Max-Planck-Institut für Mathematik Bonn

Associative, Lie, and left-symmetric algebras of derivations
by

Ualbai Umirbaev

Max-Planck-Institut für Mathematik
Preprint Series 2014 (63)

Associative, Lie, and left-symmetric algebras of derivations

Ualbai Umirbaev

Max-Planck-Institut für Mathematik
Vivatsgasse 7
53111 Bonn
Germany

Eurasian National University
Astana
Kazakhstan

Wayne State University
Detroit, MI 48202
USA

ASSOCIATIVE, LIE, AND LEFT-SYMMETRIC ALGEBRAS OF DERIVATIONS

Ualbai Umirbaev ${ }^{1}$

Abstract

Let $P_{n}=k\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ be the polynomial algebra over a field k of characteristic zero in the variables $x_{1}, x_{2}, \ldots, x_{n}$ and \mathscr{L}_{n} be the left-symmetric algebra of all derivations of $P_{n}[4,18]$. Using the language of \mathscr{L}_{n}, for every derivation $D \in \mathscr{L}_{n}$ we define the associative algebra A_{D}, the Lie algebra L_{D}, and the left-symmetric algebra \mathscr{L}_{D} related to the study of the Jacobian Conjecture. For every derivation $D \in \mathscr{L}_{n}$ there is a unique n-tuple $F=\left(f_{1}, f_{2}, \ldots, f_{n}\right)$ of elements of P_{n} such that $D=D_{F}=f_{1} \partial_{1}+f_{2} \partial_{2}+\ldots+f_{n} \partial_{n}$. In this case, using an action of the Hopf algebra of noncommutative symmetric functions NSymm on P_{n}, we show that these algebras are closely related to the description of coefficients of the formal inverse to the polynomial endomorphism $X+t F$, where $X=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ and t is an independent parameter.

We prove that the Jacobian matrix $J(F)$ is nilpotent if and only if all right powers $D_{F}^{[r]}$ of D_{F} in \mathscr{L}_{n} have zero divergence. In particular, if $J(F)$ is nilpotent then D_{F} is right nilpotent.

We discuss some advantages and shortcomings of these algebras and formulate some open questions.

Mathematics Subject Classification (2010): Primary 14R15, 16T05, 17D25; Secondary 14R10, 17B30.

Key words: the Jacobian Conjecture, derivations and endomorphisms, Lie algebras, left-symmetric algebras, Hopf algebras.

1. Introduction

Let k be an arbitrary field of characteristic zero and $P_{n}=k\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ be the polynomial algebra over k in the variables $x_{1}, x_{2}, \ldots, x_{n}$. There are two well known algebras related to the study of derivations of P_{n}. They are the Witt algebra W_{n} and the Weyl algebra A_{n}. Recall that W_{n} is the Lie algebra of all derivations of P_{n} and A_{n} is the associative algebra of all linear differential operators on P_{n}.

The set of elements $u \partial_{i}$, where $u=x_{1}^{s_{1}} \ldots x_{n}^{s_{n}}$ is an arbitrary monomial, $\partial_{i}=\frac{\partial}{\partial x_{i}}$, and $1 \leq i \leq n$, forms a linear basis for W_{n}. For any $u=a \partial_{i}, v=b \partial_{j}$, where $a, b \in P_{n}$ are monomials, put

$$
\begin{equation*}
u \cdot v=\left(\left(a \partial_{i}\right)(b)\right) \partial_{j} . \tag{1}
\end{equation*}
$$

[^0]Extending this operation by distributivity, we get a well defined bilinear operation • on W_{n}. Denote this algebra by \mathscr{L}_{n}. It is easy to check (see Section 2) that \mathscr{L}_{n} is a leftsymmetric algebra $[4,18]$ and its commutator algebra is the Witt algebra W_{n}. We say that \mathscr{L}_{n} is the left-symmetric algebra of derivations of P_{n}.

The language of the left-symmetric algebras of derivations is very convenient to describe some important notions of affine algebraic geometry in purely algebraic terms [18]. For example, an element of \mathscr{L}_{n} is left nilpotent if and only if it is a locally nilpotent derivation of P_{n}. One of the greatest algebraic advantages of \mathscr{L}_{n} is that \mathscr{L}_{n} satisfies an exact analogue of the Cayley-Hamilton trace identity. Recall that W_{n} and A_{n} do not have an analogue of this identity.

Let $D \in \mathscr{L}_{n}$ be an arbitrary derivation of P_{n}. Denote by \mathscr{L}_{D} the subalgebra of the left-symmetric algebra \mathscr{L}_{n} generated by D. Denote by L_{D} the Lie subalgebra of the Witt algebra W_{n} generated by all right powers $D^{[p]}$ of D. Obviously, $L_{D} \subseteq \mathscr{L}_{D}$. Denote by A_{D} the subalgebra (with identity) of the Weyl algebra A_{n} generated by all right powers $D^{[p]}$ of D. So, A_{D} is an associative enveloping algebra of the Lie algebra L_{D}. The Lie algebra L_{D} is a nontrivial Lie algebra ever related to one derivation.

Every n-tuple $F=\left(f_{1}, f_{2}, \ldots, f_{n}\right)$ of elements of P_{n} represents a polynomial endomorphism of the vector space k^{n}. We denote by F^{*} the endomorphism of P_{n} defined by $F^{*}\left(x_{i}\right)=f_{i}$ for all i. Also denote by

$$
D_{F}=f_{1} \partial_{1}+f_{2} \partial_{2}+\ldots+f_{n} \partial_{n}
$$

the derivation of P_{n} defined by $D_{F}\left(x_{i}\right)=f_{i}$ for all i. Note that every derivation D can be uniquely represented as $D=D_{F}$ for some polynomial n-tuple F. Using this correspondence we often use parallel notations $A_{D}=A_{F}, L_{D}=L_{F}$, and $\mathscr{L}_{D}=\mathscr{L}_{F}$ if $D=D_{F}$

We show that if the Jacobian matrix $J(F)$ is nilpotent then D_{F} is a right nilpotent element of \mathscr{L}_{n}. We also show that the Jacobian matrix $J(F)$ is nilpotent if and only if all right powers $D_{F}^{[p]}$ of D_{F} have zero divergence. Moreover, if $J(F)$ is nilpotent then every element of L_{F} has zero divergence.

Let t be an independent parameter and

$$
(X+t F)^{-1}=X+t F_{1}+t^{2} F_{2}+\ldots+t^{n} F_{n}+\ldots
$$

be the formal (or analytic) inverse to the endomorphism $X+t F$ of $k[t]^{n}$. There are many interesting papers devoted to the description of $F_{i}[1,8,19]$. We show that A_{F} and L_{F} are also generated by all $D_{F_{i}}$ where $i \geq 1$. For this reason we can say that A_{F} and L_{F} are, respectively, the associative and the Lie algebras of coefficients of the formal inverse to $X+t F$. Notice that \mathscr{L}_{F} is also the smallest left-symmetric algebra containing all $D_{F_{i}}$ where $i \geq 1$.

Recall that the Hopf algebra of noncommutative symmetric functions NSymm [9] regarded as an algebra is the free associative algebra

$$
\mathrm{NSymm}=k\left\langle Z_{1}, Z_{2}, \ldots, Z_{n}, \ldots\right\rangle
$$

over k in the variables $Z_{1}, Z_{2}, \ldots, Z_{n}, \ldots$.
We define an action of NSymm on P_{n} by

$$
(X+t F)^{*}(a)=a+t Z_{1}(a)+t_{2}^{2} Z_{2}(a)+\ldots+t^{n} Z_{n}(a)+\ldots
$$

for any $a \in P_{n}$. This action represents a natural linearization of the action of $(X+t F)^{*}$ on P_{n}. We show that A_{F} is the image of NSymm under this representation and L_{F} is the image of the Lie algebra Prim of all primitive elements of NSymm. In this way, A_{F} and L_{F} may be considered as linearization algebras of the action of $(X+t F)^{*}$ on P_{n}. The left-symmetric algebra \mathscr{L}_{F} also can be related to further linearizations.

The Hopf algebra of noncommutative symmetric functions NSymm was introduced in [9] as a noncommutative generalization of the Hopf algebra of symmetric functions Symm. Several systems of free and primitive generators of NSymm and relations between them were given in [9]. Some more relations between the generators of NSymm are given in [21].

