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Abstract

When do measurements have a quantum-mechanical model? This article this kind of in-
verse problem for iterated measurements in quantum mechanics and presents a solution of the
simplest non-trivial case. Before that, preliminary observations on pre- and postselection re-
veal some unexpected properties of quantum-mechanical probabilities, which might potentially
be tested in experiments. Then, the simplest non-trivial case of the inverse problem, corre-
sponding to two binary repeatable measurements, is analyzed and solved using methods from
operator algebras and the theory of moment problems. Also, the quantum region is studied in
some truncations. After that, it is shown that the general probabilistic region spans the whole
space of probabilities. This undermines the fact that quantum theories are a very special type
of general probabilistic theories. The article ends with some remarks on the complexity of
the general inverse problem for quantum measurements and an outline of some properties that
potential experimental tests of the quantum constraints should have.

1 Introduction

Consider the following situation: an experimenter works with some fixed physical system whose
theoretical description is assumed to be unknown. In particular, it is not known whether the
system obeys the laws of quantum mechanics or not. Suppose now that the experimenter can do
two different types of measurement a and b, each of which has the possible outcomes 0 and 1. In
this article, such as system will be referred to as the “black box fig. 1”.

The experimenter can conduct several repeated measurements on the same system – like first a,
then b, then again a – and also he can conduct many of these repeated measurements on independent
copies of the original system by hitting the “Reset” button and starting over. In this way, he will
obtain his results in terms of estimates for probabilities of the form

Pa,b,a(1, 0, 0) (1)

which stands for the probability of obtaining the outcomes 1, 0, 0, given that he first measures a,
then b, and then again a.
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Figure 1: A black box with two binary measurements and an initialization button.

?>=<89:;a // Outcome: 0/1

?>=<89:;b // Outcome: 0/1

Reset

Now suppose that the experimenter finds out that the measurements a and b are always repeat-
able, in the sense that measuring twice consecutively yields identical results with certainty. In his ta-
ble of experimentally determined probabilities, this is registered by statements like Pb,a,a,b(0, 1, 0, 0) =
0.

In a quantum-mechanical description of the system, the repeatable measurements a and b will
each be represented by projection operators on some Hilbert space H and the initial state of the
system is given by some state onH; it is irrelevant whether this state is assumed to be pure or mixed,
since both cases can be reduced to each other: every pure state is trivially mixed, and a mixed
state can be purified by entangling the system with an ancilla. In any case, the probabilities (1)
can be calculated from this data by the usual rules of quantum mechanics.

Question 1.1. Which conditions do these probabilities P·(·) have to satisfy in order for a quantum-
mechanical description of the system to exist?

Mathematically, this is a certain moment problem in noncommutative probability theory. In its
solution, I have tried to be as rigorous as possible. Physically, the constraints turn out to be so
unexpected that an intuitive explanation of their presence seems out of reach.

Summary. This article is structured as follows. Section 2 begins by generally studying a binary
quantum measurement under the conditions of pre- and postselection. It is found that both out-
comes are equally likely, provided that the postselected state is orthogonal to the preselected state.
Section 3 goes on by settling notation and terminology for the probabilities in the black box fig. 1 and
describes the space of all outcome probability distributions for such a system. The main theorem
describing the quantum region within this space is stated and proven in section 4, the largest part
of which is solely devoted to the theorem’s technical proof; some relevant mathematical background
material on moment problems can be found in the appendix A. Section 5 then studies projections
of the space of all probabilities and mentions some first results on the quantum region therein; this
would mostly be relevant for potential experimental tests. Section 6 goes on by proving that every
point in the whole probability space has a model in terms of a general probabilistic theory. As
described in section 7, determining the quantum region for a higher number of measurements or a
higher number of outcomes should be expected to be very hard. Section 8 mentions some properties
that experiments comparing quantum-mechanical models to different general probabilistic models
should have. Finally, section 9 briefly concludes the article.
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Notation and terminology. Quantum-mechanically, a binary repeatable measurement corre-
sponds to a projection operator p. Its negation is written as p ≡ 1− p. In order to have a compact
index notation for p and p at once, I also write p1 = p and p0 = p = 1− p.

The Pauli matrices

σx =
(

0 1
1 0

)
, σz =

(
1 0
0 −1

)
,

will be used in section 4 and in the appendix.

2 Preliminary observations

Before turning to the general case, this section derives some results about the iterated measurement
a, b, a and reveals some unexpected constraints for quantum-mechanical models. One may think of
the measurements of a in a, b, a as being pre- and postselection, respectively, for the intermediate
measurement of b.

So to ask a slightly different question first, how does a general quantum-mechanical binary mea-
surement b behave under conditions of pre- and postselection? Suppose we conduct an experiment
which preselects with respect to a state |ψi〉, i.e. it conducts an initial measurement of the projection
|ψi〉〈ψi| and starts over in case of a negative result, and postselects with respect to a state |ψf 〉〈ψf |,
i.e. it conducts a final measurement of the projection |ψf 〉〈ψf | and starts over from the beginning
in case of a negative result. In between the pre- and the postselection, the experimenter measures
the binary observable b. For simplicity, the absence of any additional dynamics is assumed.

This kind of situation only makes sense when the final postselection does not always produce a
negative outcome, so that the conditional probabilities with respect to pre- and postselection have
definite values. This is the case if and only if

〈ψi|b|ψf 〉 6= 0, 〈ψi|(1− b)|ψf 〉 6= 0,

which will be assumed to hold from now on; under the assumption of the following proposition,
these two conditions are equivalent.

Proposition 2.1. In the case that 〈ψi|ψf 〉 = 0, the two outcomes of b have equal probability,
independently of any details of the particular quantum-mechanical model:

P
(
b = 0

∣∣∣ pre = |ψi〉, post = |ψf 〉
)

= P
(
b = 1

∣∣∣ pre = |ψi〉, post = |ψf 〉
)

=
1
2

Note that such a binary quantum measurement would yield a perfectly unbiased random number
generator.
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Proof. The proof of proposition 2.1 is by straightforward calculation. Upon preselection, the system
is in the state |ψi〉. The probability of measuring b = 0 and successful postselection is given by

|| |ψf 〉〈ψf |(1− b)|ψi〉||2 = 〈ψi|(1− b)|ψf 〉〈ψf |(1− b)|ψi〉
= −〈ψi|b|ψf 〉〈ψf |(1− b)|ψi〉
= 〈ψi|b|ψf 〉〈ψf |b|ψi〉
= || |ψf 〉〈ψf |b|ψi〉||2

which equals the probability of measuring b = 1 and successful postselection.

