ON LOEWY LENGTHS OF PROJECTIVE MODULES FOR

p-SOLVABLE GROUPS

Martin Lorenz

Max-Planck-Institut für Mathematik Gottfried-Claren-Str. 26 D-5300 Bonn 3, FRG MPI/SFB 84 - 26

ON LOEWY LENGTHS OF PROJECTIVE MODULES FOR

p-SOLVABLE GROUPS

Martin Lorenz

Max-Planck-Institut für Mathematik Gottfried-Claren-Str. 26 D-5300 Bonn 3, Fed. Rep. Germany

Let G be a p-solvable group of order $p^{a}m$, (p,m)=1, and let $t=t_{p}(G)$ denote the nilpotence index of the Jacobson radical J(FG) of the group algebra FG, where F denotes a field of characteristic p. It is well-known and easy to see that $t \ge a(p-1)+1$ (this follows e.g. from Lemma 1.1 below) and that equality holds if the Sylow p-subgroups of G are elementary abelian. The converse need not be true: the first known counterexample was $G=S_4$, the symmetric group on four letters, with p=2 [6], and later counterexamples were constructed for each prime p by Motose [5]. In this note we prove the following result which contains all examples constructed so far (Theorem 2.7):

Assume $G = N \times H$ is a semidirect product with N a p-group and $H = Q \times M$ a Frobenius group with kernel Q a p'-group and M a p-group. Then $t_p(G) = t_p(N) + t_p(M) - 1$ holds if and only if $\bullet_{i \ge 0} (\omega N)^{i/(\omega N)} = 1$ is a semisimple FH-module under the conjugation action of H on N.

Here, wN denotes the augmentation ideal of FN.

<u>Notations and Conventions.</u> Throughout this note, G will be a finite group and F will be a field of characteristic p > 0. All FG-modules are assumed to be finitely generated right modules, and I denotes the trivial one-dimensional FG-module. J(FG) and ω G denote the Jacobson radical, resp. the augmentation ideal, of FG. For any FG-module V, $\ell(V)$ is the Loewy length of V, i.e. the smallest integer ℓ such that $V \cdot J(FG)^{\ell} = 0$. Furthermore, $P_{G}(V)$ and $\Omega_{G}(V)$ will be the projective cover, resp. the Heller module of V. Thus $\Omega_{G}(V) \subseteq P_{G}(V) \cdot J(FG)$ and there is an exact sequence $0 \longrightarrow \Omega_{G}(V) \longrightarrow P_{G}(V) \longrightarrow V \longrightarrow 0$. Finally, omitting reference to p which is fixed in the following, we set $t(G) = \ell(FG)$, the nilpotence index of J(FG). The remaining notation is as in [7].

In this section, we study the situation where V is an FG-module and N is a normal subgroup of G acting trivially on V. Thus V can be viewed as either a G-module or a G/N-module, and we compare the Loewy lengths of the corresponding projective covers.

Our first lemma extends [9, Lemma 3.4].

Lemma 1.1. Let N be a normal subgroup of G and let V be an FG-module with $N \leq \ker_G(V)$. Then

- i. $P_{G/N}(V) \approx P_{G}(V) / P_{G}(V) \cdot \omega N$;
- ii. $\ell(P_{G}(V)) \ge \ell(P_{G/N}(V)) + \ell(P_{N}(I)) 1.$

<u>Proof.</u> Set $P=P_{G}(V)$, H=G/N and let $:FG \longrightarrow FH$ denote the canonical map with kernel (ωN)FG. Note that $\overline{J(FG)}=J(FH)$. (Images of semisimple Artinian rings are semisimple Artinian.) Since $P \cdot J(FG) \supseteq \Omega_{G}(V) \supseteq P \cdot \omega N$, we have a map of FH-modules $P/P \cdot \omega N \longrightarrow V$ whose kernel $\Omega_{G}(V)/P \cdot \omega N$ is contained in $(P/P \cdot \omega N) \cdot J(FG) = (P/P \cdot \omega N) \cdot J(FH)$. As $P/P \cdot \omega N$ is projective over FH, we obtain the isomorphism $P_{H}(V) \cong P/P \cdot \omega N$, which proves (i).

Now write $\overline{l} = l(P_H(V))$ and $l_N = l(P_N(I))$. Then it follows from the foregoing that $P \cdot J(FG)^{\overline{l}-1} \notin P \cdot \omega N$.

