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Introduction

During the last years there has been growing interest in vector bundles with ad
ditional structures, e.g. parabolie and level struetures. This paper results from an
attempt to construet quasi-projeetive moduli spaees for framed bundles, i.e. bundles
together with an isomorphism to a fixed bundle on a divisor as introduced in [Do], [LI]

and [Lü]. More generally one can ask for bundles with a homomorphism to a fixed
sheaf Eo. We use teehniques of geometrie invariant theory to construet projeetive mod
uli spaces. This leads to natural stability eonditions. In contrast to the pure bundle
ease an extra parameter appears in the definition of stability.

A pair (c,o) consisting of a coherent sheaf E on a smooth, projective variety and
a homomorphism a from E to Eo is called stahle with respect to a polynomial 6 if and
only if the following conditions are satisfied.

i) Xc; < (rkQ/rkE)Xe - (rkQ/rkE)6 for all subsheaves Q c Kera.

ii) Xc; < (rkg /rkE)xe + 6(rkE - rkg)/rkE for all subsheaves Q~S.

Here X denotes the Hilbert polynomial and the inequalities roust hold for large
arguments. In §1 we prove

Theorem: For a smooth, projeetive variety X 0/ dimension one or two there is a
fine quasi-projective moduli space 0/ stahle pairs (E, Q' : E --t Eo) with respect to 8.

Moreover, we will prove that this space cau be naturally compaetified (For a precise
statement see 1.21).

In particular, this theorem proves the quasi-projeetivity of many of the moduli
spaces of framed bundles, which it~ [LI] were constructed only as algebraic spaces

(2.24). In §2 we study two special cases for Co, where Eo is the strueture sheaf Ox or
a vector bundle on an effective divisor.

The case Eo ~ Ox leads to the definition of Riggs pairs, i.e. solution of the vortex
equation as considered in [Br], [Be], [Ga], [Th]. A Riggs pair is a veetor bundle E to
gether with aglobaI section <p satisfying certain stability conditions. The corresponding
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moduli spaces of rank two vector bundles on a curve were constructed by M. Thaddeus
and A. Bertram. Dualizing the situation one gets a vector bundle EV together with a
homomorphism 0' = ",v : EV ---+ Ox. The stability conditions for Higgs pairs translate
ioto i) and ii) above. This dual point of view allows us to compactify the moduli space
in the surface case, too, by adding pairs with torsionfree sheaves. Instead of one mod
uli space M. Thaddeus consideres the whole series of moduli spaces, which result from
changing the stability parameter in order to 'approximate' the usual moduli space of
semistable bundles. We generalize this method for bundles on a surface and descri be
the 'limit' of this series. As a generalization of Bogomolov's result we prove a theorem
about the restrietion of stable pairs to curves of high degree (2.17).

The case of Eo being a vector bundle on a divisor leads to the concept of bundles
with level structure ([Se]) and to the concept of framed bundles ([LI]) in dimension
one and two, resp.

1 Moduli spaces of stahle pairs

Throughout this paper we fix the following notations: X is an irreducible, nonsingular,
projective variety of dimension e over an algebraically closed field k of characteristic
zero, embedded by a very ample line bundle Ox(l). The canonical line bundle is
denoted by K,x. If Eis a coherent Ox-module, then Xe(n) := X(E00x(n)) denotes its
Hilbert polynomial, T(E) its torsion submodule and det f, its determinant line bundle.

The degree of E, deg E, is the integral number cddet E).He-t, where H E IOx(l)1 is
a hyperplane section.

X will always be a polynomial with rational coefficients which has the form

ze deg K,x .
X(z) = deg X . r . I" + (d - 2 . r) . ze-l +Terms of lower order In z.

e.
If X = Xe, then r = rkf, and d = deg E. Finally, let &0 be a fixed coherent Ox-module.
By a pair we will always mean a pair (E, 0') consisting of a coherent Ox-module E with
Hilbert polynomial Xe = X and a nontrivial homomorphism 0' : f, ~ Eo. We write Ea

for Ker 0'.

In the next section we define the notion of semistability for such pairs with respect
to an additional parameter 8. To simplify the notations and to be able to treat stability
and semistability simultaneously, we employ the following short-hand: Whenever in a
statement the word (semi)stable occurs together with a relation symbol in brackets, say
(~), the latter should be read as ~ in the semistable case and as < in the stable case.
An inequality p (~) p' between polynomials means, that p(n) (~) p'(n) for large integers
n. If p is a polynomial then ßp(n) := p(n) - p(n - 1) i8 the difference polynomial.

We proceed as follows: In section 1.1 we define semistability for pairs and formulate
the moduli problem. In section 1.2 boundedness results for semistable pairs on curves

2



and surfaces are obtained. Moreover, a elose relation between semistability and sec
tional semistability is established. The notion of sectional stability naturally appears
by way of constructing moduli spaces for pairs. This is done in section 1.3 leading to
the existence theorem 1.21. Section 1.4 is devoted to an invariant theoretical analysis
of the construction in 1.3 and the proof of the main technical proposition 1.18.
The reader who is familiar with the papers of Gieseker and Maruyama ({Gi], [Mal) will
notice that many of our arguments are generalizations of their techniques.

1.1 Stable pairs and the moduli problem

Let 8 be a polynomial with rational coefficients such that 8 > 0, i. e. 8(n) > 0 for all

n ~ O. We write o(z) = Lv Oe_vZv.

Definition 1.1. A pair (&, a) is called {semi)stable (with respect to 8), if the following

two conditions are satisfied:

(1) rk&'Xa (:::;) rkg'(Xt - 8) for all nontrivial submodules 9 ~ Ca'

(2) rkE'Xa (:::;) rkg·(Xt - 8) + rk&·8 for all nontrivial submodules {I (~) &.

If no confusion can arise, we omit 8 in the notations. Note that a stable pair a
fortiori is semistable.

Lemma 1.2. Suppose (&, a) is a semistable pair, then:

i) Ea is torsion free. hO(Q) :::; hO(T(&o)) tor all submodules 9 ~ T(E).

ii) Unless a is injeetive, 8 is a polynomial 0/ degree smaller than d.

Proof: ad i): If 9 C &a is torsion, then rkg = O. Condition (1) then shows Xo = 0,
heuce 9 = O. Thus a embeds the torsion of E into the torsion of &0. This gives the
second assertion. ad ii): Assume Ea is nontrivial. By i) Ea is torsion free of positive

rank, and condition (1) implies 81rkE :::; (XtlrkE-Xta/rkEa)' The twofractions in the
brackets are polynomials with the same leading coefficients. This shows deg 8 < e. 0

Thus if deg 8 2:: e, then a must needs be an injective homomorphism, and isomor
phism classes of semistable pairs correspond to submodules of Eo with fixed Hilbert
polynomial. Note that condition (2) of the definition above is automatically satisfied.
So in this case all pairs are in fact stahle and parametrized by the projective quotient
scheme Quot~/oe:XE. For that reason we assurne henceforth that 8 has the form
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Definition 1.3. A pair (E,O') is ealled Jl-(semi)stable (with respect to 81), if the fol
lowing two conditions are satisfied:

(1) rkE· deg Q (~) rkQ·(deg E - 8t} for all nontrivial submodules Q ~ Ca'

(2) rkE· deg Q(:s;) rkQ·(deg & - 8t} +rkE,o l for all nontrivial submodules Q ~ E with
rkQ < rkE.

As in tbe theory of stahle sheaves there are immediate implications for pairs (E, a):

p-stable => stable => semistable => Jl-semistable

A family of pairs parametrized hy a noetherian scheme T consists of a coherent

OTxx-module E, which is Hat aver T, and a homomorphism a : E -+ PxtD. If t is a
point of T, let X t denote the fibre X x Spec k(t), Et and at the restrietions of E and a

to X t . A homomorphism of pairs cI- : (E, a) -+ (E', 0") is a homomorphism <P : E -+ E'
which commutes with a and a', i. e. cl 0 tI> = a. The correspondence

T ~ {Isomorphism classes of families of (semi)stable pairs parametrized by T}

defines a setvalued contravariant functor M1.!}"(x, tD) on tbe category of noetherian
k-schemes of finite type. We will prove that for dirn X :s; 2 there is a fine moduli space
for M$(X, Eo). It is compaetified hy equivalenee classes of semistable pairs (1.21).

1.2 Boundedness and sectional stability

In section 1.3 we will construct moduli spaces of stable pairs by means of geometrie
invariant theory. The stability property needed in this construction differs slightly
from the one given in 1.1 in refering to the number of global sections rather than to
the Euler characteristic of a submodule of E. In tbis section we compare the different

notions and prove that semistable pairs form bounded families, if the variety X is a

curve or a surface.

Definition 1.4. Let J be a positive rational number. A pair (E, a) is called sectional

(semi)stable (with respect to J), if Ea is torsionfree and there is a subspace V ~ HO(E)
of dimension X( &) such that the following conditions are satisfied:

(1) rkE· dim(HO(Q) n V) (~) rkQ·(x(E) - 8) for all nontrivial submodules Q ~ Ca'

(2) rkE· dim(HO(Q) n V) (~) rkQ . (x(E) - S) +rkE ·8 for all nontrivial submodules

9 (~) E.
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We begin with the case of a curve. In this case fJ is a rational number, and the
Hilbert polynomial of any 0 x-module Q depends on rkQ and deg Q only. Moreover, the

polynomials occuring in the inequalities of definition 1.1 are linear and have the same
leading coefficients. Therefore the Hilbert polynomials Xc can throughout be replaced
by the Euler characteristics X(Q) without changing the essence of the definition.

Theorem 1.5. Lel X be a smooth curve 0/ genus 9. Assume that d > r·(2g - 1) + fJ.

i) If (&, a) is semislable or sectional semistable, then & is globally generated and

h1 (&) = O.

ii) (&, a) is a {semi)stable pair if und only i/ it is seclional (semi)stable.

Proof" ad i): On a smooth curve X there is a split short exact sequence

o--+ T(&) --+ & --+ & --+ 0

with locally free & for any coherent Ox-module &. Now H1(&) = H1(t), and & is
globally generated if and only if t is globally generated. A glance at the short exact
sequence

o--+ E( -x) --+ t --+ t C9 Ox --+ 0

for some closed point x E X shows that the vanishing of H I
( t (- x)) for all x E Xis a

sufficient criterion for both H 1(&) = 0 and the global generation of &. If H 1 (&( -x)) f:.
0, then there is a nontrivial homomorphism e.p : t ---+ Kx(x). Let Q := T(&) + Kere.p, so
that there is a short exact sequence

o--+ Q --+ & --+ K-x(x - C) --+ 0

with some effective divisor C on X. From this sequence we get

On the other hand,
rkE - 1 fJ

X(Q) ~ rk& X(&) + rkE'

if (E, a) is semistable, and

. rkE - 1 fJ
dlm(V n HO(Q» ~ rk& X(E) + rkE

for some vector space V ~ HO(&) of dimension X(&), if (&, a) is sectional semistable.
In the first case we get x(E) ::; rkE.x(K-x(x» + fJ. And in the second case one has
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So in any case we end up with deg E ~ rkE· (2g - 1) + 8 contradicting the assumption
of the theorem.

ad ii): By part i) we have X(E) = hO(E), V = HO(E) and, of course, x(9) ~ hO(9)
for any submodule 9 ~ E. Hence sectional (semi)stability implies (semi)stability at

once. Conversely, assurne that (E, a) is a (semi)stable pair. If for a submodule Q we
have h1 (9) = 0, then hO(Q) = x(9) and there is nothing to show. (This applies in
particular when rkQ = 0). Hence assurne h1 (9) f:. O. As above this leads to a short
exact sequence

0-----+ 9' ---+ 9 --+ K.x(-C) ---+ 0

with rk9' = rk9 - 1 and some effective divisor C on X, so that hO(Q') ~ hO(9) - g.

