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Abstract

Let X ⊂ P(V ) be a projective variety, which is not contained in a hyperplane. Then
every vector v in V can be written as a sum of vectors from the affine cone X over X. The
minimal number of summands in such a sum is called the rank of v. The set of vectors
of rank r is denoted by Xr and its projective image by Xr. The r-th secant variety of X
is defined as σr(X) := ts≤rXs; it is called tame if σr(X) = ts≤rXs and wild if the closure
contains elements of higher rank. In this paper, we classify all equivariantly embedded
homogeneous projective varieties X ⊂ P(V ) with tame secant varieties. Classical examples
are: the variety of rank one matrices (Segre variety with two factors) and the variety of
rank one quadratic forms (quadratic Veronese variety). In the general setting, X is the
orbit in P(V ) of a highest weight line in an irreducible representation V of a reductive
algebraic group G. Thus, our result is a list of all irreducible representations of reductive
groups, where the resulting X has tame secant varieties.
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1 Introduction

Let V be a simple module of a semi-simple Lie group G. In this work we consider two different notions
of rank on V and provide a list of modules (G,V ) for which these notions coincide.

There is a well known notion of rank for matrices of size m×n, n×n symmetric and antisymmetric
matrices. These spaces are in a natural way simple modules of the reductive groups GLm×GLn and
GLn respectively. For these three modules (G,V ) there is a common way to restore the rank function
from the action of the group G.

Let X(G,V ) ⊂ P(V ) be the projectivization of the set of highest weight vectors with respect to
G. Then X(G,V ) is a complete G-homogeneous space. Every point in V can be expressed as a linear
combination of points of X(G,V ); the rank of a point is the minimal number of summands in such
a linear combination. For the matrix cases mentioned above the varieties X(G,V ) are the Segre,
Veronese and Grassmann varieties, respectively. Also, in these cases the notion of rank coincides with
the classical one.

In general, one can define a notion of rank on V for any X ⊂ P(V ) such that X spans V . In
the same way every point in V can be expressed as a linear combination of points of X and the rank
of a point is the minimal number of summands in such a linear combination. We define the r-th
secant variety of X as the closure of the projectivization of the union of vectors of rank r or less.
The matrices of rank r or less form a closed subvariety which equals to the r-th secant variety. This
closedness condition fails in general and this is a source of difficulties in the study of secant varieties
and rank. The goal of this work is to determine all simple representations V of reductive groups G
for which the closedness condition holds. In short: there are not too many such representations, there
are some such representations, some of these representations are unexpected to us.

We now turn from a general discussion to a world of formal definitions. First we fix some notation.
We work over an algebraically closed field F of characteristic zero. Let V denote a vector space of
dimension N ≥ 2. If v ∈ V is a nonzero vector, we shall denote by [v] its image in the projective space
P(V ). Let X ⊂ P(V ) be a locally closed, nondegenerate subvariety. For any [v] ∈ P(V ) the number

rk[v] = rkX[v] = min{r ∈ N : v = v1 + ...+ vr with [vj ] ∈ X} .

is called the rank of [v]. Set

Xr = {[v] ∈ P(V ) : rk[v] = r} , r = 1, 2, ...

There exists an rg, called the typical (or generic or essential) rank, such that the set Xrg is Zariski
dense in P(V ). For 1 ≤ r ≤ rg, the Zariski closure Xr is called the r-th secant variety of X and denoted
by σr(X). For any [v] ∈ V the smallest r such that [v] ∈ σr(X) is called the border rank of [v] and we
denote it by rkX[v]. By definition, rkX[v] ≥ rkX[v].

Definition 1.1. A point [v] ∈ P(V ), for which rkX[v] 6= rkX[v], is called exceptional. We say that
a subvariety X ⊂ P(V ) is wild if there exists an exceptional with respect to X point [v] ∈ P(V ).
Otherwise, we say that X is tame in P(V ).

Clearly, if [v] is exceptional, then rkX[v] < rkX[v], so exceptional points are points which can be
approximated by points of lower rank.

Let G ⊂ GL(V ) be a connected reductive algebraic subgroup such that V is a simple G-module.
Then the variety P(V ) contains a unique closed G-orbit, which we denote by X(G,V ).

Theorem 1.1. Assume that dimV ≥ 2. Let G′ be the commutator subgroup of G. Then the variety
X(G,V ) is tame in P(V ) if and only if the pair (G′, V ) appears in the following table.
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Group G′ Representation V Highest weight of V

Simple classical groups

SLn
Fn, (Fn)∗, (Λ2Fn), (Λ2Fn)∗,

S2Fn, (S2Fn)∗, sln

π1, πn−1, π2, πn−2,
2π1, 2πn−1, π1 + πn−1

SOn Fn, RSpinn(n ≤ 10)
π1, πn

2
(2 | n), πn

2
− 1(2 | n),

πn−1
2

(2 - n)

Sp2n F2n,Λ2
0F2n, S2F2n ∼= sp2n π1, π2, 2π1

Simple exceptional groups

E6 F27, (F27)∗ π1, π5

F4 F26 π1

G2 F7 π1

Non-simple groups

SLm × SLn Fm ⊗ Fn π1 ⊕ π1

SLm × Sp2n Fm ⊗ F2n π1 ⊕ π1

Sp2m × Sp2n F2m ⊗ F2n π1 ⊕ π1

, (1)

where by RSpinn we denote (any) spinor representation of the simply connected cover of SOn, by
Λ2

0F2n we denote the second fundamental representation of Sp2n (which is identified with a hyperplane
in Λ2F2n), by F27 we denote any one of two the smallest fundamental representations of E6, by F26

we denote the smallest fundamental representations of F4, by F7 we denote the smallest fundamental
representations of G2. In the third column we write the highest weight of V with respect to G′ (we
use here and throughout the paper the enumeration convention of [VO90]).

Moreover, if (G,V ) is wild, then it contains an exceptional vector of border rank 2.

We give a proof of Theorem 1.1 in Section 3. As a corollary, we obtain the list of homogeneous
projective varieties given below. The list of varieties is shorter, because in certain cases there are
subgroups of the automorphism group of the variety acting transitively.

Corollary 1.2. The tame projective varieties X ⊂ P(V ) with transitive linear automorphism group
are the following:

Notation for X Ambient P(V ) Group G Max rkX
P(Fn) P(Fn) SLn 1

Ver2(P(Fn)) P(S2Fn) SLn n

Gr2(Fn) P(Λ2Fn) SLn bn2 c
Fl(1, n− 1;Fn) P(sln) SLn n

Qn−2 P(Fn) SOn 2

S10 P(F16) Spin10 2

Grω(2,F2n) P(Λ2
0F2n) Sp2n n

E16 P(F27) E6 3

F15 P(F26) F4 3

Segre(P(Fm)× P(Fn)) P(Fm ⊗ Fn) SLm × SLn min{m,n}

In all cases X coincides with the projectivization of the set of highest weight vectors of the respective
representation.

Let us say a few words about previous work on this and related topics, in order to embed our result
into a variety of results of other people. Secant varieties of projective varieties have been an object of
study for a long time. Many results and further references can be found in the recent monograph [L12].
Questions of interest are: What is the dimension of the r-th secant variety? What is the typical rank?
What is the ideal of the r-th secant variety? What is the rank of a given element? Much of the
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activity is concentrated on some special cases of varieties of the form X(G,V ), e.g. Segre, Veronese
and Grassmann varieties, as well as spinor and adjoint varieties. First, there is the Segre variety

Segre(Pn1−1 × ...× Pnk−1) = X(SLn1 × ...× SLnk
,Fn1 ⊗ ...⊗ Fnk)

and the related notion of tensor rank, see e.g. [CGG02], [LM04]. The Segre variety is tame if and
only if k = 2, i.e. in the classical case of matrices. Second, there is the Veronese variety

Verk(Pn−1) = X(SLn, SkFn).

Here the rank is called Waring rank and equals the number of k-th powers of linear forms necessary to
express a given polynomial as a sum. The general solution to the problem of determining the Waring
rank of a given polynomial is still unknown. However, there are recent results which give, among
other things, the ranks of monomials and sums of coprime monomials, see [LT10], [CCG12]. The
dimensions of the secant varieties of Veronese varieties have been computed in [AH95]. The Veronese
variety Verk(Pn−1) is tame if and only if k = 2. Third, there is the Grassmann variety in its Plücker
embedding

Grk(Fn) ∼= X(SLn,Λ
kFn) ↪→ P(ΛkFn).

The corresponding secant varieties and rank sets have been studied considerably less than those of
the Segre and Veronese varieties, see e.g. [CGG05] (and some further references) where one finds
results on dimension of the secant varieties. The Grassmann variety is tame if and only if k ≤ 2 or
|n − k| ≤ 2. Another class of varieties X(G,V ), which has been a subject of research is the class of
adjoint varieties X(G, g) for a simple group G, see [Kaji98], [KY00], [BD04]. In particular, in [KY00]
it is shown that X(G, g) is tame if and only if G is of type An or Cn. Thus, the tame cases are rather
scarce and many of them have interesting descriptions as set of matrices, where the rank is actually a
classical, well-known invariant.

Let us emphasize, that the second secant variety plays a prominent role both in this paper and in
the literature. Sometimes the second secant variety is called just “the secant variety”. This variety is
much more accessible than the higher secant varieties: for example for a simple G-module the second
secant variety has an open G-orbit [Zak93, Ch. III, Thm 1.4].

The starting point of this study is the paper [BL13], where it is shown that an interesting class of
homogeneous projective varieties is tame: the subcominuscule varieties. Let us recall that a variety X is
called subcominuscule, if X = X(G,V ), where G→ GL(V ) is the isotropy representation of a compact
Hermitian symmetric space (such a representation is called subminuscule). In this case, the sets Xr are
exactly the G-orbits in P(V ), see [LM03], [BL13]. Further, the result on subminuscule representations
allows us to deduce that a larger class of representations is tame, namely, the irreducible representations
where G acts spherically on P(V ). We call these representations spherical; the irreducible spherical
representations are classified [Kac80] (see also [Knop98]). In fact, a quick examination of the lists
shows that, for every irreducible spherical representation G → GL(V ), there exists a subminuscule
representations G̃ → GL(V ), such X(G,V ) = X(G̃, V ). The group G̃ can be taken to be the simply
connected cover of the automorphism group of X(G,V ). Similarly, one can enlarge further the list
of tame representations, but not of tame varieties, by taking a tame variety X(G,V ) and a subgroup
of G1 ⊂ G acting transitively on X. Then V automatically remains irreducible over G1 and, since
the notion of rank is independent of the group acting, we still have a tame variety. For instance, the
subgroup Sp2n ⊂ SL2n acts transitively on the quadratic Veronese variety Ver2(P2n−1). It is, however,
not true that the subcominuscule varieties give a full list of tame homogeneous projective varieties.
From our classification we see that the exceptions are Fl(1, n− 1;Fn), Grω(2,F2n) and F15.

This leads us to the following observation. If X ⊂ P(V ) is a tame homogeneous variety, then
X is either a subcominuscule variety or a hyperplane section of a subcominuscule variety. If X is
subcominuscule, then the maximal rank in P(V ) with respect to X is equal to the rank of P(V ) as
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a spherical variety with respect to the automorphism group of X. If X is a hyperplane section of a
subcominuscule variety, then its rank function is obtained by restriction.

The paper is organized as follows. In Subsection 2.1, we recall the notions of secant varieties, rank
and border rank, with their basic properties. In Subsection 2.2, we recall some basic notions about
algebraic groups: Borel subgroup, Cartan subgroup, weight lattice, root system, Weyl chamber. We
also introduce the notion of chopping (this is a simple combinatorial procedure) and provide some
facts on X2(G,V ) and σ2(X(G,V )) playing a crucial role in this paper.

In Section 3, we present a plan of our proof of Theorem 1.1, the main theorem of our article.
Essentially, this proof is a compilation of Propositions 4.6, 4.8 and Theorems 6.1 and 7.1. We prove
Propositions 4.6, 4.8 in Section 4. We prove Theorems 6.1, 7.1 in Section 6 and 7 respectively.

In Section 5, we prove a strong necessary condition for tameness of a representation in terms of
its choppings, formulated in Proposition 5.1.

The main statement of Section 6 is Theorem 6.1. In this theorem we find out which fundamental
representations of classical groups are tame and which are wild. This is done in the following way: for
fundamental modules

Fn,Λ2Fn for SLn, Λ3F6 for SL6, Λ2
0F2n and Λ3

0F2n for Sp2n,
Λ2Fn for SOn, RSpinn for Spinn(n ≤ 12)

we check wildness/tameness in a straightforward way. From these data we deduce wildness of all other
modules using the notion of chopping.

The main statement of Section 7 is Theorem 7.1. In this theorem we find out which fundamental
representations of exceptional groups are tame and which are wild. This is done via case by case
checking of 27 fundamental representations of 5 exceptional Lie algebras. For any such a representation
we find some arguments by which it is wild/tame. For most of the representations the arguments are
quite short, but for three representations:

V (π1), V (π2) for F4 and V (π1) for E7

we are able to find only quite long arguments presented in the corresponding subsections.