There are two well known systems of free primitive generators [12] of NSymm which are dual to each other with respect to the standard involution of the free associative algebra $k\left\langle Z_{1}, Z_{2}, \ldots, Z_{n}, \ldots\right\rangle$. It is interesting that one of them corresponds to the right powers $D_{F}^{[r]}$ of D_{F} and the other one corresponds to the $D_{F_{i}}$ for all $i \geq 1$. These observations make the Lie algebra L_{F} very important in studying the Jacobian Conjecture. The right powers $D_{F}^{[r]}$ are very convenient to express that $J(F)$ is nilpotent. In order to solve the Jacobian Conjecture it is necessary to prove that there exists a positive integer m such that $D_{F_{i}}=0$ for all $i \geq m$.

The action of NSymm on P_{n}, defined above, corresponds to one of a series of homomorphisms constructed in [21] and the images of primitive generators were calculated in [21].

It is rewarding to initiate a systematic study of the associative algebra A_{F}, the Lie algebra L_{F} and the left-symmetric algebra \mathscr{L}_{F}. Using an example of an automorphism studied earlier by A. van den Essen [7] and G. Gorni and G. Zampieri [11], we give an example of F with nilpotent Jacobian matrix $J(F)$ such that L_{F} is not nilpotent nor solvable.

The paper is organized as follows. Section 2 is devoted to the study of the left-symmetric algebra \mathscr{L}_{n}. In particular, we describe the right and the left multiplication algebras of \mathscr{L}_{n} and describe an analogue of the Cayley-Hamilton identity. In Section 3 we develop technics for calculation of divergence of elements in \mathscr{L}_{n}. The definition of the Hopf algebra of noncommutative symmetric functions NSymm is given in Section 4. We give also some primitive systems of generators of NSymm and relations between from [9]. The action of NSymm and the images of primitive elements are given in Section 5. In Section 6 we discuss some properties of these algebras towards the Jacobian Conjecture and formulate some open problems.

2. Algebra \mathscr{L}_{n}

If A is an arbitrary linear algebra over a field k then the set $\operatorname{Der}_{k} A$ of all k-linear derivations of A forms a Lie algebra. If A is a free algebra then it is possible to define a multiplication \cdot on $\operatorname{Der}_{k} A$ such that it becomes a left-symmetric algebra and its commutator algebra becomes the Lie algebra of derivations $\operatorname{Der}_{k} A$ of A [18].

Recall that an algebra \mathscr{L} over k is called left-symmetric [3] if \mathscr{L} satisfies the identity

$$
\begin{equation*}
(x y) z-x(y z)=\underset{3}{(y x) z-y(x z) .} \tag{2}
\end{equation*}
$$

This means that the associator $(x, y, z):=(x y) z-x(y z)$ is symmetric with respect to two left arguments, i.e.,

$$
(x, y, z)=(y, x, z)
$$

The variety of left-symmetric algebras is Lie-admissible, i.e., each left-symmetric algebra \mathscr{L} with the operation $[x, y]:=x y-y x$ is a Lie algebra.

Recall that the space of the algebra \mathscr{L}_{n} is W_{n} and the product is defined by (1).
Lemma 1. $[4,18]$ Algebra \mathscr{L}_{n} is left-symmetric and its commutator algebra is the Witt algebra W_{n}.

Proof. Let $x, y \in \mathscr{L}_{n}$. Denote by $[x, y]=x \cdot y-y \cdot x$ the commutator of x and y in \mathscr{L}_{n} and denote by $\{x, y\}$ the product of x and y in W_{n}. We first prove that the commutator algebra of \mathscr{L}_{n} is W_{n}, i.e.,

$$
[x, y](a)=\{x, y\}(a)
$$

for all $a \in P_{n}$. Note that

$$
\{x, y\}(a)=x(y(a))-y(x(a))
$$

by the definition. Taking into account that $[x, y]$ and $\{x, y\}$ are both derivations, we can assume that $a=x_{t}$. Consequently, it is sufficient to check that

$$
(x \cdot y-y \cdot x)\left(x_{t}\right)=x\left(y\left(x_{t}\right)\right)-y\left(x\left(x_{t}\right)\right) .
$$

We may also assume that $x=u \partial_{i}$ and $y=v \partial_{j}$. If $t \neq i, j$, then all components of the last equality are zeroes. If $t=i \neq j$ or $t=i=j$, then it is also true. Consequently, the commutator algebra of \mathscr{L}_{n} is W_{n}.

Assume that $x, y \in \mathscr{L}_{n}$ and $z=a \partial_{t}$. Then

$$
\begin{aligned}
& (x, y, z)=(x y) z-x(y z)=[(x y)(a)-x(y(a))] \partial_{t}, \\
& (y, x, z)=(y x) z-y(x z)=[(y x)(a)-y(x(a))] \partial_{t} .
\end{aligned}
$$

To prove (2) it is sufficient to check that

$$
[x, y](a)=x(y(a))-y(x(a))=\{x, y\}(a),
$$

which is already proved.
A natural P_{n}-module structure on \mathscr{L}_{n} can be defined by $p \cdot u \partial_{i}=(p u) \partial_{i}$ for all i and $p, u \in P_{n}$. Then

$$
\mathscr{L}_{n}=P_{n} \partial_{1} \oplus P_{n} \partial_{2} \oplus \ldots \oplus P_{n} \partial_{n}
$$

is a free P_{n}-module.
Consider the grading

$$
P_{n}=A_{0} \oplus A_{1} \oplus A_{2} \oplus \ldots \oplus A_{s} \oplus \ldots,
$$

where A_{i} the space of homogeneous elements of degree $i \geq 0$. The left-symmetric algebra \mathscr{L}_{n} has a natural grading

$$
\mathscr{L}_{n}=L_{-1} \oplus L_{0} \oplus L_{1} \oplus \ldots \oplus L_{s} \oplus \ldots
$$

where L_{i} the space of elements of the form $a \partial_{j}$ with $a \in A_{i+1}$ and $1 \leq j \leq n$. Elements of L_{s} are called homogeneous derivations of P_{n} of degree s.

We have $L_{-1}=k \partial_{1}+\ldots+k \partial_{n}$ and L_{0} is a subalgebra of \mathscr{L}_{n} isomorphic to the matrix algebra $M_{n}(k)$. The element

$$
D_{X}=x_{1} \partial_{1}+x_{2} \partial_{2}+\ldots+x_{n} \partial_{n}
$$

is the identity element of the matrix algebra L_{0} and is the right identity element of \mathscr{L}_{n}. The left-symmetric algebra \mathscr{L}_{n} has no identity element.

We establish some properties of \mathscr{L}_{n} related to the Jacobian Conjecture.
For every n-tuple $F=\left(f_{1}, f_{2}, \ldots, f_{n}\right)$ of elements of P_{n} denote by $J(F)=\left(\partial_{j}\left(f_{i}\right)\right)_{1 \leq i, j \leq n}$ the Jacobian matrix of F. Notice that every derivation D of P_{n} has the form $D=D_{F}$ for a unique endomorphism F. Put $J(D)=J(F)$. So, the Jacobian matrix of every derivation D of A is defined.

Lemma 2. [18] Let F and G be two arbitrary n-tuples of elements of A. Then

$$
D_{F} D_{G}=D_{D_{F}(G)}=D_{J(G) F}=D_{J\left(D_{G}\right) F} .
$$

Proof. The definition of the left symmetric product • directly implies that $D_{F} D_{G}=$ $D_{D_{F}(G)}$. Notice that for any $h \in A$ we have

$$
D_{F}(h)=\left.\sum_{i=1}^{n} \frac{\partial h}{\partial x_{i}} y_{i}\right|_{y_{i}:=f_{i}}=\left(\frac{\partial h}{\partial x_{1}}, \ldots, \frac{\partial h}{\partial x_{n}}\right) F .
$$

Consequently, $D_{D_{F}(G)}=D_{J(G) F}$.
For any $a \in \mathscr{L}_{n}$ put $a^{0}=a^{[0]}=a, a^{r+1}=a\left(a^{r}\right)$, and $a^{[r+1]}=\left(a^{[r]}\right) a$ for any $r \geq 0$. It is natural to say that a is left nilpotent if $a^{m}=0$ for some $m \geq 2$. Similarly, a is right nilpotent if $a^{[m]}=0$ for some $m \geq 2$.
Lemma 3. [18] A derivation D of A is locally nilpotent if and only if D is a left nilpotent element of \mathscr{L}_{n}.

Proof. Suppose that $D=D_{F}$ and put

$$
H_{i}=\underbrace{D(D \ldots(D(D}_{i} X)) \ldots)
$$

for all $i \geq 1$. Note that $H_{1}=F$ and $H_{2}=D_{F}(F)$. Consequently, $D^{2}=D_{H_{2}}$ by Lemma 2 . Continuing the same calculations, it is easy to show that $D^{i}=D_{H_{i}}$ for all i. Consequently, $D^{m}=0$ if and only if $H_{m}=0$. Note that $H_{m}=0$ means that D applied m times to x_{i} gives 0 for all i.