By induction we mayassume that

with e = 0 if 9 ~ Eet and e = 1 if 9 (~) E. Combining these inequalities we get

hO(Q) (~) rkQ (hO(E) _ 8) +e.8 + (g _ hO(E) +~).
rkE . rkE rkE

Since hO(E) = X(E) = degE + (1 - g)rkE > g·rkE + 8, we are done. o

Corollary 1.6. Suppose X is a curve. The set 0/ isomorphism classes of Ox-modules

occuring in semistable pairs is bounded. 0

Before we pass on to surfaces recall the following criterion due to Kleiman which we
will use several times:

Theorem 1.7 (Boundedness criterion of Kleiman). Suppose X is a polynomial

and !( an integer. If T is a set 0/ 0 X -modules :F such that X:F = X and

Vi = 0, ... , e,

for a :F-regular sequence 0/ hyperplane sections BI, .. . , He, then T is bounded.

Proof' [KI, Thm 1.13] o

We introduce the following notation: For integers p and € let P(p, c) be the polyno

mial

P(p, c, z) := e(X(z) - 8(z)) + c·8(z).
r

If 9 ~ E is a submodule, let c(Q) = 0 or 1 depending on wether 9 ~ Co: or not. Then
the stability conditions can be conveniently reformulated:
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- (E, a) is (semi)stable if and only if XQ (~) P(rkQ, e(Q)) for all nontrivial submod
ules Q (~) E.

- (E,O') is p.(semi)stable if and only if ~Xv (~) ..ßP(rkQ, e(Q)) for all nontrivial
submodules Q ~ E with rkQ < rkE.

- (E, a) is sectional (semi)stable if and only if T(Ecr ) = 0 and there is a subspace
V ~ HO(E) of dimension x(E) such that dim(V n HO(Q)) (~) P(rkQ, e(Q), 0) for

all nontrivial submodules Q(~) E.

Lemma 1.8. Suppose X is a sur/ace. There is an integer no < 0, depending on X,
Ox(l) and P only, such that ..ßXOx (-1lQ) > ..ßP(l, e) for e = 0,1..

Proof" As polynomials in v the expressions ..ßxox (v - n) and ~P(l,e, v) are both
linear and have the same positive leading coefficient. Hence for very negative numbers
none has ..ßXox(v - n) > ..ßP(l,e,v). 0

The foHowing technicallemma is an adaptation of [Gi, Lemma 1.2]. Unfortunately,
we cannot apply Gieseker's lemma directly because it treats torsion free modules only,
even though the necessary modifi.cations are minor.

Lemma 1.9. Suppose X is a surface. Let Q be a positive integer. Then there are
integersN andM, depending onX,Ox(l),P andQ, such that ife E {O,l} andifF is

an Ox-module of rank r' ~ r with the properties hO (T(..'F)) ~ Q and ßXv ~ ßP(rkQ, e)
for all nontrivial submodules Q ~ :FJ then either

hO(..'F(n)) < P(r', c, n) for all n 2:: N,

or the following assertions hold:

(1) ßX:F = ßP(r', e)J

(2) h2(..'F(n)) = 0 for all n 2:: N J

(9) hO(.r(no)IH) :::; M for some ..'F-regular hyperplane section H,

(4) if h1(.r(no)) :::; Q, then h1(..'F(n)) = 0 for all n 2:: N.

Proof: Let ..'F be an Ox-module satisfying the assumptions of the lemma. For every

integer n let 1i~ denote the image of the evaluation map HO(..'F(n)) ® Ox --+ ..'F(n) and
S~ the quotient :F(n)/1i~. Let 1tn be the kernel of the epimorphism

:F(n) -» (S~/T(S~)) =: Sn'
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Then Hn is characterized by the following properties: HO(Hn) = HO(F(n)), :F(n)/Hn
is torsion free and Hn is minimal with these two properties. Ohviously 1-l~-I (1) ~ H~

and therefore also ?-ln-I (1) ~ H n • Moreover, being a submodule of the torsion free
module F(n - l)/Hn- I the quotient Hn ( -l)/Hn- I is itself torsion free. In particular
either 'Hn- I = 'Hn ( -1) or rk'Hn - 1 < rkHn . Let nI < ... < nk be the indices with
rk'Hni - I < rk?-lni. (If F is torsion, then ?in = F(n) for all n. Let k = 0 in this case).
By Serre's Theorem 'Hnk = F(nk) and k ::; r' .

Let s E HOF(n) be a nonzero section. Then either s is a torsion element or induces

an injection Ox(-n) -+ F. In the latter case one has ßXOx(-n) ::; ßp(1,c). This is
impossible for n ~ no. It follows that

and that 'Hno = T(F)(no). In particular no < nl if r' > O.

A generic hyperplane section H E lOx(1)1 has the following properties:

a) His a smooth curve (of genus 9 = 1 + deg K.x /2).

b) H is 'Hn-regular for all integers n.

c) 'Hn IH is globally generated at the generic point of H for all integers n.

(a) is just Bertini's Theorem. For (h) it is enough to consider the sheaves 'Hnn i =
0, ... , k. H must not contain any of the finitely many associated points of the modules

'Hni in the scheme X. But this is an open condition. 'Hn is globally generated outside
the support of T(Sn), so for (e) it is sufficient that in addition H should not eontain
any of the associated points of the T(Sni)' Hence for a generic hyperplane seetion H
there are short exaet sequenees

o~ 0;; ---+ ?inlH ---+ Qn ---+ 0,

where r n = rk'Hn and Qn is an Oy-torsion module. From the second sequenee one
deduces estimates

h1 ('Hn IH) ~ rn '9 and h1 ('Hn ( l) IH) = 0,

if deg(I<H - iH) < 0, i. e. if e> (2g - 2)/H 2
• In particular we get for all integers n

with ni + (2g - 2)/H 2 < n < ni+l:

h1 ('Hn IH) = h1 (?in. (n - ni) IH) = o.
This leads to the inequalities

hO(:F(n)) - hO(:F(n - 1)) = hO(fin) - hO ('H.n ( -1))
< hO(1-lnIH) = x(HnIH) + h1(1in IH)
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and, surnming up,

n rn

hO(F(n)) - hO(F(no)::; L:: x('HIIIH) +L:: pg((2g - 2)/H 2 +1).
lI=no+I p=I

Let !{ := Q + (r/~I)g((2g - 2)/H2 + 1). Then

n

hO(F(n)) ::; !( + L X(1-CIH)
&I=no+t

for all integers n ;:: no. Suppose no ::; v < nk. Then r 11 < r'. Since 1i1l ( - v) is a
submodule of :F,

Now

6.P(rlll e, v) - 6.P(r',e, v) - (r ll - r')·(deg X·v +dir + (1 - g) - 8t )

< -(degX·v + C),

where C is a constant depending on r, d, no, deg X and g. For v ;:: nk one has

1i&l = :F(v) so that X(1i&l!H) = 6.X.1"(v). Let m(n) = rnin{n,nk - I}. Then the
following inequality holds for all n ;:: no:

n

hO(:F(n)) - L 6.P(r',e,v)
11=no +1

m(n)

< ]( - L:: {degX·v + C}
v=no+I

n

E {6.P(r',e,v) - 6.X.1"(v)}.
lI=m(n)+t

Note that the summands of the second surn of the right hand side are all equal to some
nonnegative constant C', (and that by convention the surn is 0 if n < nk). Let J be
the polynomial

(
z +1) (no +1) ,fez) := degX( 2 - 2 ) + C·(z - no) -]( - per ,e, no).

Then for n ;:: no:

hO(.r(n)) - per', e, n) ::; - J(m(n)) - C"(n - m(n))

There is an integer NI > no such that J( v) > 0 for all v ;:: NI' Assurne N > NI'
I{ nk - 1 2:: NI then for all n ;:: None has m(n) ;:: Nt 1 hence J(m(n)) > 0 and
hO(:F(n)) < per', e, n). Hence we can restriet to the case that nk is uniformly bounded
by Nt. Let G := max{ - f(n)lno ::; n ::; Nt}. Suppose C' > O. There are positive
integers T, T' with T' depending on X, P and r only, such that C' = T /T'. Choose an

integer N2 > max{Nt , G·T' +NI}' Assume N > N2• Then for all n ;:: N
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Again we can restrict to the case C' = O. But this gives (1).

Let N3 = rN2 + (2g - 2)/H 2 + 11 and assume N > N3 • Then for all n ~ N, one has
n > n" + (29 - 2)/H 2 so that h1 (1-in IH) = h1(F(n)IH) = O. In particular

and these cohomology groups must vanish for n » 0, heuce already for n ~ N. This

is assertion (2). Moreover,

according to (1). Let M := maxi r6P(r' , 6, N3 )ll0 ~ r ' ~ r}. Then (3) holds.

It remains to prove (4). Since F(N3 ) = H N3 , there are short exact sequences

for all v = no, ... ,N3 . Hence

h1(:F(v) IH) ~ r ' ·h
1

( 0 H(v - N3 )) ~ r ' ·h1
( 0 H(no - N3 ))

and

N3

h2 (F(no)) ~ h2(F(N3 )) + L h1(F(v)IH) ~ r(N3 - no)·h1(Ox(no - N3 ))

v=no+l

is uniformly bounded. Since by assumption h1 (.F(no)) ~ Q and hO(F(no)) ~ Q, the
Euler characteristic x(F(no)) lies in a finite set of integers. By (1) 6X:F is given. Hence
X:F lies in a finite set of polynomials. Using (3) and criterion 1.7 we conclude that the
set of modules F we are left with is bounded. Therefore there is a constant N4 > N3

such that h1(.F(n)) = 0 if n ~ N4 • The lemma holds, if we choose any N > N4 ., 0

An immediate consequence of this lemma is the following boundedness result:

Corollary 1.10. Suppose X is a sur/ace. The set 0/ isomorphism classes 0/ Ox
modules E which occur in j1.-semistable pairs (E, a) wilh T(Ea ) = 0 is bounded.

Proo/, Apply lemma 1.9 with Q = hO(Eo). The proof of the lemma shows that
hO(E(no)) ~ Q. By Serre's theorem hO(E(n)) = Xe(n) = P(r, 1, n)) for all large
enough numbers n, so the second alternative of the lemma holds. Part (3) then states:

hO(E(no)IH) ~ M for some [-regular hyperplane section Hand same constant M which
is independent of &. Therefore the Kleiman criterion applies to the set of modules E(no)
with the constant /( := max{Q, M, r· deg X}. 0

As a consequence of the corollary there is an integer N such that E(n) is globally
generated and hi(&(n)) = 0 for all i > 0, n ~ N and for all Ox-modules & satisfying
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the hypotheses of the corollary. Note that according to lemma 1.2 among these all the
modules oeeuring in semistable pairs can be fouod.

