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Abelianization of the Second Non-Abelian Galois Cohomology

MIKHAIL V. BOROVOI

Introduction. Let k be a field of characteristic 0, k an algebraic closure of k, G an
algebraic group over k. Let L = (G, ) be a k-kernel (other terms: k-band, k-lien); see
[Sp1] or 1.2 below for definition. In [Spl] (see also 1.3 below) the second non-abelian Galois
cohomology set H2(k, L) (or H?(k, G, x)) was defined. (In a more general setting H2(k, L)
was defined in [Gi].) The set H?(k,L) has a distinguished subset of neutral elements.
Obstructions to some constructions over k lie in H%(k,L). A construction is possible if
and only if the obstruction is trivial.

The set of neutral elements in H%(k,L) can be large. In particular, if k is a non-
archimedian local field or a totally imaginary number field, and the group G is connected
semisimple, then, as Douai [Do2| has proved, all the elements of H?(k,L) are neutral,
though the set H%(k, L) may contain more than one element. It therefore would be con-
venient to define a map from H?(k, L) to some abelian group, such that the image of an
element n € H%(k, L) is zero if and only if 7 is neutral. This is just what we do here when
k is a local field or a number field. We use this map to prove a Hasse principle for H?(k, L)
and a Hasse principle for homogeneous spaces.

In [Bol}, for a connected group G over k we defined abelian groups H}, (k,G) for
¢ > —1, and abelianization maps

ab': Hi(k,G) = H'\ (k, G)

for 1 = 0,1. We proved that if k is a local field or a number field, then the map ab! is
surjective.

In the present paper we define ab?. Let L = (G, k) be a connected k-kernel (i.e. G
is connected). After some preparations in Sections 1-4, we define in Section 5 the abelian
Galois cohomology group H2 (k, L) (which is an abelian group), and the abelianization
map

ab®: H%(k, L) — H? (k,L)

which takes the neutral elements to zero. Qur main result is

THEOREM 0.1 (Theorem 5.6). Let k be a local field or a number field, and L a
connected k-kernel. A cohomology class n € H?(k, L) is neutral if and only if ab%(n) = 0.

In Section 6 we use Theorem 0.1 to show that in some cases the following Hasse prin-
ciple holds for H?(k, L): an element € H?(k, L) is neutral if and only if its localizations
loc,(n) € H%(k,, L) are neutral for all the places v of k. A particular case of our results is

THEOREM 0.2 (Consequence of Theorems 6.3 and 6.8). Let L = (G, x) be a connected
semisimple k-kernel (i.e. G is connected semisimple).
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(i) (|Do2)) If k is a non-archimedian local field, then any element n € H?(k,L) is
neutral,

G Ifkisa number field, then an element n € H%*(k,L) is neutral if and only if
loc,,(r]) 1s neutral for any archimedian place v of k. :

In Section 7 we use the Hasse principle for H2(k, L) to give a new proof of most of the
results of [Bo2] on the Hasse principle for homogeneous spaces. In particular, we give new
proofs of Harder’s result ([Ha2], 3.3) on the Hasse principle for projective homogeneous
spaces, and of Rapinchuk’s result ([Ra])} on the Hasse principle for symmetric homogeneous
spaces.

In a sense, the map ab? is defined in Section 5 indirectly. In the Appendix we give an
explicit formula (in terms of cocycles) for the map ab?, and also explicit cocyclic formulas
for ‘the maps ab® and ab!.

This paper emerged as a result of my correspondence with La,wrence Breen, in the
course of which Breen defined the abelianization map ab?: H?(k,G) — HZ, (k,G) (using
the cohomology theory of crossed modules of gr-categories, developped in [Br]). I am
deeply grateful to him. It is a pleasure to thank Pierre Deligne for a series of valuable
discussions on the Hasse principle for homogeneous spaces. It should be mentioned that
when writing this paper, I was inspired by the paper [Ra] of Rapinchuk, who practically
proved the Hasse principle for H2(k,G) when G is a semisimple group.

This paper was conceived when I was at the Institute for Advanced Study (Princeton),
and was written when I was at the Max-Planck-Institut fiir Mathematik (Bonn). I am
grateful to both Institutes for support and exellent working conditions. -

Notation.
k is a field of characteristic 0, k is a fixed a.lgebra.lc closure of k, T' = Gal(k/k).
G is a k-group, G is a k-group, sometimes G is a k-form of G.
Let G be a k-group. Then
G° is the connected component of G;
G" is the unipotent radical of G°;
G = G/G" (this group is reductive);
G™ is the derived group of G (it is semisimple);
G*¢ is the universal covering of G** (it is simply connected);
G*or = G*4/G* when G is connected (then G'°* is a k-torus).
Following Deligne we define the composition

p G o G* o Gred.

When G is reductive we write G* for G/Z, where Z is the center or G.

Let G be a k-group. We define E-grogps é""_l, G*, G*¢ and, when G is connected, a
k-group G'°, as above. We also define p: G* — G4,
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Let L = (G, ) be a k-kernel (see 1.2 for the definition). We say that the kernel L is

connected (reductive, semisimple, and so on) if G is so.

Let ¢ be a cocycle. We write Cl(¢) for the cohomology class of .