Example 1. Consider a well known [2] locally nilpotent derivation

$$
D=\left(x^{2}-y z\right)\left(z \frac{\partial}{\partial x}+2 x \frac{\partial}{\partial y}\right)
$$

of $k[x, y, z]$. It is easy to check that D is not right nilpotent. So, the left nilpotency of derivations does not imply their right nilpotency.

Let \mathscr{L} be an arbitrary left-symmetric algebra. Denote by $\operatorname{Hom}_{k}(\mathscr{L}, \mathscr{L})$ the associative algebra of all k-linear transformations of the vector space \mathscr{L}. For any $x \in \mathscr{L}$ denote by $L_{x}: \mathscr{L} \rightarrow \mathscr{L}(a \mapsto x a)$ and $R_{x}: \mathscr{L} \rightarrow \mathscr{L}(a \mapsto a x)$ the operators of left and right multiplication by x, respectively. It follows from (2) that

$$
\begin{equation*}
L_{[x, y]}=\left[L_{x}, L_{y}\right], \quad R_{x y}=R_{y} R_{x}+\left[L_{x}, R_{y}\right] \tag{3}
\end{equation*}
$$

Denote by $M(\mathscr{L})$ the subalgebra of $\operatorname{Hom}_{k}(\mathscr{L}, \mathscr{L})$ (with identity) generated by all R_{x}, L_{x}, where $x \in \mathscr{L}$. Algebra $M(\mathscr{L})$ is called the multiplication algebra of \mathscr{L}. The subalgebra $R(\mathscr{L})$ of $M(\mathscr{L})$ (with identity) generated by all R_{x}, where $x \in \mathscr{L}$, is called the right multiplication algebra of \mathscr{L}. Similarly, the subalgebra $L(\mathscr{L})$ of $M(\mathscr{L})$ (with identity) generated by all L_{x}, where $x \in \mathscr{L}$, is called the left multiplication algebra of \mathscr{L}.

Lemma 4. The right multiplication algebra $R\left(\mathscr{L}_{n}\right)$ of \mathscr{L}_{n} is isomorphic to the matrix algebra $M_{n}\left(P_{n}\right)$ and there exists a unique isomorphism $\theta: R\left(\mathscr{L}_{n}\right) \rightarrow M_{n}\left(P_{n}\right)$ such that $\theta\left(R_{D}\right)=J(D)$ for all $D \in \mathscr{L}_{n}$.

Proof. Let $D \in \mathscr{L}$. Notice that $R_{D}=0$ if and only $D \in k \partial_{1}+\ldots+k \partial_{n}=L_{0}$. In fact, suppose that $R_{D}=0$. Then $\partial_{i} \cdot D=0$ for all i. This means that if $D=D_{F}$ then F does not contain x_{i} for all i and $D \in L_{0}$. Consequently, $R_{D}=0$ if and only if $J(D)=0$.

Thus the correspondence $R_{D} \mapsto J(D)$ is well defined. Notice that for any $D=$ $D_{F}, D_{1}, \ldots, D_{m}$ we have

$$
R_{D_{1}} \ldots R_{D_{m}}(D)=\left(\ldots\left(D \cdot D_{m}\right) \ldots D_{1}\right)=D_{J\left(D_{1}\right) \ldots J\left(D_{m}\right) F}
$$

by Lemma 2. This implies that the equality $f\left(R_{D_{1}}, \ldots, R_{D_{m}}\right)=0$, where f is an associative polynomial, holds if and only if $f\left(J\left(D_{1}\right), \ldots, J\left(D_{m}\right)\right)=0$. Consequently, there exists a unique monomorphism $\theta: R(\mathscr{L}) \rightarrow M_{n}\left(P_{n}\right)$ such that $\theta\left(R_{D}\right)=J(D)$ for all $D \in \mathscr{L}_{n}$. The uniqueness of θ is obvious since $R\left(\mathscr{L}_{n}\right)$ is generated by all R_{D}.

Denote by B the subalgebra of $M_{n}(A)$ generated by all Jacobian matrices. Denote by $e_{i j}$, where $1 \leq i, j \leq n$, the matrix with 1 in the (i, j) place and with zeroes everywhere else, i.e., the matrix identities. Consider $F=\left(f_{1}, \ldots, f_{n}\right)$. If $f_{i}=x_{j}$ and $f_{s}=0$ for all $s \neq i$ then $J(F)=e_{i j}$ and $e_{i j} \in B$ for all i, j. Let $u=x_{1}^{s_{1}} \ldots x_{n}^{s_{n}}$ be an arbitrary monomial of P_{n}. Put $f_{1}=1 /\left(s_{1}+1\right) x_{1}^{s_{1}} x_{2}^{s_{2}} \ldots x_{n}^{s_{n}}$ and $f_{i}=0$ for all $i \geq 2$. Then u becomes the element of $J(F)$ in the place $(1,1)$. This implies that $e_{i 1} J(F) e_{1 j}=u e_{i j}$. Consequently, $B=M_{n}\left(P_{n}\right)$ and θ is a surjection.

Identities of \mathscr{L}_{n} are studied by A.S. Dzhumadildaev [4, 5, 6]. If $n=1$ then \mathscr{L}_{1} becomes a Novikov algebra and identities of \mathscr{L}_{1} are studied in [13].

Corollary 1. The identities of the right multiplication algebra $R\left(\mathscr{L}_{n}\right)$ coinside with the identities of the matrix algebra $M_{n}(k)$.

Corollary 2. [18] Let $D \in \mathscr{L}_{n}$. Then the Jacobian matrix $J(D)$ of D is nilpotent if and only if R_{D} is a nilpotent element of $M\left(\mathscr{L}_{n}\right)$.

Proof. By Lemma 4, $J(D)^{s}=0$ if and only if $R_{D}^{s}=0$.
Consequently, if $J(D)$ is nilpotent then D is right nilpotent. Is the converse true? This question is still open.

Every element $p \in P_{n}$ can be considered as an element of $\operatorname{Hom}\left(\mathscr{L}_{n}, \mathscr{L}_{n}\right)$ since \mathscr{L}_{n}. Then $P_{n} R\left(\mathscr{L}_{n}\right)$ becomes a left P_{n}-module. Notice that $M_{n}\left(P_{n}\right)$ is also a P_{n}-module.

Lemma 5. $P_{n} R\left(\mathscr{L}_{n}\right)=R\left(\mathscr{L}_{n}\right)$ and the isomorphism $\theta: R\left(\mathscr{L}_{n}\right) \rightarrow M_{n}\left(P_{n}\right)$, constructed in Lemma 4, is an isomorphism of P_{n}-modules.

Proof. As in the proof of Lemma 4, for any $p \in P_{n}$ and $D=D_{F}, D_{1}, \ldots, D_{m}$ we have

$$
p R_{D_{1}} \ldots R_{D_{m}}(D)=\left(\ldots\left(D \cdot D_{m}\right) \ldots D_{1}\right)=D_{p J\left(D_{1}\right) \ldots J\left(D_{m}\right) F}
$$

by Lemma 2. This implies that the equality $f\left(R_{D_{1}}, \ldots, R_{D_{m}}\right)=0$, where f is an associative polynomial over P_{n}, holds if and only if $f\left(J\left(D_{1}\right), \ldots, J\left(D_{m}\right)\right)=0$. Consequently, there exists a unique monomorphism $\bar{\theta}: P_{n} R\left(\mathscr{L}_{n}\right) \rightarrow M_{n}\left(P_{n}\right)$ of P_{n}-modules such that $\bar{\theta}(T)=\theta(T)$ for all $T \in R\left(\mathscr{L}_{n}\right)$. Then $\bar{\theta}$ is an isomorphism since θ is an isomorphism. This implies that $P_{n} R\left(\mathscr{L}_{n}\right)=R\left(\mathscr{L}_{n}\right)$ and $\bar{\theta}=\theta$.

The isomorphism $\theta: R\left(\mathscr{L}_{n}\right) \rightarrow M_{n}\left(P_{n}\right)$ from Lemma 4 gives us the matrix $\theta(T)$ for any $T \in R(\mathscr{L})$. Notice that $R_{D_{X}}$ is the identity element of $R\left(\mathscr{L}_{n}\right)$ and will be denoted by E.