After these preparations we can prove the equivalent to theorem 1.5 in the surface

case:

Theorem 1.11. Suppose X is a sur/ace. There is an integer N depending on X,

Ox(l), hO(t:o) and P, such that

i) if(&,a) is (semi)stable (with respect to 8) then (&(n),a(n)) is sectional (semi)

stable (with respect to 8(n )) for all n 2:: N, a nd

ii) if(&(n), a(n)) is sectional (semi)stable for sorne n 2:: N, then (&, a) is (semi)stable.

Pro0f: By the boundedness result 1.10 the dimension of H1
( S(no)) is uniformly

bounded for all & satisfying the hypotheses of the eorollary. Let Q := hO(E:o) +
max{h1(S(no))}. Let N be the number obtained by applying lemma 1.9. Without

loss of generality N > N.
ad i): Suppose (S, a) i8 (semi)stable. Apply lemma 1.9 to E. Sinee by Serre's

theorem hO(E(n)) = x(E(n)) = P(r, 1, n) for all sufficiently large n, the seeond alter
native of the lemma holds and shows h1 (E(n)) = h2 (&(n)) = 0 for n 2:: N. Hence
V := HO(&(n)) has dimension x(n). Now let F be a submodule of &. Then either
hO(F(n)) < P(rkF,e(F), n) for all n ~ N, in which case we are done, or we have

ßX:F = ß(rkF, e(F)). Let E' = t:a if F ~ t:cx and &' = t: else. Let S := E'1F,·
S := SIT(S) and let F be the kernel of the epimorphism S' --+ S. Then rkF = rki",

e(F) = e(:F), and we must have ßX~ = ~P(rkF,e(F)) = ~X:F' Hence i"IF = T(S)
has zero-dimensional support. There is a short exact sequenee

o --+ :F(no) --+ &'(no) --+ S(no) --+ O.

Now S(no) cannot have global seetions. For otherwise there is a submodule in S
isomorphie to Ox( -no). Let 9 be its preimage in &'. Then

~XO = ~X.1' + ~XOx(-no) ~ ~P(rkF + 1, e(F)) = ~P(rk..'F, e(F)) + ~P(l, 0)

contradicting lemma 1.8. But this shows that

h1(:F(no)) ~ h1(&'(no)) < h1(&(no)) + hO(&(no)IS'(no))

< h1 (t:(no)) + hO(tQ(no)) ~ Q.

By part (4) of lemma 1.9 we now conclude that

hO(F(n)) ~ hO(:F(n)) = x(:F(n)) (~) P(rkF, e(F))
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for all n ~ N if .t (e;) E. Only the case .t = E for stahle pairs needs special attention:
In this case one has hO(F(n)) < hO(E(n)), because F is a proper submodule of E
and E(n) is globally generated for aU n ~ N. Hence (semi )stahility implies sectional
(semi)stability for all n ~ N.

ad ii) Suppose (E(n), Gen)) is sectional (semi)stahle for some n ~ N. Assume that
there exists a submodule F ~ & with 6.X:F > 6.P(rkF, e(F)). If such a module exists
at aU, we may assume that it is maximal with this property among the submodules of
E. Let S = &/ F. The maximality of :F implies that S is torsion free if e(F) = 1 and
that a embeds T(S) into T(Eo) if e(F) = O. Hence hO(T(S)) ~ Q. Suppose Q is any
submodule of S. Let F' be the preimage of Q under the map E -+ S. Then

~xa + ~X:F = 6.X:F1 ~ ~P(rkF+ rkQ, 1) = LlP(rkF,e(F)) + ~(rkg, 1 - e(F)).

The inequality in the middle of this line is infered from the maximality of F. Henee

~Xa ::; ~(rkQ, 1 - e(F)) + {~P(rkF, e(F)) - ~X:F} < LlP(rkQ, 1 - e(F)).

Therefore we ean apply lemma 1.9 to the module S with e = 1 - e(..r). But we did
assume that (E(n), n(n)) was sectional semistable. Hence there exists a vector spaee
V ~ HO(E(n)) of dimension X(n) such that

dim(V n HO(F(n))) :::; P(rkF,e(F), n)

and

hO(S(n)) ~ dirn V -dim(VnHO(F(n))) 2: x(n)-P(rkF, e(..r) ,n) = P(rkS, l-e(F), n)

This excludes the first alternative of the lemma, and we get ~Xs = Ll(rkS, 1 - e(F))
and equivalently ~X:F = ~(rk:F, e(F)), whieh contradicts the original assumption.
Thus we have proven that LlX:F :::; ~P(rkF, e(F)). But this means that E satisfies the
hypotheses of eorollary 1.10. By the remark following the eorollary we have hO(E(v)) =
X(E(v)) for all v ~ N sinee N ~ N, so that necessarily V = HO(E(n)). ,Applying lemma
1.9 to F we see that either

hO(F(v)) < P(rkF, e(F), v) for aU v ~ N, in particular X:F < P(rkF, c:(F)),

or

h2(F(v)) = 0 for all v ~ N and hence

X:F(n) = hO(F(n)) - hI(F(n)) :::; hO(:F(n)) (~) P(rkF, e(F), n),

which tagether with ~X:F = LlP(rkF, e(F)) implies X:F (::;) P(rkF, e(F)).

This finishes the proof.
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1.3 The basic construction

Let X be a curve or a surface. By the results of the previous section the set of

modules E with fixed Hilbert polynomial X that occur in semistable pairs is bounded.
In particular, there is a projective open and closed part A of the Picard scheme Pic(X)
such that [det &] E A for all E in se~istable pairs. Let J:. E Pic(A x X) be a universal
line bundle. Then there is an integer N such that for all n ~ N the following conditions

are simultaneously satisfied:

- 0 < S(n) < x(n).

- & is globally generated and hi(&(n)) = 0 for all i > 0 and for all & in semistable

paus.

. (&, a) is (semi)stable (with respect to tS) if and only if (&(n), a(n)) is sectional
(semi)stable (witb respect to S(n)).

- If PA, Px denote tbe projection maps from A x X to A and X, respectively, then

RfPA.(J:. 0 pxOx(n)) = 0 for all i > 0, Un := PA.(.!. 0 pxOx(n)) is locally free

and P'A(Un ) 0 PxOx( -n) -+ J:. is surjective.

By twisting the pairs (&, a) with 0 X (n) for sufficiently large n we can always assurne

that tbe assertions above hold for N = o. We make this assumption for the rest of this

section and write p := X(O) and "8 :=.8(0).

Let V be a vector space of dimension p and let Vx = V 0k Ox. Quotient modules of
Vx with Hilbert polynomial X are parametrized by a projective scheme Quotl/vx ([Cr,

3.1.]). On the product Quot~/vx x X there is a universal quotient ij : Px Vx --* &.
Forming the determinant bundle of tinduces a morphism

det : Quotl/vx --+ Pic(X)

so tbat det t = (dei x idx )* (.c) 0 PQuot (M) for same line bundle M E Pie(Quotl/x v).
Let Q denote tbe preimage of A under tbe map det. We use the same symbols for the

universal quotient and its restrietion to Q x X.

Further let P := f'(Hom(V, HO(Eo))V). Again tbere is a universal homomorphism
Ci : (V 0 k HO (&0t) ® 0 p --* 0 p ( 1). For sufficiently high n the direct image sheaf

H := PQ.(Kerij 0 pxOx(n)) is locally free and the canonieal homomorphism

ß: Pö H -+ Kerq0 pxOx(n)

is surjective, so that there is an exaet sequence

• '1.1 • 0 ( ) ß. q CoPQ Tl. 0 Px X -n ----+ Px Vx ----+ c. ----+ o.
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ßinduees a homomorphism of OQ-modules

Let I be the ideal in the symmetrie algebra S·(V CSlkHO(&ot) ®k OQ which is generated
by the image of / and let B c P x Q be the eorresponding closed subscheme. Let
'lrp : B -+ P and 1rQ : B -+ Q be the projection maps and let OB(l) := 1rpOp(l). This
scheme B is the starting point for the eonstruction of the moduli space for semistable
pairs. We introduce the following notations: Let

and
aB := 'lrpa : (V ® HO(Eo)V) ® OB -+ OB(l).

By definition of B an arbitrary morphism h : T -+ P x Q faetors through the closed
immersion B -+ P x Q if and only if the puH-back under h of the composition ppao PQ'
is the zero map. This is equivalent to saying that the pull-back under h x idx of the

induced homomorphism V CSl 0 PxQ xx -+ Pp 0 p(1)®Px Eo factars through V x OTx X -+

(h x idx )·t. This applies in partieular to Bitself. Let aB : EB -+ p:BOB(l) ® PxEo be
the induced homomorphism.

Lemma 1.12. (i) There is an open subscheme QO 0/ Q such that u is a point in QO
i/ and only i/ hi(&u) = 0 /or all i > 0 and the homomorphism iiu : Vx 0 k(u) -+ tu
induces an isomorphism on the spaces 0/ global sections.

(ii) Let (t', a) be a /lat /amily 0/ pairs parametrized by a noetherian k-scheme T.
Then there is an open subscheme S ~ T such that Ker(ad is torsionfree /or a geometrie

point t 0/ T i/ and only if t is a point 0/ S.

Proo/, (i) By semicontinuity of hi there is an open subscheme of Q of points u for
which the higher eohomology groups of tu vanish. For those points hO(Eu ) = P and
hence HO(qu) is an isomorphism if and only if hOCKer qu) = 0, whieh again is a~ open
condition for u.

(ii) For n large enough there is a loeally free OT-module 9 and a surjection
g®Ox(-n) --+t t'v and dually an inclusion ß': t'vv -+ gV®Ox(n). Note that there'is
an open subscheme 0 of T x X which meets every fibre X t and for which the restrietion
&10 is locally free, so that in partieular {) : & -+ &VV is an isomorphism when restrieted
to O. If we let ß = ß' 0 '19, then the kernel of ßt : t't -+ gV(t) ® Ox(n) is precisely the
torsion part of Et. Hence the kernel of 'Yt:= (at,ßt) : t't ~ t'oEB (gV(t) ~ Ox(n)) is the
torsion submodule of Ker(at). It is enough to show that the points t with Ker( /t) = 0
form an open set. But this is [EGA, Cor IV 11.1.2]. 0

Let S be the open subscheme of B which according to the lemma belongs to the
family (EB)aB), and let BO = Sn (P x QO). The algebraic group SL(V) acts naturally

14



on Q and P from the right. On closed points (q : 'I Ci:) Ox ~ c] and (a : V ~ HQ(cQ)]
this action is given by (q] . 9 = [q 0 (g ® idox )] and (a] . 9 = [a 0 g].

Lemma 1.13. BQ is invariant under the diagonal aetion ofSL(V) on P X Q.

