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Abstract

A probabilistic test for equality a = bc for given n-bit integers a, b, c is
designed within complexity n(log log n) exp{O(log∗ n)}.
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1 Test for multiplication

Denote by M(n) the complexity of multiplication of two n-bit integers. It is well-
known [3] that

M(n) = n(log n) exp{O(log∗ n)},

improving upon the algorithm given in [5].1

We consider here probabilistic testing of the equality a = bc for given n-bit
integers a, b, c. In this context, it may be worth mentioning that a probabilistic test
for matrix product A = BC within linear complexity has been described in [2].

Lemma 1.1. The complexity of division with remainder of n-bit integer a by m-bit
integer d does not exceed n(logm) exp{O(log∗m)}.

Proof. Let a ∈ N∗ be an n-bit integer and, for 1 6 m 6 n, write the 2m-ary
expansion of a, namely a =

∑
06i6n/m ai2

mi with 0 6 ai < 2m (1 6 i 6 n/m).
Each of remainder ui := Rem(2mi, d) ∈ [0, d[ may be computed within complexity
O(M(m)) [1]. Subsequently one can calculate each vi := Rem(aiui, d) (1 6 i 6 n/m)
again within complexity O(M(m)). Finally, Rem

(∑
06i6n/m vi, d

)
can be computed

within complexity O(n). ut

To perform a probabilistic test of the validity of the equation a = bc, the
algorithm picks randomly an integer 2 6 d 6 n2, calculates a′ := Rem(a, d),

1Recall the definition log∗ n := min{j > 0 : log[j] n 6 1}, where log[j] is the j-fold iteration of
the logarithm to the base 2, denoted by log.
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b′ := Rem(b, d), c′ := Rem(c, d) and finally tests the equality a′ = Rem(b′c′, d). This
test has complexity less than n(log log n) exp{O(log∗ n)} by virtue of Lemma 1.1
and has an error less than 1/2 due to the following result.

Theorem 1.2. Let c > 1 − ln 2. Then any sufficiently large n-bit integer has at
most than cn2 divisors in the interval [1, n2].

Remark 1.3. More precisely, the bounds established in the next section show that,
for any ε > 0, the test can be defined by picking the random divisor d in the interval
[2, n

√
e+ε], but not by picking d in the interval [2, n

√
e−ε].

2 Bounds for the number of small divisors

We designate by lnk the k-fold iteration of the Neperian logarithm function ln = ln1.
Let P (n) denote the largest prime factor of an integer n > 1, with the convention

that P (1) = 1. For x > 1, y > 1, we define S(x, y) := {n 6 x : P (n) 6 y} as
the set of y-friable integers not exceeding x, and denote by Ψ(x, y) its cardinality.
We designate by % Dickman’s function, which is defined as the unique continuous
solution on R+ of the difference-differential equation

u%′(u) + %(u− 1) = 0 (u > 1)

with initial condition %(u) = 1 (0 6 u 6 1). For further information and references
on the Dickman function, see, e.g., [6], chapter III.5.

Given a function Z : [1,∞[→]1,∞[ and a real number t > 3, we let Ξ(t;Z)
denote the unique solution in ]1,∞[ of the equation

Z(x)%
( lnx

ln2 t

)
= 1.

Put
τ(n, x) :=

∑
d|n
d6x

1 (n ∈ N∗, x > 1).

Theorem 2.1. Let Z : [1,∞[→]1,∞[ be a non-decreasing function satisfying

(1) lnZ(x)� (lnx)/(ln2 3x)2 (x > 1).

For all ε > 0 and sufficiently large n, we have

(2) x > Ξ(n; (1 + ε)Z)⇒ τ(n, x) 6 x/Z(x).

Under the extra condition

(3) lnZ(x) = o
(√

lnx
)

(x→∞),

there exists a strictly increasing integer sequence {nk}∞k=0 such that

(4) τ(nk, xk) > xk/Z(xk) (k > 0),

with xk := Ξ
(
nk; (1− ε)Z

)
.
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Before embarking on the proof, we note a simple corollary obtained by consid-
ering the case when Z is a constant. For fixed v > 1, we let xn(v) denote the least
real number such that

τ(n, x) 6 x/v (n > 1, x > xn(v)).

Theorem 1.2 follows by specializing v = 2 in the next statement, and Remark 1.3
by selecting v = 1/(1− ln 2).

Theorem 2.2. For 1 < v 6 1/(1− ln 2), w := exp{1− 1/v}, we have

(5) xn(v) 6 (lnn)w+o(1) (n→∞).

Moreover, in the above upper bound, the exponent w is optimal in the following
sense: given any ε > 0, there exists a strictly increasing integer sequence {nj}∞j=0

such that

(6) xnj (v) > (lnnj)w−ε (j > 0).

