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Abstract. Veech’s original examples of translation surfaces Vq

enjoying what McMullen has dubbed “optimal dynamics” arise
from appropriately gluing sides of two copies of the regular q-
gon, with q ≥ 3 . We show that every Vq whose trace field is
of degree greater than 2 has non-periodic directions of vanishing
SAF-invariant. (Calta-Smillie have shown that under appropriate
normalization, the set of slopes of directions where this invariant
vanishes agrees with the trace field.) Furthermore, we give explicit
examples of pseudo-Anosov diffeomorphisms whose contracting di-
rection has zero SAF-invariant. In an appendix, we prove various
elementary results on the containment of trigonometric fields.

1. Introduction

W. Veech’s celebrated dichotomy [V] applies in the setting of his ini-
tial examples: Gluing together two copies of a regular q-gon by iden-
tifying opposite sides by translation results in a translation surface Vq
having exactly two types of directions for linear flow —completely pe-
riodic or uniquely ergodic. Indeed, a completely periodic direction θ
enjoys the stronger property that the surface decomposes into a collec-
tion of cylinders in the direction, and the moduli of these cylinders are
rationally related. Directly related to this, there is a parabolic 2 × 2
real matrix fixing the inverse of the slope, thus cot θ ; Veech shows
that for these examples, the obvious rotational symmetry and a par-
abolic element generate the full (Fuchsian) group of derivatives of the
(orientation preserving) affine diffeomorphisms of the surface.

After Calta [C], and Calta–Smillie [CS], one is strongly motivated to
normalize by taking a surface in the GL(2,R)-orbit of Vq whose planar
presentation has its vertices in the trace field of Vq — for then also the
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set of slopes in which the SAF-invariant vanishes coincides with this
field. Here, we apply work of A. Leutbecher and others on cusps of
related Fuchsian groups to easily reach the sobering implication that
even surfaces of optimal dynamics have non-parabolic directions with
vanishing SAF-invariant.

In a certain sense, the differing planar presentations of the surfaces
emphasize different number fields, with the original Veech construction
being directly related to Q(tan π/q). Thus the choice of normalized sur-
face requires understanding the relationships of various trigonometric
fields. The literature reveals some minor confusion about these rela-
tionships and hence, in an appendix, we address the various possibilities
for containments of number fields generated over Q by trigonometric
values.

1.1. Results. For each of Veech’s Vq we give a GL(2,R)-equivalent
surface normalized so that its periodic direction field — in the sense of
Calta and Smillie — equals the trace field. With this in hand, we use
number theoretic results to find explicit non-parabolic directions with
vanishing SAF-invariant. In particular, we show the following.

Theorem 1. All directions of vanishing SAF-invariant are parabolic on
Vq if and only if the trace field of Vq is at most a quadratic extension of
the field of rational numbers. Thus, exactly for q ∈ {3, 4, 5, 6, 8, 10, 12} .

Theorem 2. The set of indices for which the surface Vq has an affine
pseudo-Anosov diffeomorphism whose contracting direction has vanish-
ing SAF-invariant includes {7, 9, 14, 18, 20, 24} .

Remark 1. Our proof of Theorem 1 proceeds by clearly identifying nor-
malized surfaces equivalent to the Vq (or rather to a natural degree two
quotient when q is even), so as to apply arithmetic results of the school
of A. Leutbecher on parabolic fixed points of the Hecke groups. These
groups are commensurable, that is conjugate up to finite index, with
the Veech groups of the Vq . This reduces us to a finite number of
unresolved cases; for these, we construct explicit “special” hyperbolic
matrices — and thus affine pseudo-Anosov diffeomorphisms whose con-
tracting direction has vanishing SAF-invariant. These examples also
complete Leutbecher’s project.

In fact, the positive statement of Theorem 1 follows from results now
already known: McMullen [Mc2] has shown (using equivalent terminol-
ogy) that any Veech surface of quadratic trace field has the property
that all its directions of vanishing SAF-invariant are parabolic. That
the Vq of higher degree trace field no longer enjoy this property leads
us to presume that no Veech surface of cubic or higher trace field has
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only parabolic directions have vanishing SAF-invariant. This is another
indication that, in genus larger than 2, the situation is much more com-
plicated than the rigid structure in genus 2 discovered by Calta and
McMullen.

1.2. Outline. In the following section, we briefly recall background.
Further background material appears in the initial piece of Section 3.
That section ends with a presentation of the normalized form of the
Veech examples. In Section 4, we apply work of Leutbecher and of later
authors to reduce to a finite number of cases. Section 5 rules out the
remaining cases by providing explicit examples of special affine pseudo-
Anosov maps on Veech surfaces. Finally, in the Appendix, based largely
on the paper [L] of D. H. Lehmer, we clarify the relationship between
various trigonometric fields.

1.3. Supplementary Code. The second-named author will keep avail-
able on his home page a Mathematica notebook containing the basic
computations for the examples for q = 18, 20, 24 of Subsection 5.2. At
the time of the submission of this manuscript, the following is a URL
for this file —
http://oregonstate.edu/ schmidtt/ourPapers/Arnoux/AScode.nb

1.4. Thanks. The present note remained in nascent form for several
years. Indeed, the results of Section 4 are referred to in [HS]. We have
benefited from the prompting of P. Hubert and from discussions with
him, E. Lanneau and J. Schmurr.

