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SECOND ORDER OPERATORS ON THE ALGEBRA OF DENSITIES

AND A GROUPOID OF CONNECTIONS.

H. M. KHUDAVERDIAN AND TH. TH. VORONOV

Abstract. We review the geometry of second order linear operators acting on algebra of
densities based on the work [15]. We consider the commutative algebra of densities on a
manifold. This algebra is endowed with the canonical scalar product and we shall consider
self-adjoint operators on this algebra. We naturally come to canonical pencils of operators
passing through a given operator. There are singular values of weights for operators of a
given order. These singular values lead to an interesting geometrical picture. In particular
we come to operators which depend on classes of connections and we study a groupoid of
connections such that orbits of this groupoid are these equivalence classes. Based on this
point of view we analyze two examples: second order canonical operator in odd symplectic
supermanifold appearing in Batalin-Vilkovisky geometry and Sturm-Lioville operator on the
line related with classical constructions in projective geometry. We consider also the example
of canonical second order semidensity in odd symplectic supermanifold. This semidensity
has some resemblance to mean curvature in Riemannian geometry.

1. Introduction

Second order linear operators appear in various problems in mathematical physics. A con-
dition that an operator respects the geometrical structure of a problem under consideration
usually fixes this operator almost uniquely or at least provides a great deal of information
about it. For example the standard Laplacian ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
in Euclidean space E3 is defined

uniquely (up to a constant) by the condition that it is invariant with respect to isometries
of E3. Consider an arbitrary second order operator

∆ =
1

2

(
Sab∂a∂b + T a∂a +R

)
(1)

acting on functions on manifold M . It defines on M symmetric contravariant tensor Sab (its
principal symbol). For example for a Riemannian manifold one can take a principal symbol
Sab = gab, where gab is the Riemannian tensor (with upper components). Then one can
fix the scalar R = 0 in (1) by the natural condition ∆1 = 0. What about the first order
term T a∂a in the operator (1)? One can see that Riemannian structure fixes this term also.
Indeed consider on M a divergence operator

div ρX =
1

ρ(x)

∂

∂xa
(ρ(x)Xa) , where ρ = ρ(x)|D(x)| is an arbitrary volume form , (2)
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2 H. M. KHUDAVERDIAN AND TH. TH. VORONOV

and choose a volume form ρ = ρg =
√
det g|D(x)|. On Riemannian manifold this volume

form is defined uniquely (up to a constant) by covariance condition. Thus we come to second
order operator ∆g such that for an arbitrary function f

∆gf =
1

2
div

ρg
grad f =

1

2

1

ρ(x)

∂

∂xa

(
ρ

g
(x)gab

∂f(x)

∂xb

)
=

1

2

(
∂a
(
gab∂bf

)
+ ∂a log ρg

(x)gab∂bf(x)
)
=

=
1

2

(
gab∂a∂bf + ∂ag

ab∂bf + ∂a log
√
det ggab∂bf(x)

)
. (3)

We see that Riemannian structure on manifold naturally defines the unique (up to a constant)
second order operator on functions (Laplace-Beltrami operator on Riemannian manifold M).
For this operator the term possessing the first order derivatives is defined by a connection
on volume forms which defines the covariant derivative of an arbitrary volume form ρ =
ρ(x)|D(x)| with respect to vector fields:

∇Xρ = Xa (∂a + γa) ρ(x)|D(x)| =

= Xa∂a

(
ρ

ρg

)
ρg = Xa∂a

(
ρ(x)√
det g

)√
det g|D(x)| = Xa

(
∂aρ(x)− ∂a log

(√
det g

))
|D(x)| .

(4)
(Here the symbol γ of the connection is equal to γa = −∂a(ρg(x)) = −∂a log

√
det g.)

Consider another example: Let Sab(x) be an arbitrary symmetric tensor field (not nec-
essarily non-degenerate) on manifold M equipped with affine structure with the connection

on vector fields ∇̂ : ∇̂a∂b = Γcab∂c. The affine structure defines the second order operator

Sab∇̂a∇̂b = Sab∂a∂b + . . . . Principal symbol of this operator is the tensor field Sab(x). The

affine connection ∇̂ induces a connection ∇ on volume forms by the relation γa = −Γbab. In
the case of Riemannian manifold tensor Sab can be fixed by Riemannian metric, Sab = gab

and Levi-Civita Theorem provides the unique symmetric affine connection which preserves
the Riemannian structure. Thus we arrive again to Beltrami-Laplace operator (3).
Often it is important to consider differential operators on densities of arbitrary weight λ.

The density of the weight λ is multiplied on the λ-th power of the Jacobian under changing
of coordinates. E.g. a function in the usual sense is a density of weight λ = 0, and a volume
form is a density of weight λ = 1. Wave function in Quantum Mechanics can be naturally
considered as a half-density, i.e. a density of weight λ = 1

2
.

The analysis of differential operators on densities of arbitrary weights leads to beautiful
geometric constructions. (see for example the works [7, 8, 16] and the book [18].)
We mention here just an example of natural Diff(M)–modules which appear when we study

operators on densities. Namely consider the spaceDλ(M) of the second order linear operators
acting on the space of densities of weight λ. This space has the natural structure of Diff (M)-
module. In the work [8] Duval and Ovsienko classified these modules for all values of λ. In
particular they wrote down explicit expressions for isomorphisms ϕλ,µ between the Diff(M)-
modules Dλ(M) and Dµ(M) for λ, µ 6= 0, 1/2, 1. These isomorphisms have the following
appearance: If the operator ∆λ ∈ Dλ(M) is given in local coordinates by the expression
∆λ = Aij(x)∂i∂j + Ai(x)∂i + A(x) then its image the operator ϕλ,µ(∆λ) = ∆µ ∈ Dµ(M)
is given in the same local coordinates by the expression ∆µ = Bij(x)∂i∂j + Bi(x)∂i + B(x)
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where 



Bij = Aij

Bi = 2µ−1
2λ−1

Ai + 2(λ−µ)
2λ−1

∂jA
ji

B = µ(µ−1)
λ(λ−1)

A+ µ(λ−µ)
(2λ−1)(λ−1)

(∂jA
j − ∂i∂jA

ij)

(5)

At the exceptional cases λ, µ = 0, 1/2, 1, non-isomorphic modules occur.

In the work [15] it was suggested the new approach to consider the algebra F(M) of
densities of all weights on a manifold M . This algebra is provided with a canonical invariant
scalar product. One can study differential operators of the subsequent orders 0, 1, 2, . . .
on the algebra F(M). The existence of a canonical scalar product on the algebra F(M)
implies the existence of canonically self-adjoint and antiself-adjoint differential operators on
this algebra. Constructing self-adjoint (antiself-adjoint) operators on F(M) and specialising
these operators on densities of an arbitrary given weight we come to canonical pencils of
operators with the same principal symbol and associated with connection on volume forms
on M .
This approach was suggested and developed in [15] for studying and classifying second

order odd operators on odd symplectic manifolds arising in Batalin-Vilkovisky geometry
and in odd Poisson geometry.
The canonical pencils of second order operators have the ”universality” property: they

pass through an arbitrary second order operator acting on densities of arbitrary weight
except in some singular cases. For example consider the operator ∆ of weight 0 acting
on densities of weight λ, ∆ ∈ Dλ(M), ∆ = Sab∂a∂b + . . . , where Sab is a second order
symmetric contravariant tensor field. Then for an arbitrary weight λ except singular cases
λ = 0, 1/2, 1 there exists the canonical pencil of operators which passes through the operator
∆. These exceptional weights have deep geometrical and physical meaning. E.g. the failure
to construct maps ϕλ, µ in equation (5) for singular cases is related with existence of non-
equivalent Diff (M) modules (see for detail [8]). The space D1/2(M) of operators on half-
densities is drastically different from all other spaces Dλ(M), since for operators on half-
densities one can consider canonically adjoint operators. This fact in particular leads to
clarification of Batalin-Vilkovisky geometry through the canonical odd operator acting on
half-densities (see [12, 14]).
Applying the approach of the work [15] we study canonical pencils of second order opera-

tors of an arbitrary weight δ and analyze in detail the exceptional cases when these operators
act on densities of weight λ = 1/2 − δ/2. (Operator has weight δ if it transforms densities
of the weight λ into the densities of the weight µ = λ + δ.) These operator pencils can be
defined by symmetric contravariant tensor field-density S = |D(x)|δSab∂a∂b (this field defines
principal symbol of operator pencil) and connection ∇ on volume forms. At the exceptional
weights λ = 1/2 − δ/2 the operators remain the same on equivalence classes of connection.
We assign to every field S the abelian groupoid of connections. At the exceptional weight
λ = 1/2− δ/2 the operator with principal symbol S depends on orbits of this groupoid.
This approach becomes interesting in the case of odd symplectic structures. In the case of

symplectic structure there is no distinguished connection. On the other hand if symplectic
structure is odd, the Poisson tensor defines the principal symbol S (weight δ = 0) of operator
pencil. It turns out that in spite of absence of canonical connection, there exists the canonical
class of connections such that symbols γa of these connections (∇ = ∂a + γa) vanish in
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some Darboux coordinates. This canonical class of connections belongs to orbit of groupoid
CS and the corresponding operator on half-densities is the canonical operator introduced
in [12] which appears to be very useful for clarifying the properties of Batalin-Vilkovisky
odd Laplacian [3]. (See for detail [14]). This approach may be used also in a case of
Riemannian geometry where S is defined by Riemannian metric. On the other hand there is
the distinguished Levi-Civita connection in Riemannian case. We have to mention also article
[2] where an interesting attempt to compare second order operators for even Riemannian and
odd symplectic structures was made.
Another example is a canonical pencil of operators of weight δ = 2 on the real line.

Considering exceptional weights we come in particular to Schwarzian derivative.
The plan of the paper is as follows.
In the next section we consider second order operators on algebra of functions. We come

in this ”naive” approach to preliminary relations between second order operators and con-
nections on volume forms.
In the third section we consider first and second order operators on algebra of densities.