1. Kernels and H2. In this section we recall the definition of the second non-abelian
Galois cohomology (cf. {Spl)).

1.1. Let k be a field of characteristic 0, k an algebraic closure of k, and G an algebraic
group over k.

Consider the canonical morphisms
G—=+Spec k —» Speck,

where w is the structure morphism. Let o0 € T' = Gal(k/k). A o-semialgebraic automor-
phism of G over k is an automorphism s of G as a group scheme over k, such that s is
compatible with o, i.e. wos = B, o w where 8, is the automorphism of Spec % induced
by 0. A semialgebraic automorphism of G over k is a o-semialgebraic automorphism for
some ¢ € ['; then such ¢ is unique.

Let SAut, G (or just SAut G) denote the group of semialgebraic automorphisms of G
over k. As usual, Aut G denotes the group of algebraic automorphisms of G over k. We
have an exact sequence

(1.1.1) 1— AutG — SAutG — T

A k-form G of G defines a continuous homomorphism
(1.1.2) o o, — SAut G.

which is a splitting of (1.1.1). ,
Let Z be the center of G. Then Int G = G(k)/Z(k). The subgroup Int G is normal in
SAutG. Set

OutG = Aut G/Int G
SOutG = SAut G/Int G

We have an exact sequence
(1.1.3) 1 — Out @ — SOut G-5T
1.2. A k-kernel (k-band, k-lien) is a pair L = (G, k), where G is a k-group and x is a

splitting of (1.1.3), i.e. a continuous homomorphism «: T — SOut G such that ¢ o & is the
identity map of I".



. Let G be a k-group. Then G defines a hombmorphism
- kg:I' — SAut G — SOut Gy,
and thus a k-kernel Lg = (G}, kg)-

1.3. Fora k-kernel L = (G, k) we define the second Galois cohomology set H?(k, L) =
H?(k,G, £) in terms of cocycles. For a definitions in terms of extensions see [Spl].

A 2-cocycle is a pair (f, u) of continuous maps
f: f‘—>SAut(=r', u: T xT — G(k)

such that for any o, 7,v € T the following holds:

(1.3.1) : int(ug,r) 0 fo © fr = for
(1.3.2) Ug,rv ° fa(ur,v) = Uor,v " Uo,r
(1.3.3) fo mod IntG = «(c)

Let Z2(k, L) denote the set of 2-cocycles with coefficients in L. The group C(k, G) of
continuous maps ¢:I' = G(k) acts on Z%(k, L) on the left by

c- (fru)=(fv)

where
(1.3.4) o fi=int(c,)o fs
(1.3.5) ﬂ:,»'f = Cor  Ug,r fa(cr)_l : C;‘l

The quotient set H2(k,L) = C(k,G\Z?(k,L) is called the second cohomology set of k
with coefficients in L. If (f,u) € Z%(k,L), we write Cl(f,u) for the cohomology class of
(f,u) in H2(k, L).

Remark 1.3.1. Our notation slightly differs from that of {Spl], who writes 2-cocycles

/in the fOl'm (fi g) Where ga,f = u;’?’.-

1.4. A neutral 2-cocycle is a cocycle of the form (f,1). A neutral cohomology class in
H?(k,L) is the class of a neutral cocycle.

The set H?(k, L) does not necessarily contain a neutral element (for example, it may
be empty). On the other hand, H?(k, L) may contain more than one neutral element.

Let G be a k-group. We write H%(k,G) for H*(k,Lg). The set H*(k,G) contains a
canonical neutral element Cl(¢ ~ o.,1), where o, is as in (1.1.2).

1.5. Let L = (G, x) be a k-kernel, and let N C G be a normal k-subgroup. Assume
that N is invariant under all the semialgebraic automorphisms of G. Set G' = G/N.
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Then the canonical homomorphism SAut G — SAut G’ defines a homomorphism «":T" —
SOutG’, and L' = (G',«') is a k-kernel. We have then a canonical map H%(k,L) —
H?(k,L') which takes neutral elements to neutral elements.

1.6. Let L = (G, «) be a k-kernel, and let Z be the center of G. Then & defines a
k-form Z of Z. We say that Z is the center of L. The abelian group H*(k, Z) acts on the

set H%(k, L) as follows:
Cl(e) - CI(f,u) = CI(f, vu)
where ¢ € Z%(k, Z). This action is defined correctly.

LEMMA 1.7. Let Z be the center of a k-kernel L. If H?(k,L) # @, then the action of
H?*(k,2Z) on H?*(k,L) is simply transitive.

In other words, the set H%(k, L) is either empty, or a principal homogeneous space of
the abelian group H?(k, Z).
Proof. See [Spl], 1.17 or [Mc], IV-8.8.

1.8. Let 7,72 € H%*(k,L). By Lemma 1.7 there exists a unique element nz €
H?(k, Z) such that n; = nz + ;. We write

Nz="mn2-mM-.

2. Neutral cohomology classes. In this section we investigate the set of neutral
cohomology classes in H?(k, G, k).

2.1. Let G be a k-group. A k-form G of G defines a homomorphism
F:T — SAut G, fo =0,
and thus a neutral 2-cocycle
(f,1) € Z2*(k, G, kG), where kG(c) = f, mod Int G.
Set
n(G) = CI(f,1) € H*(k, G, kq).
We call n(G) the neutral cohomology class defined by G.

