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Abelianization of the Second Non-Abelian Galois Cohomology

MIKHAIL V. BOROVOI

Introduction. Let k be a field of characteristic 0, Tc an algebraic closure of k, G an
algebraic group over k. Let L = (0, K) be a k-kernel (other terms: k-band, k-lien); see
[Sp!] or 1.2 below for definition. In [Sp1] (see also 1.3 below) the second non-abelian Galois
eohomology set H 2(k, L) (or H2(k, G, K)) was defined. (In a more general setting H2(k, L)
was defined in [Gi].) The set H 2 (k, L) has a distinguished subset of neutral elements.
obstruetions to some eonstruetions over k He in H2 ( k, L). A eonstruetion is possible if
and only if the obstruetion is trivial.

The set of neutral elements in H 2 (k, L) ean be large. In partieular, if k is a noo­
archimedian loeal field or a totally imaginary number field, and the group °is eonnected
semisimple, then, as Douai [D02] has proved, all the elements of H2 (k, L) are neutral,
though the set H2 (k, L) may contain more than one element. It therefore would be con­
venient to define a map from H 2 (k, L) to some abelian group, such that the image of an

element 7] E H 2 ( k, L) is zero if and only if 7] is neutral. This is just what we do here when
k is a loeal field or a number field. We use this map to prove a Hasse principle for H2(k, L)
and a Hasse principle for homogeneous spaces.

In [Bol], for a eonnected group G over k we defined abelian groups H~b(k,G) for
i ;::: -1, and abelianization maps

for i = 0, 1. We proved that if k is a Ioeal field or a number field, then the rnap abI is
surjeetive.

In the present paper we define ab2 • Let L = (G, K) be a eonneeted k-kernel (Le. G
is eonneeted). After some preparations in Seetions 1-4, we define in Section 5 the abelian
Galois eohomology group H~b(k,L) (which is an abelian group), and the abelianization
map

which takes the neutral elements to zero. Our main result is

THEOREM 0.1 (Theorem 5.6). Let k be a loeal field or a number jield, and L a
eonneeted k·kernel. A eohomology da"" 7] E H 2 (k, L) iJ neutral if and only if ab2 (7]) = O.

In Seetion 6 we use Theorem 0.1 to show that in sorne cases the following Hasse prin~

cipIe holds for H 2 ( k, L ): an element 7] E H 2 ( k, L) is neutral if and only if its localizations
locv (7]) E H 2 (k v , L) are neutral for all the plaees v of k. A partieular ease of our results is

THEOREM 0.2 (Consequenee ofTheorems 6.3 and 6.8). Let L = (0, K) be a eonneeted
Jemi"imple k-kernel (i. e. G i" eonneeted Jemi"imple).
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~ (i) ([D02]) 1/ k i" a non-archimedian local Jield, then any element TJ E H 2 (k, L) i"
neutral.

(ii) 1f k ü a number Jield, then an element TJ E H2(k, L) iJ neutral i/ and only i/
locv(TJ) ü neutral for any archimedian place v 0/ k.

In.Section 7 we use the Hasse principle for H2 (k, L) to give a new proof of most of the
results of [B02] on the Hasse principle for homogeneous'spaces. In particular, we give new
proofs of Harder's result ([Ha2], 3.3) on the Hasse principle for projective homogeoeous
spaces, and of Rapinchuk's result ([Ra]) 00 the Hasse principle for syminetric homogeneow
spaces.

In asense, the map-ab2 is defined in S~ction 5 indirect1y. In the Appendix we give an
explicit formula (in terms of cocycles) for the map ab2 , and al~ explicit cocyclic formtilas
for "the maps abO and abI.

This paper emerged as a. result of my correspondence with Lawrence Breen, in the
course of which Breen defined the abelianization map ab2 : H2 (k, G) -+ ·H~b(k,G) (using
the cohomology tbeory of crossed modules of gr-categories, developped in [Br]). I am
deeply grateful to him. It is a pleasure to thank Pierre Deligne for aseries of valuable
discussions on the Hasse principle for homogeneous spaces. It should be mentioned that
when writing this paper, I was inspired by the paper [Ra] of Rapinchuk, who practically
proved the Hasse principle for H 2(k, G) when G is a semisimple group.·

This paper was conceived when I was at the Institute for Advanced Study (Princeton),
and was written when I was at the Max-Planck-Institut für Mathematik (Bonn). I am
grateful to both Institutes for support and exellent working conditions. -

Notation.

k ia a field of characteristic 0, k ia a fixed algebraic closure of k, r = Gal(k/k).

G ia a k-group, G ia a k-group, sometimes G is a k-form of G.
Let G be a k-group. Then

GO ia the connected component of G;

GU ia the unipotent radical of GOj

Gred = G/ GO (this group· ia reductive)j

GSs is the derived group of Gred (it ia semisimple)j

GSc ia the universal covering of GU (it is simply connected);

Gior = Gred /Gss when G ia connected (then Gior is a k-torus).

Following Deligne we define the composition

When G is reductive we write GM for G/Z, where Z ia the center or G.

Let G be a k-group. We define k-groups Gred, G8S, {;sc and, when G ia connected, a
k-group Ötor , as above. We also define p: asc -+ Öred .
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Let L = (0, K) be a k-kernel (see 1.2 for the definition). We say that the kernel L is
connected (reductive, semisimple, and so on) if 0 is so.

Let t/J be a cocycle. We write Cl(1/J) for the cohomology class of t/J.

1. Kerneis and H 2
• In this section we recall the definition of the second non-abelian

Galois cohomology (cf. [SpIn.

