Topological Entropy Versus Geodesic Entropy

Gabriel P. Paternain *
Miguel Paternain **

IMERL-Facultad de Ingenieria Julio Herrera y Reissig 565 Montevideo

Uruguay

Max-Planck-Institut für Mathematik Gottfried-Claren-Straße 26 53225 Bonn

Germany

Topological Entropy Versus Geodesic Entropy

Gabriel P. Paternain* Miguel Paternain[†]

Abstract

We show that for a compact Riemannian manifold M, the geodesic entropy defined as the exponential growth rate of the average number of geodesic segments between two points- is \leq than the topological entropy of the geodesic flow of M. We also show that if M is simply connected and $N \subset M$ is a compact simply connected submanifold, then the exponential growth rate of the sequence given by the Betti numbers of the space of paths starting in N and ending in a fixed point of M, is bounded above by the topological entropy of the geodesic flow on the normal sphere bundle of N.

1 Introduction

Let M be a compact oriented C^{∞} Riemannian manifold and let $N \subset M$ be a compact oriented submanifold. Fix $p \in M$ and $\lambda > 0$. Denote by $n_N(p,\lambda)$ the number of geodesic segments leaving orthogonally from N and terminating at p with length $\leq \lambda$. If p is not a focal point of N one can see that $n_N(p,\lambda)$ is finite. Define

$$I_N(\lambda) = \int_M n_N(p,\lambda) d\mu(p),$$

where μ is the measure induced by the Riemannian structure. Integrals of this sort were already considered in [1] when N is a point and in [4] when N is a totally-geodesic hypersurface. We define σ_N to be the number:

$$\sigma_N = limsup_{\lambda \to +\infty} \frac{1}{\lambda} \log I_N(\lambda). \tag{1}$$

All these numbers are Riemannian invariants and somehow measure the complexity of the geometry of geodesics leaving orthogonally from a submanifold. In Section 2 we will prove using Yomdin's Theorem [8] that all these invariants are bounded above by the topological entropy h_{top} of the geodesic flow. Such a bound was already obtained

^{*}Supported by the Max-Planck-Institut für Mathematik and by a travel grant from CDE. On leave from: IMERL-Facultad de Ingenieria, Julio Herrera y Reissig 565, Montevideo-Uruguay

†partially supported by Centro de Matemática, Montevideo-Uruguay

in [7] and implicitly used in [2, Section 2.7] when N is a point. As an application of this generalization we will show the following: let $n(p, q, \lambda)$ denote the number of geodesic segments between p and q with length $\leq \lambda$, then

$$lim sup_{\lambda \to +\infty} \frac{1}{\lambda} log \int_{M \times M} n(p, q, \lambda) d\mu(p) d\mu(q) \stackrel{\text{def}}{=} h_{geod} \leq h_{top}.$$

The number h_{geod} can be regarded as the geodesic entropy of the Riemannian metric. Recently Mañé [6] proved that also one has $h_{geod} \geq h_{top}$.

In Section 3, we will show that if M and N are simply connected there exists a constant C > 0 depending only on the geometry of M and N such that if $\Omega(p, N)$ denotes the Hilbert manifold of paths from N to p then for $k \ge 1$

$$\sum_{i=1}^{k} b_i(\Omega(p, N)) \le \frac{1}{Vol(M)} I_N(Ck),$$

where $b_i(\Omega(p, N))$ are the Betti numbers over a fixed field. This was proved in [3] when N reduces to a point. Finally, as a corollary, we relate the exponential growth rate of the sequence $b_i(\Omega(p, N))$ with the topological entropy of the geodesic flow on the normal sphere bundle of N.

We would like to thank D. Gromoll and M. Sebastiani for useful comments and suggestions.

2 An upper bound for the geodesic entropy

Let M be a compact oriented Riemannian manifold and let $N \subset M$ be a compact oriented submanifold. We will denote by TN^{\perp} the normal bundle of N and by SN^{\perp} the (unit) normal sphere bundle. Set $DN^{\perp}_{\lambda} = \{v \in TN^{\perp} : ||v|| \leq \lambda\}$ and $SN^{\perp}_{t} = \{v \in TN^{\perp} : ||v|| = t\}$.