Let
:T — (G/Z)(k) =Int G

be a cocycle, where Z is the center of G. The twisted group G' = 4G defines a homomor-
phism f":T' — SAut G, and we have f, = ¢, f,. We see that
fi mod IntG = f, mod IntG = xg(0),
and therefore the neutral cohomology class n(G') = CI(f',1), defined by G' = 4G, lies in
H*(k,G,kg) = H*(k,G).
Now let ¢ € Z!(k,G) be a cocycle with values in G(k). One can easily check that
n(,G) = n(G).



. LEMMA 2.2. Let L = (G, k) be a k-kernel, and let n € H*(k,L) be a neutral class.
Then we have n = n(G) for some k-form G of G. This k-form G is defined umquely
modulo twisting by a cocycle p € Z'(k,G).

Proof.” Write n = Cl(f,1). Then f:T' — SAut G is a homomorphism, and it defines a
k-form G of G. We have then n = n(G). We leave the rest to the reader. -

The main result of this section is the following characterization of the neutral classes
in H2(k,G).

PROPOSITION 2.3. Let G be a k-group, Z its center. An element n € H?(k,G) 13
neutral if and only if

n —n(G) € im [6: H'(k,G/Z) — H*(k, Z)},
where & i3 the connecting (coboundary) map.
To prove the proposition we need two lemmas.

LEMMA 2.4. An element n € H2(k,G) is neutral if and only if n = n(yG) for some
Y € Z1(k,G/2). .

Proof. If ¢ € Z'(k,G/Z), then yG defines a neutral class n(y,G) € H2(k, G), see 2.1.
Conversely, let n € H%(k, G) be a neutral element. Write

n(G) = CI(£,1), n= Cl(f'a 1), f:r = Yo fo,
where f, = 0,. By (1.3.3) ¥, € Int Gy = (G/Z)(k). It follows from (1.3.1) that
Yor = Kl’ﬂfo'n[’r ;1 =ty - a‘/’r-

Hence #:T — (G/Z)(k) is a cocycle. We have 5 = Cl(¥f,1) = n(yG). The lemma is
proved.

LEMMA 2.5. Let G and Z be as in Proposition 2.3, and ¥ € ZY(k,G/Z). Then
n(yG) — n(G) = 6(CKY))

where & 1s the connecting map.

Proof. Let f:T' — SAut G be the homomorphism ¢ — o, defined by G. Let f:T —
SAut G; be the homomorphism defined by the inner form G of G. Then f' = ¢ f.

Let 1:T — G(k) be a continuous map lifting 1. By (1.3.4) and (1.3.5)
($£,1) = $- (£, ) where Ao r = $57 - 4o - fo(r).
Since ¢ is a cocycle, Ao,r € Z(k)), and we may write
Aoy = bo - fol$r)- 977 -
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By definition CI(A) = §(Cl(3)) (see [Se], I-5.6 for the definition of §). Thus we have
Ci($f,1) = CI(f, A) = CI(A) + CI(f,1) = §(Cl(¥)) + CI(f,1),

whence
n(yG) ~ n(G) = Cl(¥f,1) — CI(f,1) = §(Cl(¥)),

which was to be proved.

2.6. Proof of Proposition 2.3. Let n € H%(k,G) be a neutral element. By Lemma 2.4
7 = n(yG) for some ¢ € Z'(k,G/Z). By Lemma 2.5 then n — n(G) = §(Cl(3)).

Conversely, suppose that n — n(G) € im §, i.e

n = §(Cl(¥)) + n(G)

for some ¢ € Z'(k,G/Z). By Lemma 2.5 n = n(yG), hence 7 is neutral. The proposition
is proved.

3. Connected reductive kernels. In this section we prove

PROPOSITION 3.1 ([Dol}). Let L = (G, k) be a connected reductive k-kernel. Then
H?(k,L) contains a neutral element.

To prove Proposition 3.1 we need the notion of based root datum.

3.2. Let Gy be a split connected reductive group over k. Let T C Gy be a split
maximal torus, and B a Borel subgroup containing T. To the triple (Go, B,T) we as-
sociate the based root datum ¥ = ¥(Gy,B,T) (cf. [Sp2|, 2.3). By definition ¥ =
(X,XV, 9,8V, II,1TV). Here X is the character group of T, and XV is the cocharacter
group; ® is the the root system of (G,T), and ®V is the corooot system; II is the basis of
® defined by B, and ITV is the dual basis of V. We have an exact sequence

(3.2.1) 1 — G2(k) — Aut Gy — Aut ¥ — 1

(cf. [Sp2], 2.14).

For a root o € ® let U, be the corresponding one-parameter unipotent subgroup of
B. For any « € II choose an element uy € Uy(k). Such a choice defines a splitting
(3.2.2) s Aut ¥ — Aut Gy
of the exact sequence (3.2.1) (cf. [Sp2], 2.13), where AutyGy C Aut G} is the group of
k-automorphisms of Gy.

The Galois group T = Gal(k/k) acts on the terms of the exact sequence (3.2.1). Since

it acts on ¥ trivially, the splitting s mentioned above is I'-equivariant.

_ 3.3. Let G be a connected reductive k-group. It follows from Chevalley’s theorem that -
G admits a split k-form Gy. Choose T' and B as above and construct ¥ = ¥(Gy, B, T).
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_ . LEMMA 3.3.1 There ezists a canonical bijection between the set of k-kernels L =
(G, k) with given G and the set of continuous homomorphisms pu:T — Aut 0.

