ON LOEWY LENGTHS OF PROJECTIVE MODULES FOR p-SOLVABLE GROUPS

Martin Lorenz

Martin Lorenz

Max-Planck-Institut für Mathematik
Gottfried-Claren-Str. 26
D-5300 Bonn 3, Fed. Rep. Germany

Let G be a p-solvable group of order $p^{a} m$, $(p, m)=1$, and let $t=t_{p}(G)$ denote the nilpotence index of the Jacobson radical. J(FG) of the group algebra FG, where F denotes a field of characteristic p. It is well-known and easy to see that $t \geqq a(p-1)+1$ (this follows e.g. from Lemma 1.1 below) and that equality holds if the Sylow p-subgroups of G are elementary abelian. The converse need not be true: the first known counterexample was $G=S_{4}$, the symmetric group on four letters, with $p=2[6]$, and later counterexamples were constructed for each prime p by Motose [5]. In this note we prove the following result which contains all examples constructed so far (Theorem 2.7):

Assume $G=N \times H$ is a semidirect product with N a p -group and $\mathrm{H}=\mathrm{Q} \times \mathrm{M}$ a Frobenius group with kernel Q a p^{\prime}-group and M a p-group. Then $t_{p}(G)=t_{p}(N)+$ $+t_{p}(M)-1$ holds if and only if $\underset{i \geq 0}{ }(\omega N)^{i} /(\omega N)^{i+1}$ is a semisimple FH-module under the conjugation action of H on N .

Here, ωN denotes the augmentation ideal of $F N$.

Notations and Conventions. Throughout this note, G will be a finite group and F will be a field of characteristic $p>0$. All $F G$-modules are assumed to be finitely generated right modules, and I denotes the trivial one-dimensional FG-module. $J(F G)$ and ωG denote the Jacobson radical, resp. the augmentation ideal, of FG. For any FG-module $V, \ell(V)$ is the Loews length of V, i.e. the smallest integer $\&$ such that $V \cdot J(F G)^{2}=0$. Furthermore, $P_{G}(V)$ and $\Omega_{G}(V)$ will be the projective cover, resp. the Heller module of V. Thus $\Omega_{G}(V) \subseteq P_{G}(V) \cdot J(F G)$ and there is an exact sequence $0 \rightarrow \Omega_{G}(V) \rightarrow P_{G}(V) \rightarrow V \rightarrow 0 . F i-$ nally, omitting reference to p which is fixed in the following, we set $t(G)=\ell(F G)$, the nilpotence index of $J(F G)$. The remaining notation is as in [7].

In this section, we study the situation where V is an FG-module and N is a normal subgroup of G acting trivially on V. Thus V can be viewed as either a G-module or a G / N-module, and we compare the Loewy lengths of the corresponding projective covers.

Our first lemma extends [9, Lemma 3.4].

Lemma 1.1. Let N be a normal subgroup of G and let V be an $F G$-module with $N \leq k e r_{G}(V)$. Then
i. $\quad P_{G / N}(V) \approx P_{G}\left(V / P_{G}(V) \cdot \omega N\right.$;
ii. $\quad \ell\left(\mathrm{P}_{\mathrm{G}}(\mathrm{V})\right) \geq \ell\left(\mathrm{P}_{\mathrm{G} / \mathrm{N}}(\mathrm{V})\right)+\ell\left(\mathrm{P}_{\mathrm{N}}(\mathrm{I})\right)-1$.

Proof. Set $P=P_{G}(V), H=G / N$ and let $-F G \rightarrow F H$ denote the canonical map with kernel (ωN) FG . Note that $\overline{J(F G)}=J(F H)$. (Images of semisimple Artinian rings are semisimple Artinian.) Since $p \cdot J(F G) \geq \Omega_{G}(V) \supseteq P \cdot \omega N$, we have a map of FH -modules $\mathrm{P} / \mathrm{P} \cdot \omega \mathrm{N} \rightarrow \mathrm{D} \rightarrow \mathrm{V}$ whose kernel $\Omega_{G}(V) / P \cdot \omega N$ is contained in $(P / P \cdot \omega N) \cdot J(F G)=(P / P \cdot \omega N) \cdot$ - J(FH) . As $P / P \cdot \omega N$ is projective over $F H$, we obtain the isomorphism $P_{H}(V) \cong P / P \cdot \omega N$, which proves (i).

Now write $\bar{\ell}=\ell\left(P_{H}(V)\right)$ and ${ }^{\ell}=\ell\left(P_{N}(I)\right)$. Then it follows from the foregoing that $P \cdot J(F G)^{\bar{l}-1} \ddagger p \cdot w N$.