But $P \cdot \omega N = \operatorname{ann}_{P}^{\hat{N}}$, where $\stackrel{\hat{N}}{N} = \sum_{n \in FN} \cdot \operatorname{Indeed}_{n \in N}$ since P is projective over FN, this follows from the fact that $\omega N = \operatorname{ann}_{FN}^{\hat{N}}$ [7, Lemma 3.1.2]. Note further that $\stackrel{\hat{N}}{N} \in J(FN)^{\frac{\ell}{N}^{-1}}$, since viewing $P_{N}(I)$ as a summand of FN we have $F \cdot \stackrel{\hat{N}}{N} = \operatorname{socle} P_{N}(I) = P_{N}(I) \cdot J(FN)^{\frac{\ell}{N}^{-1}} \subseteq J(FN)^{\frac{\ell}{N}^{-1}}$. We deduce that $P \cdot J(FG)^{\frac{\ell}{N} + \frac{\ell}{N}^{-2}} \supseteq P \cdot J(FG)^{\frac{\ell}{2} - 1} \cdot \stackrel{\hat{N}}{N} \neq 0$. This proves (ii).

We remark that if N , or G/N , is a p^{I} -group then the inequality in (ii) becomes an equality. More generally, if $J(FN) \cdot J(FG) = J(FG) \cdot J(FN)$ in the situation of Lemma 1.1, then we have

$$\ell(\mathsf{P}_{\mathsf{G}}(\mathsf{V})) \leq \ell(\mathsf{P}_{\mathsf{G}/\mathsf{N}}(\mathsf{V})) \cdot \ell(\mathsf{P}_{\mathsf{N}}(\mathsf{I})).$$

For, part (i) above implies that $P_G(V) \cdot J(FG)^{\overline{\ell}} \subseteq$ $\subseteq P_G(V) \cdot \omega N = P_G(V) \cdot J(FN)$, where we have set $\overline{\ell} = \ell(P_{G/N}(V))$ and where the latter equality holds since $P_G(V)$, as an FN-module, is isomorphic to a direct sum of copies of $P_N(I)$.

If N is a p-group then Lemma 1.1 can be strengthemed as follows. Recall that t(G) denotes the nilpotence index of J(FG). Lemma 1.2. Let N be a normal p-subgroup of G and let V be an FG-module with $N \leq \ker_{G}(V)$. View FN as an FG-module via conjugation of G on N.

i. For all $i \ge 0$ we have FG-isomorphisms

$$P_{G/N}(V) \otimes_{F} \frac{(\omega N)^{i}}{(\omega N)^{i+1}} \cong \frac{P_{G}(V) \cdot (\omega N)^{i}}{P_{G}(V) \cdot (\omega N)^{i+1}},$$

where $P_{G/N}(V)$ is viewed as an FG-module by letting N act trivially.

ii.
$$\ell(P_{G}(V)) \ge t(N) - 1 + \max_{X} \ell(P_{G/N}(V) \otimes_{F} X)$$

 $\ge t(N) - 1 + \max_{X} \ell(P_{G/N}(V \otimes_{F} X))$,

where X runs over the FG-composition factors of FN.

<u>Proof.</u> Let $P = P_G(V)$ and H = G/N. For each $i \ge 0$ we have an F-epimorphism $g_i : P \circ_F (\omega N)^i \longrightarrow$ $\longrightarrow P \cdot (\omega N)^i$, $p \circ \alpha \longmapsto p\alpha$, which is in fact FG-linear if G acts by conjugation on $(\omega N)^i$. Thus we obtain FG-epimorphisms

$$\overline{g}_{i} : P \otimes_{F} \frac{(\omega N)^{i}}{(\omega N)^{i+1}} \approx \frac{P \otimes_{F} (\omega N)^{i}}{P \otimes_{F} (\omega N)^{i+1}} \longrightarrow \frac{P \cdot (\omega N)^{i}}{P \cdot (\omega N)^{i+1}}.$$

Since \overline{g}_{i} annihilates $P \cdot \omega N \otimes_{F} \frac{(\omega N)^{i}}{(\omega N)^{i+1}}$ and $P_{H}(V) \cong P/P \cdot \omega N$, by Lemma 1.1, \overline{g}_{i} defines an FGepimorphism

$$f_{i}: P_{H}(V) \otimes_{F} \frac{(\omega N)^{i}}{(\omega N)^{i+1}} \longrightarrow \frac{P \cdot (\omega N)^{i}}{P \cdot (\omega N)^{i+1}}$$