Proof: This is c1ear from the characterization of B as the subscheme of points
([q], (aD for which there is a commuting diagram

V Ci:) Ox
q

cd
ev

--~) Co·

o

BQ has the following Ioeal universal property:

Lemma 1.14. Suppose T is a noetherian k-seheme parametrizing a flat family (&, a)
of semistable pairs on X. Then there is an open eovering T = UTi and for eaeh Ti a

morphism hi : Ti ~ BQ and a nowhere vanishing seetion Si in hiOB(l) sueh that the

pair (&, o:)ITi is isomorphie to the pair ((li X idx )"'&8, (li X idx )"'(O:B)/sd.

Proof: Let T be a noetherian scheme and (E,o:) a Hat family of semistable pairs on X
parametrized by T. Aceording to the remarks in the first paragraph of this section the
direct image sheaf PT*& is Iocally free of rank p (Ha, Thm 12.8]. Hence locally on T there
are trivializations V @ OT ~ PT.&, which lead to quotient maps q : V @ OTxX ~ e.
By the universal property of Q there is a k-morphism 1 : T -+ Q and a uniquely
determined isomorphism <I> : (I x idx)""E -+ E such that <I> 0 (f x idx )*q = q. Moreover,
the composition

VC90TxX~ &~ PxCo

determines a homomorphism a : V Ci:) OT -+ HQ(Eo) ® OT' By the universal property
of P there is a morphism 9 : T -+ P and a uniquely determined nowhere vanishing

section s in g*Op(l) such that a = g*o/s. It is clear from the construction that
h := (f, g) : T -+ P x Q factors through BQ. <I> -1 is an isomorphism from c to

(I x idx)"'E = (h x idx )*E8 , and a 0 ~ = (h x idx )"'(aB)/s. 0

Ir h : T -+ Band 9 : T -+ SL(V) are morphisms let h . 9 denote the composition

T (h,g) I B x SL(V) -+ B, where the last map is the induced group action of SL(V)

on B.

Lemma 1.15. Suppose T is a noetherian k-seheme and h = (/,g) : T -+ BQ C P x Q
a k-morphism. h induees (loeally) isomorphism c1asses 01 families 01 pairs. 11 9 :

T ~ SL(V) is amorphism) then the fami/ies indueed by hand h . 9 are isomorphie.

15



Conversely, iJ h1 and h2 induee isomorphie /amilies parametrized by T, then there is an

etale morphism c : T' --;. T and a morphism g' : T' --;. SL(V) such that the morphisms

(h 1 0 c) ·9' and (h'J 0 c) are equal.

ProoJ: Let h : T --;. B O be a k-morphism. Applying (h x idx t' to EB and aB
induces a family ET and a homomorphism aT : Er --;. h*(OB(l)) @ p'XEo. Locally
there are nowhere vanishing sections in h*OB(l). Dividing Cir by any of these sections
defines families of pairs. Two such sections differ by a section in 0r. Eut this sheaf
embeds into the sheaf of automorphisms of ET . Henee the families indueed by different
sections are isomorphie. The seeond statement is clear. For the third assume that
h1 and h2 are morphisms such that for i = 1,2 there are nowhere vanishing sections

Si E HO(T, hiOB(l». Let

Ei := (hi x idx )*EB, qi:= (h i x idx )*qB and Cii:= (hi x idx )*aB/Si'

Assume that there is an isomorphism <P : (EI, Cil) --;. (E2 , Ci2) of pairs. The quotient
maps qi induce isomorphisms qi : V @ OT -+0 PT*Ei because of the definition of BQ ([Ha,
Thm 12.11]). The composition q2 1 0 PT",cI> 0 ql corresponds to a morphism 9 : T --;.
GL(V). Define morphisms c and f by the fibre product diagram

T'
t1

c
T

det(gH

Gm

and let 9' := (g 0 c)/l : T' -+0 SL(V). It is easy to check that (h 1 0 C)'9' = (h 2 0 c). 0

ij induces a homomorphism Ar(Oq ~ Vx ) --;. det t = (det x id)*(L) (6l PQM and
hence a homomorphism Arv ®k MV --;. det"'UQ = det*PA*.c ([Ma]). This finally leads
to morphisms T: Q --;. p' := ~(1iom(Arv,Uo)v)and T:= (7rp,T) : B -+0 P X P'.

Lemma 1.16. SL(V) acts naturallyon pI/rom the right, T and T are equivariant

morphisms with respect to this action. 0

We can choose a very ample line bundle N on A such that N' := Op,(l) ® pÄN is
very ample on PI. For any positive numbers v, VI the line bundle Op(v) ® (N'yf!)",1 is

very arnpie on P X P' and inherits a canonicallinearization with respect to the SL(V)
action [MF, 1.4,1.6]. Choose v and v'such that v/v' = r8/(p - 8). Let Z(3)3 ~ P X pI

be the open subscheme of (semi)stable points with respect to this linearization. Here
stable means properly stable in the sense of Mumford.

Theorem 1.17. The open subseheme B(6)6 = BQ n T- 1 (Z(6)3) 0/ B has the Jollowing

property: A morphism h : T --;. BQ induces Jamilies 0/ {semi)stable pairs in the sense

oJ lemma 1.15 iJ and only iJ h factors through B(3)3. The restrietion 0/ T to BU is a
finite morphism TU : EU -+0 Z$3.
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For the proof we need astability criterion for r([a], [q]), and we need it in slightly
greater generality. But before this, note that if q : Vx --+ & defines a point [q] in Q(k),
then the fibre of the projeetive bundle P' through the point T([q]) is isomorphie to
pli := JP(Hom(ATV, HO(det &))V), and r([a], [q]) is a (semi)stable point in P x P' if aod
only if it is (semi )stable point in P x P" with respeet to the canonical linearization of
Op(v) @ OPI/(v') ([Ma, 4.12]). In particular, the choice of N is of no consequence for
the definition of Z(8)8.

Proposition 1.18. Let (&, a) be a pair with det & E A and torsionlree &0;' Suppose

there is a generically surjective homomorphism q : Vx --+ & such that q 0 0' "# O. Let
T : AT V --+ HO (det &) and a : V --+ HO (&0) be the derived homomorphisms. Then

([a], [T]) is a (semi)stable point in P x P" with respect to the given linearization il and

only if q injects V into HO(&) and (&,0') is sectional {semi}stable with respect to 8.

The proof of this proposition is postponed to the next seetion.

Proof 01 theorem 1.17: Pairs (&, a) that eorrespond to points ([a], [q]) in B O satisfy
the hypotheses of the proposition, for q is surjeetive, HOq isomorphie and Ca: torsionfree.

Henee by proposition 1.18 and theorems 1.5 and 1.11 (&, a) is (semi)stable if and only
if r([a], [q]) is a (semi)stable point. This proves the first assertion of the theorem. In
order to show that TU := riß" is a finite morphism it is enough to show that r tltl is
proper and injeetive ({EGA, IV 8.11.1]). This will be done in two steps:

Proposition 1.19. TU is a proper morphism.

Proo!, Using the valuation eriterion it suffiees to show the following: Let C = SpeeR

be a nonsingular affine eurve, C() E C a closed point defined by a IDeal parameter t E R
aod C the open complement of C(). Suppose we are given a commutative diagram

C

c

h

m

We must show that (at least loeally near C()) there is a lift h : C --+ BU of m extending
h. Making C smaller if neeessary we mayassurne that hinduces hornomorphisms

O V q F 0; C'
e@x---tl)Oe@Co,

so that (F,O') is a Hat farnily of semistable pairs. Using Serre's theorem one ean find
a loeally free Ox-module Hand an epimorphisrn Oe 0Hv -» P. The kernel of the

dual homomorphism ß : :F --+ Oe 01i is the torsion submodule T(F). Sinee Ker a and
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and Im 0' are C-flat, (Ker O')c C (Ker O'c)' Since the kernel of the restriction of 0' to any
fibre X x C, c E C, is torsion free by lemma 1.2, Ker 0' is also torsion free. Therefore

(0', ß) : :F -+ Oc ~ (&0 Ei11-l)

is injective. There are integers a, b such that the cornposition

q (t"a,tbß)
Oc ® Vx ---+1 :F---......, Oc ~ (Co Ei11-l)

extends to a homomorphism

which is nontrivial in each cornponent when restricted to the special fibre X co . Let :F
be the maximal submodule of Oe lZl-(Eo Ei11-l) with the properties

j"lcxx = :F, Im..\ ~ j" and dirn Supp(j"/Im..\) < e;

and let 0 : j" -+ 0clZl&o be the projection rnap. Then j" is C-flat, (j", ö)lc)(x ~ (:F, a)
and qC() : Vx -+ :FCf) is generically surjective. Moreover OC() is nonzero and Ker äC() is
torsion free. For assume that T(Ker oC()) =J. 0 and let j: be the kernel of the cornposite

epimorphism

Then there is a short exact sequence

Hy construction 0 extends to & : j: -+ Oc~Eo. Since 1-l is normal and the codimension
of Supp T(Ker a) in Cx X is greater than 1, ß also extends to a homomorphism ß::t -+

OclZl1-l. Finally (&,13) : j: -+ Oö®(CoEi11-l) is injective, contradicting the maximality of
f:. Hence indeed T(Ker Qeo) = O. Since qeo is generically surjective, Ker ä co torsionfree

and ä eo 0 qco =J. 0, we can apply proposition 1.18 to the pair (f='eo, oeo)' Byassurnption
on the map m the induced point in P x P' is semistable, hence HOqco is injective and
(Fo,ao) sectional semistable. But then necessarily F co is globally generated, HOqco
isomorphie and qco surjective. This shows that hextends to a rnorphism Ti : C -+ E
with h(eo) E EU. 0

Proposition 1.20. TU is injective.

Proof: Assume that for i = 1,2 there are closed points ([ai: V -+ HO(Eo)], [qi : Vx -+

Eil) with the same inlage under T. We l11ay assume that aI = a2 and det EI = det E2 •

Then there is an open subscheme 0 =J. U c X such that t'Ilu, E21U are locally free
and are in fact isoIllorphic as quotients of VxjU. Then EI/T(EI) and E2 /T(E2 ) are
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isomorphie aB quotients of Vx via a map <I> : E1/T(Ed -+ E'J/T(E'J) ([Mal, lemma 4.8).
The kerneis of the induced homomorphisms 0i : Ei -+ E:o are torsionfree, so that the

natural map Ei -+ Eo ED EilT (&d are injeetive. The diagram

id+41!

&0 ED f,'J/T(E'J)

commutes and shows [,1 and [,2 are isomorphie aB quotients of Vx . 0

This completes the proof of theorem 1.17 up to the proof of proposition 1.18. 0

Theorem 1.21. Assume that X is a smooth projective variety 0/ dimension one or

two. Then there is a projective k-scheme Ms"(X, co) and a natural transformation

such that <p is surjective on rational points and Ms"(x, [,0) is minimal with this property.

Moreover, there is an open subscheme Ms(x, &0) c Ms"(x, E:o) such that <p induces an

isomorphism 0/ subfunctors

~(x, Co) --=-. Hornspeck( ,MHx, fa)) ,

i.e. M6{x, &0) is a fine moduli space for all stahle pairs.