But $P \cdot \omega N=\underset{P}{\operatorname{ann}} \hat{N}$, where $\hat{N}=\sum_{n \in N} n \in F N$. Indeed since P is projective over $F N$, this follows from the fact that $\omega N=a n n_{F N} \hat{N} \quad[7$, Lemma 3.1.2]. Note further that $\hat{N} \in J(F N)^{\frac{k}{N}-1}$, since viewing $P_{N}(I)$ as a summand of $F N$ we have $F \cdot \hat{N}=\operatorname{socle} \quad P_{N}(I)=P_{N}(I)$. - J(FN) ${ }^{\frac{\ell}{N}-1} \subseteq J(F N)^{\frac{\ell-1}{N}}$. We deduce that $P \cdot J(F G)^{\ell+\ell_{N}^{2}} \supseteq P \cdot J(F G)^{\bar{\imath}-1} \cdot \hat{N} \neq 0 \cdot$ This proves (ii).

We remark that if N, or G / N, is a p^{\prime}-group then the inequality in (ii) becomes an equality. More generally, if $J(F N) \cdot J(F G)=J(F G) \cdot J(F N)$ in the situation of Lemma 1.1, then we have

$$
\ell\left(P_{G}(V)\right) \leq \ell\left(P_{G / N}(V)\right) \cdot \ell\left(P_{N}(I)\right)
$$

For, part (i) above implies that $P_{G}(V) \cdot J(F G)^{\bar{l}} \subseteq$ $\subseteq P_{G}(V) \cdot \omega N=P_{G}(V) \cdot J(F N)$, where we have set $\bar{\ell}=\ell\left(P_{G / N}(V)\right)$ and where the latter equality holds since $P_{G}(V)$, as an $F N$-module, is isomorphic to a direct sum of copies of $P_{N}(I)$.

If N is a p-group then Lemma 1.1 can be strengthened as follows. Recall that $t(G)$ denotes the nilpotence index of $J(F G)$.

Lemma 1.2. Let N be a normal p-subgroup of G and let V be an FG-module with $N \leqq \operatorname{ker}_{G}(V)$. View $F N$ as an FG-module via conjugation of G on N.
i. For all $i \geqq 0$ we have FG-isomorphisms

$$
P_{G / N}(V) \otimes_{F} \frac{(\omega N)^{i}}{(\omega N)^{i+1}} \cong \frac{P_{G}(V) \cdot(\omega N)^{i}}{P_{G}(V) \cdot(\omega N)^{i+1}}
$$

where $P_{G / N}(V)$ is viewed as an FG-module by letting N act trivially.

$$
\text { ii. } \begin{aligned}
& \ell\left(P_{G}(V)\right) \geqq t(N)-1+\max _{X} \ell\left(P_{G / N}(V) \theta_{F} X\right) \\
& \geq t(N)-1+\max _{X} \ell\left(P_{G / N}\left(V \otimes_{F} X\right)\right)
\end{aligned}
$$

where X runs over the FG-composition factors of FN.

Proof. Let $P=P_{G}(V)$ and $H=G / N$. For each $i \geqq 0$ we have an F-epimorphism $g_{i}: P \theta_{F}(\omega N)^{i} \longrightarrow$ $\longrightarrow P \cdot(\alpha N)^{i}, p \otimes \alpha \longmapsto p \alpha$, which is in fact $F G-1 i-$ near if G acts by conjugation on $(\omega N)^{i}$. Thus we obtain FG-epimorphisms

$$
\bar{g}_{i}: P \otimes_{F} \frac{(\omega N)^{i}}{(\omega N)^{i+1}} \cong \frac{P \otimes_{F}(\omega N)^{i}}{P \otimes_{F}(\omega N)^{i+1}} \rightarrow \frac{P \cdot(\omega N)^{i}}{P \cdot(\omega N)^{i+1}}
$$

Since \bar{g}_{i} annihilates $p \cdot \omega N \otimes_{F} \frac{(\omega N)^{i}}{(\omega N)^{i+1}}$ and $P_{H}(V) \cong P / P \cdot \omega N$, by Lemma 1.1, \bar{g}_{i} defines an $F G-$ epimorphism

$$
f_{i}: P_{H}(V) \theta_{F} \frac{(\omega N)^{i}}{(\omega N)^{i+1}} \rightarrow \frac{P \cdot(\omega N)^{i}}{P \cdot(\omega N)^{i+1}} .
$$

To see that f_{i} is injective, note that, as FN-modules, $\left.P\right|_{N} \cong P_{H}(V) \otimes_{F} F N$ with the regular action of FN on FN. Indeed, by Lemma 1.1(i),

$$
P / P \cdot \omega N \cong P_{H}(V) \cong \frac{P_{H}(V) \otimes_{F} F N}{\left(P_{H}(V) \otimes_{F} F N\right) \cdot \omega N}
$$

and hence $\left.P\right|_{N} \cong P_{H}(V) ब_{F} F N$, since both sides are projective over $F N$, and $\omega N=J(F N)$. It follows that f_{i} is an isomorphism, and part (i) is proved.