2 Preliminaries

In this section, we recall some definitions and elementary facts about secant varieties and rank. The
goal is to introduce notation and perhaps help the unexperienced reader to become more familiar with
these notions. We also fix some standard notation for reductive algebraic groups, their Lie algebras
and their representations.

Throughout the paper we use the following notation. The letter X is always used for a projective
variety and X denote the cone of it. For any subset S ⊂ V we denote by 〈S〉 ⊂ V the span of S. For
any subset S ∈ P(V ) we denote by 〈S〉 ⊂ V the span of the cone S of S in V . For any non-zero vector
v ∈ V we denote by [v] the class of it in P(V ). If v = 0, we set [v] := 0.

2.1 Secant varieties and rank: general definitions

Let X ⊂ P be an algebraic variety and X ⊂ V denote the affine cone over X. We denote by P〈X〉 =
P(〈X〉) the corresponding projective subspace of P. We say that X spans P if P〈X〉 = P; this is
equivalent to the requirement that X contains a basis of V . Assume that this is the case. Then every
point in V can be written as a linear combination of points in X. This allows us to define the notion
of rank already given in the introduction: the rank of [ψ] ∈ P with respect to X is the minimal number
of elements of X necessary to express ψ as a linear combination. Thus, the space P is partitioned into
the rank subsets,

P = X1 t X2 t ....
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Since X spans P, we have Xr = ∅ for r > N .
The following properties of varieties Xr hold:
(i) X1 = X.
(ii) There exists a maximal rm ∈ {1, ..., N}, such that Xrm 6= ∅ and Xr = ∅ for r > rm.
(iii) If r ∈ {1, ..., rm}, then Xr 6= ∅.
(iv) The projective space P can be written as a disjoint union P = X1 t · · · t Xrm .
Let r ∈ {2, ..., rm}. The subset Xr ⊂ P is not closed, because we have X ⊂ Xr and X * Xr. (Here

and in what follows we use S to denote the Zariski closure of a subset S of some algebraic variety.)
The r-th secant variety of X is defined as

σr(X) =
⊔
s≤r

Xs ⊂ P .

It can also be written as

σr(X) =
⋃

x1,...,xr∈X
Px1...xr ,

where Px1...xr stands for the projective subspace of P spanned by the points x1, ..., xr.
The following properties of secant varieties σr(X) hold:
(i) σ1(X) = X1 = X.
(ii) σr(X) ⊂ σr+1(X).
(iii) If X is irreducible, then σr(X) is also irreducible.
(iv) There exists a minimal number rg ∈ {1, ..., rm} such that σrg(X) = P and σrg−1(X) 6= P.
(v) For r ∈ {1, ..., rg} the rank subset Xr is dense in σr(X), i.e. we have σr(X) = Xr.

Definition 2.1. The number rg from part (iv) of the above proposition is called the typical rank of
P with respect to X.

Let [ψ] ∈ P. The border rank of [ψ] with respect to X is defined as

rk[ψ] := rkX[ψ] := min{r ∈ N : [ψ] ∈ Xr} .

Definition 2.2. Points [ψ] ∈ P, for which rk[ψ] 6= rk[ψ], are called exceptional.

Clearly, rk[ψ] ≥ rk[ψ] and [ψ] is exceptional exactly when rk[ψ] < rk[ψ]. So, exceptional points
are points which can be approximated by points of lower rank. Also, we have

rk[ψ] = min{r ∈ N : [ψ] ∈ σr(X)}.

This leads us to the next definition.

Definition 2.3. The secant variety σr(X) is called wild if it contains exceptional vectors and tame
if it does not contain exceptional vectors. The embedding X ⊂ P is called wild/tame, if some of the
secant varieties σr(X) is wild/tame. The embedding X ⊂ P is called r-tame, if σr(X) is tame. The
embedding X ⊂ P is called r-wild, if σr(X) is wild and σs(X) is not wild for s < r.

We record another list of simple statements, which are derived immediately from the above defi-
nitions.

1) The secant variety σr(X) is wild if and only if σr(X) 6= X1 t X2 t ... t Xr.
2) If σr(X) is wild, then, for s ≥ r, σs(X) is also wild.
3) The embedding X ⊂ P is wild if and only if rkX 6= rkX.
We denote by Xr ⊂ V the cone over Xr without 0 and by σr(X) ⊂ V the cone over σr(X) with 0.
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2.2 Irreducible representations of reductive groups

Here we fix some notation concerning semisimple or reductive algebraic groups and their representa-
tions. All notions from this theory used by us can be found in [GW09] (the notation, however, may
differ).

Let G be a connected reductive algebraic group over F and g be its Lie algebra. We assume that
the semisimple part G′ of G is simply connected. Let B ⊂ G be a Borel subgroup and H ⊂ B a
Cartan subgroup. Let h ⊂ b ⊂ g denote the respective subalgebras of g. Let Λ ⊂ h∗ be the integral
weight lattice and ∆ ⊂ Λ the root system. Let ∆ = ∆+ t∆− be the partition of the root system into
positive and negative roots corresponding to the Borel subgroup B. Let Π = {α1, ..., α`} be the basis
of simple roots in ∆+.

The Cartan-Killing form of g determines a scalar product (·, ·) on h∗. This scalar product (·, ·)
defines a Dynkin diagram (graph) Dyn, whose vertices are labeled by the simple roots α1, ..., α` ∈ Π.
Also Π and the scalar product define the dominant Weyl chamber Λ and the monoid of dominant
weights Λ+ ⊂ Λ, generated by the fundamental weights π1, ..., π`. Hence λ ∈ Λ+ defines a function
fλ : Π → Z≥0 such that λ = fλ(α1)π1 + ... + fλ(α`)π`. This defines a one-to-one correspondence
between the set Λ+ of dominant weights and functions from the set of vertices of Dyn to the non-
negative integers. We denote

h(λ) := fλ(α1) + ...+ fλ(α`).

The set Λ+ is also in a one-to-one correspondence with the set of isomorphism classes of simple
finite-dimensional G-modules. We denote by V (λ) the irreducible representation of G corresponding
to λ ∈ Λ+ (λ is a highest weight of V (λ) and V (λ) contains a unique up to scaling vector vλ of weight
λ). Set P(λ) := P(V (λ)). We denote by X(λ) and X(λ) the orbits of vλ and [vλ] in V (λ) and P(λ)
respectively. Note that X(λ) is a unique closed G-orbit on P(λ).

Any subdiagram of a Dynkin diagram is again a Dynkin diagram. Thus, by chopping down
some vertices (along with the adjacent edges) we obtain a new diagram Dyn, which corresponds to a
semisimple Levi subgroup G ⊂ G. The restriction of fλ to Dyn defines a simple representation V of
the group G.

Definition 2.4. We say that a G-representation V is a chopping of a G-representation V , if V is
obtained from V via the above construction.

Remark 2.1. Note that a chopping of a fundamental representation is either fundamental, or trivial
one-dimensional.

The Dynkin diagram determines the Weyl group W. We denote by w0 the longest element of W
with respect to the Bruhat order. The weights of the form wλ, with w ∈ W, are called extreme weights
of the module V (λ) and the corresponding weight vectors are called extreme weight vectors. For any
w ∈ W we denote by vwλ the unique up to scaling vector of weight wλ. The weight w0λ is called the
lowest weight of V (λ).

For λ1, λ2 ∈ Λ+, G-module V (λ1)⊗V (λ2) contains a unique up to scaling vector of weight λ1 +λ2.
This vector is contained in a simple G-submodule, which is isomorphic to V (λ1 + λ2). We call this
submodule the Cartan component of V (λ1)⊗V (λ2). It is well known that the Cartan component does
not depend on a choice of Borel subgroup B ⊂ G.

Let us fix λ ∈ Λ+ and put V = V (λ) and P = P(λ) := P(V (λ)). The group G acts on the projective
space P and has a unique closed orbit therein, namely, the orbit through the highest weight line, to
be denoted by X = X(λ) := G[vλ]. We have X = G/P , where P denotes the stabilizer of [vλ] ∈ P
in G. This P is a standard parabolic subgroup, i.e. a closed subgroup of G containing the fixed
Borel subgroup B. The cosets of G by parabolic subgroups are called the flag varieties of G. Thus
we have an equivariantly embedded flag variety X = G/P ⊂ P. In fact, all equivariantly embedded
homogeneous projective varieties are obtained in this fashion. Note, that the variety X is the set of
highest weight vectors with respect to all possible choices of Borel subgroups B ⊂ G.
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The irreducibility of V implies that X spans P. Hence, we have well defined rank and border rank
functions on P with respect to X, as well as secant varieties σr(X) ⊂ P. Since the group G acts on V
by invertible linear transformations, it follows immediately that rank and border rank are G-invariant
functions. Hence, the rank sets Xr and the secant varieties σr(X) are preserved by G.

Definition 2.5. Let V = V (λ), with λ ∈ Λ+, be an irreducible representation of a reductive linear
algebraic group G. Let X = X(λ) be the unique closed G-orbit in P = P(λ). The G-module V is called
tame (resp. wild, r-tame, r-wild), if the the variety X ⊂ P is tame (resp. wild, r-tame, r-wild).

Our goal is to classify all tame irreducible representations of semisimple algebraic groups.

Remark 2.2. In some of our constructions we consider reductive groups, rather than semisimple
groups, just because this simplifies some steps. The actions of G and G′ on P coincide and we are
concerned with properties of the embedding X ⊂ P. Thus the classification of tame representations of
reductive groups can be easily obtained from the one for semisimple groups.

Below we assume that λ 6= 0 (this corresponds to the inequality dimV ≥ 2, V = V (λ), assumed
in Theorem 1.1).

We denote by An, Bn, Cn, Dn, E6, E7, E8, F4, G2 the simple simply connected algebraic groups with
the corresponding Dynkin diagrams. We denote by an, bn, cn, dn, e6, e7, e8, f4, g2 the corresponding Lie
algebras.

3 Plan of proof of Theorem 1.1

Theorem 1.1 follows from a number of propositions and theorems proved throughout the article. Thus
the proof explains the role of different parts of this text.

In Proposition 4.6, we prove that, if an irreducible representation V (λ) with highest weight λ is
tame, then h(λ) < 3. In Proposition 4.8, we classify all irreducible tame modules V (λ) with h(λ) = 2.

The tame fundamental representations (i.e. irreducible G-modules V (λ) with h(λ) = 1) are clas-
sified in Theorems 6.1 and 7.1. This is done in a case by case study. We consider separately represen-
tations of classical groups (Theorem 6.1), and representations of exceptional groups (Theorem 7.1).
This completes the proof of Theorem 1.1.

Let us say a few words about the proofs of Theorems 6.1 and 7.1. The tame representations are
considered individually and for each case we provide specific arguments. Most representations are wild
and thus we have to check wildness of a huge amount of cases. The number of cases to be considered
is greatly reduced by Proposition 5.1, where we show that, if G-representation V is a chopping of
G-representation V and V is wild, V is also wild. Thus, it suffices to check wildness directly for only
few basic cases, then we are able to deduce wildness for most of the fundamental representations.

4 Non-fundamental tame modules

The goal of this section is to classify all non-fundamental tame modules. First of all we provide in
Lemma 4.3 of Subsection 4.1 a way to construct exceptional vectors in V (λ). Using this construction
we show in Proposition 4.6 of Subsection 4.2 that, if a G-module V (λ) is 2-tame, then it is either
a fundamental G-module (i.e. h(λ) = 1) or is a Cartan component in a tensor product of two
fundamental G-modules (i.e. h(λ) = 2). Further on, in Proposition 4.7, we shall show that, in
the latter situation, each of the fundamental modules satisfies a very strict condition, related to the
notion of HW-density introduced in Definition 4.2. Using the explicit description of all HW-dense
modules which we present in Corollary 4.5, we are able to complete in Proposition 4.8 a classification
of non-fundamental tame G-modules V (λ) (i.e. modules V (λ) such that h(λ) = 2).
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4.1 The varieties σ2(X(λ)) and X2(λ)

In some sense, in this article we study the difference between the variety σ2(X(λ)) and its open subset
X2(λ). Here we collect some of their basic features. First we recall that, if a generic rank of V (λ) is
greater than 1 (i.e. if P(λ) 6= X(λ)), then

σ2(X(λ)) = X2(λ).

We provide a kind of explicit description of elements of X2(λ) (Lemma 4.1) and exhibit some set of
elements of σ2(X(λ)), which tend to be exceptional (Lemma 4.3).

Lemma 4.1. Let V (λ) be an irreducible representation of a reductive group G. Then
a) any pair ([v1], [v2]) ∈ X(λ)× X(λ) is G-conjugate to a pair ([vλ], [vwλ]) for some w ∈ W,
b) any element of X2(λ) is conjugate to [vλ + vwλ] for some w ∈ W.

