Abelianization of the Second Non-Abelian Galois Cohomology

Mikhail V. Borovoi

Institute for Applied Mathematics Khabarovsk Branch Kim Yu Chena 65 Khabarovsk 680063

USSR

Max-Planck-Institut für Mathematik Gottfried-Claren-Straße 26 D-5300 Bonn 3

Germany

· · · ·

.

.

Abelianization of the Second Non-Abelian Galois Cohomology

MIKHAIL V. BOROVOI

Introduction. Let k be a field of characteristic 0, \bar{k} an algebraic closure of k, \bar{G} an algebraic group over \bar{k} . Let $L = (\bar{G}, \kappa)$ be a k-kernel (other terms: k-band, k-lien); see [Sp1] or 1.2 below for definition. In [Sp1] (see also 1.3 below) the second non-abelian Galois cohomology set $H^2(k, L)$ (or $H^2(k, \bar{G}, \kappa)$) was defined. (In a more general setting $H^2(k, L)$ was defined in [Gi].) The set $H^2(k, L)$ has a distinguished subset of *neutral* elements. Obstructions to some constructions over k lie in $H^2(k, L)$. A construction is possible if and only if the obstruction is trivial.

The set of neutral elements in $H^2(k, L)$ can be large. In particular, if k is a nonarchimedian local field or a totally imaginary number field, and the group \overline{G} is connected semisimple, then, as Douai [Do2] has proved, all the elements of $H^2(k, L)$ are neutral, though the set $H^2(k, L)$ may contain more than one element. It therefore would be convenient to define a map from $H^2(k, L)$ to some abelian group, such that the image of an element $\eta \in H^2(k, L)$ is zero if and only if η is neutral. This is just what we do here when k is a local field or a number field. We use this map to prove a Hasse principle for $H^2(k, L)$ and a Hasse principle for homogeneous spaces.

In [Bo1], for a connected group G over k we defined abelian groups $H^i_{ab}(k,G)$ for $i \geq -1$, and abelianization maps

$$ab^i: H^i(k,G) \to H^i_{ab}(k,G)$$

for i = 0, 1. We proved that if k is a local field or a number field, then the map ab^1 is surjective.

In the present paper we define ab^2 . Let $L = (\bar{G}, \kappa)$ be a connected k-kernel (i.e. \bar{G} is connected). After some preparations in Sections 1-4, we define in Section 5 the abelian Galois cohomology group $H^2_{ab}(k, L)$ (which is an abelian group), and the abelianization map

$$ab^2: H^2(k,L) \to H^2_{ab}(k,L)$$

which takes the neutral elements to zero. Our main result is

THEOREM 0.1 (Theorem 5.6). Let k be a local field or a number field, and L a connected k-kernel. A cohomology class $\eta \in H^2(k, L)$ is neutral if and only if $ab^2(\eta) = 0$.

In Section 6 we use Theorem 0.1 to show that in some cases the following Hasse principle holds for $H^2(k, L)$: an element $\eta \in H^2(k, L)$ is neutral if and only if its localizations $loc_v(\eta) \in H^2(k_v, L)$ are neutral for all the places v of k. A particular case of our results is

THEOREM 0.2 (Consequence of Theorems 6.3 and 6.8). Let $L = (\bar{G}, \kappa)$ be a connected semisimple k-kernel (i.e. \bar{G} is connected semisimple).

(i) ([Do2]) If k is a non-archimedian local field, then any element $\eta \in H^2(k,L)$ is neutral.

(ii) If k is a number field, then an element $\eta \in H^2(k, L)$ is neutral if and only if $loc_v(\eta)$ is neutral for any archimedian place v of k.

In Section 7 we use the Hasse principle for $H^2(k, L)$ to give a new proof of most of the results of [Bo2] on the Hasse principle for homogeneous spaces. In particular, we give new proofs of Harder's result ([Ha2], 3.3) on the Hasse principle for projective homogeneous spaces, and of Rapinchuk's result ([Ra]) on the Hasse principle for symmetric homogeneous spaces.

In a sense, the map ab^2 is defined in Section 5 indirectly. In the Appendix we give an explicit formula (in terms of cocycles) for the map ab^2 , and also explicit cocyclic formulas for the maps ab^0 and ab^1 .

This paper emerged as a result of my correspondence with Lawrence Breen, in the course of which Breen defined the abelianization map $ab^2: H^2(k, G) \to H^2_{ab}(k, G)$ (using the cohomology theory of crossed modules of gr-categories, developped in [Br]). I am deeply grateful to him. It is a pleasure to thank Pierre Deligne for a series of valuable discussions on the Hasse principle for homogeneous spaces. It should be mentioned that when writing this paper, I was inspired by the paper [Ra] of Rapinchuk, who practically proved the Hasse principle for $H^2(k, G)$ when G is a semisimple group.

This paper was conceived when I was at the Institute for Advanced Study (Princeton), and was written when I was at the Max-Planck-Institut für Mathematik (Bonn). I am grateful to both Institutes for support and exellent working conditions.

Notation.

k is a field of characteristic 0, \bar{k} is a fixed algebraic closure of k, $\Gamma = \text{Gal}(\bar{k}/k)$.

 \overline{G} is a \overline{k} -group, G is a k-group, sometimes G is a k-form of \overline{G} .

Let G be a k-group. Then

 G° is the connected component of G;

 G^{u} is the unipotent radical of G° ;

 $G^{\text{red}} = G/G^{\text{u}}$ (this group is reductive);

 G^{ss} is the derived group of G^{red} (it is semisimple);

 G^{sc} is the universal covering of G^{ss} (it is simply connected);

 $G^{\text{tor}} = G^{\text{red}}/G^{\text{ss}}$ when G is connected (then G^{tor} is a k-torus).

Following Deligne we define the composition

$$\rho: G^{\mathrm{sc}} \to G^{\mathrm{ss}} \to G^{\mathrm{red}}.$$

When G is reductive we write G^{ad} for G/Z, where Z is the center or G.

Let \bar{G} be a \bar{k} -group. We define \bar{k} -groups \bar{G}^{red} , \bar{G}^{sc} , \bar{G}^{sc} and, when \bar{G} is connected, a \bar{k} -group \bar{G}^{tor} , as above. We also define $\bar{\rho}: \bar{G}^{\text{sc}} \to \bar{G}^{\text{red}}$.

Let $L = (\bar{G}, \kappa)$ be a k-kernel (see 1.2 for the definition). We say that the kernel L is connected (reductive, semisimple, and so on) if \bar{G} is so.

Let ψ be a cocycle. We write $Cl(\psi)$ for the cohomology class of ψ .

1. Kernels and H^2 . In this section we recall the definition of the second non-abelian Galois cohomology (cf. [Sp1]).

1.1. Let k be a field of characteristic 0, \bar{k} an algebraic closure of k, and \bar{G} an algebraic group over \bar{k} .

Consider the canonical morphisms

$$\bar{G} \xrightarrow{w} \operatorname{Spec} \bar{k} \longrightarrow \operatorname{Spec} k,$$

where w is the structure morphism. Let $\sigma \in \Gamma = \operatorname{Gal}(\bar{k}/k)$. A σ -semialgebraic automorphism of \overline{G} over k is an automorphism s of \overline{G} as a group scheme over k, such that s is compatible with σ , i.e. $w \circ s = \beta_{\sigma} \circ w$ where β_{σ} is the automorphism of Spec \overline{k} induced by σ . A semialgebraic automorphism of \overline{G} over k is a σ -semialgebraic automorphism for some $\sigma \in \Gamma$; then such σ is unique.

Let $\operatorname{SAut}_k \overline{G}$ (or just $\operatorname{SAut} \overline{G}$) denote the group of semialgebraic automorphisms of \overline{G} over k. As usual, $\operatorname{Aut} \overline{G}$ denotes the group of algebraic automorphisms of \overline{G} over \overline{k} . We have an exact sequence

(1.1.1)
$$1 \longrightarrow \operatorname{Aut} \bar{G} \longrightarrow \operatorname{SAut} \bar{G} \longrightarrow \Gamma$$
.

A k-form G of \overline{G} defines a continuous homomorphism

(1.1.2)
$$\sigma \mapsto \sigma_* \colon \Gamma \longrightarrow \text{SAut } \bar{G}.$$

which is a splitting of (1.1.1).