2. Background

We briefly recall terminology and give more detailed motivation for
this work.

2.1. Translation surfaces. A translation surface is a real surface with
an atlas such that, off of a finite number of points, transition functions
are translations. From the Euclidean plane, this punctured surface in-
herits a flat metric, and this metric extends to the complete translation
surface, with (possibly removable) conical singularities at the punc-
tures. Due to the transition function being translations, directions of
linear flow on a translation surface are well-defined.

2.2. Affine Diffeomorphisms and Fuchsian groups. Post-com-
posing the coordinate function of a chart from the atlas of a translation
surface with any element of GL+(2,R) results in a new translation sur-
face. This action preserves both the underlying topology and the types
of the conical singularities.
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Related to this, an affine diffeomorphism of the translation surface
is a homomorphism that restricts to be a diffeomorphism on the punc-
tured flat surface whose derivative is a constant 2 × 2 real matrix.
W. Veech [V] showed that for any compact translation surface, the ma-
trices that arise as such derivatives of (orientation- and area-preserving)
affine diffeomorphisms form a discrete subgroup of PSL(2,R) , thus
form a Fuchsian group, now referred to as the Veech group of the sur-
face. Furthermore, Veech showed that if this group is a lattice (that is,
if it is of finite co-area), then the directions for flow on the translation
surface enjoys the aforementioned dichotomy. Such surfaces are now
referred to as Veech surfaces.

Perhaps the main reason that W. Thurston introduced the notion
of affine diffeomorphism is that it allows visualization of the action of
a pseudo-Anosov diffeomorphism, see [T] — an affine diffeomorphism
is a pseudo-Anosov diffeomorphism exactly when its derivative is a
hyperbolic matrix (thus of trace greater than 2 in absolute value). The
two real fixed points of this matrix give the expanding and contracting
directions of the diffeomorphism. We refer to these diffeomorphisms as
affine pseudo-Anosov diffeomorphisms.

2.3. Sah-Arnoux-Fathi Invariant. An interval exchange is an inter-
val map that acts by translating subintervals. The Sah-Arnoux-Fathi
invariant, or simply SAF-invariant, of an interval exchange map is∑n

i=1 li ∧ ti if the interval exchange takes intervals of lengths li and
translates them by the various ti . This invariant defines a homomor-
phism from the group (under composition) of interval exchange maps
to the additive group R ∧Q R , hence it vanishes whenever the interval
exchange map is completely periodic.

It can be proved that a minimal exchange map whose translation
lengths generate a rank 2 Z-module has non-vanishing invariant. This
is in particular the case if the translation lengths belong to a fixed
quadratic field; hence any interval exchange map that is quadratic in
this sense and has a null invariant is either periodic or reducible, see
[A]. Note that this is no longer the case in higher degree: for any d > 2,
there are minimal exchange maps with lengths in an algebraic field of
degree d and a null invariant, [AY].

When we consider a flow preserving a transverse measure on a sur-
face, to any tranverse interval we can associate a first return map which
is an interval exchange map. It is not difficult to prove that, as long
as the interval cuts every orbit of the flow, the invariant does not de-
pend on the choice of the interval, but only on the flow, see [A]. If the
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flow is minimal, the invariant is the same for all choices of the interval;
otherwise, it is the sum of the invariants of the minimal components.

Kenyon and Smillie [KS] introduced an invariant for translation sur-
faces, the J-invariant, that takes values in R2 ∧Q R2 . They showed
that appropriate projections of the J-invariant of the surface give the
SAF-invariants associated to the directions θ and the surface. If the
direction is completely periodic, in the sense that every orbit of the
flow is either periodic, or a saddle connection, then the SAF-invariant
of this direction vanishes. In particular, the aforementioned parabolic
directions have vanishing SAF-invariant.

2.4. Fields: trace, holonomy, periodic direction. Calta and Smil-
lie in [CS] show that if a translation surface has at least three directions
with vanishing SAF-invariant, then upon appropriately normalizing the
surface, the set of slopes of vanishing SAF-invariant forms the union of
infinity with a field. They call this the periodic direction field, and say
that the surface is in standard form.

Each translation surface has a very natural set of directions — a
holonomy direction for the surface is a direction for which some closed
cycle exists. Every completely periodic direction is certainly a ho-
lonomy direction, but in general the opposite inclusion does not hold:
for example, there could be a closed cycle separating two minimal com-
ponents. Slightly more subtly, a holonomy vector is defined by using
the so-called developing map, and gives a flat representative of a cy-
cle. Kenyon and Smillie [KS] defined the holonomy field to be the
smallest field over which the set of holonomy vectors is contained in a
two-dimensional vector space.

Gutkin and Judge [GJ] defined the trace field of a translation surface
to be the field extension of the rationals generated by the traces of
derivatives of the affine diffeomorphisms of the surface; this is clearly a
conjugacy invariant, and does not depend on the choice of a particular
translation surface in the SL(2, R)-orbit. Calta and Smillie [CS] show
that a Veech surface has equality of its trace, holonomy and periodic
direction fields.

