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Let G be a p-solvable group of order pam,
(p,m)=1, and let tztp(G; denote the nilpotence index
of the Jacobson radical J(FG) of the group algebra
FG, where F denotes a field of characteristic p .
It is well-known and easy to see that t 2 a(p-1)+1
(this follows e.g. from Lemma 1.1 below) and that equa-
lity holds if the Sylow p-subgroups of G are elemen-
tary abelian. The converse need not be true: the first
known counterexample was G=s4 , the symmetric group on
four letters, with p=2 [6] , and later counterexamples
were constructed for each prime p by Motose [5). In
this note we prove the following result which contains

all examples constructed so far (Theorem 2.7):



Assume G = N»H 1is a semidirect product with N
a p-group and H = QM a Frobenius group with kernel

Q a p'-group and M a p-group. Then tp(G) = tp(N) +
£, 0441
+ tp(M)-1 holds if and only if o (uwN)~/(wN) is a
iz0

semisimple FH-module under the conjugation action of

H on N.

Here, wN denotes the augmentation ideal of FN.

Notations and Conventions. Throughout this note, G

will be a finite group and F will be a field of cha-
racteristic p>0 . All FG-modules are assumed to be
finitely generated right modules, and I denotes the
trivial one-dimensional FG-module. J(FG) and G
denote the Jacobson radical, resp. the augmentation
ideal, of FG. For any FG-module V , £(V) is the
Loewy length of V , i.e. the smallest integer £

such that V.J(FG)%=0 . Furthermore, Po(V) and 24(V)

will be the projective cover, resp. the Heller module

of V . Thus nG(V) c PG(V)-J(FG) and there is an
exact sequence 0 —->QG(V) -—>PG(V) -V ~—> 0. Fi-

nally, omitting reference to p which is fixed in the
following, we set t(G) = £(FG) , the nilpotence index

of J(FG) . The remaining notation is as in [7].



§ 1. Normal Subgroups

In this section, we study the situation where V
‘18 an FG-module and N is a normal subgroup of G ac-
ting trivially on V . Thus V can be viewed as either
a G-module or a G/N-module, and we compare the Loewy

lengths of the corresponding projective covers.

Our first lemma extends [9, Lemma 3.4].

Lemma 1.1. Let N be a normal subgroup of G

and let V be an FG-module with NskerG(V) . Then

i. PG/N(V)apG(V?/PG(V)'mN ;

1. L(pg(Mm)zL(p

o/n VLR (TN -1,

Proof. Set P=P,(V) , H=G/N and let ~$FG —>FH
denote the canonical map with kernel (wN)FG . Note
that J(FG)=J(FH) . (Images of semisimple Artinian rings

are semisimple Artinian.) Since P-J(FG)20,(V)2P-uN ,

we have a map of FH-modules P/P.wN —»>V whose kernel
QG(V)/P~wN is contained in (P/P-uwN)-J(FG)=(P/P-wN) -
«J(FH) . As P/P.uN is projective over FH , we ob-

tain the isomorphism PH(V)=P/P-wN , which proves (i).

Now write 1 = L(PH(V)) and zN=£(PN(£)). Then

it follows from the foregoing that p.J(FG) ¥~? ¢P-uN .



A A
But P «. wuN = ann N, where N = I n €FN . Indeed
P neéN

since P 1is projective over FN, this follows from

A
the fact that N = annFNti [7, Lemma 3.1.2). Note

A 4{1

further that N € J(FN) , Since viewing PN(I) as

A
a summand of FN we have F-.N = socle PN(I)=PN(I)-

=1 £-1
. J(FN)"N c J(FN) N | We deduce that

L+ 452 r-1, 4
P « J(FG) 2 P - J(FG) - N#% 0. This proves
(ii). o

We remark that if N , or G/N , is a p-group
then the inequality in (ii) becomes an equality. More
generally, if J(FN).J(FG) = J(FG) -J(FN) in the situ-

ation of Lemma 1.1, then we have
£(PG(V)) s L(PG/N(V))~L(PN(I)).

For, part (i) above implies that .PG(V) . J(FG)* <

S Pg(V) = wN = P.(V) ~J(FN), where we have set
2 = 2(Pg,y(V)) and where the latter equality holds
since PG(V) , as an FN-module, is isomorphic to a

direct sum of copies of PN(I).

If N is a p-group then Lemma 1.1 can be streng- '
thened as follows. Recall that t(G) denotes the nil-

potence index of J(FG).



