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0.1 

O. Introduction 

This paper is concerned with the computation of the space 

first order infinitesimal deformatiomof a two-dimensional rational 

singularity (X,O). For cyclic resp. dihedral quotient singularities 

the dimension of this space was determined in [Riel,[Pi 1] resp. 

[Be, RieJ. Ih these cases one obtains the formula 

0.1 • dim T~ = dim Ti + emb(X) - 4 

unless X is a rational double point. Here emb(X) denotes the 

embedding dimension of X, ~: X + X the minimal resolution of 

X, and T~ = H1 (x, ex) is the space of first order infinitesimal 

deformations of X. The data at the right hand side of <0.1.) can 

for many rational surface singularities be computed in terms of 

the resolution graph (see e.g. fAr), Cor. 6 and [La)}. 

For arbitrary two-dimensional quotient singularities a (computer 

aided) proof of "(0.1.) was recently given by K. Behnke, C. Kahn 

and O. Riemenschneider, using methods of invariant theory «(Ka], 

[ Be, Ka, Rie). 

On the other hand J. Wahl had found an example of a (non Gorenstein) 

rational surface singularity for whic~ dim T~ > dim T~ + 

emb(X) - 4 (see [Be, Rie], p. 4 and example 4.21. below). In a 

letter he also gave a proof of the inequality 

0.2. dim T1 > dim Tl + emb(X) - 4 X X 
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for all rational surface singularities. We give his proof in an 

appendix to our paper. 

In this article we prove 0.1. for a large class of two-dimensional 

rational singularities (see Theorem 4.10. below). We briefly 

sketch the me thod applied. 

From Schlessinger's description of (cf. [Schl] or Theorem 1.1. 

below) one concludes by local duality that the dual space 

(T~)* can he computed as follows: 

Let i: x~~n be a closed embedding of a Stein representative, 

and let 0 1 and 0 1 be the sheaves of Kahler differentials 
X (!n 

and Wx the canonical sheaf. By XI "'" X - {O} we denote the 

smooth part of x. Then (T~)* is isomorphic to the cokernel 

of the natural map 

(j.l'tJ 1) 
HO(X',l.·*n 1 ...... X) J HO(X' ,,1 - ) 

.. ... ... , U x - Wx ' 
(!n 

induced by the epimorphism }.I , : 

Let f 1 , .•. ,fn be a system of generators for the maximal ideal 

of (9x,o' For a suitable trivialization i"O:n ';;!'l9~ j.l': (9~ .... 

o~ is defined by j.l'(g1 , •• ·,gn) = g1 df1 + ••• + gndfn' This map 

b t d ' d 'th 1 t' X X L t E - .-1 (0) can e s U l.e uSl.ng e reso u l.on 'Ir: .... • e - " 

be the exceptional set, Z the fundamental cycle, and let 

O~<log E> be the sheaf of meromorphic 1-forms with at most 

logarithmic poles along E. As above we have a map 
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(g1, ••. ,gn) + g1 df1 + ••• + gndfn' where now f 1 , ••• ,fn are 

considered as holomorphic functions on X. As (X,O) is a 

rational singularity and Wx is reflexive there is a natural 

isomorphism between HO (X' , (!J ~~ 

this isomorphism one sees that 

following composite map 

o IV $n 
~ wX') and H (X, C9 x ® U]() • Using 

T~ is dual to the cokernel of the 

* (lJ Q) 1) 0"" 1 0 1 
----~) H (X,flX<log E>(-Z»<...4H (X',flx,ewx ')' 

0... 1 0 1 The cokernel of the inclusion H (X,flX<log E>(-Z»"-4H (X',flX'®WX') 

can be computed using results of J. Wahl [Wa, 1] (see Ch. 2). 

For the discussion of (ll /8) 1) * we have to make more restrictive 

assumptions (e.g. that the fundamental cycle is reduced) in 

order to be able to control the kernel and the cokernel of ll. 

This discussion is performed in Ch. 3 and Ch. 4 and leads to 

the proof of 0.1. for a large class of rational surface singu-

larities. The precise results are stated in Theorem 4.8. and 

example 4.13. 

We want to thank Jonathan Wahl for letting us include his proof 

of the inequality 0.2 in this article. 
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1 • Schlessinger's description of and duality 

Let (X,o) be a normal surface singularity. We recall a result 

of M. Schlessinger. [Sohl] which gives a cohomological descrip

tion of the space T1 of infinitesimal deformations of X. Then 
X 

we apply duality to obtain the description of (T 1 ) * which 
X 

is basic for our paper. 

Let i: X~~n be an embedding of a small Stein space represen-

ting the singularity (X,O). Denote by XI = X - {OJ the 

smooth part of X, by 0
1 

cn resp. 0
1 
X the sheaves of Kahler 

differentials on ~n resp. X, and by a n resp. ex their 
~ 

duals. 