2.5. Genus two Veech surfaces: vanishing SAF implies para-
bolic. Results of Calta [C] and of McMullen [Mc] show that on any
genus two Veech surface every direction of vanishing SAF-invariant is
a parabolic direction. This result uses the fact that the degree of the
periodic direction field is bounded by the genus. Indeed, as already
alluded to in Remark 1, McMullen [Mc2] shows that if the trace field
of a Veech surface is quadratic, then upon appropriately normalizing,
the parabolic directions form the full trace field.
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On the other hand, even in genus two, there are many translation
surfaces (with two singularities) with directions that are completely
periodic but not parabolic [C]. Also, there are examples of genus two
surfaces with a direction of vanishing SAF-invariant but for which the
surface decomposes into a connected sum of tori, each of which is “ir-
rationally foliated” in the given direction [Mc2]. In this case there
are two minimal components with nonzero, but opposite, invariant, so
that the global invariant vanishes. Whereas in genus two this is the
only manner to realize a non-completely periodic direction with vanish-
ing SAF-invariant (see the corollary to Theorem 3.7 of [A2]), in genus
three and higher Arnoux and Yoccoz [AY] already gave examples of
affine pseudo-Anosov diffeomorphisms of vanishing SAF-invariant; see
[HLM] for recent work related to these examples. For none of these ear-
lier examples of non-parabolic directions with vanishing SAF-invariant
is the underlying surface a Veech surface.

2.6. Special affine pseudo-Anosov diffeomorphisms. Given any
Fuchsian group, the trace field is the field extension of Q generated by
the traces of the elements of the group. In general, the eigenvalues
belong to a quadratic extension of this field, but it can happen that an
element of this trace field is the fixed point of a hyperbolic matrix M
in the group. The standard fixed point formula shows that this is the
case if and only if tr2(M)−4 is a square in this trace field. This curious
phenomenon has been noted in other contexts, see in particular [LR],
where they call such M special hyperbolic.

We call an affine pseudo-Anosov diffeomorphism special if its deriva-
tive is a special hyperbolic matrix. Recall that the larger eigenvalue of
this matrix is called the dilatation of the diffeomorphism. In general,
the dilatation lies in a number field of degree at most twice the genus
of the surface. Usually, this bound is achieved. However, a special
pseudo-Anosov diffeomorphism has its dilatation in a field of “unex-
pectedly” lower degree.

3. Normalized triangle surfaces

In the even index q = 2m case, Arnoux-Hubert [AH] note that the
interchange of Veech’s two regular q-gons defines an involution on the
surface Vq . The quotient is a translation surface that is equivalent to
Mq , the surface given by identifying by translation opposite sides of
the regular q-gon gives a surface. It is easily verified that this quotient
surface has the same parabolic directions, and indeed has its Veech
group equal to that of Vq .
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Independently, Earle and Gardiner [EG] discussed theMq as triangle
surfaces. Let a, b, c be a relatively prime triple of positive integers and
let q be their sum. Let X (a, b, c) denote the translation surface arising
from the unfolding of a Euclidean triangle of angles aπ/q, bπ/q, cπ/q .
For odd q, one has Vq = X (1, 1, q − 2) ; Earle-Gardiner show that
M2m = X (m− 1,m− 1, 2).

3.1. Review of construction of triangle surface. Recall that [KS]
discusses the construction of triangle surfaces. Let our triangle T be
of angles (α, β, γ) = (aπ/q, bπ/q, cπ/q) as above, and such that the
side opposite γ is of length one and agrees with the real line along
[0, 1]. Thus the vertices of T are (0, 0), (1, 0) and, say, v . Using the
law of sines, the vertex v has coordinates (t cosα, t sinα), with t =
sin β/ sin γ . Calta and Smilie [CS], proof of Theorem 1.4, prove the
following:

Lemma 1. Let a, b, c be a relatively prime triple of positive integers,
and let q be their sum. Then the trace field of X (a, b, c) is Q(cos 2π/q ).

Letting T denote the triangle whose vertices are the complex con-
jugates of those of T and ζ be a primitive qth root of unity, us-
ing standard complex notation, [KS] shows that up to appropriate
side identifications the surface (X,ω) can be given as the union T̃ =
∪q−1
j=0 (ζjT )

⋃
∪q−1
j=0 ζ

jT . They also show that all vertices of this union
are in Q(ζ).

3.2. Normalizations. There are two natural actions of matrix groups
in our setting, each giving a normal form for a translation surface.

Definition 1. A translation surface is projectively normalized if all
slopes of non-vertical homological directions lie in the trace field. A
translation surface given as a collection of Euclidean polygons with
sides identified by translations is linearly normalized if all of the vertices
have coordinates in the trace field.

One easily verifies that a linearly normalized translation surface is
projectively normalized. (For this, see the argument in the proof of
Calta-Smillie Theorem 1.4 in [CS].) The theorem itself can be expressed
in the following manner.

Theorem 3. (Calta-Smillie [CS]) Any projectively normalized triangle
surface has equality of its trace and periodic fields.
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Taking into account Lemma 20 of the Appendix, the aforementioned
work of [KS] and [CS] implies the following. Let

N :=

(
1 0
0 1/( sin 2π/q )

)
.

Lemma 2. Let a, b, c be a relatively prime triple of positive integers
and let q be their sum. Let X (a, b, c) denote the translation surface
resulting from the standard unfolding process of the triangle of angles
aπ/q, bπ/q, cπ/q and of vertices normalized as above. Let

Y(a, b, c) :=


X (a, b, c) if 4 | q ;

N · X (a, b, c) otherwise .

