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Topological Entropy Versus Geodesic Entropy

Gabriel P. Paternain* Miguel Paternainf

Abstract

We show that for a compact Riemannian manifold M, the geodesic entropy
-defined as the exponential growth rate of the average number of geodesic seg-
ments between two points- is < than the topological entropy of the geodesic
flow of M. We also show that if M is simply connected and ¥ C M is a com-
pact simply connected submanifold, then the exponential growth rate of the
sequence given by the Betti nmmbers of the space of paths starting in N and
ending in a fixed point of M, is bounded above by the topological entropy of
the geodesic flow on the normal sphere bundle of N.

1 Introduction

Let M be a compact oriented ¢ Riemannian manifold and let N C M be a compact
oriented submanifold. Fix p € M and A > 0. Denote by ny(p,A) the number of
geodesic segments leaving orthogonally from N and terminating at p with length
< A, If pis not a focal point of N one can see that ny(p, A) is finite. Define

In(}) = /:” ny(p, Mdu(p),

where p is the measure induced by the Riemannian structure. Integrals of this sort
were already considered in {1] when N is a point and in [4] when N is a totally-geodesic
hypersurface. We define oy to be the number:

oN = li-rn.sup,\_.ho-/l\-‘ log In(A). (1)

All these numbers are Riemannian invariants and sommehow measure the complexity
of the geometry of geodesics leaving orthogonally from a submanifold. In Section 2 we
will prove using Yomdin’s Theorem {8] that all these invariants are bounded above by
the topological entropy h,,, of the geodesic flow. Such a bound was already obtained
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in (7] and implicitly used in {2, Section 2.7] when N is a point. As an application
of this generalization we will show the following: let n(p, ¢, A) denote the number of
geodesic segments between p and ¢ with length < A, then

Iims¢1;1,\_.+w§ log .. n(p, q, N du(p)du(q) Lf hgeod < hiop.
The number hy.oq can be regarded as the geodesic entropy of the Riemannian metric.
Recently Maifié [6] proved that also one has lgeoq = Riop.

In Section 3, we will show that if M and N are simply connected there exists a
constant C > 0 depending only on the geometry of M and N such that if Q(p, N)
denotes the Hilbert manifold of paths [rom N to p then for £ > 1

a 1
AOn N - 2

{820, M) < 7oz (R
where b;(Q(p, N)) are the Betti numbers over a fixed field. This was proved in [3]
when N reduces to a point. Finally, as a corollary, we relate the exponential growth
rate of the sequence b;(2(p, N)) with the topological entropy of the geodesic flow on
the normal sphere bundle of N.

We would like to thank D. Gromoll and M. Sebastiani for useful comments and

suggestions.

2  An upper bound for the geodesic entropy

Let M be a compact oriented Riemaunian mauifold and let N C M be a compact
oriented submanifold. We will denote by TN+t the normal bundle of N and by
SN* the (unit) normal sphere bundle. Set DN{ = {v € TN* : || v ||< A} and
SNt ={veT N+ |v|=1}

If TM denotes the tangent bundle of M and = : TM — M denotes the canonical
projection, then the exponential map is exp = 7 o ¢, where ¢, : TM — TM is the
geodesic flow. Finally expt : TN+ — M will denote the restriction of exp to TNZL,

Let us recall that a point pis called a focal point of N if it is a singular value
of expt. By Sard’s Theorem the set of focal points F(N) has measure zero in M.
Recall the definition of Ix(A) from the Introduction. Now we will prove:

Proposition 2.1 In(}) < [ Vol(¢(SNL))dt, where Vol(¢(SN*)) stands for the
Riemannian volume of ¢(SN*) with respect of the canonical metric of TM.

Proof: Let w denote the Riemannian volume element and let (expt)*w denote the
pull-back of w under the map expt. The same arguments as in [1, 4] show that if
p & F(N) then ny(p, A) is finite, Iy(A) is well defined and

IS [ (enptyw .
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or in other words

</ | det d(ezp*),) | do.

Using Fubini’s Theorem and the Gauas Lemma we obtain:

A
L L —
fDNl | det d(exp™), | dv = fu dt -[SN,J- | det d(ezp™), |g,(snpl dv =

A

A
/ di./ | det dmg,(v) | | det (ddi)v |7, (snay| dv <
A .

/ ([[/ | det (déy),

which yields the desired inequality.

T.(sn )| dv,

Let hyop(Y') denote the topological entropy of the geodesic flow with respect to the
set Y C SM; hyp will always stand for hy,,(SM). Recall the definition of o in (1).

Corollary 2.2 on < iy, (SN1).

Proof: Yomdin’s Theorem gives (cf. [2, 8]):
1
hnmupl_,,+oo log Vol(¢,(SN*)) <y (SN'),

so the corollary follows directly from tle last proposition. o

Corollary 2.3 hjeou < hygp.

