A low complexity probabilistic test for integer multiplication

Dima Grigoriev CNRS, Mathématiques, Université de Lille 59655, Villeneuve d'Ascq, France dmitry.grigoryev@math.univ-lille1.fr http://logic.pdmi.ras.ru/~grigorev Gérald Tenenbaum Institut Élie Cartan, Université Henri Poincaré-Nancy BP 239 54506 Vandœuvre, France gerald.tenenbaum@iecn.u-nancy.fr http://www.iecn.u-nancy.fr/~tenenb

(version 24/7/2009, 11h20)

Abstract

A probabilistic test for equality a = bc for given *n*-bit integers a, b, c is designed within complexity $n(\log \log n) \exp\{O(\log^* n)\}$.

Keywords. probabilistic test, integer multiplication, small divisors

1 Test for multiplication

Denote by M(n) the complexity of multiplication of two *n*-bit integers. It is well-known [3] that

$$M(n) = n(\log n) \exp\{O(\log^* n)\},\$$

improving upon the algorithm given in [5].¹

We consider here probabilistic testing of the equality a = bc for given *n*-bit integers *a*, *b*, *c*. In this context, it may be worth mentioning that a probabilistic test for matrix product A = BC within linear complexity has been described in [2].

Lemma 1.1. The complexity of division with remainder of n-bit integer a by m-bit integer d does not exceed $n(\log m) \exp\{O(\log^* m)\}$.

Proof. Let $a \in \mathbb{N}^*$ be an *n*-bit integer and, for $1 \leq m \leq n$, write the 2^m -ary expansion of a, namely $a = \sum_{0 \leq i \leq n/m} a_i 2^{mi}$ with $0 \leq a_i < 2^m$ $(1 \leq i \leq n/m)$. Each of remainder $u_i := \operatorname{Rem}(2^{mi}, d) \in [0, d]$ may be computed within complexity O(M(m)) [1]. Subsequently one can calculate each $v_i := \operatorname{Rem}(a_i u_i, d)$ $(1 \leq i \leq n/m)$ again within complexity O(M(m)). Finally, $\operatorname{Rem}\left(\sum_{0 \leq i \leq n/m} v_i, d\right)$ can be computed within complexity O(n).

To perform a probabilistic test of the validity of the equation a = bc, the algorithm picks randomly an integer $2 \leq d \leq n^2$, calculates a' := Rem(a, d),

¹Recall the definition $\log^* n := \min\{j \ge 0 : \log^{[j]} n \le 1\}$, where $\log^{[j]}$ is the *j*-fold iteration of the logarithm to the base 2, denoted by log.

 $b' := \operatorname{Rem}(b, d), c' := \operatorname{Rem}(c, d)$ and finally tests the equality $a' = \operatorname{Rem}(b'c', d)$. This test has complexity less than $n(\log \log n) \exp\{O(\log^* n)\}$ by virtue of Lemma 1.1 and has an error less than 1/2 due to the following result.

Theorem 1.2. Let $c > 1 - \ln 2$. Then any sufficiently large n-bit integer has at most than cn^2 divisors in the interval $[1, n^2]$.

Remark 1.3. More precisely, the bounds established in the next section show that, for any $\varepsilon > 0$, the test can be defined by picking the random divisor d in the interval $[2, n^{\sqrt{e}+\varepsilon}]$, but not by picking d in the interval $[2, n^{\sqrt{e}-\varepsilon}]$.

2 Bounds for the number of small divisors

We designate by \ln_k the k-fold iteration of the Neperian logarithm function $\ln = \ln_1$.

Let P(n) denote the largest prime factor of an integer n > 1, with the convention that P(1) = 1. For $x \ge 1$, $y \ge 1$, we define $S(x, y) := \{n \le x : P(n) \le y\}$ as the set of y-friable integers not exceeding x, and denote by $\Psi(x, y)$ its cardinality. We designate by ϱ Dickman's function, which is defined as the unique continuous solution on \mathbb{R}^+ of the difference-differential equation

$$u\varrho'(u) + \varrho(u-1) = 0 \qquad (u > 1)$$

with initial condition $\rho(u) = 1$ ($0 \le u \le 1$). For further information and references on the Dickman function, see, e.g., [6], chapter III.5.