Proof. Fix v1, v2 ∈ X(λ) such that [v1] 6= [v2]. Let B1, B2 be Borel subalgebras of G such that v1, v2

are the corresponding to B1, B2 highest weight vectors. It is known that B1 ∩B2 contains a maximal
torus T12 of G and there exists w ∈ W12 := NG(T12)/T12 such that B1 = wB2. Thus ([v1], [v2]) is
conjugate to ([vλ], [vwλ]) for some w ∈ W. This completes the proof of part a).

To prove part b) we observe that any element of X2(λ) is a sum v1 +v2 for some v1, v2 ∈ X(λ) such
that v1 6= v2. According to part a) the pair ([v1], [v2]) is conjugate to ([vλ], [vwλ]) for some w ∈ W.
Thus [v1 + v2] is conjugate to [avλ + bvwλ] for some non-zero a, b ∈ F. As [v1] 6= [v2], λ 6= wλ. Hence
[vλ + vwλ] is conjugate to [avλ + bvwλ] for any non-zero a, b ∈ F. This completes the proof of b).

Corollary 4.2. The varieties σ2(X(λ)) and X2(λ) have open G-orbits. (see also [Zak93, Ch. III, Thm
1.4])

Lemma 4.3. Fix x ∈ X(λ) and t ∈ g. Then [x+ tx] ∈ σ2(X(λ)).

Proof. By definition X2(λ)∪X(λ) is the union of lines going through pairs of points of X(λ). Thus the
tangent space TxX(λ) ⊂ V to X(λ) in x belongs to X2(λ) = σ2(X(λ)). On the other hand, x + tx
belongs to TxX(λ) as tx is tangent to X(λ). This completes the proof.

4.2 HW-density and 2-tameness

In this subsection, we analyze the notion of 2-tameness via the notion of HW-density given in Defi-
nition 4.2. This analysis allows to find out all tame modules which are not fundamental. Notice that
2-tameness is, a priori, weaker than tameness, but is much simpler to check. A posteriori, it turns
out that tameness and 2-tameness are equivalent for the class of homogeneous projective varieties
considered in this paper.

We proceed in the following way. We prove that, if an irreducible G-module V is 2-tame, then it is
either a fundamental module of G (i.e. only one mark of the highest weight of V is distinct from zero
and this mark equals 1) or is a Cartan component of the tensor product of two fundamental modules
of G, see Proposition 4.6. In the latter case we prove that both fundamental modules in the product
have to be HW-dense, see Proposition 4.7. It turns out that HW-density is a very strict condition
as we show in Corollary 4.5. This result leads to Proposition 4.8, which lists all 2-tame G-modules,
which are not fundamental.

We start with the definition of HW-density followed by the statements of the results. The proofs
of these results are given below until the end of the section.

Definition 4.1. Let X be a smooth subvariety of a projective space P. We say that X is HW-dense,
if for any point x1 ∈ X there exists an open subset U of the tangent space to X at x1 such that for all
v ∈ U there exists x2 ∈ X such that v ∈ 〈x1, x2〉.

Definition 4.2. We say that a simple G-module V (λ) is HW-dense, if X(λ) is HW-dense in P(λ).
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We shall prove below in this subsection the following criterion of HW-density.

Lemma 4.4. The G-module V (λ) is HW-dense if and only if one of the following equivalent conditions
holds:

(a) The set X(λ) of highest weight vectors is dense in V (λ).
(b) All non-zero vectors of V are highest weight vectors with respect to some choice of a Borel

subgroup of G,
(c) G acts transitively on P(V ).

Corollary 4.5. Let V be an effective fundamental HW-dense G-module. Then (G,V ) is isomorphic
to (Sp(V ), V ), (SL(V ), V ) or (SL(V ), V ∗).

Now, we formulate Propositions 4.6, 4.7 announced at the beginning of Section 4.

Proposition 4.6. Assume that V (λ) is tame. Then h(λ) < 3.

Proposition 4.7. Let λ1, λ2 ∈ Λ be non-zero weights. Assume that V (λ1 +λ2) is 2-tame. Then both
V (λ1), V (λ2) are HW-dense.

The proof of Propositions 4.6, 4.7 is presented below in this subsection. Corollary 4.5 and Propo-
sition 4.7 immediately imply the following proposition.

Proposition 4.8. Assume that V (λ) is an effective 2-tame module and h(λ) = 2. Then (G,V (λ))
appears in the following list:

1) (SL(V1)× SL(V2), V1 ⊗ V2); 2) (SL(V1)× Sp(V2), V1 ⊗ V2); 3) (Sp(V1)× Sp(V2), V1 ⊗ V2);
4) (SL(V ), S2V ); 5) (SL(V ), sl(V )); 6) (Sp(V ), sp(V )) ∼= (Sp(V ), S2V )

(here sl(V ), sp(V ) denote the adjoint modules of the corresponding groups).

All modules listed in Proposition 4.8 are tame. Cases 1) and 4) of Lemma 4.8 are known to be
tame. Cases 2), 3) have the same secant varieties as case 1), and hence are also tame. Cases 5) and 6)
are tame due to [Kaji98]. Therefore Proposition 4.8 explicitly lists all non-fundamental tame modules.

The rest of the current subsection is dedicated to the proofs of Propositions 4.6, 4.7 and Lemma 4.4.
We need the following lemma for the GL(V1)×GL(V2)×GL(V3)-module V1⊗V2⊗V3, where V1, V2, V3

are finite-dimensional vector spaces.

Lemma 4.9. Let xi, yi be linearly independent vectors in Vi for i = 1, 2, 3. Then

T := x1 ⊗ x2 ⊗ x3 + y1 ⊗ x2 ⊗ x3 + x1 ⊗ y2 ⊗ x3 + x1 ⊗ x2 ⊗ y3 6= v1 ⊗ v2 ⊗ v3 + w1 ⊗ w2 ⊗ w3

for all vi, wi ∈ Vi (i = 1, 2, 3). In other words, rkT > 2.

Proof. Assume on the contrary that

T = v1 ⊗ v2 ⊗ v3 + w1 ⊗ w2 ⊗ w3

for some vi, wi ∈ Vi, i = 1, 2, 3. We have V1 ⊗ V2 ⊗ V3
∼= Hom(V ∗2 ⊗ V ∗3 , V1). Therefore for any

x ∈ V1 ⊗ V2 ⊗ V3 we can define Im1(x) ⊂ V1 as the image of the corresponding homomorphism from
Hom(V ∗2 ⊗ V ∗3 , V1). Similarly we define Im2(x) and Im3(x). We have

Imi(T ) = 〈xi, yi〉, i = 1, 2, 3.

On the other hand, if v1 ⊗ v2 ⊗ v3 + w1 ⊗ w2 ⊗ w3 6= 0,

Imi(v1 ⊗ v2 ⊗ v3 + w1 ⊗ w2 ⊗ w3) ⊂ 〈vi, wi〉(i = 1, 2, 3).
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Therefore, 〈xi, yi〉 = 〈vi, wi〉, i = 1, 2, 3. Hence, without loss of generality, we may assume that

Vi = 〈xi, yi〉 = 〈vi, wi〉(i = 1, 2, 3),

i.e. that dimVi = 2 (i = 1, 2, 3). For two-dimensional spaces V1, V2, V3 this lemma is well known; see
e.g. [L12].

Note that for (G,V (λ)) = (SL(V1)× SL(V2)× SL(V3), V1 ⊗ V2 ⊗ V3) we have h(λ) = 3. Moreover,
Lemma 4.9 is essentially a particular case of Proposition 4.6.

Proof of Proposition 4.6. Assume on the contrary that h(λ) ≥ 3. Then there exist non-zero weights
λ1, λ2, λ3 ∈ Λ+ such that λ = λ1 + λ2 + λ3. Then

vλ1 ⊗ vλ2 ⊗ vλ3 ∈ V (λ1)⊗ V (λ2)⊗ V (λ3)

is a highest weight vector of weight λ = λ1 + λ2 + λ3. Therefore the smallest G-submodule of
V (λ1)⊗ V (λ2)⊗ V (λ3) containing vλ1 ⊗ vλ2 ⊗ vλ3 is isomorphic to V (λ). We identify V (λ) with this
submodule of V (λ1)⊗ V (λ2)⊗ V (λ3) and set

vλ := vλ1 ⊗ vλ2 ⊗ vλ3 .

By Lemma 4.3 we have
vλ + tvλ ∈ X2(λ)(= σ2(X(λ)))

for any t ∈ g. Therefore
rkX(λ)(v

λ + tvλ) ≤ 2 (2)

for any t ∈ g. By the Leibnitz rule we have

Tλ := vλ + tvλ = vλ1 ⊗ vλ2 ⊗ vλ3 + tvλ1 ⊗ vλ2 ⊗ vλ3 + vλ1 ⊗ tvλ2 ⊗ vλ3 + vλ1 ⊗ vλ2 ⊗ tvλ3

(note that Tλ is of the form T of Lemma 4.9). We claim that

vλ + tvλ 6∈ X2(λ) ∪X(λ) ∪ {0}

for all t ∈ U from some open subset U of g. As λi 6= 0, there exists some open subset U ⊂ g such that
[tvλi ] 6= [vλi ] (i = 1, 2, 3) for all t ∈ U . We fix t ∈ U . We claim that

rk(vλ + tvλ) ≥ 3. (3)

Assume on the contrary that vλ + tvλ ∈ X2(λ) ∪X(λ) ∪ 0, then

vλ + tvλ = g1(vλ1)⊗ g1(vλ2)⊗ g1(vλ3) + g2(vλ1)⊗ g2(vλ2)⊗ g2(vλ3)

for some g1, g2 ∈ G and thus

Tλ = vλ + tvλ = v1 ⊗ v2 ⊗ v3 + w1 ⊗ w2 ⊗ w3

for some v1, v2, v3, w1, w2, w3 ∈ V (λ). This contradicts the statement of Lemma 4.9. Comparing (2)
and (3) we see that vλ + tvλ is an exceptional vector of V (λ) and thus V (λ) is 2-wild.

Proof of Proposition 4.7. We use notation analogous to the one in Proposition 4.6. Fix λ := λ1 + λ2.
Set

vλ := vλ1 ⊗ vλ2 ∈ V (λ1)⊗ V (λ2).

This defines a canonical embedding V (λ)→ V (λ1)⊗ V (λ2). As λi 6= 0, there exists some open subset
U ⊂ g such that [tvλi ] 6= [vλi ] (i = 1, 2, 3) for all t ∈ U . We fix t ∈ U . Repeating the argument
preceding (2) we show that (2) holds in new notation.

As V (λ) is 2-tame we have

vλ + tvλ = g1v
λ + g2v

λ or vλ + tvλ = g1v
λ
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for some g1, g2 ∈ G. Then

Imi(v
λ + xvλ) = 〈vλi , tvλi〉 (i = 1, 2),

and, if g1v
λ + g2v

λ 6= 0,

Imi(g1v
λ + g2v

λ) = 〈g1v
λi , g2v

λi〉 (i = 1, 2) or Imi(g1v
λ + g2v

λ) = 〈g1v
λi〉.

Hence g1v
λi , g2v

λi ∈ 〈vλi , xvλi〉 and either

[g1v
λi ] 6= [vλi ] or [g2v

λi ] 6= [vλi ] (i = 1, 2).

Therefore both V (λ1) and V (λ2) are HW-dense. This completes the proof.

To prove Lemma 4.4 we need two technical lemmas. The first gives a reformulation of Definition 4.2.

Lemma 4.10. A simple G-module V (λ) is HW-dense if and only if there exists an open subset U ⊂ g
such that, for all t ∈ U , there exists an element

v ∈ X(λ) ∩ 〈vλ, tvλ〉

such that [v] 6= [vλ] (note that if such an element v exists, then [tvλ] 6= [vλ]).

Proof. This is fairy easy exercise for Lie algebras-Lie groups formalism. We omit it.

Lemma 4.11. Fix v1 ∈ X(λ) and t ∈ g. Assume that there exists v2 ∈ X(λ) such that v2 ∈ 〈v1, gv1〉.
Then all non-zero vectors of 〈v1, v2〉 belongs to X(λ).

Proof. Without loss of generality we assume that [v1] 6= [v2]. Then, by Lemma 4.1, a), the pair (v1, v2)
is conjugate to the pair (vλ, vwλ) for some w ∈ W and thus we can assume that

v1 = vλ and v2 = vwλ

for the fixed maximal torus T ∈ G. The space gv1 is clearly T -invariant and the weights of this space
is a subset of the set λ+ ∆ (this is a point-wise sum). As vwλ ∈ gvλ, we have

wλ = λ+ β for some β ∈ ∆

(note that wλ 6= λ as [v1] 6= [v2]). Let SL2(β) be the T -stable SL2-subalgebra corresponding to the
root β ∈ ∆. Then the space 〈vλ, vwλ〉 is a two-dimensional simple SL2(β)-module and thus any two
non-zero elements of 〈v1, v2〉 are SL2(β)-conjugate, and hence G-conjugate. Therefore all non-zero
elements of 〈v1, v2〉 belong to X(λ).

