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EVERYWHERE NON REDUCED MODULI SPACES

(Fabrizio Catanese, Universita di Pisa)

Introduction

The purpose of this article is to show how often the moduli
spaces of surfaces of general type can be everywhere non reduced
in the case when the canonical bundle ‘KS is not ample. On the
other hand, by giving a simple criterion which implies that this
must happen, we are in fact able to subsume almost all the pre-
viously known examples of obstructed deformations in dimension 2
as particular issues of a very general situation; we produce also
infinite series of examples, showing in particular that all non
Cartier divisors of rigid 3-dimensional weighted projective spaces
give rise to this pathology.
To be more 'precise, let V be an algebraic variety with a

finite group Aut(V) of automorphisms (e.g., cf. [Mal, if Vv is
of general type); then, if V admits a space of moduli MmM(V)
(cf. {Mu 2]), locally {i.e. in an analytic neighbourhoocd of the
point of M(Vv) correspoding ﬁﬁ & ) M(V) 1is the quotient of the
base Def(V) of the Kuranishi family of deformations of V by
the group Aut(V) (cf. [wWal). It is clear that in this case Mm(V)-
is (locally) everywhere non reduced, e.n.r. for short (i.e.,

everywhere singular) if and only if Def((V) is e.n.r. .



We recall the classical terminology: V 1is said to have ob-

structed deformations if the germ Def(V) 1is singular. The stronger
condition that Def(V) be e.n.r., i.e. everywhere singular, can thus
be referred to as V "having "everywhere obstructed deformations", and

has been regarded up to now as a very pathological phenomenon.

The first example of algebraic varieties V with Def (V)
e.n.r. is due to Kodaira and Mumford ([Ko]l, [Mu1]) : here, though,
V and its deformations are blow-ups of ZP3 , hence there are no

birational moduli.

After several examples of obstructed deformations were ex-
hibited, e.g. by Kas ([{Ka 1}, [Ka2]), by ﬁurns and Wahl ([B-W]),
by Horikawa ([Hor 1)), then Horikawa [Hor 2] and, later, -Miranda
([Mi]) gave examples of surfaces of general type S (respectively

with p_= 4,7 , K° =6, 14) for which Def(s) is e.n.r.

Their approach was through the classification of all the
surfaces with those invariants (Miranda uses Castelnuovo's classi-
fication [Cas] of surfaces with K2 = 3 p. -7 and IKS] birational).

g
In both cases the outcome is that the canonical bundle K is not

S
ample for all the surfaces corresponding to the points of a compo-
nent of the moduli space. This research started when I tried to
find a direct proof that Def(S) was e.n.r., and I noticed
that for both examples the singular canonical models were hyper-

surfaces in a 3 dimensional projective space (respectively

X9 cP(1,1,2,3), X7 c«IP(1,1,1,2)) admitting a double cover



ramified on the singular point and a (disjoint) canonical di-

visor.

It became clear that the essential point had nothing to do
with the fact that these two surfaces lie on extremal lines of
surface geography, it was instead the common feature of X being
the quotient of a smooth surface 272 by Z/2 in such a way that

all deformations of X remain singular.

In fact, already Burns and Wahl ([B-W]) had already intro-
duced the philosophy that one may have obstructed deformations
if KS is not ample, i.e. the canonical model X is singular.
I would like parenthetically to point out that in their examples
of obstructed deformations X is a surface with many nodes so
that, by Beauville's beautiful remark in [Be], X has many double

covers ramified only at the nodes, and thus one falls again in

our general picture, which is as follows.

Main Theorem Let 2 be a smooth surface with Def(Z) smooth,

and Let G be a finite group acting on 2 4in such a way that
X = 2/G has has onfy R.D.P.'s (Rational Double Podints) as s4in-
gulanities and i4 indeed singular. Let p:2Z —> X be the

quotient map, and assume that the follLowing inclusion 0§ sheaves

1 1,G
(0.1.) 9, @6, <> (p,2,)° 8 0

induces an infective map between the f§irnst cohomology groups.



Assume also that H1(82)G sunrjects onto H1(8X) :  then, 4if

S A4 the minimal nesclution of singularities of X , Lthen
(0.2.) Def (S) is a product Def(z)® x R , whene

Def(Z)G L4 a smooith scheme and R A& a non heduced, connected,
O-dimensional scheme whose Length n can An fact be arbitrarily

Lanrge. o

It is important to observe that the two cohomological con-
ditions are quite reasonable, since the first is verified if
wx is sufficiently ample, and the second one is automatically

verified if p is unramified in codimension 1.

Roughly speaking, the first condition guarantees that all
the deformations of X are equisingular, the second one that all
the equisingular deformations of X come from deformations of

Z which preserve the action of G .

This is the simple idea, and the technique uses, beyond
other tools, a useful criterion by Pinkham ([Pi]), which clarifies

and extends previous results of Kas[Ka 2] and Burns-wWahl [B-W].

As we already mentioned, our criterion implies that KS is
not ample for all the surfaces corresponding to the points of a
component of the moduli space, and so we regard our criterion as

a sort of explanation of this pathology.



In fact it makes us still confident about the validity of
the following conjecture [Cat]: if S 1is a surface of general
type with q = 0 and KS ample, then the moduli space m(S)
is smooth on an open dense set.

As to the further contents of the paper,§ 1 contains the
proof and a more general version of the basic criterion above.
§ 2 is devoted to examples where p:2 —> X is unramified in
codimension 1, and we show in particular that if G acts on a
3-fold W , then for all the hypersurfaces Z of large degree
we obtain e.n.r. moduli spaces. We also use a slight generaliza-
tion of Kas' surfaces [Ka 2] , to show that the ratio between
tangent dimension and dimension of Def(S) can be arbitrarily
large. Finally, most of our effort is spent in § 3 to analyze
the somehow "most simple" example, the one of hypersurfaces X

in a weighted projective space TP .

We have in fact that the examples of Horikawa and Miranda
belong to the huge class of non-Cartier hypersurfaces X in a
weighted projective space P =1P(1,1,p,q) with p,qg relatively

prime.

We first classify all the X's as above with R.D.P.'s,

then we apply our criterion.

The striking result is that in this case the deformation

space of S is always e.n.r. The underlying philosophy is the



following: if X CZP3 , then all small deformations of X are

still surfaces in ZPB (cf. [K-S]); whereas (cf. § 2,

x8 c™(1,1,2,2)) this is no longer true in general for all
weighted IP's , it is true if TP has isolated singularities and
is thus rigid, and then one gets an e.n.r. deformation space be-

cause of the infinitesimal deformations coming from the singula-

rities of I .
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Notation

S a complete smooth minimal surface of general type over (T
For any variety X ,

Q) is the sheaf of Kihler differentials,

X
ex = Hom® (Q;,BX) is the sheaf of vector fields, and, if B 1is
any subscheme of X with ideal sheaf Ig - ex(-log B) 1is the

subsheaf of vector fields carrying d{IB) into Ij

If B is reduced, N  the equisingular normal sheaf of B in

1
B
9 {-log B) (cf. [Cat], 9.16, 9.17).

| X
X , is the gquotient X/eX

wx is the dualizing sheaf (here an invertible sheaf, since X

shall be Gorenstein)

Def(X) , if X is complete, is the basis of the semi-universal
family of deformations of X (cf. [Gr])

For a vector space V , V* denotes its dual space.

G

If G 1is a finite group acting on a vector space V , V de-
notes the subspace of invariant vectors.
If G 1is a finite group acting on a variety 2 , GZ denotes

the stabilizer of a point =z

If p:Z2 — X = Z/G 1is the quotient map, and F is a G-
linearized sheaf, p*(F)G denotes the G-invariant part of the

direct image.

A 1-point nilpotent scheme R shall be the spectrum of a local

Artin (C-algebra of length > 1



§ 1 The basic criterion

Let a finite group G act on a smooth (complete) variety

Z
If 2z € Z has non trivial stabilizer Gz , then
z € W= U Fix(g) , where Fix(qg) = {z'|g(z') = z'}
geaG
g+id

Moreover, let W' < W be the ldocus in W-Sing W which has
codimension 1: then for =z € W' GZ is cyclic and generated by a

pseudo-reflection g , where we recall (cf. [Ch]) that

Def. 1.1. g is a pseudo reflection if g is an automorphism of

Z of finite order n s.t. for each point 2z of 2Z

either a) gl(z) + z for i <«<n ,

or b) there exist local coordinates (t tm) around

1!
z such that

(1.2.) glty, oo ) = (£, «on st _qset))
(where ¢ 1is a primitive nth root of unity)
Lemma 1.3. If g 1is a pseudo reflection, let X' = Z/g , let

p' : 2 —> X' be the quotient map and let B' be the (smooth)

branch locus of p'



Then there are natural isomorphisms
.V
Q;,Gl——b p;{Q;)g and
(pu8,)¢ 2> 8., (- log B')

Proof. Both jv,j are naturally defined and are clearly iso-

morphisms on the open sets where p' 1is unramified.

If p'(z) =x , gl(z) =-z , we take local coordinates as in

(1.2.) and then the proof follows from a direct computation.

We set now 2" = Z-(ﬁ-—w’) = {z | Gz is generated by a pseudo-
reflection}, so that codim (Z-2") 2 2 , X =2/G , let
p: 2 — X be the quotient map, and finally set X" = p(Z'")

Lemma 1.4. Let B be the (reduced) branch locus of p:2Z2 — X =

= Z2/G , X0 = X-8ing X , 1 :xo & X the inclusion map. Then

the natural homomorphism (p*ez) —L ex(-log B) 1is an isomorphism,

.V
whereas Q;( "—L> p*(Q;)G is injective, an isomorphism on xo

1,G.
Z)

’

. 1
and p,(Q equals 1*(Qx0) .

Proof. By (1.3.) the assertion is true on the open set X" <« XO .
Since codim (Z-2'" ) 2 2 and" QZ ' Q; are locally free, if
1"
it X" T_E X ii.the1inclusion% p*(ez)G = (i Vo (844 (= 1log B)
and p*(QZ) = (1, )(Q ) = 1.(@ 0) .
X X



"
We have now to show that SX(-log B) —> (1 ), (8 ( - 1logB))

xl!

is an isomorphism. This follows since ex(-log B) 1is torsion free

(if v 1is a vector field, f is a function and v({(df) | I

BNxX" '
then v (df) € IB) ; hénce we have an injective homomorphism of which

XllE
jJ gives an inverse,

Finally, the inclusion 0 _ < p,0

X shows that jV is injective

z

Q.E.D.

We let now 7w : S — X be a resolution of singularities of X

!

and Y be the normalization of the fibre product 2 Xy S

We then have a diagram

—L s
(1.5.) € lw
7z —2 X
0 . 0 ,
and we set Y = Y-Sing(Y) , S = S-¢(Sing Y) ,
2% = 7 - e(sing(Y))

Proposition 1.6. For any invertible sheaf £ on X , we have




- 11 -

i

HO(Q; ® T*[) HO(Q; ® p*r)° .