Theorem 1.1 (Schlessinger [Schl] 51, Lemma 2): 

The module T1 of first order infinitesimal deformations of 
X 

(X,D) is the kernel of the map 

H 
1 

eX' , ex I) -+ H 
1 

(X' , e 1 ) 
cn XI 

which is induced by the natural inclusion of tangent sheaves 

e ~ Xl 

To apply local duality we remark that H1 (X',ex ') is canonically 

2 
isomorphic to H{O}(X,9X)' the second local cohomology group 

with support in the singular point o. Similarly a 1 
(X I , a I ) 

Cn X, 

is canonically isomorphic to 2 
a{O} (X,S n ). 

c Ix 
Th",n we see by 
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local duality that is dual to the cokernel of 

As all sheaves are reflexive we finally get 

Corollary 1.2: 

(T~)* is isomorphic to the cokernel of the map 

induced by the restriction map 

Remark 1.3: 

We can make this result a little more explicit: Observe that the 

restriction is generated as an Vx-module by the differ-

entia Is df "",df of the coordinate functions f. on Cn • 
1 n ~ 

Equivalently we can take for f 1 , .•. ,fn any set of generators 

for the maximal ideal of (i}x,o' Let ll': (9~ + n~ be the sur
n 

jection defined by jl'(g1" " . ,gn) = i: g. df.. Then (TX1 ) * is 
i=1 ~ ~ 

isomorphic to the cokernel of the map 

11 , ""' 1". HO (X I , ,.,EDxn, ) HO (X' n 
1 @) 

.. '0' UJ + , •• x ' OOx ' • 

In an invariant way the image of (1l'®1) can be characterized 

as the subspace of HO (X I , n~ I @ OOx I) generated by all elements 

of the form Eg. \1t dh., g. E HO ex I , OOx ' ) , h. E HO (X I I (9x I) • 
~ ~ ~ ~ 
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2. The case of rational singularities 

We keep our previous hypotheses and assume moreover that X is 

-a rational singularity. Let .: X + X be the minimal good reso-

lution of X, and let E = .-1(0) be the exceptional set. The 

irreducible components E, , ... ,E of . r E are nonsingular rational 

curves of selfintersection number -b. = E .• E. < -2. 
1. l. l.-

Let resp. be the sheaves of holomorphic 1- resp. 2-forms 

on X. Observe that by rationality o .. 0 
H (X,wX) = H (X',wx ') (see 

e.g. [Pi, 2], S15). We denote the pull backs to of the functions 

fi of Remark 1.3 also by fie Their differentials are sections 

of n~<lOg E>{-Z), where O~<log E> denotes the sheaf of mero

morphic 1-forms on X with logarithmic poles along E and Z 

-is the fundamental cycle of X. Again we define a sheaf map 

by 
n 
1: g. df .• 

i=1 l. 1. 

Let p be the inclusion 

By Remark 1.3 we get 

This induces a map 

o 1 
+ H (X,OX<log E> (-Z) • wi) • 
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Lemma 2.1: 

(TX1) * is isomorphic to the cokernel of the composite map 

The main result of this section is 

ProEosition 2.2: 

The cokernel of the inclusion map 

HO(X' 01 ~ wX') has dimension , X, 

1 - r ° 1 dim H (X,0;) + ~ (b.-3) + dim H (IZ-EI,Q_<log E>{-E)@ 
.• i= 1 ~ :x 

As p is injection this - together with Lemma 2.1 - implies 

Corollary 2.3: 

Let t resp. R be the kernel resp. cokernel of 

dim T1 = dim 
X 

+ dim 

Remark 2.4: 

1 -+ dim (H (X,R12>WX) 

We are mainly interested in the case that the fundamental cycle 

is reduced (i.e. Z = E), in this case the last term in formula 

2.2 resp. 2.3 does not appear. 
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For the proof of Proposition 2.2 we factor P in the sequence of 

inclusions 

(2.5) 

To study these inclusions we use the well-known exact sequences 

(2.6) O~ 1 r 
o + + °x<log E> + 6) (:) +0 

X i=O Ei 

1 01 r 
o + O-<log E>(-E) + + $ WE. +0 

X X i=1 ~ 

(2.7) 

(where wE. is the canonical sheaf of the curve Ei ) and the 
~ 

following vanishing result, which is derived from [Wa, 1], 

Theorem C,D by applying Serre duality: 

Theorem 2.8 (J. Wahl): 

(i) Let X 

singularity 

be the minimal good resolution of a normal surface 

1..... 1 X. Then H (X,O~<log E>.w-) = 0 . X X 

(ii) If x is a rational singularity then also 
1 - 1 8 (X,Ox<log E>(-E) 

Proposition 2.2 is a direct consequence of (2.5) and 

Lenuna 2.9: 

(i) The cokernel of the inclusion HO(XIO~.wX)~HO(X' ,O~,. lUX' 

• 1(~) 1 .. 1 has dimension d~m H X, ei - dim H ex, Ox CD 1Ili:) 

a - 1 (ii) The cokernel of the inclusion H (X,Ox<log E> (-E) 8 lIli) "'* 
'"+ HO(i, ole • (''>i) has dimension dim 8 1 (X,Q~ • "'i)+i*1 (b

i
-3) 
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( . ii) Th kIf h . l' 0 (- 1 1 () ) 1 e CO erne 0 t e 1nc uS10n H X I nx< og E> -Z @ (,.)x e..,. 

.... HOCK, n~ <log E ,. (-E) @ wX) has dimension 

Proof: (i) The long exact sequence for local cohomology 

gives 

1 o ,..,. 1 .... HO (X' , 1 1 '" o .... H <X, n ..... @ 00 ...... ) nx, @ wX ') .... HE(X, nx @ w-} .... 
X X X 

1 ..... 1 (*) H 1 (X' n.1 
wX ' ) .... H (X, nX @ wX) ~ , X' @ ........ 