Proof of Lemma 4.4. The equivalence of conditions (a), (b), (c) is clear. It is also immediate to verify
that each of these conditions implies HW-density. It remains to show that, if the module V (λ) is
HW-dense, then it satisfies condition (a).

Assume that V (λ) is HW-dense. Then according to Lemma 4.10 and Lemma 4.11 there exists and
open subset U ⊂ g such that for any non-zero a ∈ F we have

vλ + atvλ ∈ X(λ),

i.e. we have that X(λ) ∩ 〈vλ, gvλ〉 is a dense subset of 〈vλ, gvλ〉. Note that vλ ∈ gvλ, as λ 6= 0, and
hence

〈vλ, gvλ〉 = 〈gvλ〉.

We have

dimX(λ) = dimGvλ = dim gvλ
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and therefore
X(λ) = gvλ.

On the other hand
V (λ) = 〈X(λ)〉

and hence
V (λ) = X(λ) = gvλ.

5 Restriction to a Levi subgroup

The main result of this section is Proposition 5.1. This proposition provides a strong sufficient condi-
tion for wildness of a representation. We shall apply this proposition to study tameness/wildness of
fundamental representations in the subsequent section of this article.

Proposition 5.1. Let V be an irreducible G-module and V be a G-module, which is a chopping of
V . If V is wild, then V is wild.

This proposition is an immediate corollary of Proposition 5.2. To state Proposition 5.2 we need
more notation.

Recall that we have fixed Cartan and Borel subgroups H ⊂ B ⊂ G and that Π denotes the
corresponding set of simple roots. Let Π ⊂ Π be a subset. Then ∆ = ∆∩ 〈Π〉 is a root system having
Π as a set of simple roots and ∆± = ∆ ∩ ∆± as sets of positive and negative roots. Further, let
g = h⊕ (⊕α∈∆)gα. Then g is a reductive subalgebra of g; we call subalgebras of this form (reductive)
Levi subalgebras. Let G ⊂ G be the corresponding Levi subgroup. We shall add underline to denote
the attributes of G with the notational conventions already introduced for G.

Note that G and G have a common Cartan subgroup H and hence have the same weight lattice
Λ. However, the dominant Weil chambers do not coincide, unless Π = Π, a case which is of no use
for us. We have an inclusion Λ+ ⊂ Λ+, so a weight λ ∈ Λ+ can be regarded as a dominant weight
for both G and G. Furthermore, since B = B ∩ G, the B-highest weight vectors are also B-highest
weight vectors.

Fix λ ∈ Λ+. There is a G-equivariant inclusion of the corresponding representations

V = V (λ) = U(g)vλ ⊂ V (λ) = V ,

where vλ denotes the B-highest weight vector in V (λ). Let X denote the unique closed G-orbit in
P(V ) and, as before, let X denote the unique closed G-orbit in P(V ). We have

X = G[vλ] ⊂ G[vλ] = X.

For points in P(V ), we have two well defined rank functions rkX and rkX (notice that V is a chopping
of V according to Definition 2.4). We would like to compare these functions and prove the following.

Proposition 5.2. Let G ⊂ G and V ⊂ V be as above. If [ψ] ∈ P(V ), then rkX[ψ] = rkX[ψ].

Proof. First, observe that the multiplicity of the G-module V (λ) in V (λ) is 1. This holds because
V (λ) has a weight vector with weight λ and this weight has multiplicity 1 in V (λ). Consequently,
there is a well-defined G-equivariant projection

π : V � V .

Let P ⊂ G be the parabolic subgroup containing B and having G as a Levi component; the roots
of P are ∆+ t∆−. Let NP be the unipotent radical of P ; the roots of NP are ∆+ \∆+. Then NP

acts trivially on V .
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Lemma 5.3. We have π(X ∪ 0) = X ∪ 0.

Proof. Let N−P be the nilradical of the parabolic P− opposite to P , with respect to the given Cartan
subgroup H. In other words, N−P is the regular unipotent subgroup of N− with roots ∆(N−P ) =
−∆(NP ). We have

X = Gvλ = P−vλ = N−P (Gvλ) = N−P X .

Thus, to prove the lemma it is sufficient to show that for all g ∈ N−P and all v ∈ X we have π(gv) ∈ X.
Let g ∈ N−P and v ∈ X. Since the exponential map exp : n−p → N−P is surjective, we can write
g = exp(ξ) with ξ ∈ n−p . Viewing ξ as an element of gl(V ) we can write

gv = (1 + ξ +
1

2
ξ2 + ...)v = v + ξv +

1

2
ξ2v + · · · .

Let V ′ = ker(π), so that V = V ⊕ V ′ as G-modules. Then, for ξ ∈ n−p , we have ξ(V ) ⊂ V ′. Hence
π(gv) = v.

Now, let [ψ] ∈ P(V ). The inequality rk[ψ] ≥ rk[ψ] is immediate. Let r = rk[ψ] and

ψ = v1 + ...+ vr

be a minimal expression, with [vj ] ∈ X. Then we have

ψ = π(ψ) = π(v1) + ...+ π(vr)

and, according to the above lemma, [π(vj)] ∈ X ∪ 0 (this is a set). Hence rk[ψ] ≤ rk[ψ] and so

rk[ψ] = rk[ψ].

6 Fundamental representations (classical groups)

In this subsection we prove Theorem 1.1 for fundamental modules of classical groups, i.e. we prove
Theorem 6.1. The result follows directly from Propositions 6.2, 6.4, 6.5 of Subsections 6.1, 6.2, 6.3,
where we consider the cases of SLn, SOn, Sp2n, respectively.

Theorem 6.1. Let V (λ) be a fundamental module of a simple classical group G. Then V (λ) is tame
if and only if the pair (G,V (λ)) appears in the following table.

Group G Representation V Highest weight of V

Classical groups

SLn Fn, (Fn)∗, (Λ2Fn), (Λ2Fn)∗ π1, πn−1, π2, πn−2

SOn Fn, RSpinn(n ≤ 10)
π1, πn

2
(2 | n),

πn
2
−1(2 | n), πn−1

2
(2 - n)

SP2n F2n,Λ2
0F2n π1, π2

, (4)

where the notation is the same as in Theorem 1.1.
Moreover, all wild fundamental representations of classical groups are 2-wild.

Our approach for classical groups is tensor-based and we often use symmetric/antisymmetric bilin-
ear forms. To prove Theorem 6.1 we also need some sufficient condition of wildness for representations.
We provide such a condition in Proposition 5.1 of Section 5. In a similar way Proposition 5.1 will be
very useful in Section 7, where we consider the fundamental representations of the exceptional groups.
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6.1 G = SLn

Recall that the fundamental representations of G = SLn are obtained as exterior tensor powers of the
natural representation, i.e. V (πk) = ΛkFn, k = 1, ..., n− 1. Furthermore, we have

(ΛkFn)∗ = Λn−kFn

as SLn-modules.

Proposition 6.2. The fundamental representations of SLn which are tame are exactly

Fn, (Fn)∗,Λ2Fn, (Λ2Fn)∗.

Moreover, all wild fundamental representations of SLn are 2-wild.

Proof. The closed G-orbit X ⊂ P(ΛkFn) is the Grassmann variety Grk(Fn) under its Plücker embed-
ding. It is well known that a suitable isomorphism between ΛkFn and Λn−kFn induces an isomorphism
between the respective projective spaces, which carries Grk(Fn) to Grn−k(Fn). Hence, for our purposes,
it is sufficient to consider k ≤ n/2.

The fact that V (π1) = Fn and V (π2) = Λ2Fn are tame is well known. In fact, in the first case we
have X = P(Fn), so all vectors have rank 1. In the second case, Λ2Fn can be identified with the space
of skew-symmetric n×n matrices. Such a matrix has even rank (in the usual sense) and the SLn-orbit
X through a highest weight vector in Λ2Fn consists of all matrices of rank 2. A skew-symmetric matrix
ψ of rank 2r can be written as a sum of r skew-symmetric matrices of rank 2, and so rkX[ψ] = r. We
can now see that the set

{[ψ] ∈ P(Λ2Fn) : rkXψ ≤ r}

is closed for every r. This completes the argument in this case.
We now turn to the remaining cases. Due to the duality

ΛkFn ↔ Λn−k(Fn)∗,

it suffices to consider n ≥ 6. Proposition 5.2 implies that, to show that ΛkFn (3 ≤ k ≤ n/2) is 2-wild,
it is sufficient to show that Λ3F6 is 2-wild.

Lemma 6.3. The representation of SL6 on Λ3F6 is 2-wild.

Proof. It is shown in [Zak93, Ch. III, Thm 1.4], that σ2(X(Λ3F6)) = Λ3F6 and therefore it is enough
to show that Λ3F6 contains a vector of rank 3 or more. To do this we count the number of orbits of
vectors of rank 0, 1, 2 and compare this number with the known number of orbits for the action of
SL6 on Λ3F6, see [Gu48] or [R07].

By definition there is one orbit of vectors of rank 0 and one orbit of vectors of rank 1. Let us
consider the vectors of rank 2 in V . We show that there are two orbits of such vectors. Any vector of
rank 2 can be written as

ψ = v1 ∧ v2 ∧ v3 + v4 ∧ v5 ∧ v6 ,

with some vj ∈ V . The first possibility is that v1, ..., v6 form a basis of F6. This is indeed the generic
situation. If suitable Borel and Cartan subgroups of SL6 are chosen, the two summands of ψ are,
respectively, the highest and lowest weight vectors in V . The group GL6 acts transitively on the set of
all bases of F6; the group SL6 acts transitively on the set of their projective images. Thus the points
of the first type form a single G-orbit X′2 which is open in P(Λ3F6). We denote by Z the complement
to this orbit in P(Λ3F6).

The second possibility is to have

dim(〈v1, v2, v3〉 ∩ 〈v4, v5, v6〉) = 1 .
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If this is the case, by changing the vectors if necessary, we may reduce to the situation where v1 = v4

and
ψ = v1 ∧ (v2 ∧ v3 + v5 ∧ v6) , with 〈v2, v3〉 ∩ 〈v5, v6〉 = 0 .

Since v2∧v3 +v5∧v6 has rank 2 in Λ2F6 (with respect to Gr2(F6)), we deduce that ψ has indeed rank
2 in V . The point φ does not belong to X′2, because the action of GL6 respects linear dependencies.
On the other hand, it is also clear that GL6 acts transitively on the set X′′2 of points of this second
type, and hence SL6 acts transitively on the set of their images in P. Note that

if dim(〈v1, v2, v3〉 ∩ 〈v4, v5, v6〉) > 1, then rk[ψ] = 1.

We can conclude that there are exactly two G-orbits consisting of points of rank 2, namely

X′2 = P \ Z, X′′2 = Z ∩ X2 .

Thus there are four SL6-orbits of vectors of rank 0, 1, 2. It is known that SL6 has five orbits in Λ3F6.
Therefore Λ3F6 has a unique SL6-orbit of vectors of rank 3 or more and Λ3F6 is 2-wild. An example
of a vector of rank 3 is (see [Gu48])

Λ3 = v1 ∧ v2 ∧ v4 + v1 ∧ v5 ∧ v3 + v6 ∧ v2 ∧ v3 .

6.2 G = SOn

Let ` = rank(G) = bn2 c. In this section we prove the following proposition.

Proposition 6.4. The natural representation V (π1) is tame.
1) If n is even, then, for j = 2, ..., `− 2, the representation V (πj) is wild.
2) If n is odd, then, for j = 2, ..., `− 1, the representation V (πj) is wild.
3) The spin representations (V (π`−1) and V (π`) for even n and V (π`) for odd n) are tame if and

only if n ≤ 10.
Moreover, all fundamental representations of SOn which are wild are 2-wild.

Proof. The first statement is well known. Indeed, the group SOn has exactly two orbits in P(π1),
namely, the quadric and its complement. The first one consists, by definition, of vectors of rank 1.
The second one consists necessarily of points of rank 2.

The second and third statement in the proposition are concerned with fundamental representations
of SOn, which are not the natural nor the spin representation. We handle the two statements at once.
In the case j = 2, the representation is actually the adjoint representation, i.e. V (π2) = son. Here
results of [KY00] show that σ2(X) 6= X t X2. Thus the rank function is wild. The remaining cases,
j ≥ 3, are reduced to the case j = 2 via Proposition 5.2.

Now, we turn to the last statement of the proposition, concerning the spin representations. First,
recall that, for even n, the geometric properties we are concerned with are the same for the two spin
representations V (π`−1) and V (π`). Also, either one of these representations remains irreducible when
restricted to Spinn−1, and furthermore, Spinn−1 acts transitively on the closed orbit of Spinn) in
P(π`). Thus, it is enough to check statement 3) for the representations V (π`) of Spin2`. Let X denote
the closed orbit of Spin2` in P(π`).