Proof. The split k-form G of G defines a splitting of the exact sequence (1.1.3). Thus
SOut G becomes a semi-direct product of Out G and I'. The exact sequence (3.2.1) defines
a I-equivariant isomorphism Qut G — Aut ¥. Since I' acts on ¥ trivially, we obtain an
isomorphism

(3.3.2) Aut ¥ x T-550ut G,
and the lemma follows. '

3.4. Proof of Proposition 3.1. Let L = (G, k) be a k-kernel. Let Gy be a split form
of G, and let T, B, ¥ and (uqa)aen be as in 3.2. Then by Lemma 3.3.1 x defines a
homomorphism u: " — Aut ¥. Set ¥ = s o u, where s is the splitting (3.2.2) of (3.2.1).
Then 1 is a homomorphism, and ¥, € (Aut Go)(k) for any ¢ € T'. We see that ¢ is a
cocycle, ¢ € Z1(k,Aut Gg). Set G = yGo. Then n(G) is a neutral element of H?(k, L).
The proposition is proved.

4. Non-reductive kernels. Let L = (G, «) be an arbitrary k-kernel (we do not
assume G to be connected). The normal subgroup G® of G (sec Notation) is invariant
under all the semialgebraic automorphisms of G. Set G™4 = G/G". By 1.5 there exists
a k-kernel L™ = (G™4,«™d) and a canonical map r: H2(k,L) — H?(k,L™?). In this
section we prove

PROPOSITION 4.1. Let L = (G, k) be a k-kernel. An element n € H%(k, L) is neutral
if and only if r(n) is neutral.

COROLLARY 4.2 ([Dol]). Let (U,x) be a unipotent k-kernel. Then any element
n € H*(k,U, k) is neutral.

To prove Proposition 4.1 we need
LEMMA 4.3. Let A be ¢ commutative unipotent k-group. Then H2(k, A)=0.

Proof. Since char(k) = 0, A is isomorphic to a direct product of a number of copies
of the additive group G,. We have H%(k,G,) = 0, hence H?(k, A) = 0, which was to be
proved.

4.4. Proof of Proposition 4.1. We proceed by induction. We assume that G* # 1.
Let A be the center of G®. Since G® is unipotent, we have dimA > 0 (cf. e.g. [Hu],
17.4 and 17.5). The subgroup A is normal in G and invariant under all the semialgebraic
automorphisms of G. Set G' = G/A, then by 1.5 we get a k-kernel L' = (G',«') and a
canonical map v: H2(k, L) — H?*(k,L'). We have dim(G')* < dim G*. We therefore may
and will assume that Proposition 4.1 holds for L'.

Let n € H%(k, L) be a cohomology class, and suppose that r(n) is neutral. We must
prove that n is neutral. Since Proposition 4.1 holds for L', the image n' = v(n) of 7 in
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H?(k,L') is neutral. Write n = CI(f,u), ' = CI(f’,u'), where f' and u’ are the maps
defined by f and u, respectively. Since 7' is neutral, we may choose the cocycle (f,u) in
such a way that the cocycle (f',u’) is neutral, i.e v’ = 1 and f’ is a homomorphism. Then
o + f,|z is a homomorphism; it defines a k-form A of A. We can regard u as a map
I' — A(k), and one can check that u € Z%(k, 4). By Lemma 4.3 Cl(u) = 0 in H?(k, A),
i.e there exists a continuous map c: T — A(k) such that

Cor " Ug,r- fa’(cr)_l : C;l =1.

Then ¢- (f,u) is a neutral cocycle, and thus n = CI(f,u) is neutral. The proposition is
proved.

5. Abelianization. In this section for a connected k-kernel L = (G, k) we define
an abelian group HZ (k,L) and an abelianization map ab?: H2(k, L) — HZ (k, L) which
takes the neutral cohomology classes to zero. We prove that when k is a local field or a
number field, an element € H?(k, L) is neutral if and only if ab%(n) = 0.

5.1. First we assume that L = (G, ) is a reductive k-kernel. Let G**, G* and
p:G* — G be as in Notation. Let Z be the center of G, Z{*®) the center of G*, and Z(*¢)
the center of G*¢. Note that x defines k-forms Z of Z, Z(®®) of Z(s9) and Z(29) of Z(s),
The homomorphism

(5.1.1) A
is defined over k.
We regard the homomorphism (5.1.1) as a short complex of abelian k-groups
(5.1.2) 1— 209-2,72 1
where Z is in degree 0 and Z(#) is in the degree —1. For i > —1 we set
Hi (kL) =H'(k, 29 - Z)

(the Galois hypercohomology group of k with coefficients in the complex (5.1.2)). In this
paper we are interested in HZ (k, L).

5.2. With the assumptions and notation of 5.1 consider the short exact sequence of
complexes

1—(122)— (209 5 2) — (2069 5 1) —1
and the associated hypercohomology exact sequence
(5.2.1) oo — H¥k, ZCNLLH2(k, Z) — H% (kL) — ...

Set
HZ(k,L) = H*(k, 2)/p. H*(k, 29).

We call Hg(k,L) the quotient cohomology group. The exact sequence (5.2.1) defines an
embedding H2(k, L) — HZ (k, L).