Let T be an arbitrary element of $R(\mathscr{L})$. Then the matrix $\Theta=\theta(T)$ satisfies the well-known Cayley-Hamilton identity

$$
\Theta^{n}+a_{1} \Theta^{n-1}+\ldots+a_{n-1} \Theta+a_{n} I=0
$$

where I is the identity matrix of order n and $a_{i} \in P_{n}$. Recall that $a_{1}, a_{2}, \ldots, a_{n}$ can be expressed by traces of powers of J. It follows that

$$
\begin{equation*}
T^{n}+a_{1} T^{n-1}+\ldots+a_{n-1} T+a_{n} E=0 \tag{4}
\end{equation*}
$$

since θ is an isomorphism. This identity is an analogue of the Cayley-Hamilton trace identity for \mathscr{L}. Notice that if $T=f\left(R_{D_{1}}, \ldots, R_{D_{m}}\right)$ then $\Theta=f\left(J\left(D_{1}\right), \ldots, J\left(D_{m}\right)\right)$. So, all coefficients of (4) can be expressed by traces of products of Jacobian matrices.

Yu. Razmyslov proved [15] that all trace identities (in particular, all identities) of the matrix algebra $M_{n}(k)$ are corollaries of the Cayley-Hamilton trace identity. Consequently, all identities of $R\left(\mathscr{L}_{n}\right)$ are corollaries of (4). Of course, every identity of $R\left(\mathscr{L}_{n}\right)$ gives a right identity of \mathscr{L}_{n}, i.e., an identity of \mathscr{L}_{n} which can be expressed by right multiplication operators. But it does not mean that every right multiplication operator identity of \mathscr{L}_{n} is an identity of $R\left(\mathscr{L}_{n}\right)$. For this reason, we cannot say that every right identity of \mathscr{L}_{n} is a corollary of (4).

Lemma 6. The left multiplication algebra $L\left(\mathscr{L}_{n}\right)$ of \mathscr{L}_{n} is isomorphic to the Weyl algebra A_{n}.

Proof. Notice that for any $D=D_{F}, D_{1}, D_{2}, \ldots, D_{m}$ we have

$$
L_{D_{1}} L_{D_{2}} \ldots L_{D_{m}}(D)=\left(D_{1} \ldots\left(D_{m} \cdot D\right) \ldots\right)=D_{D_{1}\left(D_{2}\left(\ldots D_{m}(F) \ldots\right)\right)}
$$

This implies that the equality $f\left(L_{D_{1}}, L_{D_{2}}, \ldots, L_{D_{m}}\right)=0$, where f is an associative polynomial, holds in $L\left(\mathscr{L}_{n}\right)$ if and only if $f\left(D_{1}, D_{2}, \ldots, D_{m}\right)=0$ holds in A_{n}. Consequently, there exists a unique monomorphism $\psi: L\left(\mathscr{L}_{n}\right) \rightarrow A_{n}$ such that $\psi\left(L_{D}\right)=D$ for all $D \in \mathscr{L}_{n}$. Then ψ is an epimorphism since A_{n} is generated by all derivations.

So, Lemmas 4 and 6 describe the structure of the right and left multiplicative algebras of \mathscr{L}_{n}, respectively. But at the moment I do not know the structure of the multiplication algebra $M\left(\mathscr{L}_{n}\right)$. Recall that the Weyl algebra A_{n} does not satisfy any nontrivial identity. The left operator identities of \mathscr{L}_{n} are very important in studying the locally nilpotent derivations and the Jacobian Conjecture.

Lemma 7. Let $f=f\left(z_{1}, z_{2}, \ldots, z_{t}\right)$ be a Lie polynomial. Then $f\left(z_{1}, z_{2}, \ldots, z_{t}\right)=0$ is an identity of the Witt algebra W_{n} if and only if $f\left(L_{z_{1}}, L_{z_{2}}, \ldots, L_{z_{t}}\right)=0$ is a left operator identity of \mathscr{L}_{n}.

Proof. Let $w_{1}, w_{2}, \ldots, w_{t} \in W_{n}=\mathscr{L}_{n}$. Notice that $f\left(w_{1}, w_{2}, \ldots, w_{t}\right)=0$ in W_{n} if and only if $L_{f\left(w_{1}, w_{2}, \ldots, w_{t}\right)}=0$ in $L\left(\mathscr{L}_{n}\right)$ since the left annihilator of \mathscr{L}_{n} is trivial. By (3), we get

$$
L_{f\left(w_{1}, w_{2}, \ldots, w_{t}\right)}=f\left(L_{w_{1}}, L_{w_{2}}, \ldots, L_{w_{t}}\right)=0
$$

This means that the associative polynomial

$$
L_{f}=f\left(L_{z_{1}}, L_{z_{2}}, \ldots, L_{z_{t}}\right)
$$

in $L_{z_{1}}, L_{z_{2}}, \ldots, L_{z_{t}}$ is a left operator identity of \mathscr{L}_{n} if and only if $f\left(z_{1}, z_{2}, \ldots, z_{t}\right)$ is an identity of W_{n}.

Identities of W_{n} are studied in [16] and left operator identities of \mathscr{L}_{n} are studied in [6].

3. Divergence calculations

If D is an arbitrary element of \mathscr{L}_{n}, then there exists a unique n-tuple $F=\left(f_{1}, f_{2}, \ldots, f_{n}\right)$ of elements of P_{n} such that $D=D_{F} \in \mathscr{L}_{n}$. Put

$$
\operatorname{div}(D)=\operatorname{div}\left(D_{F}\right)=\partial_{1}\left(f_{1}\right)+\partial_{2}\left(f_{2}\right)+\ldots+\partial_{n}\left(f_{n}\right)
$$

Consequently, $\operatorname{div}(D)=\operatorname{Tr}(J(D))=\operatorname{Tr}(J(F))$.
Recall that every n-tuple $F=\left(f_{1}, f_{2}, \ldots, f_{n}\right)$ of P_{n} represents a polynomial mapping of the vector space k^{n}. Denote by F^{*} the endomorphism of P_{n} such that $F^{*}\left(x_{i}\right)=f_{i}$ for all i. If F and G are polynomial endomorphisms of k^{n} then $(F \circ G)^{*}=G^{*} \circ F^{*}$. By definition, $J(F)=J\left(F^{*}\right)$. The chain rule gives that

$$
\begin{equation*}
J(G \circ F)=J\left(F^{*} \circ G^{*}\right)=F^{*}\left(J\left(G^{*}\right)\right) J\left(F^{*}\right)=F^{*}(J(G)) J(F) \tag{5}
\end{equation*}
$$

Lemma 8. Let $T, S \in \mathscr{L}_{n}$. Then the following statements are true:
(i) $J(T \cdot S)=T(J(S))+J(S) J(T)$;
(ii) $J([T, S])=T(J(S))-S(J(T))$;
(iii) $\operatorname{div}([T, S])=T(\operatorname{div}(S))-S(\operatorname{div}(T))$.

Proof. Suppose that $T=D_{F}$ and $S=D_{G}$. Then $T \cdot S=D_{D_{F}(G)}$. Consider the endomorphism $(X+t F)^{*}$ where t is an independent parameter. Obviously,

$$
(X+t F)^{*}(G)=G+t D_{F}(G)+t^{2} G_{2}+\ldots
$$

Consequently, $D_{F}(G)=\left.\frac{\partial}{\partial t}\left((X+t F)^{*} G\right)\right|_{t=0}$. By (5), we get

$$
\begin{array}{r}
J\left((X+t F)^{*}(G)\right)=J\left((X+t F)^{*} \circ G^{*}\right)=(X+t F)^{*}(J(G)) J(X+t F) \\
=\left(J(G)+t D_{F}(J(G))+t^{2} T_{2}+\ldots\right)(I+t J(F)) \\
=J(G)+t\left(D_{F}(J(G))+J(G) J(F)\right)+t^{2} M_{2}+\ldots .
\end{array}
$$

Hence

$$
J\left(D_{F}(G)\right)=\left.\frac{\partial}{\partial t} J\left((X+t F)^{*}(G)\right)\right|_{t=0}=D_{F}(J(G))+J(G) J(F)
$$

which proves (i). Notice that (i) directly implies (ii). Besides, Tr is a linear function and for any $D \in \mathscr{L}_{n}$ and $B \in M_{n}(A)$ we have $\operatorname{Tr}(D(B))=D(\operatorname{Tr}(B))$. Consequently, (ii) implies (iii).