At first we define scalar product. Then we consider first order derivations (vector fields)
and first order operators on the algebra of densities. The canonical scalar product leads
to the canonical divergence of vector fields. We come in particular to interpretation of Lie
derivative as divergence-less vector field on the algebra of densities.
Then we consider second order operators. We describe our main construction: self-adjoint

second order operators on this algebra and consider corresponding pencils of operators on
arbitrary densities. These considerations are due to the paper [15].
Then in the fourth section we consider operators of weight δ acting on densities of excep-

tional weight. For an arbitrary contravariant tensor field-density S of weight δ we consider
groupoid CS. The orbits of the groupoid CS are classes of connections such that operators
with principal symbol S acting on densities of exceptional weight λ = 1−δ

2
depend only on

these classes. This groupoid was first consideed in [14, 15] for Batalin-Vilkovisky geometry.
Then we consider various examples where these operators occur. We consider the example

of operators of the weight δ = 0 acting on half-densities in Riemannian manifold, and on
odd symplectic supermanifold, and the example of operators of the weight δ = 2 acting on
densities of the weight λ = −1

2
on real line.

In all these examples operators depend on class of connections on volume form which vanish
in special coordinates (Darboux coordinates for symplectic case, projective coordinates for
real line).
The relationship between the last example and our constructions is not straightforward.

We consider here the example of canonical odd invariant semidensity introduced in [13] ex-
plaining that this density depends on the class of affine connections which vanish in Darboux
coordinates.
Throughout the paper we consider by default only linear differential operators.
For standard material from supermathematics see [5], [17] and [20].

2. Second order operators on functions

In what follows M is a smooth manifold or supermanifold.
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Let L = T a(x) ∂
∂xa

+ R(x) be a first order operator on functions on a manifold M . Under

change of local coordinates xa = xa(xa
′

) L transforms as follows:

L = T a(x)
∂

∂xa
+R(x) = T a (x (x′)) xa

′

a

∂

∂xa′
+R(x),

(
xa

′

a =
∂xa

′

∂xa

)
.

We see that T a(x) ∂
∂xa

is a vector field and R(x) scalar field.
Now return to the second order operator (1) on a manifold M . Under a change of local

coordinates xa = xa(xa
′

)

∆ =
1

2

(
Sab(x)∂a∂b + T a(x)∂a +R(x)

)
=

1

2
xa′a S

abxb′b︸ ︷︷ ︸
Sa′b′

∂a′∂b′ + . . . (6)

Top component of operator ∆, 1
2
Sab∂a⊗ ∂b defines symmetric contravariant tensor of rank 2

on M (the principal symbol of the operator ∆ = 1
2

(
Sab(x)∂a∂b + . . .

)
.

If tensor S = 0 then ∆ becomes first order operator and T a∂a is a vector field. What about
a geometrical meaning of the operator (6) in the case if principal symbol S 6= 0? To answer
this question we introduce a scalar product 〈 , 〉 in the space of functions on M and consider
the difference of two second order operators ∆+ −∆, where ∆+ is an operator adjoint to ∆
with respect to the scalar product. A scalar product 〈 , 〉 on the space of functions is defined
by the following construction: an arbitrary volume form ρ = ρ(x)|D(x)| is chosen and

〈f, g〉ρ =

∫

M

f(x)g(x)ρ(x)|D(x)| . (7)

If x′ are new local coordinates xa = xa (x′) then in new coordinates the volume form ρ has
appearance ρ′(x′)D(x′) = ρ(x)|D(x)|:

ρ = ρ(x)|D(x)| = ρ(x(x′))

∣∣∣∣
D(x)

D(x′)

∣∣∣∣D(x′) = ρ(x(x′)) det

(
∂xa

∂xa′

)
D(x′) = ρ′(x′)|D(x′)| ,

i.e.

ρ′(x′) = ρ(x(x′)) det

(
∂xa

∂xa′

)
.

In what follows we suppose that scalar product is well-defined: we suppose thatM is compact
orientable manifold and the oriented atlas of local coordinates is chosen (all local coordinates
transformations have positive Jacobian:

∣∣ ∂x
∂x′

∣∣ = det
(
∂x
∂x′

)
> 0)) 1.

Now return to the operators ∆ and the adjoint operator ∆+. For operator ∆ the operator
∆+ is defined by relation 〈∆f, g〉ρ = 〈f,∆+g〉ρ. Integrating by parts we have

〈∆f, g〉ρ =

∫

M

1

2

(
Sab(x)∂a∂bf + T a(x)∂af +R(x)f

)
︸ ︷︷ ︸

∆f

g(x)ρ(x)|D(x)| =

∫

M

f(x)

(
1

2ρ
∂a
(
∂b
(
Sabρg

))
− 1

2ρ
∂a (T

aρg) +
1

2
Rg

)

︸ ︷︷ ︸
∆

+
g

ρ(x)|D(x)| = 〈f,∆+g〉ρ.

1Coordinate volume form |D(x)| is usually denoted by dx1dx2 . . . dxn. We prefer our notation |D(x)|
having in mind further considerations for supermanifolds.
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Principal symbols of operators ∆ and ∆+ coincide. Thus the difference ∆+ − ∆ is a first
order operator:

∆+ −∆ =
(
∂bS

ab − T a + Sab∂b log ρ
)
∂a︸ ︷︷ ︸

vector field

+scalar terms . (8)

Introducing the scalar product via chosen volume form ρ we come to the fact that for an
operator ∆ = 1

2

(
Sab∂a∂b + T a∂a +R

)
, and for an arbitrary volume form ρ = ρ(x)|D(x)| the

expression
(
∂bS

ab − T a + Sab∂b log ρ
)
∂a is a vector field.

Claim : For an operator ∆ = 1
2

(
Sab∂a∂b + T a∂a +R

)
the expression

γa = ∂bS
ab − T a . (9)

is an (upper) connection on volume forms.
Before proving the claim we give two words about connections on the space of volume

forms.
Connection ∇ on the space of volume forms defines the covariant derivative of volume forms with respect

to vector fields. It obeys natural linearity properties and Leibnitz rule:

•
∇X (ρ1 + ρ2) = ∇X (ρ1) +∇X (ρ2) ,

• For arbitrary functions f, g

∇fX+gY (ρ) = f∇X (ρ) + g∇Y (ρ) ,

• and the Leibnitz rule:

∇X (f(x)ρ) = ∂Xf(x) (ρ) + f(x)∇X (ρ) (10)

(∂X is the directional derivative of functions along vector field X: ∂Xf = Xa ∂f
∂xa . )

Denote by ∇a covariant derivative with respect to vector field ∂
∂xa . Due to axioms (10)

∇a(ρ(x)|D(x)|) = (∂aρ(x) + γaρ(x)) |D(x)|, where γa|D(x)| = ∇a(|D(x)|) ,
(
∂a =

∂

∂xa

)
.

Under changing of local coordinates xa = xa(xa′

) the symbol γa transforms in the following way:

γa|D(x)| = ∇a (|D(x)|) = xa′

a ∇a′

(
det

∂x

∂x′
|D(x′)|

)
= xa′

a

(
∂a′

(
log det

∂x

∂x′

)
+ γa′

)
|D(x)| , (11)

i.e.

γa = xa′

a

(
γa′ + ∂a′ log det

(
∂x

∂x′

))
= xa′

a γa′ − xb
b′x

b′

ba .

(We use the standard formula that δ log detM = Tr (M−1δM). We use also short notations for derivatives:

xa′

a = ∂xa
′

(x)
∂xa , xa′

bc =
∂xa

′

∂xb∂xc . The summation over repeated indices is assumed.)

Let Sab be a contravariant tensor field. One can assign to this tensor field an upper connection i.e. a

contravariant derivative
S∇

S∇a (ρ|D(x)|) =
(
Sab∂b + γa

)
ρ|D(x)| . (12)

Remark 1. Given a contravariant tensor field Sab(x) an arbitrary connection ∇ (covariant derivative)

induces the upper connection (contravariant derivative)
S∇:

S∇a = Sab∇b. In the case where tensor field
Sab is non-degenerate, the converse implication is true also. A non-degenerate contravariant tensor field
Sab(x) induces one-one correspondence between upper connections and usual connections. (Compare with
the example 5 below where upper connection in general does not define the connection.)
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Under changing of coordinates a symbol γa of upper connection (12) transforms in the following way:

γa′

= xa′

a

(
γa + Sab∂b log det (∂x

′/∂x)
)
. (13)

Remark 2. From now on we refer to genuine connections (covariant derivatives) simply as connections. With
some abuse of language we identify the connection∇ with its symbol γ = {γa} of connection: γa = ∇a|D(x)|.

Remark 3. It is worth noting that the difference of two connections is a covector field, the difference of two
upper connections is a vector field. In other words the space of all connections (upperconnections) is affine
space associated with linear space of covector (vector) fields.

Consider two important examples of connections on volume forms.

Example 1. An arbitrary volume form ρ defines a connection γ
ρ due to the formula (4): γ

ρ : γρ

a =
−∂a log ρ(x). This is a flat connection: its curvature vanishes: Fab = ∂aγb − ∂aγa = 0.

Example 2. Let ∇̂ be affine connection on vector fields on manifold M . It defines connection on volume
forms ∇ = −Tr ∇̂ with

γa = −Γb
ab ,

where Γa
bc are Christoffel symbols of affine connection ∇̂.

It is easy to see that connection and upper connection define the covariant and respectively contravariant
derivative of the densities of an arbitrary weight: for s = s(x)|D(x)|λ ∈ Fλ

∇as = (∂as(x) + λγas(x)) |D(x)|λ .

Respectively for upper connection

∇as =
(
Sab∂bs(x) + λγas(x)

)
|D(x)|λ . (14)

Sometimes we will use the concept of connection of the weight δ. This is a linear operation that transforms
densities of weight λ to the densities of weight µ = λ+ δ: for s = s(x)|D(x)|λ ∈ Fλ

∇as = (∂as(x) + λγas(x)) |D(x)|λ+δ, ∇a|D(x)| = γa|D(x)|δ+1 .

Respectively for upper connection

∇as =
(
Sab∂bs(x) + λγas(x)

)
|D(x)|λ+δ, ∇a|D(x)| = γa|D(x)|δ+1

Proof of the claim (9): Consider a flat connection γ
ρ : γρ

a = −∂a log ρ corresponding to
the volume form ρ = ρ(x)dx (see Example 1 above and equation (4). Since the expression
Y =

(
∂bS

yab − T a + Sab∂b log ρ
)
∂a in (8) is a vector field (the principal symbol of the first

order operator ∆+ − ∆) and Sabγρ

b = −Sab∂b log ρ is an upper connection then the sum
Y a + Sabγρ

b is also upper connection:

Sabγflat
b + Y a = −Sab∂b log ρ+

(
∂bS

ab − T a + Sab∂b log ρ
)
∂a = ∂bS

ab − T a .