Lemma 1.2. Let N be a normal p-subgroup of G
and let V be an FG-module with NSkerG(V) . View FN

as an. FG-module via conjugation of G on N.

i. For all i20 we have FG-isomorphisms
1 P_ (V) - (wN)
Po/n(V) op ol . 57
(WN) Pg (V) - (wN)

where PG/N(V) is viewed as an FG-module by letting
N act trivially.

ii. L(PG(V)) 2 t(N)-1 + max l(PG/N(V) oFX)
2 t(N)-1 + m;x L(PG/N(V oFX)) ’

where X runs over the FG-composition factors of FN.

Proof. Let P = PG(V) and H = G/N . For each

120 we have an F-epimorphism gy PoF (wN)i —>>

—»> P -(mti)i ,. pea > pa , which is in fact FG-1i-
near if G acts by conjugation on (wN)i. Thus we

obtain FG-epimorphisms

i
i Po_ (wN) i
-g-i . P’F {wN - _— P — >> P « (wN) -
(wN) Po, (wN) P . (wN) :



i
Since Ei annihilates P -wN g (wN) - and
(wN)

PH(V) = P/P+wN , by Lemma 1.1, Ei defines an FG-

epimorphism
i i
(wN) P * (wN)
f :P(V)O D D ctmin————— .
i H F (wN)I+1 p .(NN)1+1

To see that fi is injective, note that, as FN-mo-

dules, P s P.(V) o FN with the reqular action of

FN on FN. Indeed, by Lemma 1.1(1i),

PH(V) ‘F FN
. ’
(PH(V)OF FN) *wN

P/P - wN = PH(V) =

and hence PIN 3 Py(V) @ FN , since both sides are pro-

jective over FN, and uN

J(FN) . It follows that

f1 is an isomorphism, and part (i) is proved.



For (ii), set

1 i
2, = L(P (V) o 1251———) = z(ﬁJ_ﬂﬂﬂ-—-) :
i H F (NN)1+1 i+1

If m<2¢, then PwM.JgwEe)™ ¢p- (i -

= annp(mN)t(N)"l-1 » Where the latter equality follows

from [2, p. 261] , since P is free over FN. Thus we

conclude that
P (wN)1:g(Fe)™+ (umyEM =11

and so £(P) > t (N)+m - 1 . Therefore, £(P) 2t (N) +2-1,
where g= m?x 21 . Finally, since PH(V) is projec-

tive over FH , we have

® P (V) @

i i+1
1 H F (wN) ~/ (wN) = 2 PH(V) OFX,

where X runs over the composition factors of FN.

Hence % max L(PH(V)QFX) . Since PH(VoFX) is a sum-

X
mand of PH(V)OFX , we also have % ZAZ(PH(VoFx)).

This completes the proof of (ii). o



The following example illustrates the difference

between the estimates provided by Lemmas 1.1.and 1.2.

Example 1.3. Let G = S4 be the symmetric group

on four letters and let char F = 2 . Then G=V,» GL2(2)

4
and there are two irreducible FG-modules, namely I
and the canonical 2-dimensional module for H=GL2(2) '

denoted by 2. We have

I I
PH(I) =1 P,(2) = 2, and FV, = 111 .

Thus Lemma 1.1 yields C(PG(IN 2 4 and L(PG(ZN 2 3.

and so

N

However, as FG-module, FV, = (IH)G =

4

Lemma 1.2 implies
Z(PG(Zn 2 3 + Z(PH(ZOZ))-1 .

I
Since 202 =20 1’

see shortly that, in fact,Z(PG(I))=£(PG(2))=4 , a result

we obtain £(PG(2)) 24 . We will

due to Motose and Ninomiya [6]. A detailed discussion
of the Loewy and socle series of P,(I) and P,(2)
can be found in [2, p. 214 - 218].

For simplicity of formulation, we restrict ourselves
to the case of an irreducible FG-module V in the follo-

wing lemma.



This is of course no real loss, since for any V we

- have PG(V) = ; PG(X) where X rﬁns over the simple
components of V/V - J(FG). , with multiplicities. Also,
it would be enough to assume that 1- U(FN)- U(FN)G -G~
-+ 1 splits , where U(.) denotes the group of units,
but for simplicity we assume G to be a semidirect

product.

Lemma 1.4. Let N be a normal p-subgroup of G

and assume that G = N» H for some H s G. Let V be

an irreducible FG-module.