Lemma 9. Let $D \in \mathscr{L}_{n}$. Then $J(D)$ is nilpotent if and only if $\operatorname{div}\left(D^{[q]}\right)=0$ for all $q \geq 1$.
Proof. By Lemma 8, we get $J\left(D^{[2]}\right)=D(J(D))+J(D)^{2}$ and

$$
J\left(D^{[i+1]}\right)=J\left(D^{[i]} \cdot D\right)=D^{[i]}(J(D))+J(D) J\left(D^{[i]}\right)
$$

This allows us to prove, by induction on i, that
(6) $J\left(D^{[i]}\right)=D^{[i-1]}(J(D))+J(D) D^{[i-2]}(J(D))+\ldots+J(D)^{i-2} D(J(D))+J(D)^{i}$
for all $i \geq 1$.
Suppose that $J(D)$ is nilpotent. It is well known that $J(D)$ is nilpotent if and only if $\operatorname{Tr}\left(J(D)^{q}\right)=0$ for all $q \geq 1$. Recall that $\operatorname{Tr}(T S)=\operatorname{Tr}(S T)$ for any $T, S \in M_{n}(A)$. Consequently, for any $D \in \mathscr{L}_{n}, T \in M_{n}(A)$, and integer $s \geq 1$ we have

$$
\begin{gathered}
\operatorname{Tr}\left(D\left(T^{s}\right)\right)=\operatorname{Tr}\left(D(T) T^{s-1}+T D\left(T^{2}\right) T^{s-2}+\right. \\
\left.\ldots+T^{s-2} D(T) T+T^{s-1} D(T)\right)=s \operatorname{Tr}\left(T^{s-1} D(T)\right)
\end{gathered}
$$

and consequently,

$$
\begin{equation*}
D\left(\operatorname{Tr}\left(T^{s}\right)\right)=\operatorname{Tr}\left(D\left(T^{s}\right)\right)=s \operatorname{Tr}\left(T^{s-1} D(T)\right) \tag{7}
\end{equation*}
$$

Hence $\operatorname{Tr}\left(T^{s-1} D(T)\right)=0$ and (6) implies that $\operatorname{div}\left(D^{[i]}\right)=\operatorname{Tr}\left(J\left(D^{[i]}\right)\right)=0$.
Suppose that $\operatorname{div}\left(D^{[q]}\right)=0$ for all $q \geq 1$. We prove by induction on s that $\operatorname{Tr}\left(J(D)^{s}\right)=0$ for all $s \geq 1$. Suppose that it is true for all s such that $1 \leq s<i$. Then, (7) gives that $\operatorname{Tr}\left(J(D)^{s-1} D^{[p]}(J(D))\right)=0$. Consequently, (7) implies that $\operatorname{Tr}\left(\left(J(D)^{i}\right)=0\right.$.

Let D be an arbitrary element of \mathscr{L}_{n}. Recall that L_{D} is the Lie algebra generated by all right powers $D^{[i]}(i \geq 1)$ of D.
Theorem 1. Let $D \in \mathscr{L}_{n}$. Then the Jacobian matrix $J(D)$ of D is nilpotent if and only if the divergence of every element of L_{D} is zero.

Proof. This is a direct corollary of Lemmas 8 and 9 .
Denote by $I(D)$ the L_{D}-closed subalgebra of A generated by all $\operatorname{Tr}\left(J(D)^{i}\right)=0, i \geq 1$.
Corollary 3. Let $D \in \mathscr{L}_{n}$. Then the divergence of every element of L_{D} belongs to $I(D)$.
Proof. The proof of Lemma 9 can be easily adjusted to prove that $\operatorname{div}\left(D^{[i]}\right) \in I(D)$. Then Lemma 8 finishes the proof of the corollary.

The Lie algebra L_{D} is a small part of the left-symmetric algebra \mathscr{L}_{D} generated by D. Probably L_{D} is the maximal subspace of \mathscr{L}_{D} whose divergence belong to $I(D)$. In other words, I think that if $J(D)$ is nilpotent then L_{D} is the maximal subspace of elements of \mathscr{L}_{D} whose divergence are zeroes.

Recall that a derivation D is called triangular if $D\left(x_{i}\right) \in k\left[x_{1}, \ldots, x_{i}\right]$ for all i and strongly triangular if $D\left(x_{i}\right) \in k\left[x_{1}, \ldots, x_{i-1}\right]$ for all i. If D is a triangular derivation with a nilpotent Jacobian matrix $J(D)$, then it is easy to check that D is strongly triangular. If D is strongly triangular then $J(D)$ is nilpotent and both algebras L_{D} and \mathscr{L}_{D} are nilpotent.

Example 2. Now we give an example of derivation D with a nilpotent Jacobian matrix $J(D)$ such that L_{D} is not nilpotent nor solvable. Consider the automorphism

$$
\left(x+s(x t-y s), y+\underset{9}{t(x t-y s)}, s+t^{3}, t\right)
$$

of the polynomial algebra $k[x, y, s, t]$ studied A. van den Essen [7] and G. Gorni and G. Zampieri [11]. Put

$$
F=\left(s(x t-y s), t(x t-y s), t^{3}, 0\right)
$$

Obviously, $J(F)$ is nilpotent. Consider

$$
D=D_{F}=s(x t-y s) \partial_{x}+t(x t-y s) \partial_{y}+t^{3} \partial_{s}
$$

Corollary 2 gives that D is a right nilpotent element of \mathscr{L}_{n}. Put $w=x t-y s$. Then,

$$
D(w)=-y t^{3}, \quad D(D(w))=-t^{4} w
$$

Consequently, D is not a locally nilpotent derivation and is not a left nilpotent element of \mathscr{L}_{n} by Lemma 3. Direct calculations give

$$
\begin{array}{r}
D^{2}=D^{[2]}=t^{3}(x t-2 y s) \partial_{x}-y t^{4} \partial_{y}, \quad D^{[2]}(w)=w t^{4} \\
D^{[3]}=s t^{4} w \partial_{x}+t^{5} w \partial_{y}, \quad D^{[3]}(w)=0, \quad D^{[4]}=0 .
\end{array}
$$

Consequently, the Lie algebra L_{D} is generated by two elements $a=D, b=D^{[2]}$, and $c=D^{[3]}$. Moreover, we have

$$
[a, b]=-2 c-2 A, \quad A=t^{6} y \partial_{x}, \quad[b, c]=2 t^{4} c, \quad[a, c]=t^{4} b
$$

These relations show that L_{D} is not nilpotent. We also have

$$
[a, A]=t^{4} b,[A, c]=-t^{7} b,[A, b]=2 t^{4} A
$$

Let M be the subalgebra of L_{D} generated by A, b, c. Note that t is a constant for all elements of L_{D}. The homomorphic image of M under $t \mapsto 1$ becomes a Lie algebra with a linear basis A, b, c and and satisfies the relations

$$
[b, c]=2 c,[A, c]=-b,[A, b]=2 A
$$

Consequently, M is not solvable and so is L_{D}.
This example also shows some limits of divergence calculations. The divergence of every element of L_{D} is zero, but L_{D} is not nilpotent nor solvable.

4. Primitives of the Hopf algebra NSymm

As an algebra NSymm [9] is the free associative algebra

$$
\mathrm{NSymm}=k\left\langle Z_{1}, Z_{2}, \ldots, Z_{n}, \ldots\right\rangle
$$

over k in the variables $Z_{1}, Z_{2}, \ldots, Z_{n}, \ldots$. The comultiplication \triangle and the counit ϵ are algebra maps determined by

$$
\triangle\left(Z_{n}\right)=\sum_{i+j=n} Z_{i} \otimes Z_{j}\left(Z_{0}=1\right), \quad \varepsilon\left(Z_{n}\right)=0
$$

for all $n \geq 1$, respectively. The antipod S is an antiisomorphism determined by

$$
S\left(Z_{n}\right)=\sum_{i_{1}+\ldots+i_{p}=n}(-1)^{p} Z_{i_{1}} Z_{i_{2}} \ldots Z_{i_{p}}
$$

for all $n \geq 1$.

The Hopf algebra of noncommutative symmetric functions was introduced in [9] and many systems of free generators and relations between them were described. It was also proved [9] that NSymm is canonically isomorphic to the Solomon descent algebra [17]. It is also known $[9,14]$ that the graded dual of NSymm is the Hopf algebra of quasisymmetric functions QSymm [10].

Denote by Prim the set of all primitive elements of NSymm, i.e.,

$$
\operatorname{Prim}=\{p \in \operatorname{NSymm} \mid \triangle(p)=p \otimes 1+1 \otimes p\}
$$

Define the system of elements $U_{1}, U_{2}, \ldots, U_{i}, \ldots$ by

$$
\sum_{i=1}^{\infty} t^{i} U_{i}=\log \left(\sum_{i=0}^{\infty} t^{i} Z_{i}\right)
$$

Direct calculations give

$$
U_{m}=\sum_{i_{1}+\ldots+i_{k}=m} \frac{(-1)^{k-1}}{k} Z_{i_{1}} \ldots Z_{i_{k}}
$$

and

$$
Z_{m}=\sum_{i_{1}+\ldots+i_{k}=m} \frac{1}{k!} U_{i_{1}} \ldots U_{i_{k}}
$$

for all $m \geq 1$.
It is well known [9, 14] the Lie algebra Prim is a free Lie algebra freely generated by $U_{1}, U_{2}, \ldots, U_{m} \ldots$ and NSymm is the universal enveloping algebra of NSymm.