Procf. By abuse of notation we shall identify £ with its pull-
backs, which we shall consider endowed of their natural lineari-
zation (notice that G acts on Y , with quotient S ).

Since S-5° has codim z 2 , HO(Q; @ C) = H0(970 @ ) ;

. S
by (1.4.) (0,00 1% = @', hence u%' e 1) = u%al
* Yy g? g0 0

and this last clearly equals HO(Q; ® 0)¢ since el .4 o is a
‘ e (Z27)

modification and 2 1is smooth.

Corollary 1.7. Let 2,G, ... be as above and assume X Goren-

stein, dim 2 = 2 . Let T* be the cokernel of the sequence

r

1 1. G
0—->-Qx®m —>-(p*QZ) @wx-—->-T*—>-0

X
0 _ .0 1,1 v ) 0 N
Then H (T*) s H (Ext (Qx,ox)) and the image of H (r) 1is iso-

morphic to the cokernel of
0 1 0,.1 2
H (Qx ® uJX) —> H (QS @ QS) .

Proof. First of all Qg 5 wg 3 ﬂ*(mx) since the singularities

of X are Gorenstein quotient singularities, hence R.D.P.'s; so

that the second statement follows directly from (1.6.) letting



By (1.4.) the above seguence is obtained.by tensoring with

Wy the exact sequence of local cohomology

1
X

1 1
Sing X(QX) > 0

: : 1 .
0—->S'2x—->1*(§20)—>1-!
and, as in Pinkham's article ([Pi] page 174, (4) of theorem 1),

we notice that by local duality the last term is isomorphic to

1 1 WV
Ext (Qx,ox) .

Remark. Notice that sometimes Y is necessarily singular, no
matter of which reéolution § of X one takeé.

I.e., there is no blow up of 2 on which G acts as a group
generated by pseudo reflections. For instance, ta#e the action of
E/4 such that (u,v) — (iu,-iv) : on the first blow-up there
is a point where the action has eigenvalues (i,=-1) , hence this
point has to be blown up, and over it lies a point where the eigen-

values are (-i,-1), ... hence the procedure can never end,

From now on we shall assume dim 2 = 2 , X Gorenstein (i.e.,
with R.D.P.'s only), and let S be a minimal resolution of singu-

larities of X
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Also we shall use freely the results of [B-W] and [Pi], in
particular we shall use the theorem of Burns and Wahl, asserting

that there is a fibre product

Def (8) —————9-LS

(1.8.) l 'lB

Def (X) __2__} LX

where LX ' LS are the bases of the versal family of (local)

deformations of the respective germs (X,Sing X) , (S,ﬂ_1(Sing X)) .

0 1,1 def
We have that LX = H (Ext (QX,OX)) = T, , L is also

X S
smooth and B8 1is a finite cover with zero differential at the
origin ( B 1is a direct product, over the singular points of X ,

of the quotient maps

1. 1,41 1

Vo=
(1.9.) HEX(BS) —> EXt (Qx,x,ox,x HEX(GS)/Wx ,
where E, = n_1(x) , and Wy is the Weyl group of the singularity
acting on the vector space H1 (6.) .
E, 'S

Let us now look at the maps of tangent spaces at the base

points induced by diagram (1.8.): it fits into a larger diagram

Il

(where E U E.)

X singular
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(1.10) H‘(es) ——— 4! (s

2
8
l H (lls)

1 1,1 .. 0 1,1 2
0 — 4 (ex) —>» Ext (QX,OXJ —> H (EXt (Qx,ox)) —> H (ex)
H

Tx

1

Here the inclusion of Hp(8,) is induced by the sequence of local

S
cohomology ([B-W] 1.3), on the other hand Burns and Wahl prove that
ﬁ*es = ex r So that the Leray spectral sequence for the map

(cf£. [Pi] page 176) gives the sequence

1 .
0 —» H1(8x) —_ H1IGS) —_ HO(R n*es) —> 0
12

.
HE(BS)

plus the isomorphism H2(8X) 3 Hz(es) ; thus we obtain the
splitting
(1.11)  H'(s.) = H (8,) @ H.(8)

: 5 X E' S

On the other hand, (cf. [Pi]), the lower exact row of (1.10) is

given by the Ext spectral sequence, and Pinkham proves that

(1.12) ob 1is dual, via Grothendieck duality, to the map



0,.1 2 *
a.H(QSQQS)——>TX

corresponding, using the isomorphisms of corollary 1.7, to the

map Ho(r) ibidem.

Definition 1.13. We let :ESDef(X) , the space of equisingular

deformations of X , be (cf. 1.8.) the germ w_1(0) . Clearly its

tangent space (1.10) is H1{6X) .

We can already derive some consequences (the first statement

being already in [Pi]}:

Proposition 1.14. Def(S) is singular unless ob 1is the zero

map. If ESDef(X) is smooth and ob is injective, then
Def (X) = ESDef(X) and Def(S) = ESDef(X) xR , where R 1is a non

reduced connected (0-dimensional scheme.

Proof. Since B is finite, dim Def(S) = dim Def(X) , hence

Def(S) is smooth iff Def(X) is smooth and ¢ has surjective

differential (recall that B has zero differential); by (1.10) the

last condition means that ob be the zero map.

For the other assertion, if ob is injective, then the in-
clusion ESDef(X) < Def(X) induces an isomorphism of tangent
spaces: if thus ESDef(X) is smooth, by Dini's inversion theorem
this inclusion is an isomorphism. This means that the morbhism

1

Yy is constant, thus Def(S) = ESDef(X) x 8 ' (0) , and our claim



follows since 8 is finite and with 0 differential, hence

R = 8_1(0) is a non reduced 0-dimensional scheme consisting

of one point.

Remark 1.15. By 1.12., 1.7., the conditions "ob injective"

(resp.; non zero) are equivalent to "Ho(r) surjective” (resp.

non zero).

Theorem 1.16. Let Z be a smooth algebréic surface, and let G

be a finite group acting on Z , in such a way that the gquotient
X = 2/G has only R.D.P.'s as singularities. Consider the exact
sequence (cf. (1.7.)):

HO(r

0,.1 0,41 * G *
0 — H (QX ® mx) —> H (QZ.® P mx) Ty —>

then, if S 1is a minimal resolution of singularities of X ,

i) Def (S) is singular if the map Ho(r) is non zero

ii) Def(S) 1is e.n.r. if the following hypotheses are verified:

a) Def (Z2) is smooth
1 G . 1
b) H (BZ) surjects onto H (ex)

c) Ho(r) is surjective.

Proof. i) is a restatement of 1.14., in view of remark 1.15.

For the same reason ii) is proved if we show that ESDef(X) 1is
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smooth provided a), b) hold.

Let Def(z)G be the subspace of Def(2Z) consisting of the
deformations preserving the action of G : it is well known that,
under the natural inclusion Def(Z) < H1(ez) ’ Def(Z)G =
= Def(Z) N H1(BZ)G (cf. e.g. [Cat], Lecture 3). Hence, if Def(Z)
is smooth, then Def(Z)G is smooth with tangent space equal to
H1(ez)G . We have a natural morphism Def(Z)G —> ESDef (X) : by
b) it induces a surjective map on tangent spaces, hence ESDef (X)
is also smooth, by Dini's theorem on implicit functions.

Q.E.D.

Recall that, by lemma 1.4., we have an exact sequence

G '

{1.18) 0 —> p,(08,)" —> 6, ——9-NBIX —> 0

Z

The map H1(E)Z)G e H1(8X) fits thus into the cohomology exact

sequence associated to (1.18), hence hypothesis b) is equivalent

to the injectivity of HT(N'B‘X) —> Hz{ez)G

We record for later use the following

Lemma 1.19. Hypothesis b), that H1(ez)G maps onto H1(8X) '

is implied by the vanishing of H1(N'B|X) and is equivalent to the

following numerical relation

_ .0, 1 2, G 0,,1 G
) = h (QZ @ QZ) -h (QZ ® p*wx)

T gt
h (NB!}{



Proof. The first assertion is trivial, the second follows from

G

Serre duality. In fact h2(e ) o= hO(Q; ® Q;)G , whereas

Z
2 2 . 0,1 2
h (BX) = h (BS) (c£. 1.10), which equals h (QS ® QS)

0,1 G
= h (2, ® w)~ by 1.6.

Corollary 1.20. Let 7Z be a smooth algebraic surface with

Def(Z} smooth, let G Dbe a finite group acting on Z in such a
way that the quotient map p : Z —> X = Z2/G is unramified in
codimension 1, and X has only R.D.P.'s as singularities (and is

indeed singular!).

Then, letting as usual S be a minimal resolution of singu-

larities of X , observe that p*mx = Q; ; 1if HO(Q; ® Q%)G sur-

*
jects onto Tﬁ , we have Def(S) = Def(Z)G} R , where R 1is a

*
1-point nilpotent scheme of length = dim TX .

Proof. N!

We can in fact restate theorem 1.16. with the weaker assumptions

we have in fact used

Theorem 1.21. Notation being as in 1.16,, Def(S) = Def(Z)Gx R' ,

with R' a 1-point nilpotent scheme of length 2z length T; , pro-

vided:



a)
b)

c)

Def(z}G is smooth

19

H1(SZ)G — H1(8x) is surjective

there is a singular point

*

Tv -
X

X

s.t.

Ho(r)

surjects onto
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§ 2 Examples of e.n.r. moduli spaces.

In this paragraph we shall consider basically two types of

examples for which cor. 1.20 applies.

As mentioned in the introduction, the first example concerns
surfaces in 3-folds, while the second is a slight generalization
of Kas' surfaces [Ka 2] , and deals with quotients of products of

curves.

In the first example we shall consider the following situation

(2.1.) W 1is a smooth 3-fold, and G 1is a finite group acting

on W with only a finite number of points Wa

non trivial stabilizer. There is also a very ample divisor H

W having a
S

such that ®W(H) has a G-linearization (e.g. if H is a G-

invariant effective divisor).

Assume further

(2.2.) There exists an integer r » 0 and 2 € |rH| s.t.

i) Z 1is G-invariant and with R.D.P.'s
ii) Z contains some wi

iii) if 2z > wi_, then Z 1is smooth at W and Gw acts on the
i

tangent plane TZ w with determinant = 1,
WL
i



Theorem 2.3. If (2.1.), (2.2.).hold and S is a minimal resolution

of X =2/G , then for r »>> 0 S has everywhere obstructed de-

formations.
Proof. Since, by (2.1.), p:2Z —> X is unramified in codimension
1, cor. 1.20 applies: in fact, by (2.2.) X has only R.D.P.'s and
is singular. We have to verify that HO(Q; @ mz)G maps onto

* 0,.* 0 1,.G,,1 ‘
TX = H (T ) = H ((p*QZ) /QX) (cf. 1.7.). Notice that the restri-

ction map Q% ® ww(rH) — Q; ® ww(rH) is a homomorphism of

G-modules, while w and ww(rH) differ just by a character of

Z
G

Now T* is a quotient of (p*n‘:,,)G/Q,l,/G _which has finite

length, hence there exists an integer k > 0 s.t. T* 1is a gquotient
s A
= 1 k 1

of T = e-ﬂw'w_/mw’w. -Qw’w where mw,w. is the maximal ideal
i=1 i 1 i
of the point W,
It suffices now to choose r >> 0 s.t. HO(Q% ® ww(rH)) maps
onto T
Q.E.D.