To see that f_i is injective, note that, as FN-modules, $P|_N \cong P_H(V) \otimes_F FN$ with the <u>regular</u> action of FN on FN. Indeed, by Lemma 1.1(i),

$$P/P \cdot \omega N \cong P_{H}(V) \cong \frac{P_{H}(V) \otimes_{F} FN}{(P_{H}(V) \otimes_{F} FN) \cdot \omega N}$$

and hence $P|_{N} \cong P_{H}(V) \otimes_{F} FN$, since both sides are projective over FN, and $\omega N = J(FN)$. It follows that f_{i} is an isomorphism, and part (i) is proved.

For (ii), set

$$\ell_{i} = \ell \left(P_{H}(V) \otimes_{F} \frac{(\omega N)^{i}}{(\omega N)^{i+1}} \right) = \ell \left(\frac{P \cdot (\omega N)^{i}}{P \cdot (\omega N)^{i+1}} \right) .$$

If $m < l_i$ then $P(\omega N)^i \cdot J(FG)^m \notin P \cdot (\omega N)^{i+1} =$ = $ann_p(\omega N)^{t(N)-i-1}$, where the latter equality follows from [2, p. 261], since P is free over FN. Thus we conclude that

$$P \cdot (\omega N)^{i} \cdot J (FG)^{m} \cdot (\omega N)^{t(N)-i-1} \neq 0$$

and so $\ell(P) > t(N)+m - 1$. Therefore, $\ell(P) \ge t(N)+\ell-1$, where $\ell = \max_{i} \ell_{i}$. Finally, since $P_{H}(V)$ is projective over FH , we have

$$\stackrel{\oplus}{\stackrel{}{_{_{_{_{_{}}}}}}} \stackrel{P}{_{_{_{_{}}}}} (V) \otimes_{_{_{_{_{}}}}} (\omega N)^{i} / (\omega N)^{i+1} \cong \stackrel{\cong}{_{_{_{}}}} \stackrel{P}{_{_{_{}}}} \stackrel{P}{_{_{_{}}}} (V) \otimes_{_{_{_{}}}} \stackrel{X}{_{_{_{}}}},$$

where X runs over the composition factors of FN. Hence $\ell = \max_{X} \ell(P_H(V) \otimes_F X)$. Since $P_H(V \otimes_F X)$ is a summand of $P_H(V) \otimes_F X$, we also have $\ell \ge \ell(P_H(V \otimes_F X))$. This completes the proof of (ii). The following example illustrates the difference between the estimates provided by Lemmas 1.1. and 1.2.

Example 1.3. Let $G = S_4$ be the symmetric group on four letters and let char F = 2. Then $G=V_4 \times GL_2(2)$ and there are two irreducible FG-modules, namely I and the canonical 2-dimensional module for $H=GL_2(2)$, denoted by 2. We have

$$P_{H}(I) = \frac{I}{I}$$
, $P_{H}(2) = 2$, and $FV_{4} = I_{I}^{I}I$.

Thus Lemma 1.1 yields $\ell(P_G(I)) \ge 4$ and $\ell(P_G(2)) \ge 3$. However, as FG-module, $FV_4 \cong (I_H)^G = \begin{bmatrix} I \\ 2 \\ I \end{bmatrix}$ and so Lemma 1.2 implies

$$\ell(P_{G}(2)) \ge 3 + \ell(P_{H}(2\otimes 2)) - 1$$
.

Since $2 \otimes 2 = 2 \oplus \frac{I}{I}$, we obtain $\ell(P_G(2)) \ge 4$. We will see shortly that, in fact, $\ell(P_G(I)) = \ell(P_G(2)) = 4$, a result due to Motose and Ninomiya [6]. A detailed discussion of the Loewy and socle series of $P_G(I)$ and $P_G(2)$ can be found in [2, p. 214 - 218].

For simplicity of formulation, we restrict ourselves to the case of an irreducible FG-module V in the following lemma. This is of course no real loss, since for any V we have $P_{G}(V) \cong \bigoplus_{X} P_{G}(X)$ where X runs over the simple components of $V/V \cdot J(FG)$, with multiplicities. Also, it would be enough to assume that $1 \rightarrow U(FN) \rightarrow U(FN)G \rightarrow G \rightarrow 1$ splits, where U(.) denotes the group of units, but for simplicity we assume G to be a semidirect product.