Then Y(a, b, c) is linearly normalized. Thus, the set of slopes of non-
vertical directions of Y(a, b, c) whose linear flow has vanishing SAF-
invariant is Q(cos 2π/q) , the trace field of X (a, b, c) .

J. Schmurr [S] points out that the authors of [CS] forgot to apply
the above normalization in the proof of their Theorem 1.4 (he gives an
alternate proof of their theorem in his 2008 Oregon State University
Ph.D. dissertation).

4. Applying Leutbecher’s characterization of Hecke
group cusps

When the index q is odd, the Veech group of Vq is a hyperbolic
triangle Fuchsian group of signature (2, q,∞) — meaning that (by way
of its action on the hyperbolic plane) it uniformizes a once punctured
sphere with singularities of torsion index 2 and q , respectively. When
the index q is even, the Veech group is a subgroup of index two in a
group of signature (2, q,∞) .

The parabolic directions on a translation surface are in two-to-one
correspondence with the parabolic fixed points of the Veech group of the
surface (directions θ and θ+π have identical images). For brevity, one
often refers to the set of the parabolic fixed points of a Fuchsian group,
acting on the (extended) reals, as its cusps. Perhaps unfortunately, it
is also traditional to refer to each group orbit of these fixed points as
a cusp. Context usually suffices to clarify this ambiguity.

We translate our geometric questions into questions about the cusps
of a well-studied family of groups that are conjugate to our Veech
groups. In the first subsection, we briefly recall this work.
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4.1. Leutbecher’s results. A standard presentation of the hyperbolic
triangle Fuchsian group of signature (2, q,∞) , is as the Hecke group

Gq := 〈
(

1 λ
0 1

)
,

(
0 −1
1 0

)
〉

with λ = λq := 2 cos π/q .
The first of these generators is parabolic, and for its Möbius action

on the extended reals, has ∞ as its fixed point. From this it follows
that every element of the Gq-orbit of ∞ is a parabolic fixed point. As
the signature indicates, Gq has exactly one cusp: this orbit is the set
of all parabolic fixed points.

Now, the orbit of infinity is Gq · ∞ := { a
c
|
(
a ?
c ?

)
∈ Gq } . This is

obviously a subset of Q(λ) ∪ {∞} , but in fact more can be said. Here
and below, notation such as λQ(λ2) denotes the set obtained upon
multiplying all elements of the indicated field by the leading factor.

Theorem 4. (Leutbecher [Leu]) For each q ≥ 3

Gq · ∞ ⊂ λQ(λ2) ∪ {∞} .

Equality holds for q ∈ {3, 4, 5, 6, 8, 10, 12} .

Remark 2. That Gq · ∞ is a subset of λQ(λ2) ∪ {∞} is easily shown
by induction using the generators displayed above — an ordered pair
(a, c) giving a column of any element of Gq must be such that exactly
one element of the pair is in Z[λ2] , and the other is in λZ[λ2] . (Note
also that only for q even is Q(λ2

q) unequal to Q(λq) , and then it is
an index two subfield — see Lemma 16 and Lemma 18 to verify this
elementary observation.)

Leutbecher’s list of indices is exactly those for which the field Q(λ2
q) ,

thus Q(cos 2π/q) , is at most a quadratic extension of Q . The case of
q = 3 is classical — indeed, G3 = PSL(2,Z) is the classical modular
group, its parabolic fixed points are certainly infinity and the rationals!
— q = 4, 6 are easily derived from this. For the remaining cases, Leut-
becher’s arguments strongly use both the quadratic nature of the fields,
and the fact that their rings of integers are principal ideal domains.

Leutbecher’s positive result is complemented by the following. Let
λQ(λ2)0 denote the subset of λQ(λ2) whose elements may be written
as aλ/c or a/cλ with a, c ∈ Z[λ2] where the pair aλ, c (resp. a, λc) is
relatively prime in Z[λ] . ( Note that this subset can only be proper if
Z[λ] is not a unique factorization domain.)
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Theorem 5. (Wolfart [W]) For each q ≥ 3

Gq · ∞ ⊂ λQ(λ2)0 ∪ {∞} ,
Equality holds for at most q ∈ {3, 4, 5, 6, 8, 9, 10, 12, 18, 20, 24} .

Remark 3. The first part of our remark on Leutbecher’s proof, and
the fact that any element of Gq has determinant one, shows that the
containment holds here. To prove that equality cannot hold for all q
not listed, Wolfart adapts an argument of Borho and Rosenberger [BR].
Informally, one replaces Gq acting on Q(λq) by a homomorphic group
that acts on a finite field. For q not on Wolfart’s list, he uses counting
arguments to show that this image group cannot act transitively on the
finite field. However, this implies intransitivity of the action of Gq .

Remark 4. The case of odd index was resolved by [Sei], who showed
that equality does not hold when q = 9 . The examples from [TetAl]
given in Lemma 6 are sufficient for our purposes — one has that for
odd q, the orbit of infinity contains all of Q(λq) exactly for q = 3, 5 .

In the even index case, we give explicit (counter)examples for q =
18, 20, 24 so as to conclude that Leutbecher’s list of indices is complete.