For (ii), set

$$
\ell_{i}=\ell\left(P_{H}(V) \otimes_{F} \frac{(\omega N)^{i}}{(\omega N)^{i+1}}\right)=\ell\left(\frac{P \cdot(\omega N)^{i}}{P \cdot(\omega N)^{i+1}}\right)
$$

If $m<\ell_{i}$ then $P(\omega N)^{i} \cdot J(F G)^{m} \pm P \cdot(\omega N)^{i+1}=$ $=a n n_{p}(\omega N)^{t(N)-i-1}$, where the latter equality follows from [2, p. 261], since P is free over FN. Thus we conclude that

$$
P \cdot(\omega N)^{i} \cdot J(F G)^{m} \cdot(\omega N)^{t(N)-i-1} \neq 0
$$

and so $\ell(P)>t(N)+m-1$. Therefore, $\ell(P) \geqq t(N)+\ell-1$, where $\ell=\max _{i} \ell_{i}$. Finally, since $P_{H}(V)$ is projective over FH , we have

$$
{ }_{i}^{\oplus} P_{H}(V) \oplus_{F}(\omega N)^{i} /(\omega N)^{i+1} \cong \underset{X}{\oplus} P_{H}(V) \otimes_{F} X,
$$

where X runs over the composition factors of FN. Hence $\ell=\max _{X} \ell\left(P_{H}(V) \otimes_{F} X\right)$. Since $P_{H}\left(V \otimes_{F} X\right)$ is a summend of $\quad P_{H}(V) \otimes_{F} X$, we also have $\ell \geqq \ell\left(P_{H}\left(V \otimes_{F} X\right)\right)$. This completes the proof of (ii).

The following example illustrates the difference between the estimates provided by Lemmas 1.1. and 1.2.

Example 1.3. Let $G=S_{4}$ be the symmetric group on four letters and let char $F=2$. Then $G=V_{4} \times \mathrm{GL}_{2}$ (2) and there are two irreducible FG-modules, namely I and the canonical 2-dimensional module for $\mathrm{H}=\mathrm{GL}_{2}(2)$, denoted by 2. We have

$$
P_{H}(I)=\frac{I}{I}, P_{H}(2)=2, \text { and } \quad E V_{4}=I_{I}^{I} .
$$

Thus Lemma 1.1 yields $\ell\left(P_{G}(I)\right) \geq 4$ and $\ell\left(P_{G}(2)\right) \geq 3$. However, as $F G$-module, $\mathrm{FV}_{4} \cong\left(I_{H}\right)^{G}=\frac{I}{2} \quad$ and so Lemma 1.2 implies

$$
\ell\left(P_{G}(2)\right) \geqq 3+\ell\left(P_{H}(2 \otimes 2)\right)-1 .
$$

Since $2 \otimes 2=2 \oplus \frac{I}{I}$, we obtain $\ell\left(P_{G}(2)\right) \geq 4$. We will see shortly that, in fact, $\ell\left(P_{G}(I)\right)=\ell\left(P_{G}(2)\right)=4$, a result due to Motose and Ninomiya [6]. A detailed discussion of the Loewy and socle series of $P_{G}(I)$ and $P_{G}(2)$ can be found in $[2$, p. 214-218].

For simplicity of formulation, we restrict ourselves to the case of an irreducible FG-module V in the following lemma.

This is of course no real loss, since for any V we have $P_{G}(V) \cong \underset{X}{\oplus} P_{G}(X)$ where X runs over the simple components of $V / V \cdot J(F G)$, with multiplicities. Also, it would be enough to assume that $1 \rightarrow U(F N) \rightarrow U(F N) G \rightarrow G \rightarrow$ $\rightarrow 1$ splits, where U(.) denotes the group of units, but for simplicity we assume G to be a semidirect product.

Lemma 1.4. Let N be a normal p-subgroup of G and assume that $G=N \times H$ for some $H \leqq G$. Let V be an irreducible FG-module.
i. $\quad P_{G}(V) \cong\left(I_{H}\right)^{G} \otimes_{F} P_{H}(V)$, where N acts trivially on $\mathrm{P}_{\mathrm{H}}(\mathrm{V})$.
ii. $\quad \ell\left(P_{G}(V)\right) \geqq \ell\left(P_{H}(V)\right)+\ell\left(\left(V_{H}\right)^{G}\right)-1$.
iii. For each $i \geqq 0$ let V_{i} denote the FG-module $V_{i}=V \otimes_{F} \frac{(\omega N)^{i}}{(\omega N)^{i+1}}$, where G acts by conjugation on $\frac{(\omega N)^{i}}{(\omega N)^{i+1}}$. Then

$$
\ell\left(\left(V_{H}\right)^{G}\right) \geqslant t(N)-1+\max _{i} \ell\left(V_{i}\right)
$$

In particular, $\ell\left(\left(V_{H}\right) G_{1}=t(N)\right.$ if and only if all V_{i} are semisimple.