Lemma 1.4. Let N be a normal p-subgroup of G and assume that $G = N \rtimes H$ for some $H \leq G$. Let V be an irreducible FG-module.

i. $P_{G}(V) \cong (I_{H})^{G} \otimes_{F} P_{H}(V)$, where N acts trivially on $P_{H}(V)$.

ii.
$$\ell(P_{G}(V)) \ge \ell(P_{H}(V)) + \ell((V_{H})^{G}) - 1$$

iii. For each $i \ge 0$ let V_i denote the FG-module $V_i = V \otimes_F \frac{(\omega N)^i}{(\omega N)^{i+1}}$, where G acts by conjugation on $\frac{(\omega N)^i}{(\omega N)^{i+1}}$. Then

$$\ell((V_{H})^{G}) \ge t(N) -1 + \max \ell(V_{i})$$

In particular, $\ell((V_H)^G) = t(N)$ if and only if all V_i are semisimple.

<u>Proof.</u> Set $T = (I_H)^G \otimes_F P_H(V) \cong (P_H(V)|_H)^G$ and J = J(FG). Then $T/T \cdot J \cong T/T \cdot \omega N / T \cdot J/T \cdot \omega N \cong P_H(V) / P_H(V) \cdot J(FH) \cong V$. Since T is projective, it follows that $T \cong P_G(V)$ so that (i) holds.

If
$$\ell = \ell(P_H(V))$$
 then, by part (i),
 $P_G(V) \cdot J^{\ell-1} = (P_H(V) \otimes (I_H)^G) \cdot J^{\ell-1} \supseteq (P_H(V) \otimes I_H) \cdot J(FH)^{\ell-1} \cdot FN$
 $= (P_H(V) J(FH)^{\ell-1} \otimes I_H) \cdot FN = (V \otimes I_H) \cdot FN \cong (V_H)^G$.

Assertion (ii) follows. As to (iii), note that

$$\mathbf{V}_{i} \cong \frac{(\mathbf{V}_{H})^{\mathbf{G}} \cdot (\omega \mathbf{N})^{i}}{(\mathbf{V}_{H})^{\mathbf{G}} \cdot (\omega \mathbf{N})^{i+1}} .$$

Thus if $m < l_i = l(V_i)$ then $(V_H)^G \cdot (\omega N)^i \cdot J(FG)^m \notin (V_H)^G \cdot (\omega N)^{i+1} = ann_{(V_H)}^G (\omega N)^{t(N)-i-1}$. Here, the latter equality follows from [2, p. 261], since $(V_H)^G$ is free over FN. Therefore, $l((V_H)^G) \ge t(N) + l_i - 1$ for all i. Since the last assertion is clear, the lemma is proved.

Example 1.5. Set $G = (C_3 \times C_3) \times SL_2(3)$, with the canonical action of $H=SL_2(3)$ on $N=C_3 \times C_3$, and let char F = 3. The irreducible FG-modules all come

from FH and are : I, the canonical 2-dimensional FH-module, 2, and 3 which is induced to H from a nontrivial 1-dimensional module for the quaternion group $Q_8 \leq H$. One checks that t(N) = 5 and t(H) = 3, and so the lower bound for $\ell(P_G(V)), V \in \{I,2,3\}$, provided by Lemma 1.2 (ii) can at most be 7. However, for V = 2, Lemma 1.4 gives $\ell(P_G(2)) \geq 9$. Indeed,

$$\frac{(\omega N)^{i}}{(\omega N)^{i+1}} = \begin{cases} I & (i=0,4) \\ 2 & (i=1,3) \\ 3 & (i=2) \end{cases}$$

Hence, in the notation of part (iii), we have $V_2 = 2 \otimes 3 = 2$ so that $\ell((2_H)^G) \ge 7$ and $\ell(P_G(2)) \ge 9$. Actually, equality holds here and even t(G) = 9 (see Example 2.5).

§ 2. Groups of p-Length 2

Our goal here is to show that, under certain circumstances, the inequality of Lemma 1.4(ii) does in fact become an equality. For example, this is always the case if H is p-nilpotent with elementary abelian Sylow p-subgroups (Corollary 2.4).