Thus we prove that ∂bS
ab − T a is upper connection.

Having in mind the result of the claim we can rewrite the operator ∆ on functions in a
more convenient form:

∆f =
1

2

(
Sab∂a∂b + T a∂a +R

)
f =

1

2

(
∂aS

ab∂b + La∂a +R
)
f, with La = T a − ∂bS

ab

We come to Proposition
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Proposition 1. For an arbitrary second order operator on functions on manifold M :

∆ =
1

2

(
Sab∂a∂b + T a∂a +R

)
=

1

2

(
∂a
(
Sab∂b . . .

)
+ La∂a +R

)
,

the principal symbol is symmetric contravariant tensor field of rank 2, γa = −La defines an
upper connection and the function R = ∆1 is a scalar:

∆f =
1

2
∂a

(
Sab︸︷︷︸

tensor

∂bf

)
− 1

2
γa︸︷︷︸

connection

∂af + R︸︷︷︸
scalar

f.

Second order operators on functions are fully characterised by symmetric contravariant ten-
sors of rank 2 (principal symbol), upper connections and scalar fields. In the case if principal
symbol is non-degenerate (detSab 6= 0 upper connection defines a usual connection on volume
forms: γa = S−1

ab γ
b.

3. Algebra of densities and second order operators on algebra of densities

3.1. Algebra of densities with canonical scalar product. We consider now the space
of densities.
As usual we suppose that M is a compact orientable manifold with a chosen oriented atlas.
We say that s = s(x)|D(x)|λ is a density of weight λ if under changing of local coordinates

it is multiplied on the λ− th power of the Jacobian of the coordinate transformation:

s = s(x)|D(x)|σ = s (x (x′))

∣∣∣∣
Dx

Dx′

∣∣∣∣
λ

|D(x′)|λ = s (x (x′))

(
det

(
Dx

Dx′

))λ
|D(x′)|λ .

(Density of weight λ = 0 is a usual function, density of weight λ = 1 is a volume form.)
Denote by Fλ = Fλ(M) the space of densities of the weight λ on the manifold M .
Denote by F = F(M) the space of all densities on the manifold M .
The space Fλ of densities of the weight λ is a vector space. It is the module over the ring

of functions on M . The space F of all densities is an algebra: If s1 = s1(x)|D(x)|λ1 ∈ Fλ1

and s2 = s2(x)|D(x)|λ2 ∈ Fλ2 then their product is the density s1 · s2 = s1(x)2(x)Dxλ1+λ2 ∈
Fλ1+λ2 .
On the algebra F(M) of all densities on M one can consider the canonical scalar product

〈 , 〉 defined by the following formula: if s1 = s1(x)|D(x)|λ1 and s2 = s2(x)|D(x)|λ2 then

〈s1, s2〉 =





∫
M
s1(x)s2(x)|D(x)| , if λ1 + λ2 = 1 ,

0 if if λ1 + λ2 6= 1
(15)

(Compare this scalar product with a volume form depending scalar product 〈 , 〉ρ on algebra
of functions introduced in formula (7).)
The canonical scalar product (15) was considered and intensively used in the work [15].

Briefly recall the constructions of this work.
Elements of the algebra F(M) are finite combinations of densities of different weights.
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It is convenient to use a formal variable t in a place of coordinate volume form |D(x)|. An
arbitrary density F ∋ s = s1(x)|D(x)|λ1 + · · · + sk(x)|D(x)|λk can be written as a function
polynomial on a variable t:

s = s(x, t) = s1(x)t
λ1 + · · ·+ sk(x)t

λk . (16)

E.g. the density s1(x) + s2(x)|D(x)|1/2 + s3(x)|D(x)| can be rewritten as s(x, t) = s1(x) +√
ts2(x) + ts3(x). In what follows we often will use this notation.

Remark 4. With some abuse of language we say that a function f(x, t) is a function poly-
nomial over t if it is a sum of finite number of monoms of arbitrary real degree over t,
f(x, t) =

∑
λ fλ(x)t

λ, λ ∈ R.

What is a global meaning of the variable t? The relation (16) means that an arbitrary

density on M can be identified with a polynomial function on the extended manifold M̂ =
det(TM)\M which is the frame bundle of determinant bundle of M . The natural local

coordinates on M̂ induced by local coordinates xa on M are (xa, t) where t is a coordinate
which is in a place of volume form |D(x)|. Let xa, xa′ be two local coordinates onM . If (xa, t)

and (xa
′

, t′) are local coordinates on M̂ induced by local coordinates xa and xa
′

respectively
then

xa
′

= xa
′

(xa) and t′ = det

(
∂x′

∂x

)
t . (17)

If a function is a polynomial with respect to local variable t, then it is a polynomial with
respect to local variable t′ also. (As it was mentioned before we consider only oriented atlas,
i.e. all changing of coordinates have positive determinant.)
It has to be emphasized that algebra F(M) of all densities on M can be identified with an

algebra of functions on extended manifold M̂ which are polynomial on t. We do not consider
arbitrary functions on t.

3.2. Derivations of algebra of densities—vector fields on the extended manifold.

Consider differential operators on the algebra F. (We repeat that we consider only linear
operators.)
Let X be a derivation of the order 1 on the algebra F, Then for two arbitrary densities

s1, s2
X (s1 · s2) = (Xs1) · s2 + s1 · (Xs2) , (Leibnitz rule).

The derivations of the order 1 on algebra F(M) are vector fields on the extended manifold

M̂ , where coefficients are polynomials over t:

X = Xa(x, t)
∂

∂xa
+X0(x, t)λ̂ =

∑

δ

tδ
(
Xa

(δ)(x)
∂

∂xa
+X0

(δ)((x)λ̂

)
. (18)

We introduced in this formula the Euler operator

λ̂ = t
∂

∂t

which is globally defined vector field on M̂ (see transformation law (17)). Euler operator λ̂

measures a weight λ of density: λ̂
(
s(x)tλ

)
= λs(x)tλ.
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There is a natural gradation in the space of vector fields. The vector field

X = tδ
(
Xa(x)∂a +X0(x)λ̂

)
(19)

is the vector field of the weight δ. It transforms a density of weight λ to the density of weight
λ+ δ.

Remark 5. From now on considering vector fields on extended manifold M̂ we suppose by
default that coefficients of these vector fields are polynomial on t (see equation (18)).

Our next step is to consider adjoint operators with respect to canonical scalar product
(15) on the algebra F: operator L̂+ is adjoint to the operator L if for arbitrary densities

s1, s2, 〈L̂s1, s2〉 = 〈s1, L̂+s2〉. One can see that

x+ = x,

(
∂

∂x

)+

= − ∂

∂x
, and λ̂+ = 1− λ̂ .

Check the last relation. Let s1 be a density of the weight λ1 and s2 be a density of the weight

λ2. Then 〈λ̂s1, s2〉 = λ1〈s1, s2〉 and 〈s1, λ̂+s2〉 = 〈s1, (1− λ̂)s2〉 = (1− λ2)〈s1, s2〉. In the case
if λ1 + λ2 = 1 these scalar products are equal since λ1 = 1 − λ2. In the case if λ1 + λ2 6= 1
these scalar products both vanish.

Example 3. Consider vector field on M̂ ( derivation of algebra of densities): X : Xs =(
Xa(x, t)∂a +X0(x, t)λ̂

)
s(x, t). Then its adjoint operator is:

X+ : X+s =
[(

Xa(x, t)∂a +X0(x, t)λ̂
)]+

s = −∂a (X
a(x, t)s)) + (1− λ̂)

(
X0(x, t)s

)
,

X+ = −∂aX
a(x, t)−Xa(x, t)∂a +

(
1− λ̂

)
X0(x, t)−X0(x, t)λ̂ .

Definition (canonical divergence). Divergence of vector field X on M̂ is defined by the
formula

divX = −(X+X+) = ∂aX
a +

(
λ̂− 1

)
X0(x, t) . (20)

In particular for vector field X of the weight δ, X = tδ
(
Xa∂a +X0λ̂

)
(see equation(19))

divX = tδ
(
∂aX

a + (δ − 1)X0
)
.

Divergence of vector field on F vanishes iff this vector field is anti-self-adjoint (with respect
to canonical scalar product (15)): X = −X+ ⇔ divX = 0.

Example 4. Divergence-less, i.e. anti-self-adjoint vector fields of weight δ = 0 act on

densities as Lie derivatives. Indeed consider vector fieldX = Xa∂a+X0λ̂ of the weight δ = 0.

The condition divX = ∂aX
a − X0 = 0 means that X0 = ∂aX

a, i.e. X = Xa∂a + ∂aX
aλ̂.

Hence for every λ, X
∣∣
Fλ

= Xa∂a + λ∂aX
a. This means that the action of weight δ = 0

divergence-less vector field X on an arbitrary density is Lie derivative of this density:

Xs = (Xa∂a + λ̂∂aX
a)s = LXs = (Xa∂as(x) + λ∂aX

as(x)) |D(x)|λ . (21)
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IfX is divergence-less vector field on M̂ of arbitrary weight δ 6= 1 thenX = tδ
(
Xa∂a + ∂aX

a λ̂
1−δ

)
.

We come to generalised Lie derivative: for s ∈ Fλ

LXs = |D(x)|δ
(
Xa∂a + ∂aX

a λ̂

1− δ

)
s =

(
Xa∂as(x) +

λ∂aX
as

1− δ

)
|D(x)|λ+δ . (22)

One can consider a canonical projection p of vector fields on M̂ ( derivation of algebra
F(M)) on vector fields-densities on M . It is defined by the formula p(X) = X

∣∣
F0=C∞(M)

. In

coordinates p : X = Xa(x, t)∂a +X0(x, t)λ̂ 7→ Xa(x, t)∂a.

We say that vector field is vertical if pX = 0, i.e. if X = X0(x, t)λ̂. Divergence of vertical

vector field X = X0(x, t)λ̂ equals to divX = (λ̂− 1)X0(x, t).

Proposition 2. One can consider the canonical projection of vector fields (of the order
δ 6= 1) onto vertical vector fields:

Π: X = tδ
(
Xa∂a +X0λ̂

)
7→ ΠX = tδ

(
∂aX

a

δ − 1
+X0

)
λ̂, divX = div (ΠX) .