To define the abelianization map we need
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LEMMA 5.3. Let L = (G, k) be a connected reductive k-kernel. Let n,n' € H*(k, L)
be two neutral elements. Then with the notation of 5.1

7' —n €im [p.: H*(k, Z®9) = H%(k, 2)).
Proof. By Lemma 2.2 7 = n(G) for some form G of G. By Proposition 2.3
n' —n € im [6: H'(k,G*) — H*(k, Z)].

From the commutative diagram with exact rows

_ 1 —— Z(sc) y G* + GM 1
(5.3.1) lp lp ”
' 1 —— Z , G G v 1

we obtain the commutative diagram
| | HY(k, G*) —2— H2(k, 269))
(5.3.2) ” l,,,
HY(k,G*¥) —2—  H%(k,2)
We see that im § = im (p, 0 §'). Thus n' — 5 € im p., which was to be proved.

5.4. The abelianization map. Let L = (G, &) be a connected reductive k-kernel. We
define the abelianization map
H?(k, L) — H3(k,L) — H2,(k, L)

as follows.
Let n € H*(k,L). By Proposition 3.1 there exists a neutral element 7' € H?(k, L).

We set
a'b2(’7) = (’7 - ’7’) mod p*HQ(k1Z(EC)) € H:(kvL) - sz(k’ L) :

If n” € H%(k, L) is another neutral element, then by Lemma 5.3 n' — 7" € p.(H?(k, Z2(*9)),
and we see that the image of n in H2, (k, L) does not depend on the choice of '. Thus the
map ab? is defined correctly.

The map ab? takes the neutral cohomology classes to 0. The image of ab? is all the set
HZ2(k,L). Indeed, for any nz € H*(k, Z) there exists n € H2(k, L) such that n — o' = nz.

5.5. The abelianization map (cont. ). Let L = (G, k) be any connected k-kernel, not
necessarily reductive. We set

H,(k, L) = H},(k, L")
and define the abelianization map as the composition
ab% H2(k, L) — H2(k, L") 25 B2 (k, L™4) = H, (k, L)
It is clear that ab? takes the neutral elements to 0. °
The main result of the present paper is
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THEOREM 5.6. Let k is a local field (archimedian or not) or a number field. Let
L = (G, k) be a connected k-kernel. Then an element n € H%(k, L) is neutral if and only
if ab?(n) = 0.

To prove Theorem 5.6 we need

LEMMA 5.7. Let G be a semisimple simply connected group over a field k of charac-
teristic 0, and let Z be the center of G. If k is either a local field or a number field, then
the connecting map &6: H'(k,G*¢) — H?*(k, Z) is surjective.

Proof. In the case of a non-archimedian local field see Kneser [Kn1] (see also [PR],
§6.5, Theorem 21). In the real case the assertion follows from the existence of a maximal
torus T C G such that H?(k,T) = 0, which was proved by Harder [Hal], Lemma 4.2.3
(see also [PR], §6.5, Lemma 18). In the case of a number field see [Kn2], Ch. 5, Theorem
1.7, p. 77 (see also [Sa}, 4.5, and [PR], §6.5, Theorem 20).

5.8. Proof of Theorem 5.6. If n € H%(k,L) is neutral, then ab%(n) = 0. We must
prove that if ab?(n) = 0, then 7 is neutral. By Proposition 4.1 it suffices to prove the
assertion for L*®d. We therefore may and will assume that L is reductive.

Let n € H?(k, L) be an element such that ab%(n) = 0. By Proposition 3.1 and Lemma
2.2 there exists a neutral class n{G) in H2(k, L), where G is a k-form of G. Then

17— n(G) = pu(x)

for some x € H*(k,Z(*)). By Lemma 5.7 there exists £ € H?(k, G*?) such that x = §'(¢)
with the notation of the commutative diagram (5.3.2). Then n — n(G) = §(£). We see
that » — n(G) € im 6, thus by Proposition 2.3 7 is neutral (namely, n = n(4G), where
P € Z'(k,G*) is a cocycle representing ¢). The theorem is proved.

6. A Hasse principle for H?, In this section L is a connected k-kernel, where k is
a non-archimedian local field or a number field. We apply Theorem 5.6 to prove a Hasse
principle for non-abelian H?.

_ 6.1. Let L = (G, k) be a connected k-kernel. We set Gt°F = G™4/G*. The k-group
G'°" is a torus, and the homomorphism k defines a k-form G*° of G'*°*. We have a canonical
map t: H?(k, L) — H?*(k, G**%).

Let Z, 2 and Z®) be as in 5.1. From the short exact sequence of complexes

1— (269 5 2090y (269 5 2) — (1 —GY)— 1
we obtain the hypercohomology exact sequence
(6.1.1) H3(k, ker p) — H2 (k, )25 H2(k, G'°),
because

H%(k, 20 - Z()) = H3(k, ker p)
H2(k, 2 — Z) = H% (k, L).
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One can check that the composition map
(6.1.2) H2(k, )25 2, (k, L)1 ta, 2eb, H2(k, G*°7)

is the canonical map t: H2(k, L) — H%(k, G*°T).

We consider the case of a non-archimedian local field k.

PROPOSITION 6.2. Let L = (G, &) be a connected k-kernel, where k is a non-archimedian
local field. Then an element n € H%*(k,L) is neutral if and only if t(n) = 0, where
t: H2(k, L) — H%(k, G*") is the canonical map.