Proof. Set $T=\left(I_{H}\right)^{G}{ }_{F} P_{H}(V) \cong\left(\left.P_{H}(V)\right|_{H}\right)^{G}$ and $J=J(F G)$. Then $T / T \cdot J \cong T / T \cdot \omega N / T \cdot J / T \cdot \omega N \cong P_{H}(V) / P_{H}(V) \cdot J(F H) \cong V$. Since T is projective, it follows that $T \cong P_{G}(V)$ so that (i) holds.

$$
\begin{aligned}
& \text { If } \ell=\ell\left(P_{H}(V)\right) \text { then, by part (i), } \\
& \begin{aligned}
P_{G}(V) \cdot J^{\ell-1} & =\left(P_{H}(V) \otimes\left(I_{H}\right)\right. \\
& G) \cdot J^{\ell-1} \supseteq\left(P_{H}(V) \otimes I_{H}\right) \cdot J(F H)^{\ell-1} \cdot F N \\
& =\left(P_{H}(V) J(F H)^{\ell-1} \otimes I_{H}\right) \cdot F N=\left(V \otimes I_{H}\right) \cdot F N \cong\left(V_{H}\right)^{G} .
\end{aligned}
\end{aligned}
$$

Assertion (ii) follows. As to (iii), note that

$$
v_{i} \cong \frac{\left(v_{H}\right)^{G} \cdot(\omega N)^{i}}{\left(V_{H}\right)^{G} \cdot(\omega N)^{i+1}}
$$

Thus if $m<\ell_{i}=\ell\left(V_{i}\right)$ then $\left(V_{H}\right)^{G} \cdot(\omega N)^{i} \cdot J(F G)^{m} \nsubseteq$生 $\left(V_{H}\right)^{G} \cdot(\omega N)^{i+1}=\operatorname{ann}\left(V_{H}\right)^{G}(\omega N)^{t(N)-i-1}$. Here, the latter equality follows from $[2, \mathrm{p} .261]$, since $\left(\mathrm{V}_{\mathrm{H}}\right)^{\mathrm{G}}$ is free over FN. Therefore, $\ell\left(\left(V_{H}\right){ }^{G}\right) \geq t(N)+\ell_{i}-1$ for all i. Since the last assertion is clear, the lemma is proved.

Example 1.5. Set $G=\left(C_{3} \times C_{3}\right) \times \operatorname{SL}_{2}(3)$, with the canonical action of $\mathrm{H}=\mathrm{SL}_{2}$ (3) on $\mathrm{N}=\mathrm{C}_{3} \times \mathrm{C}_{3}$, and let char $F=3$. The irreducible FG-modules all come
from $F H$ and are : I , the canonical 2-dimensional FH-module, 2, and 3 which is induced to H from a nontrivial 1-dimensional module for the quaternion group $Q_{8} \leq H$. One checks that $t(N)=5$ and $t(H)=3$, and so the lower bound for $\ell\left(P_{G}(V)\right), V \in\{I, 2,3\}$, provided by Lemma 1.2 (ii) can at most be 7 . However, for $V=2$, Lemma 1.4 gives $\ell\left(P_{G}(2)\right) \geqq 9$. Indeed,

$$
\frac{(\omega N)^{i}}{(\omega N)^{i+1}}= \begin{cases}I & (i=0,4) \\ 2 & (i=1,3) \\ 3 & (i=2)\end{cases}
$$

Hence, in the notation of part (iii), we have $V_{2}=2-3=\frac{2}{2}$ so that $\ell\left(\left(2_{H}\right) \quad{ }^{G}\right) \geqq 7$ and $\ell\left(P_{G}(2)\right) \geqq 9$. Actually, equality holds here and even $t(G)=9$ (see Example 2.5).
§ 2. Groups of p-Length 2
Our goal here is to show that, under certain circumstances, the inequality of Lemma $1.4(i i)$ does in fact become an equality. For example, this is always the case if H is p-nilpotent with elementary abelian Sylow p-subgroups (Corollary 2.4).