Every vector field of the order δ 6= 1 can be decomposed on the sum of vertical vector field
and divergence-less vector field (generalised Lie derivative (22)):

X = ΠX+ (X− ΠX) .

One can check the statements of this Proposition by straightforward applications of the
formulae above.

What relations exist between the canonical divergence (20) of vector fields on extended manifold M̂ and a
divergence of vector fields on a manifold M ? Let∇ be an arbitrary connection on volume forms. It assigns to

the vector fieldX onM a vector fieldXγ on the extended manifold M̂ by the formulaXγ = Xa
(

∂
∂xa + λ̂γa

)
,

where γ = {γa} is a symbol of connection ∇ in coordinates x (∇a|D(x)| = γa|D(x)|). Hence connection ∇
defines the divergence of vector fields on M via the canonical divergence (20): for every vector field X on
manifold M :

div γX = divXγ =

(
∂Xa

∂xa
− γaX

a

)
. (23)

A volume form ρ = ρ(x)|D(x)| defines flat connection γρ

a = −∂a log ρ (see equation (4) and example 1).
The formula (23) implies the well-known formula (see also equation (2))) for divergence of vector field on
manifold equipped with a volume form

div ρX = divXγ
ρ
=

(
∂Xa

∂xa
+Xa∂a log ρ

)
=

1

ρ

∂

∂xa
(ρXa) . (24)

Considering a connection corresponding to an affine connection (see Example 2) we come to div
∇̂
X =

∇̂aX
a = (∂aX

a + XaΓb
ab). On Riemannian manifold M Riemannian metric defines connection on volume

forms γa = −∂a log
√
det g (via Levi-Civita connection or via invariant volume form ρg). We come to

div gX =

(
∂Xa

∂xa
+Xa∂a log

√
det g

)
=

1√
det g

∂

∂xa

(√
det gXa

)
.
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3.3. Second order operators on algebra F(M). We will study now operators of order
6 2 on the algebra F(M).
First of all general remark about n-th order operators. 0-th order operator on the algebra

F(M) is just multiplication operator on non-zero density. L is n-th order operator on the
algebra F(M) (n > 1) if for an arbitrary s ∈ F(M) the commutator [L, s] = L ◦ s− s ◦ L is
n− 1-th order operator.
One can see that if L is an n-th order differential operator on F(M), then L+(−1)nL+ is

n-th order operator and L− (−1)nL+ is an operator of the order 6 n− 1. We have:

Proposition 3. An arbitrary n-th order operator can be canonically decomposed on the sum
of self adjoint and antiself-adjoint operators of orders n and n− 1:

L =
1

2

(
L+ (−1)nL+

)
︸ ︷︷ ︸
n-th order operator

+
1

2

(
L− (−1)nL+

)
︸ ︷︷ ︸

operator of the order 6 n− 1

.

An operator of the even order n = 2k is a sum of self-adjoint operator of the order 2k and
antiself-adjoint operator of the order 6 2k − 1, and an operator of the odd order n = 2k + 1
is a sum of antiself-adjoint operator of the order 2k+1 and self-adjoint operator of the order
6 2k.

Operators of the order 0 are evidently self-adjoint.

Let L = X + B be first order antiself-adjoint operator, where X is a vector field on M̂
and B is a scalar term (density). We have L + L+ = 0 = X + X+ + 2B = 0. Hence
L = X+ 1

2
divX.

Now study self-adjoint second order operators on F(M). Let ∆ be second order operator
on algebra F(M) of densities of the weight δ. In local coordinates

∆ =
tδ

2


Sab(x)∂a∂b + λ̂Ba(x)∂a + λ̂2C(x)︸ ︷︷ ︸

second order derivatives

+ Da(x)∂a + λ̂E(x)︸ ︷︷ ︸
first order derivatives

+F (x)


 . (25)

Put normalisation condition
∆(1) = 0 (26)

i.e. density F |D(x)|δ
2

in (27) vanishes (F = 0).
The operator ∆+ adjoint to ∆ equals to

∆+ =
1

2

(
∂b∂a

(
Sabtδ . . .

)
− ∂a

(
Baλ̂+tδ . . .

)
+
(
C(λ̂+)2tδ . . .

)
− ∂a

(
Datδ . . .

)
+
(
Eλ̂+tδ . . .

))
=

tδ

2

(
Sab∂a∂b + 2∂bS

ba∂a + ∂a∂bS
ba
)
+

tδ

2

((
λ̂+ δ − 1

) (
Ba∂a + ∂bB

b
)
+
(
λ̂+ δ − 1

)2
C −

(
λ̂+ δ − 1

)
E −Da∂a − ∂bD

b

)
.

Comparing this operator with operator (25) we see that the condition ∆+ = ∆ implies that

∆ =
tδ

2

(
Sab(x)∂a∂b + ∂bS

ba∂a +
(
2λ̂+ δ − 1

)
γa(x)∂a + λ̂∂aγ

a(x) + λ̂
(
λ̂+ δ − 1

)
θ(x)

)
.

(27)
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Here for convenience we denote γa = 2Ba and θ = C. Studying how coefficients of the
operator change under changing of coordinates we come to

Theorem 1. (See [15].) Let ∆ be an arbitrary linear second order self-adjoint operator
(∆+ = ∆) on the algebra F(M) of densities such that its weight equals δ and ∆(1) = 0.
Then in local coordinates this operator has the appearance (27). The coefficients of this
operator have the following geometrical meaning

• S = tδSab(x) = Sab(x)|D(x)|δ is symmetric contravariant tensor field-density of the
weight δ. Under changing of local coordinates xa

′

= xa
′

(xa) it transforms in the
following way:

Sa
′b′ = J−δxa

′

a x
b′

b S
ab ,

• γa is a symbol of upper connection-density of weight δ (see (13) above). Under chang-
ing of local coordinates xa

′

= xa
′

(xa) it transforms in the following way:

γa
′

= J−δxa
′

a

(
γa + Sab∂bJ

)
,

• and θ transforms in the following way:

θ′ = J−δ (θ + 2γa∂aJ + ∂aS
ab∂bJ

)

Here J = det
(
∂x′

∂x

)
, and xa

′

a are short notations for derivatives: xa
′

a = ∂ax
a′(x) = ∂xa

′

(x)
∂xa

.

The object θ(x)|D(x)|δ is called Brans-Dicke function 2.

Remark 6. Let ∆ be self-adjoint operator (27) and γ
′ = {γ′

a} be an arbitrary connection on
volume forms (∇|D(x)| = γ′

a|D(x)|). Then for the upper connection-density in the equation
(27) the difference (γa− Sabγ′

b)|D(x)|δ is a vector field-density of the weight δ. Respectively
for Brans-Dicke function θ, the difference θ− γ′

aS
abγ′

b is a density of the weight δ. (One can
easy deduce this recalling the fact that the space of genuine connections as well as the space
of upper connections is an affine space: if ∇ and ∇′ are two different connections then their
difference is (co)vector field: ∇′ −∇ = γ′

a − γa = Xa.)

Corollary 1. Given principal symbol S = Sab|D(x)|δ of the weight δ and connection γ

on volume forms canonically define the second order self-adjoint operator (27) with upper
connection γa = Sabγb and Brans-Dicke function θ(x) = γaS

abγb. We denote this operator
∆(S,γ).
The inverse implication is valid in the case if Sab|D(x)|δ is non-degenerate: Second order

self-adjoint operator ∆ which obeys normalisation condition (26) with non-degenerate prin-
cipal symbol S uniquely defines connection γ such that ∆ = ∆(S,γ). Brans-Dicke function
θ in (27) equals to θ = γaγ

a + F = γaS
abγb + F where F is a density of weight δ.

Consider examples
First consider the example of operator (27) with degenerate principal symbol Sab|D(x)|δ.

Example 5. Let X = Xa ∂
∂xa

and Y = Y a ∂
∂xa

be two vector fields on manifold M . Recall the

operator of Lie derivative (see equation (21) LX = Xa∂a+ λ̂∂aX
a and consider the operator

∆ =
1

2
(LXLY + LYLX) =

1

2

(
Xa∂a + λ̂∂aX

a
)(

Y a∂a + λ̂∂aY
a
)
+ (X ↔ Y) .

2Its transformation is similar to transformation of Brans-Dicke ”scalar”, in Kaluza-Klein reduction of 5-th
dimensional gravity to gravity+electromagnetism.
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It is self-adjoint operator since Lie derivatvie is antiself-adjoint operator. Calculating this
operator and comparing it with the expression (27) we come to

Sab = XaY b + Y bXa, γa =
(
∂bX

b
)
Y a +

(
∂bY

b
)
Xa, θ = (∂aX

a)
(
∂bY

b
)
.

We see that in the general case (if n > 3) this operator has degenerate principal symbol and
upper connection does not define uniquely genuine connection.

3.3.1. Canonical pencil of operators. Note that an operator L on the algebra F(M) of den-
sities defines the pencil {Lλ} of operators on spaces Fλ: Lλ = L

∣∣
Fλ
. The self-adjoint oper-

ator ∆ on the algebra of densities (see equation (27)) defines the canonical operator pencil
{∆λ}, λ ∈ R, where

∆λ = ∆
∣∣
Fλ

=

=
tδ

2

(
Sab(x)∂a∂b + ∂bS

ba∂a + (2λ+ δ − 1) γa(x)∂a + λ∂aγ
a(x) + λ (λ+ δ − 1) θ(x)

)
. (28)

It is canonical pencil defined by symmetric tensor field-density S = Sab(x)|D(x)|δ, upper
connection γa and Brans-Dicke function θ(x). Respectively self-adjoint operator ∆(S,γ)
on the algebra of densities defined by tensor field-density S = Sab(x)|D(x)|δ and genuine
connection γ (see Corollary 1) defines the operator pencil∆λ(S,γ) with Brans-Dicke function
θ(x) = γaS

abγb.
Operator ∆λ of the weight δ maps density of weight λ to densities of weight λ + δ. Its

adjoint operator ∆+
λ maps density of weight 1 − δ − λ to densities of weight 1 − λ. The

condition ∆ = ∆+ of self-adjointness of operator ∆ is equivalent to the condition

∆+
λ = ∆1−λ−δ . (29)

Example 6. Let ρ = ρ(x)|D(x)| be a volume form on the Riemannian manifold M . We can

consider an operator ∆ on functions such that ∆f = 1
2
div ρgrad f = 1

2
1

ρ(x)
∂
∂xa

(
ρ(x)gab ∂f(x)

∂xb

)

(see the equations (2) and (24) (In the case if ρ =
√
det g|D(x)| this is just Laplace-Beltrami

operator (3).) Using this operator consider now the pencil

∆λ = ρ
λ ◦∆ ◦ 1

ρλ
:

(
for s ∈ Fλ, ∆λs = ρ

λdivρ grad

(
s

ρλ

))
.