It is shown, in [Car97] Section 3.5, that for 2` = 12 the secant variety σ2(X) contains elements of
rank 3. Thus the representation V (π6) of Spin12 is 2-wild. Using Proposition 5.1, we deduce that the
representation V (π`) of Spin2` is wild for all ` ≥ 6. So, according to the remarks made earlier in this
proof, the spin representations of Spinn are wild for n ≥ 11.
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It remains to verify that the spin representations are tame for even n ≤ 10. We consider only
n ≥ 8, the other cases are covered by our results for SLm. For n = 8, the geometric properties of
the representations V (π1) and V (π4) are the same, so the result follows from the first statement of
the proposition. For n = 10, the representation V (π5) of Spin10 is subminuscule and hence tame
by [BL13]. This completes the proof of the proposition.

6.3 G = Sp2n

Proposition 6.5. The fundamental representations of Sp2n which are tame are exactly V (π1) and
V (π2). All other fundamental representations of Sp2n are 2-wild.

Proof. The representation V (π1) is simply the natural representation of Sp2n on F2n. The action
of Sp2n on P(F2n) is transitive, i.e. X = P(F2n) and there is nothing more to prove here. The
representations V (π2) and V (πk), k ≥ 3 are considered in Lemmas 6.8 and 6.7, respectively.

Lemma 6.6. The representation V (π3) of Sp2n is 2-wild for n ≥ 3.

Proof. Let n ≥ 3 and G = Sp2n with respect to the skew-symmetric form

(z1 ∧ z6 + z2 ∧ z5 + z3 ∧ z4) + (z7 ∧ z8 + ...+ z2n−1 ∧ z2n)

on F2n, where z1, ..., z2n are the dual basis corresponding to the basis v1, ..., v2n of F2n.
Let X be the set of points [w1∧w2∧w3] such that w1, w2, w3 ∈ F2n span a 3-dimensional isotropic

subspace F2n. We set
Λ3

0F2n := 〈X〉.

The set X is Sp2n-stable and thus Λ3
0F2n is an Sp2n-module. There is a unique up to scaling Sp2n-

isomorphism between V (π3) of Sp2n and Λ3
0F2n. We identify V (π3) with Λ3

0F2n. The varieties X and
X(π3) coincides under this identification.

Note that if ψ ∈ V (π3) has rank 3 as a vector of the SL2n-module Λ3F2n, then ψ has rank 3 or
more as a vector of the Sp2n-module V (π3).

Consider the tensor Λ3 ∈ Λ3F6 given at the end of the proof of Lemma 6.3. One have

[v1 ∧ v2 ∧ v4], [v1 ∧ v5 ∧ v3], [v6 ∧ v2 ∧ v3] ∈ X(π3)

and thus Λ3 ∈ Λ3
0F6 ⊂ Λ3

0F2n. Moreover the rank of Λ3 is 3 or less. As Λ3 has rank 3 as an element
of SL6-module Λ3F6, Λ3 has rank 3 as an element of Λ3F2n (see Proposition 5.2). Hence

rk Λ3 = 3, (5)

where Λ3 considered as an element of Λ3
0F2n.

It is shown in [Zak93, Ch. III, Thm 1.4], that σ2(X) = P(Λ3
0F6). Thus Λ3 has border rank 2 or

less as an element of Λ3
0F6 and hence

rkΛ3 ≤ 2,

here Λ3 considered as an element of Λ3
0F2n. Therefore the Sp2n-module V (π3) = Λ3

0F2n is 2-wild.

Lemma 6.7. Fix n ≥ k ≥ 3. The representation V (πk) of Sp2n is 2-wild.

Proof. If n ≥ k ≥ 3, the Dynkin diagram Cn of Sp2n has a subdiagram Cn,k := Cn−k+3. The
chopping of πk to this diagram equals π3. By Lemma 6.6, V (π3) is not tame for G = Sp2(n−k+3)

(this group corresponds to the Dynkin diagram Cn,k) and thus V (πk) is not a tame Sp2n-module by
Proposition 5.1.
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We are now going to prove that V (π2) is tame for Sp2n(n ≥ 2). To do this we set V := F2n and
fix a non-degenerate antisymmetric bilinear form ω on V . Note that the second fundamental module
of sp(V ) is isomorphic to the set of vectors in Λ2V , which are annihilated by ω (here we consider ω
as an element of (Λ2V )∗). We denote this space by Λ2

0V . To complete the proof of Proposition 6.5 we
prove the following lemma.

Lemma 6.8. a) For any ω ∈ Λ2
0V the rank of ω as a bilinear coform is twice the rank of ω as a vector

in an Sp(V )-module.
b) The Sp(V )-module Λ2

0V is tame.

To prove Lemma 6.8 we introduce a notion related to bilinear coforms ω ∈ Λ2V . A bilinear coform
ω defines a map V ∗ → V by v → ω(v, ·). We denote the image of this map by Suppω. We have
natural inclusions

Λ2 Suppω → Λ2V , Λ2
0 Suppω → Λ2

0V ,

and ω ∈ Λ2
0 Suppω ⊂ Λ2

0V . Note that ω is nondegenerate as an element of Λ2 Suppω and, in particular,
defines a bilinear form ω∗ on Suppω (there is no canonical way to extend ω∗ to the whole V ).

Lemma 6.8 follows from Lemma 6.9 below; a proof of Lemma 6.8 is presented after the proof of
Lemma 6.9.

Lemma 6.9. Let ω ∈ Λ2
0V be a bilinear coform of rank 2r. Then there exist a set of elements

x1, ..., xr, y1, ..., yr ∈ Suppω such that

ω = x1 ∧ y1 + ...+ xr ∧ yr,

and ω(xi, yi) = 0 for all i.

In turn, Lemma 6.9 follows from Lemma 6.10 below; a proof of Lemma 6.9 is presented after the
proof of Lemma 6.10.

Lemma 6.10. Let ω ∈ Λ2
0V be a bilinear coform of rank 2r. If r > 0, then there exist elements

x1, y1 ∈ Suppω such that

rk(ω − x1 ∧ y1) = 2r − 2,

and ω(x1, y1) = 0.

In turn, Lemma 6.10 follows from Lemma 6.11 below; a proof of Lemma 6.10 is presented after
the proof of Lemma 6.11.

Lemma 6.11. Let ω ∈ Λ2
0V be a bilinear coform of rank 2r. If r > 0, then there exist an open

subset U ⊂ Suppω such that for any x1 ∈ U there exists y1 ∈ Suppω such that ω∗(x1, y1) 6= 0 and
ω(x1, y1) = 0.

Proof. If a form ω is zero on Suppω, then for any non-zero x1 ∈ Suppω there exists y1 ∈ Suppω such
that ω∗(x1, y1) 6= 0, because the form ω∗ is non-degenerate on Suppω. In this case ω(x1, y1) = 0,
because ω = 0.

We assume that ω is non-zero on Suppω. Since ω ∈ Λ2
0V , the pairing of ω with ω equals 0. Thus

[ω∗] 6= [ω|Λ2 Suppω]. Hence, for some open subset U ⊂ Suppω, and any x1 ∈ U both ω(x1, ·), ω∗(x1, ·)
are non-zero and

[ω(x1, ·)] 6= [ω∗(x1, ·)].

Therefore for any x1 ∈ U there exists y1 ∈ Suppω such that

ω∗(x1, y1) 6= 0 and ω(x1, y1) = 0.
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Proof of Lemma 6.10. Let (x1, y1) be a pair as in Lemma 6.11. We denote by W2 the space spanned
by x1, y1 and by W2r−2 the orthogonal complement to W2 in Suppω. Thanks to the choice of x1, y1,
the form ω∗ is non-degenerate on W2 and therefore Suppω = W2 ⊕W2r−2. Then ω = ω2 + ω2r−2 for
uniquely determined coforms ω2 ∈ Λ2W2 and ω2r−2 ∈ Λ2W2r−2. We have ω2 = λ(x1∧y1) = x1∧ (λy1)
for some λ ∈ F×. Therefore

rk(ω − x1 ∧ (λy1)) = 2r − 2,

and ω(x1, (λy1)) = 0.

Proof of Lemma 6.9. To prove Lemma 6.9 we use induction.
The r-th statement of the induction is: Let ω ∈ Λ2

0V be a bilinear coform of rank 2r. Then there
exist a set of elements x1, ..., xr, y1, ..., yr ∈ Suppω such that

ω = x1 ∧ y1 + ...+ xr ∧ yr,

and ω(xi, yi) = 0 for all i.
Basis of the induction, for r = 1: Let ω ∈ Λ2

0V be a bilinear coform of rank 2. Then there exist
elements x1, y1 ∈ Suppω such that ω = x1 ∧ y1, and ω(x1, y1) = 0.

First, we check the basis of the induction. Let x1, y1 be basis of Suppω. Then ω = λx1 ∧ y1 for
some λ ∈ F×. As ω ∈ Λ2

0V , we have ω(ω) = ω(λx1 ∧ y1) = ω(x1, λy1) = 0. Then ω = x1 ∧ (λy1) and
ω(x1, λy1)=0. Therefore we finish with the basis of induction.

Now we prove that the r-th statement of the induction follows from the (r− 1)-th statement. We
assume that the (r − 1)-th statement holds. According to Lemma 6.9 there exists xr, yr such that

rk(ω − xr ∧ yr) = 2r − 2,

and ω(xr, yr) = 0. Note that ω(xr ∧ yr) = ω(xr, yr) = 0 and therefore ω − xr ∧ yr ∈ Λ2
0V . By

hypothesis, there exist x1, ..., xr−1, y1, ..., yr−1 ∈ Supp(ω − xr ∧ yr) ⊂ Suppω such that

ω − xr ∧ yr = x1 ∧ y1 + ...+ xr−1 ∧ yr−1,

and ω(xi, yi) = 0 for all i. This completes the proof of Lemma 6.9.

Proof of Lemma 6.8. First note that a highest weight vector of the Sp(V )-module Λ2
0V is a wedge

product of two ω-orthogonal vectors of V . Fix a coform ω ∈ Λ2
0V . A sum of r vectors from the

Sp(V )-orbit of a heighest weight vector has rank at most 2r as a bilinear coform. Hence the rank of ω
as a vector of an Sp(V )-module is not less than half the rank of ω as a bilinear coform. On the other
hand, Lemma 6.9 implies that the rank of ω as a vector of an Sp(V )-module is not larger than half
the rank of ω as a bilinear coform. Therefore the rank of ω as a vector of an Sp(V )-module is equal
to half the rank of ω as a bilinear coform. This proves part a) of Proposition 6.8.

The set of coforms of rank r or less is closed for all r and this finishes part b).

7 Fundamental representations (exceptional groups)

In this subsection we prove Theorem 1.1 for fundamental modules of exceptional groups, i.e. we
prove Theorem 7.1. Essentially, we consider case-by-case all 27 fundamental representations of the 5
exceptional groups and provide some arguments for each case, by which the corresponding fundamental
module is wild or tame. The result is presented below.
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Theorem 7.1. Assume that V (λ) is a fundamental effective G-module. Then V (λ) is tame if and
only if the pair (G,V (λ)) appears in the following table.

G Representation V Highest weight of V

E6 F27, (F27)∗ π1, π5

F4 F26 π1

G2 F7 π1

, (6)

where the notation is the same as in Theorem 1.1.
Moreover, all wild fundamental representations of exceptional groups are 2-wild.

The types of arguments are presented in the following tables.

Symbol Argument for being tame References

SM
the representation is reduced to
a subminuscule representation

Section 1, [BL13]

F4T the representation is equivalent to V (π1) of F4 Subsection 7.1

Symbol Argument for being wild References

CC
the representation is chopable to a wild
representation of some classical group

—

Ad the representation is adjoint Section 1, [Kaji98]

AdC
the representation is chopable to the adjoint

representation of some exceptional group
—

E7W
the representation is equivalent to

the E7-representation V(π1)
Subsection 7.3

F4W the representation is equivalent to V (π2) of F4 Subsection 7.2

.

In the following tables, we provide, for each fundamental representation of each exceptional group,
an argument by which it is tame or wild.

F. weights of E6 π1 π2 π3 π4 π5 π6

Arguments SM CC CC CC SM CC or Ad

F. weights of E7 π1 π2 π3 π4 π5 π6 π7

Arguments E7W CC CC CC CC Ad CC

F. weights of E8 π1 π2 π3 π4 π5 π6 π7 π8

Arguments Ad CC CC CC CC CC AdC CC

F. weights of F4 π1 π2 π3 π4

Arguments F4T F4W CC Ad

F. weights of G2 π1 π2

Arguments SM Ad

For the representations V (πk) of exceptional groups En(n = 6, 7, 8), for which argument CC is appli-
cable, chopping of V in the vertex with number n− 1 is a 2-wild representation of a classical group of
type Dn−1. To apply argument AdC one should chop vertex with number 1. For all representations
of the exceptional group F4, to apply argument CC one can always chop the vertex with number 1.