For a concrete example, consider a quantum particle which can be located in either of three
boxes |1〉, |2〉, and |3〉, so that the state space is given by

H = C3 = span {|1〉, |2〉, |3〉}

Now let ζ be a third root of unity, such that 1 + ζ + ζ2 = 0, and use initial and final states as
follows:

preselection: |ψi〉 = |1〉+|2〉+|3〉√
3

box |1〉 box |2〉 box |3〉

postselection: |ψf 〉 = |1〉+ζ|2〉+ζ2|3〉√
3

Then upon opening any box as the intermediate measurement and detecting presence of the particle
will locate the particle in that box with a (conditional) probability of exactly 1/2; see [AV07]
for the original version of this three-boxes thought experiment, with even more counterintuitive
consequences. Possibly such an experiment might be realized using quantum dots as boxes. And
possibly a high-precision version of such an experiment – looking for deviations from the quantum
prediction of exactly 1/2 – might be an interesting further experimental test of quantum mechanics.
In order to guarantee the crucial assumption of exact orthogonality of initial and final states, one
could implement both pre- and postselection via the same von Neumann measurement and select
for a final outcome differing from the initial outcome.

A similar calculation as in the proof of proposition 2.1 also shows that the following more general
statement is true:

Proposition 2.2. (a) Given an observable a together with two different eigenvalues λ0 6= λ1 and
a projection observable b, the outcome probabilities for b under (a = λ0)-preselection and
(a = λ1)-postselection are equal:

Pb

(
0
∣∣∣ apre = λ0, apost = λ1

)
= Pb

(
1
∣∣∣ apre = λ0, apost = λ1

)
=

1
2

(b) The same holds true upon additional preselection before the first measurement of a, and also
upon additional postselection after the second measurement of a.
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What does this imply for quantum-mechanical models of the black box fig. 1? Given that one
measures the sequence a, b, a such that the two measurements of a yield 0 and 1 respectively, then
the two outcomes for b have equal probability:

Pa,b,a(0, 0, 1) = Pa,b,a(0, 1, 1) (2)

Similar relations can be obtained form this equation by permuting a ↔ b and 0 ↔ 1. In words:
given that the second measurement of a has a result different from the first, then the intermediate
binary measurement of b has conditional probability 1/2 for each outcome, no matter what the
physical details of the quantum system are and what the initial state is. This is trivially true in
the case that a and b commute: then, both probabilities in (2) vanish.

3 Probabilities for two binary repeatable measurements

In the situation of fig. 1, the repeatability assumption for both a and b has the consequence that it
is sufficient to consider alternating measurements of a and b only. Therefore, all non-trivial outcome
probabilities are encoded in the following two stochastic processes:

Pa,b,a,...(. . .)

and
Pb,a,b,...(. . .).

Both of these expressions are functions taking a finite binary string in {0, 1}∗ as their argument, and
returning the probability of that outcome for the specified sequence of alternating measurements.
Since total probability is conserved, it is clear that for every finite binary string r ∈ {0, 1}∗,

Pa,b,a,...(r) = Pa,b,a,...(r, 0) + Pa,b,a,...(r, 1)
Pb,a,b,...(r) = Pb,a,b,...(r, 0) + Pb,a,b,...(r, 1)

(3)

In the rest of this article, the probabilities Pa,b,a,... will be denoted by Pa for the sake of brevity,
while similarly Pb stands for the probabilities determining the second stochastic process Pb,a,b,....
A probability assignment for the Pa’s and Pb’s is called admissible whenever the probability con-
servation laws (3) hold.

4 Classification of probabilities in quantum theories

Now let us assume that the black box fig. 1 does have a quantum-mechanical description and
determine the constraints that then hold for the probabilities Pa and Pb.

The final results are presented right now at the beginning, and the rest of the section is then
devoted to showing how this theorem can be derived from the mathematical results presented in
the appendix.

Given a binary sequence r ∈ {0, 1}n, denote the number of switches in r by s(r), i.e. the number
of times that a 1 follows a 0 or a 0 follows a 1. Similarly, s(r, r′) is the number of switches in the
concatenated sequence r, r′. The single letter r and the sequence r1, . . . , rn are interchangeable
notation.

The overline notation r stands for the inverted sequene, i.e. 0 ↔ 1 in r. The letter C denotes
the convex subset of R4 that is defined and characterized in the appendix.
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Theorem 4.1. A quantum-mechanical description of the black box (1) exists if and only if the
outcome probabilities satisfy the following constraints:

• Pa(0, r1, . . . , rn) only depends on s(0, r); denote this value by

Pa(0, r1, . . . , rn) = Fa,0(n, s(0, r)) ∀r.

• Pa(1, r1, . . . , rn) only depends on s(1, r); denote this value by

Pa(1, r1, . . . , rn) = Fa,1(n, s(1, r)) ∀r.

• Pb(0, r1, . . . , rn) only depends on s(0, r); denote this value by

Pb(0, r1, . . . , rn) = Fb,0(n, s(0, r)) ∀r.

• Pb(1, r1, . . . , rn) only depends on s(1, r); denote this value by

Pb(1, r1, . . . , rn) = Fb,1(n, s(1, r)) ∀r.

• The equation
Pa(r) + Pa(r) = Pb(r) + Pb(r)

holds for all r.

• Using the notation

Fa,+(n, s) = Fa,1(n, s) + Fa,0(n, s)

C1(n, s) =
1
2

(Fa,1(n, s)− Fa,0(n, s) + Fb,1(n, s)− Fb,0(n, s))

C2(n, s) =
1
2

(Fa,1(n, s)− Fa,0(n, s)− Fb,1(n, s) + Fb,0(n, s)) ,

the inequality1

( ∞∑
k=0

(−1)k
(

1/2
k

)
C1(n+ k − 1, s+ k)

)2

+

( ∞∑
k=0

(−1)k
(

1/2
k

)
C2(n+ k − 1, s)

)2

≤ Fa,+(n, s)2

holds for every n ∈ N and s ∈ {1, . . . , n− 1}.