Lemma 2.1. Let V and W be FG-modules. Set

$$v = \ell(v)$$
, $w = \ell(w)$ and $T_{ij} = \frac{VJ^{i}}{VJ^{i+1}} \otimes_{F} \frac{WJ^{j}}{WJ^{j+1}} (0 \le i \le v-1)$,

 $0 \le j \le w-1$), where J = J(FG). Then

$$\ell(\nabla \otimes_{\mathbf{F}}^{\nabla + \mathbf{W}-2} \max \{\ell(\mathbf{T}_{ij}) | i + j = \ell\}.$$

Proof. Set
$$U_{ij} = VJ^i \otimes_F WJ^j$$
. Then $U_{ij} \supseteq$
 $\supseteq U_{i+1,j} + U_{i,j+1}$ and $U_{ij}/U_{i+1,j} + U_{i,j+1} \stackrel{\approx}{} T_{ij}$.

Now let $U_{\ell} = \sum_{i+j=\ell}^{\infty} U_{ij}$ for $0 \le \ell \le v+w-1$. Then $0 = U_{v+w-1} \subseteq U_{v+w-2} \subseteq \ldots \subseteq U_{0} = V \otimes_{F} W$, and the canonical map $\bigoplus_{i+j=\ell}^{\infty} U_{ij} \longrightarrow U_{\ell}$ yields an epimorphism

$$\begin{array}{ccc} & & & \\ & & \\ \mathbf{i} + \mathbf{j} = \mathbf{l} \end{array} \stackrel{\simeq}{} & \begin{array}{ccc} & & \\ & & \\ & & \\ & & \\ \end{array} \stackrel{i + \mathbf{j} = \mathbf{l} \end{array} \stackrel{i + \mathbf{j} = \mathbf{l}}{} \begin{array}{ccc} & & \\ & & \\ & & \\ \end{array} \stackrel{j - \mathbf{l}}{} \stackrel{j + \mathbf{U}}{} \stackrel{j + \mathbf{U}}{} \stackrel{j + \mathbf{l}}{} \stackrel{j + \mathbf{U}}{} \stackrel{j + \mathbf{l}}{} \stackrel{\longrightarrow}{} \begin{array}{ccc} & \\ & \\ & \\ & \\ \end{array} \stackrel{r}{} \stackrel{r}{} \stackrel{l + \mathbf{J}}{} \stackrel{r}{} \stackrel{l + \mathbf{U}}{} \stackrel{j + \mathbf{U}}{} \stackrel{j + \mathbf{U}}{} \stackrel{j + \mathbf{I}}{} \stackrel{r}{} \stackrel{r}{} \stackrel{r}{} \stackrel{l + \mathbf{U}}{} \stackrel{j + \mathbf{I}}{} \stackrel{r}{} \stackrel{r}{ \stackrel{r}{} \stackrel{r}{$$

Therefore, $\ell(T_{\ell}/T_{\ell+1}) \leq \max \{\ell(T_{ij}) | i+j=\ell\}$ and the lemma follows.

<u>Corollary 2.2.</u> Let U be a normal subgroup of G such that G/U is a p-group. Let W be an FG-module and set $V = (W|_U)^G \cong W \otimes_F (I_U)^G$. Then $\ell(V) \leq \leq t(G/U) + \ell(W) - 1$. <u>Proof.</u> Set M=G/U and view FM as FG-module via FM \approx (I_U)^G. Then (ω M)ⁱ = FM \cdot Jⁱ, where J=J(FG), and (ω M)ⁱ/(ω M)ⁱ⁺¹ \approx I_G^(n_i) for suitable integers n_i. In the notation of the preceding lemma, we therefore have

$$\mathbf{T}_{ij} = \frac{(\omega M)^{i}}{(\omega M)^{i+1}} \otimes_{\mathbf{F}} \frac{W J^{j}}{W J^{j+1}} \cong \left(\frac{W \cdot J^{j}}{W \cdot J^{j+1}}\right)^{(n} i^{j}$$

and so $\ell(T_{ij}) = 1$ for all i,j. Thus Lemma 2.1 yields $\ell(V) \leq \ell(FM) + \ell(W) - 1$ which proves the corollary

The estimate given above does not hold for arbitrary induced modules. For example, if $U=C_2 \leq G=C_4$ and $W=FC_2$, where char F=2, then $\ell(W^G)=\ell(FC_4) > \ell(W)+2-1=3$.