Given a function $Z : [1, \infty[\rightarrow]1, \infty[$ and a real number $t \ge 3$, we let $\Xi(t; Z)$ denote the unique solution in $]1, \infty[$ of the equation

$$Z(x)\varrho\Big(\frac{\ln x}{\ln_2 t}\Big) = 1.$$

Put

$$\tau(n,x) := \sum_{\substack{d \mid n \\ d \leqslant x}} 1 \qquad (n \in \mathbb{N}^*, \, x \ge 1).$$

Theorem 2.1. Let $Z : [1, \infty[\rightarrow]1, \infty[$ be a non-decreasing function satisfying

(1)
$$\ln Z(x) \ll (\ln x)/(\ln_2 3x)^2 \qquad (x \ge 1).$$

For all $\varepsilon > 0$ and sufficiently large n, we have

(2)
$$x > \Xi(n; (1+\varepsilon)Z) \Rightarrow \tau(n, x) \leqslant x/Z(x).$$

Under the extra condition

(3)
$$\ln Z(x) = o\left(\sqrt{\ln x}\right) \qquad (x \to \infty),$$

there exists a strictly increasing integer sequence $\{n_k\}_{k=0}^{\infty}$ such that

(4)
$$\tau(n_k, x_k) > x_k/Z(x_k) \qquad (k \ge 0),$$

with $x_k := \Xi(n_k; (1-\varepsilon)Z).$

Before embarking on the proof, we note a simple corollary obtained by considering the case when Z is a constant. For fixed v > 1, we let $x_n(v)$ denote the least real number such that

$$\tau(n,x) \leqslant x/v \qquad (n \ge 1, \, x \ge x_n(v)).$$

Theorem 1.2 follows by specializing v = 2 in the next statement, and Remark 1.3 by selecting $v = 1/(1 - \ln 2)$.

Theorem 2.2. For $1 < v \leq 1/(1 - \ln 2)$, $w := \exp\{1 - 1/v\}$, we have

(5)
$$x_n(v) \leqslant (\ln n)^{w+o(1)} \qquad (n \to \infty).$$

Moreover, in the above upper bound, the exponent w is optimal in the following sense: given any $\varepsilon > 0$, there exists a strictly increasing integer sequence $\{n_j\}_{j=0}^{\infty}$ such that

(6)
$$x_{n_j}(v) > (\ln n_j)^{w-\varepsilon} \qquad (j \ge 0).$$

Proof. We select Z(x) = v in Theorem 2.1 and note that, since $\rho(u) = 1 - \ln u$ for $1 \leq u \leq 2$, we have $\Xi(n; v) = (\log n)^w$ for $n \geq 3$ and $1 < v \leq 1/(1 - \log 2)$.

Proof of Theorem 2.1. We first establish (2).

Let p_k denote the k-th prime number and $\{p_j(n)\}_{j=1}^{\omega(n)}$ designate the increasing sequence of distinct prime factors of an natural integer n. Then the mapping

$$F: \prod_{1 \leqslant j \leqslant \omega(n)} p_j(n)^{\nu_j} \mapsto \prod_{1 \leqslant j \leqslant \omega(n)} p_j^{\nu_j}$$

is an injection from the set of divisors of n into the subset of $p_{\omega(n)}$ -friable integers d. Moreover, $F(d) \leq d$ for all $d \geq 1$. Therefore

(7)
$$\tau(n,x) \leqslant \Psi(x,p_{\omega(n)}) \qquad (n \ge 1, x \ge 1).$$

Since we have, for any integer $n \ge 1$,

$$\prod_{p\leqslant p_{\omega(n)}}p\leqslant n,$$

a strong form of the prime number theorem yields

(8)
$$p_{\omega(n)} \leqslant L_n := \left\{ 1 + \mathrm{e}^{-(\ln_2 n)^c} \right\} \ln n$$

for any c < 3/5 and sufficiently large n. If, for instance, $\ln n \leq e^{2(\ln 2 x)^{11/6}}$, we have, as $n \to \infty$, by virtue of the uniform upper bound for $\Psi(x, y)$ given in theorem III.5.1 of [6],

$$\Psi(x, L_n) \leqslant \Psi(x, 2\ln n) \ll x^{1 - 1/(2 + 2\ln_2 n)} \ll x e^{-\frac{1}{5}(\ln x)/(\ln_2 x)^{11/6}} = o(x/Z(x)).$$

This implies $\tau(n, x) < x/Z(x)$ in this case.

If

(9)
$$\ln n > e^{2(\ln_2 x)^{11/6}},$$

Hildebrand's asymptotic formula (see for instance corollary III.5.19 of [6]) implies

$$\Psi(x, L_n) \leqslant \{1 + o(1)\} x \rho\left(\frac{\ln x}{\ln L_n}\right) \qquad (x \to \infty).$$

However, by (8), we have

$$\frac{\ln x}{\ln L_n} = \frac{\ln x}{\ln_2 n} + O\left(e^{-(\ln_2 x)^{11c/6}}\right).$$

By selecting $\frac{6}{11} < c < \frac{3}{5}$, and in view of the estimate $\varrho'(u) \ll (\ln 2u)\varrho(u)$ $(u \ge 1)$ established for instance in corollary III.5.14 of [6], we deduce that

$$\varrho\Big(\frac{\ln x}{\ln L_n}\Big) \sim \varrho\Big(\frac{\ln x}{\ln_2 n}\Big)$$

as n and x tend to infinity under condition (9). It follows that, in the same circumstances, we have $\tau(n, x) < x/Z(x)$ as soon as $x > \Xi(n, (1 + \varepsilon)Z)$.