Let \overline{Z} be the center of \overline{G} . Then $\operatorname{Int} \overline{G} = \overline{G}(\overline{k})/\overline{Z}(\overline{k})$. The subgroup $\operatorname{Int} \overline{G}$ is normal in SAut \overline{G} . Set

Out
$$\bar{G} = \operatorname{Aut} \bar{G} / \operatorname{Int} \bar{G}$$

SOut $\bar{G} = \operatorname{SAut} \bar{G} / \operatorname{Int} \bar{G}$

We have an exact sequence

$$(1.1.3) 1 \longrightarrow \operatorname{Out} \bar{G} \longrightarrow \operatorname{SOut} \bar{G} \xrightarrow{q} \Gamma$$

1.2. A k-kernel (k-band, k-lien) is a pair $L = (\bar{G}, \kappa)$, where \bar{G} is a \bar{k} -group and κ is a splitting of (1.1.3), i.e. a continuous homomorphism $\kappa: \Gamma \to \text{SOut } \bar{G}$ such that $q \circ \kappa$ is the identity map of Γ .

Let G be a k-group. Then G defines a homomorphism

$$\kappa_G: \Gamma \longrightarrow \operatorname{SAut} G_{\overline{k}} \longrightarrow \operatorname{SOut} G_{\overline{k}},$$

and thus a k-kernel $L_G = (G_{\tilde{k}}, \kappa_G)$.

1.3. For a k-kernel $L = (\bar{G}, \kappa)$ we define the second Galois cohomology set $H^2(k, L) = H^2(k, \bar{G}, \kappa)$ in terms of cocycles. For a definitions in terms of extensions see [Sp1].

A 2-cocycle is a pair (f, u) of continuous maps

$$f: \Gamma \to \operatorname{SAut} \overline{G}, \ u: \Gamma \times \Gamma \to \overline{G}(\overline{k})$$

such that for any $\sigma, \tau, \upsilon \in \Gamma$ the following holds:

- (1.3.1) $\operatorname{int}(u_{\sigma,\tau}) \circ f_{\sigma} \circ f_{\tau} = f_{\sigma\tau}$
- (1.3.2) $u_{\sigma,\tau v} \cdot f_{\sigma}(u_{\tau,v}) = u_{\sigma\tau,v} \cdot u_{\sigma,\tau}$
- (1.3.3) $f_{\sigma} \mod \operatorname{Int} \bar{G} = \kappa(\sigma)$

Let $Z^2(k, L)$ denote the set of 2-cocycles with coefficients in L. The group $C(k, \bar{G})$ of continuous maps $c: \Gamma \to \bar{G}(\bar{k})$ acts on $Z^2(k, L)$ on the left by

$$c \cdot (f, u) = (f', u')$$

where

(1.3.4)
$$f'_{\sigma} = \operatorname{int}(c_{\sigma}) \circ f_{\sigma}$$

(1.3.5)
$$u'_{\sigma,\tau} = c_{\sigma\tau} \cdot u_{\sigma,\tau} \cdot f_{\sigma}(c_{\tau})^{-1} \cdot c_{\sigma}^{-1}$$

The quotient set $H^2(k,L) = C(k,\tilde{G}) \setminus Z^2(k,L)$ is called the second cohomology set of k with coefficients in L. If $(f,u) \in Z^2(k,L)$, we write Cl(f,u) for the cohomology class of (f,u) in $H^2(k,L)$.

Remark 1.3.1. Our notation slightly differs from that of [Sp1], who writes 2-cocycles , in the form (f,g) where $g_{\sigma,\tau} = u_{\sigma,\tau}^{-1}$.

1.4. A neutral 2-cocycle is a cocycle of the form (f,1). A neutral cohomology class in $H^2(k,L)$ is the class of a neutral cocycle.

The set $H^2(k, L)$ does not necessarily contain a neutral element (for example, it may be empty). On the other hand, $H^2(k, L)$ may contain more than one neutral element.

Let G be a k-group. We write $H^2(k,G)$ for $H^2(k,L_G)$. The set $H^2(k,G)$ contains a canonical neutral element $Cl(\sigma \mapsto \sigma_*, 1)$, where σ_* is as in (1.1.2).

1.5. Let $L = (\bar{G}, \kappa)$ be a k-kernel, and let $\bar{N} \subset \bar{G}$ be a normal \bar{k} -subgroup. Assume that \bar{N} is invariant under all the semialgebraic automorphisms of \bar{G} . Set $\bar{G}' = \bar{G}/\bar{N}$.

Then the canonical homomorphism $\operatorname{SAut} \overline{G} \to \operatorname{SAut} \overline{G}'$ defines a homomorphism $\kappa': \Gamma \to \operatorname{SOut} \overline{G}'$, and $L' = (\overline{G}', \kappa')$ is a k-kernel. We have then a canonical map $H^2(k, L) \to H^2(k, L')$ which takes neutral elements to neutral elements.

1.6. Let $L = (\bar{G}, \kappa)$ be a k-kernel, and let \bar{Z} be the center of \bar{G} . Then κ defines a k-form Z of \bar{Z} . We say that Z is the center of L. The abelian group $H^2(k, Z)$ acts on the set $H^2(k, L)$ as follows:

$$\operatorname{Cl}(\varphi) \cdot \operatorname{Cl}(f, u) = \operatorname{Cl}(f, \varphi u)$$

where $\varphi \in Z^2(k, Z)$. This action is defined correctly.

LEMMA 1.7. Let Z be the center of a k-kernel L. If $H^2(k, L) \neq \emptyset$, then the action of $H^2(k, Z)$ on $H^2(k, L)$ is simply transitive.

In other words, the set $H^2(k, L)$ is either empty, or a principal homogeneous space of the abelian group $H^2(k, Z)$.

Proof. See [Sp1], 1.17 or [Mc], IV-8.8.

1.8. Let $\eta_1, \eta_2 \in H^2(k, L)$. By Lemma 1.7 there exists a unique element $\eta_Z \in H^2(k, Z)$ such that $\eta_2 = \eta_Z + \eta_1$. We write

$$\eta_Z = \eta_2 - \eta_1 \,.$$

2. Neutral cohomology classes. In this section we investigate the set of neutral cohomology classes in $H^2(k, \tilde{G}, \kappa)$.

2.1. Let \overline{G} be a \overline{k} -group. A k-form G of \overline{G} defines a homomorphism

$$f: \Gamma \to \operatorname{SAut} \overline{G}, \qquad f_{\sigma} = \sigma_*,$$

and thus a neutral 2-cocycle

 $(f,1) \in Z^2(k, \overline{G}, \kappa_G)$, where $\kappa_G(\sigma) = f_\sigma \mod \operatorname{Int} \overline{G}$.

 \mathbf{Set}

$$n(G) = \operatorname{Cl}(f, 1) \in H^2(k, \overline{G}, \kappa_G).$$

We call n(G) the neutral cohomology class defined by G.

Let

$$\psi: \Gamma \to (G/Z)(\bar{k}) = \operatorname{Int} \bar{G}$$

be a cocycle, where Z is the center of G. The twisted group $G' = \psi G$ defines a homomorphism $f': \Gamma \to \text{SAut } \overline{G}$, and we have $f'_{\sigma} = \psi_{\sigma} f_{\sigma}$. We see that

$$f'_{\sigma} \mod \operatorname{Int} \overline{G} = f_{\sigma} \mod \operatorname{Int} \overline{G} = \kappa_G(\sigma),$$

and therefore the neutral cohomology class $n(G') = \operatorname{Cl}(f', 1)$, defined by $G' = \psi G$, lies in $H^2(k, \overline{G}, \kappa_G) = H^2(k, G)$.

Now let $\varphi \in Z^1(k, G)$ be a cocycle with values in $G(\bar{k})$. One can easily check that $n(\varphi G) = n(G)$.

LEMMA 2.2. Let $L = (\overline{G}, \kappa)$ be a k-kernel, and let $\eta \in H^2(k, L)$ be a neutral class. Then we have $\eta = n(G)$ for some k-form G of \overline{G} . This k-form G is defined uniquely modulo twisting by a cocycle $\varphi \in Z^1(k, G)$.