Proof. The group kerp is finite. Since k is a non-archimedian local field, we have
H3(k,ker p) = 0 (cf. [Se], I1I-5.3, Prop. 15). From (6.1.1) we see that the homomorphism
tab 18 injective.

Let n €H 2(k L) If n is neutral, then ¢(n) = 0. Conversely, suppose that ¢(n) = 0.
Since t = t,1, 0 ab? and #,; is injective, we conclude that ab%(n) = 0. By Theorem 5.6 n is
neutral. The proposition is proved.

THEOREM 6.3. Let L = (G, k) be a connected k-kernel, where k is a non-archimedian
local field. Assume that at least one of the following holds:

(i) G*°F is k-anisotropic;
(11) @tor =1;
(iii) ‘G is semisimple.

Then any element 5 € H?%(k,L) is neutral.

Proof. If (i) holds, then by the Tate-Nakayama duality, (cf. [Se], I1I-5.8, or [Mi), I-
2.4) H2?(k,G*") = 0, and the assertion follows from Proposition 6.2. It is clear that
(i1i)=-(ii)=>(i). The theorem is proved.

Remark 6.3.1. Theorem 6.3 in the case (iil) was proved by Douai [Do2].

COROLLARY 6.4. Let k be a non-archimedian local field, and let
1— G — G — Gy —1

be a short ezact sequence of k-groups. If Gy is connected and G = 1, then the map
HY(k,G,) = H(k,G3) is surjective.

Proof. Let £ € H'(k,G3), € = Cl(¢). To the cocycle 3 € Z'(k,G3) Springer ([Spl),
1.20) associates a k-kernel (G, ky) and a cohomology class 6(y) € H?(k, Gz, £y) which
is the obstruction to lifting £ to to H'(k,G;). Since Gi°F = 1, by Theorem 6.3 §(3) is
neutral, hence & comes from H!(k,G2). The corollary is proved.

We now pass to the case of a number field k.
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PROPOSITION 6.5. Let k be a number field, and let L = (G, k) be a connected k-kernel.
Let n € H%*(k,L) be an element, which is locally neutral at the infinite places, i.e. such
that the localization loc,(n) € H?(k,, L) is neutral for any infinite place v of k. Then n is
neutral if and only if t(n) = 0.

Proof. By [Bol], Prop. 4.9, the group HZ (k, L) is the fiber product of H%(k, G**") and
H H? (ky, L) over H H?(k,, G“") where H denotes product over the set of infinite places

of k. Ifnis neutral then t(n) = 0. Conversely, suppose that t(n) = 0. Then the image of
ab%(n) in in H2(k, G‘°’) is zero (because t = t,3, 0 ab?), and its image in [[ H2, (ky, L) is

=]
also zero (because 7 is locally neutral at the infinite places). We conclude that ab?(n) = 0.
By Theorem 5.6 7 is neutral. The proposition is proved.

6.6. Let T be a k-torus. The second Shafarevich-Tate group I11? is defined by

1% (k, T) = ker [loc: H(k, T) — [ [ H2(ky, T)]

where v runs over the set of all places of k. A quasi-trivial torus is a torus T such that its
character group X(7T}) admits a I-stable basis. A torus T is quasi-trivial if and only if it
is a product of tori of the form Ry /xGm, where K/k is a finite extension.

LEMMA 6.7. Let T be a k-torus. Assume that at least one of the following holds:
(1) T is a quasi-trivial k-torus;
(ii) Tk, is ky-anisoiropic for some place v of k;
(iii) T splits over a cyclic extension K/k;
(iv) T is one-dimensional.
Then 1012%(k,T) = 0.

Proof. For the cases (i) and (i1) see [Sa)], 1.9. For the case (iii) see [Bo2], 3.4.1. The

assumption (iv) implies (iii).
THEOREM 6.8 (A Hasse principle). Let k be a number field and L = (G, &) a connected
k-kernel. Assume that at least one of the following holds:
(i) LI*(k,G*") =0;
(ii) The k-torus G*°' is as in Lemma 6.7;
(iii) Gt =1;
(iv) G is semisimple.

Then an element n € H*(k, L) is neutral if and only if its localizations loc, 7 € H?*(k,, L)
are neutral for all the places v of k.

Proof. If n is neutral, then loc, 7 is neutral for any v. Conversely, suppose that loc,
is neutral for any v. Then loc, t(n) = 0 for any v, hence #(5) € III%(k, G*°T). Under any of
the assumptions (i-iv) we have III?(k, G***) = 0. Thus t(n) = 0. By Proposition 6.5 7 is
neutral. The theorem is proved.
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COROLLARY 6.9. Let
1-——5G1——)G2—PG3—P1

be an ezact sequence of algebraic groups over a number field k. Assume that Gy is connected
and that dim Gi°* < 1. Let £ € H(k,G3) be a cohomology class. If for any place v of k,
the localization loc, £ € H'(ky, G3) comes from H(k,,G3), then £ comes from H'(k,Gz).

Proof. Similar to that of Corollary 6.4.
7. Rational points in homogeneous spaces. In this section we apply Theorem

6.8 to prove a Hasse principle for homogeneous spaces. Qur proof uses the Hasse principle
for H! of a simply connected group.

7.1. Let H be a simply connected semisimple k-group. Let X be a right homogeneous
space of H. This means that we are given a right algebraic action (defined over k)

XxH—vX, (z,h)y—z-h

such that the action of H(k) on X (k) is transitive.