• Using the coefficients

cn,k =

{
(−1)k

(−1/2
k

)
for k ≤ n

(−1)k
(−1/2

k

)
− (−1)k−n

(−1/2
k−n

)
for k > n

1Note that all sums are automatically absolutely convergent since F·,·(·, ·) ∈ [0, 1] and
P∞

k=0

˛̨̨`1/2
k

´˛̨̨
= 1 <∞.
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and the quantities

Vx,±(n) =
∞∑
k=0

cn,kC1(k, k)

±

√√√√Fa,+(n, n)2 −

( ∞∑
k=0

(−1)k
(

1/2
k

)
C2(n+ k − 1, n− 1)

)2

Vz,±(n) =
∞∑
k=0

cn,kC2(k, 0)

±

√√√√Fa,+(n, 0)2 −

( ∞∑
k=0

(−1)k
(

1/2
k

)
C1(n+ k − 1, k)

)2

,

the point in R4 given by(
sup
n
Vx,−(n), sup

n
Vz,−(n), inf

n
Vx,+(n), inf

n
Vz,+(n)

)
(4)

has to lie in the convex region C ⊆ R4 characterized in proposition A.2.2

To begin the proof of this theorem, let A2 = C∗(a, b) be the C∗-algebra freely generated by two
projections a and b. Then for every quantum-mechanical model of the system, we obtain a unique
C∗-algebra homomorphism

A2 −→ B(H)

which maps the universal projections to concrete projections on H. Then upon pulling back the
black boxes’ initial state |ψ〉 to a C∗-algebraic state on A2, we can calculate all outcome probabil-
ities via algebraic quantum mechanics on A2. Conversely, any C∗-algebraic state on A2 defines a
quantum-mechanical model of the two binary observables system by virtue of the GNS construc-
tion. Therefore, we will do all further considerations on A2. In this sense, the states on A2 are the
universal instances of quantum black boxes (1).
A2 is known [RS89] to be of the form

A2
∼= {f : [0, 1]→M2(C) | f(0), f(1) are diagonal}

where the universal pair of projections is given by

a(t) =
(

1 0
0 0

)
=
12 + σz

2

b(t) =
(

t
√
t(1− t)√

t(1− t) 1− t

)
=

1
2
12 +

√
t(1− t)σx +

(
t− 1

2

)
σz

By the Hahn-Banach extension theorem, the set of states on A2 can be identified with the set of
functionals obtained by restricting the states on the full matrix algebra C ([0, 1],M2(C)) to the

2In particular, the expressions under the square roots have to be non-negative and the suprema and infima have
to be finite.
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subalgebra A2. Hence for the purposes of the proof of theorem 4.1, there is no need to distinguish
between A2 and C ([0, 1],M2(C)).

Now consider a sequence of n+ 1 sequential measurements having the form a, b, a, . . .. The set
of outcomes for all measurements taken together is given by the set {0, 1}n+1 of binary sequences
r = (ri)

n
i=0. Every such outcome r has an associated Kraus operator which is given by

Hr = ar0br1ar2 . . . (5)

where the superscripts indicate whether one has to insert the projection a or b itself or its orthogonal
complement a = 1 − a or b = 1 − b, respectively. Then the probability of obtaining that outcome
is given by the expression

Pa (r0, r1, . . . , rn) = ρ
(
HrH

†
r

)
= ρ (ar0br1ar2 . . . ar2br1ar0)

(6)

Now follows the main observation which facilitates all further calculations.

Lemma 4.2. We have the following reduction formulas in A2:

aba = ta, bab = tb

aba = (1− t)a, bab = (1− t)b
aba = (1− t)a, bab = (1− t)b
aba = ta, bab = tb

Proof. Direct calculation.

As a consequence, one finds that the measurement outcome probabilities (6) have the form

Pa (r0, r1, . . . , rn) = ρ
(
tn−s(1− t)sar0

)
where s is the number of switches in the binary sequence r0, . . . , rn; the same clearly applies to the
Pb’s that determine the outcome probabilities for the measurement sequence b, a, b, . . .. Hence, one
necessary condition on the probabilities is the following:

Proposition 4.3. The probabilities Pa (r0, r1, . . . , rn) only depend on the number of switches con-
tained in the binary sequence r0, . . . , rn. The same holds for the Pb (r0, r1, . . . , rn).

A particular instance of this is equation (2).

Remark 4.4. Moreover, this observation is actually a consequence of the conditional statement of
proposition 2.2(b). Due to that result, it is clear that the equations

Pa(r0, . . . , rk, 0, 0, 1, rk+3, . . . , rn) = Pa(r0, . . . , rk, 0, 1, 1, rk+3, . . . , rn)

Pa(r0, . . . , rk, 1, 0, 0, rk+3, . . . , rn) = Pa(r0, . . . , rk, 1, 1, 0, rk+3, . . . , rn)

hold. In words: the outcome probability does not change if the position of a switch in the binary
string is moved by one. On the other hand, it is clear that any two binary sequences with the same
number of switches can be transformed into each other by subsequently moving the position of each
switch by one.
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Since the dependence on the sequence r is only via its length n + 1, the number of switches
s, and the initial outcome r0, mention of r will be omitted from now on. Instead, all expressions
should be considered as functions of n and s, with s ∈ {0, . . . , n}. The two possible values of the
initial outcome r0 as well as the initial type of measurement are indicated by subscripts:

Pa(0, r1, . . . , rn) = Fa,0(n, s)
Pa(1, r1, . . . , rn) = Fa,1(n, s)
Pb(0, r1, . . . , rn) = Fb,0(n, s)
Pb(1, r1, . . . , rn) = Fb,1(n, s)

By the present results, the four functions F·,· can be written as

Fa,1(n, s) = ρ
(
tn−s(1− t)sa

)
Fa,0(n, s) = ρ

(
tn−s(1− t)sa

)
Fb,1(n, s) = ρ

(
tn−s(1− t)sb

)
Fb,0(n, s) = ρ

(
tn−s(1− t)sb

)
Though instead of using these sequences of probabilities, the patterns are easier to spot using
instead the new variables

Fa,+(n, s) ≡ Fa,1(n, s) + Fa,0(n, s), Fa,−(n, s) ≡ Fa,1(n, s)− Fa,0(n, s)
Fb,+(n, s) ≡ Fb,1(n, s) + Fb,0(n, s), Fb,−(n, s) ≡ Fb,1(n, s)− Fb,0(n, s)

In these terms, we can write the four equations as

Fa,+(n, s) = ρ
(
tn−s(1− t)s

)
Fb,+(n, s) = ρ

(
tn−s(1− t)s

)
Fa,−(n, s) = ρ

(
tn−s(1− t)sσz

)
Fb,−(n, s) = ρ

(
tn−s(1− t)s

[
2
√
t(1− t)σx + (2t− 1)σz

])
Therefore, it is clear that another necessary constraint is that

Fa,+(n, s) = Fb,+(n, s) ∀n, s

In terms of the probabilities, this translates into

Pa(r) + Pa(r) = Pb(r) + Pb(r)

The first non-trivial instance of this occurs for the case n = 1, where we have the equations