Proof. Write $\eta = \operatorname{Cl}(f, 1)$. Then $f: \Gamma \to \operatorname{SAut} \overline{G}$ is a homomorphism, and it defines a k-form G of \overline{G} . We have then $\eta = n(G)$. We leave the rest to the reader.

The main result of this section is the following characterization of the neutral classes in $H^2(k, G)$.

PROPOSITION 2.3. Let G be a k-group, Z its center. An element $\eta \in H^2(k,G)$ is neutral if and only if

$$\eta - n(G) \in \operatorname{im} [\delta: H^1(k, G/Z) \to H^2(k, Z)],$$

where δ is the connecting (coboundary) map.

To prove the proposition we need two lemmas.

LEMMA 2.4. An element $\eta \in H^2(k,G)$ is neutral if and only if $\eta = n(\psi G)$ for some $\psi \in Z^1(k,G/Z)$.

Proof. If $\psi \in Z^1(k, G/Z)$, then ψG defines a neutral class $n(\psi G) \in H^2(k, G)$, see 2.1. Conversely, let $\eta \in H^2(k, G)$ be a neutral element. Write

 $n(G) = \operatorname{Cl}(f, 1), \qquad \eta = \operatorname{Cl}(f', 1), \qquad f'_{\sigma} = \psi_{\sigma} f_{\sigma},$

where $f_{\sigma} = \sigma_*$. By (1.3.3) $\psi_{\sigma} \in \operatorname{Int} G_{\overline{k}} = (G/Z)(\overline{k})$. It follows from (1.3.1) that

$$\psi_{\sigma\tau} = \psi_{\sigma} f_{\sigma} \psi_{\tau} f_{\sigma}^{-1} = \psi_{\sigma} \cdot {}^{\sigma} \psi_{\tau} .$$

Hence $\psi: \Gamma \to (G/Z)(\bar{k})$ is a cocycle. We have $\eta = \operatorname{Cl}(\psi f, 1) = n(\psi G)$. The lemma is proved.

LEMMA 2.5. Let G and Z be as in Proposition 2.3, and $\psi \in Z^1(k, G/Z)$. Then

$$n(\psi G) - n(G) = \delta(\operatorname{Cl}(\psi))$$

where δ is the connecting map.

Proof. Let $f: \Gamma \to \text{SAut } G_k$ be the homomorphism $\sigma \mapsto \sigma_*$ defined by G. Let $f': \Gamma \to \text{SAut } G_k$ be the homomorphism defined by the inner form ψG of G. Then $f' = \psi f$.

Let $\tilde{\psi}: \Gamma \to G(\bar{k})$ be a continuous map lifting ψ . By (1.3.4) and (1.3.5)

$$(\psi f, 1) = \tilde{\psi} \cdot (f, \lambda)$$
 where $\lambda_{\sigma, \tau} = \tilde{\psi}_{\sigma\tau}^{-1} \cdot \tilde{\psi}_{\sigma} \cdot f_{\sigma}(\tilde{\psi}_{\tau}).$

Since ψ is a cocycle, $\lambda_{\sigma,\tau} \in Z(\bar{k})$, and we may write

$$\lambda_{\sigma,\tau} = \tilde{\psi}_{\sigma} \cdot f_{\sigma}(\tilde{\psi}_{\tau}) \cdot \tilde{\psi}_{\sigma\tau}^{-1} \,.$$

By definition $Cl(\lambda) = \delta(Cl(\psi))$ (see [Se], I-5.6 for the definition of δ). Thus we have

$$\operatorname{Cl}(\psi f, 1) = \operatorname{Cl}(f, \lambda) = \operatorname{Cl}(\lambda) + \operatorname{Cl}(f, 1) = \delta(\operatorname{Cl}(\psi)) + \operatorname{Cl}(f, 1),$$

whence

$$n(\psi G) - n(G) = \operatorname{Cl}(\psi f, 1) - \operatorname{Cl}(f, 1) = \delta(\operatorname{Cl}(\psi)),$$

which was to be proved.

2.6. Proof of Proposition 2.3. Let $\eta \in H^2(k, G)$ be a neutral element. By Lemma 2.4 $\eta = n(\psi G)$ for some $\psi \in Z^1(k, G/Z)$. By Lemma 2.5 then $\eta - n(G) = \delta(\operatorname{Cl}(\psi))$.

Conversely, suppose that $\eta - n(G) \in \text{im } \delta$, i.e

$$\eta = \delta(\operatorname{Cl}(\psi)) + n(G)$$

for some $\psi \in Z^1(k, G/Z)$. By Lemma 2.5 $\eta = n(\psi G)$, hence η is neutral. The proposition is proved.

3. Connected reductive kernels. In this section we prove

PROPOSITION 3.1 ([Do1]). Let $L = (\bar{G}, \kappa)$ be a connected reductive k-kernel. Then $H^2(k, L)$ contains a neutral element.

To prove Proposition 3.1 we need the notion of based root datum.

3.2. Let G_0 be a split connected reductive group over k. Let $T \subset G_0$ be a split maximal torus, and B a Borel subgroup containing T. To the triple (G_0, B, T) we associate the based root datum $\Psi = \Psi(G_0, B, T)$ (cf. [Sp2], 2.3). By definition $\Psi = (X, X^{\vee}, \Phi, \Phi^{\vee}, \Pi, \Pi^{\vee})$. Here X is the character group of T, and X^{\vee} is the cocharacter group; Φ is the the root system of (G, T), and Φ^{\vee} is the corooot system; Π is the basis of Φ defined by B, and Π^{\vee} is the dual basis of Φ^{\vee} . We have an exact sequence

$$(3.2.1) 1 \longrightarrow G_0^{ad}(\bar{k}) \longrightarrow \operatorname{Aut} G_{0\bar{k}} \longrightarrow \operatorname{Aut} \Psi \longrightarrow 1$$

(cf. [Sp2], 2.14).

For a root $\alpha \in \Phi$ let U_{α} be the corresponding one-parameter unipotent subgroup of B. For any $\alpha \in \Pi$ choose an element $u_{\alpha} \in U_{\alpha}(k)$. Such a choice defines a splitting

$$(3.2.2) \qquad \qquad s: \operatorname{Aut} \Psi \longrightarrow \operatorname{Aut}_{k} G_{0}$$

of the exact sequence (3.2.1) (cf. [Sp2], 2.13), where $\operatorname{Aut}_k G_0 \subset \operatorname{Aut} G_{0\bar{k}}$ is the group of k-automorphisms of G_0 .

The Galois group $\Gamma = \text{Gal}(k/k)$ acts on the terms of the exact sequence (3.2.1). Since it acts on Ψ trivially, the splitting s mentioned above is Γ -equivariant.

3.3. Let \overline{G} be a connected reductive k-group. It follows from Chevalley's theorem that \overline{G} admits a split k-form G_0 . Choose T and B as above and construct $\Psi = \Psi(G_0, B, T)$.

LEMMA 3.3.1 There exists a canonical bijection between the set of k-kernels $L = (\bar{G}, \kappa)$ with given \bar{G} and the set of continuous homomorphisms $\mu: \Gamma \to \operatorname{Aut} \Psi$.

Proof. The split k-form G_0 of \overline{G} defines a splitting of the exact sequence (1.1.3). Thus SOut \overline{G} becomes a semi-direct product of Out \overline{G} and Γ . The exact sequence (3.2.1) defines a Γ -equivariant isomorphism Out $\overline{G} \to \operatorname{Aut} \Psi$. Since Γ acts on Ψ trivially, we obtain an isomorphism

$$(3.3.2) \qquad \qquad \operatorname{Aut} \Psi \times \Gamma \xrightarrow{\sim} \operatorname{SOut} \overline{G},$$

and the lemma follows.

3.4. Proof of Proposition 3.1. Let $L = (\bar{G}, \kappa)$ be a k-kernel. Let G_0 be a split form of \bar{G} , and let T, B, Ψ and $(u_{\alpha})_{\alpha \in \Pi}$ be as in 3.2. Then by Lemma 3.3.1 κ defines a homomorphism $\mu: \Gamma \to \operatorname{Aut} \Psi$. Set $\psi = s \circ \mu$, where s is the splitting (3.2.2) of (3.2.1). Then ψ is a homomorphism, and $\psi_{\sigma} \in (\operatorname{Aut} G_0)(k)$ for any $\sigma \in \Gamma$. We see that ψ is a cocycle, $\psi \in Z^1(k, \operatorname{Aut} G_0)$. Set $G = {}_{\psi}G_0$. Then n(G) is a neutral element of $H^2(k, L)$. The proposition is proved.