Let us first justify arguments SM, CC, Ad, AdC.
SM) It was shown [BL13] that any subminuscule representation is tame, i.e. that rank and border

rank coincide for such representations.
CC) According to Proposition 5.1, if some chopping V of a representation V is 2-wild, then V is

2-wild.
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Ad) According to [Kaji98], all adjoint representations of exceptional groups are 2-wild.
AdC) According to Proposition 5.1 and Ad), if some chopping V of a representation V is an adjoint

representation of an exceptional group, then V is 2-wild.
The rest of this section is devoted to the justification of arguments F4T, F4W and E7W, done in

Subsections 7.1, 7.2 and 7.3, respectively. The results are as follows.
F4T) In Proposition 7.2 we show that the representation V (π1) is tame.
F4W) In Proposition 7.9 we show that the representation V (π2) of F4 is 2-wild.
E7W) In Proposition 7.17 we show that the representation V (π1) of E7 is 2-wild.

7.1 Tameness of V (π1) for F4

In this section we prove the following.

Proposition 7.2. The fundamental representation V (π1) of F4 is tame.

Proof. It is known, [Zak93, p. 59], that the generic rank of V (π1) is three, so that

σ3(X(π1)) = P(V (π1)).

In Lemmas 7.3 and 7.4 below, we show that V (π1) is 2- and 3-tame, respectively, which implies that
this module is tame.

Lemma 7.3. The F4-module V (π1) is 2-tame.

Lemma 7.4. The F4-module V (π1) is 3-tame.

The first fundamental representation V (π1) of F4 is 26-dimensional and is the (nontrivial) repre-
sentation of smallest possible dimension for this group. The discussion which follows involves several
representations of various groups this would make the notation V (λ) ambiguous. We have chosen
to denote the representations spaces by indices corresponding to their dimension. The set of highest
weight vectors, previously denoted by X(λ), will be denoted by X(V ). We let V26 denote the repre-
sentation space of (F4, V (π1)) and X(V26) be the set of highest weight vectors. To study V26 we use
the fact that it can be obtained as a generic hyperplane in the smallest, 27-dimensional representation
of E6, which we denote by V27 = (E6, V (π1)). We summarize some known results in the following
lemma.

Lemma 7.5. (i) The algebra of E6-invariant polynomials on V27 is polynomial on one generator of
degree 3, i.e. F[V27]E6 = F[DET ], where DET ∈S3(V ∗27).

(ii) The orbits of E6 in V27 are the following:

0, X(V27), {DET = 0} \X(V27), {DET = a}, a ∈ F×;

their dimensions are, respectively, 0, 17, 26, 26. The orbits of E6 × F× in V27 are the following (lower
indices indicate dimension):

O0 = {0} , O17 = X(V27) , O26 = {DET = 0} \X(V27) , O27 = {DET 6= 0} .

(iii) There are exactly three E6 orbits in the projective space P(V27) and they are exactly the rank
subsets with respect to X(V27), namely,

X(V27) , X2(V27) = {DET = 0} \ X(V27) , X3(V27) = {DET 6= 0} ;

their dimensions are, respectively, 16, 25, 26. The secant varieties of X(V27) are exactly the closures of
the E6-orbits in P(V27).

(iv) The stabilizer of any vector v ∈ {DET 6= 0} is isomorphic to F4. The orth-complement
v⊥ ⊂ V27 is an irreducible F4-module isomorphic to V26, i.e. V27 = 〈v〉 ⊕ V26 as F4-modules.

(v) The secant varieties of X(V26) are obtained as intersections of the secant varieties of X(V27)
with the hyperplane P(V26), i.e.

X(V26) = P(V26) ∩ X(V27) , σ2(X(V26)) = P(V26) ∩ σ2(X(V27)) , σ3(X(V26)) = P(V26) .
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Proof. Since the results are known, but are a compilation of the work of many authors, we confine
ourselves to giving references (not necessarily the original ones) for the various parts of the lemma.
Part (i) can be found in Table II in [Kac80]. As for part (ii), the fact that

{DET = a}, a 6= 0

is a single E6-orbit, is proven in [Kac80, Proposition 1.1], while the enumeration of the orbits in the
nulcone {DET = 0} is given in [Zak93, p. 59]. Part (iii) can also be deduced from the discussion
on p. 59 of [Zak93] or can be seen to follow directly from the fact that V27 is a subcominuscule
representation and for such representations the rank sets are exactly the group orbits in the projective
space, cf. [BL13, §4]. Parts (iv) and (v) are also quoted from [Zak93, p. 59-60].

The above proposition and, specifically, parts (iv) and (v) allow us to practically forget about
the group F4 and use only properties of V27 and a generic hyperplane inside it. We shall need to
understand the structure of V27 with respect to a subgroup of E6 of type D5. Let H ⊂ E6 be the
regular subgroup whose root system is generated by the set of simple roots S := {α2, α3, α4, α5, α6}
(we use the numbering of simple roots as in [VO90, p. 292]). It turns our that H ∼= Spin10.

Lemma 7.6. The decomposition, as an H-module, of the simple E6-module V27 is

V27
∼= V1 ⊕RSpin10 ⊕ V10 ,

where V1 is a one-dimensional trivial H-module, RSpin10 is the spinor H-module, and V10 is the
natural representation of SO10 (recall that Spin10 is a cover of SO10).

Proof. The result is obtained by a straightforward consideration of the weights of the modules involved,
using the fact that H is a regular subgroup of E6.

Lemma 7.7. The nonzero isotropic vectors in V10 belong to X(V27) and have rank 1 as elements of
the E6-module V27. The non-isotropic vectors in V10 belong to O26 and have rank 2 as elements of
the E6-module V27.

Proof. Since H is a regular subgroup of E6, the weight spaces for E6 in V27 are also weight spaces for
H. Thus V10 is a span of some of these weight spaces. The E6-weights of V27 are

εi ± ε,−εi − εj (i 6= j).

The weights appearing in V10 are
εi − ε,−ε1 − εi (i 6= 1).

The weight −ε6−ε is the lowest weight of V27 and thus any element of the corresponding weight space
belongs to O17. On the other hand, any element of the weight space of weight −ε6 − ε is isotropic.
Since all isotropic vectors of V10 are conjugate by SO10, all isotropic vectors of V10 belong to O17.

It remains to show that all non-isotropic vectors of V10 (they are all SO10× F×-conjugate) belong
to O26. To this end, we note that the weights of V10

ε2 − ε,−ε1 − ε2

are, respectively, the highest and the lowest weight of V27 with respect to the set of simple roots of E6

Π′ = {ε2 − ε1, ε1 + ε4 + ε5 − ε, ε6 − ε4, ε4 − ε5,−ε4 − ε3 − ε6 + ε, ε3 − ε6}.

Thus vε2−ε + v−ε1−ε2 ∈ O26 [Zak93, Ch. III, Thm 1.4]. Since all non-isotropic vectors of V10 are
SO10 × F×-conjugate, all non-isotropic vectors of V10 belong to O26.
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Proof of Lemma 7.3. According to Lemma 7.5, to prove that V26 is 2-tame it suffices to show that
for any x ∈ V26 ∩ O26 there exist x+, x− ∈ V26 ∩ O17 such that x = x+ + x−. We fix x ∈ V26 ∩ O26.
First, we note that there exists a Borel subalgebra b ⊂ E6 with a Cartan subalgebra h ⊂ b such that
x ∈ V10 (we use the notation of Lemma 7.7). Then x ∈ V10 ∩O26 and thus x is a non-isotropic vector
of V10 by Lemma 7.7. Let x⊥ be the orthogonal complement to x in V10. Note that a non-degenerate
symmetric bilinear form (·, ·) of V10 is still non-degenerate after restriction to x⊥.

Since V26 is a 26 dimensional subspace of the 27 dimensional space V27, we have

dim(V26 ∩ x⊥) ≥ dim(x⊥)− 1 = 9.

As 9 > 1
2 dimV10, the restriction of (·, ·) to x⊥ ∩ V26 is non-zero. Hence there exists y ∈ x⊥ ∩ V26 such

that (y, y) = −(x,x)
4 . Set

x+ = x
2 + y, x− = x

2 − y.

We have

(x+, x+) = 1
4(x, x) + (y, y) = 0 = (x−, x−) and x+ + x− = x,

i.e. the vectors x± are isotropic and their sum is equal to x. Thus x± ∈ O17. Since y ∈ V26, we have
x± ∈ V26. Hence x± ∈ X(V26). Therefore V26 is 2-tame.

Before proceeding with the proof of Lemma 7.4, we need the following auxilary result.

Lemma 7.8. Let V be a finite-dimensional vector space. Let Zf be a hypersurface determined as the
zero-locus of a non-zero homogeneous polynomial f ∈ F[V ] and let X ∈ V be any subset spanning V .
Then, V = Zf +X, i.e. for every v ∈ V there exist v2 ∈ Zf and x ∈ X such that v = v2 + x.

Proof. Assume on the contrary, that there exists v ∈ V such that v 6= v2 + x for any v2 ∈ Zf and
x ∈ X. Then f(v + tx) 6= 0 for any x ∈ X and any t ∈ F. The function f(v + tx) is polynomial and
thus f(v + tx) 6= 0 for any t ∈ F if and only if f(v + tx) is a non-zero constant as a polynomial of t.
Hence the first derivative of f(v + tx) with respect to t is zero for t = 0, i.e. the value of df in the
direction x at the point v is zero. As X spans V , df = 0 at v.

We claim that f(w) = 0 for all points w ∈ V such that df = 0 at w (equivalent to: all partial
derivatives of f vanish at w). Indeed, the set of equations df = 0 determines some subvariety Zdf
of V and it suffices to show that f = 0 at any smooth point of any irreducible component of Zdf .
Obviously df = 0 on the smooth locus of any irreducible component of Zdf . Thus f is constant on
any irreducible component of Zdf . Since f is homogeneous, f(0) = 0, and any irreducible component
of Zdf contains 0. Thus f |Vdf = 0.

Compiling the previous two paragraphs, we obtain f(v) = 0. Thus v = v + 0, where v ∈ Zf and
0 ∈ X. This completes the proof.

Proof of Lemma 7.4. The secant variety σ2(X(V26)) is the zero-locus of some homogeneous function
DET of degree 3 and X(π1) spans V26. Thus, according to Lemma 7.8, any vector

x ∈ V26\σ2(X(V26))

may be represented as x = x1 + x2, for some x1 ∈ X(π1) and x2 ∈ σ2(X(V26)). Therefore, by
Lemma 7.3, any vector in V26\σ2(X(V26)) has rank 3.
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7.2 Wildness of V (π2) for F4

Proposition 7.9. The fundamental representation V (π2) of F4 is 2-wild.

The proof is presented at the end of this subsection, after the necessary preliminary results. Our
approach is based on the following two statements. First, the F4-module V (π1) has an invariant non-
degenerate symmetric bilinear form (·, ·) and thus F4 ⊂ SO(V (π1)). Second, the decomposition of
Λ2V (π2) as an F4-module is

Λ2V (π1) ∼= V (π2)⊕ V (π4),

see [VO90, Table 5 on p. 305]. This allows us to represent the elements of V (π2) as anti-symmetric
tensors and perform calculations. We end up finding an element, laying on a tangent line to X(V (π2)),
whose rank is 3 (see Lemma 4.3).

From now on, we consider V (π2) as a subspace of Λ2V (π1). We start with some statements about
Λ2V (π1). To any ω ∈ Λ2V (π1) we associate two integers dim Imω, rk Imω defined as follows. These
numbers are invariants of ω and we shall use them to distinguish the rank three element we are
searching for. First, we consider V := V (π1) as a vector space, ignoring the F4-action on it. Any
element ω ∈ Λ2V can be interpreted as a linear map V ∗ → V . We denote the image of this map by
Imω (note that any tensor in V ⊗ V defines, in a natural way, two such maps, but since ω ∈ Λ2V ,
these two maps differ by a sign and thus they have the same image). The number dim Imω is always
an even integer. Further, for any ω ∈ Λ2V , the space Imω carries a symmetric bilinear form, which
is the restriction of (·, ·); we denote the rank of this form by rk Imω. In the following lemma, we list
the values of dim Imω, rk Imω for a class of elements ω which are of interest for us.

Lemma 7.10. Let x1, x2, y1, y2 be vectors such that the subspaces 〈x1, x2〉 and 〈y1, y2〉 of V are
two-dimensional and isotropic. Set

ω = x1 ∧ x2 + y1 ∧ y2.