One can see that this pencil corresponds to self-adjoint operator (see relation (29)). It
coincides with the canonical pencil (28) of weight δ = 0 in the case if principal symbol
is defined by Riemannian metric Sab = gab, connection is a flat connection defined by the
volume form (see formula (4) and Example 1): γa = −gab∂b log ρ, and θ = γaγa.

The canonical pencil (28) has many interesting properties (see for detail [15]). In particular
it has the following ”universality” property:

Corollary 2. Let ∆ be an arbitrary (linear) second order operator of weight δ acting on the
space Fλ of densities of weight λ, ∆: Fλ → Fµ (µ = λ+ δ). In the case if λ 6= 0, µ 6= 1 and
λ+ µ 6= 1 there exists an unique canonical pencil which passes through the operator ∆.
If the operator ∆ is given by the expression ∆ = Aab∂a∂b+Aa∂a+A(x) then the relations




1
2
Sab = Aab

1
2

(
(2λ+ δ − 1)γa + ∂bS

ba
)

= Aa

1
2
(λ∂aγ

a + λ(λ+ δ − 1)θ) = A

(λ 6= 0, λ+ µ 6= 1, µ 6= 1) .
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uniquely define principal symbol, upper connection and Brans-Dicke field. Hence they uniquely
define canonical pencil (28).

The ”universality” property provides a beautiful interpretation of canonical map ϕλ,µ in
the relation (5). Indeed due to this Corollary we ”draw” the pencil through an arbitrary
operator ∆λ = Aij(x)∂i∂j +Ai(x)∂i +A(x) acting on densities of weight λ. Then the image
of this operator, operator ∆µ = ϕλ,µ (∆λ) is the operator of this pencil acting on densities
of weight µ.

4. Operators depending on a class of connections

In this section we will return to second order differential operators on manifold M . We
consider second order operators acting on densities of a specially chosen given weight.

4.1. Operators of weight δ acting on densities of weight 1−δ
2
. The Corollary 2 states

that for a second order operator ∆: Fλ → Fµ for all values of weights except the cases λ = 0,
µ = 1 or λ+µ = 1 there is a unique canonical pencil (28) which passes through the operator
∆. Consider now an exceptional case when operator ∆: Fλ → Fµ is such that it has weight
δ and λ+ µ = 1, i.e. it acts on densities of weight λ = 1−δ

2
and transforms them to densities

of weight µ = 1+δ
2
.

Let ∆sing be such an operator which belongs to the canonical pencil (28):

∆sing = (∆λ)
∣∣
λ= 1−δ

2

=
tδ

2

(
Sab(x)∂a∂b + ∂bS

ba∂a + λ∂aγ
a(x) + λ (λ+ δ − 1) θ(x)

)
=

=
|D(x)|δ

2

(
Sab(x)∂a∂b + ∂bS

ba∂a +
1− δ

2

(
∂aγ

a(x) +
δ − 1

2
θ(x)

))
. (30)

On the other hand let ∆ be an arbitrary second order differential operator of weight δ
which acts on densities of weight 1−δ

2
, ∆: F 1−δ

2

→ F 1+δ
2

. Compare this operator with the

operator ∆sing . The operator ∆
+ which is adjoint to the operator ∆ also acts from the space

F 1−δ
2

into the space F 1+δ
2

, since λ+µ = 1−δ
2
+ 1+δ

2
= 1 (compare with formula (29)). Hence an

operator ∆ can be canonically decomposed on the sum of second order self-adjoint operator
and first order antiself-adjoint operator. Antiself-adjoint operator is just generalised Lie
derivative (22):

∆+ −∆ = LX

∣∣
F 1−δ

2

= Xa∂a +
1

2
∂aX

a .

Operator∆sing in formula (30) belongs to canonical pencil, it is self-adjoint operator: ∆+
sing =

∆sing . Difference of two self-adjoint operators of second order with the same principal symbol
is self-adjoint operator of order 6 1. Hence it is the zeroth order operator of multiplication
on the density. These considerations imply the following statement:

Corollary 3. Let ∆ be an arbitrary second order operator of weight δ acting on the space
of densities of weight 1−δ

2
. Let S = Sab|D(x)|δ be a principal symbol of the operator ∆.

Let ∆sing be an operator belonging to an arbitrary canonical pencil (28) with the same
weight δ and with the same principal symbol S = Sab|D(x)|δ.



16 H. M. KHUDAVERDIAN AND TH. TH. VORONOV

Then the difference ∆−∆sing is a first order operator. It equals to generalised Lie derivative
(22) with respect to a vector field +zeroth order operator of multiplication on a density:

∆ = ∆sing + LX + F (x)|D(x)|δ .
In the case if operator ∆ is self-adjoint, ∆+ = ∆, then Lie derivative vanishes (X = 0).

It follows from this Corollary that if the operator ∆: F 1−δ
2

→ F 1+δ
2

is self-adjoint operator

then it is given in local coordinates by the expression

∆ =
1

2

(
Sab(x)∂a∂b + ∂bS

ba(x)∂a + US(x)
)
|D(x)|δ ,

where

US(x)|D(x)|δ = 1− δ

2

(
∂aγ

a(x) +
δ − 1

2
θ(x)

)
|D(x)|δ + F (x)|D(x)|δ .

Here γa, θ are upper connection and Brans-Dicke field defining the pencil (28), and F (x)|D(x)|δ
is a density. In particular the self-adjoint operator ∆: F 1−δ

2

→ F 1+δ
2

belongs to the canon-

ical pencil defined by the same principal symbol S, and upper connection γa but different
θ′ = θ − 4F

(δ−1)2
. It may belong to many other pencils with different upper connections A

self-adjoint operator ∆ acting on densities of the exceptional weight λ = 1−δ
2

does not define
uniquely the canonical pencil. Thus we come to

4.2. Groupoid of connection defined by principal symbol of operator. We define
now an abelian groupoid CS of connections associated with contravariant tensor field-density
S = Sab|D(x)|δ of weight δ.
Consider a space A of all connections on volume forms (covariant derivatives of volume

forms) on manifold M . This is affine space associated to the vector space of covector fields
on M : difference of two connections ∇ and ∇′ is covector field (differential 1-form):

∇−∇′ = γ − γ
′ = X = Xadx

a , where Xa = γa − γ′
a .

Define a set of arrows as a set {γ X−→γ
′} such that γ,γ ′ ∈ A and γ

′ = γ + X, where
X, difference of connections is a covector field. We come to trivial abelian groupoid of
connections:

−
(
γ

X−→γ
′
)
= γ

′ −X−→γ ,
(
γ1

X−→γ2

)
+
(
γ2

Y−→γ3

)
= γ1

X+Y−→γ3 . (31)

Pick an arbitrary contravariant symmetric tensor field-density of the weight δ: S(x) =
Sab(x)|D(x)|δ. The tensor field-density S and an arbitrary connection γ define the self-
adjoint operator∆(S,γ) on the algebra of densities. It is the operator defined in the equation
(27) with principal symbol S, with upper connection γa = Sabγb and Brans-Dicke function
θ = γaγ

a (see the Corollay 1). Consider corresponding pencil of operators and the operator
∆sing (S,γ) which belongs to this pencil and acts on densities of weight 1−δ

2
:

∆sing (S,γ) = ∆ (S,γ)
∣∣
F 1−δ

2

=

=
|D(x)|δ

2

(
Sab(x)∂a∂b + ∂bS

ba∂a +
1− δ

2

(
∂aγ

a(x) +
δ − 1

2
γaγ

a(x)

))
. (32)
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Thus an arbitrary contravariant symmetric tensor field-density S = Sab(x)|D(x)|δ of the
weight δ and an arbitrary connection γ defines self-adjoint operator ∆sing (S,γ) by the rela-
tion (32). ”Pseudoscalar” part of this operator is equal to

US,γ(x)|D(x)|δ =
(
1− δ

2

)(
∂aγ

a(x) +
δ − 1

2
γaγ

a(x)

) |D(x)|δ
2

. (33)

Let γ and γ
′ be two different connections. Difference of two operators ∆sing (S,γ) and

∆sing (S,γ
′) with the same principal symbol S = Sab(x)|D(x)|δ is the scalar density of the

weight δ. Calculate this density. If γ ′ = γ +X then

∆sing (S,γ
′)−∆sing (S,γ) = US,γ′(x)|D(x)|δ − US,γ(x)|D(x)|δ =

(
1− δ

4

)(
∂aγ

′a(x) +
δ − 1

2
γ′
aγ

′a(x)− ∂aγ
a(x)− δ − 1

2
γaγ

a(x)

)
|D(x)|δ =

(
1− δ

4

)(
∂a(S

abXb) + (δ − 1)γa(S
abXb) +

δ − 1

2
XaS

abXb

)
|D(x)|δ =

1− δ

4

(
div γX+

δ − 1

2
X2

)
. (34)

Here div γX is the divergence of vector field X on M with respect to connection γ (see (23)).
With some abuse of notation we denote the covector field Xadx

a and vector field-density of
the weight δ, Xa|D(x)|δ = SabXb|D(x)|δ by the same letter X.

Definition Let S = Sab(x)|D(x)|δ be contravariant symmetric tensor field-density of the

weight δ. The groupoid CS is a subgroupoid of arrows γ
X−→γ

′ of trivial groupoid (31) such
that the operators ∆sing (S,γ) and ∆sing (S,γ

′) defined by the formula (32) coincide:

CS = {Groupoid of arrows γ
X−→γ

′such that∆sing (S,γ
′) = ∆sing (S,γ)}. (35)

Using the formula (34) for difference of operators ∆sing (S,γ
′) and ∆sing (S,γ) rewrite the

definition (35) of groupoid CS in the following way:

CS = {Groupid of arrows γ
X−→γ

′ such that div γX+
δ − 1

2
X2 = 0} .

In other words the arrow γ
X−→γ

′ belongs to the groupoid CS if two canonical pencils
∆λ(S,γ) and ∆λ(S,γ

′) intersect at the operator ∆sing (S,γ).
We consider the case δ 6= 1, The case δ = 1 is trivial 3.