Pa(0, 0) + Pa(1, 1) = Pb(0, 0) + Pb(1, 1)
Pa(0, 1) + Pa(1, 0) = Pb(0, 1) + Pb(1, 0)

which also have been noted in [AS01, p. 257/8].
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Finally, let us try to extract the conditions that need to be satisfied by the Fa,− and Fb,−.
Considering the form of the equations, it seems convenient to introduce the quantities

C1(n, s) ≡ 1
2

(Fa,−(n, s) + Fb,−(n, s))

=
1
2

(Fa,1(n, s)− Fa,0(n, s) + Fb,1(n, s)− Fb,0(n, s))

C2(n, s) ≡ 1
2

(Fa,−(n, s)− Fb,−(n, s))

=
1
2

(Fa,1(n, s)− Fa,0(n, s)− Fb,1(n, s) + Fb,0(n, s))

which are highly reminiscient of the CHSH correlations. In these terms,

C1(n, s) = ρ

tn−s(1− t)s [√t(1− t)σx + tσz

]
︸ ︷︷ ︸

~v1(t)·~σ



C2(n, s) = ρ

tn−s(1− t)s [−√t(1− t)σx + (1− t)σz
]

︸ ︷︷ ︸
~v2(t)·~σ


The reason that this is nicer is because now, the two vectors ~v1(t), ~v2(t), are orthogonal for each t.
Finally, ~v1(t) and ~v2(t) can be normalized to get

C1(n, s) = ρ
(
tn−s+1/2(1− t)s ~n1(t) · ~σ

)
C2(n, s) = ρ

(
tn−s(1− t)s+1/2 ~n2(t) · ~σ

)
with vectors ~n1(t), ~n2(t), that are normalized and orthogonal for each t. Using an appropriate
automorphism of A2 given by conjugation with a t-dependent unitary U(t) ∈ SU(2), the vectors
~ni(t) can be rotated in such a way that they coincide with the standard basis vectors ~ex and ~ez,
constant as functions of t.

Then, theorem 4.1 is a consequence of theorem A.3 as applied to

M ′1(n, s) = Fa,+(n, s)
M ′x(n, s) = C1(n, s)
M ′z(n, s) = C2(n, s)

5 Determining the quantum region in truncations

In actual experiments, only a finite number of the probabilities can be measured. Also, these can
realistically only be known up to finite precision due to finite statistics. An even more problematic
issue is that perfect von Neumann measurements are impossible to realize and can only be approx-
imated. Here, we ignore the latter two problems and focus on the issue that only a finite number
of probabilities are known.
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Question 5.1. Given numerical values for a finite subset of the probabilities P·(·), how can one
decide whether a quantum-mechanical model reproducing these probabilities exists?

Clearly, such a model exists if and only if these probabilities can be extended to a specification
of all outcome probabilities Pa and Pb satisfying the conditions given in theorem 4.1. However,
this observation doesn’t seem very useful – how might one decide whether such an extension exists?
The problem is that the projection of a convex set (the quantum region) from a higher-dimensional
vector space down to a lower-dimensional one can be notoriously hard to describe.

This problem is a close relative of the truncated Hausdorff moment problem (see e.g. [Wi46,
ch. III]). In a finite truncation of the Hausdorff moment problem, the allowed region coincides with
the convex hull of the moments of the Dirac measures, which are exactly the extreme points in the
space of measures. Therefore, the allowed region is the convex hull of an algebraic curve embedded
in Euclidean space.

In the present case, it is possible to follow an analogous strategy of first determining the extreme
points in the set of states – that is, the pure states on the algebra – then calculate the corresponding
points in the truncation, and finally take the convex hull of this set of points. To begin this program,
note that the pure states on the algebra are exactly those of the form

C ([0, 1],M2(C)) −→ C, f 7→ 〈ψ|f(t0)|ψ〉

where t0 ∈ [0, 1] is fixed, and |ψ〉 stands for some fixed unit vector in C2; this corresponds to
integration with respect to a projection-valued Dirac measure on [0, 1]. Furthermore, since all the
algebra elements of interest lie in the subalgebra given by the M2(R)-valued functions – as opposed
to M2(C)-valued – the phases of the components of |ψ〉 are arbitrary, and can therefore be chosen
such that |ψ〉 has real-valued components. This argument shows that |ψ〉 can be assumed to be
given by

|ψ〉 =
(

cos θ
sin θ

)
.

In conclusion, the pure states are parametrized by the numbers t0 ∈ [0, 1] and θ ∈ [0, 2π]. In
any given truncation, this determines an algebraic surface, whose convex hull coincides with the
quantum region in that truncation. This reduces the problem to the calculation of the convex hull
of an algebraic surface embedded in Euclidean space.

The following theorem is concerned with the infinite-dimensional truncation to all Pa, which
means that one simply disregards all probabilities Pb while keeping the Pa.

Theorem 5.2. A quantum-mechanical model in the Pa truncation exists for an admissible proba-
bility assignment if and only if Pa(r) only depends on s(r).

Proof. It follows from the main theorem (4.1) that this condition is necessary. To see that it is
sufficient, recall the equations

Fa,+(n, s) = ρ (tn−s(1− t)s)
Fa,−(n, s) = ρ (tn−s(1− t)sσz) .

Then upon choosing M1(n, s) = Fa,+(n, s), Mx(n, s) = 0 and Mz(n, s) = Fa,−(n, s), theorem A.1
applies and shows that such a state ρ can be found as long as the condition

|Fa,−(n, s)| ≤ Fa,+(n, s)
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holds. In terms of the probabilities, this requirement means

|Fa,1(n, s)− Fa,0(n, s)| ≤ Fa,1(n, s) + Fa,0(n, s),

which always holds trivially since all probabilities are non-negative. This ends the proof.

This ends the current treatment of truncations. It is hoped that the future study of truncations
will be relevant for experiments.

6 A general probabilistic model always exists

In order to understand as to how far the conditions found are characteristic of quantum mechanics,
one should try to determine the analogous requirements for the probabilities in the case of alternative
theories different from quantum mechanics and in the case of more general theories having quantum
mechanics as a special case. This section deals with the case of general probabilistic theories.

What follows is a brief exposition of the framework of general probabilistic theories and of the
possible models for a black box system (1). Afterwards, it will be shown that every assignment of
outcome probabilities for the black box system does have a general probabilistic model. Together
with the results of the previous sections, this shows that – for systems with two binary measurements
– quantum-mechanical models are a very special class of general probabilistic theories.

For the present purposes, a general probabilistic theory is defined by specifying a real vector
space V , a non-vanishing linear functional tr : V → R, and a convex set of normalized states Ω ⊆ V
such that

tr(ρ) = 1 ∀ρ ∈ Ω (7)

The cone Ω0 ≡ R≥0Ω is the set of all unnormalized states. By construction,

Ω = Ω0 ∩ tr−1(1).