4. Non-reductive kernels. Let $L = (\bar{G}, \kappa)$ be an arbitrary k-kernel (we do not assume \bar{G} to be connected). The normal subgroup \bar{G}^{u} of \bar{G} (see Notation) is invariant under all the semialgebraic automorphisms of \bar{G} . Set $\bar{G}^{\text{red}} = \bar{G}/\bar{G}^{u}$. By 1.5 there exists a k-kernel $L^{\text{red}} = (\bar{G}^{\text{red}}, \kappa^{\text{red}})$ and a canonical map $r: H^{2}(k, L) \to H^{2}(k, L^{\text{red}})$. In this section we prove

PROPOSITION 4.1. Let $L = (\tilde{G}, \kappa)$ be a k-kernel. An element $\eta \in H^2(k, L)$ is neutral if and only if $r(\eta)$ is neutral.

COROLLARY 4.2 ([Do1]). Let (\bar{U}, κ) be a unipotent k-kernel. Then any element $\eta \in H^2(k, \bar{U}, \kappa)$ is neutral.

To prove Proposition 4.1 we need

LEMMA 4.3. Let A be a commutative unipotent k-group. Then $H^2(k, A) = 0$.

Proof. Since char(k) = 0, A is isomorphic to a direct product of a number of copies of the additive group \mathbb{G}_a . We have $H^2(k, \mathbb{G}_a) = 0$, hence $H^2(k, A) = 0$, which was to be proved.

4.4. Proof of Proposition 4.1. We proceed by induction. We assume that $\bar{G}^u \neq 1$. Let \bar{A} be the center of \bar{G}^u . Since \bar{G}^u is unipotent, we have dim $\bar{A} > 0$ (cf. e.g. [Hu], 17.4 and 17.5). The subgroup \bar{A} is normal in \bar{G} and invariant under all the semialgebraic automorphisms of \bar{G} . Set $\bar{G}' = \bar{G}/\bar{A}$, then by 1.5 we get a k-kernel $L' = (\bar{G}', \kappa')$ and a canonical map $\nu: H^2(k, L) \to H^2(k, L')$. We have dim $(\bar{G}')^u < \dim \bar{G}^u$. We therefore may and will assume that Proposition 4.1 holds for L'.

Let $\eta \in H^2(k, L)$ be a cohomology class, and suppose that $r(\eta)$ is neutral. We must prove that η is neutral. Since Proposition 4.1 holds for L', the image $\eta' = \nu(\eta)$ of η in $H^2(k, L')$ is neutral. Write $\eta = \operatorname{Cl}(f, u), \eta' = \operatorname{Cl}(f', u')$, where f' and u' are the maps defined by f and u, respectively. Since η' is neutral, we may choose the cocycle (f, u) in such a way that the cocycle (f', u') is neutral, i.e u' = 1 and f' is a homomorphism. Then $\sigma \mapsto f_{\sigma}|_{\bar{A}}$ is a homomorphism; it defines a k-form A of \bar{A} . We can regard u as a map $\Gamma \to \bar{A}(\bar{k})$, and one can check that $u \in Z^2(k, A)$. By Lemma 4.3 $\operatorname{Cl}(u) = 0$ in $H^2(k, A)$, i.e there exists a continuous map $c: \Gamma \to A(\bar{k})$ such that

$$c_{\sigma\tau} \cdot u_{\sigma,\tau} \cdot f_{\sigma}(c_{\tau})^{-1} \cdot c_{\sigma}^{-1} = 1$$

Then $c \cdot (f, u)$ is a neutral cocycle, and thus $\eta = \operatorname{Cl}(f, u)$ is neutral. The proposition is proved.

5. Abelianization. In this section for a connected k-kernel $L = (\bar{G}, \kappa)$ we define an abelian group $H^2_{ab}(k, L)$ and an abelianization map $ab^2: H^2(k, L) \to H^2_{ab}(k, L)$ which takes the neutral cohomology classes to zero. We prove that when k is a local field or a number field, an element $\eta \in H^2(k, L)$ is neutral if and only if $ab^2(\eta) = 0$.

5.1. First we assume that $L = (\bar{G}, \kappa)$ is a reductive k-kernel. Let \bar{G}^{ss} , \bar{G}^{sc} and $\bar{\rho}: \bar{G}^{sc} \to \bar{G}$ be as in Notation. Let \bar{Z} be the center of \bar{G} , $\bar{Z}^{(ss)}$ the center of \bar{G}^{ss} , and $\bar{Z}^{(sc)}$ the center of \bar{G}^{sc} . Note that κ defines k-forms Z of \bar{Z} , $Z^{(ss)}$ of $\bar{Z}^{(ss)}$, and $Z^{(sc)}$ of $\bar{Z}^{(sc)}$. The homomorphism

$$(5.1.1) \qquad \qquad \bar{\rho}: Z^{(\mathrm{sc})} \to Z$$

is defined over k.

We regard the homomorphism (5.1.1) as a short complex of abelian k-groups

$$(5.1.2) 1 \longrightarrow Z^{(sc)} \xrightarrow{\rho} Z \longrightarrow 1$$

where Z is in degree 0 and $Z^{(sc)}$ is in the degree -1. For $i \ge -1$ we set

$$H^{i}_{ab}(k,L) = \mathbb{H}^{i}(k, Z^{(sc)} \to Z)$$

(the Galois hypercohomology group of k with coefficients in the complex (5.1.2)). In this paper we are interested in $H^2_{ab}(k, L)$.

5.2. With the assumptions and notation of 5.1 consider the short exact sequence of complexes

$$1 \longrightarrow (1 \to Z) \longrightarrow (Z^{(\mathrm{sc})} \to Z) \longrightarrow (Z^{(\mathrm{sc})} \to 1) \longrightarrow 1$$

and the associated hypercohomology exact sequence

(5.2.1)
$$\ldots \longrightarrow H^2(k, Z^{(sc)}) \xrightarrow{\rho_*} H^2(k, Z) \longrightarrow H^2_{ab}(k, L) \longrightarrow \ldots$$

Set

$$H_{\rm q}^2(k,L) = H^2(k,Z)/\rho_*H^2(k,Z^{\rm (sc)})$$

We call $H^2_q(k, L)$ the quotient cohomology group. The exact sequence (5.2.1) defines an embedding $H^2_q(k, L) \to H^2_{ab}(k, L)$.

To define the abelianization map we need

LEMMA 5.3. Let $L = (\bar{G}, \kappa)$ be a connected reductive k-kernel. Let $\eta, \eta' \in H^2(k, L)$ be two neutral elements. Then with the notation of 5.1

$$\eta' - \eta \in \operatorname{im} \left[\rho_* : H^2(k, Z^{(\mathrm{sc})}) \to H^2(k, Z) \right].$$

Proof. By Lemma 2.2 $\eta = n(G)$ for some form G of \overline{G} . By Proposition 2.3

$$\eta' - \eta \in \operatorname{im} \left[\delta: H^1(k, G^{\operatorname{ad}}) \to H^2(k, Z)\right].$$

From the commutative diagram with exact rows

we obtain the commutative diagram

(5.3.2)
$$\begin{array}{c} H^{1}(k, G^{\mathrm{ad}}) \xrightarrow{\delta} H^{2}(k, Z^{(\mathrm{sc})}) \\ \\ \\ H^{1}(k, G^{\mathrm{ad}}) \xrightarrow{\delta} H^{2}(k, Z) \end{array}$$

We see that im $\delta = \text{im} (\rho_* \circ \delta')$. Thus $\eta' - \eta \in \text{im} \rho_*$, which was to be proved.

5.4. The abelianization map. Let $L = (\bar{G}, \kappa)$ be a connected reductive k-kernel. We define the abelianization map

$$H^{2}(k,L) \rightarrow H^{2}_{q}(k,L) \rightarrow H^{2}_{ab}(k,L)$$

as follows.