This completes the proof of the upper bound (2).

To prove the lower bound (4), we give ourselves a (large) constant $D \in \mathbb{N}^*$ and put

$$\Psi_D(x,y) := \sum_{\substack{n \leqslant x \\ p \mid n \Rightarrow p \leqslant y}} g_D(n),$$

where g_D is the indicator of *D*-free integers, i.e. integers such that $p^{\nu} || n \Rightarrow \nu \leq D$. The arithmetical function g_D is an *s*-function in the sense of [4], in other words $g_D(n)$ only depends upon

$$s(n) := \prod_{p^{\nu} || n, \nu \ge 2} p^{\nu}.$$

Theorem 1 of [4] may hence be applied, and, writing $\zeta(s)$ for the Riemann zeta function, yields, for any $\varepsilon > 0$,

(10)
$$\Psi_D(x,y) := \sum_{\substack{n \leq x \\ p \mid n \Rightarrow p \leq y}} g_D(n) \sim \frac{x\varrho(u)}{\zeta(D+1)}$$

as x and y tend to infinity in such a way that $\exp\left\{(\log_2 x)^{5/3+\varepsilon}\right\} \leq y \leq x$. Let us then put $N_k := \prod_{1 \leq j \leq k} p_j^D$ $(k \geq 1)$. Applying (10) for

(11)
$$p_k < x \leqslant \exp\{o\left((\ln p_k)^2 / \ln_2 p_k\right)\} \quad (k \to \infty),$$

and setting $u_k := (\ln x) / \ln p_k$, we get

$$\tau(N_k, x) = \Psi_D(x, p_k) \sim \frac{x\varrho(u_k)}{\zeta(D+1)}$$

Now, observe that hypothesis (11) implies

$$u_k \ln(1+u_k) = o(\ln p_k) \qquad (k \to \infty).$$

Since $\ln N_k \sim Dp_k$, we therefore have, when x satisfies (11),

$$\varrho\left(\frac{\ln x}{\ln_2 N_k}\right) = \varrho\left(\frac{\ln x}{\ln p_k + O(1)}\right) = \varrho\left(u_k + O\left(\frac{u_k}{\ln p_k}\right)\right) \\
= \left\{1 + O\left(\frac{u_k \ln(1 + u_k)}{\ln p_k}\right)\right\} \varrho(u_k) \sim \varrho(u_k).$$

Select $x := \Xi(N_k; (1 - \varepsilon)Z)$, where $\varepsilon \in]0, 1 - 1/Z(1)[$. From the above, it then follows that $Z(x)(1 - \varepsilon)\varrho(u_k) = 1 + o(1)$ as $k \to \infty$. We deduce, on the one hand, that $x > p_k$, because $\varrho(1) = 1$, and, on the other hand, in view of the classical asymptotic estimates for $\varrho(u)$ (see for instance theorem III.5.13 of [6]), that

$$u_k \ln(1+u_k) \asymp \ln Z(x) = o(\sqrt{\ln x}).$$

Condition (11) is hence fulfilled. It follows that

$$\tau(N_k, x) = \Psi_D(x, p_k) > \frac{x}{(1 - \varepsilon/2)\zeta(D + 1)Z(x)} > \frac{x}{Z(x)} \quad (k \to \infty),$$

provided we choose, as we may, D sufficiently large in terms of ε .

This completes the proof of the second part of our theorem.

As a further concrete example of application of Theorem 2.1, we state the following corollary.

Corollary 2.3. Let c > 0, $\varepsilon > 0$. For sufficiently large n and all

$$x > (\ln n)^{\{1+\varepsilon\}c(\ln_3 n)/\ln_4 n},$$

we have $\tau(n,x) \leq x/(\ln x)^c$. This statement is optimal in the sense that one cannot replace ε by $-\varepsilon$.

Acknowledgements. The first author is grateful to John Harrison who asked for a deterministic test for multiplication, Pieter Moree for valuable discussions and to Max-Planck Institut für Mathematik, Bonn, where the note has been written, for hospitality.

References

- [1] A. Aho, J. Hopcroft and J. Ullman, *Design and analysis of computer algorithms*, Addison-Wesley, (1974).
- [2] R. Freivalds, *Fast probabilistic algorithms*, Proc. Symp. Math. Found. Comput. Sci., Springer (1979), 57–69.
- [3] M. Fürer, Faster integer multiplication, Proc. ACM Symp. Th. Comput., (2007), 57–66.

- [4] A. Ivić and G. Tenenbaum, Local densities over integers free of large prime factors, Quart. J. Math. (Oxford) (2) 37 (1986), 401–417.
- [5] A. Schönhage and V. Strassen, Schnelle Multiplikation grosser Zahlen, Computing, 7 (1971), 281–292.
- [6] G. Tenenbaum, Introduction à la théorie analytique et probabiliste des nombres, third edition, coll. Échelles, Belin (Paris), 2008.