If TM denotes the tangent bundle of M and $\pi: TM \to M$ denotes the canonical projection, then the exponential map is $exp = \pi \circ \phi_1$ where $\phi_t: TM \to TM$ is the geodesic flow. Finally $exp^{\perp}: TN^{\perp} \to M$ will denote the restriction of exp to TN^{\perp} .

Let us recall that a point p is called a focal point of N if it is a singular value of exp^{\perp} . By Sard's Theorem the set of focal points F(N) has measure zero in M. Recall the definition of $I_N(\lambda)$ from the Introduction. Now we will prove:

Proposition 2.1 $I_N(\lambda) \leq \int_0^{\lambda} Vol(\phi_t(SN^{\perp})) dt$, where $Vol(\phi_t(SN^{\perp}))$ stands for the Riemannian volume of $\phi_t(SN^{\perp})$ with respect of the canonical metric of TM.

Proof: Let ω denote the Riemannian volume element and let $(exp^{\perp})^*\omega$ denote the pull-back of ω under the map exp^{\perp} . The same arguments as in [1, 4] show that if $p \notin F(N)$ then $n_N(p,\lambda)$ is finite, $I_N(\lambda)$ is well defined and

$$I_N(\lambda) \le \int_{DN_{\lambda}^{\perp}} |(exp^{\perp})^*\omega|,$$

or in other words

$$I_N(\lambda) \le \int_{DN_{\lambda}^{\perp}} |\det d(exp^{\perp})_v) | dv.$$

Using Fubini's Theorem and the Gauss Lemma we obtain:

$$\int_{DN_{\lambda}^{\perp}} |\det d(exp^{\perp})_{v}| dv = \int_{0}^{\lambda} dt \int_{SN_{t}^{\perp}} |\det d(exp^{\perp})_{v}|_{T_{v}(SN_{t}^{\perp})} |dv =$$

$$\int_{0}^{\lambda} dt \int_{SN^{\perp}} |\det d\pi_{\phi_{t}(v)}| |\det (d\phi_{t})_{v}|_{T_{v}(SN^{\perp})} |dv \leq$$

$$\int_{0}^{\lambda} dt \int_{SN^{\perp}} |\det (d\phi_{t})_{v}|_{T_{v}(SN^{\perp})} |dv,$$

which yields the desired inequality.

Let $h_{top}(Y)$ denote the topological entropy of the geodesic flow with respect to the set $Y \subset SM$; h_{top} will always stand for $h_{top}(SM)$. Recall the definition of σ_N in (1).

Corollary 2.2 $\sigma_N \leq h_{top}(SN^{\perp})$.

Proof: Yomdin's Theorem gives (cf. [2, 8]):

$$limsup_{t\to +\infty} \frac{1}{t} log \ Vol(\phi_t(SN^{\perp})) \le h_{top}(SN^{\perp}),$$

so the corollary follows directly from the last proposition.

Corollary 2.3 $h_{geod} \leq h_{top}$

Proof: Let Δ denote the diagonal in $M \times M$ and consider in $M \times M$ the product metric. Then if $x = (p,q) \in M \times M$ one has that $n(p,q,\lambda) = n_{\Delta}(x,\frac{\lambda}{\sqrt{2}})$ since a geodesic segment between p and q with length L corresponds to a geodesic in $M \times M$ leaving orthogonally from Δ and terminating at x with length $\frac{1}{\sqrt{2}}L$. Thus from the definitions it follows that

$$h_{geod} = \frac{1}{\sqrt{2}} \sigma_{\Delta}. \tag{2}$$

Now consider the map $f: S(M \times M) \to S^1$ given by $f(v_1, v_2) = (\|v_1\|, \|v_2\|)$. Since f is a first integral of the geodesic flow on $S(M \times M)$ it follows that $h_{top}(S(M \times M)) = \sup_{c \in S^1} h_{top}(f^{-1}(c))$. But if we write c = (x, y) then $h_{top}(f^{-1}(c)) = (x + y)h_{top}$ and thus the topological entropy of the geodesic flow of $M \times M$ equals $\sqrt{2} h_{top}$. Now the corollary follows by combining the equation (2) with Corollary 2.2.