Proo/: By [MF, 1.10] and [Gi] there is a projective k-scheme MU and a morphism
p : EU --+ MU whieh is a good quotient for the SL(V)-aetion on EU. By lemma 1.15

and theorem 1.17 any faluily of semistable pairs parametrized by Tinduces morphisms

Ti -+ EU for an appropriate open covering T = UTi such that the composition with p

glue to a well-defined morphism T -+ M"". This establishes a natural transformation

<p : ~"(X, &0) --+ Homspeck( ,M"') .

If 'lj; : M"-' --+ Hom( ,N) is a similar transformation, then the family ([,B,oB)IBII
induces an SL(V)-invariant morphism E"" --+ N, whieh therefore factors through a

morphism M"" --+ N. Moreover there is an open subscheme M" C MU such that

Es = p-l (M") and plB' : E"~ M" is a geometrie quotient. In order to see that the

family (EB,oB)IB' descends to give a universal pair on M" it is enough to show that
the stahle pairs have 00 automorphism hesides the identity. But aBsume that <I> f; id

eM

is an automorphism of a stahle pair (c,o), Le. <I> : [, --=-+ & and a 0 <I> = o. Then

'ljJ = cI> - id is a nontrivial homomorphism from [, to [,0:' Apply the stahility conditions

to Ker'ljJ C [, and Im'ljJ C Ea to get

rk [, . XKen/1 < rk(Ker'ljJ )(Xe - 8) +8 . rk [,

and

rk [, . XIml,& < rk(Im'ljJ )(Xe - 8) .

Summing up and using Xlmf/i + XKer1/J = Xe and rk(Im7jJ) + rk(Keqb) = rk& we get the

contradiction Xe < Xe. 0
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1.4 Geometrie stability eonditions

In this section we prove proposition 1.18. Let q : Vx --i' & and a : & --i' &0 be homomor
phisms of Ox-modules. To these data we can associate vector space homomorphisms
T : ArV --i' HO (det &) and a : V --i' HO (E:o). If q is generically surjective, then T is
nontrivial, and if a 0 q =I- 0, then a is nontrivial. Let ([al, [Tl) denote the corresponding
closed point in P X pli (notations as in section 1.3).

The group SL(V) acts on P X pli by

([al, [Tl) . 9 = ([a 0 gl, [T 0 ArgJ).

We want to investigate the stability properties of ([al, [Tl) with respect to an SL(V)
linearization of the very ample line bundle OpxPII(v, v'), where v, v' are positive in
tegers. These stability properties depend on the ratio 1] := v/v' only. We will make
use of the Hilbert criterion to deeide about (semi)stability. Let A : Gm --i' SL(V)
be al-parameter subgroup, i. e. a nontrivial group homomorphism. There is a basis
VI, .•• ,Vp of V such that Gm acts on V via A with weights 11, ... "P E Z:

for all u E Gm(k).

Reordering the Vi if necessary we may assnme that 11 ~ ... ~ 'Ip, L 'Ii = 0, since

detA = 1, and 11 < IP' since A =1= 1.

For any multiindex 1= (iI, ... , i r ) with 1 ~ i 1 < ... < i r ~ p let VI = ViI 1\ ... 1\ Vi r

and 'II = 'Ii 1 +...+li r ' The vectors VI form a basis of ArV, and SL(V) acts with weights
'11 with respect to this basis. T(VI) =1= 0 if and only if the sections q(ViI)' ... , q(Vi r ) are
generically linearly independent, i. e. generate & generically. Now let

p = 1l([a], A) := -min{,ila(vi) =1= O}.

p' = Il([T] , A) := -min{'IIT(VI) =1= O}

Lemma 1.22 (Hilbert criterion). ([a], [Tl) is a (semi)stable point in P X pli with

respect to O(v, v') if and only if p. := ",.p + p'(~)O for all i-parameter subgroups A.

Proof: [MF, Thm 2.1.] o

For any linear subspace W C V let C(W) c & be the submodule which is characterized
by the properties : &/ &(W) is torsionfree and &(W) is generically generated by q(W®Ox).
In particular, let &(i) = &«vt, ... ,Vi))' i = 0, ... ,p for a given basis Vb"" Vp ' Then there
is a filtration

T(&) = &(0) C &(1) C ... C &(p-l) C &(p) = &.

Since &(i)/&(i-l) is torsionfree, one has either &(1) = &U-1 ) or rk&(i) > rk&U-l)' Conse
qnently, there are integers I ~ k1 < ... < kr ~ p marking the points, where the rank
jumps, i. e. kp is minimal with rk&(kp ) = p. Let ]( denote the multiindex (k1 , •• • , kr ).

If I is any multiindex as above, let i o = 0 and i r +1 = p + 1 for notational convenience.
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Lemma 1.23. J-l' = -'K·

Proof: By construction T(VK) f. O. We roust show that IK ~ 1I for every multiindex

] with T(vI) f. O. For any] and any tE {1, ... ,r} we let CI,t = C(Vil"",Vit»' Now
suppose T(vI) f. O. Let f = max{.-\Ikt = i t Vt < A}. If f ~ r + 1, theo ] = ]( and
we are done. We will procede by descending induction on f. By definition of ](, we

have ki < ii. Define &~,t = C((VIc1,,,,,VlIl,Vil,,,,Vi t )) for t = f, . .. p. Then CI,t C c~.t, and
t ~ rkcI,t ~ t + 1. Let m = min{tlrkcI,t = t,f ~ t ~ p}. Now define a multiindex

(If m = f, drop the ii, ... ,im - 1 part; if m = p, drop the im+t, ... ,ip part.) Then we
have T(vJI) f. 0, and 11' ~ 11 by monotony of ] and,. Moreover,]' and !( agree at
least in the first f entries. Thus by induction 'IK ::; 11' ::; 11. 0

Let f := min{ila(vd f. O}. Obviously /-l = -,i, so that jJ, = -,K -7J·'i. Now land
]( depend on the basis Vl, . .. , vp only, and J.L is a linear function of , for fixed land
](. Using these notations, the Hilbert criterion can be expressed as follows:

Lemma 1.24. ([a], [Tl) is a {semi)stable point if and only if

o

We begin with minimizing over the set of all weight vectors I' This is the cone
spanned by the special weight vectors

(i) (' . i ..... i), = !-p,.~.,t-~,~

i p-i

for i = 1, ... ,p - 1. For any weight vector 'I can be expressed as I = L:f;ll Cil(i) with
nonnegative rational coefficients Ci = (,i+l - 'i)/p. In order to check (semi)stability
for a given point it is enough to show P(~)O for each of these basis vectors. Let bi = 1

or 0 if l ~ i or > i, respectively. Evaluating fi on ,(i) we get numbers

J.L{i) = p.(max{jjkj ::; i} + 7J·bi) - i·(r + 1J).

If i increases, J..'(i) decreases unless i equals l or any of the numbers kj , in which case
p.(i) might jump. The critical values of i therefore are i-I and kj - 1, j = 1, ... , r,

and the corresponding critical values of J.lU) are:

p' (j - 1) - (k j - 1).( r + 7]) if 1 ::; j ~ r, 1 < kj ::; l, .
p' (j - 1) - (f - 1). (r +7]) if 1 ::; j ::; r + 1, kj - 1 < f ::; kj, 1 < l,
p.(j - 1 + 7]) - (kj - l).(r + 7J) if 1 ::; j ::; r , l < kj.
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If we put lj = min{kj,l}, then the conditions imposed by these values of p, can be
comprised as folIows:

(1) O(~)p·(j-l)-(lj-l).(r+Tl) ifl~j~r+l,l<fj

(2) O(~)p·(j -1 + Tl) - (kj -l)·(r + 71) if 1 ~ j ~ r.

In the next step one should minimize these terms over all hases of V. Hut in fact,
the relevant information is not the used basis itself but the Hag of subspaces of V which
it generates. The stability criterion takes the following form:

Lemma 1.25. ([a], [Tl) is a (semi)stable point if and only if

1) dirn W·(r + 17) (~) p·rk &(W) for all subspaces 0 f W ~ Ker a.

2) dirn W·(r + 17) (:s;) p'(rk &(W) + 71) for all subspaces 0 -# W ~ V with rk &(W) (:S;) r.

o

We give the stability criterion still another form, shifting our attention from suh
spaces of V to submodules of &:

Lemma 1.26. ([al, [Tl) is a (semi)stable point if and only if

(0) HOq is an injeetive map.

(1) V n HOF = 0 or dim(V n HO:F}(r + 17) (:S;) p·rkF for all submodules :F ~ Kern.

(2) dim(V n H°:F).(r + 17) (:S;)p.(rkF + 17) for all submodules F ~ & wilh
rkF (:S) rk&.

Proof" If ([al, [Tl) is semistable, let W := KerHOq. Then W ~ Kera. From the

lemma above it follows that dirn W :S p/(r + 71 )·rk &(W) = O. Hence (0) is a necessary
condition. It is to show that the conditions(l) and (2) of lemma 1.25 and of lemma
1.26 are equivalent. Suppose we are given a submodule :F ~ &. Let W := V n HOF.
Then q(W ~ Ox) ~ F and rk:F = rk&(w). Moreover, if F ~ &ell then W ~ Kera.
Now either W = 0 or 1.25 applies and gives 1.26. Conversely, if W ~ V is given, let
F := q(W~ 0 x). Then W ~ V n HOF and rk &(W) = rk F. Again, if W ~ Ker a, then
F ~ &a. Hence 1.26 implies 1.25.

Finally, we replace 71 by a more suitable parameter:

- P'170=--'
r+17

r·J
1]=-.

p-8

Since 1] was a positive rational number, 8 is confined to the open interval (0, p), which
of course tallies with the data of the previous section. The following theorem, which
differs {rom proposition 1.18 only in the choice of words, summarizes the discussion of
this section:
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Theorem 1.27. I/ in addition to the global assumptions 0/ this section EOI is tor

sionfreeJ then ([al, {T]) is a (semi)stable point 0/ P X P" i/ and only i/ the /ollowing

conditions are satisfied:

- HOq is an injective homomorphism.

- (E, Q) is sectional stable with respect to "8.

Pro0/: If Ea is torsionfree then every nontrivial submodule of Ea has positive rank.
Hence condition (1) in 1.26 can be replaced by

(1 ') dim(V n HO F)·(r + 11 )(:S;)p'rk:F for all submodules F ~ Ea .

As a result of replacing 11 by "8 in (1') and 1.26(0),(2) one obtains the defintion of
sectional (semi)stabili ty. 0

2 Applications

This chapter is organized as folIows. In 2.1 we show that the existence of semistable
pairs gives an upper bound for 8. Rationality conditions on 8 imply the equivalence of
semistability and stability. If 8 varies within certain regions the semistability conditions
remain unchanged. This is formulated and specified for the rank two case.

2.2 deals with Higgs pairs. Again we concentrate on the rank two case. We make the
first step to generalize the diagrams of Bertram and Thaddeus to a.lgebraic surfaces.

The restriction of Jl-stable vector bundles on an algebraic surface to a curve of high
degree induces an immersion of the moduli space of vector bundles on the surface into
the moduli space of vector bundles on the curve. The understanding of this process
is important, e.g. for the computation of Donaldson polynomials and for the study of
the geometry of the moduli space on the surface ({Ty]). With the help of a restriction
theorem for Jt-stable pairs (E, Q : E ~ 0) we construct an approximation of this
immersion, which will hopefully shed some light on the relation between the original
moduli spaces. lt is remarkable that the limit of any approximation is independent of
the polarization.