Lemma 2.1. Let V and W be FG-modules. Set $v=\ell(V), w=\ell(W)$ and $T_{i j}=\frac{V J^{i}}{V J^{i+1}} \Theta_{F} \frac{W J^{j}}{W J^{j+1}}(0 \leqq i \leqq v-1$,
$0 \leq j \leq w-1)$, where $J=J(F G)$. Then

$$
\ell\left(V \otimes_{F} W\right) \leqq \sum_{\ell=0}^{V+W-2} \max \left\{\ell\left(T_{i j}\right) \mid i+j=\ell\right\}
$$

Proof. Set $U_{i j}=W J^{i} \theta_{F} W J^{j}$. Then $U_{i j} \supseteq$ $\geq U_{i+1, j}+U_{i, j+1}$ and $U_{i j} / U_{i+1, j}+U_{i, j+1} \cong T_{i j}$.

Now let $U_{\ell}=\sum_{i+j=\ell} U_{i j}$ for $0 \leqq \ell \leqq v+w-1$. Then $0=\mathrm{U}_{\mathrm{V}+\mathrm{W}-1} \subseteq \mathrm{U}_{\mathrm{V}+\mathrm{w}-2} \subseteq \ldots \subseteq \mathrm{U}_{\mathrm{O}}={ }^{\mathrm{V} \otimes{ }_{\mathrm{F}} \mathrm{W}}$, and the canonical map $\underset{i+j=\ell}{\oplus} \mathrm{U}_{\mathrm{ij}} \rightarrow>\mathrm{U}_{\ell}$ yields an epimorphism

$$
\underset{i+j=\ell}{\oplus} T_{i j} \cong \underset{i+j=\ell}{\oplus} U_{i j} / U_{i+1, j}+U_{i, j+1} \longrightarrow T_{\ell} / T_{\ell+1}
$$

Therefore, $\ell\left(T_{\ell} / T_{\ell+1}\right) \leqq \max \left\{\ell\left(T_{i j}\right) \mid i+j=\ell\right\}$ and the lemma follows.

Corollary 2.2. Let U be a normal subgroup of G such that G / U is a p-group. Let W be an $F G-m-$ dale and set $V=\left(\left.W\right|_{U}\right)^{G} \approx W \otimes_{F}\left(I_{U}\right)^{G}$. Then $\ell(V) \leq$ $\leq t(G / U)+\ell(W)-1$.

Proof. Set $M=G / U$ and view $F M$ as $F G-m o d u l e$ via $F M \cong\left(I_{U}\right)^{G}$. Then $(\omega M)^{i}=F M \cdot J^{i}$, where $J=J(F G)$, and $(\omega M)^{i} /(\omega M)^{i+1} \cong I_{G}\left(n_{i}\right)$ for suitable integers n_{i}. In the notation of the preceding lemma, we therefore have

$$
T_{i j}=\frac{(\omega M)^{i}}{(\omega M)^{i+1}} \otimes_{F} \frac{W J^{j}}{W J^{j+1}} \cong\left(\frac{W \cdot J^{j}}{W \cdot J^{j+1}}\right)^{\left(n_{i}\right)}
$$

and so $\ell\left(T_{i j}\right)=1$ for all i, j. Thus Lemma 2.1 yields $\ell(V) \leq \ell(F M)+\ell(W)-1$ which proves the corollary

The estimate given above does not hold for arbitrary induced modules. For example, if $\mathrm{U}=\mathrm{C}_{2} \leqq \mathrm{G}=\mathrm{C}_{4}$ and $W=F C_{2}$, where char $F=2$, then $\ell\left(W^{G}\right)=\ell\left(\mathrm{FC}_{4}\right)>\ell(W)+2-1=3$.

Proposition 2.3. (F algebraically closed) Assume that $G=N \times H$, where N is a $p-g r o u p$ and H is p-nilpotent, say $H=Q \times M$ with $p|Q|$ and M a p-group. Let V be an irreducible FG-module, let W be an irreducible component of $\left.V\right|_{Q}$, and let T denote the inertia group of W in H. Then
i. $\quad P_{G}(V) \cong W^{G}$;
ii. $\quad \ell\left(P_{G}(V)\right) \geq t(T / Q)+\ell\left(\left(V_{H}\right)^{G}\right)-1$. If $T \cap M$
has a normal complement in M, then equality holds.