1.1. Let k be a field of characteristic 0, k an algebraic closure of k, and Gan algebraic
group over k.

Consider the canonical morphisms

O~Speck --+ Spec k,

where w is the structure morphism. Let u E r = Gal(k/k). A u.~emialgebraic automor­
phi~m of G over k is an automorphism S of G as a group scheme over k, such that s is
compatible with u, i.e. w 0 s = ßt7 0 w where ßrr is the automorphism of Spec k induced
by u. A "emialgebraic automorphiJm of 0 over k is a u-semialgebraic automorphism for
some u E rj then such u is unique.

Let SAut,l; G (or just SAut 0) denote the group of semialgebraic automorphisms of 0
over k. As usual, Aut G denotes the group of algebraic automorphisms of G over k. We
have an exact sequence

(1.1.1) 1~ AutO --+ SAutG~ r.

A k-fonn G of G defines a continuous homomorphism

(1.1.2) u ~ U",: r ---4' SAut G.

which is a splitting of (1.1.1).

Let Z be the center of G. Then Int G = G(k)/Z(k). The subgroup Int Gis normal in
SAutG. Set

Out G = Aut G/lnt G
SOutG = SAut G/lnt e

We have an exact sequence

(1.1.3)
- - q

1 --+ Out G --+ SOutG~r

1.2. A k-kernel (k-band, k-lien) is a pair L = (C, K), where Gis a k-group and K. is a
splitting of (1.1.3), i.e. a continuous homomorphism ,,: r ~ SOut G such that q 0 K is the
identity map of r.
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· Let G ·be a k-group. Then G defines a homomorphism

K,o: r --+ SAut GI: --+ SOut GI:,

and thus a k-kernel La = (Gk, Ka).

1.3. For a k-kernel L = (G, K,) we define the second Galois cohomology set H 2 (k, L) =
H 2 (k, G, K) in tenns of cocycles. For a definitions in terms of extensions see [Spl].

A 2-cocycle is a pair (I, u) of continuous maps

f: r --+ SAut G, u: r x r --+ G(k)

such that for any a, T, vEr the following holds:

(1.3.1)

(1.3.2)

(1.3.3) 1fT mod Int G = ~(a)

Let Z2(k, L) denote the set of 2-cocycles with coefficients in L. The group C(k, G) of
continuous maps c: r --+ G(k) acts on Z2(k, L) on the left by

c· (I, u) = (I', u')

where

(1.3.4)

(1.3.5)

The quotient set H 2(k, L) = C(k, G)\Z2(k, L) is called the 3econd cohomology 3et 0/ k
with coefficient3 in L. H (/,u) E Z2(k,L), we write CI(j,u) for the cohomology dass of
(/, u) in H 2 (k, L).

Remark 1.3.1. Dur notation slightly differs from that of [Spl], who writes 2-cocycIes
/in the fonn (I, g) where 9fT,r = u;,~.

1.4. A neutral 2-cocycle is a cocycIe of the fonn (I, 1). A neutral cohomology cla33 in
H2 (k"L) is the elass of ~ neutral cocycle.

The set H 2(k, L) does not necessarily contain a neutral element (for example, it way
be empty). On the other hand, H 2(k, L) may contain more than one neutral element.

Let G be a k-group. We write H2(k, G) forH 2 (k, La). The set H 2 (k, G) contains a
canonical neutral element Cl(a I-t a., 1), where a.. is as in (1.1.2).

1.5. Let L = (0, K) be a k-kernel, and let N c G be anormal k-subgroup. Assume
that N ia invariant under all the semialgebraic automorphisms of G. Set G' = GIN.
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Then the canonical homomorpmsm SAut G ---+ SAut G' deßnes a homomorphism It': r --+

SOutG', and L' = (C',K') is a k-kerneL We have then a canomcal map H 2(k,L)--+
H 2 (k, L') which takes neutral elements to neutral elements.

1.6. Let L = (G, It) be a k-kernel, and let Z be the center of G. Then It deßnes a
k-forrn Z of Z. We say that Z is the center 0/ L. The abelian group H2(k, Z) acts on the
set H 2

( k, L) as follows:
CI(ep) . CI(!, u) = CI(!, epu)

where r.p E Z2(k, Z). This action is defined correctly.

LEMMA 1.7. Let Z be the center 0/ a k·kernel L. // H 2(k, L) f= 0, then the action 0/
H 2 (k, Z) on H 2 (k, L) Ü .5imply transitive.

mother words, the set H 2 (k, L) is either empty, or a principal homogeneous space of
the abelian group H 2 (k, Z).

Proof See [Spl], 1.17 or [Me], IV-8.8.

1.8. Let 1]}, 1]2 E H 2 (k, L). By Lemma 1.7 there exists a unique element 1]z E
H2(k, Z) such that 1]2 = 1]Z + 1]1. We write

fJz = 7]2 - 1]1 •

2. Neutral cohomology classes. In this section we investigate the set of neutral
cohomology classes in H 2(k, C, K).

2.1. Let G be a k-group. A k·form G of ä defines a homomorphism

I: r --+ SAut C, I(I=CT.,

and thus a neutral 2-cocycle

(f, 1) E Z2(k, C, Ito), where KO(CT) = f(l mod Int C.

Set
n(G) = CI(f, 1) E H 2(k, C, KO)'

We call n(G) the neutral cohomology dass defined by G.