In 2.3 we first compare our stahility for Co = o~r, where D is a divisor on a curve,

with the notion of Seshadri of stahle sheaves with level structure along a divisor([Se]).
We will have a doser look at the ffioduli space of rank two sheaves of degree 0 with a.

level structure at a single point. Furthermore certain results from 2.2 are reconsidered
in the case of Co being a vector bundle Oll a divisor.
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2.1 Numerical properties of fJ

Let X be a smooth projective variety with an ample divisor H, &0 a coherent Ox-module
and 8 a positive rational polynomial of degree dirn X -1 with leading coefficient 81 ~ O.

Lemma 2.1. Assume (&,0') is a semistable pair such that &0 =j:. O. Then

rk&
8(~)Xe - rk&o (xe - xeo)

I/ E:o ~ Ox and rk& > 1, then

8(<) rkE·xox - Xe
- rkE - 1

and in partieu/ar

If t'o is torsion, then

and in partieular 81(~) deg Eo.

8 «) _ deg E
1 - rkE - 1

Proo/, The first inequality follows immediately from the stability condition i). If

Eo :: Ox use Xea = Xe - XImo ~ Xe - XEo and rkt"o = rkE - 1. 0

It is much more convenient to work with Il-stability only. In fact for the general 8
one can achieve that every semistable pair is Jl-stable.

Lemma 2.2. There exists a discrete set 0/ rationals 0 ~ ... < 77i < 1]i+1 < ... including

0, such that for 81 E (1]i, 1]i+1) every semistable pair with respect to 8 is in fact Jl-stable

and the Jl-stability conditions depend only on i.

Proo/: Define {Tli} := [O,-d/(r -1)) n {(ar - sd)/(r - s)la,s E Z, 0 ~ s < r}. If
81 E (1]i,7]i+d, then the right hand sides of the Jl- semistability conditions deg g ~

sd/r - 81s/r and deg Q ~ sil/r + 81(r - s)/r are not integer (8 = rkQ'). Therefore
Jl-semistability and Il-stability coincide. Moreover, the integral parts of the right

hand sides depend only on i, i.e. for .two different choices of 8) in the intervall (1]i,1]i+t}

the jl-stability conditions are the same. 0

More explicit results can be achieved in special cases:

Proposition 2.3. For r = 2 and Eo E Pic(X) and 8) E (1]i,1]i + 2),where 1]i :=
max{0,2i + d} with i E Z, every semistable pair is Jl-stable. The stability in this

region does not depend on 8.
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Pro0/: For &0 E Pic(X) all semistable pairs (&, a) have torsionfree & and rk&a = 1.
In particular the stability conditions concern rank one subsheaves only. Now 81 E

(r/i,7]i + 2) is equivalent to -1 - i < d/2 - 81/2 < -i, i + d - 1 < d/2 + 81/2 < i + d
and 81 > O. 0

As the last numerical criterion we mention

Lemma 2.4. Assume 01 < mil1o<a<r{(r - sd)/(r - s) + r(r - s)[sd/r]}.

i) Then every sheaf & in a semistable pair (&, a) without torsion in dimension zero

is torsionfree and J-l-semistable.

ii) If & is torsionfree and p,-semistable and a : & ~ &0 a nontrivial homomorphism

such that &0. does not contain a destabilizing subsheaf, then (&, a) is jt-stable.

Proo/: The condition on 8] is equivalent to either of the two conditions:

[sd/r,sd/r + 81(r - s)/r) n Z = 0 for 0:::; s < r.

[sd/r - 81 /r, sd/r) n Z = 0 for 0 < s :::; r.

2.2 Riggs pairs in dimension one and two

o

A Riggs pair in this context is a vector bundle together with a global section. (This
notion should not be confused with a Riggs field as a section e E HO(&nd& ~ 01-)
with e1\ 0 = O!) Instead of considering aglobai section we prefer to work with a

homomorphism from the dualized bundle to the structure sheaf. These objects will be
called pairs as in the general context.

First we remind of the situation in the curve case, which was motivation for us to
go on.

Definition 2.5. Let C be a smooth curve. As introduced in 1.3 Msa(d, 2, O)(resp.
Msa( Q, 2,0)) denotes the moduli space of semistable pairs (&, a : & ~ 0) with
respect to 8, where & is a rank two sheaf of degree d (with determinant Q).

Remark 2.6. Notice, that fJ is just a number and that a sheaf occuring in a semistable
pair is always torsionfree and hence a vector bundle. Moreover the stability conditions

reduce to deg( &0.) :::; d/2 - 8/2 and deg(Q) :::; d/2 + 8/2 for allIine bundles Q c &.

For the following we assume d < O.

Definition 2.7. Uc,i(d) := M sa(d,2,O) and SUC,i(Q) := M sa(Q,2,O), where 8 E

(max{O,2i +d}, 2i +d +2).
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Note that according to proposition 2.3 the spaces UC,i(d) and SUC,i( Q) do not
depend on the choice of 8

Proposition 2.8. (M. Thaddeus) UC,i(d) and SUC,i( Q) are projeetive fine moduli
spaces. Every semistable pair is automatically stable.

Proof: [Th] or 1.21

Proposition 2.9. i) For i ;::: -d the moduli spaces UC,i( d) are empty.

o

ii) For i = l-d/2 - 1J+1 there are morphisms

Uc,i(d) --+ U(d)

and

S'!C,i( '1) --+ SU( Q) ,

where U(d) and SU(Q) are the moduli spaees of semistable veetor bundles of
degree d and determinante QJ resp. The /ibre over a stable bundle t: is isomorphie
to P(HO(t:V)V). In partieular they are projective bundles for 0 ~ d =1(2).

iii) A pair (t:,0') lies in SUc,-d-dQ) if and only if there. is a nonsplitting exact
sequence 0/ the form

Thus SUC,-d-l ~ P(Extl(O, Qt).

Pro0/: i) and ii) follow from the general criteria. A similar result as iii) holds in the

surface case. We give the proof there. 0

The following picture illustrates the situation:

SUC,L-d/2-IJ+I (Q) SUC,L-d/2-IJ+2(Q) .... SUC,-d-l (Q) ~ P(Ext l (0, Qt)

1
SU(Q)

M. Thaddeus is ahle 'to resolve the picture' by a sequence of blowing ups and downs.
In particular all the spaces SUC,i are rational. This process makes it possihle to trace
a generalized theta divisor on SUC,i to a certain section af O(k) on P(HI(Q)). This
method is used in [Th] to give a praof of the Verlinde formula.

We go on to proceed in a similar way in the case of a surface.

Let X be an algebraic surface with an ample divisor H. Now M 6ß(d, C2, 2,0)
(M 6" (Q, C2, 2, 0)) denotes the moduli space of semistable pai rs (E, a : E -+ 0 x) with
respect to 8, where E is a rank two sheaf of degree d (: = Cl' H) (with determinant Q)
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and second ehern dass c~. For the existence of such pairs it is necessary that D be
linear with nonnegative leading coefficient D}. As in 2.6 a sheaf occuring in a semistable

pair is torsionfree and the stability conditions are

. Xe D
XQ(5)T - 2"

for all rank one subsheaves (} C Ea and

for all rank one subsheaves (} C E.

Definition 2.10. For D such that D) E (Inax{O,2i +d},2i + d + 2) we define Ui :=

Ms"(d, C2, 2,0) and SUi := Ms"(Q, c2,2, 0).

Again, note that according to 2.3 the definition does not depend on the choice of D.

Corollary 2.11. Ui and SUi are projective fine moduli spaces. Every semistable pair

is /l-stable.

Proof: lt follows immediately fom 1.-21 and section 2.1. o

Proposition 2.12. If (E, 0') is a IJ.-semistable pair with respect to D, then 4c~(E) 
ci(E) 2:: -Dl/(4H2

).

Pro0/: If (E, a) is a Il-semistable pair the homomorphism a can be extended to a
homomorphism EVV -+ 0 and the resulting pair is still Il-semistable with cdEVV) =
c}(t') and c2(EVV) ~ c2(E). Thus it is enough to prove the inequality for locally free
pairs. If E itself is a Il-semistable bundle the Bogomolov inequality says 4c~ - ci 2:: o.
If E is not p-semistable, then there is an exact sequence

where I z is the ideal sheaf of a zero dimensional subscheme and (,1 and (,2 are line

bundles with deg E/2 < deg (,} ~ deg &/2 + (1/2)Dl and deg E/2 - (1/2)Dl $ deg L2 <
degE/2. Usingc2(E) = c}(Ldcl(L~)+I(Z) 2:: Cl(Ldc}(L2) = (1/4){(Cl(Ll)+Cl(L2))2
(Cl(Ll)-C}(L2))2} = (1/4)ci(E)-~(Cl(Ld-Cl(L2))2 and Hodge index theorem, which
gives (c} ((,1) - c} (L2) )2 ~ ((deg LI" - deg L2)2)/ H2 we infer the claimed inequality.
Notice, that for DI -+ 0 the inequality converges to the usual Bogomolov inequality. 0

Proposition 2.13. i) For i 2:: -d the moduli spaces Ui and SUi are empty.
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ii) If i = l-d/2 - 1J+1, then every pair (&, 0') E Vi has a p.- semistable &. There is

rational map Ui --+ U(c}) C:l) (the moduli space of semistable, torsionfree sheaves),

which is a morphism for d =1(2). The image 0/ the rational map contains

all J-L-stable sheaves & with Horn(t',O) =j:. O. The /ibre over such a point is

IP(Hom(&,Ot)·

iii) Every pair (E, 0') E SU-d - 1 sits in an nontrivial extension 0/ the form

where I Zi are the ideal sheaves 0/ certain zero dimensional subscheme. In the

case Zl = 0, e.g. & is locally Iree, every such extension gives in turn a stable pair

(&,0') E SU-d-l.

Proo/" i) and ii) follow again from 2.1 If (&,0') E SU-d-t, then deg &0 < d + 1/2,
which is equivalent to deg(lmo) > -1/2. Since Imo C 0 it follows lIDO' = IZ.J" A
splitting of the induced exact sequence would lead to the contradiction 0 ~ deg I Z2 ~

-1/2. Let (&,0') be given by a sequence with Zl = 0. For 9 c &0 one gets the
required inequality deg 9 ~ d < d + 1/2. If 9 c & and 9 rt Ca, the sheaf 9 has the
form (; = I~ C Iz2 . Without restriction we can assume that &/9 is torsionfree. Since
E/Q is an extension of I~/IZ3 by Q and Ext1(Iz2 / I z3 , Q) = 0, 9 in fact equals I~ and
therefore defines a splitting of the sequence. 0

Corollary 2.14. The set 0/ all pairs (E, a) E SU-d- 1 with &0 locally /ree, which in

particular contains alliocally free pairs, forms a projective scheme over HilbC2 (X) with

fibre over [Z] E HilbC'J(X) isomorphie to p(Exe(Iz, Qt).