Since all that matters for the physics is really Ω0 and tr on Ω0, one can assume without loss of
generality that Ω0 spans V ,

V = Ω0 − Ω0. (8)

Now, an operation is a linear map T : V → V which maps unnormalized states to unnormalized
states,

T (Ω0) ⊆ Ω0,

and does not increase the trace,
tr(T (ρ)) ≤ 1 ∀ρ ∈ Ω.

For ρ ∈ Ω, the number tr(T (ρ)) is interpreted as the probability that the operation takes place,
given T as one of several alternative operations characteristic of the experiment. In case that T
happens, the post-measurement state is given by

ρ′ ≡ T (ρ)
tr(T (ρ))

,

where the denominator is just the normalization factor.
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Example 6.1. As an example of this machinery, one may take density matrices as normalized
states and completely positive maps as operations. This is quantum theory; the usual form of
a quantum operation in terms of Kraus operators can be recovered by virtue of the Stinespring
factorization theorem.

A repeatable binary measurement is then implemented by two operations a, a : V → V which
are idempotent,

a2 = a, a2 = a,

and complementary in the sense that the operation a + a preserves the trace. Physically, the
operation a takes place whenever the measurement has a positive outcome, whereas a happens in
the case that the measurement has a negative outcome.

Proposition 6.2. Under these assumptions, aa = aa = 0.

Proof. Clearly, aa is an operation, and therefore it maps Ω0 to Ω0. On the other hand,

tr(aa(ρ)) = tr(a(ρ))− tr(aa(ρ)) = 0,

which proves aa = 0 by (7). The other equation works in exactly the same way.

The interpretation of this result is that, when a has been measured with a positive outcome,
then the opposite result a will certainly not occur in the second measurement, and vice versa.
Therefore, the measurement of a vs. a is repeatable.

In the previous sections, the quantum region was found to be a very small subset of the space
of all probabilities. The following theorem shows that this is not the case for general probabilistic
theories.

Theorem 6.3. Given any admissible probability assignment for the Pa’s and Pb’s, there exists a
general probabilistic model that reproduces these probabilities.

Proof. The idea of the proof is analogous to the characterization of the quantum region done in
section 4: to try and construct a universal theory for the black box system, which covers all of the
allowed region in probability space at once. In order to achieve category-theoretic universality (an
initial object in the appropriate category), one nneds to consider the R-algebra freely generated by
formal variables va, va, vb, vb, subject to the relations imposed by the above requirements. Hence
the definition is this,

Agp =
〈
va, va, vb, vb | vava = vava = vbvb = vbvb = 0,

v2
a = va, v

2
a = va, v

2
b = vb, v

2
b

= vb

〉
RAlg

where the notation indicates that this is to be understood as a definition in terms of generators
and relations in the category of unital associative algebras over the field R. The index gp stands
for “general probabilistic”.

Now an unnormalized state on Agp is defined to be a linear functional

ρ : Agp −→ R

13



which is required to be non-negative on all products of generators and the unit 1, and additionally
needs to satisfy

ρ (x(va + va)) = ρ(x), ρ
(
x(vb + vb)

)
= ρ(x)

for any x ∈ Agp. The set of unnormalized states Ω0 is a convex cone in the vector space dual A∗gp.
The trace is defined to be

tr(ρ) ≡ ρ(1),

so that a state is normalized if and only if ρ(1) = 1.
Now for the definition of the operators a, a, b, b. Given an unnormalized state ρ ∈ Ω0, they

produce a new state which is defined as

a(ρ)(x) ≡ ρ(xva)
a(ρ)(x) ≡ ρ(xva)
b(ρ)(x) ≡ ρ(xvb)
b(ρ)(x) ≡ ρ(xvb)

Since v2
a = va, it follows that a2 = a, and analogous derivations work for all the other relations

required to hold between the a, a, b, b.
Now given any initial state ρ and conducting the alternating measurements of a and b, the model

predicts outcome probabilities that are given by

Pa(r) = ρ (var1 vbr2 var3 . . .)
Pb(r) = ρ (vbr1 var2 vbr3 . . .)

(9)

So given any assignment of outcome probabilities Pa, Pb, one can regard the equations (9) as a
definition of ρ on products of generators. This ρ extends to a state on Agp by linearity, where the
equations (6) hold by conservation of probability. This ends the proof.

7 Remarks on potential generalizations

It would certainly be desirable to generalize the present results about quantum mechanics to situ-
ations involving a higher number of measurements or a higher number of outcomes per measure-
ment or by allowing non-trivial dynamics for the system. I will now describe the corresponding
C∗-algebras involved in this which one would have to understand in order to achieve such a gener-
alization.

Consider a “black box” system analogous to (1) on which the experimenter can conduct k
different kinds of measurement. Suppose also that the jth measurement has nj ∈ N outcomes,
and that again these measurements are repeatable, which again implies the absence of non-trivial
dynamics.

A quantum-mechanical observable describing a von Neumann measurement with n possible
outcomes is given by a hermitian operator with (up to) n different eigenvalues. Since the eigenvalues
are nothing but arbitrary labels of the measurement outcomes, we might as well label the outcomes
by the roots of unity e

2πil
n , l ∈ {0, . . . , n − 1}. But then in this case the observable is given by a

unitary operator u which satisfies un = 1. Conversely, given any unitary operator u of order n, we
can diagonalize u into eigenspaces with eigenvalues being the roots of unity e

2πil
n , and therefore we

can think of u as being an observable where the n outcomes are labelled by the roots of unity.
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By this reasoning, the specification of k observables where the jth observable has nj different
outcomes is equivalent to specifying k unitary operators, where the jth operator is of order nj .
Hence, the corresponding universal C∗-algebra is in this case given by the C∗-algebra freely gen-
erated by unitaries of the appropriate orders. But this object in turn coincides with the group
C∗-algebra

C∗(Zn1 ∗ . . . ∗ Znk)

where the group is the indicated free product of finite cyclic groups. One should expect that these
C∗-algebras have a very intricate structure in general; for example when k = 2 and n1 = 2, n2 = 3,
one has the well-known isomorphism Z2 ∗ Z3

∼= PSL2(Z), so that one has to deal with the group
C∗-algebra of the modular group.