_ We are interested whether X has a rational point. Let z € X (%) be a k-point. Let
G be the stabiliser of z in Hy (we write'G = Stab(z)). The subgroup G of Hg is not in
general defined over k.

The homogeneous space X defines a k-form G'' of G'**. Moreover, X defines a
k-kernel L = (G, k). We construct L as follows.

For ¢ € T = Gal(k/k) write
(7.1.1) °z=2z-h,

where h, € H(k). ‘Such an element k, is not unique; it is unique modulo left multiplication
by an element of G(k). We can choose elements h, in such a way that the map o — h, is
continuous. The o-semialgebraic automorphism of Hy

fo =int(h,) 00,

takes G to itself. We will regard f, as a o-semialgebraic automorphism of G. Then the
map f:I' = SAut G is continuous, the composition

K: I‘—f-—»SAut G — SOut G

is & continuous homomorphism, and L = (G, k) is a k-kernel.
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THEOREM 7.2. Let k be a non-archimedian local field. Let H be a simply connected
semisimple k-group, and let X be a right homogeneous space of H. Assume that the
stabilizer G of a point z € X(k) is connected, and that at least one of the followmg holds:

(1) The k-torus G*°F is k-anisotropic;
(i) G*r =1;
(iii) G is semisimple.

Then X has a k-point.

THEOREM 7.3. Let k be a number field. Let H be a simply connected semisimple
k-group, and let X be a right homogeneous space of H. Assume that the stabilizer G of a
point z € X (k) is connected, and that at least one of the following holds:

(1) mz(k’ Gtor) =0,
(i1) The torus G*° quasi-trivial;
(iil) G*°T is k,-anisotropic for some place v of k;
(iv) G*°F splits over a cyclic extension of k;
(v) G'* is one-dimensional;
(Vl) G-tor _ 1;
(vii) G is semisimple.

Then the Hasse principle holds for X, i.e if X(k,) # @ for any place v of k, then X (k) # 0.

Remark 7.3.1. Theorem 7.3 was proved in [Bo2] under slightly more general hypothe-
seson H and G (e.g. H may be adjoint) but with the additional non-necessary assumption
that the pair (Hg, G) admits a k-form (Hy, Go).

COROLLARY 7.4 ([Ha2), 3.3). If X is a projective variety, then the Hasse principle
holds for X.

Proof. Since X is projective, G is a parabolic subgroup of H;. Harder [Ha2] shows
that then G'°* is a quasi-trivial torus (cf. also [Bo2], 3.7). Now the corollary follows from
Theorem 7.3, case (ii).

COROLLARY 7.5 ([Ra}). Suppose that X is a symmetric homogeneous space of an

absolutely ssmple k-group H, i.e. G is the group of invariants of an involution of Hi.
Then the Hasse principle holds for X.

Proof. In this case dim G*°" < 1 (cf. [Ra] or [Bo2|), and the corollary follows from
Theorem 7.3, cases (v) and (vi).

7.6. To prove Theorems 7.2 and 7.3 we construct an element 7(X) € H%(k,G, &),
which is the obstruction to the existence of a principal homogeneous space over X (cf. also
[Sp1], 1.27).

A principal homogeneous space of H over X is a pair (P,a), where P is a right

principal homogeneous space of H and a: P — X is an H-equivariant map (P and a are
defined over k).
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If X has a k-point o, then there exists a principal homogeneous space (P, a) over X.
Indeed, we take P = H, a(h) = zo - h. Conversely, if there exists a principal homogeneous
space (P, a) over X, and P has a k-point pp, then X has a K-point zo = a(po).

We construct the cohomology class n(X) € H%(k, L) ment1oned above. Let z € X (k)
be a k-point. With the notation of 7.1 we set :

P = Hy, a(h):z-h for h € Hy = P.

Then (P, &) is a principal homogeneous space over X;z. We try to define (P, &) over k.
For o €T set )
v(h)=ho-°h  (heP=Hy)
where h, is as in (7.1.1). Then Ve is a o-semialgebraic Hg-equivariant é.utomé)rphism of
P, compatible with the o-semialgebraic automorphism o, of Xy. Set

/\,,,.=u,,.ov;'lou;1 € Aut P,

then Ay (h) = tg,r + b, where _
Ug,r = hor - ah:l ) h;l € é(E)

Let f be the map defined in 7.1, then one can check that the pair (f,u) is a 2-cocycle,
(f,u) € Z*(k, L), where L = (G, ). We set n(X) = Cl(f,u) € H*(k, L).

We show that the cohomology class n(X) is neutral if and only if the pair (P, &) can
be defined over k. Indeed, let (P, @) be a k-form of (P, &). We can take v,(p) = “p. Then
the map v:T — SAut P is a homomorphism, hence Ay (k) = h and us, = 1 for any
o,7 € I'. Thus the class n(X) = CI(f,u) is neutral. Conversely, if 7(X) is neutral, then
we can define the elements (h,)ser in such a way that u, , =1 for any o,7 € I'. Then v
is a homomorphism, and this homomorphism defines a k-form (P, @) of (P, &).

Remark 7.6.1 In the language of gerbs [Gi] (see also [DM], Appendix), the fibered
category Gx of such (P, a) is a gerb, and 7(X) is the class of Gx in H%(k, L). The gerb
Sx is neutral if and only if there exists a pair (P, &) defined over k.