Proof. By $[1, \S 3]$, we have $P_{H}(V) \cong W^{H}$ and $\ell\left(W^{H}\right)=t(T / Q)$. Therefore, Lemma 1.4 implies that $\ell\left(P_{G}(V)\right) \geq t(T / Q)+\ell\left(\left(V_{H}\right)^{G}\right)-1$ and $P_{G}(V) \cong\left(I_{H}\right)^{G} \oplus_{F}$ $\otimes_{F} W^{H} \cong W^{G}$. By [8], there exists a unique FT-module U such that $\left.U\right|_{Q} \cong W$. The induced module U^{H} is irreducible, and $U^{H} \cong V_{H}$, since both have a common FQ-component. Now let M_{1} be a normal complement for $T n M$ in M and set $S=\left\langle Q, M_{1}\right\rangle \leqq H$. Then S is normar in H and $\left.\left.V\right|_{S} \cong U^{H}\right|_{S} \cong W^{S}$. Hence

$$
\begin{aligned}
& P_{G}(V) \cong\left(I_{H}\right)^{G} \otimes_{F} W^{H} \cong\left(I_{H}\right)^{G} \otimes_{F}\left(\left.V\right|_{S}\right)^{H} \cong \\
& \cong\left(I_{H}\right)^{G} \oplus_{F}\left(V_{\langle N, S\rangle}\right)^{G} \cong\left(\left.\left(V_{H}\right)^{G}\right|_{\langle N, S\rangle}\right)^{G} .
\end{aligned}
$$

Corollary 2.2 implies that $\left.\ell\left(P_{G}(V)\right) \leq t(G /<N, S\rangle\right)+$ $+\ell\left(\left(V_{H}\right)^{G}\right)-1$. Since $G /\langle N, S\rangle \cong T / Q$, the proposition is proved.

Corollary 2.4. In the situation of Proposition 2.3,
assume that M is elementary abelian. Then, for any irreducible FG-module V,

$$
\ell\left(P_{G}(V)\right)=(r k M-d)(p-1)+\ell\left(\left(V_{H}\right)^{G}\right)
$$

where p^{d} is the p-part of $\operatorname{dim}_{F} V$.

Proof. By assumption on M, TAM has a normal complement in M, and $t(T / Q)=r k(T \cap M)(p-1)+1$ [4]. Let U be as in the proof of Proposition 2.3 so that $\left.\mathrm{U}^{\mathrm{H}} \cong \mathrm{V}\right|_{\mathrm{H}}$. Then $\operatorname{dim}_{\mathrm{F}} \mathrm{U}$ is not divisible by p and so the p-part of $\operatorname{dim}_{F} V$ equals $p^{d}=|H / T|$. Therefore, mk $(T \cap M)=r k M-d$ and the corollary follows.

Example 2.5. Let $G=N \times H$ be as in Example 1.5, with $N=C_{3} \times C_{3}$ and $H=S L_{2}(3)=Q_{8} \times C_{3}$. Then $F N=\left(I_{H}\right) G$ has Loews series

$$
\left(I_{H}\right)^{G}=\begin{aligned}
& I \\
& 2 \\
& 3 \\
& 2 \\
& I
\end{aligned}
$$

where $1,2,3$ denote the simple FH-modules as in Example 1.5 , and so Corollary 2.4 yields $\quad \ell\left(P_{G}(I)\right)=2+5=7$.

Also, by Corollary 2.4, $\ell\left(P_{G}(2)\right)=2+\ell\left(\left(2_{H}\right)^{G}\right)$. Using $2 \otimes 2 \cong I \otimes 3$ and $2 \otimes 3 \cong \frac{2}{2}$, we see that $\left(2_{H}\right)^{G}=$ $=2 \otimes\left(I_{H}\right)^{G}$ has Loews length at most 7. On the other hand, we already know that $\ell\left(\left(2_{H}\right){ }^{G}\right) \geq 7$ (Example 1.5) and so we obtain $\ell\left(P_{G}(2)\right)=9$.

As to the remaining irreducible module, 3 , recall that $3=1^{G}$, where 1 is a non-trivial 1-dimensional module for $U=\left\langle N, Q_{8}\right\rangle \leq G$. Thus, by Proposition 2.3, $P_{G}(3)=\left(1_{Q_{8}}\right)^{G}=\left(3_{H}\right)^{G}=3 \otimes\left(I_{H}\right)^{G}$. Clearly, $\ell\left(\left(3_{H}\right)^{G}\right) \leq 2+\ell(X)$ where

$$
\mathbf{X}=3 \otimes \begin{aligned}
& 2 \\
& 3 \\
& 2
\end{aligned}=\left(\begin{array}{rr|l}
& 2 & \\
1 & 3 & \\
2
\end{array}\right)^{\mathbf{G}} .
$$

Since $J(F U)=(\omega N) F U$, the Loews series of $\left.\begin{array}{lll}1 & 2 \\ 3 \\ 2\end{array}\right|_{U}$ is
easy to compute:

$$
1-\left.\begin{aligned}
& 2 \\
& 3 \\
& 2
\end{aligned}\right|_{\mathrm{U}}=\mathrm{I}_{\mathrm{U}}{ }^{2_{\mathrm{U}}}{ }^{1 \cdot 111}{ }^{2}
$$

where 1^{\prime} and $1^{\prime \prime}$ denote the G-conjugates of 1 . In particular, $\left.\begin{array}{lll}1 & 0 & 2 \\ 2\end{array}\right|_{U}$ is a homomorphic image of $Y=P_{U}(2) / P_{U}(2) \cdot(\omega N)^{3}$.