We show now at least that (2.1.)(2.2.) occur easily.

Example 2.4, We let W = A , where A 1is an abelian 3-fold and

let H be any polarization.

G = {#1} acts in the standard way, so w .. w64‘ are the



- 22 -
2-torsion points.

For every r , H0(®A(rH)) splits into even and odd part, and we

take 2 inside |rH|™ .

By Lefschetz's theorem |rH| embeds A for r 2 3 , therefore by
Bertini's theorem, we can choose Z to be smooth and to contain

all the 64 2-torsion points.

2.2 iii) holds since (- 1)2 = 1 , so X has 64 ordinary qua-

dratic points.

It is important to remark that S 1is a regular surface.

0

In fact if X is the smooth part of X , we have

1%y — v%0' ) — 5% * .

S x0 Z

But, by standard exact sequences, since H1(®A(-rH)) =0,
we have HO(Q;) = HO(QA) , So there are no invariant forms.

The next examples we consider are a slight generalization of
an example due to Kas, [Ka 2] , and we shall call the corresponding

surfaces '"generalized Kas surfaces".

Consider, for i1 = 1,2 , fi :Ci —_— Fi a simple cyclic

cover of degree n between complete smooth curves, i.e.



(2.5.) There is an invertible sheaf Ei on Fi and a divisor

Bi consisting of distinct points s.t. OP (Bi) = Ei ; Ci is the
i

subvariety of Li , the line bundle whose sheaf of sections is

Ei , obtained by taking the nth - root of the section defining

B,
i
: " th X
Clearly the group My # Z/n of n roots of unity acts on
C. , and £, :C, —> I'. 1is the guotient map.
i i i i
Notice further that
- =1 -(n-1)
(2.6.) f*oci = 0Fi ® Ci e ... e‘ci .

To adhere to our standard notation, we let Z = C xc2 and we let

K act on 2 by the (twisted) action

(2.7.) Cix,y) = (Cx,C_1y)

It follows immediately that if X = Z/un , then the singularities
of X are exactly R.D.P.'s of type An_1 r and p:Z —> X is

unramified in codimension 1.

1

As a preliminary computation, we notice that (Q = @ , for short)
_ e* n-1
(2.8.) QC = fi(QF. ® Ei )



I,

(fi)*QC. = Q ® (Q 8 Ei) ® ... &(Q .
i i i i

{(with QF ® Ei being the eigensheaf corresponding to the

i .
character of “n , T —> 3) .
®2 _ @2 e ®2
(fi)*QCi = QPi(Bi) ® £i @ QPi(Bi) 2!

®2 - n-2
.. 9 QFi(Bi) @ Ei '

where Q?Z(Biy @ Ei is the (¢ —> ¢ 7J) eigensheaf.
i

We apply now the Kiinneth formula to 2 = C1 xC2 , keeping in

mind that the action is twisted on the second factor, to compute

2
Z

same symbol a sheaf on Ci and its pull-back to Z)

the G-invariant sections of Q; @ Q {where we denote by the

(2.9.) HO(Q; ® QE)G - HO((ng ® 0. ) o (0. e 028%))6 -
c c c
: 1 2 1 2
0,.®2 -1 0 n-1 (P21 o 82 3
- @ E) et e, el e EB(H QP(B)®£)®
1 2 \izot VT !

® HO(QF ® £%))) @& ... (symmetrical expression interchanging the
2

roles of I, , T

1 ) -

It is well known (e.g. since the Kodaira-Spencer map is onto

for the family of deformations of Z of the form C%x Cé) that

Def (Z) is smooth.
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3 *
In order to check that HO(Q; ® QE)C —_—> TX , we set

and we choose local coordinates (x,y) on Z wvanishing at

"
(bi'bj ) . Then the first summand of (2.9.), locally at (bi,béﬂ

contributes expressions of type

n-1_ 2 n-2. 2 n-1
(2.10.) (a_1x dax” - an_1dy)-+(a0x dx ayY dy) +
+ i (a.xnpijdxza.yn_1_jdy) + ...
J ]
N, .-
where a, = ah(xn) ;o Oy = uk(y ) , i.e. the ah's are pull-backs
of local functions on T, , and similarly for the «a, 's .

1 k

We- have the following lemma, whose proof is straight-forward.

Lemma 2.11. By the quotient map X b— zx , with ¢

a generator of u_, the quotient i c_1y

p*Q;/Q; is locally generated by the expressions

xlyl+1dx-ylxl+1dy (for i =0, .... n=2)

Theorem 2.12. Let S be a generalized Kas surface as above of

degree n . Then Def(S) = Def(F1)x Def(Fz)x R where R is a
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1-point nilpotent scheme of length (n-1) x (r1x rz) if

r, = deg(Bi) g g; = genus(Fi) and the branch points are general.

Corollary 2.13. If v = h'(8)/dim Def(S) is the ratio between

tangent dimension and dimension of Def(S) there do exist genera-

lized Kas-surfaces with v arbitrarily large.

Proof. If S has degree n , deg(Bi) =g, - 1 , then v (8§) =

= (n=-M(g; =1 (g,=-1/30(g,-1) +({g,=-1]. o

Proof of 2.12. By lemma 2.11. it suffices to verify that, for

each h =0, .... n-2 , we have 2 surjective maps,

2.14.)  ®22%%3,) e M e (2. o) —> o .
r, =1 1 r 2 e ij
1 2 i=1, -T4
i=1, T,
(given by @(valb! ® valb!J)
i3 1 J
and its symmetrical.
Since H1(Q?2 ® E?) = 0 , we have a surjection
i
1%, e ) —> o ¢, , while H2o(Q. ® (%) —>>
r.'®q 1 Y b! r 2
1 1—1,..r1 i 2
—> @ T, , if and only if Hq(Q (-B,) ® Eh) injects into
il b r 2 2
3-1,.92. j . 2
1 h
H (R ® L£.,)
F2 2

By duality there must be a surjection Ho(Bzh) —> HO(cg'h}',

0 for i < n

and this holds e HO(E%) =
1 for i =n
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This condition and the symmetrical one hold if deg(Bi) <
s genus(Fi) and the branch points are general, by an easy

argument on the Jacobian of Fi

The following is, instead, an example where the moduli space
is only singular. Its purpose is to illustrate the following feature:
though small deformations of hypersurfaces in 2@3 are still
hypersurfaces in »3 (cf. [K-S], [Sel), the same is not true for

hypersurfaces of a weighted projective space P if IP has not

isolated singularities.

In fact (as it happens in the examples by Horikawa and
Miranda cf. § 3) when all the deformations are surfaces in P ,
and the surfaces have to pass through the (rigid) singular points
of the weighted projective space, then the deformation space be-

comes everywhere non reduced.

Example 2.15. Let X be a general member of the family of hyper-

surfaces of degree 8 in P =1(1,1,2,2) . X has 4 quadratic
ordinary singular points, hence the tangent codimension of this

family in the Deformation space is at least 4.

But Wy = OX{Z) , S0 that the canonical map of X embeds it

as the complete intersection G4 n Qé in :P4 where G4 is a
quartic hypersurface in Im4 and Qé is a quadric of rank 3. It

is easy to see that the complete intersections G4 n 02 are all the



deformations of X , and  that the previous family has thus

codimension equal to 3.
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§ 3 Weighted hypersurfaces with everywhere non reduced

moduli spaces.

This panagraph shows somehow Zhat oux siiuazion L4 not "anti-
fLelal”, in 5aci the examples we éhaﬂﬁ consdiden An this seciion
will be hypersurfaces X of deghee A 4in a wedghted 3-dimensional
profective space T(1,1,p,q) : 4in these examples S 4hall be‘Aimpﬂy
connected, we shall get all the A~ 4sdingularities and Def(S) will
be e.n.r. for all d satisfying centain congruences which guarantee
that X 48 genendically singular; ithe examples of Horlhawa and

Miranda will be two Lssues of a double infinite sendies of examples.

Here IP3 = Proj(E[yO,y1,y2,y3]) r P < g are relatively prime

integers, T =1P(1,1,p,q) = Proj(E[xo,x1,x2x 1) where degqg x, =

3 0

= deg X, = 1, deg Xo =P o deg Xy = q

We let G = Z/pgZ and let ¢ € C* be a primitive (PQ)th

root of unity; G acts on :P3 by

(3.1.)  (¥gr¥qr¥ye¥g) = (vyov, 8%y, tF v))

3 .
(3.2.) Y :IP° —> TP , given by w(yory1,y2;y3) = (yo:y1,y§fyg)

]
is such that ZPB/G =1

(3.3.) Let £ € Clxg,x X

,2,x3]d define a hypersurface

X = {f = 0} of degree d in P , and let 2 = w_1(x)
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(thus 2 is the locus of zeros of

def.
Fly) % £y, v v5 v .

Proposition 2.4. Assume d 2 (p-1)(g-1) , so that we can write

d as d = bp+agqg with a,b 2 0 . Then, for a general choice of
f , Z 1is smooth, X 1is singular but has only R.D.P.'s as singu-

larities iff p,q,d are according to the following table, where

P2 = (0,0,1,0) , P3 = (0,0,0,1) are the singular points of TP
Table 2.5.

Ir d Singularity at P, | Singularity at P,
r(1,1,2,3) d = 1+6k A1 A2
P(1,1,p,p*1) d = plk(p+1)-1) / A,
®(1,1,p,rp-1) | & = (kp-1) (rp-1) Ao /

Proof. First of all let Q, = 7' (P)) , 0y = ¥ '(P,) . It is

easily verified that the stabilizer of a point vy €ZP3 equals

i) G if y =0Q,,Q; or y belongs to the line L = {y,=y;= 0}

ii) Z/p if Y, 0 and y is not as in i)

iii) Z/q if Y, 0 and y is not as in i).