Now we can prove theorems 7.2 and 7.3. To prove Theorem 7.2 we need

"LEMMA 7.7. Let k, H and X be as in Theorem 7.2. If there ezists a principal homo-
geneous space (P, a) over X, then X has a k-point.

Proof. By Kneser’s theorem ([Knl]), the principal homogeneous space P of a simply
connected group H over a non-archimedian local field k has a k-point py. Then zo = a(py)
is a k-point of X. The lemma is proved.

7.8. Proof of Theorem 7.2. Let n(X) € H?(k, L) be the cohomology class defined in
7.6. By Theorem 6.3 any element of H2(k, L) is neutral, thus n(X) is neutral. It follows
that there exists a principal homogeneous space (P, ) over X (see 7.6). By Lemma 7.7
X (k) # 0. The theorem is proved.

To prove Theorem 7.3 we need
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LEMMA 7.9. Let k, H, X and G be as in Theorem 7.3. Suppose that X(k,) # 0
for any infinite place v of k, and suppose that there exists a principal homogeneous space

(P,a) over X. Then X (k) # 0.

Proof. Set G = Autx g P. One can easily see that G is an algebraic group defined
over k, and that G is isomorphic to G. Thus G is connected.

We write Vo, for the set of the infinite places of k. For any v € V, the homogeneous
space X has a k,-point. It follows that there exists a principal homogeneous space (P, &y )
of Hy, over X, (defined over k,), such that P, is trivial (i.e. has a k,-point).

For any extension K/k, the isomorphism classes of K-forms of (P, &) correspond to
elements of H'(K,G). In particular, for v € V, the ky-form (P,, a,) of (P, ) defines a
cohomology class ¢, € H'(k,, G).

Consider the map

loceo: H'(k, G) — HHl(k,,, G).

Since G is connected, the map loce is surjective ([Hal], 5.5.1; see also [PR], §6.5, Prop.
17). Hence there exists an element £ € H!(k, G) such that loc, £ = £, for any v € Voo In
other words, there exists a form (P, a,) of (P, @) such that (P.,a.)x, =~ (Py,a,). It is
clear that P, has a k,-point for any v € V..

By the Hasse principle for H' of simply connected groups (Kneser-Harder-Chernousov,
cf. {Hal] and [PR], Ch. 6), Px has a k-point py. We set 29 = a.(pp), then zo € X(k). The

lemma. is proved.

7.10. Proof of Theorem 1.3. Let n(X) € H%(k,L) be the cohomology class defined
in 7.6. For any place v of k there exists a k,-point z, € X(k,), and therefore a princi-
pal homogeneous space (P,, a,) of Hy, over Xy, . It follows that the cohomology class
locy, 7(X) € H?*(ky, L) is neutral for any v. By Theorem 6.8 7(X) is neutral. This means
that there exists a principal homogeneous space (P, a) of H over X. By Lemma 7.9 X has
a k-point. The theorem is proved.

Appendix. Explicit formulas. Here we write down explicit formulas in terms of
cocycles for the abelianization maps ab*: H* — H}, (i =0,1,2). The maps

ab®: H°(k,G) — HY (k, G)
Bbli Hl(ka G) — H:b(ka G)

were defined (indirectly) in {Bol]. The map
ab?: H?(k, L) — H% (k, L)
was defined (also indirectly) in Section 5.
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Let G be a k-group. The k-group G*¢ and k-homomorphism p: G*° — G are defined
in Notation. Consider the complex Z(*) -2, Z of abelian k-groups, where Z{*) and Z are
the centers of G*¢ and G, respectively. We set

Hiy(k,G) = H'(k,2¢) - 2).
We define ab®. We have
G(k) = p(G*(k)) - Z(k).
Let ¢ € G(k) = H(k,G). We may write g = p(g') - z, where ¢' € G*(k), z € Z(k). Set
0o =(g')"1-% foroeT.
Then ¢, € Z()(k), and the pair (p, z) is a 0-cocycle, (p, 2) € Z%(k, Z(%) — Z). We set
ab’(g) = Cl(y, z) € H(k, 20°) — Z) = HY, (k, G).
We define abl. Let £ € H(E,G), £ = CI($), ¥ € Z'(k, G). Write
Yo = p(¥o) - Zo
where the maps ": T — G*(k) and z:T — Z(k) are continuous. Set
Aoyr =Wy - Ty (Y,) " foro,T €T,

Then Ay, € Z®)(k), and the pair (}, z) is a 1-cocycle, (A, z) € Z}(k, Z() — Z). We set

ab'(¢) = Cl(}, z) € H(k, z<-°°) — 2Z) = HYL(k,G).

Now let L = (G, k) be a k-kernel. See Notation and 5.1 for the definitions of G, p,
and the complex of k-groups (Z(*<) — Z).

We define ab?. Let n € H%(k, L), n = CI(f,u). Write
opr = Bt ) - 2o
where the maps w:T' x I' = G*(k) and z:T x I' = Z(k) are continuous. Set
Xarw = (Ug )70 (gr,) ™" - Uy fa(Tul,).
Then Xo,r,v € ZC(k), and the pair (x, z) is a 2-cocycle, (x,z) € Z%(k, Z¢) - Z). We

set
ab?(n) = Cl(x, z) € H?(k, 2(*) = Z) = H? (k, L).
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