4.2. Explicit conjugation. Any two triangle groups of the same sig-
nature are PSL(2,R)-conjugate. Arnoux and Hubert [AH] give an ex-
plicit conjugation that sends the Veech group of Vq to the Hecke group
Gq when q is odd; when q is even, it sends the Veech group to a sub-
group of index 2 of Gq . The matrix

H =

1 cos π/q

0 sinπ/q


acts so as to send the hyperbolic triangle of vertices ∞, −ζ2q, ζ2q to
the triangle of vertices ∞, i, i+ cot π/q . From this, one finds that the
Veech group of the translation surface Hq := H−1 ◦ Vq is exactly the
Hecke group Gq , or a subgroup of index two.

In the remainder of this subsection, we show that Hq is projectively
normalized exactly when q is odd. Hence, one can directly use the
Leutbecher school’s results to prove Theorem 1 in this case. When q
is even, we follow the path from Hq to the projectively normalized V4k

or N · V4k+2 , and find that here also their results are germane.

4.2.1. Odd index q.

Proposition 1. Suppose that q is odd. Then the Veech surface Vq has
the property that every direction of vanishing SAF-invariant is parabolic



VEECH SURFACES WITH NON-PERIODIC DIRECTIONS 11

if and only if the parabolic fixed points of Gq are infinity and the field
Q(λq) .

This follows, by a conjugation, from the following lemma.

Lemma 3. Suppose that q is odd. Then the translation surface Hq

is projectively normalized. The cotangents of its parabolic direction fill
out all of the projective line of its trace field if and only if the orbit of
infinity under Gq is all of this projective line.

Proof. Fix q odd. Since Vq = X (1, 1, q − 2) Lemma 2 gives that
Y(1, 1, q− 2) is linearly normalized. Thus, the SAF-invariant vanishes
for all directions of flow on this surface with cotangent in P1( Q(2 cosπ/q) ) .
Consider now the matrix product

(1) N H =

1 cos π
q

0 1/(2 cos π
q
)

 .

Since q is odd, Lemma 18 certainly implies that cosπ/q ∈ Q(cos 2π/q) .
We deduce that the matrix product is contained in GL2( Q(2 cosπ/q) ) .
Therefore, acting as a Möbius transformation, it sends P1( Q(2 cosπ/q) )
to itself. It thus follows that also on Hq the slopes of directions with
vanishing SAF-invariant form P1( Q(2 cosπ/q) ) . That is, Hq is pro-
jectively normalized.

Now, the parabolic directions of Hq have as their cotangents the
parabolic fixed points of Gq , and these form exactly the orbit of infinity
under Gq .

Remark 5. In fact, one can show that Hq is linearly normalized.

4.2.2. Even index q.

Proposition 2. Suppose that q is even. The Veech surface Vq has the
property that every direction of vanishing SAF-invariant is parabolic if
and only if the parabolic fixed points of Gq form the set λq Q(λ2

q)∪{∞} .

This follows from the following two lemmas; note that although the
Veech group of Vq is of index two in the conjugated copy of Gq, it has
the same set of cusp values (there is simply a partition of these into two
sets, one for each of the cusps of the uniformized hyperbolic surface).

Lemma 4. Suppose that the index q is divisible by 4. Then H sends
λq Q(λ2

q) to Q(2 cosπ/q) .

Proof. For any q, Lemma 16 implies that

2
cos π/q

sin π/q
Q(cos2 π/q) + cot π/q = 2 cot

π

q
Q(tan2 π/q) + cot π/q .
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Since here q is a multiple of 4, Lemma 19 gives that Q(tan2 π/q) =
Q(tanπ/q) . Thus, H sends λq Q(λ2

q) to

2 cot
π

q
Q(tan π/q) + cot π/q = Q(tan π/q) ,

since multiplication by any non-zero element of a field defines a surjec-
tion. Finally, by Lemma 18, since 4 divides q, this field is Q(cos 2π/q) .

Lemma 5. Suppose that the index q is congruent to 2 modulo 4. Then
applying N H sends λq Q(λ2

q ) to Q(2 cosπ/q) .

Proof. The product N H is given in Equation (1), and one easily finds
that N H sends λq Q(λ2

q ) to

2 cos
π

q

[
2 cos

π

q
Q(cos

2π

q
) + cos

π

q

]
.

Since for any θ , we have cos2 θ ∈ Q(cos 2θ ) , the result easily follows.

4.3. Proof of Theorem 1. If q is odd, then Proposition 1 and Leut-
becher’s result (Theorem 4 above) give the first part of Theorem 1. The
proposition combined with Wolfart’s and Seibold’s results complete the
proof in this odd index case.

When q is even, an appropriate complement to Wolfart’s result is
provided by examples in the next section, showing that Leutbecher
had indeed already listed all q for which Gq ·∞ contains all of λ Q(λ2) .
Combining this with Proposition 2 gives Theorem 1 in this even index
case.

5. Special affine pseudo-Anosov diffeomorphisms

Since Q(λ2
q) = Q(λq) when q is odd, Leutbecher’s theorem here ex-

actly addresses the question of when all elements of the field are par-
abolic fixed points of Gq . For these odd q, any element of the field
Q(λq) that is not in Gq · ∞ corresponds to a non-parabolic direction
that lies in the trace field of Hq and thus has vanishing SAF-invariant.
Explicit examples include those given in Subsection 5.1 by Rosen and
Towse [RT], and by Towse et al [TetAl].