Consider the following two systems of elements of NSymm :

$$
\begin{equation*}
\Theta_{n}(Z)=\sum_{r_{1}+\ldots+r_{k}=n}(-1)^{k-1} r_{1} Z_{r_{1}} Z_{r_{2}} \ldots Z_{r_{k}} \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
\Psi_{n}(Z)=\sum_{r_{1}+\ldots+r_{k}=n}(-1)^{k-1} r_{k} Z_{r_{1}} Z_{r_{2}} \ldots Z_{r_{k}} \tag{9}
\end{equation*}
$$

where $r_{i} \in \mathbb{N}=\{1,2, \ldots\}$ and $n \geq 1$.
Notice that in our notations, Z_{i} correspond to complete symmetric functions S_{i}, Ψ_{i} are the power sums symmetric functions, and U_{i} correspond to power sums of the second kind Φ_{i} / i in [9]. The functions corresponding to Θ_{i} were not considered in [9] since Θ_{i} can be obtained from Ψ_{i} by the natural involution of NSymm preserving all Z_{i}. But in needs of the Jacobian Conjecture it is necessary to study the relations between Θ_{i} and Ψ_{i} more deeply.

The systems of elements (8) and (9) are primitive systems of free generators of the free associative algebra NSymm [9] and can be defined recursively by

$$
n Z_{n}=\Theta_{n}(Z)+\Theta_{n-1} Z_{1}+\Theta_{n-2} Z_{2}+\ldots+\Theta_{1} Z_{n-1}
$$

and

$$
n Z_{n}=\Psi_{n}(Z)+Z_{1} \Psi_{n-1}+Z_{2} \Psi_{n-2}+\ldots+Z_{n-1} \Psi_{1}
$$

for all $n \geq 1$.

Recall that a composition is a vector $I=\left(i_{1}, \ldots, i_{m}\right)$ of nonnegative integers, called the parts of I. The length $l(I)$ of the composition I is the number k of its parts and the weigt of I is the sum $|I|=\Sigma i_{j}$ of its parts. We use notations

$$
Z^{I}=Z_{i_{1}} \ldots Z_{i_{m}}, \quad \Theta^{I}=\Theta_{i_{1}} \ldots \Theta_{i_{m}}, \quad \Psi^{I}=\Psi_{i_{1}} \ldots \Psi_{i_{m}} .
$$

Put also

$$
\pi_{u}(I)=i_{1}\left(i_{1}+i_{2}\right) \ldots\left(i_{1}+i_{2}+\ldots+i_{m}\right)
$$

and $\operatorname{lp}(I)=i_{m}$ (the last part of I). Let J be another composition. We say that $I \preceq J$ if $J=\left(J_{1}, \ldots, J_{m}\right)$ and $\left|J_{j}\right|=i_{j}$ for all j. For example, $(3,2,6) \preceq(2,1,2,3,1,2)$. If $I \preceq J$ then put

$$
\pi_{u}(J, I)=\prod_{i=1}^{m} \pi_{u}\left(J_{i}\right), \quad \operatorname{lp}(J, I)=\prod_{i=1}^{m} \operatorname{lp}\left(J_{i}\right)
$$

The following formulas are proved in [9].

$$
\begin{equation*}
Z^{I}=\sum_{J \succeq I} \frac{1}{\pi_{u}(J, I)} \Psi^{J}, \quad \Psi^{I}=\sum_{J \succeq I}(-1)^{l(J)-l(I)} \operatorname{lp}(J, I) Z^{J} \tag{10}
\end{equation*}
$$

Denote by w the natural involution of the free associative algebra NSymm preserving all Z_{i}. Obviously, $w\left(\Theta_{i}\right)=\Psi_{i}$ and $w\left(\Psi_{i}\right)=\Theta_{i}$ for all i. Applying w, from (10) we get

$$
Z^{\bar{I}}=\sum_{J \succeq I} \frac{1}{\pi_{u}(J, I)} \Theta^{\bar{J}}, \quad \Theta^{\bar{I}}=\sum_{J \succeq I}(-1)^{l(J)-l(I)} \operatorname{lp}(J, I) Z^{\bar{I}}
$$

where \bar{I} is the mirror image of the composition I, i.e. the new composition obtained by reading I from right to left.

Consequently,

$$
\begin{equation*}
Z^{I}=\sum_{J \succeq I} \frac{1}{\pi_{u}(\bar{J}, \bar{I})} \Theta^{J}, \quad \Theta^{I}=\sum_{J \succeq I}(-1)^{l(J)-l(I)} \operatorname{lp}(\bar{J}, \bar{I}) Z^{J} \tag{11}
\end{equation*}
$$

Using (9) and (11), we get

$$
\Psi_{n}=\sum_{|I|=n}(-1)^{l(I)-1} \operatorname{lp}(I) Z^{I}=\sum_{|I|=n}(-1)^{l(I)-1} \operatorname{lp}(I) \sum_{J \succeq I} \frac{1}{\pi_{u}(\bar{J}, \bar{I})} \Theta^{J}
$$

i.e.,

$$
\begin{equation*}
\Psi_{n}=\sum_{J \succeq I,|I|=n}(-1)^{l(I)-1} \frac{\operatorname{lp}(I)}{\pi_{u}(\bar{J}, \bar{I})} \Theta^{J} \tag{12}
\end{equation*}
$$

In fact, Ψ_{n} can be expressed as a Lie polynomial of $\Theta_{1}, \ldots, \Theta_{n}$. We have

$$
\begin{gathered}
\Psi_{1}=\Theta_{1}, \Psi_{2}=\Theta_{2}, \Psi_{3}=\Theta_{3}+1 / 2\left[\Theta_{2}, \Theta_{1}\right] \\
\Psi_{4}=\Theta_{4}+2 / 3\left[\Theta_{3}, \Theta_{1}\right]+1 / 6\left[\left[\Theta_{2}, \Theta_{1}\right], \Theta_{1}\right]
\end{gathered}
$$

It will be interesting to find the Lie expression of Ψ_{n} in $\Theta_{1}, \ldots, \Theta_{n}$.

5. An action of the Hopf algebra NSymm

We define an action

$$
\mathrm{NSymm} \times P_{n} \longrightarrow P_{n} \quad((T, a) \mapsto T \circ a)
$$

of NSymm on the polynomial algebra P_{n} related to an n-tuple F. Since NSymm is a free associative algebra, it is sufficient to define $Z_{i} \circ a$ for all $i \geq 1$ and $a \in P_{n}$. For any $a \in P_{n}$ there exists a unique system of elements $g_{i} \in P_{n}, i \geq 1$ such that

$$
(X+t F)^{*}(a)=a+t g_{1}+t^{2} g_{2}+\ldots+t^{n} g_{n}+\ldots
$$

where t is an independent variable. Put $Z_{i} \circ a=g_{i}$ for all $i \geq 1$. Then

$$
(X+t F)^{*}(a)=a+t Z_{1}(a)+t^{2} Z_{2}(a)+\ldots+t^{n} Z_{n}(a)+\ldots
$$

This formula can be considered as a linearization of the action of $(X+t F)^{*}$ on P_{n}. Denote by

$$
\lambda: \operatorname{NSymm} \longrightarrow \operatorname{Hom}_{k}\left(P_{n}, P_{n}\right)
$$

the homomorphism corresponding to this representation, where $\operatorname{Hom}_{k}\left(P_{n}, P_{n}\right)$ is the set of all k-linear maps from P_{n} to P_{n}. First of all we show that $\lambda(\mathrm{NSymm}) \subseteq A_{n}$.