Moreover, Gy- is generated by pseudo reflections if

Yy # 0,,Q3, 8O that in particular P Py are the only singular

2 T
points of IP . Since a pseudoreflection is characterized by the
property of having a fixed locus of codimension 1, we see that if

Z is smooth (and G-invariant), then X is smooth outside P

2 [
P3 3
Since d = ag+bp , by Bertini's theorem Z 1is smooth out-
side the locus {yg = y?'= ygpygq = 0} , i.e. outside Q, and
Q3 , hence X too is smooth away of P2 ' P3

Now, Z 1is smooth at Q2 iff fd(YO’y1’1’y§) contains either
a constant term, or a monomial of degree 1, i.e. iff either d = 0
or d = 1 (mod p). Similarly 2 is smooth at 03 <« d s 0 or

d =1 (mod q)

Assume now that Z contains Q2 (d 8 1 (mod p)) ; there are
then local coordinates (u,v) on 2 at Q2 with G acting by
(u,v) — (quU,cp_qv) . We have «{u,vl} o (E{u,v}““p> = ¢f{u,v3}
hence, if we set W = vd , e=¢4d ,E{u,v}G = m{u,w}z/p , where

Z/p acts by ub—=> eu , wh— eJw

It is well-known that the quotient is a R.D.P. iff Wy is

invertible, i.e. the determinant of the transformation is 1, i.e.
g+1 8 0 (mod p) ; then one has a singularity of type Ap_1

We proceed in an entirely similar fashion for Q3 ’ P3
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finding that Z is smooth (resp. empty) at Q3 , X has a R.D.P.

at P3 (in fact, a singular point of type Aq_ ) iff 4 1 (mod q)

1
and p+1 s 0 (mod g} (resp.: d = 0(q))

We have thus four cases: but, if d s 0 (mod g} , ds0 (modp) ,

then X 1is smooth, and this case has to be excluded.

n

If p+1 = 0(mod gq) , since p < g , then necessarily ¢ p+1

Clearly then g+ 1 = O(mod p) «> 2 = O(mod p) , i.e. p = 2 ,

We fall then into the cases 1), resp. 2) of the table. On the other
hand, g =p+1 , d = 0{(mod p) d = 1(mod gq) iff there exists m
such that d = mp , and mp = 1(mod p+ 1) ; but mp =-m(mod p+ 1} ,
hence it must be m+1 = 0{p+1) , i.e. we are in case 2) of the

table.
Finally, if g =rp-1, d = 0O(mod q) , d = 1({mod p) means that

d = m(rp-1) , and m(rp-1) = 1(mod p) , i.e. m+1 = 0{(mod p) ,

i.e. m = kp~-1 , as in case 3) of the table.

Remark 3.6. These varieties X are Weil subcanonical, i.e. @(1)

is a divisorial sheaf (cf. [Re]) associated to a Weil divisor of
which a multiple t 1is a canonical divisor; the subindex 1 of

X is the minimal i such that O0(i) is invertible (i|t)
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r

In the 3 cases of table 2.5. t = 6(k-1) , (p+1)(kp-3)

plr(kp-1)-k-r-1)] , i=6, p+1 , p respectively.

Theorem 3.7. Let X cIP(1,1,p,q) =P be a genenal hypersunrface

as Ain Zable 2.5. o4 degree A 4s.t. X L& 04 general type, L.e.
d>2+p+qg and r > p-2 . 1§ S 4is a minimal resolution of X ,
then evenrny smalf deformation of S is the resoclution 04 a hypersunr-
face 04 degree d 4in IP , and Def(S) = ESDef(X) x R , whexre

ESDef (X) 44 smooth and R 44 a 1-point nilpofent scheme of Length

equal o the sum of the MiLlnoxr numbens of the singularities.

Proof. Of course we are going to use theorem 1.16, part ii}). It is
well known that Def(Z) is smooth (cf. [K-S] [Se]), and we have

to verify the surjections
1 G 1
H (Bz) —>> H (BX)

0 41
H (QZ

G 0 1,G,,1
* =
@ p wx) —>> H ((p*QZ) /QX ® “’x) T
To verify the first, we consider the exact sequence 1.18. Here
B = B2 U B3 , where Bi is defined by the equation x. = 0 ;

B2 ’ B3 are smooth and intersect transversally in d points.

(The only exception being the II case with p = 1 , where B = B3)

Lemma 3.8. Né = N

Proof. At a point p where B, B3 meet, (xz,x3) are local
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parameters. The vector fields in Gx(-log B) are of the form

.3 ,
3 8x3 , hence the cokernel NB has

local sections of fhé form a(x3)3/3x2-+8(xz)8/8x3

a(x2,x3) -x28/8X2'+b(x2,x3)x

Lemma 3.9, If B does not contain P

3 then N! = O_ (g} ,

2! B

s t ~ s - -—
otherwise NB3 = 0B3(q) ® ®B3( (p 1)P2}

Proof. The first assertion is trivial. To prove the second state-
ment, cf. the proof of 3.4., we may assume (after a linear change
of coordinates) that g = yo/y2 r V= y3/y2 are local coordinates
for 2 at 02 . We let M be the intermediate guotient Z/(Z/qg):
hence u = yo/y2 ; W = Ve o= x3/yg are local coordinates on M

M 1is (locally) smooth and the quotient map M — X is unramified

in codimension 1, so that

_ J&/p
(3.10) GX = GM
G _ _ ~ Z/p
6, = BM( log B)

where B = {w = 0}

We claim first of all that Né is invertible, and we are
3

going to exhibit a local generator around P, . We recall that the

2

local ring OX P is generated by x = u? ;Y = wo ;, Z = uw
. ! 2 H

subject to the relation xy = zP .

r
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The sections of ek . by 3.10., are of the form (notice

that E/p acts by (u,w) — (eu,e-1w) where ¢ is a primitive

pth root of unity)

3

(a(x,y,z)w-+a(x,y,z)up_1)a/3w4-(b(x,y,z)u-+B(x,y,z)wp-1)3/3u

whereas the sections of eg are of the form

alx,y,z)w 3/3w+ (b(x,y,z)u+ B(x,y,z)wP™ 1) 3/su

Hence the elements in the quotient Né can locally be written
3

uniquely in the form
(3.11) aPTa/0w + & (x)
We can also rewrite
p-1 _ -1 _ -1 p-1 _
u 9/%w = X +u 3/0w = xu (3/3y pw +3/38z +u) = X 3/3z +
p-1

+ pz 3/3y

so a local generator of Né is
3

(3.12) uP~1a/5w = x 3/82 + p2P a0y

in a neighbourhood V., of P

2 2
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We let Vi be the open set where X5 # 0, for i = 0,1.

Then V0 , V1 ; V2 is an open cover of B3 . On V0 we have

coordinates (for IP)

(3.13) n = x1/x0 £ = xz/xg , . = x3/xg
whereas
(3.14) X = xg/x2 , Yy = xg/xg , oz = - Tgff/p) ) szj
2 2
(where, cf. table 2.5., r = 2 1in the first case).
Clearly 9/9tz 1is a local generator for NéB on..VO and

r

since x = % ; Y = cp/g— . 2z =t/ , we have
' 1

3 P s -r 3 _p=1.1-r 3 T=-r 3 _ . 1-rf_ 3
3T PE 5y TE 3z T PE & 5y T X8 3z 0 © (xﬁ'+
+ pzp_1 2 ) On V., we have coordinates a = x,/X

By B 1 0 1 7
b = xz/x? , € = x3/x? , such that a = 1/n, b = En-P ’
c = Cn-q .

A local generator for Né is 8/%c , and 3/93¢ = n 23/s¢c
: -73

Hence a section of Né

is given by functions AO,A1,A2 on
23

Ay 3/3T = A, (x 3/3z + p2P~ 13/0y) = A, 3/dc
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1-r _ -q _ .
Hence AO- £ = A2 ’ Aon = A1 , 1.e.
x1—r
- 2 s (I+1-p _ 5 T a axd = ax9
Ay = B BT Ag¥ g = ByXy - and AgXg = AgXg
0

~ - - X, p-1

Setting AO = Ao ’ A2 = A2 ’ A1 = A1 -(;E) , we obtain
a rational section of OB (g- (p-1)) . Therefore
3 .
N! =0 (q-—(p-—1))'® 0, ((p-1)D) where D 1is the divisor of
B B B

3 3 % 3 .

zeros of (;2) in V1 . On the other hand the section x
1

vanishes on V1 N B3 giving D as divisor, and on P

plicity 1, hence ®B3(D) = 0B3(1) ® 053(-4P2) .

0
2

Analogously we have (aSsuming p 2 2)

(3.15) Néz equals 0B2(p) if B, b Py

0, (p) ® 0, (~pP,)
B, B, 3

if B

2 3 P3(here g-1=p) .

\

To finish the proof, we shall apply lemma 1.19, and we shall show

by explicit computations that

0,,1 2. G 0, -1 - G _
h (QZ ® QZ) -h (QZ @ p wx) = h (N
(3.16)
1 T .
+h (N! ) (h (W) 1if p =1).
B B
3 - 3
We are first going to compute the left hand side, and in fact we

shall show that the following holds true:

with multi-
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(3.17.) Claim: The left hand side of (3.16) equals

hO (o ) (d-p-q-2)) +n’( (d-p-q-2)) if pz 2,

]P(1,1,p IP(1l1lq)
and equals hO(O 2‘(d-—3-—q)) if p =1
r

Proof of the claim: The exact sequence

(3.18) 0 —> 0 (-d+i) —> @' 5 (i) —> Q) (1) —> 0

P’z

IH

shows that for i < d , HO(Q;(i)) HO(Q13 (1)) .

Pz

By the exact sequence

(y.)
(3.19) o—>913(i)—>o3(1-1)4—1——>®3(i)-—>o
P iy P

we get

0 1 0 g (vy) 0
(3.20) H (2, (1)) = (ker H (0,(i-1))" —L— H (0,(i))] =

g vy 0 .
= ker(Ai_1) —1 5 Ai , where Aj = H (®P3 (3))

Then, by the Koszul exact sequence for the regular sequence

. _ 0,1
(yo, - y3) in A = i?o gj , we get H (Qz(h))

= {z uij(y)nij | iy = yidyj--yjdyi oYy €8, _, }
Now, the terms in the exact seguence (3.20) are G-modules,
therefore we have to check whether the induced G-module structure

on H(2) (1)) coincides for i = d-A-p-q , resp. i = d-4
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. 0,51 0,41 2
with the natural ones on H (Qz ® p*wx) , resp. H (QZ @ QZ)

To do this we notice that the G-module structure on Ai

linearizes the 0 3(i)'s and we rewrite (3.19) as

Ir
00— ;i) =—> Ap¥ 80 s (1-1) — 0 , (i) —> 0
Ir P P
By which we get (i = 0) 20 ,% (det 4,)Y 8 0 . (-4) ; then 3.18
P P -
gives Q2 s >, ® 0.(d) 5 (det A.)Y ® 0_(d-4) . On the other hand,
2 ]P3 yA 1 Z

we have an inclusion of sheaves, induced by multiplication by a

constant times yg_1 yq_1 '

2

,
(3.21) 0 — Q, 8 p*u .