Let
t/;: r --+ (G /Z)(k) = Int G

be a cocycle, where Z is the center of G. The twisted group G' = t/JG deßnes a homomor­
phism f': r --+ SAut C, and we have I~ = "p(lf(l, We see that

f~ mod Int G = f (I mod Irrt G = Ito((f),

and therefore the neutral cohomology class n(G') = el(f', 1), defined by G' = ,pG, lies in
2 - 2()H (k, G, KO) = H k, G .

Now let r.p E Zl(k, G) be a cocycle with values in G(k). One can easily check that
n(cpG) = n(G).
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" LEMMA 2.2. Let L = (a, K:) be a k.kernel, and let '7 E H2(k, L) be a neutral cla33.
Then we haue 7] = n(G) for 30me k-form G of G. Thi~ k-form G ü defined uniquely
modulo twüting by a cocycle cp E Zl (k, G).

Proof." Write '7 = el(!, 1). Then f: r ~ SAut G is a homomorphism, and it defines a
k-form G of G. We have then 7] = n(G). We leave the rest to the reader. " .

The main result of this section is the following characterization of the neutral classes
in H2 (k, G).

PROPOSITION 2.3. Let G be a k-group, Z it~ center. An element 7] E H2 (k, G) ~

neutral if and only if

'7 - n(G) E im [0: H1(k, G/Z) ~ H 2(k, Z)],

where 0 is the connecting (coboundary) map.

To prove the proposition we need two lemmas.

LEMMA 2.4. An element '7 E H2(k, G) i~ neutral if and only if 7] = n(,pG) for ~ome

'l/J E Zl(k, G/Z).

Proof. H t/; E Zl(k, GjZ), then fjJG defines a neutral dass n(fjJG) E H2(k, G), see 2.1.
Conversely, let '7 E H2(k, G) be a neutral element. Write

n(G) = CI(!, 1), 7] = el(/', 1),

where !er = u•. By (1.3.3) ,per E Int GI: = (G/Z)(k). It follows !rom (1.3.1) that

Hence t/J: r ~ (GjZ)(k) "is a cocyc1e. We have '7 = el(",f, l) = n(",G). The lemma is
proved.

LEMMA 2.5. Let G and Z be a~ in Propo$ition 2.3, and t/J E Zl(k, GjZ). Then

n(",Ci) - n(G) = 6(CI(,p))

where 0 iJ the .connecting map.

Proof. Let f: r ~ SAut GI: be the homomorphism a 1--+ u. defined by G. Let I': r ~
SAut Gk be the homomorphism defined by the inner form t/JG of G. Then f' = ,p/..

Let ~: r ~ G(k) be a continuous map lifting "p. By (1.3.4) and (1.3.5)

("p /, 1) = ~ . (f, A) where Aer,r = ~;;; . t/Jer . !er(~r)'

Since t/J is a cocyc1e, Aer,r E Z(k)), and we may write
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Hy definition Cl(..\) = 6(Cl(,p)) (see [Se], 1-5.6 for the definition of 6). Thus we have

Cl(?/Jj, 1) = Cl(/,'x) = Cl(..\) +Cl(j, 1) = 6(Cl(1f;)) + Cl(j, 1),

whence
n(lPG) - n(G) = Cl(1/1j, 1) - C1(j, 1) = 6(Cl(1/1)),

which was to be proved.

2.6. Proo/ 0/ Propo~ition 2.3. Let t] E H2(k, G) be a neutral element. Hy Lemma 2.4
t] = n(,pG) for some 1f; E Zl(k, G/Z). Hy Lemma 2.5 then 1] - n(G) = 6(Cl(?jJ)).

Conversely, suppose that t] - n(G) E im 6, Le

t] = 6(Cl(?jJ)) + n(G)

for some 1/1 E Zl(k, G/Z). By Lemma 2.5 1] = n(t,lJG), hence t] is neutral. The proposition
ia proved.

3. Connected reductive kerneIs. In this section we prove

PROPOSITION 3.1 ([Dol]). Let L = (G, K) be a connected reductive k-kernel. Then
H2 (k, L) contain~ a neutral element.

To prove Proposition 3.1 we need the notion of based root datum.

3.2. Let Go be a ~plit connected reductive group over k. Let T C Go be a split
maximal torus, and B a Borel subgroup containing T. To the tripie (Go, B, T) we as­
sociate the based root datum W = w(Go, B, T) (cf. [Sp2], 2.3). Hy definition '1J =
(X, X v, cI-, cI- v, n, nV). Here X is the character group of T, and X v is the cocharacter
groupi cI- is the the root system of (G, T), and cI- v is the corooot system; n is the basis of
q. defined by B, and nv is the dual basis of q.v. We have an exact sequence

(3.2.1)

(cf. [Sp2],2.14).

For a root a E cI- let Ua be the corresponding one-parameter unipotent subgroup of
B. For any Q' E II choose an element UO' E U0'(k). Such a choice defines a splitting

(3.2.2)

of the exact sequence (3.2.1) (cf. [Sp2], 2.13), where AutkGO C AutGOk is the group of
k-automorphisms of Go.

The Galois group r = Gal(k/ k) acts on the terms of the exact sequence (3.2.1). Since
it acts on Wtrivially, the splitting s mentioned above is r-equivariant.

3.3. Let Gbe a connected reductive k-group. It follows from Chevalley's theorem that .
G admits a split k-forrn Go. Choose T and B as above and construct W = w(Go, B, T).
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LEMMA 3.3.1 There exiJt3 a canonical bijection between the- 3et of k·l:erneI3 L =
(C; IC) with given C and the 3et .of continuou" homomorphüm3 1-': r -4 Aut '1'.