<u>Proposition 2.3.</u> (F algebraically closed) Assume that G=N×H, where N is a p-group and H is p-nilpotent, say H=Q × M with $p \downarrow |Q|$ and M a p-group. Let V be an irreducible FG-module, let W be an irreducible component of $V|_Q$, and let T denote the inertia group of W in H. Then

i.
$$P_{C}(V) \cong W^{G}$$
;

ii. $\ell(P_G(V)) \ge t(T/Q) + \ell((V_H)^G) - 1$. If TOM has a normal complement in M, then equality holds.

<u>Proof.</u> By [1, §3], we have $P_H(V) \cong W^H$ and $\ell(W^H) = t(T/Q)$. Therefore, Lemma 1.4 implies that $\ell(P_G(V)) \ge t(T/Q) + \ell((V_H)^G) - 1$ and $P_G(V) \cong (I_H)^G \circ_F$ $\circ_F W^H \cong W^G$. By [8], there exists a unique FT-module U such that $U|_Q \cong W$. The induced module U^H is irreducible, and $U^H \cong V_H$, since both have a common FQ-component. Now let M_1 be a normal complement for TOM in M and set $S = \langle Q, M_1 \rangle \leq H$. Then S is normal in H and $V|_S \cong U^H|_S \cong W^S$. Hence

$$\begin{split} & \mathbb{P}_{G}(V) \cong (\mathbb{I}_{H})^{G} \otimes_{F} W^{H} \cong (\mathbb{I}_{H})^{G} \otimes_{F} (V|_{S})^{H} \cong \\ & \cong (\mathbb{I}_{H})^{G} \otimes_{F} (V_{})^{G} \cong ((V_{H})^{G}|_{})^{G} \end{split}$$

Corollary 2.2 implies that $\ell(P_G(V)) \leq t(G/\langle N, S \rangle) + \ell((V_H)^G) - 1$. Since $G/\langle N, S \rangle \cong T/Q$, the proposition is proved.

Corollary 2.4. In the situation of Proposition 2.3,

assume that M is elementary abelian. Then, for any irreducible FG-module V,

$$\ell(P_{C}(V)) = (rkM-d)(p-1) + \ell((V_{\mu})^{G})$$
,

where p^d is the p-part of $\dim_F V$.

<u>Proof.</u> By assumption on M, TOM has a normal complement in M, and t(T/Q) = rk(TOM)(p-1)+1 [4]. Let U be as in the proof of Proposition 2.3 so that $U^{H} \cong V|_{H}$. Then $\dim_{F}U$ is not divisible by p and so the p-part of $\dim_{F}V$ equals $p^{d}=|H/T|$. Therefore, rk (TOM) = rk M-d and the corollary follows.

Example 2.5. Let $G = N \times H$ be as in Example 1.5, with $N=C_3 \times C_3$ and $H= SL_2(3) = Q_8 \times C_3$. Then $FN=(I_H)^G$ has Loewy series

where I,2,3 denote the simple FH-modules as in Example 1.5, and so Corollary 2.4 yields $\ell(P_C(I))=2+5=7$. Also, by Corollary 2.4, $\ell(P_G(2)) = 2 + \ell((2_H)^G)$. Using $2 \otimes 2 \cong I \oplus 3$ and $2 \otimes 3 \cong \frac{2}{2}$, we see that $(2_H)^G =$ $= 2 \otimes (I_H)^G$ has Loewy length at most 7. On the other hand, we already know that $\ell((2_H)^G) \ge 7$ (Example 1.5) and so we obtain $\ell(P_G(2)) = 9$.

As to the remaining irreducible module, 3, recall that $3=1^{G}$, where 1 is a non-trivial 1-dimensional module for $U = \langle N, Q_8 \rangle \leq G$. Thus, by Proposition 2.3, $P_G(3) = (1_{Q_8})^G = (3_H)^G = 3 \otimes (I_H)^G$. Clearly, $\ell((3_H)^G) \leq 2 + \ell(X)$ where

$$X = 3 \otimes \frac{2}{2} = \left(\begin{array}{c} 1 \otimes \frac{2}{3} \\ 2 \end{array} \right)^{G}$$