Now $P_{U}(2)=2_{U} \otimes\left(I_{Q}\right)^{U}=\left(\left.2 \otimes\left(I_{H}\right)^{G}\right|_{U}\right.$ and $P_{U}(2)$. $\cdot(\omega \mathrm{N})^{3}=\left.\left(2 \otimes\left(I_{H}\right)^{G} \cdot(\omega \mathrm{~N})^{3}\right)\right|_{U}$, hence

$$
\begin{aligned}
& Y=\left.\left(2 \otimes \frac{\left(I_{H}\right)^{G}}{\left(I_{H}\right)^{G} \cdot(\omega N)^{3}}\right)\right|_{U}=\left.\left(2 \otimes \frac{I}{3}\right)\right|_{U} \\
& =\left.I_{2}^{2} \begin{array}{l}
2 \\
2 \\
2
\end{array}\right|_{U} \quad .
\end{aligned}
$$

Corollary 2.2 implies that $\ell\left(Y^{G}\right) \leqq 3+5-1=7$. Therefore, $\ell(X) \leq 7$ and $\ell\left(P_{G}(3)\right) \leqq 9$. In particular, we obtain $t(G)=9$.

In the following, we set

$$
g r F N=\underset{i \geq 0}{\oplus} \frac{(\omega N)^{i}}{(\omega N)^{i+1}}
$$

and we view gr FN as FG-module by letting G act by conjugation.

Corollary 2.6. Let G be as in Proposition 2.3 and let V be an $F G-\left.m o d u l e ~ s u c h ~ t h a t ~ V\right|_{Q}$ is irreducable. Then

$$
\ell\left(P_{G}(V)\right) \geq t(M)+t(N)-1
$$

and equality holds if and only if $V \sigma_{F}$ gr is semisimple.

Proof. By Proposition 2.3, $\quad \ell\left(P_{G}(V)\right)=t(M)+\ell\left(\left(V_{H}\right)^{G}-1\right.$ and, by Lemma 1.4 (iiii), $\ell\left(\left(V_{H}\right)^{G}\right) \geqslant t(N)$ with equality occuring if and only if $V_{\otimes_{F}} g r$ FN is semisimple.

Theorem 2.7. Assume that $G=N \times H$ with N a pgroup and $H=Q \times M$ a Frobenius group with kernel Q a p^{\prime}-group and M a p-group. Then $t(M)+t(N)-1=t(G)$ if and only if $g r$ FN is semisimple.

Proof. The condition is clearly necessary in view of Corollary 2.6. Conversely, assume the condition is satisfied. Our assumption on H implies that $J(F M)=$ $e \cdot \omega M$, where $e=|Q|^{-1} \Sigma_{q \in Q} q$ is a central idempotent of FH. Indeed, this follows from the fact that for any irreducible FQ-module $W \neq I$ the induced module W^{H} is irreducible [3, Lemma 15.15]. Thus the semisimplicity of $\frac{(\omega N)^{i}}{(\omega N)^{i+1}}$ just says that for all $\alpha \in(\omega N)^{i}$ and $m \in M$ we have $\Sigma_{q \in Q} \alpha^{q m}-\Sigma_{q \in Q} \alpha^{q} \epsilon$ $E(\omega N)^{i+1}$. It follows by a straightforward calculation that, for all $i \geq 0$,

$$
e \cdot \omega M \cdot(\omega N)^{i} \cdot e+e(\omega N)^{i+1} e=e(\omega N)^{i} \omega M e+e(\omega N)^{i+1} e
$$

Set $\ell=t(N)+t(M)-1, X=(\omega N) F G$, and $Y=e \cdot \omega M$. Then $J(F G)=X+Y$, and we have to show that if $\alpha \in$ FG can be written as a product of ℓ factors each of which belongs to either X or Y then $\alpha=0$. We argue by descending induction on the number ${ }^{{ }^{2}}{ }_{X}=e_{X}(\alpha)$ of X-factors involved in α. If ${ }^{\ell} X_{X} \geq t(N)$ then $\alpha \in X^{t(N)}=\{0\}$. So assume that $\ell_{X}<t(N)$. Then the number of Y-factors involved in α is at least $t(M)$. Let $n_{Y}=n_{Y}(a)$ denote the length of the longest consecutive subproduct of α consisting entirely of $Y-$ factors. Clearly, if $n_{Y} \geqq t(M)$ then $\alpha=0$. So assume that $n_{Y}<t(M)$. Then α contains a subproduct which either belongs to $X X^{i} Y^{n} Y$ or to $Y^{n} Y_{X}{ }_{Y} \quad(i>0)$. We consider the first case, the second being entirely analogous. Now

$$
\begin{aligned}
& Y X^{i} Y^{n} Y=e \cdot \omega M \cdot(\omega N)^{i} \cdot e(\omega M)^{n} \\
& \subseteq e(\omega N)^{i}(\omega M) e(\omega M)^{n_{Y}}+ \\
&+e(\omega N)^{i+1} e(\omega M){ }^{n} Y \quad \subseteq x^{i} Y^{n_{Y}}{ }^{+1}+X^{i+1} Y^{n_{Y}}
\end{aligned}
$$