Let $\eta \in H^2(k, L)$. By Proposition 3.1 there exists a neutral element $\eta' \in H^2(k, L)$. We set

$$ab^{2}(\eta) = (\eta - \eta') \mod \rho_{*}H^{2}(k, Z^{(sc)}) \in H^{2}_{q}(k, L) \subset H^{2}_{ab}(k, L).$$

If $\eta'' \in H^2(k, L)$ is another neutral element, then by Lemma 5.3 $\eta' - \eta'' \in \rho_*(H^2(k, Z^{(sc)}))$, and we see that the image of η in $H^2_{ab}(k, L)$ does not depend on the choice of η' . Thus the map ab^2 is defined correctly.

The map ab^2 takes the neutral cohomology classes to 0. The image of ab^2 is all the set $H^2_q(k, L)$. Indeed, for any $\eta_Z \in H^2(k, Z)$ there exists $\eta \in H^2(k, L)$ such that $\eta - \eta' = \eta_Z$.

5.5. The abelianization map (cont.). Let $L = (\bar{G}, \kappa)$ be any connected k-kernel, not necessarily reductive. We set

$$H^2_{ab}(k,L) = H^2_{ab}(k,L^{red})$$

and define the abelianization map as the composition

$$ab^2$$
: $H^2(k, L) \longrightarrow H^2(k, L^{red}) \xrightarrow{ab^2} H^2_{ab}(k, L^{red}) = H^2_{ab}(k, L)$

It is clear that ab^2 takes the neutral elements to 0.

The main result of the present paper is

THEOREM 5.6. Let k is a local field (archimedian or not) or a number field. Let $L = (\bar{G}, \kappa)$ be a connected k-kernel. Then an element $\eta \in H^2(k, L)$ is neutral if and only if $ab^2(\eta) = 0$.

To prove Theorem 5.6 we need

LEMMA 5.7. Let G be a semisimple simply connected group over a field k of characteristic 0, and let Z be the center of G. If k is either a local field or a number field, then the connecting map $\delta: H^1(k, G^{ad}) \to H^2(k, Z)$ is surjective.

Proof. In the case of a non-archimedian local field see Kneser [Kn1] (see also [PR], §6.5, Theorem 21). In the real case the assertion follows from the existence of a maximal torus $T \subset G$ such that $H^2(k,T) = 0$, which was proved by Harder [Ha1], Lemma 4.2.3 (see also [PR], §6.5, Lemma 18). In the case of a number field see [Kn2], Ch. 5, Theorem 1.7, p. 77 (see also [Sa], 4.5, and [PR], §6.5, Theorem 20).

5.8. Proof of Theorem 5.6. If $\eta \in H^2(k, L)$ is neutral, then $ab^2(\eta) = 0$. We must prove that if $ab^2(\eta) = 0$, then η is neutral. By Proposition 4.1 it suffices to prove the assertion for L^{red} . We therefore may and will assume that L is reductive.

Let $\eta \in H^2(k, L)$ be an element such that $ab^2(\eta) = 0$. By Proposition 3.1 and Lemma 2.2 there exists a neutral class n(G) in $H^2(k, L)$, where G is a k-form of \overline{G} . Then

$$\eta - n(G) = \rho_*(\chi)$$

for some $\chi \in H^2(k, Z^{(sc)})$. By Lemma 5.7 there exists $\xi \in H^2(k, G^{ad})$ such that $\chi = \delta'(\xi)$ with the notation of the commutative diagram (5.3.2). Then $\eta - n(G) = \delta(\xi)$. We see that $\eta - n(G) \in \text{im } \delta$, thus by Proposition 2.3 η is neutral (namely, $\eta = n(\psi G)$, where $\psi \in Z^1(k, G^{ad})$ is a cocycle representing ξ). The theorem is proved.

6. A Hasse principle for H^2 . In this section L is a connected k-kernel, where k is a non-archimedian local field or a number field. We apply Theorem 5.6 to prove a Hasse principle for non-abelian H^2 .

6.1. Let $L = (\bar{G}, \kappa)$ be a connected k-kernel. We set $\bar{G}^{\text{tor}} = \bar{G}^{\text{red}}/\bar{G}^{\text{ss}}$. The \bar{k} -group \bar{G}^{tor} is a torus, and the homomorphism κ defines a k-form G^{tor} of \bar{G}^{tor} . We have a canonical map $t: H^2(k, L) \to H^2(k, G^{\text{tor}})$.

Let Z, $Z^{(ss)}$ and $Z^{(sc)}$ be as in 5.1. From the short exact sequence of complexes

$$1 \longrightarrow (Z^{(\mathrm{sc})} \to Z^{(\mathrm{ss})}) \longrightarrow (Z^{(\mathrm{sc})} \to Z) \longrightarrow (1 \to G^{\mathrm{tor}}) \longrightarrow 1$$

we obtain the hypercohomology exact sequence

(6.1.1)
$$H^{3}(k, \ker \rho) \longrightarrow H^{2}_{ab}(k, L) \xrightarrow{\iota_{ab}} H^{2}(k, G^{tor}),$$

because

$$\mathbb{H}^{2}(k, Z^{(\mathrm{sc})} \to Z^{(\mathrm{ss})}) = H^{3}(k, \ker \rho)$$
$$\mathbb{H}^{2}(k, Z^{(\mathrm{sc})} \to Z) = H^{2}_{\mathrm{ab}}(k, L).$$

One can check that the composition map

(6.1.2)
$$H^{2}(k,L) \xrightarrow{ab^{2}} H^{2}_{ab}(k,L) \xrightarrow{t_{ab}} H^{2}(k,G^{tor})$$

is the canonical map $t: H^2(k, L) \to H^2(k, G^{tor})$.

We consider the case of a non-archimedian local field k.

PROPOSITION 6.2. Let $L = (\bar{G}, \kappa)$ be a connected k-kernel, where k is a non-archimedian local field. Then an element $\eta \in H^2(k, L)$ is neutral if and only if $t(\eta) = 0$, where $t: H^2(k, L) \to H^2(k, G^{tor})$ is the canonical map.

Proof. The group ker ρ is finite. Since k is a non-archimedian local field, we have $H^3(k, \ker \rho) = 0$ (cf. [Se], II-5.3, Prop. 15). From (6.1.1) we see that the homomorphism t_{ab} is injective.

Let $\eta \in H^2(k, L)$. If η is neutral, then $t(\eta) = 0$. Conversely, suppose that $t(\eta) = 0$. Since $t = t_{ab} \circ ab^2$ and t_{ab} is injective, we conclude that $ab^2(\eta) = 0$. By Theorem 5.6 η is neutral. The proposition is proved.

THEOREM 6.3. Let $L = (\overline{G}, \kappa)$ be a connected k-kernel, where k is a non-archimedian local field. Assume that at least one of the following holds:

- (i) G^{tor} is k-anisotropic;
- (ii) $\bar{G}^{tor} = 1;$

(iii) \overline{G} is semisimple.

Then any element $\eta \in H^2(k, L)$ is neutral.

Proof. If (i) holds, then by the Tate-Nakayama duality (cf. [Se], II-5.8, or [Mi], I-2.4) $H^2(k, G^{tor}) = 0$, and the assertion follows from Proposition 6.2. It is clear that $(iii) \Rightarrow (ii) \Rightarrow (i)$. The theorem is proved.

Remark 6.3.1. Theorem 6.3 in the case (iii) was proved by Douai [Do2].

COROLLARY 6.4. Let k be a non-archimedian local field, and let

 $1 \longrightarrow G_1 \longrightarrow G_2 \longrightarrow G_3 \longrightarrow 1$

be a short exact sequence of k-groups. If G_1 is connected and $G_1^{\text{tor}} = 1$, then the map $H^1(k, G_2) \to H^1(k, G_3)$ is surjective.

Proof. Let $\xi \in H^1(k, G_3)$, $\xi = Cl(\psi)$. To the cocycle $\psi \in Z^1(k, G_3)$ Springer ([Sp1], 1.20) associates a k-kernel $(G_{1\bar{k}}, \kappa_{\psi})$ and a cohomology class $\delta(\psi) \in H^2(k, G_{1\bar{k}}, \kappa_{\psi})$ which is the obstruction to lifting ξ to to $H^1(k, G_2)$. Since $G_1^{\text{tor}} = 1$, by Theorem 6.3 $\delta(\psi)$ is neutral, hence ξ comes from $H^1(k, G_2)$. The corollary is proved.