Rosen and Towse only treat small index cases, and for even q Towse
et al only discuss (the numerous) Gq-orbits of Q(λ), whereas we are
interested in the action when restricted to λ Q(λ2) . We give new
examples of fixed points of special hyperbolic matrices, and thus also
of special affine pseudo-Anosov diffeomorphisms, in Subsection 5.2.
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5.1. Odd index q : non-parabolic points.

Lemma 6. (Rosen-Towse [RT], Towse et al [TetAl]) Each of the fol-
lowing elements is not in the orbit of infinity under its respective Hecke
group.

(i.) q = 7 : λ2
7 − 1 ;

(ii.) q = 9 : ±(2λ2
9 + 2) ; ±(8λ+ 8) .

Corollary 1. The above examples are fixed points of special hyperbolic
matrices.

Proof. In each of [RT] and [TetAl], the examples referred to above are
shown to have periodic (Rosen) λq-continued fraction expansion. Now,
any real number of periodic expansion is easily shown to be the fixed
point of a matrix in the corresponding Hecke group. Rosen [R] showed
that (1) for each q , each real number x has a unique λq-continued
fraction expansion, and (2) the finite length λq-continued fraction ex-
pansions are in one-to-one relationship with the parabolic fixed points
of the corresponding Hecke group. Therefore, any periodic expansion
corresponds a real fixed point of a non-parabolic matrix. Thus, a real
number of periodic expansion is indeed the fixed point of a hyperbolic
element.

Remark 6. Some of the examples of Towse et al. were found by also
using a variant of the Borho-Rosenberger arguments. In specific cases,
one can identify infinite classes of elements in Q(λq) that cannot be
in the orbit of infinity. These elements can then be examined as to
whether they are fixed points of (special) hyperbolic elements (as all
of the examples above), or not.

Note also [TetAl] conjecture that for every q > 9 there are elements
of Q(λq) that are fixed by no elements of Gq . They also report having
searched without success for (in the present terminology) hyperbolic
fixed points in Q(λq) for odd q in the range from 11 to 29 . Based on
this, they indicate some doubt as to the existence of such fixed points
for q > 9 .

5.2. Even index q : new examples. Towse and his various co-authors
focused on the question of expansions of elements of Q(λq ), but we
are interested in properties of elements of λq Q(λ2

q ). Thus, we fur-
ther examine this even index setting. We give explicit examples of
special hyperbolic matrices for q = 14, 18, 20, 24 . Note that this also
establishes that the corresponding Vq have special affine pseudo-Anosov
diffeomorphisms.
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We first give an example for the smallest even index for which this
is possible.

Lemma 7. Fix q = 14 and λ = λ14 . Let S =

(
1 λ
0 1

)
and T =(

0 −1
1 0

)
. Let x be the attractive fixed point of

M := STS−1TS−1TST .

Then H · x ∈ Q(cos π/7 ) and thus the conjugate of M by NH is a
special hyperbolic matrix.

Proof. For any λ we find that a matrix of this form gives

M =

(
λ4 + λ2 + 1 −λ3

λ3 −λ2 + 1

)
,

and is thus certainly hyperbolic, and fixes

x =
λ2 + 2±

√
λ4 + 4

2λ
.

Now, the minimal polynomial over Q of λ14 is p(x) := x6 − 7x4 +
14x2 − 7 and we find that (x4 − 25)2 ≡ (x4 + 4)(x4 − 12)2 mod p(x) .
Thus,

λ4 + 4 =
(λ4 − 25

λ4 − 12

)2
.

We conclude that x ∈ λQ(λ2) and hence the result now follows from
Lemma 5.

In briefer form, we give examples for the three indices for which
Wolfart’s result does not immediately imply the intransitivity of Gq on
λQ(λ2) ∪ {∞} .

Lemma 8. Let λ = λ18 , M = STS4TS−1TS−4T , and let δ = tr2(M)−
4 . Then

δ = 1 + 4λ4 and
√
δ =

3δ + 37

δ − 33
.

The matrix M fixes the point

7λ4 − 17λ2 + 12

2λ(λ4 − 8)
.

Proof. The above is verified by direct calculation.
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Lemma 9. Let λ = λ20 , and

M := S4TS−4T (S−1T )3 ,

and let

δ =
tr2(M)− 4

λ2(−2 + λ2)2
.

Then

δ = 1 + 4λ4 − 4λ6 + λ8

and
√
δ =

δ2 − 29δ + 41

14δ − 16
,

and M fixes the point

x :=
−19 + 202λ2 − 273λ4 + 65λ6

λ (8 + 40λ2 − 68λ4 + 18λ6 )
.

Furthermore, H · x ∈ Q(cos π/10 ) and thus the conjugate of M by H
is a special hyperbolic matrix.

Proof. Again, verification of the claimed equalities is straightforward.
Lemma 4 finishes the proof.

Remark 7. Whereas the special hyperbolics as above were found by
searching amongst short words in our chosen generators, the next ex-
ample was found by searching for elements of λ24Q(λ2

24) with periodic
Rosen continued fraction expansions. Indeed, x = (2λ2 + 13)/(λ+ λ3)
is in the G24-orbit of the fixed point of M below. Thus, of course it
too is fixed by a special hyperbolic matrix, and hence has eventually
periodic expansion. However, as the preperiod is quite long, we prefer
to give M corresponding directly to the period.