Proo/: If (c, 0') is a universal family over SU-d - 1 x X, then the set of points t E SU-d - 1

wi th I((coker 0')d maximal is closed. It is easy to see that (coker Q' ) t ~ coker(at) and
that l(coker(at)) is maximal, Le. is equal to ~ if Ker(Q't) is locally free. Therefore the
set of all pairs with locally free kernel &0 is closed and O/lmO' induces the claimed
morphism to HilbC'J(X). 0

Corollary 2.15. The moduli space 01 all locally free pairs (&, a) E SU-d-l does not

depend on the polarization 0/ X.

Remark 2.16. i) Bradlow introduced in [Br] the notion of fj!-stability with respect
to a parameter i. If we set 8} = -d + (i /2tr )vol(X) (d is the degree of &) both notions
coincide, i.e. a pair (E, Q' : E --+ 0) with a locally free E is jt-stable in our sense if and
only if (EV, fj! = Q'V E HO(EV)) is 4>-stable with respect to the parameter i in Bradlow's
sense. He proves a Kobayashi-Hitchin correspondence in this situation, Le. he shows:
(E, Q') is JL-stahle ( or a surn of a p.-stable pair with J-L-stable bundles) if and only if
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the vortex equation has a solution, i.e. there exists a hermitian metric H on cV
, such

that . .
AwFH + T~id·= ~tP 0 q/H .

FH is the curvature of the metric connection on cv, w is a fixed Kähler form and Aw is
the adjoint of I\w. Now,if (c, 0') E SU-d- l one can take 8 near to -d. That corresponds
to T -+ O. Although 2.15 shows that SU-d- l is independent of the polarization H, i.e.
of the Hodge metric, for us there is no ohvious reason in the analytical equation.
ii) In [Rei] the space SU-d- l is stratified and equipped with certain line hundles.
These objects Reider calls Jacohians of rank two alluding to a Torelli kind theorem for
algehraic surfaces.

In order to study the restrietion of JL-stahle vector bundles to curves of high degree
it could be usefull to study the restriction of J-L-stable pairs to those curves. As a
generalization of a result of Bogomo~ov we prove

Theorem 2.17. For fixed Cl, C2, 8 and H there exists a constant no, such that for

n ?: no and any smooth curve C E InHI the restrietion of every locally free, JL-stahle

pair to C is a J-L-stable pair on the curve mith respect to n8 l .

Proof' If C is locally free the kernel Ca is a line hundle. In particular the restrietion
of the injection &a C C to a curve remains injective. Thus (ca)c = Ker(O'c). Since
deg(ca)c = ndegca, the two inequalities deg&a < degE/2 - 81 /2 and deg(ca)e <
deg&e/2 - n81 /2 are equivalent. Thus the first of the stability conditions on C is
always satisfied. In order to prove the second we proceed in two steps.
i) By Bogomolov's result ([BaD there is a constant no, such that the restriction of
a jL-stable vector bundle to a smooth curve C E InHI for n ?: no is stable. Since
the inequality deg 9 < deg Ce /2 + n8l /2 for a line bundle 9 C Ce is weaker than the
stability condition on Ec , the theorem follows immediately from Bogomolov's result
for all JL-stable pairs (E, 0'), where E is a J-L-stable vector bundle.
ii) Therefore it remains to prove the theorem for pairs with E not J-L-stable. Any such
vector bundle is an extension of L~ 0 1z by LI, where L. and 122 are line bundles
with deg C/2 ~ deg 121 < deg E/2 + (1/2)8•. lz is as usual the ideal sheaf of a zero
dimensional subscherne. If C E InHI is a curve with C n z = 0, then the restriction of
the extension to Cinduces the exact sequence

lf 9 C Ce is a line bundle, then either 9 C (L:dc or 9 C (L2)e. This implies
deg 9 ::; deg(.cde = n deg.c. < deg &e/2 + (1/2)n8l or deg 9 ::; deg(.c2 )e = n deg & 
n deg.c l ::; deg Ce /2. Hence (ce, O'e) is stahle. If C n Z =I 0 we only get a sequence of
the form
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Notice, that Oe( -Z.G) 8:!: (lz ® Oe )/T(lz ~ 0 0 ), As above deg 9 ::; deg('cl)e +
deg(Z.C) :::; deg('cde + l(Z) or deg9 :::; deg(cc)/2 for every line bundle 9 c &0.

II deg'cl + l(Z)/n < dege/2 + 81/2, then (Ec,ae) is stahle. There exists a positive
number € depending only on the degree, hand H, such that deg LI ~ deg E/2+hl /2 - €.

Thus it suffices to bound l(Z) by not:. That is done by the following computation.

l(Z) = C2 - Cl ('cl )Cl ('c2) = C2 - ci /4 + (1/4)(Cl (LI) - Cl (L2»2 ::; C2 - ci /4+ 8~/(4H2).
Thus no > (1/t:)(c2 - ci/4 + Si/(4H2» satisfies l(Z) < not:. 0

With the notation oI 2.7 and 2.10 one proves

Corollary 2.18. Por fixed Cl, C:l and H there exists a number no, such that for every

smooth curve C E InHI for no ::; n - 1(2) and every i with L-d/2 -1J+1 ::; i ::; -d-1
the restrietion of pairs gives an injective immersion, i. e. an injective morphism with

injective tangent map:

u! --+ UO,in+(n-l)/2

(The superscript denotes the subset of all locally free pairs)
Proof: The technical problem here is, that the constant no in the last theorem depends
on S and not only on i. Therefore we fix for every i a very special 8, namely 81 = 2i+d+
1. Since we only consider finitely many i's there is an no, such that the restriction gives

a morphism V! --+ Ve,in+(n-l)/2. Here we use n =1(2). Since the occuring family of
vector bundles is bounded one can cboose no, such that llk(X, ?-lom(e, c')( -nH» = 0
(k = 0, 1) and HO( EV (-nH» = 0 for n ;::: no and all vector bundles E and E' occuring
in a pair in one of the moduli spaces Vi' Thus (E,O')e I'V (E', a')c if and only if c ~ E'
and a maps to 0" under this isomorphism, i.e. the restrietion morphism is injective.
A standard argument in deformation theory shows that the Zariski tangent space of
V! at (E, a) is isomorphie to the hypereohomology IHI1(cnd&V --+ CV) of the indicated
complex which is given by ep 1--+ ep(O'

V
) ([Wen. Analogously, the Zariski tangent space

of VeJ at (&e, ae) is isomorphie to the hypercohomology rnrl (EndEc --+ ce)' The
Zariski tangent map is described by the restrietion of hypercohomology classes. Both
hypercohomology groups sit in exact sequences of the form

and
... --+ HO (&c) --+ IHr l

( End&c --+ &c) --+ H l (CndEc ) --+ ...

resp. By our assumptions the restrietions HO(&V) --+ HO(Ec) and Hl(&ndEV) --+

Hl(EndEc) are injeetive. Hence the Zariski tangent map of the restriction of stable
pairs is injective, too. 0

We remark that neither the starting nor the end point of the series of moduli
spaces on the surface is sent to the corresponding point of the series moduli spaces on
the eurve. A slight generalization of the theorem allows to restriet tL-stahle pairs to
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a stable pair on a curve C E InHI with respeet to the parameter n8l +c, where C is a

constant depending only on 81 , Cl, C2 and H.

2.3 Framed bundles and level structures

In this paragraph we consider pairs of rank r, where E:o ~ "zr or more generally where
Co is a vector bundle of rank r on a divisor D.
We start with pairs on a curve. In this ease D is a finite sum of points. As far as we
know, Seshadri was the first to consider and to construet moduli spaces for such pairs.
In [Se] they were ealled sheaves with" a level strueture. The general stability conditions
as developped in this paper and speeialized to this case present a slight generalization
of Seshadris stability coneept in terms of the parameter 8, whieh in [Se] is always

I(D). The geometrie invariant theory which Seshadri used to construet the moduli
spaces differs from the one in 1.3. In [Se] a point [OffiN --++ c] of the Quotscheme is
mapped to a point

in the produet of Grassmannians (the Xi are sufficiently many generic points. The
conditions for a point in this produet to be semistable in the sense of geometrie invariant
theory translate into the seluistability properties for pair. However, to generalize the
construetion to the higher dimensional case one has to map the Quotseheme into a
different projeetive space as in 1.3 and study the stability conditions there.

Lemma 2.19. If the genus 0/ the curve is at least 2, there exists a semistable pair of

rank rand degree d with respeet to (ozr, 8) if and only if 0 < 8 :::; r . I(D).

Proo/: The 'only if' part was proven in 2.1, since r . I(D) = hO(Eo). For the 'if'
direetion we pick a stable vector bundle C of rank rand degree d and an isomorphism
Q' : CD S! o~r. The induced pair is semistable. 0

Corollary 2.20. The moduli spaces Ms$(d, r, o~r) 0/ semistable pairs with 0 < 8 :::;
r . I(D) exist as projeetive schemes 0/ generic dimension r 2 (9 - 1) + r 2

• I(D)

(ep. [Se], 111.5., there is amisprint in the dimension formula in [Se])

There are two new features in the theory of pairs eompared with the moduli spaces of
veetor bundles. First, to compaetify one really has to use sheaves with torsion sup

ported on D. Secondly, the set of semistable pairs which are not stable may have only

codimension 2, whereas the set of semistable veetor bundles whieh are not stable is at
least 2g - 3 codimensional in the moduli space of all semistable veetor bundles. Ta
give an example we deseribe the moduli space M:$(O, 2, k(P)ffi2) of sheaves af rank two
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and degree zero with a level structure at a reduced point P E X with ö = 1. Here we
try to eompute the S-equivalence in geometrie terms, whieh is not clear to us in the

general eontext.
The stability eonditions say

i) deg g(~) - ~ for all rank one subsheaves Q c [0 = KerO'.

ii) deg Q(~)! for all rank one subsheaves :F CE.

iii) l(E/ Ea )('2:)1

iv) 1(T(E))(~)1

v) 0' is injeetive on the torsion T(E).

Therefore the sheaves E oeeuring in semistable pairs in M~"'(O, 2, k(P)ffi2) are either
loeally free or of the form .r EB k(P). with :F locally free.
First we classify all pairs (E,O') with locally free [. By ii) such a bundle E has to be
semistable as a bundle. If [ is a stable bundle, then every pair (E, 0') with an arhitrary
0' i= 0 is semistahle and is stahle if and only if rk(0') = 2, Le. 0'(P) is bijeetive. If [ is

only semistable there are two cases to eonsider: Either a) E ~ LI EB L2, where LI and

L2 are line bundles of degree 0 or b) E is given as a nontrivial extension of two such
line bundles.

a) If L-l ~ L-2 then ([,a) is semistable if and only if 0' is bijeetive. If LI 'iF L2 then

(E,O') is semistable if and only if none of the restrietions O'I.ci(P} is trivial.
If [,1 ~ [,2 and Q' bijeetive, the pair ([ l Q') is in fact stable, sinee 1([/[a) = 2 > 1. If a
is ooly of rank one we ean always find an inclusion [,1 C L-l ES [,1 with [,1 = Ker( O'I.c t ),

which eontradiets i). For [,1 ~ [,2 one has to eonsider line bundles [, C [,1 ffi [,'J of
degree zero with [, = Ker(O'I.c), because that is the only possibility to eontradict i).
But such a line bundle has to be isomorphie to one of the summands with the natural

inclusion. Therefore the stability eondition is equiva.lent to O'I.ci i= O.
b) If E is a nonsplitting extension

a pair ([, 0') is semistable Hf [,1 i= Ker(O'I.c l ). That is, since every line bundle [, C [

of degree 0 either defines a splitting of the sequence or Inaps isomorphically to [,1.