We now pass to the case of a number field k.

PROPOSITION 6.5. Let k be a number field, and let $L = (\bar{G}, \kappa)$ be a connected k-kernel. Let $\eta \in H^2(k, L)$ be an element, which is locally neutral at the infinite places, i.e. such that the localization $loc_v(\eta) \in H^2(k_v, L)$ is neutral for any infinite place v of k. Then η is neutral if and only if $t(\eta) = 0$.

Proof. By [Bo1], Prop. 4.9, the group $H^2_{ab}(k, L)$ is the fiber product of $H^2(k, G^{tor})$ and $\prod_{\infty} H^2_{ab}(k_v, L)$ over $\prod_{\infty} H^2(k_v, G^{tor})$, where \prod_{∞} denotes product over the set of infinite places of k. If η is neutral, then $t(\eta) = 0$. Conversely, suppose that $t(\eta) = 0$. Then the image of $ab^2(\eta)$ in in $H^2(k, G^{tor})$ is zero (because $t = t_{ab} \circ ab^2$), and its image in $\prod_{\infty} H^2_{ab}(k_v, L)$ is also zero (because η is locally neutral at the infinite places). We conclude that $ab^2(\eta) = 0$.

By Theorem 5.6 η is neutral. The proposition is proved.

6.6. Let T be a k-torus. The second Shafarevich-Tate group \amalg^2 is defined by

$$\operatorname{III}^{2}(k,T) = \ker\left[\operatorname{loc:} H^{2}(k,T) \to \prod_{v} H^{2}(k_{v},T)\right]$$

where v runs over the set of all places of k. A quasi-trivial torus is a torus T such that its character group $X(T_{\bar{k}})$ admits a Γ -stable basis. A torus T is quasi-trivial if and only if it is a product of tori of the form $R_{K/k}G_m$, where K/k is a finite extension.

LEMMA 6.7. Let T be a k-torus. Assume that at least one of the following holds:

- (i) T is a quasi-trivial k-torus;
- (ii) T_{k_v} is k_v -anisotropic for some place v of k;
- (iii) T splits over a cyclic extension K/k;
- (iv) T is one-dimensional.

Then $\amalg^2(k,T) = 0.$

Proof. For the cases (i) and (ii) see [Sa], 1.9. For the case (iii) see [Bo2], 3.4.1. The assumption (iv) implies (iii).

THEOREM 6.8 (A Hasse principle). Let k be a number field and $L = (\bar{G}, \kappa)$ a connected k-kernel. Assume that at least one of the following holds:

- (i) $\amalg^2(k, G^{tor}) = 0;$
- (ii) The k-torus G^{tor} is as in Lemma 6.7;
- (iii) $\bar{G}^{tor} = 1;$
- (iv) \overline{G} is semisimple.

Then an element $\eta \in H^2(k, L)$ is neutral if and only if its localizations $\log_v \eta \in H^2(k_v, L)$ are neutral for all the places v of k.

Proof. If η is neutral, then $\log_v \eta$ is neutral for any v. Conversely, suppose that $\log_v \eta$ is neutral for any v. Then $\log_v t(\eta) = 0$ for any v, hence $t(\eta) \in \operatorname{III}^2(k, G^{\operatorname{tor}})$. Under any of the assumptions (i-iv) we have $\operatorname{III}^2(k, G^{\operatorname{tor}}) = 0$. Thus $t(\eta) = 0$. By Proposition 6.5 η is neutral. The theorem is proved.

COROLLARY 6.9. Let

$$1 \longrightarrow G_1 \longrightarrow G_2 \longrightarrow G_3 \longrightarrow 1$$

be an exact sequence of algebraic groups over a number field k. Assume that G_1 is connected and that dim $G_1^{\text{tor}} \leq 1$. Let $\xi \in H^1(k, G_3)$ be a cohomology class. If for any place v of k, the localization loc_v $\xi \in H^1(k_v, G_3)$ comes from $H^1(k_v, G_2)$, then ξ comes from $H^1(k, G_2)$.

Proof. Similar to that of Corollary 6.4.

7. Rational points in homogeneous spaces. In this section we apply Theorem 6.8 to prove a Hasse principle for homogeneous spaces. Our proof uses the Hasse principle for H^1 of a simply connected group.

7.1. Let H be a simply connected semisimple k-group. Let X be a right homogeneous space of H. This means that we are given a right algebraic action (defined over k)

$$X \times H \to X, \qquad (x,h) \mapsto x \cdot h$$

such that the action of $H(\bar{k})$ on $X(\bar{k})$ is transitive.

We are interested whether X has a rational point. Let $x \in X(\bar{k})$ be a \bar{k} -point. Let \bar{G} be the stabiliser of x in $H_{\bar{k}}$ (we write $\bar{G} = \operatorname{Stab}(x)$). The subgroup \bar{G} of $H_{\bar{k}}$ is not in general defined over k.

The homogeneous space X defines a k-form G^{tor} of $\overline{G}^{\text{tor}}$. Moreover, X defines a k-kernel $L = (\overline{G}, \kappa)$. We construct L as follows.

For $\sigma \in \Gamma = \operatorname{Gal}(\overline{k}/k)$ write

$$(7.1.1) \qquad \qquad {}^{\sigma}x = x \cdot h_{\sigma}$$

where $h_{\sigma} \in H(\bar{k})$. Such an element h_{σ} is not unique; it is unique modulo left multiplication by an element of $\bar{G}(\bar{k})$. We can choose elements h_{σ} in such a way that the map $\sigma \mapsto h_{\sigma}$ is continuous. The σ -semialgebraic automorphism of $H_{\bar{k}}$

$$f_{\sigma} = \operatorname{int}(h_{\sigma}) \circ \sigma_*$$

takes \overline{G} to itself. We will regard f_{σ} as a σ -semialgebraic automorphism of \overline{G} . Then the map $f: \Gamma \to \text{SAut } \overline{G}$ is continuous, the composition

$$\kappa: \Gamma \xrightarrow{f} SAut \bar{G} \longrightarrow SOut \bar{G}$$

is a continuous homomorphism, and $L = (\overline{G}, \kappa)$ is a k-kernel.

THEOREM 7.2. Let k be a non-archimedian local field. Let H be a simply connected semisimple k-group, and let X be a right homogeneous space of H. Assume that the stabilizer \overline{G} of a point $x \in X(\overline{k})$ is connected, and that at least one of the following holds:

(i) The k-torus G^{tor} is k-anisotropic;

(ii) $\tilde{G}^{tor} = 1;$

(iii) \overline{G} is semisimple.

Then X has a k-point.

THEOREM 7.3. Let k be a number field. Let H be a simply connected semisimple k-group, and let X be a right homogeneous space of H. Assume that the stabilizer \tilde{G} of a point $x \in X(\bar{k})$ is connected, and that at least one of the following holds:

- (i) $\amalg^2(k, G^{tor}) = 0;$
- (ii) The torus G^{tor} quasi-trivial;
- (iii) G^{tor} is k_v -anisotropic for some place v of k;
- (iv) G^{tor} splits over a cyclic extension of k;
- (v) \overline{G}^{tor} is one-dimensional;

(vi) $\bar{G}^{\text{tor}} = 1;$

(vii) \overline{G} is semisimple.

Then the Hasse principle holds for X, i.e if $X(k_v) \neq \emptyset$ for any place v of k, then $X(k) \neq \emptyset$.

Remark 7.3.1. Theorem 7.3 was proved in [Bo2] under slightly more general hypotheses on H and \overline{G} (e.g. H may be adjoint) but with the additional non-necessary assumption that the pair $(H_{\bar{k}}, \overline{G})$ admits a k-form (H_0, G_0) .

COROLLARY 7.4 ([Ha2], 3.3). If X is a projective variety, then the Hasse principle holds for X.

Proof. Since X is projective, \overline{G} is a parabolic subgroup of $H_{\overline{k}}$. Harder [Ha2] shows that then G^{tor} is a quasi-trivial torus (cf. also [Bo2], 3.7). Now the corollary follows from Theorem 7.3, case (ii).