We claim that the map (*) is zero. To prove this consider the 

commutative diagramm 

H 1 (X, 1 fiX <log E>® 
1 

wX) - H (X', 
1 

OX' < log E > ® w
X

') 

i i~ 
H 1 (X, n! @ 00"') 

(*) 
H 

1 
eX' , 

1 
@ wX ' ) ~ nx , 

X X 

By Theorem 2.5 the cohomology group in the upper left hand 
corner vanishes. The statement now follows from the fact that 

1 '" 1 1 '" HE(X,nX @ wx} ~nd H (x,ex) are dual. 

(ii) From (2.7) and Theorem 2.8.ii we get the exact sequence 

0...... 1 r 0 
0 .... HO (X,n"",x1 <loC;E>(-E} ®~) .... H (X, n ..... ® w ..... X)~$ H (E1·,w ..... X@wE.> .... O 

- y. X i= 1 1 

and an isomorphism 

By the acjunction formula we see that 00..... @ WE ,has degree b i -4 
X 

on Ei' hence 1 

r 0 r 1 r 
E dim H (Ei'w~ @ WE ) .... L dim H (Ei,wX ® WE. ) = E {b.-3} 

i= 1 i i= 1 1 i=1 1 



This proves part (ii) of the Lemma. 

(iii) follows from the exact sequence 

o .... n~ <log E >(-Z) .... ni <109 E >(-E) ..... n~ <log E> {-E} OJ {9Z_E ..... 0 

and the vanishing of H 1 (;t, g~ < 1O<J E > (-Z) • bl:x) (which is easy, 

since O_(-Z) is generated by global sections). 
x 
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3. Computation of H.
0 

{Xl t@ Wxh 

Recall that c: was defined as the cokerne.l of 

11'1 $n 1 
Jl : \!IX - rlx <log E> (-Z) 

Let q:- be the image of }.l • Then 'r is a torsion free sh~eaf, 

and C is concentrated on E. 
In this section we assume that the fundamental cycle is reduced 

(i.e. Z = E) and that it meets every irreducible component of E 

- except possibly (-2)-curves-strictly negatively_ 

In order to compute e we will construct holomorphic functions 

on X with prescribed divisors. We use the following observation 

of M. Artin ( [A r ], proof of Theorem 4): 

Lemma 3.1.: 

Let TI X ~ X be the minimal good resolution of a rational 

surface singularity. Let D be an effective divisor on X 
such that D·E. = 0 for every irreducible 

~ 

Then there is an open neighbourhood U of 

function f on U such that (f) = D n U. 

Corollary 3.2.: 

component E. of E. 
.~ ~ 

E in X and a holomorphic 

Let X be the minimal resolution of a rational surface singularity 

with reduced fundamental cycle Eo Let E = E'+EII be a decomposition 

into effective divisors with connected E'. Denote by F the sum of 

irreducible components of E' which meet Elf, and write E' = E~ + F. 

Let D' be an effective divisor with support in Ef, and let A be an 

effective divisor on a small neighbourhood U of E~ which has no 

components in common with E. Put D := D' + A • Suppose that 

(i)DoEi = 0 for all components Ei of E~ 

(ii) the multiplicity of a component Ei of F in D is greater or 

equal to 
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,., 
Then there exists a holomorphic function f on X such that 

(f) I'l U = D. 

Proof: Let Ei,.,.,Ek be the connected components of E~ 

let Fi be the component of F meeting Ei I and let fii be 
its multiplicity in D. 

k 

E' o 
/ u 

Fig.1 

We put C := D +.E mi Ei. Since Ei + Pi is the exceptional 
~=1 

set of a rational singularity with reduced fundamental cycle 

it follows from (ii) that C.B! ~ 0 for all irreducible components 

of E. Obviously CoEi = 0 for all Ei contained in Uf so we can 

modify C outside U to obtain an effective divisor ~ with 

C'Ei = a for i = O",./k. Applying (3.1) to C we obtain the 
de sired function f. 

The next two lemmata give our description of C. First we 
investigate C near curves with "high self-intersection number". 

Recall that we assume Z = E throughout this chapter. 

Lemma 3.3: 

(i) Let p be a smooth point of E, and assume that BoEi < 0 for 

the unique irreducible component Ei of E containing p. 
Then C = o. 

p 
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(ii) Let p be a point where two components Ei,E j of E 

intersect, and assume that EoEi < 0, E-E j < O. Then e is 

a skyskraper sheaf near p and dim ~p = 1. 

Proof: 

(i) Let (u,v) be a holomorphic coordinate system near p 

such that Ei = {v = OJ 10cally.Then O~ <log E >(-E) is 
generated by dv and v·du locally_ 

As the fundamental cycle is reduced, there is a global holomorphic 

function f1 on X which gives a local equation for E, i.e. 

f1 = t 1 • v for a unit £1' Let 8 0 be the curve {u = OJ_ As 

E-Ei < 0 we can choose other curves A1 , ••• ,8
t 

which ate 
£ 

disjoint from Ao and such that E +i~o 8 i intersects Eo, .•• ,Er 

trivially. By Lemma£3.1 there is a holomorphic function f2 on 

X with divisor E + r Ai Locally near p the function f2 is 
i=o 

of the form f2 = ~·uv for another unit t 2. Obviously df1 and 
1 df2 generate 0x< log E > (-E) near p. 