Then one of the following possibilities holds:

Cases dim Imω rk Imω

(a) 4 4
(b) 4 2
(c) 4 0

(d) 2 1
(e) 2 0

(f) 0 0

. (7)

Proof. We consider two cases: the vectors x1, x2, y1, y2 are either linearly dependent or independent.
Case 1). Assume that the vectors x1, x2, y1, y2 are linearly independent. Then dim Imω = 4 and

rk Imω is equal to the rank of the space 〈x1, x2, y1, y2〉. The rank of this space is equal to the rank of
the matrix

(x1, x1) (x1, x2) (x1, y1) (x1, y2)
(x2, x1) (x2, x2) (x2, y1) (x2, y2)

(y1, x1) (y1, x2) (y1, y1) (y1, y2)
(y2, x1) (y2, x2) (y2, y1) (y2, y2)

 =


0 0 (x1, y1) (x1, y2)
0 0 (x2, y1) (x2, y2)

(y1, x1) (y1, x2) 0 0
(y2, x1) (y2, x2) 0 0

 (8)

It is easy to see that the matrix (8) can be presented as

(8) =

(
0 A
At 0

)
, A =

(
(x1, y1) (x1, y2)
(x2, y1) (x2, y2)

)
.

Therefore the matrix (8) has even rank, i.e. ω is of type (a), (b), or (c).
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Case 2). Assume that the vectors x1, x2, y1, y2 are linearly dependent. Then the spaces 〈x1, x2〉
and 〈y1, y2〉 must intersect. They may intersect along a one-dimensional subspace or coincide.

Suppose first that they intersect along a one-dimensional subspace. Without loss of generality we
assume that they intersect along the subspace generated by x2 = y2. Then

ω = x1 ∧ x2 + y1 ∧ y2 = (x1 + y1) ∧ x2.

Hence dim Imω = 2. Since

0 = (x2, x1) = (y2, x1), (x2, y1) = (y2, y1) = 0,

we have (x2, x1 + y1) = 0, but it is not clear whether or not (x1 + y1, x1 + y1) = 0. Thus rk Imω ≤ 1.
This corresponds to cases (d) and (e).

Suppose now that the spaces 〈x1, x2〉 and 〈y1, y2〉 coincide. Then ether [ω] = [x1 ∧ y1] (case (e))
or ω = 0 (case (f)).

We shall need some information about the SO(V (π1))-orbits in Λ2V (π1). To obtain this infor-
mation, we use the canonical identification of Λ2V with so(V ), for any vector space V with a non-
degenerate symmetric bilinear form (·, ·). Recall that, for any two vectors x1, x2 ∈ V , to x1∧x2 ∈ Λ2V
corresponds the linear operator

(x1 ∧ x2)(·) : V → V (v → ((x2, v)x1 − (x1, v)x2)).

The image of a linear operator corresponding to a form ω ∈ Λ2V coincides with Imω 1.
Now, we study some nilpotent SO(V )-orbits in so(V ). For any nilpotent element e ∈ so(V ) there

exist elements h, f ∈ so(V ) such that {e, h, f} is an sl2-triple (this is a well-known corollary of the
Jacobson-Morozov theorem). Thus the classification of the conjugacy classes of nilpotent elements
in so(V ) is reduced to the classification of the conjugacy classes of sl2-subalgebras in so(V ). Any
sl2-subalgebra of so(V ) determines a structure of sl2-module on V . Therefore the the classification of
the conjugacy classes of nilpotent elements in so(V ) is reduced to the classification of the equivalence
classes of sl2-modules of dimension n := dimV . Such equivalence classes are in a one-to-one corre-
spondence with the partitions of n (in some sense such partitions corresponds to the Jordan normal
forms). For nilpotent orbits such partitions can be encoded by Hasse diagrams, e.g. the Hasse dia-
gram (31221n−7) corresponds to the partition 3, 2, 2, 1, 1, ..., 1 (unit appears n−7 times). The following
lemma provides an elementary way to compute dim Imx and rk Imx for a nilpotent element x with
known partition. The proof of it is left to the reader.

Lemma 7.11. Let d̄ = d1, ..., dk be a partition of n := dimV . Let x ∈ so(V ) be a nilpotent element
with partition d̄. Then

dim Imx = Σi max{di − 1, 0}, rk Imx = Σi max{di − 2, 0}.

The space Λ2V is a simple SO(V )-module (isomorphic to the adjoint module) and the set of
highest weight vectors of it is

X(Λ2V ) := {x1 ∧ x2 | 〈x1, x2〉 is an isotropic 2-dimensional space }.

The secant variety σ2(X(Λ2V )) is described in [Kaji98]. According to this description σ2(X(Λ2V ))
consists of one SO(V ) × F×-orbit of some semisimple element h (we denote the corresponding form
ωh), 5 non-zero nilpotent orbits (here we use dimV ≥ 9) with Hasse diagrams

(321n−6), (31221n−7), (311n−3), (241n−8), (221n−2)

and one zero-orbit. We denote some representatives of these orbits by

1There is a third way to describe Imω: (·, ·) defines a map V → V ∗ and ω defines a map V ∗ → V , Imω is
the image of the composition of these maps.
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ωh, ω321n−6 , ω31221n−7 , ω311n−3 , ω241n−8 , ω221n−2 and 0,

respectively. Using Lemma 7.11 we obtain the following data:

Form ω dim Imω rk Imω

ωh 4 4
ω321n−6 4 2
ω31221n−7 4 1
ω241n−8 4 0

ω311n−3 2 1
ω221n−4 2 0

. (9)

Observe that (9) looks very similar to (7).
Now we start working with a root-weight approach on the F4-module V (π1) (we use the description

of the corresponding roots and weights given in [VO90, p. 294–295]). The weights of the V (π1) are

±εi,
±ε1 ± ε2 ± ε3 ± ε4

2
. (10)

For any weight α from (10) we pick a vector vα ∈ V (π1) of weight α. The highest weight vector of
Λ2V (π1) (with respect to the order given in [VO90, p. 294]) is

ε1 +
ε1 + ε2 + ε3 + ε4

2
=

3ε1 + ε2 + ε3 + ε4

2
= π2.

Thus the highest weight vector of V (π2) ⊂ Λ2V (π1) is

vπ2 := vε1 ∧ v
ε1+ε2+ε3+ε4

2 . (11)

We set
x := vε1 , y := v

ε1+ε2+ε3+ε4
2 . (12)

Since the weights ε1,
1
2(ε1 + ε2 + ε3 + ε4), ε1 + 1

2(ε1 + ε2 + ε3 + ε4) are all non-zero, the vectors
x, y ∈ V (= V (π1)) are isotropic and pairwise orthogonal. We shall need the following lemma.

Lemma 7.12. Let ∆F4 be the root system of F4 and let G ⊂ F4 be the regular subgroup of type SL2

with root system {±1
2(ε1 − ε2 − ε3 − ε4)} ⊂ ∆F4 . Then the space 〈x, y〉 is a two-dimensional simple

G-module. Furthermore, for any non-zero vector z ∈ 〈x, y〉 we have

dimF4z = dimF4x = dimF4y = 16.

Proof. The first statement of the lemma follows from the facts that all non-zero weight spaces of V (π1)
are one-dimensional, the weights

ε1,
ε1 + ε2 + ε3 + ε4

2
(13)

differ by the root ε1−ε2−ε3−ε4
2 and the line going through the weights (13) contains no other weights

of V (π1). Since 〈x, y〉 is a two-dimensional module of G ∼= SL2, all non-zero vectors of 〈x, y〉 are
conjugate by G ⊂ F4. Thus for any non-zero vectors z1, z2 ∈ 〈x, y〉 we have

dimF4z1 = dimF4z2.

In particular,

dimF4z = dimF4x = dimF4y.

It remains to mention that

dimF4x = dimX(π1) = 1 + dimF4−dimB3
2 = 16.
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We shall now make a digression and prove two auxillary lemmas needed further on. The first is a
technical statement from linear algebra.

Lemma 7.13. Let V and W be finite-dimensional vector spaces and let V2 be a space of dimension
2 with basis x, y. Let φ : V2 ⊗ V →W be a linear map. Assume that for any v ∈ V we have

[φ(x⊗ v)] = [φ(y ⊗ v)]. (14)

Then one of the following possibilities holds:
(a) there exist φ1 ∈ V ∗2 and a linear map φW : V →W such that

φ(l ⊗ v) = φ1(l)φW (v)

for all v ∈ V, l ∈ V2;
(b) there exists a function φ1 : V2 ⊗ V → F and a vector w ∈W such that

φ(v ⊗ t) = φ1(v ⊗ t)w.

Proof. A linear map φ : V2 ⊗ V → W can be identified with an element φ∗ ∈ V ∗2 ⊗ V ∗ ⊗W . Such an
element φ∗ can be (non-canonically) represented by a matrix(

a1 a2 ... an
b1 b2 ... bn

)
, (15)

where a1, ..., an, b1, ..., bn ∈ V ∗ and n is the dimension of W . Then, according to (14), we have

aibj − ajbi = 0, (16)

for all i, j. There are two types of solutions for this system, which we consider next in two cases.
Case 1) Assume that for all i we have

[ai] = [bi], or ai = 0, or bi = 0.

Then there exist non-zero vectors c1, ..., cn ∈ V ∗ and numbers λ1, ..., λn, µ1, ..., µn ∈ F such that

ai = λici and bi = µici

for all i. Then for all i, j we have

0 = aibj − ajbi = (λiµj − λjµi)cicj . (17)

Since ci, cj 6= 0 for all i, j, the set of equations (17) is equivalent to the statement that the matrix(
λ1 λ2 ... λn
µ1 µ2 ... µn

)
(18)

has rank 1, i.e. that after some change of basis in V2 the matrix (18) has the form(
ν1 ν2 ... νn
0 0 ... 0

)
for some numbers ν1, ..., νn ∈ F, i.e. that after some change of basis in V2 the matrix (15) has the form(

ν1c1 ν2c2 ... νncn
0 0 ... 0

)
.

This statement is equivalent to the statement (a) of Lemma 7.13.
Case 2) Assume that for some i we have
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[ai] 6= [bi], ai 6= 0, bi 6= 0.

Then equations (16) imply that there exist numbers λ1, ..., λn such that

aj = λjai, bj = λjbi

for all j. Then, after some change of basis in W , the matrix (15) takes the form(
ai 0 ... 0
bi 0 ... 0

)
.

This statement is equivalent to the statement (b) of Lemma 7.13.

We also need the following simple statement.

Lemma 7.14. Let P be a homogeneous polynomial on a vector space V . Then there exists t0 ∈ V
such that for all t ∈ V there exists λ ∈ F such that P (t+ λt0) = 0.

Proof. The statement of the lemma holds for P = 0 for trivial reasons. Assume that P 6= 0. Pick t0
such that P (t0) 6= 0. Then the coefficient attached to the highest power of λ in P (t + λt0) equals to
P (t0), and hence is non-zero. Thus for any t ∈ V the equation on λ, P (t + λt0) = 0 has a solution.
This completes the proof.

For the proof of Proposition 7.9 we also need the following lemma.

Lemma 7.15. There exists t ∈ f4 such that

ωt := x ∧ y + t(x ∧ y) = x ∧ y + tx ∧ y + x ∧ ty

satisfies the following conditions

(19a) rk Imωt = 1 , (19b) dim Imωt = 4. (19)

To prove Lemma 7.15 we need the following auxiliary lemma.

Lemma 7.16. Let
Pxx(t) := (tx, tx), Pyy(t) := (ty, ty) (20)

for any t ∈ f4. Then
a) both polynomials Pxx, Pyy are non-zero and irreducible,
b) [Pxx] 6= [Pyy].

Proof. Assume that Pxx = 0. Then f4x is an isotropic subspace of V26 and hence

16 = dim f4x ≤
1

2
dimV26 = 13.

This is not true and thus Pxx 6= 0. By similar reasons Pyy 6= 0.
Assume that Pxx is reducible, i.e. is a product of two monomials. Then there is a hypersurface

H ⊂ f4 such that Pxx|H = 0. Therefore Hx is an isotropic subspace of V26 and thus dimHx ≤ 1
2V26.

Hence we have

15 ≤ dimHx ≤ 1

2
dimV26 = 13.

This is not true and thus Pxx is irreducible. By similar reasons Pyy is irreducible and this completes
part a).

According to (12) and (20), Pxx is a weight vector of weight −2ε1 and Pxx is a weight vector of
weight −(ε1 + ε2 + ε3 + ε4). Hence [Pxx] 6= [Pyy] and the proof is complete.
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Proof of Lemma 7.15. First we deal with condition (19a). We claim that there exists a polynomial P
on f4 of degree 4 such that P (t) = 0 if and only if the matrix

(x, x) (x, y) (x, tx) (x, ty)
(y, x) (y, y) (y, tx) (y, ty)

(tx, x) (tx, y) (tx, tx) (tx, ty)
(ty, x) (ty, y) (ty, tx) (ty, ty)


has rank 1 or less. To check this we start by recalling that x and y are isotropic and pairwise orthogonal
(see the text preceeding Lemma 7.12), i.e.

(x, x) = (x, y) = (y, x) = (y, y) = 0.