\rightarrow

٥

0

3 The path space $\Omega(p, N)$

Suppose now that M is a compact simply connected manifold and $N \subset M$ a compact simply connected submanifold. Choose a triangulation of M addapted to N and let $\Delta_k(M)$ and $\Delta_k(N)$ denote the k-skeleton of M and N respectively.

Take a point $p \in M$ and consider $\Omega(p, N)$, the Hilbert manifold pf paths starting from a point in N and ending in p. Denote by $\tilde{\Omega}(p, N)$ the subspace of $\Omega(p, N)$ given by all piece-wise linear paths respect to the chosen triangulation. Following Gromov ([3]) we observe that $\tilde{\Omega}(p, N)$ has a natural cell-decomposition as follows. A path $\gamma \in \tilde{\Omega}(p, N)$ can be identified with the sequence of simplices $\sigma_1, ..., \sigma_r$ that it touches on its way from N to p; in this fashion a cell in $\tilde{\Omega}(p, N)$ can be thought as the cartesian product $\sigma_1 \times ... \times \sigma_r$ where two consecutive simplices σ_i, σ_{i+1} are faces of one simplex. Note that $\dim \sigma_i$ can be any value between 0 and $\dim M$.

We will now show that the arguments in [3] extend to the case of the path space $\Omega(p, N)$. Since M and N are simply connected the inclusion map

$$(\Delta_1(M), \Delta_1(N)) \hookrightarrow (M, N)$$

is homotopic to a constant map $(q,q) \in (M,N)$ with homotopy

$$g_t: (\Delta_1(M), \Delta_1(N)) \to (M, N).$$

By the homotopy extension lemma (relative version, cf. [5, Corollary 4-10]) g_t can be extended to a homotopy

$$G_t:(M,N)\to(M,N)$$

so that G_0 is the identity map and $\alpha \stackrel{\text{def}}{=} G_1$ contracts the 1-skeleton of M to a point $q \in N$. Moreover, G_t can be chosen smooth.

Suppose now M has a Riemannian metric and let $L: \Omega(p, N) \to \mathbf{R}$ be the length functional. Note that a smooth map $f: (M, N) \to (M, N)$ induces a map $\hat{f}: \tilde{\Omega}(p, N) \to \Omega(f(p), N)$. We will prove:

Lemma 3.1 There exists a constant C > 0, depending only on M and N such that the natural map

$$H_i(L^{-1}[0,Ck]) \to H_i(\Omega(p,N)),$$

is surjective for $i \leq k$ and all $k \geq 1$ and any $p \in M$.

Proof: First observe that $\tilde{\Omega}(p, N)$ has the same homotopy type as $\Omega(p, N)$ and it is independent of the point $p \in M$. Hence the lemma is a consequence of the following claim: there exists a constant C > 0 depending only on M and N so that

$$\hat{\alpha}(k-skeleton) \subset L^{-1}[0,Ck]$$

for all $k \geq 0$, where $\hat{\alpha}$ is the induced map by α .

Consider a cell $\sigma_1 \times ... \times \sigma_r$ in $\tilde{\Omega}(p, N)$ with $\dim (\sigma_1 \times ... \times \sigma_r) \leq k$. Take a path γ in this cell. Since α sends the 1-skeleton to a point we observe that

$$L(\hat{\alpha}(\gamma)) \leq K(L(\gamma) - L(\gamma \mid_{1-skeleton})),$$

for some constant K > 0. Call d the maximum of the diameter of all positive dimensional simplices in the triangulation. Then clearly

$$L(\gamma) - L(\gamma \mid_{1-skeleton}) \le d \# \{\sigma_i : \dim \sigma_i > 0\} \le dk.$$

\Q

\quad

Thus $L(\hat{\alpha}(\gamma)) \leq Kdk$. If we set C = Kd we obtain the claim.