Proof. The split k-form Go of 0 defines a splitting of the exact sequence (1.1.3). Thus
SOut G becomes a semi-direct product·of Out G and r. The exact· sequence (3.2.1) defines
a r-equivariant isomorphism Out C -4 Aut 'lJ. Since r acts on 'lJ trivially, we obtain an
isomorphism

(3.3.2)

and the lemma follows.

. .

Aut'1' X r~SOut C,

3.4. Proof of Propo3ition 3.1. Let L = (0, IC) be a k-kernel. Let Go be a split form
of G, and let T, B, '1' and (Ua)aEn be as in 3.2. Then by Lemma 3.3.1 I'i. defines a
homomorphism 1-': r -4 Aut '1'. Set 1/J = SOl-', where s is the splitting (3.2.2) of (3.2.1).
Then ,p is a homomorphism, and ,pa E (Aut Go)(k) for any (j E r. We see that 1/1 is a
cocyde,,p E Zl(k,AutGo). Set G = 1/JGo. Then n(G) is a neutral element of H'J(k,L).
The proposition is proved.

4. Non-reductive kerneIs. Let L = (0, IC) be an arbitrary k-kernel (we do not
assume G to be connected). The normal subgroup Cu of C (see Notation) is invariant
under all the seinialgebraic automorphisms of G. Set Gred = G/Gu. By 1.5 there exists
a k-kernel Lred = (Gred,.lCred ) and a canonieal map r:H2 (k,L) -4 H 2 (k,Lred). In this
section we prove

PROPOSITION 4.1. Let L = (G, IC) be a k·kernel. An element 1] E H 2 (k, L) i" neutral
if and only if r(TJ) i" neutral.

COROLLARY 4.2 ([Do1]). Let (Ü, K) be a unipotent k ... kernel. Then any element
TJ E H 2 (k, 0, I'i.) Ü neutral.

To prove Proposition 4.1 we need

LEMMA 4.3. Let A be a commutative unipotent k-group. Then H2(k, A) = 0.

Proof. Since chRr(k) = 0, A is isomorphie to a direct produet of a number of copies
of the additive group Ga. We have H 2 (k, Ga) = 0, hence H 2 (k, A) = 0, which was to be
proved.

4.4. Proof of Propo"ition 4.1. We proceed by induction. We assume that Cu i- 1.
Let Ä be the center of Gu. Since GU is unipotent, we have dimÄ > °(cf. e.g. (Hul,
17.4 and 17.5). The subgroup A is normal in G and invariant under all the semialgebraic
automorphisms of G. Set G' = {;/ A, then by 1.5 we get a k-kernel L' = (G', 1"') and a
canonical map v:H2 (k,L) -+ H2(k,L' ). We have dim(G')U < dimGu. We therefore may
and will assume that Proposition 4.1 holds for L'.

Let." E H 2 (k, L) be a cohomology dass, and suppose that r(17) is neutral. We roust
prove that fJ is neutral. Since Proposition 4.1 bolds for L', the image 17' = v( f7) of fJ in
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H2(k, L') is neutral. Write 1] = CI(/, u), 1]' = CI(/', u'), where I' and u' are the maps
defined by I and u, respectively. Since TI' is neutral, we may choose the cocycle (I, u) in
such a way that the cocycle (I', u') is neutral, i.e u' = 1 and I' is a homomorphism. Then
()" I-J. IcrlA is a homomorphism; it defines a k-form A of Ä. We can regard u aB a map
r -+ A(k), and one can check that u E Z2(k, A). By Lemma 4.3 CI(u) = 0 in H 2 (k, A),
i.e there exists a continuous map c: r -+ A(k) such that

Then c . (I, u) is a neutral cocycle, and thus 1] = CI(/, u) is neutral. The proposition is
proved.

5. Abelianization. In this section for a connected k-kernel L = (G, "') we define
an abelian group H~b(k,L) and an abelianization map ab2

: H 2 (k, L) -+ H~b(k,L) which
takes the neutral cohomology classes to zero. We prove that when k is a local field or a
number field, an element 1] E H 2 (k, L) is neutral if and only if ab2 (1]) = O.

5.1. First we assurne that L = (G, K) is a reductive k-kernel. Let (Jss, Gse and
p: Glte -+ G be as in Notation. Let Z be the center of G, 2(S9) the center of G9tJ, and z(se)
the center of Gse. Note that K, defines k-forms Z of Z, Z(ltlt) of Z(ss), and Z(sc) of Z(se).

The homomorphism

(5.1.1) p: Z(se) -+ Z

is de:6.ned over k.
We regard the homomorphism (5.1.1) as a short complex of abelian k-groups

(5.1.2) 1~ Z(lte)~Z --+ 1

where Z is in degree 0 and z(se) is in the degree -1. For i ;::: -1 we set

H~b(k,L) = Illi (k, z(se) -+ Z)

(the Galois hypercohomology group of k with coefficients in the complex (5.1.2)). In thiB
paper we are interested in H~b(k,L).

5.2. With the assumptions and notation of 5.1 consider the short exact sequence of
complexes

1 --+ (1 -+ Z) --+ (z(se) -+ Z) --+ (z(se) -+ 1) --+ 1

and the associated hypercohomology exact sequence

(5.2.1)

Set
H~(k, L) = H2(k, Z)/ p.H2(k, Z(5C»).

We call H~(k, L) the quotient cohomology group. The exact sequence (5.2.1) defines an
embedding H~(k, L) -+ H~b(k,L).

To define the abelianization map we need
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LEMMA 5.3. Let L = (a, ,,) be a connected reductive k-kernel. Let '1,1]' E H2(k, L)
be two neutral element". Then with the notation 0/ 5.1

Tl' - 1] E im [P.: H2(k, Z(IIC» -t H2(k, Z)].