Denote by $p: P_{n} \otimes_{k} P_{n} \rightarrow P_{n}$ the product in the polynomial algebra P_{n}.
Lemma 10. Let $T \in$ NSymm. Then $\lambda(T) p=p \lambda(\triangle(T))$.
Proof. It is easy to check that the set of elements $T \in$ NSymm satisfying the statement of the lemma forms a subalgebra. Consequently, we may assume that $T=Z_{n}$. If $a, b \in A$ then

$$
\begin{aligned}
& \sum_{i=0} t^{i} \lambda\left(Z_{i}\right)(a b)=(X+t F)^{*}(a b) \\
= & \left((X+t F)^{*}(a)\right)\left((X+t F)^{*}(b)\right) \\
= & \left(\sum_{i=0} t^{i} \lambda\left(Z_{i}\right)(a)\right)\left(\sum_{i=0} t^{i} \lambda\left(Z_{i}\right)(b)\right) .
\end{aligned}
$$

Comparing coefficients in the degrees of t we get $Z_{i}(a b)=\sum_{r+s=i} Z_{r}(a) Z_{s}(b)$. This means $Z_{i} p=p \triangle\left(Z_{i}\right)$.
Lemma 11. $\lambda(\operatorname{Prim}) \subseteq W_{n}$ and $\lambda(\mathrm{NSymm}) \subseteq A_{n}$.
Proof. If $T \in$ Prim then, by Lemma 10, we get

$$
\begin{array}{r}
\lambda(T)(a b)=\lambda(T) p(a \otimes b)=p \lambda(\triangle(T))(a \otimes b)=p \lambda(T \otimes 1+1 \otimes T)(a \otimes b) \\
=p(\lambda(T)(a) \otimes b+a \otimes \lambda(T)(b))=\lambda(T)(a) b+a \lambda(T)(b)
\end{array}
$$

i.e., $\lambda(T) \in W_{n}$.

Notice that NSymm is a free associative algebra and any action of NSymm is well defined by the action of any free system of generators. For example, $\Theta_{1}, \Theta_{2}, \ldots, \Theta_{n}, \ldots \in$ Prim is a free system of generators of NSymm and $\lambda\left(\Theta_{1}\right), \lambda\left(\Theta_{2}\right), \ldots, \lambda\left(\Theta_{n}\right), \ldots \in W_{n}$. Consequently, for any $T \in$ NSymm element $\lambda(T)$ is a differential operator on P_{n}, i.e., $\lambda(T) \in A_{n}$.

By this lemma, we have a homomorphism

$$
\begin{equation*}
\lambda: \mathrm{NSymm} \longrightarrow A_{n} \tag{13}
\end{equation*}
$$

Lemma 12. Let $a \in P_{n}$ and $\operatorname{deg} a \leq k$. Then $\lambda\left(Z_{i}\right)(a)=0$ for all $i \geq k+1$.
Proof. Obviously, the degree of $(X+t F)(a)=a\left(\left(x_{1}+t f_{1}\right), \ldots,\left(x_{n}+t f_{n}\right)\right)$ with respect to t is less than or equal to k. Consequently, $\lambda\left(Z_{i}\right)(a)=0$ for all $i \geq k+1$.

Proposition 1. Let

$$
(X+t F)^{-1}=X+t F_{1}+t^{2} F_{2}+\ldots+t^{m} F_{m}+\ldots
$$

be the formal inverse to the endomorphism $X+t F$ of $k[t]^{n}$. Then

$$
-\lambda\left(\Psi_{m}\right)(X)=F_{m}
$$

for all $m \geq 1$.
Proof. Consider the endomorphism $(X+t F)^{*}: k[t] \otimes_{k} P_{n} \rightarrow k[t] \otimes_{k} P_{n}$ of the $k[t]$-algebra. Notice that

$$
\begin{equation*}
(X+t F)^{*}=1+t \lambda\left(Z_{1}\right)+t^{2} \lambda\left(Z_{2}\right)+\ldots+t^{n} \lambda\left(Z_{n}\right)+\ldots \tag{14}
\end{equation*}
$$

by the definition of $\lambda\left(Z_{i}\right)$. Then,

$$
(X+t F)^{*}=1-T, \quad T=-\left(t \lambda\left(Z_{1}\right)+t^{2} \lambda\left(Z_{2}\right)+\ldots+t^{n} \lambda\left(Z_{n}\right)+\ldots\right)
$$

and

$$
\left((X+t F)^{*}\right)^{-1}=1+T+T^{2}+\ldots+T^{n}+\ldots
$$

Direct calculation gives

$$
\left((X+t F)^{*}\right)^{-1}=1+t T_{1}+t^{2} T_{2}+\ldots+t^{n} T_{n}+\ldots
$$

where

$$
T_{m}=\sum_{r_{1}+\ldots+r_{k}=m}(-1)^{k} \lambda\left(Z_{r_{1}}\right) \lambda\left(Z_{r_{2}}\right) \ldots \lambda\left(Z_{r_{k}}\right), \quad n \geq 1 .
$$

Notice that $(X+t F)^{-1}=\left((X+t F)^{*}\right)^{-1}(X)$ and $F_{m}=T_{m}(X)$. Then,

$$
\begin{aligned}
F_{n} & =\sum_{r_{1}+\ldots+r_{k}=m}(-1)^{k} \lambda\left(Z_{r_{1}}\right) \lambda\left(Z_{r_{2}}\right) \ldots \lambda\left(Z_{r_{k}}\right)(X) \\
& =\sum_{r_{1}+\ldots+r_{k}=m}(-1)^{k} r_{k} \lambda\left(Z_{r_{1}}\right) \lambda\left(Z_{r_{2}}\right) \ldots \lambda\left(Z_{r_{k}}\right)(X)
\end{aligned}
$$

by lemma 12. Consequently, $F_{m}=-\lambda\left(\Psi_{m}\right)(X)$.
The homomorphism (13) coincides with one of a series of homomorphisms constructed in [21] and the images of primitive generators were calculated in [21].
Lemma 13. (i) $\lambda\left(\Theta_{m}\right)=(-1)^{m-1} D_{F}^{[m]}$ for all $m \geq 1$.
(ii) $\lambda\left(\Psi_{m}\right)=-D_{F_{m}}$ for all $m \geq 1$.

Proof. By Lemma 11, $\lambda\left(\Theta_{m}\right)$ and $\lambda\left(\Psi_{m}\right)$ are derivations of P_{n}. Consequently, it is sufficient to prove that $\lambda\left(\Theta_{m}\right)(X)=(-1)^{m-1} D_{F}^{[m]}(X)$ and $\lambda\left(\Psi_{m}\right)(X)=-D_{F_{m}}(X)=$ $-F_{m}$. Proposition 1 implies (ii). We have $\lambda\left(\Theta_{1}\right)(X)=F=D_{F}(X)$ since $\Theta_{1}=Z_{1}$. Then, $\lambda\left(\Theta_{1}\right)=D_{F}$. Leading an induction on m, by (8) and Lemma 12, we get

$$
\begin{aligned}
\lambda\left(\Theta_{m}\right)(X) & =-\lambda\left(\Theta_{m-1}\right) \lambda\left(Z_{1}\right)(X)=-\lambda\left(\Theta_{m-1}\right) \lambda\left(Z_{1}\right)(X) \\
& =(-1)^{m-1} D_{F}^{[m-1]}(F)=(-1)^{m-1} D_{F}^{[m]}(X) .
\end{aligned}
$$

Put $D=D_{F}$. Recall that L_{D} is the subalgebra of W_{n} generated by all right powers $D^{[m]}(m \geq 1)$ of D and A_{D} is the subalgebra of A_{n} generated by the same elements.

Corollary 4. Let $D=D_{F}$. Then $\lambda($ Prim $)=L_{D}$ and $\lambda(\mathrm{NSymm})=A_{D}$.
Proof. This is an immediate corollary of Lemmas 11 and 13.
Theorem 2. Let $F=\left(f_{1}, \ldots, f_{n}\right)$ be an arbitrary n-tuple of the polynomial algebra $P_{n}=$ $k\left[x_{1}, \ldots, x_{n}\right], L_{D}=L_{F}$ be the Lie algebra generated by all right powers $D^{[m]}(m \geq 1)$ of $D=D_{F}$, and

$$
(X+t F)^{-1}=X+t F_{1}+t^{2} F_{2}+\ldots+t^{m} F_{m}+\ldots
$$

be the formal inverse to the endomorphism $X+t F$ of $k[t]^{n}$. Then the Lie algebra L_{D} is generated by all $D_{F_{m}}$ where $m \geq 1$.

Proof. By Corollary $4, L_{D}$ is the image of the Lie algebra Prim of all primitive elements of NSymm under λ. The set of elements Ψ_{m}, where $m \geq 1$, is also generates Prim. Consequently, Lemma 13 implies the statement (i).

One more interesting system of generators $\lambda\left(U_{1}\right), \ldots, \lambda\left(U_{m}\right), \ldots$ of the Lie algebra L_{D} corresponds to the coefficients of $D-\log$ of $X+t F$ considered in [20, 21].

