denote the k-th prime number and {pj(n)};‘iq) designate the increasing
sequence of distinct prime factors of an natural integer n. Then the mapping

F: I pwie= 1 »/
1<j<w(n) 1<j<w(n)

is an injection from the set of divisors of n into the subset of p,,,)-friable integers d.
Moreover, F'(d) < d for all d > 1. Therefore

(7) T(?’L, :E) < \Il(xapw(n)) (n z1l, x> 1)

Since we have, for any integer n > 1,
H p<n,
pgpm(n)

a strong form of the prime number theorem yields
(8) Pu(n) S Ln = {1 + ¢ (In2 ”)C} Inn

for any ¢ < 3/5 and sufficiently large n.
If, for instance, Inn < e2(In2 x)u/S, we have, as n — 0o, by virtue of the uniform
upper bound for ¥(z,y) given in theorem II1.5.1 of [6],

11/6

U(z, Ly) < U(x,2Inn) < 71/ GF2men) o ge~5(nz)/(ln22)

=o(z/Z(z)).

This implies 7(n,z) < x/Z(x) in this case.
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If
9) Inn > e2(n2e)™/¢

Hildebrand’s asymptotic formula (see for instance corollary II1.5.19 of [6]) implies

U(z, L) < {1+ 0(1)}959(1;“;”) (z — 0.

However, by (8), we have

Inx Inx 11c/6
— 10) —(In2 x) )
InL, Inan (e )

By selecting £ < ¢ < 2, and in view of the estimate ¢'(u) < (In2u)o(u) (u > 1)
established for instance in corollary II1.5.14 of [6], we deduce that

( Inx ) ( Inx )
¢ InL,, © Ino n
as n and z tend to infinity under condition (9). It follows that, in the same circum-
stances, we have 7(n,x) < x/Z(x) as soon as x > Z(n, (1 +¢)2).
This completes the proof of the upper bound (2).

To prove the lower bound (4), we give ourselves a (large) constant D € N*
and put

\IJD(x7 y) = Z gD(n)7
n<e
pln=p<y
where gp is the indicator of D-free integers, i.e. integers such that p¥||n = v < D.
The arithmetical function gp is an s-function in the sense of [4], in other words

gp(n) only depends upon
s(n) = H p”.

p¥||n, v>2

Theorem 1 of [4] may hence be applied, and, writing ((s) for the Riemann zeta
function, yields, for any & > 0,

(10) Up(ay) = > gp(n)~ C(ﬂg(z)l)

nx
pln=p<y

as z and y tend to infinity in such a way that exp {(log, 2)°/3¢} <y < =.
Let us then put Ny := ngjgkpjp (k > 1). Applying (10) for

(11) pr <z < exp{o((Inpg)?/Ina py) } (k — 00),
and setting uy := (Inx)/Inpg, we get

T(Nk,w) = \IJD(x,pk) ~ Cflgj(%
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Now, observe that hypothesis (11) implies
ug In(1 + ug) = o(Inpyg) (k — 0).

Since In Ny ~ Dpy., we therefore have, when x satisfies (11),

(rry) = 2lip s om) = 2l 0(55)

= {14 o RUEIIN ) ).

In py.

Select x := Z(Ny; (1 — €)Z), where € €]0,1 — 1/Z(1)[. From the above, it then
follows that Z(x)(1 — €)o(ux) = 1+ o(1) as k — oco. We deduce, on the one hand,
that = > pg, because o(1) = 1, and, on the other hand, in view of the classical
asymptotic estimates for p(u) (see for instance theorem III.5.13 of [6]), that

upIn(1 +uy) < InZ(z) = o(Vinz).

Condition (11) is hence fulfilled. It follows that

X X

T(Nk,x) = Up(z,pr) > (1—¢/2)¢(D+1)Z(x) o Z(x)

(k - 00)7

provided we choose, as we may, D sufficiently large in terms of ¢.
This completes the proof of the second part of our theorem. O

As a further concrete example of application of Theorem 2.1, we state the fol-
lowing corollary.

Corollary 2.3. Let ¢ > 0, ¢ > 0. For sufficiently large n and all
x> (In n){1+5}0(1n3 n)/Iny n

we have T(n,z) < x/(Ilnx). This statement is optimal in the sense that one cannot
replace € by —e.
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