Corollary 3.2 If $p \notin F(N)$ then $\sum_{i=1}^{k} b_i(\Omega(p,N)) \leq n_N(p,Ck)$ for all $k \geq 1$, where C > 0 is the constant from the previous lemma and the Betti numbers $b_i(\Omega(p,N))$ are taken over a fixed field.

Proof: If $p \notin F(N)$, then the length functional L is a Morse function on $\Omega(p, N)$. The critical points of L are precisely the geodesics leaving orthogonally from N and ending in p. Hence $n_N(p,\lambda)$ is nothing but the number of critical points of L with length $\leq \lambda$. If we set, as it is usual, $\Omega^{\lambda}(p,N) = L^{-1}[0,\lambda]$, the Morse inequalities imply:

$$\sum_{i=1}^{r} b_{i}(\Omega^{\lambda}(p, N)) \leq n_{N}(p, \lambda),$$

where r is such that $b_i(\Omega^{\lambda}(p, N)) = 0$ for i > r.

But from Lemma 3.1 we know that $b_i(\Omega(p, N)) \leq b_i(\Omega^{Ck}(p, N))$ for $i \leq k$ and the corollary follows.

Define now r_N as:

$$r_N = lim \sup_{k \to +\infty} \frac{1}{k} log \sum_{i=1}^k b_i(\Omega(p, N)).$$

Corollary 3.3 For all $k \ge 1$ we have that

$$\sum_{i=1}^k b_i(\Omega(p,N)) \le \frac{1}{Vol(M)} I_N(Ck) \le \frac{1}{Vol(M)} \int_0^{Ck} Vol(\phi_t(SN^{\perp})) dt,$$

where C > 0 is the constant from Lemma 3.1. Moreover,

$$r_N \leq C \ h_{top}(SN^{\perp}).$$

Proof: It follows directly by integration from the previous corollary, Proposition 2.1 and Corollary 2.2.

◊

Remark 3.4 The number r_N can thought as a measure of the "complexity" of the embedding $N \hookrightarrow M$. If this embedding is complicated, i.e. if $r_N > 0$, then Corollary 3.3 says that the topological entropy of the geodesic flow over the set SN^{\perp} is positive. In this way Corollary 3.3 could be regarded as follows: the "complexity" of the embedding is bounded by the dynamics of the geodesic flow on the normal sphere bundle.

Finally note that Corollary 3.3 has the following interesting application. Let M be a simply connected compact manifold and $N \subset M$ a simply connected compact submanifold. Then if every geodesic leaving orthogonally from N returns orthogonally to N at constant time, then $\sum_{i=1}^k b_i(\Omega(p,N))$ grows at most like k. Indeed since there exists T>0 so that $\phi_T(SN^{\perp})=SN^{\perp}$, it follows that $Vol(\phi_t(SN^{\perp}))$ is bounded which implies the claim via Corollary 3.3.

References

- [1] M. Berger, R. Bott, Sur les variétés à courbure strictement positive, Topology 1 (1962) 302-311.
- [2] M. Gromov, Entropy, homology and semialgebraic Geometry, Séminarie Bourbaki 38éme année, 1985-86 nº 663, 225-240.
- [3] M. Gromov, Homotopical effects of dilatation, J. Diff. Geom. 13 (1978) 303-310.
- [4] N. Grossman, The topology of taut Riemannian manifolds with positive Risec pinching, J. Diff. Geom. 3 (1969) 393-410.
- [5] P.J. Hilton, An introduction to homotopy theory, Cambridge Univ. Press 1953.
- [6] R. Mañé, On the topological entropy of geodesic flows, preprint
- [7] G P. Paternain, On the topology of manifolds with completely integrable geodesic flows, Ergod. Th. and Dyn. Syst. 12 (1992), 109-121.
- [8] Y. Yomdin, Volume growth and entropy, Israel J. Math. 57 (1987), 287-300.

Gabriel P. Paternain Max-Planck-Institut für Mathematik Gottfried-Claren-Strasse 26 5300 Bonn 3, Germany E-mail: gabriel@mpim-bonn.mpg.de

Miguel Paternain IMERL-Facultad de Ingenieria Julio Herrera y Reissig 565 Montevideo-Uruguay E-mail: miguel@cmat.edu.uy