COROLLARY 7.5 ([Ra]). Suppose that X is a symmetric homogeneous space of an absolutely simple k-group H, i.e. \overline{G} is the group of invariants of an involution of $H_{\overline{k}}$. Then the Hasse principle holds for X.

Proof. In this case dim $\overline{G}^{\text{tor}} \leq 1$ (cf. [Ra] or [Bo2]), and the corollary follows from Theorem 7.3, cases (v) and (vi).

7.6. To prove Theorems 7.2 and 7.3 we construct an element $\eta(X) \in H^2(k, \bar{G}, \kappa)$, which is the obstruction to the existence of a principal homogeneous space over X (cf. also [Sp1], 1.27).

A principal homogeneous space of H over X is a pair (P, α) , where P is a right principal homogeneous space of H and $\alpha: P \to X$ is an H-equivariant map $(P \text{ and } \alpha \text{ are defined over } k)$.

If X has a k-point x_0 , then there exists a principal homogeneous space (P, α) over X. Indeed, we take P = H, $\alpha(h) = x_0 \cdot h$. Conversely, if there exists a principal homogeneous space (P, α) over X, and P has a k-point p_0 , then X has a K-point $x_0 = \alpha(p_0)$.

We construct the cohomology class $\eta(X) \in H^2(k, L)$ mentioned above. Let $x \in X(\bar{k})$ be a k-point. With the notation of 7.1 we set

$$\bar{P} = H_{\bar{k}}, \quad \bar{\alpha}(h) = x \cdot h \text{ for } h \in H_{\bar{k}} = \bar{P}.$$

Then $(\bar{P}, \bar{\alpha})$ is a principal homogeneous space over $X_{\bar{k}}$. We try to define $(\bar{P}, \bar{\alpha})$ over k.

For $\sigma \in \Gamma$ set

$$\nu_{\sigma}(h) = h_{\sigma} \cdot {}^{\sigma}h \qquad (h \in P = H_{\mathbf{k}})$$

where h_{σ} is as in (7.1.1). Then ν_{σ} is a σ -semialgebraic $H_{\bar{k}}$ -equivariant automorphism of \bar{P} , compatible with the σ -semialgebraic automorphism σ_* of $X_{\bar{k}}$. Set

$$\lambda_{\sigma,\tau} = \nu_{\sigma\tau} \circ \nu_{\tau}^{-1} \circ \nu_{\sigma}^{-1} \in \operatorname{Aut} \bar{P},$$

then $\lambda_{\sigma,\tau}(h) = u_{\sigma,\tau} \cdot h$, where

$$u_{\sigma,\tau} = h_{\sigma\tau} \cdot {}^{\sigma} h_{\tau}^{-1} \cdot h_{\sigma}^{-1} \in \bar{G}(\bar{k}).$$

Let f be the map defined in 7.1, then one can check that the pair (f, u) is a 2-cocycle, $(f, u) \in Z^2(k, L)$, where $L = (\bar{G}, \kappa)$. We set $\eta(X) = \operatorname{Cl}(f, u) \in H^2(k, L)$.

We show that the cohomology class $\eta(X)$ is neutral if and only if the pair $(\bar{P}, \bar{\alpha})$ can be defined over k. Indeed, let (P, α) be a k-form of $(\bar{P}, \bar{\alpha})$. We can take $\nu_{\sigma}(p) = {}^{\sigma}p$. Then the map $\nu: \Gamma \to \text{SAut} \bar{P}$ is a homomorphism, hence $\lambda_{\sigma,\tau}(h) = h$ and $u_{\sigma,\tau} = 1$ for any $\sigma, \tau \in \Gamma$. Thus the class $\eta(X) = \text{Cl}(f, u)$ is neutral. Conversely, if $\eta(X)$ is neutral, then we can define the elements $(h_{\sigma})_{\sigma \in \Gamma}$ in such a way that $u_{\sigma,\tau} = 1$ for any $\sigma, \tau \in \Gamma$. Then ν is a homomorphism, and this homomorphism defines a k-form (P, α) of $(\bar{P}, \bar{\alpha})$.

Remark 7.6.1 In the language of gerbs [Gi] (see also [DM], Appendix), the fibered category \mathcal{G}_X of such (P, α) is a gerb, and $\eta(X)$ is the class of \mathcal{G}_X in $H^2(k, L)$. The gerb \mathcal{G}_X is neutral if and only if there exists a pair (P, α) defined over k.

Now we can prove theorems 7.2 and 7.3. To prove Theorem 7.2 we need

LEMMA 7.7. Let k, H and X be as in Theorem 7.2. If there exists a principal homogeneous space (P, α) over X, then X has a k-point.

Proof. By Kneser's theorem ([Kn1]), the principal homogeneous space P of a simply connected group H over a non-archimedian local field k has a k-point p_0 . Then $x_0 = \alpha(p_0)$ is a k-point of X. The lemma is proved.

7.8. Proof of Theorem 7.2. Let $\eta(X) \in H^2(k, L)$ be the cohomology class defined in 7.6. By Theorem 6.3 any element of $H^2(k, L)$ is neutral, thus $\eta(X)$ is neutral. It follows that there exists a principal homogeneous space (P, α) over X (see 7.6). By Lemma 7.7 $X(k) \neq \emptyset$. The theorem is proved.

To prove Theorem 7.3 we need

LEMMA 7.9. Let k, H, X and \overline{G} be as in Theorem 7.3. Suppose that $X(k_v) \neq \emptyset$ for any infinite place v of k, and suppose that there exists a principal homogeneous space (P, α) over X. Then $X(k) \neq \emptyset$.

Proof. Set $G = \operatorname{Aut}_{X,H} P$. One can easily see that G is an algebraic group defined over k, and that G_k is isomorphic to \overline{G} . Thus G is connected.

We write \mathcal{V}_{∞} for the set of the infinite places of k. For any $v \in \mathcal{V}_{\infty}$ the homogeneous space X has a k_v -point. It follows that there exists a principal homogeneous space (P_v, α_v) of H_{k_v} over X_{k_v} (defined over k_v), such that P_v is trivial (i.e. has a k_v -point).

For any extension K/k, the isomorphism classes of K-forms of (P, α) correspond to elements of $H^1(K, G)$. In particular, for $v \in \mathcal{V}_{\infty}$ the k_v -form (P_v, α_v) of (P, α) defines a cohomology class $\xi_v \in H^1(k_v, G)$.

Consider the map

$$\operatorname{loc}_{\infty}: H^1(k, G) \to \prod_{\infty} H^1(k_v, G).$$

Since G is connected, the map loc_{∞} is surjective ([Ha1], 5.5.1; see also [PR], §6.5, Prop. 17). Hence there exists an element $\xi \in H^1(k, G)$ such that $loc_v \xi = \xi_v$ for any $v \in \mathcal{V}_{\infty}$. In other words, there exists a form (P_*, α_*) of (P, α) such that $(P_*, \alpha_*)_{k_v} \simeq (P_v, \alpha_v)$. It is clear that P_* has a k_v -point for any $v \in \mathcal{V}_{\infty}$.

By the Hasse principle for H^1 of simply connected groups (Kneser-Harder-Chernousov, cf. [Ha1] and [PR], Ch. 6), P_* has a k-point p_0 . We set $x_0 = \alpha_*(p_0)$, then $x_0 \in X(k)$. The lemma is proved.

7.10. Proof of Theorem 7.3. Let $\eta(X) \in H^2(k, L)$ be the cohomology class defined in 7.6. For any place v of k there exists a k_v -point $x_v \in X(k_v)$, and therefore a principal homogeneous space (P_v, α_v) of H_{k_v} over X_{k_v} . It follows that the cohomology class $\log_v \eta(X) \in H^2(k_v, L)$ is neutral for any v. By Theorem 6.8 $\eta(X)$ is neutral. This means that there exists a principal homogeneous space (P, α) of H over X. By Lemma 7.9 X has a k-point. The theorem is proved.