Proof: Let A denote the diagonal in A x M and consider in M x M the product
metric. Then if @ = (p,q) € M x M one has that n(p,¢,A) = na(z -\-7-) since a
geodesic segment between p and ¢ with length L corresponds to a Beodeslc mMxM
leaving orthogonally from A and terminating at & with length 75[/ Thus from the

definitions it follows that |

h‘yem{ = 750A' (2)

Now consider the map f: S(M x M) — S given by f(vy,v2) = (]| v1 ||, || v2 ||)- Since
f is a first integral of the geodesic flow on S(AM x M) it follows that h,,,(S(M x M)) =
supeesihiop(f71(c)). But if we write ¢ = (x,y) then hypp(f~1(c)) = (z + y)hep and
thus the topological entropy of the geodesic flow of M x M equals V2 hy,p. Now the
corollary follows by combining the equation (2) with Corollary 2.2.
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3 The path space )(p, N)

Suppose now that M is a compact simply connected manifold and N C M a compact
simply connected submanifold. Choose a triangulation of M addapted to N and let
Ar(M) and A (N) denote the k-skeleton of M and N respectively.
~ Take a point p € M and consider Q(p, N), the Hilbert manifold pf paths starting
from a point in N and ending in p. Denote by Q(p,N) the subspace of Q(p, N)
given by all piece-wise linear paths respect to the chosen triangulation. Following
Gromov ([3]) we ohserve that (p, N) has a natural cell-decomposition as follows. A
path v € Q(p, N) can be identified with the sequence of simplices oy, ..., o, that it
touches on its way from N to p; in this fashion a cell in Q(p,N) can be thought as
the cartesian product oy X ... X g, where two consecutive simplices g, 0,41 are faces
of one simplex. Note that dzm o; can be any value between 0 and dim M.

We will now show that the arguments in [3] extend to the case of the path space
Q(p, N). Since M and N are simply connected the inclusion map

(A1(M), Ay(N)) = (M, N)
is homotopic to a constant map (¢, q) € (M, N) with homotopy
ge : (A (M), A (N)) — (M, N).

By the homotopy extension lemma (relative version, cl. [5, Corollary 4-10]) g; can be
extended to a homotopy

Gy (M,N)— (M,N)

so that Gy is the identity map and o ef (i) contracts the 1-skeleton of M to a point
q € N. Moreover, (¢, can be chosen smootlt.

Suppose now M has a Riemannian metric and let L : Q(p,N) — R be the
length functional. Note that a smooth map f : (M,N) — (M, N) induces a map
f:Q(p,N) = Q(f(p), N). We will prove:

Lemma 3.1 There exisls « constant C > 0, depending only on M end N such that
the natural map

H{(L7H0,Ck])) — Hi{(SUp, N)),
is surjective for 1 < k and all k > 1 and any p € M.
Proof: First observe that Q(p, N) has the same homotopy type as Q(p, N) and it

is independent of the point p € A. Hence the lemma is a consequence of the following
claim: there exists a constant C' > 0 depending only on M and N so that

&k — skeleton) C L7[0,Ck]

for all £ > 0, where & is the induced map by a.



Consider a cell oy x ... x o, in Q(p, N) with dim (oq x ... X 0,) < k. Take a path
~ in this cell. Since « sends the 1-skeleton to a point we observe that

L(&(‘T)) S ]\’(L(’Y) - L(7 Il—akclctan)%

for some constant K > 0. Call d the maximum of the diameter of all positive
dimensional simplices in the triangulation. Then clearly

L(’Y) - L(Af |l—skeietan) S d #{0’,‘ D dim a; > 0} S dk.
Thus L(&(7)) < Kdk. If we set C = Kd we obtain the claim.

Corollary 3.2 If p & F(N) then Y5, bi(Qp, N)) < nn(p, Ck) for all k > 1, where
C > 0 is the constant from the previous lemma and the Betti numbers b;((p, N)) are
taken over a fized field.

Proof: If p & F(N), then the length functional L is a Morse function on (p, N).
The critical points of L are precisely the geodesics leaving orthogonally from N and
ending in p. Hence ny(p,A) is nothing but the number of critical points of L with
length < A. If we set, as il is usual, QYp, N) = L~1[0, )], the Morse inequalities

mply:
Z b p, N)) < nnlp, A),
where r is such that IJ,-(Q"([), N))=0fori>r.
But from Lemma 3.1 we know that b;(Q(p, N)) < b;(Q2*(p, N)) for ¢ < k and the

corollary follows.
o

Define now rpy as:

Qp, N))

ry = lim <um_,+m

||M>-

Corollary 3.3 For all k > | we have that

1 T
Zb (V) < Gz M(CR) < Vol(M)/ Vol((SN*))dt,

where C > 0 is the constant from Lemma 3.1. Moreover,

"N S C htap(‘S'NJ-)'



Proof: It follows directly by integration from the previous corollary, Proposition
2.1 and Corollary 2.2,
<

Remark 3.4 The number ry can thought as a measure of the “complexity” of the
embedding N — M. If this embedding is complicated, 1.e. if ry > 0, then Corollary
3.3 says that the topological entropy of the geodesic flow over the set SN is positive.
In this way Corollary 3.3 could be regarded as follows: the “complexity” of the
embedding is bounded by the dymamics of the geodesic flow on the normal sphere
bundle.

Finally note that Corollary 3.3 has the following interesting application. Let M
be a simply connected compact manifold and N C M a simply connected compact
submanifold. Then if every geodesic leaving orthogonally from N returns orthogonally
to N at constant time, then Y5 | bi(Qp, N)) grows at most like k. Indeed since there
exists T > 0 so that ¢p(SNL) = SN, it follows that Vol(é,(SN*)) is bounded
which implies the claim via Corollary 3.3.
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