Proof Hy Lemm~ 2.2 1] = n(G) for Borne form G of G. Hy Proposition 2.3

1]' - TJ E im [6: HI(k, Gad
) -t H 2 (k;Z)].

From the commutative di~gram with exact rows

1 I Z(IIC) I GIIC. I Gad I 1

(5.3.1)

1 Z ----+1 G
11

----+1 Gad ---tl 1

we abtain the commutative diagram

(5.3.2)

HICk, Gad) 6 H2(k, Z)

We see that im 6 = im (P. 06'). Thus 1]' - TJ E im p., which was to be proved.

5.4. The a~elianization map. Let L = (G, ~) be a connected reductive k-kerne1. We
define the abelianization map

H 2 (k,L) -t H~(k,L) -t H:b(k,L)

as follows.

Let 1] E H 2 (k, L). By Proposition 3.1 there exists a ne~tral element 1]' E H2 (k, L).
We set

ab2 (1]) = (TJ - 1]') mod p.H2(k, Z(sc» E H~(k, L) C H:b(k, L).

H 1]" E H 2 (k, L) is another neutral element, then by Lemma 5.3 TJ! - TJ" E p.(H2 (k, Z(lIe»),
and we see that the image of 1] in H:b(k, L) does not depend on the choice of TJ'. Thw the
map ab2 is defined correctly.

The map ab2 takes the neutral cohomology c1asses to O. The image of ab2 is all the set
H~(k, L). Indeed, for any TJz E H2(k, Z) there exists '1 E H2(k, L) such that 7] - 1]' = TJz.

5.5. The abeli~nization map (cont.). Let L = (0, ,,) be any connected k-kernel, not
necessarily reductive. We set

H~b(k,L) = H~b(k, Lred)

and define the abelianization map as the composition

ab2
: H2 (k, L) --+ H2 (k, Lred)~H:b(k, Lred

) = H~b(k, L)

It is clear that ab2 takes the neutral elements to O. -

The main result of the present paper is
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THEOREM 5.6. Let k iJ a loeal field (archimedian or not) or a number field. Let
L = (G, K;) be a eonneeted k-kernel. Then an element 1] E H2 (k, L) ü neutral i/ and only
i/ ab2 (1]) = O.

To prove Theorem 5.6 we need

LEMMA 5.7. Let G be a 3emiJimpie 3imply eonneeted gro'Up over a field k 0/ eharae·
teri3tie 0, and let Z be the center 0/ G. 1/ k i3 either a loeal field or a number field, then
the eonneeting map b: H 1 (k, G&d) -. H2(k, Z) i3 Jurjeetive.

Proof. In the ease of a non-archimedian Ioeal field see Kneser [Kn1] (see also [PR],
§6.5, Theorem 21). In the real ease the assertion follows from the existence of a maximal
torus T c G such that H 2 (k, T) = 0, which was proved by Harder [HaI], Lemma 4.2.3
(see also [PR], §6.5, Lemma 18). In the case of a number field see [Kn2], eh. 5, Theorem
1.7, p. 77 (see also [Sa], 4.5, and [PR], §6.5, Theorem 20).

5.8. Proof 0f Theorem 5.6. If 1] E H 2 ( k, L) is neutral, then ab2 ( 1]) = O. We must
prove that if ab2

( 1]) = 0, then 1] is neutral. By Proposition 4.1 it suffiees to prove the
assertion for L red

. We therefore may and will assume that L is reductive.

Let "l E H2 (k, L) be an element such that ab2 ("l) = O. By Proposition 3.1 and Lemma
2.2 there exists a neutral dass n(G) in H 2(k, L), where G is a k-forrn of G. Then

"l- n(G) = P... (X)

for some X E H2(k, Z(SC)). By Lemma 5.7 there exists ~ E H2(k, Gad) such that X = b'(~)

with the notation of the commutative diagram (5.3.2). Then "l - n(G) = 8(e). We see
that "l - n (G) E im 8, thus by Proposition 2.3 7J is neutral (namely, 1] = n ( tP G), where
'ljJ E Zl(k, ead) is a eocyc1e representing e). The theorem is proved.

6. A Hasse principle far H2. In this section L is a connected k-kernel, where k is
a non-archimedian Ioeal field or a number field. We apply Theorem 5.6 to prove a Hasse
principle for non-abelian H 2 .

6.1. Let L = (G, K) be a connected k-kernel. We set ä tor = ä red /äss . The k-group
ä tor is a torus, and the homomorphism K, defines a k-forrn Gtor of ä tor . We have a canonical
map t: H2(k, L) -+ H2(k, Gtor).

Let Z, Z(M) and Z(sc) be as in 5.1. From the short exact sequence of complexes

1 --+ (Z(sc) -. Z(88») --+ (Z(SC) -. Z) --+ (1 --t Gtor ) --+ 1

we obtain the hypercohomology exact sequence

(6.1.1) H 3(k, ker p) --+ H:b(k, L)~H2(k,Gtor
),

because

EI2 ( k, Z (8C) -. Z (85») = H 3 ( k, ker p)

EI2 (k, Z(sc) -. Z) = H~b(k, L).

11



One ean "check that the eomposition map

(6.1.2)

is the eanonieal map t: H 2 (k, L) -+ H 2 (k, Gtor).

We eonsider the ease of a non-archimewan Ioeal fieId k.

PROPOSITION 6.2. Let L = (C, IC) be a connected k-kern.el, where k ü a non-arehimedian
loeal jield. Then an element TJ E H2(k, L) i" neutral il and only il t(7]) = 0, where
t: H2(k, L) -+ H 2 (k, Gtor) Ü the canonical map.