Thus we have $\alpha=a_{1}+\alpha_{2}$ with $\alpha_{1}, \alpha_{2} \in J(F G)^{\ell}$, but $\ell_{X}\left(\alpha_{2}\right)>\ell_{X}(\alpha)$ and $\varepsilon_{X}\left(\alpha_{1}\right)=k_{X}(\alpha), n_{Y}\left(\alpha_{1}\right)>n_{Y}(\alpha) \cdot B Y$ induction, we conclude that $\alpha_{1}=\alpha_{2}=0$ and so $\alpha=0$.

Certainly, gr FN is semisimple if FN is semisimple over FH . The converse, of course, need not be true. For example, if $G=N \times H$ is as in Examples 1.5 and 2.5 , then $g r F N=I^{(2)} \oplus 2^{(2)} \oplus 3$ is semisimple but $F N$ is not. To see the latter, let $z=\left(\begin{array}{rr}-1 & 0 \\ 0 & -1\end{array}\right)$ $m=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right) \in H=\mathrm{SL}_{2}(3)$. Then $\alpha=(1-z)\left(1+m+m^{2}\right)$ belongs to $J(F H)$ and if $<a, b>$ is the standard basis of $N=\mathbb{F}_{3} \otimes \mathbb{F}_{3}$ then $b \cdot \alpha=\left(b-b^{-1}\right) \cdot\left(1+m+m^{2}\right)=$ $=\left(b-b^{2}\right) \cdot\left(1+m+m^{2}\right)=b-b^{2}+a b-a^{2} b^{2}+a b^{2}-a^{2} b \neq 0 .-$ If $H=Q \times M$ is Frobenius, as in the theorem, then it is easily seen that FN is semisimple over $F H$ if and only if M stabilizes all Q-orbits in N.

Example 2.8. Let $G=S_{4}$ and use the notation of Example 1.3. Then $G=V_{4} \times H$ with $H=G L_{2}(2)=$ $=C_{3} \times C_{2}$ a Frobenius group. Also,C_{2} stabilizes the C_{3}-orbits $\{1\}$ and $V_{4} \backslash\{1\}$ in V_{4}. Hence, by the above remark, $g r \mathrm{FV}_{4}$ is semisimple (in fact, $\operatorname{gr} \mathrm{FV}_{4}=I^{(2)} \oplus 2$) and we conclude that $t(G)=t\left(V_{4}\right)+$ $+t\left(\mathrm{GL}_{2}(2)\right)-1=4$, a result due to Motose and Ninomiya[6]. In particular, $\ell\left(P_{G}(I)\right)=\ell\left(P_{G}(2)\right)=4$.

Further examples of a similar form have been contructed by Motose [5] , for every prime p .

ACKNOWLEDGMENT

The author's research was supported by the Deutsche Forschungsgemeinschaft/Heisenberg Programm (Lo 261/2-1). It is a pleasure to thank Dr. C. Bessenrodt for a number of helpful discussions.
[1] R.J. Clarke: On the radical of the group algebra of a p-nilpotent group, J. Austral. Math. Soc. 13 (1972), 119 - 123.
[2] B. Huppert and N. Blackburn: Finite Groups II, Springer-Verlag, Berlin-Heidelberg-New York, 1982.
[3] I.M. Isaacs: Character Theory of Finite Groups, Academic Press, New York, 1976.
[4] S.A. Jennings: On the structure of the group ring of a p-group over a modular field, Trans. Amer. Math. Soc. 50 (1941), 175 - 185.
[5] K, Motose: On the nilpotency index of the radical of a group algebra III, J. London Math. Soc. (2) 25 (1982), $39-42$.
[6] K. Motose and Y. Ninomiya: On the nilpotency index of the radical of a group algebra, Hokkaido Math. J. 4 (1975), 261-264.
[7] D.S. Passman: The Algebraic Structure of Group Rings, Wiley Interscience, New York, 1977.
[8] B. Srinivasan: On the indecomposable representations of a certain class of groups, Proc. London Math. Soc. 10 (1960), 497-513.
[9] W. Willems: On the projectives of a group algebra, Math. Z. 171 (1980), 163-174.