Lemma 10. Fix q = 24 and λ = λ24 . Let

W = (TS)4TS6(TS−1)2TS−5(TS)2

and

W ′ = (TS−1)4TS−6(TS)2TS5(TS−1)2.

Then

M := W W ′

is a special hyperbolic matrix.

Proof. The minimal polynomial of λ is m(x) = 1−16λ2 + 20λ4−8λ6 +
λ8 . Taking polynomial remainders with respect to the modulos m(x) ,

one thus finds that M =

(
a b
c d

)
with
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a = −351899 + 5540990λ2 − 5630280λ4 + 1384810λ6 ,

b = 267120λ− 4206030λ3 + 4273780λ5 − 1051090λ7 ,

c = 216120λ− 3402520λ3 + 3454760λ5 − 848800λ7 ,

d = −643899 + 10138610λ2 − 10297720λ4 + 2530790λ6 .

One directly verifies that M has trace (much!) larger than 2, and fixes

−38424λ+ 599662λ3 − 527439λ5 + 95988λ7

−23909 + 374995λ2 − 338345λ4 + 62189λ6
,

and thus M is special.

Remark 8. Our examples for q ∈ {18, 20, 24} complement Wolfart’s
(and Seibold’s) results and thus complete the first part of the Leut-
becher program — it is exactly for the list in Theorem 4 that the
orbit of infinity under Gq contains all of λQ(λ2) . A second, yet more
difficult, goal is to arithmetically characterize the cusp set for any q .
Note that this second goal is also of great interest in our setting — one
would like to precisely locate the set of parabolic directions amongst all
those of vanishing SAF-invariant. It is also completely motivated in the
initial setting: the Rosen λq-continued fractions define a numeration
system; one of the initial problems in the study of any enumeration
system is to determine the set enumerated by finite length expansions
(for these continued fractions, this is indeed the orbit of infinity, as
Rosen showed).

6. Class number restriction

Leutbecher and his school were well aware that the orbit of infinity
under Gq can contain all of λq Q(λ2

q) only if the ring of integers of Q(λ2
q)

is principal. With this as hindsight, one can easily recognize that Vq
with non-parabolic directions with vanishing SAF-invariant must arise.
For ease of discussion, let us consider the odd index case. Then Gq is a
subgroup (of infinite index when q > 3) of the Hilbert modular group
of the totally real field K := Q(ζq + ζ−1

q ) . This Hilbert modular group
acts on the field K union infinity, the number of orbits equals the class
number of the ring of integers of the field, h+

q — for this classical
result, see say [vdG]. Of course, no subgroup could act so as to give
fewer orbits. However, Gq has exactly one cusp, corresponding to one
orbit of field elements under this group. Thus, as soon as the class
number of the field exceeds two there are certainly elements of the field
that are not in the cuspidal orbit of this group. Using the normalization
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as above, one deduces that then Vq has non-parabolic directions with
vanishing SAF-invariant.

Now, although the class numbers of fields of the form Q(ζq + ζ−1
q )

are “notoriously difficult to compute” [Sch], one does know that for
q = 163 the above argument must give an example: van der Linden
[vdL] shows that both h+

163 ≥ 4 , with equality assuming the Generalized
Riemann Hypothesis; and for all primes q < 163, h+

q = 1 , under the
same assumption.

References
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Appendix: Containments amongst Trigonometric Number
Fields

There is some minor confusion in the literature about containments
amongst fields defined over Q by adjoining values of sines and cosines.
For example, even the redoubtable computational number theorist
D. H. Lehmer published inaccurate results on this matter [L]. (That
there is a flaw in his work is highlighted by a displayed table indicating
that there is no integer m such that the algebraic number sin 2π/m is of
degree three: both m = 28, 36 are of this type.) We address this here,
of course we acknowledge that these elementary results are well-known.

Even in the case of a rational multiple of π, one finds that various
configurations of containments of trigonometric fields arise. In this
appendix, we prove the following result.

Theorem 6. Assume that q > 2 is an integer and that q 6= 4. Then
we have the following

(1) If 8|q then

Q(cos
2π

q
) = Q(sin

2π

q
) ;
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(2) If q ≡ 4 mod 8 then

Q(sin
2π

q
) is a subfield of index two in Q(cos

2π

q
) ;

(3) If 4 6 | q then

Q(cos
2π

q
) is a subfield of index two in Q(sin

2π

q
) .

6.1. Degrees using right triangle relation. The following is a cor-
rection of Lehmer’s [L] results, we sketch the proof in a series of lemmas.

Proposition 3. Assume that q > 2 is an integer and that q 6= 4. Then

[ Q(sin
2π

q
) : Q ] =



2 · [ Q(cos
2π

q
) : Q ] if 4 6 | q ;

1

2
· [ Q(cos

2π

q
) : Q ] if q ≡ 4 mod 8 ;

[ Q(cos
2π

q
) : Q ] if 8 divides q .

Lemma 11. With q > 2,

[ Q(cos
2π

q
) : Q ] = φ(q)/2 .

Proof. Recall that for any n ∈ N letting ζn = e2πi/n gives [Q(ζn) :
Q) ] = φ(n) , where as usual φ(n) denotes the Euler totient function of
n. But, ζq + ζ−1

q = 2 cos 2π/q and also Q(ζq + ζ−1
q ) is the fixed field of

complex conjugation on Q(ζq) .