Denote by [γ] the orbit of a connection γ in the groupoid CS

[γ] = {γ ′ : γ
X−→γ

′ ∈ CS} .

3In this case all the operators ∆sing (S,γ) do not depend on connection γ. Principal symbol S = Sab|D(x)|
defines the canonical operator ∆(S) : F0 → F1 such that in local coordinates ∆(s)f = ∂a

(
Sab∂bf

)
|D(x)|.

The groupoid CS is the trivial groupoid of all connections.
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Proposition 4. An arbitrary contravariant symmetric tensor field S = Sab(x)|D(x)|δ of
the weight δ defines the abelian groupoid of connections CS and the family of second order
differential operators of the order δ and acting on densities of the weight 1−δ

2
:

∆([γ]) = ∆sing (S,γ) : F 1−δ
2

→ F 1+δ
2

.

Operators of this family have the same principal symbol and they depend on equivalence
classes of connections which are orbits in the groupoid CS.

Remark 7. Let γ1,γ2 and γ3 be three arbitrary connections. Consider corresponding arrows

γ1
X−→γ2, γ2

Y−→γ3 and γ1
X+Y−→γ3. We have that γ1

X−→γ2+γ2
Y−→γ3 = γ1

X+Y−→γ3. This means
that for non-linear differential equation div γX+ δ−1

2
X2 = 0 the following property holds:

{
div γ1

X+ δ−1
2
X2 = 0

div γ2
Y + δ−1

2
Y2 = 0

⇒ div γ1
(X+Y) +

δ − 1

2
(X+Y)2 = 0 .

It follows from (34) the cocycle condition that the sum of left-hand side of first two equations
is equal to the left hand-sight of the third equation.

Remark 8. Let ρ be an arbitrary volume form. Using the operator ∆([γ]) = ∆sing (S,γ)
one can consider second order operator

∆: ∆f = ρ
− 1+δ

2 ∆([γ])
(
ρ

1−δ
2 f(x)

)

on functions depending on volume form ρ. Calculating one comes to

∆f =
1

2

(
Sab∂a∂b + ∂bS

ba∂a + (δ − 1)γa
ρ
∂a +

1

tδ
(US,γ − US,γρ)

)
f

Here γ
ρ : γa = −∂a log ρ is a flat connection induced by the volume form ρ = ρ(x)|D(x)|,

γa = Sabγb and US,γ/t
δ is a ”pseudoscalar” part (33) of the operator (32). The difference

US,γ − US,γ
ρ
is a density of weight δ (see Corollary 3 and equation (34)).

We consider now examples of abelian groupoids and corresponding operators ∆sing (S,γ).

4.3. Groupoid CS for Riemannian manifold. Let M be Riemannian manifold equipped
with Riemannian metric G. (As always we suppose that M is orientable compact manifold
with a chosen oriented atlas). Riemannian metric defines principal symbol S = G−1. In local
coordinates Sab = gab (G = gabdx

adxb). It is principal symbol of operator of weight δ = 0.
Let γ be an arbitrary connection on volume forms. The differential operator ∆ =

∆sing (G
−1,γ) with weight δ = 0 transforms half-densities to half-densities. Due to the

formulae (32), (33) this operator equals to

∆sing (G
−1,γ) : F 1

2
→ F 1

2
, ∆sing (G

−1,γ) =
1

2

(
gab∂a∂b + ∂bg

ba∂a +
1

2
∂aγ

a − 1

4
γaγ

a

)
.

We come to the groupoid

CG =

{
Groupoid of arrows γ

X−→γ
′ such that div γX− 1

2
X2 = 0

}
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and to the operator on half-densities depending on the class of connections

∆([γ]) =
1

2

(
gab∂a∂b + ∂bg

ba∂a +
1

2
∂aγ

a − 1

4
γaγ

a

)
.

On Riemannian manifold one can consider distinguished Levi-Civita connection on vector
fields. This connection induces the connection γ

G on volume forms, such that γGa = −Γbab =
−∂a log

√
det g, where Γabc are Christoffel symbols of Levi-Civita connection. (We also call this

connection on volume forms, Levi-Civita connection.) Consider the orbit, equivalence classes
[γG] in the groupoid CG of Levi-Civita connection γ

G. This orbit defines the distinguished
operator on half-densities on Riemannian manifold:

∆ = ∆G

(
[γG]

)
.

One can always choose special local coordinates (xa) such that in these coordinates det g = 1.
In these local coordinates γGa = 0 and the distinguished operator ∆ on half-densities has the
appearance:

∆ =
1

2

(
gab∂a∂b + ∂bg

ba∂a
)
, for s = s(x)|D(x)| 12 , ∆s =

1

2

(
∂b
(
gba∂as(x)

))
|D(x)| 12 .

The differential equation

div γX− 1

2
X2 = 0

defining groupoid CG has the following appearance in these coordinates:

∂Xa(x)

∂xa
− 1

2
Xa(x)Xa(x) = 0 .

All connections γ such that they have appearance γa = Xa in these special coordinates,
where Xa is a solution of this differential equation, belong to the orbit [γG].
The operator ∆

(
[γG]

)
belongs in particular to the canonical pencil associated with the

Beltrami-Laplace operator (see the example 6).
On the other hand let γ be an arbitrary connection and let ρ be an arbitrary volume

form on the Riemannian manifold M . One can assign to volume form ρ the flat connection
γ
ρ : γρ

a = −∂a log ρ. Consider operator
1√
ρ
∆([γ])

√
ρ on functions (see Remark 8.) We come

to scalar operator on functions

∆f =
1

2

(
∂a
(
gab∂bf

)
− γρa∂a +R

)

where scalar function R equals to

R(x) = UG,γ − UG,γρ =
1

2
divX− 1

4
X2 .

Here vector field X is defined by the difference of the connections: X = γ − γ
ρ.

It is interesting to compare formulae of this subsection with constructions for Riemannian
case in the paper [2].
Our next example is a groupoid on odd symplectic supermanifold. Before discussing it

sketch shortly what happens if we consider supermanifolds instead manifolds.
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4.4. A case of supermanifolds. Let M be n|m-dimensional supermanifold. Denote local
coordinates of supermanifold by zA = (xa, θα) (a = 1, . . . , n;α = 1, . . . ,m). Here xa are even
coordinates and θα odd coordinates: zAzB = (−1)p(A)p(B)zBzA, where p(zA), or shortly p(A)
is a parity of coordinate zA; (p(xa) = 0, p(θα) = 1).
We would like to study second order linear differential operators ∆ = SAB∂A∂B + . . . .

Principal symbol of this operator is supersymmetric contravariant tensor field S = SAB.
This field may be even or odd:

SAB = (−1)p(A)p(B), p(SAB) = p(S) + p(A) + p(B) .

The analysis of second order operators can be performed in supercase in a way similar to
usual case. We have just to worry about sign rules. E.g. the formula (28) for canonical
pencil of operators has to be rewritten in the following way

∆λ =
tδ

2

(
SAB(x)∂B∂A + (−1)p(A)p(S+1)∂BS

BA∂A
)
+

+
tδ

2

(
(2λ+ δ − 1) γA(x)∂A + (−1)p(A)p(S+1)λ∂Aγ

A(x) + λ (λ+ δ − 1) θ(x)
)
. (36)

Here ∆ is even (odd ) operator if principal symbol S is even (odd) tensor field (see for detail
[15]).
In the case if S is an even tensor field and it is non-degenerate then it defines Riemannian

structure on (super)manifold M . We come to groupoid CS in a same way as in a case of
usual Riemannian manifold considered in the previous subsection. (We just must worry
about signs arising in calculations.) In particular for even Riemannian supermanifold there
exists distinguished Levi-Civita connection which canonically induces the unique connection
on volume forms. This connection is a flat connection of the canonical volume form:

ρg =
√

Ber gAB|D(z)| , γA = −∂A log ρ(z) = −(−1)BΓBBA . (37)

Here gAB is a covariant tensor defining Riemannian structure, (SAB = gAB) and ΓABC
are Christoffel symbols of Levi-Civita connection of this Riemannian structure. Ber gAB
is Berezinian (superdeteriminant) of the matrix gAB. It is super analog of determinant. The
matrix gAB is n|m× n|m even matrix and its Berezinian is given by the formula

Ber gAB = Ber

(
gab gaβ
gαb gαβ

)
= det

(
gab − gaγg

γδgδb
det gαβ

)
. (38)

(Here as usual gγδ stands for the matrix inverse to the matrix gγδ.)
The situation is essentially different in the case if S = SAB is an odd supersymmetric

contravariant tensor field and respectively ∆ = SAB∂A∂B + . . . is an odd operator. In this
case one comes naturally to the odd Poisson structure on supermanifold M if tensor S obeys
additional conditions.
Namely, consider cotangent bundle T ∗M to supermanifold M with local coordinates

(zA, pB) where pA are coordinates in fibres dual to coordinates zA (pA ∼ ∂
∂zA

). Super-
symmetric contravariant tensor field S = SAB defines quadratic master-Hamiltonian, odd
function HS = 1

2
SABpApB on cotangent bundle T ∗M . This quadratic master-Hamiltonian

defines the odd bracket on the functions on M as a derived bracket:

{f, g} = ((f,HS) , g)), p ({f, g}) = p(f) + p(g) + 1 . (39)
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Here ( , ) is canonical Poisson bracket on the cotangent bundle T ∗M . The odd derived
bracket is anti-commutative with respect to shifted parity and it obeys Leibnitz rule:

{f, g} = −(−1)(p(f)+1)(p(g)+1){g, f}, {f, gh} = {f, g}h+ (−1)p(g)p(h){f, h}g .
This odd derived bracket becomes an odd Poisson bracket in the case if it obeys Jacobi
identity

(−1)p((f)+1)p((h)+1){{f, g}, h}+(−1)p((g)+1)p((f)+1){{g, h}, f}+(−1)p((h)+1)p((g)+1){{h, f}, g} = 0 .
(40)

It is a beautiful fact that a condition that derived bracket (39) obeys Jacobi identity can be
formulated as a quadratic condition (H,H) = 0 for the master-Hamiltonian:

(HS, HS) = 0 ⇔ Jacobi identity for the derived bracket { , } holds. (41)

(See for detail [14]). In the case if S is an even field (Riemannian geometry) master-
Hamiltonian H is even function and Jacobi identity is trivial (see for detail [14] and [15].)
From now on suppose that odd tensor field S defines an odd Poisson bracket on the

supermanifold M , i.e. the relation (41) holds. This odd Poisson bracket corresponds to an
odd symplectic structure in the case if the bracket is non-degenerate, i.e. the odd tensor field
S is non-degenerate tensor field. The condition of non-degeneracy means that there exists
inverse covariant tensor field SBC : SABSBC = δBC . Since the matrix SAB is an odd matrix
(p(SAB) = p(A)+ p(B)+ 1) this implies that matrix SAB has equal number of even and odd
dimensions. We come to conclusion that for an odd symplectic supermanifold even and odd
dimensions have to coincide. It is necessarily n|n-dimensional.
The basic example of an odd symplectic supermanifold is the following: for an arbitrary

usual manifold M consider its cotangent bundle T ∗M and change parity of the fibres in this
bundle. We come to an odd symplectic supermanifold ΠT ∗M . To arbitrary local coordinates
xa on M one can associate local coordinates (xa, θa) in ΠT ∗M , where odd coordinates θa
transform as ∂a:

xa
′

= xa
′

(xa) , θa′ =
∂xa

∂xa′
θa . (42)

In these local coordinates the non-degenerate odd Poisson bracket is well-defined by the
relations

{xa, θb} = δab , {xa, xb} = 0, {θa, θb} = 0 . (43)

(These relations are invariant with respect to coordinate transformations (42).)

Remark 9. An arbitrary odd symplectic supermanifold E is symplectomorphic to cotangent
bundle of a usual manifold M . (One may take M as even Lagrangian surface in M). (See
for detail [12].) One can consider instead supermanifold E the cotangent bundle ΠT ∗M for
usual manifold M . The difference between cotangent bundle to M and supermanifold ΠT ∗M
is that in the supermanifold ΠT ∗M one may consider arbitrary parity preserving coordinate
transformations of local coordinates x and θ which may destroy vector bundle structure, not
only the transformations (42) which preserve the structure of vector bundle.

4.5. Groupoid CS for symplectic supermanifold. Let E be (n|n)-dimensional odd
symplectic supermanifold, where an odd symplectic structure and respectively odd non-
degenerate Poisson structure are defined by contravariant supersymmetric non-degenerate
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tensor field S = SAB such that Jacobi identities (40) hold. We study second order odd
operators ∆ = 1

2
SAB + . . . of weight δ = 0.

Let γ be an arbitrary connection on volume forms. The differential operator ∆ =
∆sing (S,γ) of weight δ = 0 with principal symbol S defined by equation (32) transforms
half-densities to half-densities. Due to the formulae (32), (33) and (36) this operator equals
to

∆sing (S,γ) : F 1

2
→ F 1

2
, ∆sing (S,γ) =

1

2

(
SAB∂B∂A + ∂Bg

BA∂a +
1

2
∂Aγ

A − 1

4
γAγ

A

)
.

(44)
We come to the groupoid

CS =

{
Groupoid of arrows γ

X−→γ
′ such that div γX− 1

2
X2 = 0

}

and to the operator on half-densities depending on the class of connections

∆([γ]) =
1

2

(
SAB∂B∂A + ∂Bg

BA∂a + US ([γ])
)
, where US ([γ]) =

1

2
∂Aγ

A − 1

4
γAγ

A . (45)

It is here where a similarity with Riemannian case finishes. On Riemannian manifold one
can consider canonical volume form and distinguished Levi-Civita connection which induces
canonical flat connection γ (see equation (37)). On an odd symplectic supermanifold there
is no canonical volume form 4 and there is no distinguished connection on vector fields. On
the other hand it turns out that in this case one can construct the class of distinguished
connections which belong to an orbit of groupoid CS. Namely study the equation

div γX− 1

2
X2 = 0 , (46)

which defines the groupoid CS. According to equations (34), (44) and (45) we see that for
operators ∆([γ]) acting on half-densities we have that

∆([γ ′])−∆([γ]) = ∆sing (S,γ
′)−∆sing (S,γ) =

1

4

(
div γX− 1

2
X2

)
. (47)

We call the equation (46) Batalin-Vilkovisky equation. Study this equation.
It is convenient to work in Darboux coordinates. Local coordinates zA = (xa, θb) on

supermanifold E are called Darboux coordinates if non-degenerate odd Poisson bracket has
the appearance (43) in these coordinates.
We say that connection γ is Darboux flat if it vanishes in some Darboux coordinates.

Lemma 1. Let γ,γ ′ be two connections such that both connection γ and γ
′ are Darboux

flat. Then the arrow γ
X−→γ

′ belongs to the groupoid CS. i.e. the Batalin-Vilkovisky equation
div γX− 1

2
X2 = 0 holds for covector field X = γ

′ − γ.

We will prove this lemma later.

Remark 10. In fact lemma implies that a class of locally defined Darboux flat connections defines globally
the pseudoscalar function US in (44). Let {zA(α)} be an arbitrary atlas of Darboux coordinates on E. We say

that the collection of local connections {γ(α)} is adjusted to Darboux atlas {zA(α)} if every local connection

4Naive generalisation of the formula (38) for Berezinian does not work since in particular SAB is not an
even matrix
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γ(a) (defined in the chart zA(α)) vanishes in these local Darboux coordinates zA(α). Let {γ(α)} and {γ′

(α′)}
be two families of local connections adjusted to Darboux atlases {zA(α)} and {zA′

(α′)} respectively. Then due

to Lemma all arrows γ(α)
X−→γ(α′) γ

′

(α)

X−→γ
′

(α′) and γ(α)
X−→γ

′

(α′) belong to local groupoid CS (if charts

(zA(α)), (z
A
(α′)), (z

A′

(α)) and (zA
′

(α′)) intersect). This means that in spite of the fact that the family {γα} does

not define the global connection, still equations (46) hold locally and operator ∆ = ∆(S,γα) globally exists.
(These considerations for locally defined groupoid can be performed for arbitrary case. One can consider the
family of locally defined connections {γa} such that they define global operator (32).) On the other hand in
a case of an odd symplectic supermanifold there exists a global Darboux flat connection, i.e. the connection
γ such in a vicinity of an arbitrary point this connection vanishes in some Darboux coordinates. Show it.

Without loss of generality suppose that E = ΠT ∗M (see Remark (9).) Let σ be an arbitrary volume
form on M (we suppose that M is orientable). Choose an atlas {xa

(α)} of local coordinates such that σ

is the coordinate volume form, i.e. σ = dx1
(α) ∧ . . . dxn

(α). Then consider associated atlas {xa
(α), θa(α)}

in supermanifold ΠT ∗M which is an atlas of Darboux coordinates. For this atlas as well as for the atlas
{xa

(α)} Jacobians of coordinate transformations are equal to 1. Thus we constructed atlas of special Darboux

coordinates in which all the Jacobians of coordinate transformations are equal to 1. The coordinate volume
form ρ = D(x, θ) is globally defined. The flat connection corresponding to this volume form vanishes. We
defined globally Darboux flat connection.

We come to Proposition

Proposition 5. In an odd symplectic supermanifold there exists a canonical orbit of connec-
tions. It is the class [γ] in the groupoid CS, where γ is an arbitrary Darboux flat connection.
This canonical class of connections we will call the class of Darboux flat connections.

For any connection belonging to the canonical orbit of connections, the pseudoscalar func-
tion US in (45) vanishes in arbitrary Darboux coordinates5. The operator ∆ = ∆[γ] on
half-densities corresponding to this class of connections has the following appearance in
arbitrary Darboux coordinates zA = (xa, θb):

∆ =
∂2

∂xa∂θa
. (48)

(This canonical operator on half-densities was introduced in [12].)

Now prove Lemma 1.
For an arbitrary volume form ρ consider an operator

∆ρf =
1

2
div ρgrad f . (49)

Here grad f is Hamiltonian vector field {f, zA} ∂
∂zA

corresponding to the function f . (Compare
with (2).) This is the famous Batalin-Vilkovisky odd Laplacian on functions. In the case if
zA = (xa, θa) are Darboux coordinates and a volume form ρ is the coordinate volume form,
i.e. ρ = D(x, θ), then odd Laplacian in these Darboux coordinates has the appearance

∆ =
∂2

∂xa∂θa
. (50)

(This is the initial form of Batalin-Vilkovisky operator in [3]. (Geometrical meaning of
BV operator, and how formulae (49) and (50) are related with canonical operator (48) on
semidensities see in [10, 19, 12].)

5This function vanishes not only for globally defined Darboux flat connection but for a family of connec-
tions adjusted to an arbitrary Darboux atlas (see Remark 10)
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The equation (46) characterising the groupoid (the Batalin-Vilkovisky equation) is related
with the Batalin-Vilkovisky operator by the following identity:

−e
F
2 ∆ρe

−F
2 =

1

4
div γX− 1

8
X2 , (51)

where connection γ is a flat connection induced by volume form (γa = −∂a log ρ ) and vector
field X is Hamiltonian vector field of the function F .
We use this identity to prove the lemma. Let connection γ vanishes in Darboux coordinates

zA = (xa, θa) and connection γ
′ vanishes in Darboux coordinates zA

′

= (xa
′

, θa′). Then
(compare with equation (11)) connection γ

′ has in Darboux coordinates zA = (xa, θa) the
following appearance

γ′
A =

∂zA
′

(zA)

∂zA
(γA′ + ∂A′ log J) ,

where J is Jacobian of Darboux coordinates transformation J = Ber J = Ber ∂(x,θ)
∂(x′,θ′)

(see

also the formula (38))

Hence for the arrow γ
X−→γ

′ the covector field X equals to XA = − ∂
∂za

log Ber ∂(x
′,θ′)

∂(x,θ)
.

Apply identity (51) where γa = 0, ρ = D(x, θ) is coordinate volume form and F =

− log Ber ∂(x
′,θ′)

∂(x,θ)
. Using (49) and (50) we arrive at

1

4
div γX− 1

8
X2 = −e

F
2 ∆ρe

−F
2 = −

(√
Ber

∂(x, θ)

∂(x′, θ′)

)
∂2

∂xa∂θa

(√
Ber

∂(x′, θ′)

∂(x, θ)

)
= 0 .