8 Possible experimental tests of quantum mechanics

The results of the previous sections show that the quantum region is certainly much smaller in
the space of all probabilities than the general probabilistic region. Therefore, specific experimental
tests of the quantum constraints from theorem 4.1 in a finite truncation seem indeed appropriate.
However, there is an important caveat: for sufficiently small systems with many symmetries, it
might be the case that any general probabilistic model is automatically a quantum theory. For
example, when the convex set of states of a general probabilistic theory lives in R3 together with its
usual action of the rotation group SO(3) as symmetries, then it is automatically implied that the
system is described by quantum mechanics, since every bounded and rotationally invariant convex
set in R3 is a ball and therefore affinely isomorphic to the quantum-mechanical Bloch ball. This
observation shows that some obvious candidates for experimental tests – like a photon sent through
two kinds of polarizers – are too small for a successful distinction of quantum theory vs. different
general probabilistic theories.

For these reasons, one should try to find systems with many degrees of freedom and few symme-
tries in order to conceive of experimental tests of quantum mechanics. The quantum dot experiment
described in section 2 might be a good starting point for further investigation of these issues.

9 Conclusion

This article was concerned with the simplest non-trivial case of the inverse problem of quantum mea-
surement for iterated measurements: given the probabilities for outcomes of sequences of iterated
measurements on a physical systems, under which conditions can there exist a quantum-mechanical
model of the system which recovers these probabilities? This question has been answered to the
extent that there are several infinite sequences of constraints, all of which are rather unexpected, at
least to the author. They show that the quantum region in the space of all probabilities is actually
quite small and comparatively low-dimensional. In this sense, quantum-mechanical theories belong
to a very specific class. The present results yield no insight on the question why our world should
be quantum-mechanical – to the contrary, the conditions in theorem (4.1) are so unituitive and
complicated that the existence of a direct physical reason for their presence seems unlikely.

A clearly positive feature of the strict constraints for quantum-mechanical models is that they
could facilitate further experimental tests of quantum mechanics.
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[CF91] Raúl E. Curto, Lawrence A. Fialkow: Recursiveness, positivity and truncated moment
problems, Houston Journal of Mathematics 17(4), 1991.

[Wi46] David Widder: The Laplace Transform, Princeton University Press (1946).

A Appendix: Two noncommutative moment problems

Let A ≡ C ([0, 1],M2(C)) be the C∗-algebra of continuous functions with values in 2×2-matrices.

Theorem A.1. Given real numbers M1(n, s), Mx(n, s) and Mz(n, s) for each n ∈ N0 and s ∈
{0, . . . , n}, there exists a state ρ on A that has the moments

M1(n, s) = ρ
(
tn−s(1− t)s · 12

)
Mx(n, s) = ρ

(
tn−s(1− t)s · σx

)
Mz(n, s) = ρ

(
tn−s(1− t)s · σz

) (10)

if and only if the following conditions hold:

• probability conservation:

Mi(n, s) = Mi(n+ 1, s) +Mi(n+ 1, s+ 1) ∀i ∈ {1, x, z} (11)

• non-negativity:
M1(n, s) ≥

√
Mx(n, s)2 +Mz(n, s)2 (12)

• normalization:
M1(0, 0) = 1 (13)

Proof. This proof is an adaptation of the solution of the Hausdorff moment problem as it is outlined
in [Wi46, III §2]. Given the state ρ, it follows that (11) holds by 1 = t+ (1− t). The non-negativity
of M1(n, s) is a consequence of the fact that the function tn−s(1 − t)s · 12 is a positive element of
A. For the second inequality, note that linear combination

c12 + r σx + s σz

is a positive matrix if and only if both the determinant and the trace are non-negative, which means
that r2 + s2 ≤ c2 and c ≥ 0. Hence in this case, the function

tn−s(1− t)s · (c12 + r σx + s σz)
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is a positive element of A, and the assertion follows by applying ρ to this function and choosing
the values

r = −Mx(n, s), s = −Mz(n, s), c =
√
Mx(n, s)2 +Mz(n, s)2.

The main burden of the proof is to construct a state ρ, given a sequence of moments that satisfies
the constraints (11), (12). First of all, (11), (12) and (13) together imply that

M1(n, s) ≤ 1 ∀n, s (14)

Now denote by P the real vector space of R[t]-linear combinations of the matrices 12, σx and σz.
The state ρ will first be constructed on P, which is a subspace of A.

Recall that the Bernstein polynomials [Lo86]

Bn,s(t) =
(
n

s

)
ts(1− t)n−s

can be used to approximate any continuous function on [0, 1] in the sense that the approximants

An(f)(t) ≡
n∑
s=0

f
( s
n

)
Bn,s(t)

converge uniformly to f ,

|f(t)−An(f)(t)| < εn ∀t ∈ [0, 1], εn
n→∞−→ 0.

The Bernstein polynomials can be used to construct a sequence of approximating states ρn on P.
These are defined in terms of the given moments as

ρn (P1(t)12 + Px(t)σx + Pz(t)σz)

≡
n∑
s=0

(
n

s

)[
P1

( s
n

)
M1(n, s) + Px

( s
n

)
Mx(n, s) + Pz

( s
n

)
Mz(n, s)

]
.

for any polynomials P1, Px and Pz. Although it is hard to directly check convergence of the sequence
(ρn)n∈N, it is at least clear that the ρn are uniformly bounded,

|ρn(P1(t)12+Px(t)σx + Pz(t)σz) |
(12)

≤ max
t∈[0,1]

[
|P1(t)|+

√
Px(t)2 + Pz(t)2

]
M1(n, s)

(14)

≤ max
t∈[0,1]

[
|P1(t)|+

√
Px(t)2 + Pz(t)2

]
= max

t∈[0,1]
||P1(t)12 + Px(t)σx + Pz(t)σz||

(15)

where the norm in the last expression coincides with the C∗-algebra norm on A.
On the other hand, let Pn be the subspace of P where the polynomials are of degree up to n.

A basis of Pn is given by the 3n+ 3 matrix polynomials

Bn,s12, Bn,sσx, Bn,sσz; s ∈ {0, . . . , n}. (16)
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Then the requirements (10) uniquely define a linear functional ρ̃k : Pk → R,

ρ̃k (Bn,s12) = M1(n, n− s)
ρ̃k (Bn,sσx) = Mx(n, n− s)
ρ̃k (Bn,sσz) = Mz(n, n− s).

But now the relations
Bn,s(
n
s

) =
Bn+1,s(
n+1
s

) +
Bn+1,s+1(

n+1
s+1

) ,

in conjunction with the additivity law (11), show that the diagram

Pk //

  @
@@

@@
@@

@ Pk+1

}}zz
zz

zz
zz

R

commutes for all k. Therefore, the ρ̃k extend to a trial state ρ̃ : P → R, which is now defined on
all of P. The problem with ρ̃ is that it is not obviously bounded.

Therefore, the rest of this proof is devoted to showing that the approximating states converge
to the trial state in the weak sense:

ρk(P ) k→∞−→ ρ̃(P ) ∀P ∈ P.