Proof The group ker p is finite. Since k is a non-arehimedian Ioeal fieId, we have
H 3 (k, ker p) = 0 (cf. [Se], 11-5.3, Prop. 15). From (6.1.1) we see that the homomorphism
tab is injective.

Let TJ E H2(k, L). H'7 is neutral, then t('7) = O. ConverseIy, suppose that t(TJ) = O.
Sinee t = tab 0 ab2 and t..b is injeetive, we conclude that ab2 (1]) = O. By Theorem 5.6 1] is
neutral. The proposition is proved.

THEOREM 6.3. Let L = (C, K) be a eonneeted k.kernel, where k i.! a non·arehimedian
loeal jield. A""ume that at lea"t one 01 the lollowing hold.!:

(i) Gtor i" k-ani"otropie;

(ii) ätor = 1;

(iii) "ä i" "emi"imple.

Then any element '7 E H 2 (k, L) i" neutral.

Proo/' H (i) holds, then by the Tate-Nakayama duality, (cf. [Se], 11-5.8, or· [Mi], 1­
2.4) H 2 (k, Gtor) = 0, and the assertion follows from Proposition 6.2. It is clear that
(iii)~(ii)~(i). The theorem is proved.

Remark 6.3.1. Theorem 6.3 in the case (iii) was proved by Douai [Do2].

COROLLARY 6.4. Let k be a nOll-archimedian loeal jield, and let

be a "hort exact "equence oj. k-group". 11 GI i" connected and Glor = 1, then the map
HI(k, G2 ) -+ H 1 (k, G3 ) ü "urjective.

Proof. Let ~ E Hl(k, G3 ), e= CI(1/J). To the eoeycle 1/J E Zl(k, G3 ) Springer ([SpI],
1.20) associates a k-kernel (G1h KtJ1) and a eohomoIogy class c(t/J) E H 2(k, G1k , "tJ1) which
is the obstruetion to lifting ~ to to Hl (k, G2 ). Since G~or = 1, by Theorem 6.3 c(1/J) is
neutral, henee € comes from Hl(k, G2 ). The eorollary is proved.

We now pass to the esse of a number field k.

12



PROPOSITION 6.5. Let k be a number jield, and let L = (G, K) be a connected k~kernel.

Let Tl E H 2 (k, L) be an element, which i3 locally neutral at the infinite placeJ, i.e. 3uch
that the localization locv ("") E H2 ( kv, L) ü neutral for any infinite place v of k. Then .,., ü
neutral if and only if t(.,.,) = O.

Proo/. By [Bol], Prop. 4.9, the group H~b(k,L) is the fiber product of H2 (k, Gtor) and
nH~b(kv, L) over nH2 (kv, Gtor), where n denotes product over the set of infinite places
00 00 00

of k. If.,., is neutral, then t(1]) = O. Conversely, suppose that t(1]) = O. Then the image of
ab2 (Tl) in in H2 (k, Gtor) is zero (because t = tab 0 ab2 ), and its image in nH~b (k v , L) is

00

also zero (because 1] is locally neutral at the infinite places). We conclude that ab2 (f]) = O.
By Theorem 5.6 1] is neutral. The proposition is proved.

6.6. Let T be a k-torus. The second Shafarevich-Tate group rn 2 is defined by

v

where v runs over the set of all places of k. A qua3i~trivial tortJ,J is a torus T such that its
character group X(Tk ) adrnits a r-stable basis. A torus T is quasi-trivial if and only if it
is a product of tori of the form RK/kGm , where !</k is a finite extension.

LEMMA 6.7. Let T be a k-tOTU.!. AJsume that at lea.!t one of the /ollowing hold.!:

(i) T is a q'Uasi~trivial k~tOTU3;

(ii) Tk u i3 kv~anüotropic for some place v of kj

(iii) T 3plit3 over a cyclic extenJion K / k j

(iv) T i.! one~dimensional.

Then III2 (k, T) = O.

Proo/. For the cases (i) and (ii) see [Sa], 1.9. For the c~e (iii) see [Bo2], 3.4.1. The
assumption (iv) implies (iii).

THEOREM 6.8 (A Hasse principle). Let k be a number field and L = (G, IC) a connected
k-kernel. A3.!ume that at lea.!t one of the following holds:

(i) IlI2 ( k, Gtor) = Oj

(ii) The k-tOTUJ Gtor Ü a.! in Lemma 6.7;

(iii) etor = 1;

(iv) e iJ 3emüimple.

Then an element 1] E H 2 (k, L) iJ neutral if and only if its localization3 locv Tl E H'J(kv , L)
are neutral for all the place3 v of k.

Proo/. If Tl is neutral, then locv 1] is neutral for any v. Conversely, suppose that locv TJ

is neutral for any v. Then locv t(Tl) = 0 for any v, hence t(Tl) E III 2(k, Gtor). Under any of
the assumptions (i-iv) we have III 2 (k, Gtor) = O. Thus t(1]) = O. By Proposition 6.5 TJ ia
neutral. The theorem is proved.
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COROLLARY 6.9. Let

be an exact Jequence of algebraic grOUpJ over a number fidd k. AJJume that GI iJ connected
and that dirn Glor ::; 1. Let eE H I (k, Ga) be a cohomology claJJ. /f for any place v 01 k,
the localization locv ~ E H1(kv , Ga) comeJ from H1(k v , G2 ), then ecomeJ /rom Hl(k, G 2 ).

Proof. Similar to that of Corollary 6.4.