The last identity is famous Batalin-Vilkovisky identity [4] which stands in the core of the
geometry of Batalin-Vilkovisky operator.
Lemma is proved.

Remark 11. The canonical operator (48) assigns to every even non-zero half density s and
to every volume form ρ the functions σs and σρ:

σ(s) =
∆s

s
, σ(ρ) =

∆
√
ρ

ρ

(see [12]). In the articles [1, 2] I. Batalin and K.Bering considered geometrical properties
of the canonical operator (48) on semidensities. In these considerations they used the for-
mula for expressing the canonical operator (48) in arbitrary coordinates. This formula was
suggested by C. Bering in [6]. Clarifying geometrical meaning of this formula and analysing

the geometrical meaning of the scalar function σ(ρ) they come to beautiful result: if ∇̂
is an arbitrary torsion-free affine connection in an odd symplectic supermanifold which is
compatible with volume form ρ, then the scalar curvature of this connection equals (up to
a coefficient) to the function σρ.

4.6. Groupoid CS. We return here to simplest possible manifold—real line. The symmetric
tensor field S of rank 2 and of weight δ on real line R is a density of the weight δ − 2:
S = S∂2

x|D(x)|δ ∼ S|D(x)|δ−2. Consider on R the canonical vector field-density |D(x)|∂x
which is invariant with respect to change of coordinates. Its square defines canonical tensor
field-density SR = |D(x)|2(∂x)2 of weight δ = 2.
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We see that on the line there is a canonical pencil of second order operators of the weight
δ = 2: |D(x)|2 (∂2

x + . . . ) with canonical principal symbol SR = |D(x)|2(∂x)2. The operator
(32) belonging to this pencil acts on densities of weight 1−δ

2
= −1

2
and transforms them into

densities of weight 1+δ
2

= 3
2
. According to (32) It has the following appearance:

∆(γ) : Ψ(x)|Dx|− 1

2 7→ Φ(x)|D(x)| 32 =
1

2

(
∂2Ψ(x)

∂x2
+ U(x)Ψ(x)

)
|Dx| 32 ,

where according to the equation (33)

Uγ(x) = −1

4

(
γx +

1

2
γ2

)
|D(x)|2. (52)

This is a Sturm-Lioville operator recognisable by speciaialists in projective geometry and
integrable systems6 (see e.g. [9] or the book [18]).
We see that in this case the difference of operators is

∆(γ ′)−∆(γ) = −1

4

(
γ′
x +

1

4
(γ′)

2

)
|D(x)|2 + 1

4

(
γx +

1

2
(γ)2

)
|D(x)|2 =

−1

4

(
divX+

1

2
X2

)
.

Here X = (γ′ − γ)|D(x)|2∂x is vector field-density of the weight δ = 2. (compare with
formulae(34) and (47)).
Using formulae (35) we come to the following canonical groupoid CR on the line:

CR = {Groupoid of arrows γ
X−→γ

′such that∆(γ ′) = ∆(γ), i.e. Uγ′ = Uγ} =

= {Groupoid of arrows γ
X−→γ

′ such that div γX+
1

2
X2 = 0} ,

where ∆(γ) is the Sturm-Lioville operator (52). It depends on the orbit of connection γ,
the class [γ].

Analyse the equation divX + 1
2
X2 = 0 defining the canonical groupoid CR and compare

it with the cocycle related with the operator
If covector field equals to γ′−γ = a(x)dx, then vector-field density equals to SR(a(x)dx) =

a(x)|D(x)|2∂x. Hence X2 = a2(x)|D(x)|2 and divX = (ax + γa)|D(x)|2. We come to the
equation:

divX+
1

2
X2 =

(
ax + γa+

1

2
a2
)
|D(x)|2 = 0 .

Solve this differential equation. Choose coordinate such that γ = 0 in these coordinate.
Then

X =
2dx

C + x
, where C is a constant . (53)

6The operator ∆ corresponds to a curve t 7→ [u1(t) : u2(t)], R → RP 1 in projective line defined by the
solutions of equation ∆u = 0.
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On the other hand analyze the action of diffeomorphisms on the connection γ and the opera-
tor (52). Let f = f(x) be a diffeomorphism of R. (We consider compactified R ∼ S1 and dif-

feomorphisms preserving orientation.) The new connection γ
(f) equals to yx

(
γ

∣∣
y(x)

+ (log xy)x

)
dx

and the covector field γ
(f) − γ equals to

X(f) = γ
(f) − γ = γ(y(x))dy + (log xy)y dy − γ(x)dx .

We come to cocycle on group of diffeomorphisms:

cγ(f) = ∆f (γ)−∆(γ) = ∆(γf )−∆(γ) =
1

4

(
Uγf − Uγ

)
=

−1

4

(
divX(f) +

1

2

(
X(f)

)2)
. (54)

In coordinate such that γ = 0, X(f) = (log xy)y dy. Combining with a solution (53) we

come to equation (log xy)x =
2

C+x
. Solving this equation we see that

divX(f) +
1

2

(
X(f)

)2
= 0 ⇔ y =

ax+ b

cx+ d
is a projective transformation .

The cocycle (54) is coboundary in the space of second order operators and it is a non-
trivial cocycle in the space of densities of the weight 2. This cocycle vanishes on projective
transformations. This is well-known cocycle related with Schwarzian derivative (see the book
[18] and citations there.):

cγ(f) = ∆f (γ)−∆(γ) = ∆(γf )−∆(γ) =
1

2

(
Uγf − Uγ

)
=

−1

4

(
divX(f) +

1

2

(
X(f)

)2)
= −1

4

(
Uγ(y)|D(y)|2 + S (x(y)) |D(y)|2 − Uγ(x)|D(x)|2

)
,

where

S(x(y)) =
xyyy
xy

− 3

2

(
xyy
xy

)2

.

is Schwarzian of the transformation x = x(y). If γ = 0 in coordinate x then c(f) =
S(x(y))|D(y)|2.
4.7. Invariant densities on surfaces in odd symplectic supermanifold and mean

curvature. In the previous examples we considered second order operators which depend
on a class of connections on volume forms. In particular we considered for odd symplectic
supermanifold the canonical class of Darboux flat connections (see the Proposition 5) and
with use of this class redefined the canonical operator (48).
Now we consider an example of geometrical constructions which depend on second order

derivatives and on a class of Darboux flat affine connections.
Let E be an odd symplectic supermanifold equipped with volume form ρ. Let C be a

non-degenerate surface of codimension (1|1) in E (induced Poisson structure on C is non-
degenerate).

For an arbitrary affine connection ∇̂ and arbitrary vector field Ψ consider the following
object:

A(∇̂,Ψ) = Tr
(
Π
(
∇̂Ψ

))
− div ρΨ , (55)
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where Π is the projector on (1|1)-dimensional planes which are symplectoorthogonal to the
surface C at points of the surface. (We define these objects in a vicinity of the surface C.)
In the case if vector field Ψ is symplectoorthogonal to the surface C (at points of C), i.e.

(ΠΨ)
∣∣
C
= Ψ

∣∣
C
then one can see that A(∇̂, fΨ) = fA(∇̂,Ψ) for an arbitrary function f .

Thus A(∇,Ψ) is well-defined in the case if Ψ is a vector field defined only at surface C and
Ψ is symplectoorthogonal to C. This object is interesting since it is related with canonical
vector valued half-density and canonical scalar half-density on the manifold C (See for detail
[11].)
Namely let Ψ be a vector field on surface C symplectoorthogonal to the surface C. From

now one we suppose that it also obeys to following additional conditions

• it is an odd vector field p(Ψ = ΨA∂A) = p(ΨA) + p(A) = 1,
• it is non-degenerate, i.e. at least one of components is not-nilpotent,
• ω(Ψ,Ψ) = 0, where ω is the symplectic form in E, defining its symplectic structure.

One can see that these conditions uniquely define vector field Ψ at every point of C up to a
multiplier function.
Consider now a following volume form ρΨ on C: Let H be an even vector field on the

surface C such that it is symplectoorthogonal to C and ω(H,Ψ) = 1. Define an half-density
ρΨ by the condition that for an arbitrary basis {e1, . . . en−1; f1, . . . , fn−1} of surface C

ρΨ (e1, . . . en−1; f1, . . . , fn−1) = ρ (e1, . . . en−1,H; f1, . . . , fn−1,Ψ) .

(Here e1, . . . en−1 are even basis vectors and f1, . . . , fn−1 are odd basis vectors.) Using formula
(38) for Berezinian one can see that for an arbitrary function f , ρfψ = ρΨ

f2
. We come to

conclusion that vector valued half-density Ψ
√
ρΨ is well-defined odd half-density on the

surface C (see for detail [11]).
Applying equation (55) we come to well-defined half-density on surface C:

s
C
(∇̂) = A(∇̂,Ψ)

√
ρΨ ,

which depends only on affine connection ∇̂.

We say that affine supersymmetric connection ∇̂ on E with Christoffel symbols ΓCAB is
Darboux flat if there exist Darboux coordinates zA = (xa, θb) such that in these Darboux

coordinates the Chrsitoffel symbols of the connection vanish: ∇̂A∂B = 0. (Darboux flat affine
connection on E induces Darboux flat connection γ : γA = (−1)BΓBAB on volume forms.)

Proposition 6. The half-density s
C
(∇̂) does not depend on a connection in the class of

Darboux flat connections:

s
C
(∇̂) = s

C
(∇̂′)

for two arbitrary Darboux flat connections ∇̂ and ∇̂′.

This statement in not explicit way in fact was used in the work [11] where the half-density
was constructed in Darboux coordinates.
The Proposition implies the existence of canonical half-density on 1|1-codimension surfaces

in odd symplectic supermanifold. This semidensity was first calculated straightforwardly in
[13]
On one hand the invariant semindensity in odd symplectic supermanifold is an analogue of

Poincare-Cartan integral invariants. On the other hand the constructions above are related
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with mean curvature of hypersurfaces (surfaces of codimension 1) in the even Riemannian
case: if C is surface of codimension (1|0) in Riemannian manifold M then one can consider
the canonical Levi-Civita connection and canonical volume form. Applying constructions
above we come to mean curvature. In the odd symplectic case there is no preferred affine
connection compatible with the symplectic structure(see for detail [11]).
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