1
X —_— QZ ®

12 {1

1 1
Qz(d—p-q—Z) QZ(d-4)

since (det 31)V corresponds to the character ¢ b— ¢ ~P79 , for
which y§h1y§-1 is an eigenvector, it follows that

o) @ p*w,) = @) . (d-p-q-2)

YA X A

(3.22)

o) @ 22 = (det a)Y 2l(d-4)

A z - \9et Ay /
It follows that, if we define the weight w of a monomial

Jg 39 35 33 1

Yo Y9 Yy Y3 as the element w of 59 Z/ Z given by
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j ]
E% » 2 , and we let A: be the subspace of monomials of degree
i , weight w , set A" = & AY , then

i

1}

0, 1 «. \G
H (R, ® p*u.) (2 ay5()ny g | Uiy € Ag-4-p-q

and w(uij)~+w(ni.) = 0}
0,1 2,6 _
H (2, ® Q) = {z vij(y)nij | Vi € Ay ¢
- 1.1
w(vij}-*w(nij) = 3 p }

We let u' be the linear map induced by (3.21), which is clearly
injective; then the left hand side of 3.16 is just the dimension of

coker{u')

6 . 6
Voo (R3¢0

(multiplication by y§_1y§_1) where these spaces are viewed as

Since u is induced by a map u: (Ad-4-p-q

G-modules according to (3.22), it will suffice to identify

W = HO(Q; ® Qi)G/HO(Q; @ p*wx)G with a quotient of a supplementary

space V to Im u inside ((Ad_G)G)G
1.1
Recall that HO(Q1 ® QZ)G ={f v,.n,, | va, €ea P 9
Z 2 ..o 13 i3 01
i<j

-2 -1_2 -2_2

P g p g P d

VaarVip € A ! Vg3rVeg €A y Vyg €A }

The above properties imply, since (p,q) = 1



(3.23)

Therefore we can choose the space

such that

(3.24) z

Now, a given element

above) iff there do exist

’

01 13

Vo2rV12

Vo3'V13

23
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p-1.g-1

divisible by vy Y

are divisible by yg-zy

(by vy

are divisible by yg—1y

-2 _g- .
yg yg 2 if pz2 2 (b

V to con

Vij”ij € V e VO.I = 0 , and (for
_ p-2_g-1
Vio T VWi2¥y Y3
if p = 1) with w
- p-1_g-2
Viz T Wi3¥y Y3
- p-2 _g-2
Vo3 T Wp3¥y Y3
not containing mono
(if p=1 v,y =w

Wy T Wo3(Yge¥yeY,)

b Vij”ij in V maps
(3.22)

.a as in

i3

ag~-1 .

3 if p 2 2

=1 e p =)

g-2

3

y yg—z if p = 1) .
sist of the elements

i=20,1)

if p2 2 (v,, =0

i2
i2 = Wi (Yoryqeys)
with woy = wi3(y0,y1.y2)

if pz 2 with w

23

mials divisible by y2y3

g-2
23¥3
to 0 in W (defined
s.t.
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: - ,P-1.,a-1
Vighig = ¥ ¥3 0 T UigNyy

We can write the above equation as 4 equations, corresponding
to the respective coefficients of dyo, e ,dy3 .

We must have 0 = I (v..-—y§-1y§_1uij)(yidyj-yjdyi)

i<j 1]

n

_ _ L p=1_a=1 . -
= iij(vij Y5 Y3 uij)yidyj (if we agree that vji vij ’

u., ==-u,. for j > i) .
J1 1)

< , _p-1_g-1 -
Thus, for 3 =0, .. 3 iij (yivij Y5 Y3 yiu..) 0 .

We can write the above, if p 2 2 , as

(L p=1 d=1 _ -
Yy Y3 (woolygryqi¥g) —youg,y *Woslyg yesy,) —y3up,

T ¥qUgq) =0
p-1_4g-1. - _ -
Y Y3 Wyt YUt Wy mYaU s tygagg) = 0
(3.25) <

p-2_g-2 - -
Yo Y3 (YgWgp t ¥YqWyp T YoYUy T YY Y,

t W39 T Yo¥gUgy) = 0

p-1,9-2 - - -
¥3 Y3 (¥gWo3 *¥qWy3 ¥ Wa3 T ¥3¥gUg3 T Y3¥qlUq3 T Ya¥3lp3)

The above system is equivalent to the one obtained by
equating to zero the terms in the brackets: but then one can
observe that (I being the first new equation and so on ...)

yOI-+y1II = III + IV , hence the IV equation can be discarded.

We write the wij as Taylor series in Yy ¢+ Y3 v thus we set
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= w "
Wi2 T Wit Y3¥iH

. ]
i3 T Wiz T YoV¥i3

w

Wo3 = Wyg ¥ Y, Wys Y qWyg

where Wi 4 € E[yo,y1] , i3 € E[yo,y1,Y2] .

w!',
1]

Assume that our element in V is mapped to 0 inside W : then we have

Vo2 " %o3 T YqYp1

W12 * W13 T T Yolpq
Ugz(mod yy) and wyy = YWy, ¥ Wy =Y YWz T

Y02
-— ]
(3.26) Yo ¥ Wiy

)
0

03 = Ypp(mod y3)

£
n

13 u12(mod y3)

£
1]

12 = uy3(mod y,)

=]

Conversely, if (3.26) holds, it suffices to choose Ugq = Ypy

Yoz T Y03 r Vo3 T Yoz + Wi3 T Wy v Wiz T Wy3 s Up3 = 0

Therefore the kernel of V —> W is the same as the kernel

of the mapping associating to an element of V the pair

1o T Fg3) 7 + )
- -— [} [}
Wo3 T ¥YoWp2 T YW * YgY W3 T Y Y W3

G

We conclude that dim W = dim{w,, € Ad-2-p-q

| w does not
23

contain monomials divisible by y,y;} +dim {wij € Ag—p—q—Z} =

: G
= '
dim {w' € Ad-2- g n m[yory1.y2])+

. " G Y —p—g—
+dim {w € A N E[yory1 ,y3]} = h 01P(1,1,p) (d pP=q 2) «+

d-p-g-2
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0

Whereas, for p = 1 , only Vi3 is %0 , and v, q-2

with wiq = wj3(y0,y1;Y2)

We find then that the element in V maps to 0 into W if

(Won—ysu.,) = L y u_.
33 3733 h*jhhj

I y.(w., - . =0

j¢3yj(w33 y3uj3)

We claim then that I ijj3 = 0 in E[yo,y1,y2] is a necessary

and sufficient condition since then by exactness of the Koszul

sequence there exist uh_(yo,y1,y2) s.t. Wi3 = hijyhghj , and then
we choose u., =0 ’
j3

0 -1 -
Thus here dim W = h (¢ , (d-3-qg}) = (d ; q) .
Ip

Q.E.D. for the claim

To deal with the right hand side of (3.16), we use Serre

duality and the fact that (cf. [Do], 3.5.2.)

Wn =®B (d-g-2) , w =0, (d-p-2)

Then, setting 62 = 0 if B2 k] P3 , 6. =

63 = 0 if B3 b P2 ' 63 = p-1 otherwise, we have
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Tint ) = n@ - P =
(3.27) h (NBZ) = h (HOm(-OBZ(P)( 62P3) ' 082(d q-2)))
= hO(OB (d-—p-—q-—Z)(62P3)) , and similarly h1(Né ) =
2 3
.0
= h (®B3(d-p-q-2)(63P2))

To end the proof, in view of 3.17 and 3.27, it suffices to
prove that for our choices of 4, p , q .,
0 0

(3.28)  h(0y (d-p-q-2)(8;P3)) = h (O q oy (d-p-g-2))

if p>1 and

0. = i -p-g-
h7(0y (a-p-q=2)(8325)) = b (Op(y 4 ) (d=p-q=2))

Since B3 cP(1,1,q) and symmetrically B2 <IP(1,1,p) , we are

considering the following problem:

(3.29) -Bc P (1,1,p) =P has degree d ,. P is the singular
point of P, 8§ =0 if B » P, &6 = (p-1) other-

wise, i 1is an integer > 0 : 1is there an equality
h_ (a-1)) = n%(0_(a-1)(sp) 2
r B '

(3.30) The answer is positive if ¢§ = 0 , since we have the

long exact cohomology sequence

0 —+H°(0P (d-1)) --—>-H0(®B(d-i)) —->—H1(®]P(-i}) =0

The following lemma follows from a more general result proven in

the Appendix.
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Lemma 3.31. Let I :TF =]Fp—>-IP =1(1,1,p) be the blow up of
the singular point P of TP , and let E_ be the exceptional
divisor. Let B be a smooth curve of I , and identify B to

its proper transform in the Segre-Hirzebruch surface TF =T
-1

P

(x2=0),and F is a

fiber of T (proper transform of Xq = 0) , we have: if r is a

Then if EO is the curve defined by I

positive integer and r = r'+r" p , with r' < p , then
0,(r) = 0 (c'F+xr" Ey) , and H'(04(r)) = H (0L (x'F+r"E))

B

Moreover Q)B(GP) = OB(G E,) (recall that E, = E_ + pF)

0

Assume now we are in the case when B 3 P ‘, and (4 - i)
(cf. 3.29) equals t'p (as can be checked), while d = tp + 1

(so t > t')

It is then easy to see that B = tE.+F , and, in view of

0
. 0 . _ 0 . _ .0
3.31 and since H (OP (t'p)) = H {®F (t EO)) = H (0 (t'EO+
+ (p-1)E_ ) , we are looking at the surjectivity of the map (res)

in the following exact sequence on I
0,.p . 0

(3.32) H (0 (£'Eg+ (p=-1)E,)) ——=— H (0,(t'Ej+ (p- NE,) —>
— 1 (0 (((p-1) +t" - t)E - (p(p=-1) + NF) 1>

—i> H1(01F ((t' +p-1)E0-p(p—1)F)

This 1s equivalent to requiring the injectivity of 3
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Set b= (p-1)-(t=-t') : if b $-1 the domain of j
is a vanishing cohomoclogy group and we are done (cf., for the

vanishing, the table at page 612 of (Kon]).

Assume instead b 2 0 , and set V =0 1 ) 1 {(p) . Then

P P
the map Jj 1is the map j'
(3.32)  H'(syn®V @ 0(-p(p-1)-1)) 1> 1 (sym®**v @ 0(-p(p-1))
given by the equation of B
t . t
(t-k) ' p{t-k)
I.e., if £ = ¥ ¢ ylyjyp = z £ (yar¥q)y
! k=0 ijkf04142 *=0 k4041742
deg fk=kp+1
b b
is the equation of B , then, since Sym V'=86 0{(ip) (® stands
i=0

for 0 1!) ' wi € H1(0(ip-p(p-1) - 1) is mapped under 3j' to
b

t 1 .

5 fkwi , with fkwi € H (9({(i+k)p-p(p~1}) .

k=0

On the other hand this last group is zero unless 1i1+k = h'
S p-2 , and it is always better to deal with Ho's rather than

H1's . hence we dualize, and ask for the surjectivity of

p-2 0 b 0
h'=0 i1=0
(3.33) H Il
p-1 p=1 0 0 i
8 Ho(olhp-.z)) —_— ® H (0(ip - 1))
h=1 i=t-t'
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t

(where N — r £
k

This map is not in general surjective, hence we have to check the

three cases of table 2.5.

Case I :+ for p=2, b=-2; for p =3 b =0 and

82 (0(1) @ 0(4)) —>> H°(0(5))
Case ITI : for p = 1 there's nothing to check, for p 2 2 , there
remains to check the case for TF(1,1,q) , g =p+1,
which follows from lemma 3.34, since b = q-3

Case III: b =p-1-r-1, O.K. if r > p-2

Lemma 3.34. If £ has fo + 0, f£. , f1 rel. prime, then

(3.33) is surjective for t-t' = 2 .
P=1 p-1 0

Proof. Since I h'(0(hp-2)) = £ h (0(ip=-1)) +1 , it suffices
h=1 i=2

to show that the kefnel has dimension 1.