7. Rational points in homogeneous spaces. In this section we apply Theorem
6.8 to prove a Hasse principle for homogeneous spaces. Our proof uses the H88se principle
for H 1 of a sirnply connected group.

7.1. Let H be a simply connected semisimple k-group. Let X be a right homogeneous
space of H. This means that we are given a right algebraic action (defined over k)

XxH~X, (x, h) 1-+ X • h

such that the action of H(k) on X(k) is transitive.

We are iriterested whether X has a rational point. Let x E X(k) be a k-point. Let
{; be the stabiliser of x in HI: (we write'{; = Stab(x)). The subgroup {; of HJ: is not in
general defined over k.

The homogeneous spa.ee X defines a k-form Gtor of {;tor. Moreover, X defines a
k-kernel L = (0, K). We construct L 8S follows.

For u E r = Gal(k/k) write

(7.1.1) "x = x· her

where her E H(k). Such an element her is not uniquej it ia unique modulo left multiplication
by an element of GCk). We can choose elements her in such a way that the map u 1-+ her ia
continuous. The u-semialgebraic automorphism of HJ:

takes G to itself. We will regard J" as a u-semialgebraic automorphism of G. Then the
map f: r ~ SAut G is continuous, the composition

/ - -
K: r--+SAut G --+ SOut G

is a continuous homomorphism, and L = (0, K) is a k-kernel.

14



THEOREM 7.2. Let k be a non-archimedian local field. Let H be a "imply connected
8emi"imple k-group, and let X be a right homogeneou8 "pace of H. A""ume that the
"tabilizer G of a point x E X(k) i8 connected, and that at lea"t one of the following hold,,:

(i) The k-torus Gtor ilI k-ani80tropicj

(ii) ator = 1j

(iii) G i" 8emi8imple.

Then X ha8 a k-point.

THEOREM 7.3. Let k be a number field. Let H be a "imply connected "emi"imple
k-group, and let X be a right homogeneou8 "pace of H. A"8ume that the "tabilizer ä 01 a
point x E X(k) i" connected, and that at lea"t one of the following hold,,:

(i) ill2 (k, Gtor) = 0,.
(ii) The toro" Gtor qua"i-trivialj

(iii) Gtor i" kv-anillotropic fOT 80me place v of kj

(iv) Gtor "plit" over a cyclic extension 01 k;

(v) etor ilI one-dimen8ional;

(vi) Gtor = 1j

(vii) G ilI "emisimple.

Then the Ha"8e principle hold" for X, i.e if X(kv) -:f. 0 for any place v of k, then X(k) i= 0.

Remark 7.3.1. Theorem 7.3 was proved in [Bo2] under slightly more general hypothe­
ses on H and G (e.g. H may be adjoint) but with the additional non-necessary assumption
that the pair (Hk' G) admits a k-forrn (Ho, Go).

COROLLARY 7.4 ([Ha2] , 3.3). 11 X i" a projective variety, then the Ha""e principle
hold8 for X.

Proof. Since X is projective, G is a parabolic subgroup of Hk' Harder [Ha2] shows
that then Gtor is a quasi-trivial torus (cf. also [B02], 3.7). Now the corollary follows from
Theorem 7.3, case (ii).

COROLLARY 7.5 ([Ra)). Suppo"e that X ü a symmetric homogeneou8 "pace of an
ab"olutely simple k-group H, i.e. G ü the group of invariant8 of an involution of Hk'
Then the Hasse principle hold" fOT X.

Proof. In this case dirn (;tor :::; 1 (cf. [Ra] or [Bo2)), and the corollary follows from
Theorem 7.3, cases (v) and (vi).

7.6. To prove Theorems 7.2 and 7.3 we construct an element 7](X) E H2(k, G, K),
which is the obstruction to the existence of a principal homogeneous space over X (cf. also
[Sp1], 1.27).

A principal homogeneou" "pace 01 H over X is a pair (P, 0'), where P is a. right
principal homogeneous space of H and 0': P -+ X is an H-equivariant map (P and Q are
defined over k).
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H X has a k-point Xo, then there exists a principal homogeneous space (P, a) over X.
Indeed, we take P = H, a(h) = Xo . h. ConverseIy, if there exists a principal homogeneous
space (P, a) over X, and P has a k-point Po, then X has a K-point Xo = a(po).

We construct the cohomology dass 7](X) E H2(k, L) mentioned above. Let x E X(k)
be a. k-point. With the notation of 7.1 we set

F = H Jn Ci(h) = x . h for h E H I: = F.

Then (F, ä) is a principal homogeneous space over XI:. We try to de1lne (P, Ci) over k.
For u E r set

. . -
where hf7 is as in (7.1.1). Then J/tT is a u..;semialgebraic H:k-equivariant automorphism of
P, compatible with the u-semialgebraic automorphism u. of XI:. Set

,\ -1 -1 A t P-tT,T = J/tTT 0 J/T 0 J/tT Eu,

h tTh-1 h- 1 G-(k-)UtT,T = f7T' T' tT E .

Let ! be the map defined in 7.1, then one can check that the pair (/, u) is a 2-cocyde,
(/, u) E Z2(k, L), where L = (0, K). We set f](X) = Cl(!, u) E H 2(k, L).

We show that the cobomology class f](X) is neutral if and only if the pair (P, ö) can
be defined over k. Indeed, let (P, a) be a k-form of (F, Ci). We can take vtT(p) = f7 p. Tben
the map v: r -+ SAut P is a bomomorphism, hence '\tT,T(h) = h and UD',T = 1 for any
u, T E r. Thus the dass f](X) = Cl(!, u) is neutral. Conversely, if f](X) is neutral, then
we can define the elements (h tT )tTEr in such a way that U tT T = 1 for any u, T E r. Then v
is a homomorphisffi? and this homomorphism defines a k-form (P, a) of (P, Ci).