Then (15) implies that ρ̃ is bounded and ||ρ̃|| = 1. Hence the Hahn-Banach extension theorem
shows that ρ̃ can be extended to a linear functional ρ̂ : A → C with ||ρ̂|| = 1. This proves the
original assertion by the fact that this is automatically a state as soon as ||ρ̂ || = ρ(1) = 1 holds,
and the construction of ρ̂ such that the equations (10) hold for this state.

In order to check this convergence, it is sufficient to consider the values of the states on the basis
polynomials (16). And for those, the calculation will be shown only for the first type Bn,s12, since
the other two work in exactly the same way.

ρ̃ (Bn,n−s(t)12)−ρk (Bn,n−s(t)12)

= M1(n, s)−
k∑
r=0

(
k

r

)( r
k

)n−s (
1− r

k

)s
M1(k, r)

(11)
=

k∑
r=0

[(
k − n
r − s

)
−
(
k

r

)( r
k

)n−s (
1− r

k

)s]
M1(k, r)

=
k∑
r=0

[(
k−n
r−s
)(

k
r

) − ( r
k

)n−s (
1− r

k

)s](k
r

)
M1(k, r)

Therefore using
∑k
r=0

(
k
r

)
M1(k, r) = M1(0, 0) = 1,

|ρ̃ (Bn,n−s(t)12)− ρk (Bn,n−s(t)12)| ≤ k
max
r=0

∣∣∣∣∣
(
k−n
r−s
)(

k
r

) − ( r
k

)n−s (
1− r

k

)s∣∣∣∣∣ (17)
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≤ max
y∈[0,1]

∣∣∣∣Γ(k − n+ 1)
Γ(k + 1)

· Γ(ky + 1)
Γ(ky − s+ 1)

· Γ(k(1− y) + 1)
Γ(k(1− y)− n+ s+ 1)

− yn−s(1− y)s
∣∣∣∣

This expression trivially vanishes for y = 0 and for y = 1. For y ∈ (0, 1), all the Gamma function
arguments tend to infinity, therefore the formula

lim
t→∞

Γ(t+m+ 1)
Γ(t+ 1)

· t−m = 1

can be applied in the form ∣∣∣∣Γ(t+m+ 1)
Γ(t+ 1)

− tm
∣∣∣∣ < ε · tm ∀t ≥ t0(m, ε)

to show that (17) vanishes in the k →∞ limit. This finally ends the proof.

Before studying the next noncommutative moment problem, some preparation is needed. So
let C ⊆ R4 be the set of points (x0, y0, x1, y1) ∈ R4 with the following property: the rectangle in
R2 that is spanned by (x0, y0) as the lower left corner and (x1, y1) as the upper right corner has
non-empty intersection with the unit disc {(x, y) |x2 + y2 ≤ 1}.

Proposition A.2. C is a convex semialgebraic set. A point (x0, y0, x1, y1) lies in C if and only if
it satisfies all the following five clauses:

x0 ≤ x1 ∧ y0 ≤ y1
(x0 ≤ 1 ∧ y0 ≤ 0) ∨ (x0 ≤ 0 ∧ y0 ≤ 1) ∨

(
x2

0 + y2
0 ≤ 1

)
(x0 ≤ 1 ∧ y1 ≥ 0) ∨ (x0 ≤ 0 ∧ y1 ≥ −1) ∨

(
x2

0 + y2
1 ≤ 1

)
(x1 ≥ −1 ∧ y0 ≤ 0) ∨ (x1 ≥ 0 ∧ y0 ≤ 1) ∨

(
x2

1 + y2
0 ≤ 1

)
(x1 ≥ −1 ∧ y1 ≥ 0) ∨ (x1 ≥ 0 ∧ y1 ≥ −1) ∨

(
x2

1 + y2
1 ≤ 1

)
Proof. C is the projection obtained by forgetting the first two coordinates of the points in the set

C̃ ≡
{

(x, y, x0, y0, x1, y1) ∈ R6
∣∣ x0 ≤ x ≤ x1, y0 ≤ y ≤ y1, x2 + y2 ≤ 1

}
.

Since C̃ is convex semi-algebraic, so is any projection of it, and therefore C.
A description of C̃ in terms of linear inequalities is given by

x− x0 ≥ 0, −x+ x1 ≥ 0
y − y0 ≥ 0, −y + y1 ≥ 0

x · cosα+ y · sinα ≤ 1 ∀α ∈ [0, 2π]

From this, one obtains the linear inequalities that define C by taking all these positive linear combi-
nations for which the dummy variables x and y drop out. There are exactly two such combinations
that do not use the α-family inequalities, and they are x0 ≤ x1 and y0 ≤ y1. On the other hand, if
such a linear combination contains α-family inequalities for at least two different values of α, the
inequality cannot be tight, since any non-trivial positive linear combination of the α-family inequal-
ities for different values of α is dominated by a single one with another value of α. Therefore, it
suffices to conisder each value of α at a time, and add appropriate multiples of the other inequalities
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such that x and y drop out. Since for both x and y and each sign, there is exactly one inequality
among the first four that contains that variable with that sign, there is a unique way to replace x
by x0 or x1 and y by y0 or y1. Depending on the value of α, there are four sign combinations to
consider, and the result is the following set of inequalities:

x1 · cosα+ y1 · sinα ≤ 1 ∀α ∈ [0, π/2],
x0 · cosα+ y1 · sinα ≤ 1 ∀α ∈ [π/2, π],
x1 · cosα+ y0 · sinα ≤ 1 ∀α ∈ [π, 3π/2],
x0 · cosα+ y0 · sinα ≤ 1 ∀α ∈ [3π/2, 2π].

Each of these families of inequalities in turn is equivalent to the corresponding clause above; for
example, α ∈ [0, π/2] bounds a region defined by the lines x1 = 1, y1 = 1 and the circular arc in
the first quadrant of the x1-y1-plane. This region coincides with the one defined by the first of the
clauses above. This works in the same way for the other three families.