Since $J(FU) = (\omega N) FU$, the Loewy series of $1 \otimes 3$ is $2 \mid U$

easy to compute:

$$1 \circ \frac{2}{2} | = \frac{1}{2} \frac{1}{2} | \frac{2}{2} |$$

where 1' and 1" denote the G-conjugates of 1. In particular, $1 \otimes \frac{2}{2} \Big|_{U}$ is a homomorphic image of $Y = P_{U}(2) / P_{U}(2) \cdot (\omega N)^{3}$. Now $P_U(2) = 2_U \otimes (I_Q)^U = (2 \otimes (I_H)^G) |_U$ and $P_U(2) \cdot (\omega N)^3 = (2 \otimes (I_H)^G \cdot (\omega N)^3) |_U$, hence

$$Y = \left(2 \otimes \frac{(I_{H})^{G}}{(I_{H})^{G} \cdot (\omega N)^{3}} \right) \Big|_{U} = \left(2 \otimes \frac{I}{2} \right) \Big|_{U}$$
$$= \left(I_{2}^{2} \otimes I_{3}^{2} \right) \Big|_{U}$$
$$= \left(I_{2}^{2} \otimes I_{3}^{2} \right) \Big|_{U}$$

Corollary 2.2 implies that $\ell(Y^G) \leq 3 + 5 - 1 = 7$. Therefore, $\ell(X) \leq 7$ and $\ell(P_G(3)) \leq 9$. In particular, we obtain t(G) = 9.

In the following, we set

gr FN =
$$\bigoplus_{i \ge 0} \frac{(\omega N)^{i}}{(\omega N)^{i+1}}$$

and we view gr FN as FG-module by letting G act by conjugation.

<u>Corollary 2.6.</u> Let G be as in Proposition 2.3 and let V be an FG-module such that $V|_Q$ is irreducible. Then

$\ell(P_{C}(V)) \geq t(M) + t(N)-1$,

and equality holds if and only if $\nabla \circ_F gr FN$ is semisimple.

<u>Proof.</u> By Proposition 2.3, $\ell(P_G(V)) = t(M) + \ell((V_H)^G - 1)$ and, by Lemma 1.4 (iii), $\ell((V_H)^G) \ge t(N)$ with equality occuring if and only if $V \otimes_F gr FN$ is semisimple.

<u>Theorem 2.7.</u> Assume that $G=N\times H$ with N a pgroup and $H=Q\times M$ a Frobenius group with kernel Q a p'-group and M a p-group. Then t(M)+t(N)-1=t(G) if and only if gr FN is semisimple.

<u>Proof.</u> The condition is clearly necessary in view of Corollary 2.6. Conversely, assume the condition is satisfied. Our assumption on H implies that J(FM) = $e \cdot \omega M$, where $e = |Q|^{-1} \Sigma_{q \in Q} q$ is a central idempotent of FH. Indeed, this follows from the fact that for any irreducible FQ-module W \neq I the induced module W^H is irreducible [3, Lemma 15.15]. Thus the semisimplicity

of $\frac{(\omega N)^{1}}{(\omega N)^{1+1}}$ just says that for all $\alpha \in (\omega N)^{1}$ and $m \in M$ we have $\sum_{q \in Q} \alpha^{qm} - \sum_{q \in Q} \alpha^{q} \in$ $\in (\omega N)^{1+1}$. It follows by a straightforward calculation that, for all $i \ge 0$,

 $e \cdot \omega M \cdot (\omega N)^{i} \cdot e + e(\omega N)^{i+1} e = e(\omega N)^{i} \omega M e + e(\omega N)^{i+1} e.$

Set l = t(N) + t(M) - 1, $X = (\omega N)FG$, and $Y = e \cdot \omega M$. Then J(FG) = X + Y, and we have to show that if $\alpha \in FG$ can be written as a product of l factors each of which belongs to either X or Y then $\alpha = 0$. We argue by descending induction on the number $l_X = l_X(\alpha)$ of X-factors involved in α . If $l_X \ge t(N)$ then $\alpha \in X^{t(N)} = \{0\}$. So assume that $l_X < t(N)$. Then the number of Y-factors involved in α is at least t(M). Let $n_Y = n_Y(\alpha)$ denote the length of the longest consecutive subproduct of α consisting entirely of Yfactors. Clearly, if $n_Y \ge t(M)$ then $\alpha = 0$. So assume that $n_Y < t(M)$. Then α contains a subproduct which either belongs to Yx^iY^TY or to Y^TYx^iY (i>0). We consider the first case, the second being entirely analogous. Now

$$Y X^{i} Y^{n} Y = e \cdot \omega M \cdot (\omega N)^{i} \cdot e(\omega M)^{nY} \subseteq e(\omega N)^{i} (\omega M) e(\omega M)^{nY} + e(\omega N)^{i+1} e(\omega M)^{nY} \subseteq X^{i} Y^{nY^{+1}} + X^{i+1} Y^{nY}.$$