. G
i. PG(V)- (IH) L PH(V), where N acts trivially

on PH(V).
G
ii. £(PG(V)) 2 L(PH(V))+ t((VH) y-1 .

iii. For each 1iz0 1let V denote the FG-module

i
i
vi = VoF (“N) e where G acts by conjugation on
wN)
i
(wN)
(wN)i+1 . Then

l((VH)G) 2 £(N) -1 + max £(V,) .
i

In particular, £((Vy)® = t(N) if and only if all Vv,

are semisimple.



G
Proof. Set T=(Iy) e Py(V)=(Py(V)| )" and J=3(FG).
Then T/T-J = T/T-uN /T.3/T- uN =P, (V)/P (V) - J(FH) = V .

Since T is projective, it follows that T =‘PG(V) so
that (i) holds.

If ¢ = £(PH(V)) then, by part (i),

e G, 21 ] -1,
Po(V)-J" "=(Py(V)e (I ) ") -J" '2(Py(VIely) J(FH) FN

1

- L= . = . 3 G
= (PH (V) J (FH) OIH) FN= (VOIH) FNs (VH) .

Assertion (ii) follows. As to (iii), note that

(vH)G R

G i+1
(VH) * (wN)

<
m

Thus if m < &, = £(v,) then (V% wm':-3(Fe)™ ¢

i H

¢ v ¢ (umt*? &N =11

= ann(VH)G {wN) . Here, the

latter equality follows from [2, p. 261] , since (VH)G

is free over FN. Therefore, L((VH)G)Zt(N)+21-1 for

all i . Since the last assertion is clear, the lemma

is proved. o

Example 1.5. Set G = (C3xc3) b SL2(3) , with
the canonical action of H=SL2(3) on N=c3xc3 , and

let char F = 3 . The irreducible FG-modules all come

10



from FH and are : I , the canonical 2-dimensional
FH-module, 2, and 3 which is induced to H from a non-
trivial 1-dimensional module for the quaternion group

Qg S H . One checks that t(N) =5 and t(H) =3 ,

and so the lower bound for £(P,(V)), V € {1,2,3} ,
provided by Lemma 1.2 (ii) can at most be 7. However,

for V = 2, Lemma 1.4 gives Z(PG(Z)) 2 9 . Indeed,

I (i=0,4)
1
:“N; — 2 (i=1,3)
wN
3 (i=2 )

Hence, in the notation of part (iii), we have

V. = 2@ 3 = so that L((ZH)G) 27 and £(Pg(2))29.

2

NN

-Actually, equality holds here and even t(G) = 9 (see
Example 2.5).

§ 2. Groups of p-Length 2

Our goal here is to show that, under certain cir-
cumstances, the inequality of Lemma 1.4(ii) does in fact
become an equality. For example, this is always the case
if H is p-nilpotent with elementary abelian Sylow

p-subgroups (Corollary 2.4).



Lemma 2.1. Let V and W be FG-modules. Set

i b
v=LeW),w=LW and T, = Lo WJ.H (0Sisv-1,
BN A | Wy’
0sjsw-1), where J = J(FG) . Then
viw-2 )
L(V o W) < 250 max {Z(Tij)li + 3 =2} .
= i 3
Proof. Set Uj_j vJ oF WJ-® . Then Uij 2
=
2V%01,5 * B,er 20 Uig/Uhaa,5 * Vgm0 B Ty

Now let U, = for 0sg2s v+w-1 . Then

z U. .
L i+g=g 1)

= U = Vo W and the
0 uv+w—1 s Uv1rw--2 S... % b

canonical map e Uij —>U, yields an epimorphism
i+j=2

@ T, .% 6 U, /U U

—»> T _/T
i+ j=2 13 i+g=2 *+J L

141,35 7 Y1, 901 L+1°

Therefore, L(Tn/TL 1) s max {L(Tij) |i+j=£} and the

+

lemma follows. o

Corollary 2.2. Let U be a normal subgroup of

G such that G/U is a p-group. Let W be an FG-mo-

dule and set V = (wlu)G s Wo_(I.)% . Then £(V)s

F'7O

S t(G/u) + L(W-1 .



Proof. Set M=G/U and view FM as FG-module
- G i ' i =
via FM = (Iu) . Then (wM)™ = FM-J~ , where J=J(FG),

and (mM)i/(«nM)i+1 = IG(ni) for suitable integers n; .