The map is given in matrix equation by

fr - o=y 4 . 1! W
] -1 fof1 ceve fp_2 © b1
. fo fp;3 i
. 'ﬁgfifz i
Y2 )| LI R R
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and it suffices to show, by induction on i =1, .. p-2 , that

. o i

if ¢ is in the kernel, then fo | O 1 Oy e 0L
. . R S . i-(3-1)

determined by ©, and if 90, = f0 9; v then 95 f0 I mj

are

_ i
and mi+1 = f1gi(mod fo) .

In fact, if ¢ is in the kernel, then 0 = wi+2 = wai+2+

, hence f0 | 9,

+ £ . + f

17i+1 e

g; = fogi+1 and the other inductive assertions are clear since

141@7 ¢ thus £y [ oy

i+1 . s
e.g. ¢y, =2 f1 gi+1(mod fo) is gotten by dividing by f0 the

above equation.

Q.E.D. for the 'Lemma

. *
The verification of the surjectivity of HO(Q; ® p*mx)G —>> T,

follows easily from the explicit description we gave of

0,1 . . G _
H™ (R, ® pru )~ = { 2 uij(y)nij | uis € Ag 4pg w(uij)+

-+w(nij) = 0} and from lemma 2.11 (applied with n equal to p ,

resp. g) .
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Appendix: formulas for almost simple cyclic covers and

cones IP(1,1,p).

To justify the definition of almost simple cyclic covers,
let's consider I =1(1,1,n) , the projective cone over the rational
normal curve of degree n , and 1 :IF —> P where IF , the blow
up of the vertex of the cone, is the Segre-Hirzebruch surface IFn

We have a commutative diagram

2
(A1) r’ ¥ > where W(Yq,¥Y,i¥,) = (Yo/¥11Y5)
0"+1"+2 0’41742
0 A € 1s the blow-up of the point
€ Il
Yo = Yy = 0 , and
(0]
F, ——> T
1 n

¥ , @ are quotient morphisms by G = M, E Z/n .

Let E, be T '(x, =0) , E =1 1(0,0,1) , F=T1 (x,=0) ,
and set E6 » El , F' their set theoretical inverse images under
© .

An easy computation gives
(a2) m*(EO) = nE6 + W*(E ) = nE! , o*(F) =F' , and E0 ¢+ E_

are the branch locus of ¢ , with EO--E°° = nF .

We notice that, by definition (cf. [Dol)
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. . G ‘
(A3) 0O (r) = ¢ (0 (r))~ , moreover 0 (r) = €,0 (rE!) ,
12 * P2 IP2 * F1 0]

v G
hence .0 (r) = H*(w*(ﬁmwv(rEo))

Writing r = g+r'"n , with g < n we have (go,,‘QJ]F (rE('J))G =

1

= W*OE‘ (qEé)G ® 0 (r" E,}) , hence, in order to demonstrate
1 Fn 0

lemma 3.31, it suffices to show that

WG
(34)  ©,05 (qE}C = 0

1 n

T (gF)

This will done in greater generality.

Almost simple cyclic covers. )

Let an algebraic variety Y and a line bundle L of rank 1

be given on Y , such that the sheaf of sections of L be iso-

morphic to OY(F) = £ for some divisor F . Assume that there
are given reduced effective divisors EOI, E, on Y, which are
disjoint, and are such that Ey = E +nF

Definition A5 The almost simple cyclic cover associated to

(Y,L,EO,Ew) is the subvariety X <> IP(L & E*) defined by the
equation z?eou = eozg where €y » €, are sections defining
E0 y resp. E_ and 21 ; z0 are respective linear coordinates

on the fibres of L , resp. the trivial bundle EY

The group G = My acts, if ¢ is a primitive nth root of

1 , by 21 —_— gz1 ’ z0 zq
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Take , as customary, 2z = 21/20 as a coordinate on V. =

0
- - ! v - _ = -
= (X Em) , and =z zO/z1 on ‘V_ X EO .
We have
n-1 .-i -i .
Proposition A6 ¢,0, = @ L “(-E,) , where L "(-E)) =
i=0

2 En_l(-—Eo) "is the eigensheaf corresponding to ¢ b— cl

Proof. Write a function on V, as fy+f,z+... fn_1zn"1 with
. -i vy D=1
fi a section of ¢ on VO-’ and as 9o * -+gn_1(z ) on
VvV, » with gj a section of £7 on V_ ;i then notice that
i _ yn=1i _ o
f,27 = fieo/emz , hence fieo/e00 Inos
Q.E
Similarly one proves:
Theorem A7 If m*(EO) = nEé , and g < n , then
q . n-1 n+g-i, _
0,0, (qEl) = (& 9h) 0 (0 F (=Ep))
i=0 i=g+1

where the index i gives the ¢ — tl eigensheaf.

G
Cor. A8. «,0,(qE)) " = cd



- 53 -

REFERENCES
[Bel Beauville, A.: "Sur le nombre maximum de points
doubles d'une surface dans 1P3(u(5) = 31)"7"Geometrie
Algebrique, Angers 19797V, Sijthoff-Noordhoff (1980),
207-215
[B-W] Burns, D.-Wahl, J.: Local contributions to global de-

formations of surfaces", Inv. Math. 26 (1974), 67-88

[B-P-~V] Barth, W.-Peters, C.-Van de Ven, A.: "Compact complex
surfaces", Springer Ergebnisse Vol. 4 (1984),

[Cas] Castelnuovo, G.: "Osservazioni intorno all geometria
sopra una superficie", Nota II, Rendiconti del R. In-
stituto Lombardo, S. II, Vol. 24, (1891)

[Cat] Catanese, F.: "Moduli of algebraic surfaces", III C.I.M.E.
Session 1985 on 'Theory of moduli', to appear in Springer
L.N.M.

[Chl Chevalley, C.: '"Invariants of finite groups generated by

reflections”, Am. J. Math. 77 (1955), 778-782

[Dol Dolgachev, I.: "Weighted projective varieties", in
'Varieties and group actions', Springer LNM 956, 34-71.

[Hor 1] Horikawa, E.: "On deformations of quintic surfaces", Inv.
Math. 31 (1975), 43-85

[Hor 2] Horikawa, E.: "Surfaces of general type with small c? '
IIT", Inv. Math. 47 (1978), 209-248



[Ka 1]

[Ra 2]

[Kol

[K-M]

[K-8]

[Kon]

[Ma]

[Mi]

[Mu 1]

{Mu 2]

-~ 54 -

Kas, A.: "On obstructions to deformations of complex
analytic surfaces", Proc. Nat. Ac. Sc. U.S.A. 58 (1967)
402-404

Kas, A.: "Ordinary dquble points and obstructed sur-
faces" Topology 16 (1977), 51-64

Kodaira, K.: "On stability of compact submanifolds of
complex manifolds", Amer. J. Math. 85 (1963), 79-94.

Kodaira, K.-Morrow, J.: "Complex manifolds" Holt, Rine-
hart and Winston, New York (1971)

Kodaira, K.-Spencer, D.C.: "On deformations of complex
analytic structures, I-II7 Ann. of Math. 67 (1958),
328-466 ‘

Konno, K.: "On deformations and the local Torelli pro-
blem of cyclic branched coverings", Math. Ann. 271, (1985)
601-617

Matsumura, H.: "On algebraic groups of birational trans-
formations", Rend. Acc. Lincei Ser 8, 34 (1963), 151-155

Miranda, R,: "Surfaces with |K| birational on the
Castelnuovo line K2 = 3x-10", to appear

Mumford, D.: "Further pathologies in algebraic geometry",
Amer. J. Math. 84 (1962), 642-648

Mumford, D.: "Geometric Invariant Theory" Heidelberg,
Springer (1965) - 2°9 edition (1982) with J. Fogarthy

coauthor



EVERYWHERE NON REDUCED MODULIL SPACES

Fabrizio Catanese.

Dedicated to the memory of Aldo Andreotti

Max-Planck-Institut
fiir Mathematik

Gottfried-Claren-Str. 26
5300 Bonn 3

Federal Republic of Germany

MPI/88- 18



[Pi]

[Re]

[se]

[wal

- 55 -

Pinkham, H.: "Some local obstructions to deforming
global surfaces", Nova acta Leopoldina N.F. 52, 240,
(1981), 173-178

Reid. M.: "Canonical 3-folds", "Geometrie Algebrigue,
Angers 1979", Sijthoff-Noordhoff (1980), 273-310

Sernesi, E.: "Small deformations of global complete
intersections" B,U.M.I., 12 (1975), 138-146

Wavrik, J.J.: "Obstructions to the existence of a space
of moduli", Global Analysis, Princeton Math. Series 29
(1969), 403-414.

Added-in-proof: While giving a talk at the Max-Planck-Institut

on the above results, I learnt from Masa-Hiko Saito that he has

also been studying a situation similar to the one considered in

§ 1.



- 54 -

[Ka 1] Kas, A.: "On obstructions to deformations of complex

‘ analytic surfaces", Proc. Nat. Ac. Sc. U.S.A. 58 (1967)
402-404

[Ka 2] Kas, A.: "Ordinary double points and obstructed sur- .-

faces" Topology 16 (1977), 51-64

[Ko] Kodaira, K.: "On stability of compact submanifolds of
complex manifolds", Amer. J. Math. 85 (1963), 79-94,

[K-M] Kodaira, K.-Morrow, J.: "Complex manifolds" Holt, Rine-
hart and Winston, New York (1971)

[K-S] Kodaira, K.-Spencer, D.C.: "On'deformations of complex
analytic structures, I-II} Ann. of Math. 67 (1958},
328-466 '

[Kon] Konno, K.: "On deformations and the local Torelli pro-

blem of Cyclid branched coverings", Math. Ann. 271, (1985)
601-617

[Mal] Matsumura, H.: "On algebraic groups of birational trans-
formations", Rend. Acc. Lincei Ser 8, 34 (1963}, 151-155

[Mi] Miranda, R,: "Surfaces with |K| birational on the

Castelnuovo line K2 = 3x-10", to appear

[Mu 1] Mumford, D.: "Further pathologies in algebraic geometry",
Amer. J. Math. 84 (1962), 642-648

[Mu 2] Mumford, D.: "Geometric Invariant Theory" Heidelberg,
springer (1965) - 2°Y edition (1982) with J. Fogarthy

coauthor



- 53 =

REFERENCES
[Be] Beauville, A.: "Sur le nombre maximum de points
doubles d'une surface dans ZP3(u(5) = 31)""Geometrie
Algebrique, Angers 19797, Sijthoff-Noordhoff (1980},
207-215
[B-W] Burns, D.-Wahl, J.: Local contributions to global de-

formations of surfaces", Inv. Math. 26 (1974), 67588

[(B-P-V] Barth, W.-Peters, C.-Van de Ven, A.: "Compact complex
surfaces", Springer Ergebnisse Vol. 4 (1984),

[Cas] Castelnuovo, G.: "Osservazioni intorno all geometria
sopra una superficie", Nota II, Rendiconti del R. In-
stituto Lombardo, S. II, Vol. 24, (1891)

{cat] Catanese, F.: "Moduli of algebraic surfaces'", III C.I.M.E.
Session 1985 on 'Theory of moduli', to appear in Springer
L.N.M.