Thus we have $\alpha = \alpha_1 + \alpha_2$ with $\alpha_1, \alpha_2 \in J(FG)^{\ell}$, but $\ell_X(\alpha_2) > \ell_X(\alpha)$ and $\ell_X(\alpha_1) = \ell_X(\alpha), n_Y(\alpha_1) > n_Y(\alpha)$. By induction, we conclude that $\alpha_1 = \alpha_2 = 0$ and so $\alpha = 0$. Certainly, gr FN is semisimple if FN is semisimple over FH. The converse, of course, need not be true. For example, if $G = N \times H$ is as in Examples 1.5 and 2.5, then $\operatorname{gr FN} = I^{(2)} \oplus 2^{(2)} \oplus 3$ is semisimple but FN is not. To see the latter, let $z = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$ $m = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \in H = \operatorname{SL}_2(3)$. Then $\alpha = (1-z)(1+m+m^2)$ belongs to J(FH) and if $\langle a,b \rangle$ is the standard basis of $N = \mathbf{F}_3 \oplus \mathbf{F}_3$ then $b \cdot \alpha = (b-b^{-1}) \cdot (1+m+m^2) =$ $= (b-b^2) \cdot (1+m+m^2) = b-b^2 + ab-a^2b^2 + ab^2-a^2b \neq 0$. -If $H = Q \times M$ is Frobenius, as in the theorem, then it is easily seen that FN is semisimple over FH if and only if M stabilizes all Q-orbits in N.

Example 2.8. Let $G = S_4$ and use the notation of Example 1.3. Then $G = V_4 \times H$ with $H = GL_2(2) =$ $= C_3 \times C_2$ a Frobenius group. Also , C_2 stabilizes the C_3 -orbits {1} and $V_4 \setminus \{1\}$ in V_4 . Hence, by the above remark, $\operatorname{gr} FV_4$ is semisimple (in fact, $\operatorname{gr} FV_4 = I^{(2)} \oplus 2$) and we conclude that $t(G) = t(V_4) +$ $+ t(GL_2(2)) - 1 = 4$, a result due to Motose and Ninomiya[6]. In particular, $\ell(P_G(I)) = \ell(P_G(2)) = 4$.

Further examples of a similar form have been contructed by Motose [5], for every prime p. ACKNOWLEDGMENT

The author's research was supported by the Deutsche Forschungsgemeinschaft/Heisenberg Programm (Lo 261/2 -1). It is a pleasure to thank Dr. C. Bessenrodt for a number of helpful discussions.

- [1] R.J. Clarke: On the radical of the group algebra of a p-nilpotent group, J. Austral. Math. Soc. <u>13</u> (1972), 119 - 123.
- [2] B. Huppert and N. Blackburn: Finite Groups II, Springer-Verlag, Berlin-Heidelberg-New York, 1982.
- [3] I.M. Isaacs: Character Theory of Finite Groups, Academic Press, New York, 1976.
- [4] S.A. Jennings: On the structure of the group ring of a p-group over a modular field, Trans. Amer.
 Math. Soc. 50 (1941), 175 - 185.
- [5] K. Motose: On the nilpotency index of the radical of a group algebra III, J. London Math. Soc. (2) <u>25</u> (1982), 39 - 42.
- [6] K. Motose and Y. Ninomiya: On the nilpotency index of the radical of a group algebra, Hokkaido Math. J. <u>4</u> (1975), 261 - 264.
- [7] D.S. Passman: The Algebraic Structure of Group Rings, Wiley Interscience, New York, 1977.
- [8] B. Srinivasan: On the indecomposable representations of a certain class of groups, Proc. London Math. Soc. <u>10</u> (1960), 497 - 513.
- [9] W. Willems: On the projectives of a group algebra, Math. Z. 171 (1980), 163 - 174.