In the notation of the preceding lemma, we therefore

have

i 3 3
o fuM) WJ (w J (n,)
. (o) 171 OF g3 J+1)

and so L(Tij) = 1 for all i,j . Thus Lemma 2.1
yields £(V) s £(FM) + £(W)-1 which proves the corollary

o

The estimate given above does not hold for arbitrary

induced madules. For example, if U=C, s G=C and

2 4

W=FC, , where char F=2 , then t(WG)=£(Fc4) > L(W)+2-1=3.

Proposition 2.3. (F algebraically closed) Assume

that G=NxH, where N 1is a p-group and H is p-nilpo-
tent, say H=Q x M with p+|Ql and M a p-group. Let
V be an irreducible FG-module, let W be an irreduci-
ble component of Vv Q +r and let T denote the inertia

group of W in H . Then



i. (V) = W ;

1. (B (V) 2 t(T/Q) + L((V)©)-1. If TOM

has a normal complement in M, then equality holds.

Proof. By [1, §3], we have PH(V) i wH and
z(w“) = t(T/Q) . Therefore, Lemma 1.4 implies that

L(P(V)) 2 t(T/Q) + z((vH)G)-1 and P, (V) = (IH)G o

OF wi oz wC By [ 8], there exists a unique FT-module

U such that UIQ W . The induced module U" is

irreducible, and UH = VH , since both have a common

FQ-component. Now let M1 be a normal complement for

TNM in M and set S = <Q,M;> S H. Then S is nor-

mal in H and V|S = UHIS s W . Hence

P (V) = (IH)G.OF wl 2 (IH)G o (V‘S)H=

G

= (I,,)

G | G G
B ®f (V<N,S>) ) ((VH) I<N,s> ) )

Corollary 2.2 implies that Z(PG(V)) s t(G/<N,S>) +
+ l((VH)G)-1 . Since G/<N,S> = T/Q , the proposition

is proved. o

Corollary 2.4. In the situation of Proposition 2.3,

Y



assume that M 1is elementary abelian. Then, for any

irreducible FG-module V,

£ (Bg(V))= (xkM-d) (p-1) + L((Vp©) ,

where pd

is the p-part of dimF v.
Proof, By assumption on M , TNM has a normal
complement in M , and t(T/Q) = rk (TNM) (p-1)+1 [4].

Let U be as in the proof of Proposition 2.3 so that

U =V q Then dimFU is not divisible by p and

so the p-part of dim, V equals pd=IH/T| . Therefore,

rk (TnM) = rk M-d and the corollary follows. o

Example 2.5. Let G = N»H be as in Example 1.5,

= = . = G
with N=C_=xC and Hs= SL2(3) QBNC3 . Then FN (IH)

3 73
has Loewy series

(2]
HNWN H

where 1I,2,3 denote the simple FH-modules as in Ex-

ample 1.5, and so Corollary 2.4 yields L(PG(I))=2+5-7.



Also, by Corollary 2.4, £(Pg(2)) = 2+£((2,)€). Using

2 .
202 =I®3 and 2 o 3 = % : we see that (ZH)G =

=26e (IH)G has Loewy length at most 7. On the other

hand, we already know that z((za)G) : 7 (Example 1.5)

and so we obtain £(PG(2)) =9,

As to the remaining irreducible module, 3, recall
that 3=1G , where 1 1is a non-trivial 1-dimensional
module for U = < N'QB > £ G. Thus, by Proposition- 2.3,

Po3) = (1,1%= 3% =30 (1% . clearly,

Qg
z((aﬁ)G) s 2 + £(X) where

Since J(FU)

(wN)FU, the Loewy series of 1 o is

NWN

easy to compute:

where 1' and 1" denote the G-conjugates of 1. In par-

2
ticular, 1 o 3 is a homomorphic image of

u
= . 3
Y = Py(2)/ Py(2) © (uN)™ .



Now Py (2) = 2 (IQ)U = (20 (IH)G) y and Py(2) -

t(le3 = (2 o (IH)G '(wN)3)|U . hence

Y={({2@e )' ={2 @ 2 |
(1) (w3 /10 v
2
= I,3)
2
2 |u

Corollary 2.2 implies that £ (Y¥) s 3 + 5 -1 =7 .
Therefore, 4£(X) s 7 and £(PG(3)) s 9 . 1In particu-

lar, we obtain t(G) = 9.