[Ch] Chevalley, C.: "Invariants of finite groups generated by

reflections", Am. J. Math. 77 (1955), 778-782

-[Do] Dolgachev, I.: "Weighted projective varieties", in

'Varieties and group actions', Springer LNM 956, 34-71.

[Hor 1] Horikawa, E.: "On deformations of quintic surfaces", Inv.
Math. 31 (1975), 43-85

[Hor 2] Horikawa, E.: "Surfaces of general type with small c? ’
III", Inv. Math. 47 (1978), 209-248



- 45 -

T vy - 0 Y (o e -
(3.27) h (NBZ) = h (HGmLGBZ(P)( 52P3) P oBZ(d g-2))) =
- ho(oB (d-p-q-2)(6,k,)) , and similarly h’(Né ) =
. B2 - 3
= h WB;d—p—q-ZHGfbH

To end the proof, in view of 3.17 and 3.27, it suffices to

prove that for our choices of d , p, q,

0 Y ‘
(3.28) h wB;d-p—q—zuﬁfgn =h Op,1,qd-P-a-2))

if p > 1 and

h0 (o

- 1O —p-gq-
g (d-P-a-2)(83P))) = h" (O, 4 .\ (d-P-q-2))

3

Since B3 é:m(1,1,q) and symmetrically Bzrc]P(1,1,p) ; we are

considering the following problem:

(3.29) - Bc P (1,1,p) =P has degree d , P is the singular
point of P, 6 =0 if B3P, & = (p-1) other-
wise, 1 1is an integer > 0 : 1is there an equality

howP(d-iH =h°me—i)wP)?

since we have the

(3.30) The answer is positive if & = 0 ,

long exact cochomology sequence

o-—>H°wE(d-in —+I§(%ﬂd—i” —%-H”OP(-iH =0

The following lemma follows from a more general result proven in

the Appendix.
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This condition and the symmetrical one hold if deg(Bi) s
< genus(Fi) and the branch points are general, by an easy

argument on the Jacobian of Pi

The following is, instead, an example where the moduli space
is only singular. Its purpose is to illustrate the following feature:
though small deformations of hypersurfaces in :m3 are still
hypersurfaces in :P3 (c£. [K-S], [Sel]}, the same is not true for
hypersurfaces of a weighted projective space I if TP has not

isolated singularities.

In fact (as it happens in the examples by Horikawa and
Miranda cf. § 3) when all the deformations are surfaces in TP ,
and the surfaces have to pass through the (rigid) singular points
of the weighted projective spacé, then the deformation space be-

comes everywhere non reduced.

Example 2.15. Let X be a general member of the family of hyper-

surfaces of degree 8 in I =1(1,1,2,2) . X has 4 gquadratic
crdinary singular points, hence the tangent codimension of this

family in the Deformation space is at least 4.

But Wy = GX(Z) , so that the canonical map of X embeds it

as the complete intersection G4 n Qé in ZP4 where G4 is a
4

quartic hypersurface in 1P and Qé is a quadric of rank 3. It

is easy to see that the complete intersections G4 n Q2 are all the
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Set b= (p-1)-(t-t') : if b £-1 the domain of j
is a vanishing cohomology group and we are done (cf., for the

vanishing, the table at page 612 of [Konl]).

Assume instead b 2 0 , and set Vv =0 @ 0 (p) . Then
IE"1 Il?1

the map. j 1is the map 3J'
(3.32)  H'(sym°V & 0(-p(p-1)-1)) 1> 1 (syn®**v @ 0(-p(p-1))

given by the equation of B .

t - t
- = i j. plt-k) _ p(t-k)
I.e., if £ = kEO cijkyoy1y2 = kio fk(yo,y1)y2
deg fk=kp+1
b b
is the eguation of B , then, since Sym V-=8 0(ip) (0 stands
i=0

for O 1!) , wi € H1(®(ip-p(p-1) - 1) is mapped under - j' to

£ b, o with £y, € H1(0((i-+k)P"P(P"1)) .

It

On the other hand this last group is zero unless i+k = h' g

£ p-2 , and it is always better to deal with Ho's rather than

H1's , hence we dualize, and ask for the surjectivity of

® H (0((p-1-h")p-2)) —>> & H (O(pl{p-1-1i')-1))
h'=0 i'=0
(3.33) | | |
p-1 . p-1 .0, _
® Ho(othp-z)) —_ s o B (0lip-1))
h=1 i=t-t!
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Lemma 3.31. Let I :TF =1Fp —> 1 =P(1,1,p) be the blow up of
the singular point P of IP , and let E_ Dbe the exceptional
divisor. Let B be a smooth curve of T , and identify B to

its proper transform in the Segre-Hirzebruch surface T =T
-1

P

Then if EO is the curve defined by T (x2 = 0) , and F 1is a

fiber of I (proper transform of Xq = 0) , we have: if r 1is a
positive integer and r = r'+r" p , with r' < p , £hen
0 0
- 1"t -~
OB(r) = 0B(r'F4-r Eo) , and H (GEJr)) = H (QI,(r'F-fr"EO})

Moreover OB(GP) = OB(G Ew) (;ecall that EO = E_+ pF) .

Assume now we are in the case when B 3 P } and (d-1)
(cf. 3.29) equals t'p (as can be checked), while d = tp+ 1

{so t > t') .

It is then easy to see that B = tE,+F , and, in view of

0
. 0 _ .0 _ 0
3.31 and since H (OE,(t'p)) = H (OE‘(t'EO)) = H (®I.(t'E0+
+(p-1E_) , we are looking at the surjectivity of the map (res)
in the following exact sequence on IF :
0 ' _ res 0 . _
(3.32) H (OE‘(t Eoi-(p NE,)}) ——> H (®B(t Eo-r(p NE_) —>

— H1(®]F (((p-1) +t' -~ £)Ey - (p(p=-1) + 1)F) i,
. }11(0)]F ((t'+p-NE;-plp-1)F)

This is equivalent to requiring the injectivity of j .
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] J
E% + ?f , and we let RY be the subspace of monomials of degree
i , weight w , set AY = e A: , then

i

0,01 o , G
H (2, @ pru,) {z uij(y)nij | ujy € Ad—4—p—q

(]
o
(-—

and w(uij)-Pw(nij)

0,,1 2,G
H™(Q, ® Q) {t vy yhngg | vig € Ry g

1
_.+ .. I —

w(vlj) w(nlj)
We let u' be the linear map induced by (3.21), which is clearly

injective; then the left hand side of 3.16 is just the dimension of

coker(u') .

6 ., 6
) —> (Ad"G) [

(multiplication by y§_1y§_1) where these spaces are viewed as

) [] : . -
Since up' 1is induced by a map u '(Ad-4-p-q

G-modules according to (3.22), it will suffice to identify

W = HO(Q; ® Q;)G/HO(Q; ® p*wx)G with a quotient of a supplementary

space V to Im u inside ((Ad_s)s)G .
_ 1.1
Recall that HO(Q; ® QE)G = {x gyl vy, €a B9
icy 1313
_2_1 N -2 _2
P q P g P g
Vo2rVep € A 1 Vg3rvez €A r V3 €A b

The above properties imply, since (p,q) = 1
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. 0,.1 0,.1 2
with the natural ones on H (QZ ® p*wx) , resp. H (QZ ® QZ)

To do this we notice that the G-module structure on Ai

linearizes the 0 3(i)'s and we rewrite (3.19) as
r

00— ', (1) — ANV 0 ,(i-1) —>0 (i) —>0 .

P P yis
By which we get (i = 0) o’ .= (det 4,)Y-®@ 0 , (-4) ; then 3.18
P P
gives QZ H] 93 ® 0_(d) = (det A )v ® 0_(d-4) . On the other hand,
Z Eﬁ y/ 1 Z

we have an inclusion of sheaves, induced by multiplication by a

constant times y§_1 y§_1

2

1 - 1
(3.21) 0 — QZ ® p Wy —> QZ ® QZ

12 1K

1 1
Qz(d-p—q-Z) Qz(d-4)

since (det ﬂ1)v corresponds to the character ¢ > z © 9, for
p=1_g-1

which Y, Y3 is an eigenvector, it follows that
o) ® p*(w,) = 91- (d-p-g-2)
2 X Z

(3.22)

2 v A1 _
Q. @ QZ =z (det A1) Qz(d 4)

It follows that, if we define the weight w of a monomial
]0 31 32 33 1
Yo Y9 Yy Y3 as the element w of 5q Z/ Z given by
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We let Vi be the open set where Xy *+ 0, for i = 20,1.

Then V v

o’ 1 2
coordinates {for 1IP)

\Y is an open cover of B3 . On V0 we have

_ _ P - q
(3.13) n = x1/xO £ = x2/xO P x3/x0
whereas
' XX X X
- P - +P,.9 _ 073 _ 03
(3.14) X = xo/x2 ;Y = x3/x2 , 2z = ~(qr1/p) " T
2 2
{where, cf. table 2.5., r = 2 1in the first case).
Clearly 3/3z 1is a local generator for Né on V0 and
3

since x = % , Y = ;P/gg , Z = C/Er , we have
, =7
. _ P or 3 _p=1,t-r 3 1-r 5 _ 1—r( 3
T pgq 5y TE 3z TPE L T ggtxb Ty = b Xt
+ pzPT 2 ) On V., we have coordinates a = x,/x

oy : 1 0" 1 !
b = XZ/X? , C = X3/X? , such that a = 1/n , b = En_p ,
c =gn ¢

A local generator for Né is 8/9%¢c , and 3/93r = nf?a/ac .
3 ,

Hence a section of Né is given by functions AO,A1,A2 on
3

B3 n Vi S.to

Ay 3/37 = B, (x 3/3z + pzP~ a/0y) = A, 3/3c .
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1-point nilpotent scheme of length (n-1) «x (r1x r2) if

r, = deg(Bi) s 9; = genus(Pi) and the branch points are general.

Corollary 2.13. If v = h1(es)/dim pef (S) is the ratio.between
tangent dimension and dimension of Def(S) there do exist genera-

lized Kas-surfaces with v arbitrarily large.