The next step is to determine all semistable pairs (:F EB k(P), er). Here we claim, that
such a pai r is semistable iff :F is stable and O'lk(P) is injective. Let (.r EB k(P), Q') be
semistable and [, C :F aline bundle. Then, since [,EBk(P) C :Fffik(P), the semistability

conditions for the pair give deg([, EB k(P)) ~ 1/2, Le. deg [, ~ -1/2 = deg:F/2. Let
now :F be a stable bundle. If [, is a rank one subsheaf of :F ffi k(P), then it either
injectively injects ioto .r or has torsion part k(P) and therefore satisfies the required
inequality.
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Next we look at the isomorphism classes of stable pairs. If E is a stable bundle, two
pairs (E, a) and (E, a') are isomorphie if and only if a and a' differ by a sealar. For
E of the form LI EB L2 the automorphism group of E is either C· x C· for LI ~ L'J or
GL(2) for LI "V L'J. In the first case the set of isomorphism classes of stable pairs for
fixed E is isomorphie to PGL(2)/ {(g~) lß, f E C·}. In the latter ease all stable pairs
are isomorphie for fixed E, they all define the same point in the moduli spaee. If E is
given by a nonsplitting exact sequence

the automorphism group is either C'" for LI ~ L2 or {(gJ) Iß E C"', I E C} for [.1 s=: [.2'

Therefore every such extension induces either a PGL(2)-family of stable pairs in the

moduli space or a PGL(2)/{(gJ) Iß E c" f E C}-family of stable pairs in the moduli
space.
In order to describe the S-equivalence we claim, that the orbit of a pair (E,O') is closed
if and only if either the pair is stable, Le. E is a semistable veetor bundle and a of
rank two, or E is of the form :F EB k(P) with a stable vector bundle :F of degree -1 and

O'I.:F = O.
If E is loeally free and Cl' of rank one there is an extension of the form

o----. Ea --t E ----. k(P) ----. 0 .

If 'ljJ E ExtI(k(P), Ea ) denotes the extension class one can easily construct a family
of pairs over C . t/;, which gives the pair (E, a) outside 0 and (Ea EB k(P), 0' . prk(P»)
on the special fibre, where prk(p) is the pl'ojection to k(P). Obviously this pair is
again semistable. If (:F EB k(F), 0') is a seluistable pair with Cl' = (ab 0'2)' the pair
(:F EB k(P), (t . ab 0'2)) converges constantly to a pair with O'I.:F = 0 for t --+ O. In order
to prove the claim it is therefore enough to show that the orbit of such a pair is closed.
If there were a family parametrized by a eurve with a point 0, whieh outside 0 were
isomorphic to a fixed semistable pair (:F EB k(P), Q') with O'I.:F = 0 and over this point 0
isomorphie to another pair of this kind, the family of the kerneis would give a family
of stable bundles, which would be constant for all points except O. Sinee the stable
bundles are separated, it has to be constant everywhere. Finally, using the constanee
of the images of the maps Q' outside the point 0 one concludes that the family of pairs
is eonstant.
If M~(O,2, k(P)$2) denotes the subset of all stable pairs we summarize the results in
the following proposition

Proposition 2.21. i) M~4(O, 2, k(P)$2) \M~(O, 2, k(P)$2) =:! PI X U( -1,2), where
U(-1, 2) is the moduli space 0f stable rank two vector bundles 0f degree -1.

ii) There is a morphism M~(O, 2, k(P)$2) --+ U(O,2), which is a PGL(2)-fibre bun

die ouer U(O,2}" and whose fihre over a point [LI EB [.2] E U(O,2) \ U(O, 2)" lS
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isomorphie to

PGL(2)/{(~~}ß, "Y E C} U {PGL(2) x IP'(Ext1 (L:}, L:1 tH

for LI ~ L'2 and isomorphie to

{pt} U{PGL(2)/{(~;}ß E C', "Y E C} x IP'(Ext1 (L:}, L:1tH

for LI ~ L2.

Proof: The isomorphism in i) is given by (:FEBk(P), a) ~ (a(k(P)), :F). The morphism
in ii) is induced by the universality property of the moduli space. 0

In particular the dimension of M~~(O, 2, k(P) EB2) is 4g (g is the genus of the curve)
and the dimension of M~~(O, 2, k(P) EB2) \ M~(O, 2, k(P)EB2) is 4g - 2. Thus the codi
mension is two, independently of the genus.

Fina.11y we want to study the situation in the two dimensional case. Let X be a sur
face with an effective divisor C and E:o be a vector bundle of rank r on C. A framing of
a vector bundle E of rank r on X along C in the strong sense as introduced in [LI] is
an isomorphism a : ec ~ E:o. In [LI] the question of the existence of moduli spaces for
such pairs (e, a) was asked (0 denotes the isomorphism as weH as the composition of
this isomorphism with the surjection f,~ f,c). In fact, under additional conditions,
fine moduli spaces for such framed bundles were constructed as algebraic spaces. These
additional conditions are: C is good and E:o is simplifying. Ir C = L biCi with prime
divisors Ci and bi > 0 C is called good if there exist nonnegative integers ai, such that
L aiCi is big and nef. The vector bundle f,o is called simplifying if for two framed
bundles f, and f,' the group HO(X, 'Hom(f" f,')( -C)) vanishes. At the first glance it
is surprisiog that there are 00 further stability conditions for such pairs. However, in
many situations the general stability conditions of chapter one are hidden behind the
concept of framed bundles.

Definition 2.22. For 0 < s < r the number v~(Eo,Gi) is defined as the maximum of
deg(:F)/s - deg(Eolci)/r, where :F c E:oICi is a vector bundle of rank s.

In the foHowing we assume, that there are nonnegative integers ai, s.t. H = L ai Ci is
ample. This is equivalent to saying that X \ C is affine.

Proposition 2.23. If 01 is positive wilh

then every veetor bundle f, of rank r together with an isomorphism Cl' : [c ~ Eo forms
a fl-stable pair (f" a).

34



Proof" The JL-stability for such pairs is defined by the following two inequalities:
i) deg 9 /rkg < deg E. /r - 81 /r for every vector bundle 9 C &0: with 0 < rkg < rand
ii) degg/rkg < deg&/r + 81(r - rkg)/(r. rkQ) for every vector bundle 9 C & with
o< rkg < r.

We first check ii). It is enough to consider vector bundles 9, s.t. the quotient &/9 is
torsionfree. In particular we can assume, that gCi ~ &Ci is injective. Then we conclude

degg/rkQ = cl(Q).H/rkQ = L::aideg(QcJ/rkg ::; L::ai(deg(&O)ci/r + vrko(Eo, Cd) =
deg &/r + L:: aivrkO(Eo, Ci) < deg &/r + ((r - rkQ)/r . rkQ)81 • To prove i) one uses
&0: = E(-C) and ii): For 9 C Eo: the inequality ii) applied to Q(C) c & implies
deg 9/rk9 + C.H = degQ(C)/rk9 < deg E/r + ((r - rkQ)/r . rkQ)81 . Therefore 81 <
(r - l)C.H suffices to give i). 0

Corollary 2.24. For maxo<,,<r{r '3/(r - 3)L:: aiv,,(Eo, Ci)} < (r - l)(C.H) and C J

such that there exists an effective, ample divisor H, whose support is contained in CJ

the moduli spaces Mr/C/Eo/x 0/ /ramed veetor bund/es are quasi-projeetive.

Proof" These moduli spaces are in fact open subsets of the JL-stable part of the moduli
space of all semistable pairs (f., Cl'). 0

There is a special interest in the case Eo ~ o~r, since the corresponding moduli
spaces are in fact invariants of the affine surface X \ C ([L2]). In this case all the
numbers v,,(Eo, Ci) vanish. Therefore a trivially framed bundle gives a Il-stable pair
(E, a) with respect to every 81 < (r - l)C.H.
In ([Ll],2.1.5.) a sufficient condition for a bundle Eo to be simplifying is proven: If
Hom(Eo, t'o( -kC)) = 0 for all k > 0, then Eo is simplifying. We remark that at least in
the rank two case this condition is closely related to the numerical condition we gave.
It is possible to make the condition finer, because in the definition of the numbers VCi

it is sufficient to take the maximum over those bundles, which actually live on X.

35



References

[Be] Bertram, A. 'f (quoted in (ThJ)

[Bo] Bogomolov, F. A. On stability 0/ vector bundles on sur/aces and curves.

Preprint (1991).

[Br] Bradlow, S. B. Special metncs and stability for holomorphie bundles with

global sections. J. Diff. GeoID. 33 (1991), 169-213

[Da] Donaidson, S. K. Instantons and Geometrie Invariant Theory. Comm. Math.

Phys. 93 (1984), 453-460.

[Ga] Garcia-Prada, O. Invariant connections and vortiees. IHES-Preprint (1992).

[Gi] Gieseker, D. On the moduli 0/ vector bundles on an algebraic sur/ace. Ann.
of Math. 106 (1977), 45·60.

[EGA] Grothendieck, A. Dieudonne, J. Elements de Geometrie Aigebrique. Publ.
Math. de IHES, No 28 (1966).

[Gr] Grothendieck, A. Teehniques de construetion et theorem d'existence en

geometrie algebrique IV: Les schemas de Hilbert. Sem. Bourbaki, 1960/61,
221

[Ha] Hartshorne, R. Aigebraie Geometry. Graduate Texts In Mathematics 52,
Springer Verlag, New York (1977).

[Kl] Kleiman, S. Les theoremes de /initude pour le foneteur de Picard. SGA de
Bois Marie, 1966/67, exp. XIII.

[LI] Lehn, M. Modulräume gerahmter Vektorbündel. Dissertation Bann 1992,
Banner Math. Schriften 241 (1992).

[L2] Lehn, M. Framed vector bundles and affine sur/aces. Preprint (1992).

[Lü] Lübke, M. The analytie moduli space of framed vector bundles. Preprint Lei
den 1991.

[Ma] Maruyama, M. Moduli of stable sheaves I. J. Math. I(yoto Univ. 17 (1977),
91-126.

[MF] Mumford, D., Fogarty, J. Geometrie Invariant Theory. Erg. d. Math. 34

(neue Folge), 2nd ed., Springer Verlag, Berlin (1982).

[Rei] Reider, I. On Jacobians 0/ higher rank (1). Preprint (1991).

36



[Se] Seshadri, C. S. Fibres vectoriels sur les courbes algebriques. Asterisque 96
(1982).

[Th] Thaddeus, M. Talk at 'Journees de geometrie algebrique d'Orsay , (July
1992).

[Ty] Tyurin, A. N. The moduli space 0/ vector bundles on three/olds, sur/aces and

curves. Preprint (1990).

[We] WeIters, G. E. Polarized abelian varities and the heat equation. Camp. Math.
49 (1983), 173-194.

37