(ii) We proceed as before and choose smooth curves 8 1 ,82 
through p such that E1 ,E2 , A1 ,A2 are pairwise transversal in p. 

There are loca~ coordinates u,v with E. = {v = O} , E. = {u = OJ , 
]. J 

and holomorphic functions f,g1,g2 on X such that f = uv, 

gk = uv(ak u+bkv + higher order terms} with a 1!b1*a2:b2 0 

Locally at p the sheaf O~ < log E> (-E) is generated by vdu and 
udv, while T is generated by df, dg 1 ,d92 o A simple calculation 

now shows that dim C = 1 . 
P 

It remains to see how C looks like on a linear chain of curves 

of self-intersection (-2) which have intersection number 0 withe E. 

So let Eo , ••. ,Et +1 be irreducible components of E such that 
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meets no other component of E but Ei - 1 and Ei +1 

= 1, •• " ,t) E"Eo <0 and E.Et +1 < 0 • 

----'"> 

u 

Fig.2 

Let U be a small neighbourhood of E1 U ••• U Et . Since En U 

intersects E
1

, ••• ,Et trivially, E is a principal divisor on U 

(cf.[Ar]). The ideal sheaf JElu is generated by a single 

holomorphic function, say f
1

• It vanishes to first order 

along En u. 

Blowing down E1 u ... u Et yields a rational double point At' 

So f1 can be extended to a minimal set f
1
,f2 ,f3 of generators 

of the algebra of holomorphic functions on O. It is well-known 

that f2 and f3 can be chosen such that f;+1= f2f3 and such that 

they have the divisors 

t 
(f2 ) = 1: i"Ei + (t+l) (Et +1 n u) 

i=1 

(f
3

) :: t (t-i+l)·Ei + (t+1) (Eo n u) 
1=1 
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Remark 3. 4. : 

Proof: By Corollary 3.2 we see that f 1 ,f1f 2 , f1f3 can be 

chosen as restrictions of holomorphic functions on X. Conversely 

any holomorphic function on V which vanishes along E n V is 

of the form h'f 1,where h is in the ideal generated by 

f 1 ,f2 ,f3 • 

We put 

I 
1 

Lemma 3.5.: 

t 
D:= l: 

i=1 

2 

max(i,t-i + 1) E. 
~ 

3 

Fig.3 

(i) If t is odd, then e Iv ~ ~D 

t-1 t 
I 

(ii) If t is even, say t = 2k, then flu has a torsion subsheaf T 

of length 1, concentrated at Ek n Ek+1 , and there is an exact 

sequence 

o ... T ... ... (9 ... 0 
D 

Proof: One easily checks that n~ < log E> (-E) lu is free with 

df2 df3 df2 df3 
generators f1 -r- and f1 -r- - Since (t+1)df1 = f, y:-+f 1 ~ J 

2 3 2 3 
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df2 
we see that t lu is cyclic with generator f1 -r: ... 

2 
df3 

= -f 1 -y:. The claim now follows from (3.4) by a simple 
3 

calculation in local coordinates. 

For later use we note 

Lenuna 3. 6 • ; 

o t+,] dim H (I DI, e1 0) ... ['""""2 

Proof: For an effective cycle C supported on the exceptional 

locus of a rational surface singularity one has H1(~C~, ~c) = 0 

(cf.[Ar]). So it is sufficient to compute the holomorphic 

Eulercharacteristic x( ~D) of ~O' 

Consider the sequence of divisors 

D,= E, , D2 = E, + E2,·.· ••• , 0t_, ... E,+ ••• +Et _1 ,Ot = E1+·· .+Et 

Dt+l = E1 + 2E2,··· ••. , D2t_2=2E,+ ••• +2Et _, 

.. ., .............. . 

ending with D (cf. fig.3). Let Ei be the curve which is added 
1 

to 01 to obtain 01+1' Then the intersection number 0t" Ei 
... 

is 1, if Ei does not start a new row, and it is 0 otherwise. 
1 

From the exact sequence 

we obtain 

(-0 ) 
1 .... (!Io .... 0 

... 

x «90 )-
1.+1 

x ( (I) 0) == I (1-0 • Ei ) 
I. I. I. 

[t+1] By the discussion above this sum has precisely ~ summands 1, 
and all other summands are zero. 
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4. Computation of H1 (X,R ~ (''Xl 

The most difficult part in formula (2.3) for dim T~ seems 
1 ...., 

to be H (X,R ~ w:x) . Recall that "VIe have the exact sequence 

o .... R .... (!J!n ~ 1 
E > (-Z) C .... 0 X flX < 109" .... , 

so by Hilbert's syzygy theorem R is locally free of rank n-2. 

We will apply the results of Chapter 3, so we assume again 

that the fundamental cycle is reduced and meets all non-(-2)

curves strictly negatively. In other words: If an irreducible 

component Ei of E meets ti other curves,then its self-inter
section number -bi fulfills 

b. ~ t. 
1 1 

for i=1, •.• ,r 

The restriction of the locally free sheaf R to Ei is a direct 

sum of line bundles (cf. [GR]VII, Satz 5). We now qive estimates 

for the degrees of these bundles. 