Theorem A.3. Given real numbers M ′1(n, s), M ′x(n, s) and M ′z(n, s) for each n ∈ N0 and s ∈
{0, . . . , n}, there exists a state ρ on A that has the (integer and half-integer) moments

M ′1(n, s) = ρ
(
tn−s(1− t)s · 12

)
M ′x(n, s) = ρ

(
tn−s+1/2(1− t)s · σx

)
M ′z(n, s) = ρ

(
tn−s(1− t)s+1/2 · σz

) (18)

if and only if the following conditions hold:

• probability conservation:

M ′i(n, s) = M ′i(n+ 1, s) +M ′i(n+ 1, s+ 1) ∀i ∈ {1, x, z} (19)

• non-negativity:
M ′1(n, s) ≥ 0 (20)

for all n ∈ N0 and s ∈ {0, . . . , n}. Furthermore,3( ∞∑
k=0

(−1)k
(

1/2
k

)
M ′x(n+ k − 1, s+ k)

)2

+

( ∞∑
k=0

(−1)k
(

1/2
k

)
M ′z(n+ k − 1, s− 1)

)2

≤M ′1(n, s)2
(21)

for n ∈ N and s ∈ {1, . . . , n− 1}. Finally, using the coefficients

cn,k =

{
(−1)k

(−1/2
k

)
for k ≤ n

(−1)k
(−1/2

k

)
− (−1)k−n

(−1/2
k−n

)
for k > n

3Note that all sums are automatically absolutely convergent since F·,·(·, ·) ∈ [0, 1] and
P∞

k=0

˛̨̨`1/2
k

´˛̨̨
= 1 <∞.
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and the quantities

Vx,±(n) =
∞∑
k=0

cn,kM
′
x(k, k)

±

√√√√M ′1(n, n)2 −

( ∞∑
k=0

(−1)k
(

1/2
k

)
M ′z(n+ k − 1, n− 1)

)2

Vz,±(n) =
∞∑
k=0

cn,kM
′
z(k, 0)

±

√√√√M ′1(n, 0)2 −

( ∞∑
k=0

(−1)k
(

1/2
k

)
M ′x(n+ k − 1, k)

)2

the point in R4 given by(
sup
n
Vx,−(n), sup

n
Vz,−(n), inf

n
Vx,+(n), inf

n
Vz,+(n)

)
(22)

has to lie in C.4

• normalization:
M ′1(0, 0) = 1 (23)

Proof. It will be shown first that these conditions are necessary. This is immediate for (19), (20)
and (23). Furthermore, the (uniformly convergent) binomial expansions

√
t =

√
1− (1− t) =

∞∑
k=0

(
1/2
k

)
(−1)k(1− t)k

√
1− t =

∞∑
k=0

(
1/2
k

)
(−1)ktk

can be applied to express most of the integer moments of a given state in terms of the half-integer
moments of that state,

ρ
(
tn−s(1− t)sσx

)
=
∞∑
k=0

(−1)k
(

1/2
k

)
ρ
(
tn−s−1/2(1− t)s+kσx

)
, s ∈ {0, . . . , n− 1}

ρ
(
tn−s(1− t)sσz

)
=
∞∑
k=0

(−1)k
(

1/2
k

)
ρ
(
tn−s+k(1− t)s−1/2σz

)
, s ∈ {1, . . . , n}.

(24)

In the present notation (10) and (18), this reads

Mx(n, s) =
∞∑
k=0

(−1)k
(

1/2
k

)
M ′x(n+ k − 1, s+ k), s ∈ {0, . . . , n− 1}

Mz(n, s) =
∞∑
k=0

(−1)k
(

1/2
k

)
M ′z(n+ k − 1, s− 1), s ∈ {1, . . . , n}.

(25)

4In particular, the expressions under the square roots have to be non-negative and the suprema and infima have
to be finite.
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Together with (12), these formulas imply the constraint (21) for all relevant values s ∈ {1, . . . , n−
1}. Given in addition Mx(0, 0) = ρ(σx) and Mz(0, 0) = ρ(σz), the remaining integer moments
undetermined by (25) can be calculated as

Mx(n, n)
(11)
= Mx(0, 0)−

n∑
k=1

Mx(k, k − 1)
(25)
= Mx(0, 0)−

∞∑
k=0

cn,kM
′
x(k, k),

Mz(n, 0)
(11)
= Mz(0, 0)−

n∑
k=1

Mz(k, 1)
(25)
= Mz(0, 0)−

∞∑
k=0

cn,kM
′
z(k, 0).

(26)

where the second steps also involve rearrangements of the sums. Since Mx(n, n) is constrained
by (12) to have an absolute value of at most

√
M1(n, n)2 −Mz(n, n)2 =

√√√√M ′1(n, n)2 −

( ∞∑
k=0

(
1/2
k

)
M ′z(n+ k − 1, n− 1)

)2

,

equation (26) shows that Mx(0, 0) has to lie in the interval

[Vx,−(n), Vx,+(n)] (27)

for all n; therefore, it also has to lie in the intersection of all these intervals, which is the interval[
sup
n
Vx,−(n), inf

n
Vx,+(n)

]
.

Exactly analogous considerations show that Mz(0, 0) has to lie in the interval[
sup
n
Vz,−(n), inf

n
Vz,+(n)

]
.

Now one concludes that the point (22) has to be in C by the additional constraint

Mx(0, 0)2 +Mz(0, 0)2 ≤M1(0, 0)2 = 1. (28)

For the converse direction, it will be shown that the assumptions imply the existence of moments
Mx(n, s) and Mz(n, s) satisfying the hypothesis of theorem A.1 such that the M ′x and M ′z can be
recovered as

M ′x(n, s) =
∞∑
k=0

(−1)k
(

1/2
k

)
Mx(n+ k, s+ k)

M ′z(n, s) =
∞∑
k=0

(−1)k
(

1/2
k

)
Mz(n+ k, s),

(29)

and such that the M1(n, s) coincide with the M ′1(n, s). To begin, use (25) to define Mx(n, s) for
s ∈ {0, . . . , n− 1} and Mz(n, s) for s ∈ {1, . . . , n}. As soon as additionally the values for Mx(0, 0)
and Mz(0, 0) are determined, the remaining integer moments are defined by (26). Then it can be
verified by direct calculation – treating the cases s ∈ {1, . . . , n−1} separately from s = 0 and s = n
– that the equations (29) hold, indpendently of the chosen values for Mx(0, 0) and Mz(0, 0).
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It remains to verify that, with these definitions of Mx and Mz, the requirements of theorem (A.1)
can be satisfied for appropriate choices of Mx(0, 0) and Mz(0, 0). The equations (11) easily follow
by direct calculation, using (19). Again by the binomial expansions, the second part of (12) is
directly equivalent to (21) for s ∈ {1, . . . , n − 1}. In the case that s = n 6= 0, it holds as long as
Mx(0, 0) is chosen to lie in the interval (27); a similar statement holds for s = 0 and n > 0. For
s = n = 0, the constraint is equivalent to (28) and means that (Mx(0, 0),Mz(0, 0)) has to lie in
the unit disk of R2. By the assumption that (22) lies in C, it follows that a consistent choice for
Mx(0, 0) and Mz(0, 0) that satisfies all these requirements is indeed possible.
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