Also, if ∆F4 denotes the root system of F4, we have (see [VO90, Table 1, p. 294])

−ε1 /∈ ε1 + ∆F4 − ε1 /∈ ε1+ε2+ε3+ε4
2 + ∆F4

− ε1+ε2+ε3+ε4
2 /∈ ε1 + ∆F4 , − ε1+ε2+ε3+ε4

2 /∈ ε1+ε2+ε3+ε4
2 + ∆F4 ,

where “+” denotes the pointwise sum. As (·, ·) is F4-invariant, (vα, vβ) 6= 0 implies α+ β = 0. Hence

(tx, x) = (x, tx) = (ty, y) = (y, ty) = (x, ty) = (ty, x) = (tx, y) = (y, tx) = 0,

for all t ∈ f4. Therefore we have
(x, x) (x, y) (x, tx) (x, ty)
(y, x) (y, y) (y, tx) (y, ty)

(tx, x) (tx, y) (tx, tx) (tx, ty)
(ty, x) (ty, y) (ty, tx) (ty, ty)

 =


0 0 0 0
0 0 0 0

0 0 (tx, tx) (tx, ty)
0 0 (ty, tx) (ty, ty)

 . (21)

Now we see that the matrix (21) has rank 1 or less if and only if

P (t) := (tx, tx)(ty, ty)− (tx, ty)2 = 0.

By definition P is a homogeneous polynomial of degree 4 (possibly P = 0). This proves the claim
made in the beginning of the proof.

Now we discuss condition (19b). We denote by ZP the zero-locus of P in f4. We claim that there
exists an open subset UP ⊂ ZP such that for any t ∈ UP condition (19b) is satisfied. The statement
of (19b) is equivalent to the statement that the vectors x, y, tx, ty are linearly independent. Let us
check that there exists a non-zero open subset UP ⊂ ZP such that the vectors

x, y, tx, ty (22)

are linearly independent for every t ∈ UP . By Lemma 7.14 there exists t0 ∈ f4 such that for every
t ∈ f4 there exists λ ∈ F such that P (t+ λt0) = 0. We set

Ṽ := V/〈x, y, t0x, t0y〉.

The statement related to (22) is implied by the following statement: there exists an open subset
U0 ⊂ f4 such that for all t ∈ U0

t̃x, t̃y (23)

span a two-dimensional subspace in Ṽ , where t̃x, t̃y are the images respectively of tx, ty in Ṽ .
There is a natural map

φ : f4 ⊗ 〈x, y〉 → Ṽ

defined on simple tensors by the formula

t⊗ v → t̃v.
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Assume that the vectors t̃x, t̃y are linearly dependent for all t. Lemma 7.13 implies that one of the
following two situations occurs:

(I) there exist φ1 ∈ 〈x, y〉∗ and a linear map φV : f4 → V such that

φ(t⊗ z) = φ1(z)φV (t)

for all z ∈ 〈x, y〉, t ∈ f4, or
(II) there exists a function φ1 : 〈x, y〉 ⊗ f4 → F and a vector v ∈ V such that

φ(t⊗ z) = φ1(t⊗ z)v.

First, we consider possibility (I). Let z ∈ 〈x, y〉 be a non-zero vector such that φ1(z) = 0 (such
vector always exists!). Then

t̃z = φ(t⊗ z) = φ1(z)φ̃(t) = 0

for all t ∈ f4. Thus for all t ∈ f4 we have

tz ∈ 〈x, y, t0x, t0y〉.

In particular, dimF4z ≤ 4. This contradicts Lemma 7.12.
Second, we consider possibility (II). Then

f4x ⊂ 〈x, y, t0x, t0y, ṽ〉,

where ṽ is any preimage of v in V . In this case we have

dimX(π1) = dimF4x ≤ 5.

But we know that dimX(π1) = 16 and thus the possibility (II) also can be true.
Compiling the previous paragraphs together, we conclude that there exists a non-zero open subset

UP ⊂ ZP such that for every t ∈ UP we have

rk Imωt = rk〈x, y, tx, ty〉 ≤ 1, dim Imωt = dim〈x, y, tx, ty〉 = 4. (24)

Now we show that there exists t ∈ UP such that

rk〈x, y, tx, ty〉 = 1. (25)

Assume on the contrary that
rk〈x, y, tx, ty〉 = 0 (26)

for any t ∈ UP . This is equivalent to the condition that the matrix (21) equals 0 for all t ∈ UP
and hence equals 0 for all t ∈ ZP . Thus from P (t) = 0 follows that Pxx(t) = Pyy(t) = 0 (we use
notation (20)), i.e.

P | Pnxx, Pnyy
for some n ∈ Z≥0. As Pxx, Pyy both are irreducible (Lemma 7.16) and non-zero,

[P ] = [Pxx]k = [Pyy]
l

for some k, l ∈ Z≥1. We have degPxx = degPyy = 2 and therefore [Pxx] = [Pyy]. This is false by
Lemma 7.16b) and thus the assumption (26) is false. This proves statement (25) and completes the
proof of Lemma 7.15.
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Proof of Proposition 7.9. Pick t ∈ f4 such that

ωt := x ∧ y + t(x ∧ y) = x ∧ y + tx ∧ y + x ∧ ty

satisfies conditions (19) (such t exists according to Lemma 7.15). The vector x∧y is the highest weight
vector of V (π2) (see the statement related to (11) and (12)). Thus

ωt = ((x ∧ y) + t(x ∧ y)) ∈ σ2(X(π2))

according to Lemma 4.3. Assume that ωt = ω1 + ω2 for some ω1, ω2 ∈ X(π2). Equivalently, there
exist g1, g2 ∈ F4 such that

ωt = g1x ∧ (g1y) + g2x ∧ (g2y).

Since the spaces

〈g1x, g1y〉 and 〈g2x, g2y〉

are two-dimensional and isotropic, the pair

dim Imωt, rk Imωt

corresponding to ωt has to appear in cases (a)-(e) of (7). This is not the case, due to (19), and thus
ωt is an exceptional vector for V (π2). Therefore V (π2) is wild and we have completed the proof of
Proposition 7.9.

7.3 Wildness of V (π1) for E7

This subsection is devoted to the proof of the following proposition.

Proposition 7.17. The representation V (π1) of E7 is 2-wild.

Our proof goes through the adjoint module of E8 and this should somehow justify notation of this
subsection. We set G = E8 and G = E7. By g, h, π1... and so on we denote attributes of E8 and by
g, h, π1... we denote the corresponding attributes of G = E7.

The idea of the proof of Proposition 7.17 is to identify V (π1) of E7 with some subspace of e8 (∼= Vπ1
of E8) and then prove the following two lemmas.

Lemma 7.18. a) For any x ∈ X(π1) we have dimE8x = 58.
b) For any x ∈ X2(π1) we have dimE8x ∈ {58, 92, 114}.

Lemma 7.19. There exists x ∈ V (π1) such that dimE8x = 112.

It is known that σ2(X(π1)) = V (π1) [Zak93, Ch. III, Thm. 1.4]. Therefore V (π1) is wild if and
only if there exists x ∈ V (π1) such that

x 6∈ X2(π1) ∪X(π1) ∪ 0.

According to Lemma 7.18 and Lemma 7.19 such elements x ∈ V (π1) exists and hence Lemmas 7.18
and 7.19 imply Proposition 7.17. First we make sense for Lemma 7.18 and Lemma 7.19 and then we
present a proof of both this lemmas. To do this we need more notation.

We note the amazing fact that the V (π1) has only finitely many G-orbits and we wish to say some
words about it (see e.g. [V76]). The description of the E7-orbits on F56(dimV (π1) = 56) appears
in [H71]. The idea of the of a piece of description which is used here comes from [BC76] and is related
to the description of sl2-triples in exceptional groups due to [D52]. There is a recently developed
software, which allows, in principle, to solve such problems [GVY12].

31



In our proof of 2-wildness of V (π1) we use that V (π1) is the 1-grading component of some grading
of e8 (representations which arises in such a way are called θ-representations, see [V76], [Kac80]). We
need more notation related to θ-representations.

For any t ∈ h∗ we denote by gt ⊂ g the corresponding weight space (we note that gt 6= 0 if and
only if t ∈ ∆ ∪ 0). We identify h and h∗ via the Cartan-Killing form and thus consider fundamental
weights πi as elements of h∗. We set

∆i := {α ∈ ∆ ∪ 0 | (α, π1) = i} (i ∈ F),
gi :=

⊕
t∈∆i

gt (i ∈ F).

The spaces {gi}i∈F form a grading of g. The space g0 is a Lie algebra and it acts in a natural way on
gi for any i ∈ F. By definition, a θ-representation is the representation of g0 on g1.

We have

gi = 0 if i 6∈ {−2,−1, 0, 1, 2}, g0
∼= e7 ⊕ F,

dim g2 = dim g−2 = 1, dim g1 = g−1 = 56, dim g0 = 134.

We identify g with [g0, g0]. As e7-modules (e7 = g = [g0, g0]) both g1 and g−1 are isomorphic to V (π1).
Further we identify V (π1) with g1.

We note that π1 of E8 is a positive root (see [VO90, Table 1 on p. 293-295] for roots and
fundamental weights of E8).

The following Lemma plays a key role in the proof of Lemma 7.18.

Lemma 7.20. Let α1, α2 be roots of E8 such that α1 6= −α2. Then vα1 + vα2 is a nilpotent element
and dimE8(vα1 + vα2) ∈ {58, 92, 114}.

Proof. If α1 = α2, then vα1 +vα2 is conjugate to vα1 . The nilpotent element vα1 is a generic nilpotent
element of the corresponding Levi subalgebra with semisimple part isomorphic to A1. Therefore
dimE8(vα1 + vα2) = 58.

If α1 6= α2,−α2, the vector vα1 + vα2 is a nilpotent element of the Lie algebra lα1,α2 corresponding
to the root system generated by α1, α2. We have three possibilities: (α1, α2) = 1, (α1, α2) = 0,
(α1, α2) = −1. In the first and third cases, we have lα1,α2

∼= sl3 = A2. In the second case, we have
lα1,α2

∼= sl2 ⊕ sl2 = 2A1. For any of these Lie algebras of rank 2 it is easy to check that:
1) if (α1, α2) = 1, then vα1 + vα2 is conjugate in lα1,α2 to vα1 (and therefore to vα2), and thus is a

distinguished nilpotent element for some root subalgebra A1,
2) if (α1, α2) = 0, then vα1 + vα2 is a distinguished nilpotent element of lα1,α2

∼= 2A1,
3) if (α1, α2) = −1, then vα1 + vα2 is a distinguished nilpotent element of lα1,α2

∼= A2.
Hence dimE8(vα1 + vα2) = 58, 92, 114, respectively, for cases 1, 2, 3, see [CM93, 8.4, Table:

nilpotent elements for E8].

Now we are ready to prove Lemma 7.18.

Proof of Lemma 7.18. For any weight α ∈ ∆1 and any vα ∈ gα we have

vα ∈V(π1)

and vα is a highest weight vector with respect to some choice of Borel subalgebra of E7 = g, i.e.

vα ∈ X(π1).

On the other hand vα ∈ X(π1) and thus

dimE8v
α = dimX(π1) = 58.
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This completes part a).
We proceed to part b). By Lemma 4.1, any element of X2(π1) is G-conjugate to the sum of two

weight vectors. In our case this means that any x ∈ X2(π1) is G-conjugate to

vα1 + vα2

for some α1, α2 ∈ ∆1. From this statement and Lemma 7.20 part b) of Lemma 7.18 follows immedi-
ately.

We are now ready to prove Proposition 7.17.

Proof of Lemma 7.19. We now construct an element x, with dimE8x = 112.
The Dynkin diagram of E8 has a subdiagram D4 of E8 and all roots of E8 are conjugate. Hence

there exists roots α1, α2, α3 such that the quadruple

(−π1, α1, α2, α3)

is a system of simple roots of Dynkin type D4, i.e.
1) (−π1, αi) = −1 for i = 1, 2, 3,
2) (αi, αj) = 0 for i, j ∈ {1, 2, 3}, i 6= j.
Condition 1) means that α1, α2, α3 ∈ ∆1. The element vα1 + vα2 + vα3 is a distinguished element

of 3A1, where by 3A1 we denote a subgroup of G corresponding to the root subsystem

∪i{−αi, αi} ⊂ ∆.

Therefore dimE8(vα1 + vα2 + vα3) = 112, see [CM93, 8.4, Table: nilpotent elements for E8]. Hence,
for x = (vα1 + vα2 + vα3) ∈ V (π1), we have dimE8x = 112. This completes the proof.
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[V76] É. B. Vinberg, The Weyl group of a graded Lie algebra, Math. USSR Izv., 10 (3) (1976),
463–495.

[Zak93] F. L. Zak, Tangents and secants of algebraic varieties, Translations of Mathematical Mono-
graphs, Vol. 127, AMS 1993.

A. V. Petukhov (alex--2@yandex.ru)
Max-Planck-Insitut für Mathematik, Vivatgasse 7, Bonn, Germany, D53111.

V. V. Tsanov (valdemar.tsanov@gmail.com)
Fakultät für Mathematik, Ruhr-Universität Bochum, Bochum, Germany, D-44780.

35