Proposition 4.1: 

Let Ei be an irreducible component of E. 

(i) If b i :?: ti+2, then R @ () E decomposes into line 
i 

bundles of degree at least -2 • 

(ii) If b i = t. +1, then all direct summands of R ® (9 E. 
1 1 

have degree at least -1 . 

(iii) If bi = 2, ti = 1 and Ei meets a (-2}-curve, then 

R \9 0 E is trivial. 
i 
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Proof: Consider the exact sequences 

o ..... r;:-..... 01 < 109' E > (-E) ..... e ..... 0 
x 

The first one remains exact, when restricted to Ei : 

(4.2) 
.n J.I 

o ..... R. (!) E ..... "E -
i i 

~ • (OE ..... 0 
i 

But "¥ ~ (f) E. is no longer torsion free, the second sequence 
J. 

gives 

(f)..... ( e , V
E 

) 1-". (9E 01 (4.3 ) o .... To~ )( .... .... ~ log E > (-E) ........, 
i i X 

• () E ..... C • () .... 0 
Ei J. 

So the torsion subsheaf of rr • (f) E is concentrated in the 
i 

• 

points , where L is a skyscraper sheaf, and it has length 1 there 
( c f. (3. 3 ) and ( 3 • 5) ) • 

~ 
First we prove (iii) : In this case Tor x (e, (!) E ) = 0, while 

1 i 
L ~ V is a skyscraper sheaf of length 1 (see Lemma 3.5). 

Ei 
Hence by (4.2) the Chern class of 't. (f) is zero. By (4.3) 

Ei 
we see that R • V E has Chern class zero. But a subsheaf of 

en i 
VE. has trivial Chern class, if and only 1f it is tr.ivial. 

J. 

We now concentrate on (i) and (ii). If we want to show that 

R. ~E. splits into direct summands of degree at least -1, 
J. 0 .n J.I 

it is sufficient to show the surjectivity of H (Ei , (!) E )-
i 

HO (E i' 't <i\ (Q E .) • This follows from the cohomology sequence of (4.2) 
J. 1 

and the observation that H (Ei,R. ~E ) is never zero, if 
i 
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R tiD (, has a line bundle summand of degree -2 or less. 
E~ 

Similarly for the estimate -2 in (i) it suffices to prove 

the surjectivity of HO(E., (9E (1)6) ~ HO(E.,'r@ (!)E (1». 
~. ~ . 

~ ~ 

We will discuss the torsion part and the non-torsion oart 
of ~@ V separately. For the torsion part we use 

Ei 

Lemma 4.4: 

Let E.,E. be two components of E which meet in a ooint p 
~ J -

and for which E' E. < 0, E' E. <: O. Let f be a ho10rnorphic 
~ J 

function on X whose zero divisor contains Ei with 
multiplicity 2, Ej with multiplicity 1, and no other curve 
passing through p. Then df represents a generator of the 

torsion part of (T@ (?E. ) 
1. P 

Proof: Let (u,v) be local coordinates around p with 

Ei = (v = O} , Ej = {u = O} . The computation in the proof 

of (3.3. ii) shows that locally Qi <log E > (-E) is generated 
by vdu and udv, while ~ is generated by vdu+udv, u 2dv, uvdv, 

2 s:- t?- 1 uvdu, v duo So the kernel of the map Iv.:r ... Qx < lo<?,E>(-E)1 

Iv. D~ < log E > (-E) is generated by uvdv. 

Corollary 4.5: 

Let Ei be a component of E such that b. ~t.+1. Then there 
~ 1. 

are ho10morphic functions on X which vanish of order 2 along 

Ei and whose differentials generate the torsion of ~® ~E • 
i 

Proof: For each non~-2)-curve E. meeting E. we find by (3.2) 
J ~ 

a holomorphic function on X which vanishes of order 2 along Ei 

and all the curves Ek * Ej that meet Ei • 
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The non-torsion part of 't et1s is the image 'f i of 1". (()E • 
i i 

in n~<loqE>(-E). 'Ei>. It is clear that the differential of a 
holomorphic function on X has a non-vanishing V in 'f-i only if V L'tt\f(J t-

it vanishes of order 1 along Ei • In view of (4.5) it suffices 
for the proof of (i) resp. (ii) to show that the maps 

o en P 0 ~ 0 $n p 0 ~ 
H (Ei , (?E (1» ... H (E i , Ti (1» resp. H (Ei,OE ) -+ H (Ei ,'3=" i) 

i i 
are surjective. Before doing this we note 

Lemma 4.6: 

Proof: Observe that ni < log E> (-E) • DE ~ (ooE (ti ) $ tJE) (-E·Ei )· 
iiI 

So the claim on the degree of 

sequence 

fi follows from the exact 

o ... 'fi 
... 01 < log E> (-E) • bE 

X i 

The sequence (4. 2) shows that H 1 (E I 'f" <I (tJE ) = 
o i 

0, hence 

o . 