Proof. If S has degree n , deg(Bi) = gi-1 , then v(8) =

= (n=1) (g, =N (g, - 1/3[(g, - 1) + (g, - 1], o

Proof of 2.12. By lemma 2.11. it suffices to verify that, for

each h =20, .... n-2 , we have 2 surjective maps,

2.14.)  8%%% ;) e M o (2. el —> o C, .
r 1 1 T 2 . ij
1 2 i=1, -T,
j=‘|,..r2
(given by e(valb! ® valbp))
i, 1 ]
and its symmetrical.
Since H1(Q?2 ® E?) = 0 , we have a surjection
i
10222, e P —> @ €., ,. while H°(Q. @ ) —»>
r 1 1 . b! r 2
1 1—1,..r1 i 2
—>> 0 €., if and only if H1(Q (-B,) @ Eh) injects. into
. b! r 2 2
3—1,;92 3j 2 .
1 h
H (Q ® £.) .
r, 2

-

B a

By duality there must be a surjection Ho(cgh) —> H01£

0 for i < n

and this holds < HO(Eg)

@ —
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(2.5.) There is an invertible sheaf Ei on Fi and a divisor
Bi consisting of distinct points s.t. ®F (Bi) 8 LE ; Ci is the
i

subvariety of Li , the line bundle whose sheaf of sections is
Ei , obtained by taking the nth - root of the section defining

B.
i

"Clearly the group My E Z/n of nth roots of unity acts on

C, ,and f, :C, — ', 1is the quotient map.
i i i i
Notice further that

_ -(n-1)
(2.6.) £,0, =0, ®L, O ... 0¢;

To adhere to our standard notation, we let Z2.-= C, xC and we let

u act on Z by the (twisted) action
(2.7.)  tlx,y) = (gx,0 'y)

It follows immediately that if X = Z/un » then the singularities
of X are exactly R.D.P.'s of type An—1 r and p:Z — X is

unramified in codimension 1.

As a preliminary computation, we notice that (@ = 91 , for short)

(2.8.) Q. = f;(Q e "~
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Theorem 2.3. If (2.1.), (2.2.) hold and S 1is a minimal resclution

of X =12/G , then for r >> 0 S has everywhere obstructed de-

formations.

Proof. Since, by (2.1.}), p:2 —> X 1is unramified in codimension
1, cor. 1.20 applies: in fact, by (2.2.) X has only R.D.P.'s and
is singular. We have to verify that HO(Q; ® mZ)G maps onto
* 0,.* 0 1,.G,,1 . .
Ty = H (T) = H ((p,f,) "/Q,) (cf. 1.7.). Notice that the restri-
. 1 1
ction map QW ® ww(rH) — QZ

G-modules, while W, and mw(rH) differ just by a character of

® ww(rH) is a homomorphism of
G .

Now T* is a quotient of (p*Q;)G/Q%/G ,which has finite
length, hence there exists an integer k >0 s.t. T* is a quotient
s
of T = ® 91 /Illk . 91 where M is the maximal ideal

i=1 Wf,w:.L W,wi W,w1 . W,wi

of the point L
It suffices now to choocse r >> 0 s.t. HO(Q% ® ww(rH)) maps
onto T .

Q.E.D.

We show now at least that (2.1.)(2.2.) occur easily.

Example 2.4, We let W = A , where A is an abelian 3-fold and

let H Dbe any polarization.

G = {£1} acts in the standard way, so Wis +.. W, are the



By (1.4.) the above sequence is obtained by tensoring with
Wy the exact sequence of local cohomology

1 1
Sing X(QX) 0

0 —> o) —» i,(2') —> H©
X * 0
X
and, as in Pinkham's article ([Pi] page 174, (4) of theorem 1),
we notice that by local duality the last term is isomorphic to
)V

1 1 .
Ext (QX,OX

Remark. ©Notice that sometimes Y 1is necessarily singular, no
matter of which reéolution S of X one takes.

I.e., there is no blow up of 2 on which G acts as a group
generated by pseudo reflections. For instance, take the action of
Z/4 such that (u,v) — (iu,-iv) : on the first blow-up there
. is a point where the action has eigenvalues (i,-1) , hence this
point has to be blown up, and over it lies a point where the eigen-

values are (-i,-1), ... hence the procedure can never end.

From now on we shall assume dim 2 = 2 , X Gorenstein (i.e.,
with R.D.P.'s only), and let S be a minimal resolution of singu-

larities of X



i

HO(Q; ® 1) = HO(a) ® p*0)C |
Proof. By abuse of notation we shall identify £ with its pull-
backs, which we shall consider endowed of their natural lineari-

zation (notice that G acts on Y , with quotient § ).

Since S--S0 has codim 2 2 , HO(Q; ® L) = HO(QjO ® L) ;
N S
by (1.4.) (0.2 )% = ', nence w’@'. ® 1) = u%a} o )€
*y 0 0 Y
0 S S 0
and this last clearly equals HO(Q; ® £)¢ since el._q o isa
' e (27)
modification and 2 is smooth.
Q.E.D

Corollary 1.7. Let 2,G, ... be as above and assume X Goren-

stein, dim Z = 2 ., Let T* be the cokernel of the sequence

1 1, G r *
0 —> Qx @ Wy —> (p*QZ) ® w ——> T* —> 0

Then HO(T*)

n

Ho(Ext1(Q;,®X))V and the image of Ho(r) is iso-

morphic to the cokernel of
0, .1 0,1 2
H (QX @ wx) — H (QS ® QS)

Proof. First of all Qé = Wg S ﬂ*(wx) since the singularities

of X are Gorenstein guotient singularities, hence R.D.P.'s; so

that the second statement follows directly from (1.6.) letting
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"
We have now to show that 8, ,(-log B) —> (i ) o (8,4, ( = LogB))

X”
is an isomorphism. This follows since 6X(-log B) 1is torsion free
(if v 1is a vector field, f 'is a function and v(df)|x,p€ Ioax " 7
then v(df) € IB) , héhce we have an injective homomorphism of which

j gives an inverse.

Finally, the inclusion Ox'c'p;OZ shows that j' is injective

Q.E.D.

We let now 7 : S — X be a resolution of singularities of X ,

and Y be the normalization of the fibre product 2 Xy S

i

We then have a diagram

Y ——9—> S
(1.5.) e lw
Z ——E—> X
0 . 0 .
and we set Y = Y-Sing(Y) , S = S-¢(Sing Y) ,
z° = 7 - ¢ (Sing(¥))

Proposition 1.6. For any invertible sheaf L on X , we have




Then there are natural isomorphisms
'
Q;(,C-L—-—er pL(2,)9  and

(P*GZ)G 3 SX.(-log B')

Proof. Both jv,j are naturally defined and are clearly iso-

morphisms on the open sets where p' 1is unramified.

If p'(z) =x , gl(z) = z , we take local coordinates as in

(1.2.) and then the proof follows from a direct computation.

We set now 2" = Z-(W-W') = {z | G, 1is generated by a pseudo-
reflection}, so that codim (2-2") 2 2 , X = Z/G , let
P:Z —> X be the gquotient map, and finally set X" = p(2'") .

Lemma 1.4. Let B be the (reduced) branch locus of p:Z — X =

= 2/G , X0 = X-sing X , i :X0 c—> X the inclusion map. Then

the natural homomorphism (p*ez) —1> SX(-log B) is an isomorphism,

LV
whereas Q; Cl—> p*(Q;)G is injective, an isomorphism on Xq ’
1,G. . 1

and p*(QZ) equals 1*(QX0) .
Proof. By (1.3.) the assertion is true on the open set X" < XO .
Since codim (2-2") 2 2 and’ 8, , Q; are locally free, if

" \ N
i": X" —» X is the inclusion, p*(BZ)G = (1), (ex” ( - log B)

]

and p, (@))% = (1, )@ = i)

X X



1 e —
(1.10) H (GS) -— HE (BS) —> 0

1 i (I?S)

1 1,1 .. 0 1, 1 2
0 — H (GX) -— Ext (QX’Q)X) —> H (EXt (Qx,ex)) ——> H (ex)

Tx

Here the inclusion of H;{GS) is induced by the sequence of local
cohomology ([B-W] 1.3), on the other hand Burns and Wahl prove that
ﬂ*es = ex r SO that the Leray spectral sequence for the map 1

(cf. [Pi] page 176) gives the sequence

1 1 0,1
0 — H (BX) —> H (es) —> H (R w*es) — 0
12

1
HE(eS)

plus the isomorphism HZ(BX) g'Hz(esl ; thus we obtain the
splitting
(1.11) H1(e ) = H1(8 ) @ HY(8.)
- S X E'S
On the other hand, (cf. [Pi]}, the lower exact row of (1.10) is

given by the Ext - spectral sequence, and ‘Pinkham proves that

(1.12) ob is dual, via Grothendieck duality, to the map



EVERYWHERE NON REDUCED MODULI SPACES

(Fabrizio Catanese, Université di Pisa)

Introduction

The purpose of this article is to show how often the moduli
spaces of surfaces of general type can be everywhere non reduced
in the case when the canonical bundle 'KS is not ample. On the
other hand, by giving a simple criterion which implies that this
must happen, we are in fact able to subsume almost all the pre-
viously known examples of obstructed deformations in dimension 2
as particular issues of a very general situation; we produce also
infinite series of examples, showing in particular that all non
Cartier divisors of rigid 3-dimensional weighted projective spaces
give rise to this pathology.

To be more precise, let V -be an algebraic variety withva
finite group Aut(Vv) of automorphisms (e.g., cf. [Ma], if -V .is
of general type); then, if V admits a space of moduli M(V).
{cE. [Mu 2]), locally (i.e. in an analytic neighbourhood of the
point of M(V) correspoding to V ) M(V) 1is the gquotient of the
base Def (V) of the Kuranishi family of deformations of V by
the group Aut(Vv) (¢f. [Wal). It is clear ‘that in" this case MW(V)
is (locally) everywhere non reduced, e.n.r. for short (i.e.,

everywhere singular) if and only if Def({(V) is e.n.r.



We recall the classical terminology: V 1s said to have ob-

structed deformations if the germ Def(V) is singular. The stronger
condition that Def(V) be e.n.r., i.e. everywhere singular, can thus
be referred to as V having "everywhere obstructed deformations", and

has been regarded up to now as a very pathological phenomenon.

The first example of algebraic varieties V with Def (V)
e.n.r. is due to Kodaira and Mumford ([Ko], [Mu1]) : here, though,
V and its deformations are blow-ups of :Pa ;, hence there are no

birational moduli.

After several examples of obstructed deformations were ex-
hibited, e.g. by Kas ([Ka 1], [Ka2]), by Burns and Wahl ([B-W]),
by Horikawa ([Hor 1]), then Horikawa' [Hor 2] and, later, Miranda

({Mi]) gave examples of surfaces of general type S (respectively

with ‘pg = 4,7 , K2 = 6 , 14) for which Def(S) is e.n.r.

Their approach was through the classification of all the

surfaces with those invariants (Miranda uses Castelnuoveo's classi-

fication [Cas] of surfaces with K® = 3 pé-—? and |KS|

In both cases the outcome is that the canonical bundle KS is not

ample for all the surfaces corresponding to the points of a compo-

birational) .

nent of the moduli space. This research started when I tried to
find a direct proof that Def(S) was e.n.r., and I noticed
that for both examples the singular canonical models were hyper-
surfaces in a 3 dimensional projective space (respectively

X9 cP(1,1,2,3), X7 cP(1,1,1,2)) admitting a double cover
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Added-in-proof: While giving a talk at the Max-~Planck-Institut
on the above results, I learnt from Masa-Hiko Saito that he has

alsc been studying a situation similar to the one considered in

§ 1.