Remark 7.6.1 In the language of gerbs [Gi] (see also [DM], Appendix), the fibered
category 9x of such (P, a) is a gerb, and f](X) is the class of 9x in H~(k, L). The gerb
9x is neutral if and only if there exists a. pair (P, 0:) defined over k.

Now we can prove theorems 7.2 and 7.3. To prove Tbeorem 7.2 we need

LEMM A 7.7. Let k, Hand X be·a" in Theorem 7.2. 1/ there exüt" a principal homo·
geneou" "pace (~, a) over X, then X ha" a k-point.

Pro0/. By Kneser's theorem ([Kn1]), the principal homogeneous space P of a simpIy
connected group H over a non-archimedian Ioeal field k has a k-point Po, Then Xo = O:(Po)
is a k-point of X. The lemma is proved.

7.8. Proolol Theorem 7.2. Let f](X) E H 2 (k, L) be the cohomology dass defined in
7.6. By Theorem 6.3 any element of H2(k, L) is neutral, thus f](X) is neutral. It follows
tbat there exists a principal homogeneous space (P,o:) over X (see 7.6). By Lemma 7.7
X(k) f; 0. The theorem is proved.

To prove Theorem 7.3 we need
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LEMMA 7.9. Let k, H, X and G be aJ in Theorem 7.3. Suppo$e that X(k ll ) i= 0
for any infinite place v of k, and $uppOJe that there exist$ a principal homogeneo'U~ $pace
(P, a) over X. Then X(k) # 0.

Proof. Set G = AutX,H P. One can easily see that G is an algebraic group defined
over k, and that Gf; is isomorphic to ä. Thus G is connected.

We write Voo for the set of the infinite places of k. For any v E Voo the homogeneous
space X has a kv-point. It follows that there exists a principal homogeneous space (Pu, ov)
of H kt) over X kt) (defined over kv ), such that Pv is trivial (Le. has a kv-point).

For any extension K/k, the isomorprusm dasses of K-fonns of (P, a) correspond to
elements of H1(K, G). In particular, for v E Vco the ku-form (Pv , a v ) of (P, a) defines a
cohomology dass ~v E H1(k v , G).

Consider the map

co

Since G is connected, the map locco is surjective ([HaI], 5.5.1; see also [PR], §6.5, Prop.
17). Hence there exists an element ~ E H I (k, G) such that locv ~ = ~v for any v E Vco' In
other words, there exists a form (P., 0.) of (P, a) such that (P., a.)kv ~ (Pv,ov)' It is
dear that p. has a kv-point for any v E Vco'

By the Hasse principle for H 1 of simply connected groups (Kneser-Harder-Chernousov,
cf. [HaI] and [PR], Ch. 6), p. has a k-point PO. We set Xo = a.(po), then Xo E X(k). The
lemma is proved.

7.10. Proof of Theorem 7.3. Let 7](X) E H 2 (k, L) be the cohomology dass defined
in 7.6. For any place v of k there exists a kv-point Xv E X( kv), and therefore a princi­
pa! homogeneous space (Pv,O:'v) of Hkt) over Xkt)' It follows that the cohomology dass
locv 'leX) E H 2 (k v , L) is neutral for any v. By Theorem 6.8 'leX) is neutral. Trus means
that there exists a principal homogeneous space (P, a) of H over X. By Lemma 7.9 X has
a k-point. The theorem is proved.

Appendix. Explicit formulas. Here we write down explicit forrnulas in terms of
cocydes for the abelianization maps abi: Bi -+ H~b (i = 0,1,2). The maps

were defined (indirectly) in [Bol]. The map

was defined (also indirectly) in Section 5.
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Let G be a k-group. The k-group (J'c and k-homomorphism p: (;Bc ~ G are defined
~n Notation. Consider the complex Z(ac)2.....z of abelian k-groups, where Z(ac) and Z are
the centers of (;8c and G, respectively. We set

We define abo. We have

G(k) = p(CSC(k)) . Z(k).

Let 9 E G(k) = HO(k, G). We may write 9 = P(9')· z, where 9' E GSC(k), z E Z(k). Set

CPa = (g')-1 . ag' for er E r.

Then CPa E Z(lIc)(k), and the pair (cp, z) is a O-cocycle, (cp, z) E ZO(k, Z(lIc) ~ Z). We set

We define abI. Let eE Hl (k, G), e= CI(?jJ), tf; E Zl (k, G). Write

- - \

where the maps t/J': r ~ GSC(k) and z: r ~ Z(k) are continuous. Set

Then Aa,T E Z(sc)(k), and the pair (-X, z) is a 1-cocycle, (.A, z) E ZI(k, Z(sc) ~ Z). We set

Now let L = (C, K:) be a k-kernel. See Notation and 5.1 for the definitions of C, p,
and the complex of k-groups (Z(lIC) ~ Z).

We define ab2
• Let Tl E'H2(k, L', Tl = CI(f, u). Write

where the maps u: r ,x r ~ ()sC(k) and z: r x r ~ Z(k) are continuous. Set

( ' )-1 (' )-1 , f, (a , )= u . u ·u· UXa,T,v a,T aT,V a,TV a T,V'

Then Xa,T,v E Z(sC)(k), and the pair (X, z) is a 2-cocycle, (X, z) E Z2(k, Z(sc) ~ Z). We
set
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