In the following, we set

i
gr FN = o iQElITT
iz0 (wN)

and we view gr FN as FG-module by letting G act

by conjugation.

Corollary 2.6. Let G be as in Proposition 2.3

and let V be an FG-module such that V Q is irredu-

cible. Then



L(PL(V)) 2 (M) + t(N)-1 ,

and equality holds if and only if V on gr FN is semi-

simple.
Proof. By Proposition 2.3, L(PG(V))=t(M)+£((VH)G-1

and, by Lemma 1.4 (iii), L((VH)G)Zt(N) with equality

occuring if and only if VoF gr FN is semisimple.
o

Theorem 2.7. Assume that G=NxH with N a p-

group and H=QxM a Frobenius group with kernel Q a
p'-group and M a p-group. Then t(M)+t(N)-1=t(G) if

and only if gr FN is semisimple.

Proof. The condition is clearly necessary in view
of Corollary 2.6. Conversely, assume the condition is sa-
tisfied. Our assumption on H implies that J(FM) =

e - wM , where e=l(.)|_1 L is a central idempotent

qeq?

of FH. 1Indeed, this follows from the fact that for any

irreducible FQ-module W # I the induced module w“

is irreducible [3, Lemma 15.15]. Thus the semisimplicity

(mN)l .
of —— just says that for all
i+1
(wN)
i qm _ q
a € (wN) and m € M we have quQ o quQ a- €
€ (mN)i+1 . It follows by a straightforward calculation

that, for all i 2 0 ,

e »uM- (uN)i- e + e(wN)i+1e = e(wN)ine + e(mN)i+1e.



Set. & = t(N) + t(M)-1 , X = (uN)FG , and Y = e-uM .
Then J(FG) = X + Y , and we have to show that if
a € FG can be written as a product of & factors each
of which belongs to either X or Y then a =0 .

We argue by descending induction on the number & =Lx(a)

X
of X-factors involved in o . If zx 2 t(N) then
t (N)
a6 € X = {0}. So assume that &, < t(N) . Then the

X
number'of Y-factors involved in o 1is at least t(M).

Let n, = nY(a) denote the length of the longest con-

secutive subproduct of a« consisting entirely of Y-

factors. Clearly, if n, 2 t(M) then o =0 . So

Y

assume that ng < t(M) . Then a contains a subproduct
iy Ny i

which either belongs to Y¥YX'Y or to Y XY (i»0).

We consider the first case, the second being entirely

analogous. Now

n ny n
vxty¥eoe.um: (mietm ¥ cetwm? (ute )y,

Ny Ryt e Py

e (uM) e xiy ¥ oty Y

+ e(wN)i+
Thus we have a=a,ta, with a,, a, € J(FG)2 , but
zx(az) > zx(a) and lx(a1)= zx(a), ny(°1)>ny(“)' By

induction, we conclude that u1=u2=0 and so a=0 .
o



Certainly, gr FN is semisimple if FN is semi-
simple over FH. The converse, of course, need not be
true. For example, if G = N » H is as in Examples 1.5
and 2.5, then grFN = 1(2) ) 2(2) © 3 is semisimple

but FN is not. To see the latter, let 2z = (T; _2)

m = (:) 1) € H=5L,(3). Then a = (1-32) (1+m+m?) be-
longs to J(FH) and if <a,b > is the standard basis

of N=TF. ©F, then b + a = (b=b_ ) + (1+m+m?) =

3 3

2 2, 2 2_ 2

= (b-b%) - (1+m+m?) = b-b? + ab-a’b? + ab%-a’b # 0 . -

If H=Q » M is Frobenius, as in the theorem, then it
is easily seen that FN is semisimple over FH if and

only if M stabilizes all ¢Q-orbits in N.

Example 2.8. let G =S and use the notation

4
of Example 1.3. Then G = Vg H with H = GL2(2) =
=C3 %C, a Frobenius group. Also , c2 stabilizes

the C.,-orbits {1} and A\

3 ~ {1} in Vv

Hence,

4 4 °

by the above remark, gr FV, is semisimple (in fact,

4

ngV4 = I(z) © 2 ) and we conclude that t(G)=t(V4) +
+ t(GL2(2)) - 1 =4 , a result due to Motose and

Ninomiya[6]. In particular, L(PG(I)) = L(PG(2)) = 4 ,

Further examples of a similar form have been con-

tructed by Motose [5] , for every prime p .
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