We now prove (4.1.i): As mentioned above it suffices to prove 

the surjectivity of HOCEi , ~::(1» -+ aO{Ei ,li{1». The latter 

space has dimension 2{b i -t i +1) by Lemma 4.6. Now choose a small 

curve ~ transversal to Ei which does not meet any other 
component of E. By Corollary 3.2 we find for 0 S k < b -t 

~ ° 0 holomorphic functions fkon X whose zero divisor contains 

Ei and all components of E adjacent to £i with multiplicity 1, 
and ~ with multiplicity k. 

Choose local coordinates (u,v) around the point of Ei n A such 
k that Ei = {v = OJ I A = {u = Ol. Then fk = &k· U • v with some 

unit &k. So 



4.5 

k-1 k dfk = k • u v du + U dv + higher terms. 

If we take all linear combinations of df , ••• ,dfb -t with 
0

00 
coefficients in HO {Eo' (9 E (1» (which means that we allow constants 

o 
1 and u as coefficients), we get 2 (boto + 1) linearly independent 

sections of ~i(1). 

o ..... Finally we prove (4.1.ii): In this case dim H (Ei ,1Fi ) = 2, 

and as above one constructs two independent holomorphic 

functions which vanish of first order along 
. 0 en J.l 0 ,..., 

E.. This shows 
~ 

that H (Ei , (t) E ) --+ H (E., Y. ) 
i· ~ ~ 

is surjective. 

As in chapter 3 we also have to consider chains of (-2)-curves . 

Proposition 4.7: 

Let Eo,E1, ••• ,Et,Et+1 be irreducible components of E such that 

El , ... ,Et f~m a chain of (-2)-curves, Eo meets E1 ,Et +1 meets 

Et , and there is no intersection of E1 , •.• ,Et with other 
components. Also assume that E.Eo < 0 and EoEt +1 <0 • 

Then on a sufficiently small neighbourhood U of E1 U ••• U Et the 
vector bundle R splits into a trivial summand of rank n-3 

and a line bundle :t. The restrictions of :t.. to the irreducible 
components are 

if 1 SiS t, i::J: k,k+1 for t = 2k even 
i::J: k for t = 2k-1 odd 

= (9 E (-2) if i = k; t = 2k-1 
'k 

VE. (-1) 
~ 

if i ::: k, k+ 1 ; t ::: 2k 

~roof: The splitting of Rlu into a trivial summand and a 

line bundle follows from Remark 3.4. It remains to compute 

the Chern classes of R (it (?E (1:S. i :S. t). By (4.2) and (4.3) 
i ~ 

we have c 1 (R ti 0E
i

) = -c1 (~& ({JE
i

) = c 1 ( e& eJ
Ei

) - c 1 (T~ ~ ee, (9E i ». 
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The claim is that this number is equal to E.,. D , where 
1. 

D is the divisor of Lemma 3.5. 

Let ~ be the torsion subsheaf of 'f. By Lemma 3.5. we have 

an exact sequence 

Tensoring this sequence with ~E 
i 

(9"" 
c 1 ( r @ (9 E.) - c 1 (Tor 1 X ( t' , 

J. 

,..., 

we obtain 

But '" I!J 
E ' i 

X 
Tor

1 
(l!Jn, (f) ) ~ 

Ei 

The following theorem contains the main result of this paper: 

Theorem 4.8: 

Let n : X ~ X be the minimal resolution of a rational surface 
r 

singularity (X,O), let E = U Ei be the decomposition of 
i=1 

-1 the exceptional set E = n (0) into irreducible components, 

and let -b. be the self-intersection number of E .. Denote 
J. J. 

by t. the number of components of E different from E. 
J. J. 

which meet Ei' and by si the number of chains of curves of 

self-intersection number -2 and trivial intersection with E 

that meet Ei" Assume that 

(a) b i ~ t i +1 for b 1 > 2, b i ~ ti for b i = 2 • 

(c) S = 0 if b i = t i +1 i 
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Furthermore assume that inequality (b) is strict for at 

least one Eio Then 

dim Ti = dim T~ + emb(X) - 4 • 

Proof: From Corollary 2.3 we get 

T1 dim Tl + 
r 

HO 61, e@ dim = r (bi -3) + dim WX) X X i=1 

+ dim 1 '" H (X,R @ ~) 

By our assumptions the formula for the embedding dimension 
r 

in [Ar] gives emb(X) = 1-EoE =·1+ r (b.-t.). Hence 
. 1 ]. l. 
].= 

(4.9) dim T~ - (dim T~ + emb X - 4 ) = 

= dim HO (x, e@w"""x)+dimH16LR@00""")-(r-1) 
X 

Let L1,.oo,Lp be the maximal chains of (-2)-curves 

C') (j) 
L. = E ] U •• 0 U Et . 

J 1 ] 

To each L. 
) 

we associate 

t. 
J 

Dj = r max 
T=1 

such that EoE(j) = 0 for 1 
T 

the divisor 

T+1)"E(j) (T It. -
] T 

as in (3oS). Then we have the exact sequence 

1 IV tr. 
-to H (X,R @ ~ ® \:.f ) -+ 0 

X D1+ •• o+Dp 

Then Theorem 4.8 follows from (4.9), (4.10) and 

Lemma 4011: 

Under the assumptions of Theorem 4 we have 

$ t. 
] 



(1) 

(ii) 

4.8 

dim HO(i, e. wx) + dim Hl (X,R. wsr • (9D
1
+ ... +D

p
) 

1 ,." dim H (X,R. (.)No(-D
1 

••• - D » ::: 0 • 
X P 

Proof: (i) Every potnt,where two curves Ei,E j with 

= r-l 

bi > t i , b j > tj meet, gives a onedimensional contribution 

to HO (X, e 8 wx>, and all other contributions to the sum 

above come from the chains of (-2)-curves. 