Proof. We select Z(x) = v in Theorem 2.1 and note that, since %(u) = 1 − lnu for
1 6 u 6 2, we have Ξ(n; v) = (log n)w for n > 3 and 1 < v 6 1/(1− log 2). ut

Proof of Theorem 2.1. We first establish (2).
Let pk denote the k-th prime number and {pj(n)}ω(n)

j=1 designate the increasing
sequence of distinct prime factors of an natural integer n. Then the mapping

F :
∏

16j6ω(n)

pj(n)νj 7→
∏

16j6ω(n)

p
νj
j

is an injection from the set of divisors of n into the subset of pω(n)-friable integers d.
Moreover, F (d) 6 d for all d > 1. Therefore

(7) τ(n, x) 6 Ψ(x, pω(n)) (n > 1, x > 1).

Since we have, for any integer n > 1,∏
p6pω(n)

p 6 n,

a strong form of the prime number theorem yields

(8) pω(n) 6 Ln :=
{

1 + e−(ln2 n)c
}

lnn

for any c < 3/5 and sufficiently large n.
If, for instance, lnn 6 e2(ln2 x)11/6 , we have, as n→∞, by virtue of the uniform

upper bound for Ψ(x, y) given in theorem III.5.1 of [6],

Ψ(x, Ln) 6 Ψ(x, 2 lnn)� x1−1/(2+2 ln2 n) � xe−
1
5
(lnx)/(ln2 x)11/6 = o

(
x/Z(x)

)
.

This implies τ(n, x) < x/Z(x) in this case.
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If

(9) lnn > e2(ln2 x)11/6 ,

Hildebrand’s asymptotic formula (see for instance corollary III.5.19 of [6]) implies

Ψ(x, Ln) 6 {1 + o(1)}x%
( lnx

lnLn

)
(x→∞).

However, by (8), we have

lnx
lnLn

=
lnx
ln2 n

+O
(
e−(ln2 x)11c/6

)
.

By selecting 6
11 < c < 3

5 , and in view of the estimate %′(u) � (ln 2u)%(u) (u > 1)
established for instance in corollary III.5.14 of [6], we deduce that

%
( lnx

lnLn

)
∼ %
( lnx

ln2 n

)
as n and x tend to infinity under condition (9). It follows that, in the same circum-
stances, we have τ(n, x) < x/Z(x) as soon as x > Ξ(n, (1 + ε)Z).

This completes the proof of the upper bound (2).
To prove the lower bound (4), we give ourselves a (large) constant D ∈ N∗

and put
ΨD(x, y) :=

∑
n6x

p|n⇒p6y

gD(n),

where gD is the indicator of D-free integers, i.e. integers such that pν‖n ⇒ ν 6 D.
The arithmetical function gD is an s-function in the sense of [4], in other words
gD(n) only depends upon

s(n) :=
∏

pν‖n, ν>2

pν .

Theorem 1 of [4] may hence be applied, and, writing ζ(s) for the Riemann zeta
function, yields, for any ε > 0,

(10) ΨD(x, y) :=
∑
n6x

p|n⇒p6y

gD(n) ∼ x%(u)
ζ(D + 1)

as x and y tend to infinity in such a way that exp
{

(log2 x)5/3+ε
}

6 y 6 x.
Let us then put Nk :=

∏
16j6k p

D
j (k > 1). Applying (10) for

(11) pk < x 6 exp{o
(
(ln pk)2/ ln2 pk

)
} (k →∞),

and setting uk := (lnx)/ ln pk, we get

τ
(
Nk, x

)
= ΨD(x, pk) ∼

x%(uk)
ζ(D + 1)

·
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Now, observe that hypothesis (11) implies

uk ln(1 + uk) = o(ln pk) (k →∞).

Since lnNk ∼ Dpk, we therefore have, when x satisfies (11),

%
( lnx

ln2Nk

)
= %
( lnx

ln pk +O(1)

)
= %
(
uk +O

( uk
ln pk

))
=
{

1 +O
(uk ln(1 + uk)

ln pk

)}
%(uk) ∼ %(uk).

Select x := Ξ(Nk; (1 − ε)Z), where ε ∈]0, 1 − 1/Z(1)[. From the above, it then
follows that Z(x)(1 − ε)%(uk) = 1 + o(1) as k → ∞. We deduce, on the one hand,
that x > pk, because %(1) = 1, and, on the other hand, in view of the classical
asymptotic estimates for %(u) (see for instance theorem III.5.13 of [6]), that

uk ln(1 + uk) � lnZ(x) = o
(√

lnx
)
.

Condition (11) is hence fulfilled. It follows that

τ
(
Nk, x

)
= ΨD(x, pk) >

x

(1− ε/2)ζ(D + 1)Z(x)
>

x

Z(x)
(k →∞),

provided we choose, as we may, D sufficiently large in terms of ε.
This completes the proof of the second part of our theorem. ut

As a further concrete example of application of Theorem 2.1, we state the fol-
lowing corollary.

Corollary 2.3. Let c > 0, ε > 0. For sufficiently large n and all

x > (lnn){1+ε}c(ln3 n)/ ln4 n,

we have τ(n, x) 6 x/(lnx)c. This statement is optimal in the sense that one cannot
replace ε by −ε.
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