Appendix. Explicit formulas. Here we write down explicit formulas in terms of cocycles for the abelianization maps $ab^i: H^i \to H^i_{ab}$ (i = 0, 1, 2). The maps

$$\mathrm{ab}^{0} \colon H^{0}(k,G) \to H^{0}_{\mathrm{ab}}(k,G)$$

 $\mathrm{ab}^{1} \colon H^{1}(k,G) \to H^{1}_{\mathrm{ab}}(k,G)$

were defined (indirectly) in [Bo1]. The map

$$ab^2$$
: $H^2(k, L) \rightarrow H^2_{ab}(k, L)$

was defined (also indirectly) in Section 5.

Let G be a k-group. The k-group G^{sc} and k-homomorphism $\rho: G^{sc} \to G$ are defined in Notation. Consider the complex $Z^{(sc)} \xrightarrow{\rho} Z$ of abelian k-groups, where $Z^{(sc)}$ and Z are the centers of G^{sc} and G, respectively. We set

$$H^{i}_{ab}(k,G) = \mathbb{H}^{i}(k, Z^{(sc)} \to Z).$$

We define ab^0 . We have

$$G(\bar{k}) = \rho(G^{sc}(\bar{k})) \cdot Z(\bar{k}).$$

Let $g \in G(k) = H^0(k, G)$. We may write $g = \rho(g') \cdot z$, where $g' \in G^{sc}(\bar{k}), z \in Z(\bar{k})$. Set

$$\varphi_{\sigma} = (g')^{-1} \cdot {}^{\sigma}g' \text{ for } \sigma \in \Gamma.$$

Then $\varphi_{\sigma} \in Z^{(sc)}(\bar{k})$, and the pair (φ, z) is a 0-cocycle, $(\varphi, z) \in Z^{0}(k, Z^{(sc)} \to Z)$. We set

$$\operatorname{ab}^{0}(g) = \operatorname{Cl}(\varphi, z) \in \mathbb{H}^{0}(k, Z^{(\operatorname{sc})} \to Z) = H^{0}_{\operatorname{ab}}(k, G).$$

We define ab¹. Let $\xi \in H^1(k, G)$, $\xi = \operatorname{Cl}(\psi)$, $\psi \in Z^1(k, G)$. Write

$$\psi_{\sigma} =
ho(\psi'_{\sigma}) \cdot z_{\sigma}$$

where the maps $\psi': \Gamma \to G^{sc}(\bar{k})$ and $z: \Gamma \to Z(\bar{k})$ are continuous. Set

$$\lambda_{\sigma,\tau} = \psi'_{\sigma} \cdot {}^{\sigma} \psi'_{\tau} \cdot (\psi'_{\sigma\tau})^{-1} \text{ for } \sigma, \tau \in \Gamma.$$

Then $\lambda_{\sigma,\tau} \in Z^{(sc)}(\bar{k})$, and the pair (λ, z) is a 1-cocycle, $(\lambda, z) \in Z^1(k, Z^{(sc)} \to Z)$. We set

$$\mathrm{ab}^{1}(\xi) = \mathrm{Cl}(\lambda, z) \in \mathbb{H}^{1}(k, Z^{(\mathrm{sc})} \to Z) = H^{1}_{\mathrm{ab}}(k, G).$$

Now let $L = (\bar{G}, \kappa)$ be a k-kernel. See Notation and 5.1 for the definitions of $\bar{G}, \bar{\rho}$, and the complex of k-groups $(Z^{(sc)} \to Z)$.

We define ab^2 . Let $\eta \in H^2(k, L)$, $\eta = Cl(f, u)$. Write

$$u_{\sigma,\tau} = \bar{\rho}(u'_{\sigma,\tau}) \cdot z_{\sigma,\tau}$$

where the maps $u: \Gamma \times \Gamma \to \overline{G}^{\mathrm{sc}}(\overline{k})$ and $z: \Gamma \times \Gamma \to Z(\overline{k})$ are continuous. Set

$$\chi_{\sigma,\tau,\upsilon} = (u'_{\sigma,\tau})^{-1} \cdot (u'_{\sigma\tau,\upsilon})^{-1} \cdot u'_{\sigma,\tau\upsilon} \cdot f_{\sigma}(^{\sigma}u'_{\tau,\upsilon}).$$

Then $\chi_{\sigma,\tau,\upsilon} \in Z^{(\mathrm{sc})}(\bar{k})$, and the pair (χ, z) is a 2-cocycle, $(\chi, z) \in Z^2(k, Z^{(\mathrm{sc})} \to Z)$. We set

$$\mathrm{ab}^2(\eta) = \mathrm{Cl}(\chi, z) \in \mathbb{H}^2(k, Z^{(\mathrm{sc})} \to Z) = H^2_{\mathrm{ab}}(k, L).$$

References

- [B01] M. V. BOROVOI, The algebraic fundamental group and abelian Galois cohomology of reductive algebraic groups, Preprint, MPI/89-90, Bonn, 1989.
- [B02] M. V. BOROVOI, The Hasse principle for homogeneous spaces, to appear in J. für die reine und angew. Math.
- [BR] L. BREEN, Théorie de Schreier supérieure, To appear in Ann. Scient. Éc. Norm. Supér.
- [DM] P. DELIGNE AND J. S. MILNE, *Tannakian categories*, Lecture Notes in Math. 900, Springer-Verlag, Berlin-Heidelberg-New York, 1982, pp. 101–228.
- [D01] J. C. DOUAI, 2-Cohomologie galoisienne des groupes semi-simples, Thèse, Université de Lille I, 1976.
- [D02] J. C. DOUAI, Cohomologie galoisienne des groupes semi-simples définis sur les corps globaux, C. R. Acad. Sci. Paris, Sér. A, 281 (1975), 1077-1080.
- [GI] J. GIRAUD, Cohomologie non-abélienne, Grundlehren der Mathematischen Wissenschaften 179, Springer-Verlag, Berlin-Heidelberg-New York, 1971.
- [HA1] G. HARDER, Über die Galoiskohomologie halbeinfacher Matrizengruppen, I, Math.
 Z. 90 (1965), 404-428; II, Math. Z. 92 (1966), 396-415.
- [HA2] G. HARDER, Bericht über neuere Resultate der Galoiskohomologie halbeinfacher Matrizengruppen, Jahresbericht d. DMV 70 (1968), 182–216.
- [HU] J. E. HUMPHREYS, Linear Algebraic Groups, Graduate Texts in Math. 52, Springer-Verlag, Berlin-Heidelberg-New York, 1975
- [KN1] M. KNESER, Galoiskohomologie halbeinfacher algebraischer Gruppen über p-adischen Körpern, I, Math. Z. 88 (1965) 40-47; II, Math. Z. 89 (1965), 250-272.
- [KN2] M. KNESER, Lectures on Galois Cohomology of Classical Groups, Tata Institute of Fundamental Research Lectures on Mathematics 47, Bombay, 1969.
- [MC] S. MAC LANE, *Homology*, Springer-Verlag, Berlin-Heidelberg-New York, 1963.
- [MI] J. S. MILNE, Arithmetic Duality Theorems, Academic Press, Boston, 1986.
- [PR] V. P. PLATONOV AND A. S. RAPINCHUK, Algebraic Groups and Number Theory, Nauka, Moscow, 1991 (Russian).
- [RA] A .S. RAPINCHUK, The Hasse principle for symmetric spaces, Dokl. Akad. Nauk BSSR 31 (1987), 773-776 (Russian).
- [SA] J.-J. SANSUC, Groupe de Brauer et arithmétique des groupes algébriques linéaires sur un corps de nombres, J. für die reine und angew. Math. 327 (1981), 12-80.
- [SE] J.-P. SERRE, Cohomologie galoisienne, Lecture Notes in Math. 5, Springer-Verlag, Berlin-Heidelberg-New York, 1964.

- [SP1] T. A. SPRINGER, "Non-abelian H² in Galois cohomology", Algebraic groups and discontinuous subgroups, Proc. Symp. Pure Math. 9, AMS, Providence, 1966, pp. 164-182.
- [SP2] T. A. SPRINGER, "Reductive groups", Automorphic Forms, Representations and L-functions, Proc. Symp. Pure Math. 33, AMS, Providence, 1979, Part 1, pp. 3-27.

MAX-PLANCK-INSTITUT FÜR MATHEMATIK, GOTTFRIED-CLAREN-STR. 26, 5300 BONN 3, GERMANY

~~