By Serre-duality and the adjunction formula 
1 ,.,. In 

H (X,R. wx e u
D1

+.'.+
Dp

) has the same dimension as 

p 0 
$ H (ID.I,R*e ~D (OJ))' Recall from (4.7) that on Dj j=1 J j 

the bundle R* decompos~s into a trivial bundle and a line 

bundle, saycl j , Withtj • C9E!j) ; 0E(j) <-OJ). By the 
T 

negativity of the intersection matrix 0
0 

(D j > has no 
j 

sections, hence 

HO(IO
j

l,R*8 (9D.(D
j
» ~ HO(IDjl,.L: j .. (?o.(Oj»; HO(IDjl, (OD.> 

J J ) 

has dimension [tj;l] by Lenuna 3.6. On the other hand 

t +2 
dim HO 

( IOj I , e 8 ~) :: [ .:.ii-] by (3.5) and (3.6). 

So each chain L
j 

contributes t j +l to the sum on the right 

hand side of (4.11). 

Using the fact that the resolution graph of X is a tree,one 
easily sees that the number of intersection points of curves 
not contained in ELand the numbers t j +1 for every chain 

j-1 j 
L j sum up to r. 

ii) Since the fundamental cycle is reduced,it suffices to 

show that 
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H' (lEI, R 0 ~X 0(9 (-D1- ••• -D » = 0, and by Serre 
4 E P 

duality this means that HO(IEI, R* @VE {E+D1+ ••• +D
p

)} = o. 

By our hypothesis and the Proposition 4.1, 4.7 the restriction 

R* ~ ~E ( E+D1+···+D ) to E is a direct sum of line bundles 
i P i 

of degree at most 0, and for one index i it is a direct sum 

of line bundles of degree at most -1. Hence R* @ ~E(E+D1+ ••• +Dp) 

has no nontrivial global sections. 

Example 4.12: 

Consider the weighted dual uraph 
-b3 -b 2 

-b o -b. 
1. • = lP 1 (lr) t b o "" ,br ;::; 2 

-b 
-b r 

r-1 
If bo ~ r+1 this is the resolution graph of a rational surface 

r 
singularity X. Its embeddinq dimension is emb(X) = 3 + L (b.-2) 

i=o 1. 

(cf. [A r ]) • Theorem 4.8 gives 

r 
dim T' = dim Tl + L (b.-2)-1 

X X i=o 1. 

if bo ~ r+3 or b = r+2 and at least one b" i = 1 , ••• ,3 is 
0 

Tl 
1. 

greater than 3. For dim one computes from the exact sequence 
X 

r 
o ... j)fr E (X) ... e ...... ... ED t9

E 
(E.) ... 0 

X 1=0 i 1. 

that 
1 r 1 

dim TX = L (bi -1)+dim H (X,i>6'f'E(5( ». Here IJ~ E(X} is the 
i=o 

dual of 04 < log E >, Le. the sheaf of vectorfields parallel to E. 
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H1(~'~E(~» parametrises the infinitesim~l deformations of X 
to which all the Ei lift, so it has dimension at least r-3. 

One can check that equality holds, if bo~ 2r-2. 

Example 4.13: 

Let X be twodimensional quotient singularity of type TIm ' 

mm' lIm (cf. [Br] 2.9), and assume that the selfintersection 

number of the central curve of the exceptional set is at 

least 6+p, where p denotes the number of chains of (-2}curves 

Ei with E.Ei = O. Then the equality 

dim T~ = dim Tl + emb(X)-4 
X 

holds. 

Proof: Theorem 4.8 applies to all cases of quotient singularities 

as listed in [Br] 2.11, apart from the following two types: 

II ,m = 30 (b - 2 ) + 7 m 0 
with resolution graph 

-2 
• 

• • 1 • • 
-2 -2 -b -2 -3 

0 = 

IT , m = 30(b -2)+17 with resolution graph m 0 

-2 

• I • • 
-3 -b 

0 
-2 -3 
= 
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In both cases there is a chain (of length one) of (-2)-curves 
which meets a (-3)-curve. Let L1 = El be the (-2)-curve and 

E2 the (-3)-curve in question. We replace the divisor D1 in 

the proof of Theorem 4.8 by D1 := E1+E 2 • Put Dr := D1+D2 

in the first case, and D' := Dl in the second case~ In analogy 

to Lemma 4.11 we have 

: 4. 1 4 ) Claim: 1 
H (X,R*@ wx(-D'» = 0 • 

o . 
Proof: As in 4.13 we have to show that H (E,R* @ VE(E+D'» = O. 

The restriction of R* 0 VE(E+D') to the central curve Eo and to E2 

is a direct sum of line bundles of negative degree (cf.4.1),and it 

has degree :s; 0 on all components but E1 • On E1 it is a d.irect sum of 
a line bundle of degree one and of line bundles of degree -1. This 

shows that the vectorbundle R* ® ~E(E+D') cannot have any global 

sections on E. 