6. Comments and some open questions

So, we introduced three algebras A_{F}, L_{F}, and \mathscr{L}_{F} related to the study of the Jacobian Conjecture, i.e., to the study of the polynomial endomorphism $X+t F$ with a nilpotent Jacobian matrix $J(F)$. If $J(F)$ is nilpotent then $D=D_{F}$ is right nilpotent by Corollary 2. Let p be a positive integer such that $D^{[p]}=0$. In order to solve the Jacobian Conjecture, it is necessary to prove that there exists $m=m(F)$ such that $F_{i}=0$ for all $i \geq m$ in notations of Theorem 2. Using Lemma 13 and (12), we get

$$
\begin{equation*}
D_{F_{i}}=\sum_{p \geq J \succeq I,|I|=n}(-1)^{l(I)+|J|-l(J)} \frac{\operatorname{lp}(I)}{\pi_{u}(\bar{J}, \bar{I})} D^{J}, \tag{15}
\end{equation*}
$$

where $D^{J}=D^{\left[j_{1}\right]} \ldots D^{\left[j_{s}\right]}$ for any $J=\left(j_{1}, \ldots, j_{s}\right)$ and $p \geq J$ means that $p \geq j_{i}$ for all i. Moreover, the right hand side of this equation is a Lie polynomial in $D^{[s]}$ where $s \geq 1$ and the Jacobian Conjecture can be considered as a problem of the algebra L_{F}. But I cannot see how to use the degree of F in this formula. We cannot prove that $D_{F_{i}}=0$ without this.

Let's come back to formula (10) and Lemma 12. Suppose that the degree of F is m. A composition $I=\left(i_{k}, \ldots, i_{1}\right)$ of length k is called m-reduced if $i_{1}=1, i_{2} \leq m$,
and $i_{j} \leq\left(i_{1}+\ldots+i_{j-1}\right)(m-1)+1$ for all $3 \leq j \leq k$. Let T_{n} be the set of all m reduced compositions I with $|I|=n$. Notice that $\operatorname{lp}(I)=1$ if I is m-reduced. If I is not m-reduced then $\lambda\left(Z^{I}\right)(X)=0$ by Lemma 12. For this reason we can consider only m-reduced compositions in (10). Then we get

$$
\begin{equation*}
D_{F_{i}}=\sum_{J \succeq I, I \in T_{n}}(-1)^{l(I)+|J|-l(J)} \frac{1}{\pi_{u}(\bar{J}, \bar{I})} D^{J} \tag{16}
\end{equation*}
$$

in A_{F} but not in L_{F}. So, we did not get $D_{F_{i}}=0$ yet. In fact, to derive (16) we used only the nilpotency of D and the degree of F. In connection with this, the following question is very interesting.
Problem 1. Is the Jacobian matrix $J(D)$ of D nilpotent if D is a right nilpotent element of \mathscr{L}_{n} ?

If the answer to this question is negative, then we probably cannot prove that $D_{F_{i}}=0$ in A_{F}.

The formula (16) can be considered as a formula in the left-symmetric algebra \mathscr{L}_{D} where the associative product D^{J} is changed by the left normed product. For this reason left operator identities of \mathscr{L}_{n} are very important. Notice that $J(F)$ is nilpotent if and only if R_{D} is nilpotent by Corollary 2 . So, this condition is expressed in the language of right multiplication operators but (16) is expressed in the language of left operators.

The following problem is interesting in connection with Lemmas 4 and 6.
Problem 2. Describe the structure of the multiplication algebra $M\left(\mathscr{L}_{n}\right)$ of the leftsymmetric algebra \mathscr{L}_{n}.

It is well known that all trace identities of matrix algebras are corollaries of the CayleyHamilton trace identities [15].
Problem 3. Is every trace identity (or identity) of \mathscr{L}_{n} a corollary of the Cayley-Hamilton trace identities (4).

By Lemma 7, a positive answer to this question implies that every identity of W_{n} is a corollary of the Cayley-Hamilton trace identities.

In order to solve the Jacobian Conjecture we need more information about left operator identities of \mathscr{L}_{n}.
Problem 4. Describe all left operator identities of \mathscr{L}_{n}.
It is interesting to know that what types of properties can be better described in the language of A_{D}.
Problem 5. Describe all $D \in \mathscr{L}_{n}$ such that A_{D} is a simple algebra.
Problem 6. Is there any derivation D with nilpotent Jacobian matrix $J(D)$ such that A_{D} is a simple algebra?

Example 1 shows that the nilpotency of $J(F)$ does not imply neither nilpotency nor solvability of L_{F}.
Problem 7. Describe necessary and sufficient conditions of the nilpotency (and solvability) of the Lie algebra L_{D}.

At the moment I know that \mathscr{L}_{D} is nilpotent if and only if $\operatorname{div}\left(\mathscr{L}_{D}\right)=0$.

Acknowledgments

I am grateful to Max-Planck Institute für Mathematik for their hospitality and excellent working conditions, where part of this work has been done.

References

[1] H. Bass, E.H. Connell, D. Wright, The Jacobian conjecture: reduction of degree and formal expansion of the inverse. Bull. Amer. Math. Soc. (N.S.) 7 (1982), no. 2, 287-330.
[2] H. Bass, A non-triangular action of G_{a} on \mathbb{A}^{3}, J. of Pure and Appl. Algebra, 33(1984), no. 1, 1-5.
[3] D. Burde, Left-symmetric algebras, or pre-Lie algebras in geometry and physics. Cent. Eur. J. Math. 4 (2006), no. 3, 323-357
[4] A. Dzhumadil'daev, Cohomologies and deformations of right-symmetric algebras. Algebra, 11. J. Math. Sci. (New York) 93 (1999), no. 6, 836-876.
[5] A. Dzhumadil'daev, Minimal identities for right-symmetric algebras, J. Algebra 225 (2000), no. 1, 201-230.
[6] A. Dzhumadil'daev, N-commutators. Comment. Math. Helv. 79 (2004), no. 3, 516-553.
[7] A. van den Essen (ed.), Automorphisms of Affine Spaces. Proc. of the Curacao Conference, Kluwer Acad. Publ., 1985.
[8] A. van den Essen, Polynomial automorphisms and the Jacobian conjecture. Progress in Mathematics, 190, Birkhauser verlag, Basel, 2000.
[9] I.M. Gelfand, D. Krob, A. Lascoux, B. Leclerc, V.S. Retakh, J.-Y. Thibon, Noncommutative symmetric functions. Adv. Math. 112 (1995), no. 2, 218-348.
[10] I. Gessel, Multipartite P-partitions and inner products of skew Schur functions, Contemp. Math. 34 (1984), 289-301.
[11] G. Gorni, G. Zampieri, Yagzhev polynomial mappings: on the structure of the Taylor expansion of their local inverse. Ann. Polon. Math. 64 (1996), no. 3, 285-290.
[12] M. Hazewinkel, Symmetric functions, noncommutative symmetric functions and quasisymmetric functions. II. Acta Appl. Math. 85 (2005), no. 1-3, 319-340.
[13] L. Makar-Limanov, U. Umirbaev, The Freiheitssatz for Novikov algebras. TWMS Jour. Pure Appl. Math., 2 (2011), no. 2, 66-73.
[14] C. Malvenuto, C. Reutenauer, Duality between quasi-symmetric functions and the Solomon descent algebra. J. Algebra 177 (1995), no. 3, 967-982.
[15] Yu.P. Razmyslov, Identities with trace in full matrix algebras over a field of characteristic zero. (Russian) Izv. Akad. Nauk SSSR Ser. Mat. 38 (1974), 723-756.
[16] Yu.P. Razmyslov, Identities of algebras and their representations. Translated from the 1989 Russian original by A. M. Shtern. Translations of Mathematical Monographs, 138. American Mathematical Society, Providence, RI, 1994.
[17] L. Solomon, A Mackey formula in the group ring of a Coxeter group. J. Algebra 41 (1976), no. 2, 255-264.
[18] U.U. Umirbaev, Left-Symmetric Algebras of Derivations of Free Algebras. Austin Mathematics, 9 pages (in print).
[19] D. Wright, The Jacobian conjecture as a problem in combinatorics. Affine algebraic geometry, 483503, Osaka Univ. Press, Osaka, 2007.
[20] D. Wright, W. Zhao, D-log and formal flow for analytic isomorphisms of n-space. Trans. Amer. Math. Soc. 355 (2003), no. 8, 3117-3141.
[21] W. Zhao, Noncommutative symmetric functions and the inversion problem. Internat. J. Algebra Comput. 18 (2008), no. 5, 869-899.

[^0]: ${ }^{1}$ Supported by an NSF grant DMS-0904713 and by an MES grant 0755/GF of Kazakhstan; Eurasian National University, Astana, Kazakhstan and Wayne State University, Detroit, MI 48202, USA, e-mail: umirbaev@math.wayne.edu