Lemma 12. With q > 2, if k ∈ N is relatively prime to q , then

Q(cos
2πk

q
) = Q(cos

2π

q
) .

Proof. The map ζq 7→ ζkq defines a Galois automorphism of the cyclo-

tomic field Q(ζq) that descends to Q(cos
2π

q
) .

The following is an immediate implication of the fact that sin x and
cosx are complementary trigonometric functions.

Lemma 13. With q > 2,

Q(sin
2π

q
) = Q(cos

2π(4− q)
4q

) .
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The previous three lemmas imply the following.

Lemma 14. With q > 2,

[ Q(sin
2π

q
) : Q ] =

1

2
φ(K ) ,

where

K =
4q

gcd( 4q, 4− q )
.

Lehmer failed to notice the distinction of the final three cases in the
following result.

Lemma 15. With q > 2,

gcd( 4q, 4− q ) =



1 if q is odd ;

2 if q ≡ 2 mod 4 ;

4 if 8 divides q ;

8 if q ≡ 12 mod 16 ;

16 if q ≡ 4 mod 16 .

Proof. The cases odd q and q ≡ 2 mod 4 are completely trivial. If 4
divides q, we write q = 4n, and have that gcd( 4q, 4−q ) = 4 gcd( 4n, 1−
n ) . Now,

gcd( 4n, 1− n ) =


1 if n is even ;

2 if n ≡ 3 mod 4 ;

4 if n ≡ 1 mod 4 .

Our result follows.

The previous four lemmas combine to give the proof of Proposition 3.
Indeed, K takes the values 4q, 2q, q, q/2 and q/4 respectively in the
five cases for q of the previous lemma. Thus φ(K) takes the value:
2φ(q) when q is either odd, or is 2 mod 4; φ(q) when 8 divides q ; and
φ(q/2) = φ(q/4) = φ(q)/2 in the final two cases, as there q ≡ 4 mod 8 .

6.2. Containments using Pythagorean relations. We finish the
proof of Theorem 6 by the following yet more elementary observations.

Lemma 16. For x ∈ R \ {π/2 + πZ},
Q(cos 2x ) = Q(tan2 x) = Q(cos2 x) = Q(sin2 x) .

Proof. We use the identities tan2 x + 1 = cos2 x , cos 2x = 2 cos2 x− 1
and sin2 + cos2 = 1 .
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{1, 2}

Q

QQ Q

Q

( sin x) ( tan x) (cos x) 

(cos 2 x) 

{1, 2} {1, 2}

{1, 2}

( sin x, cos x) 

{1, 2}

{1, 2}

Figure 1. Basic field diagram for trigonometric fields.
Each intermediate extension degree is either one or two.

Lemma 17. For x ∈ R \ {π/2 + πZ}, Figure 1 is a valid diagram of
extension fields.

Proof. For any field k and any x, we have that [ k(x) : k(x2) ] ∈ {1, 2} .
Thus, Lemma 16 shows that the bottom row of field extensions are
correctly indicated. Now, clearly each of sin x, cos x and tan x is con-
tained in Q(sin x, cos x ) . Using sin2 + cos2 = 1 , and its quotients
by sin2 x and cos2 x respectively, shows that also the top row of field
extensions is valid.

6.3. Applications. We use the following easy results in the body of
this paper.

Lemma 18. With q > 2 if q is odd then Q(cos 2π/q) = Q(cos π/q) ; if
q is even then Q(cos 2π/q) is a subfield of index two in Q(cosπ/q) .

Proof. This is an immediate consequence of Lemma 11 and Lemma 16.

Lemma 19. If q is divisible by 4, then

Q(tan2 π/q) = Q(tan π/q) .

Proof. Lemmas 16 and 17 show that the containment Q(tan x) ⊃
Q(cos 2x) = Q(tan2 x) always holds. They also show that any time
the containment Q(cos 2x) ⊃ Q(sin 2x) holds, then we must also have
the equality Q(tan x) = Q(tan2 x) .

But by Theorem 6, we have that Q(cos 2x) ⊃ Q(sin 2x) whenever
x = π/q and 4 divides q .

We also correct a typographic error in a statement of [KS].
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Lemma 20. Let α ∈ Q(ζq) then

(1) If 4|q then the imaginary part of α lies in Q(cos
2π

q
) ;

(2) Otherwise, the imaginary part of α/ sin 2π
q

lies in Q(cos
2π

q
) .

Proof. Recall that {ζjq | 1 ≤ j < q, gcd(j, q) = 1} gives a Q-vector space
basis of Q(ζq) . Thus, give α ∈ Q(ζq) , there are aj ∈ Q such that
Im(α) =

∑
aj Im ζjq =

∑
aj sin 2πj/q . Now, in our arguments above,

we can replace ζq by any of these ζjq . Thus, when 4 divides q, the first
two parts of Theorem 6 imply that Q(sin 2jπ/q) ⊂ Q(cos 2π/q) , and
the first part of this lemma follows.

Recall that
sin(n+ 1)θ

sin θ
= Un(cos θ) ,

where Un(x) is a Chebyshev polynomial of the second type. Since the
Un(x) are polynomials with integer coefficients, the second part of the
lemma also follows.
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