(4.15) Claim: d . 1 (I'V 
~m H X,R 

Proof: As in the proof of Lemma ~.11(i)it sUffices to show that 

dim H
O (E1U E2 , R* ® 0E +E (E 1+E2 » = 1. 

1 2 

Let g1,g2,g3 be the global functions on X of remark 3.4, whose 

differentials generate ~ in a neighbourhood of E1' We may assume 

that g1 vanishes ~ith multiplicity 1 along E1 and E2 , 92 vanishes 

with mulitiplicity 3 along E1 and multiplicity 1 along E2 , and 

g3 vanishes with mulitiplicity 3 both along E1 and E2 • 

Call &' c Ox <log E>(-E) the subsheaf generated by dg 1 ,d92 ,d93 

and let i be the sheaf of relations between them: 

(4.16) 

One easily sees that (G~ <locr E > (-E) / '5= ') ® (OE is a torsion 
2 

sheaf of length at least one, so c 1 ( S t ® (?E ) :s; 1. 
2 



Hence by (4.16) 

- 4_12 

deC] £IE ~ -1 , while by Prop. 4.7 
2 

deg £. IE =-2 
1 

Now by Proposition 4.7 the restriction of R* $~E +E (E1+E2) to 
1 2 

E1 is a sum of line bundles of negative degrees and one. line 

bundle of degree one, namely £* ~ (?E (E1+E2). By Proposition 
1 4.1 and (4.6) the vectorbundle R* e 0E (E1+E2) has at most 

2 
one line bundle summand of non-negative degree, which then 

is trivial. This summand does ~ not agree withL* e ~E (E1+E2) 
2 

(which has degree S -1 ), so a holornorphic section of 

R* @ WE +E (E1+E2) has to vanish on E2 • This proves claim (4.15). 
1 2 

1 1 The rest of the proof for the equality dim TX = dim TX + emb(X)-4 

for the singularities under consideration is analoguous to the 

proof of (4.8). 

Remark 4.17: There are 63 individual quotient singularities 

of type 1T , m I II that are not covered by example 4.15. 

Finally we want to give a partial analysis of the example of 

J.wahl mentioned in the introduction. 

Example 4.18: 

Let X be the rational surface singularity with resolution graph 

/

-3 

-2. 
. ~ :G'1 (It) 
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The fundamental cycle is Z = 2Eo+E1+E2+E3 , where Eo denotes 

the central curve. We have emb(X) = 6, dim T~ = 7, so formula 
1 (0.1) would give 9 for dim TX' We want to show that 

dim T~ ~ 10. We apply Corollary 2.3. 

As Z - E = Eo and < log E >(-E) ® (t1<'vx @ 
Eo 

we see that dim HOCIZ-EI, ni < log E>(-E) ® (Ox ® 0Z_E) = 1. 

On the other hand e is concentrated in the pOints of intersections 

of E with the other components of E and has length one there, 
o 0 

so dim H (X, e@ wx> = 3. Therefore by Corollary 2.3 

1 . 1 '" dim TX ~ 6 + 3 + 1 + d~m H (X,R S ~~)~10 • 

Remark 4.19: In this example one can compute the map(~ @ 1)* 

of chapter 2 quite explicitely, and using the methods of this 

paper one obtains that actually dim T~ = 11. 
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.Appendix 

In this appendix we give a proof, due to Jonathan wahl, 
of the following result: 

Theorem (Wahl): Let X be a rational singularity 
of embedding dimension emb (X), and let n : 5C ... X be the 

minimal good resolution. 
1 1 Then dim Tx ~ dim Tx + emb(X) - 4. 

A 1 

Proof: Let RZ be the functor from the category of Artin 

rings to the category of sets, defined by 

Rz (A) := {equivalence classes of deformations 
i ... Spec A of X to which z lifts) 

(cf.[Wa 1], § 2). RZ has a formal versal deformation space 

(ibid.,Prop.2.2) which by the natural blowing down map 

~: RZ ... ~~fx maps injectively to the base s9ace of the 

versal deformation of X. 

By a result of Karras Z is always smoothable [Ka], hence 

Theorem 2.12 of [Wa 1] applies: 

The versal deformation space of RZ has irreducible components 
1 ~ 1 ~ 

of dimension dim H (X,9 X) - d~ H (X, NZ>' NZ the normal 

bundle of Z, and for a general point of such a component the 

fibre ~t has smooth rational curve of selfintersection number 

Z'Z as exceptional divisor. 

Let S be the base space of the formal versal deformation 

of X, ~nd conSider the point t as a point of S. 

By openess of versality [Paul the dimension of the tangent 

spac~ of S at t, which is at most dim T~ , is the sum of the 



A 2 

dimensions of the tangent space of the versal deformation 

of the singularity of Xt and the number of directions for 

which the given family induces trivial deformation of Xt -

We have -2.z2_ 4 for the first summand, and for the second 

observe that RZ induces only trivial deformations of Xt -

(There are no equisingular deformations of a cone over a 

rational curve). 

Hence 

dim T1 dim TJ dim 1 
~ dim T1 + dim RZ = ~ TS,t X S,o Xt 

and it is an easy exercise to compute 

1 rV 2 dim H (X,NZ) = -1 - Z • Putting every thing together 

, 

yields the desired estimate. 0 
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