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On relations of dimensions cf automorphic forms of
Sp(2,R) and its compact twist Sp(2) (1I)

x)
Ki-ichiro Hashimoto and Tomoyoshi Ibukiyama

In this paper, we show some good global dimensional
relations between automorphic forms of Sp(2,R) (matrix size
four) and its compact twist Sp(2). One of the author
has already shown such relations when the p-adic
completions (for a fixed prime p) of the discrete subgroups
in question are maximal compact(SeeL24]). In this paper,
we treat discrete subgroups whose p-adic completions are
minimal parahoric. Our aim is a generalization of
Eichler-Jacquet-Langlands correspondence between SL2 and
SU(2) to the symplectic case of higher degree. Such
correspondence should be proved by comparison of the traces
of all the Hecke operators. Our results mean that
there exists good relations.of traces at least for T (1)
for some explicitly defined discrete subgroups of Sp(2,R)
and Sp(2) (§2 Main Theorem 1). Besides, they give‘meaningful
examples for Langlands philosophy on stable cpnjugacy
classes(§2 Main Theorem II). Roughly speaking, such
comparison is divided into character relations at infinite

places (which are more or less known) and arithmetics

*) The authors are partially supported by SFB 40,Univ.Bonn

and Max-Planck-Institut fir Mathematik.



at finitc places. Our point is to exccute the comparison

of the arithmetical part explicitly. It seems that our
Theorems are the first global results on such relations

except for GLn(cf.also{24]). In §1, after a brief introduction,
we give a precise formulation on our problems between

Sp{n,R) and Sp(n) for general n, e.g. on how to choose

discrete subgroups explicitly. For automorphic forms

with respect to these explicitly chosen discrete subgroups,

we propose there two conjectures(which were first given in
[21],[23]): coincidence of dimensions and existence of

an isomorphism between new forms as Hecke algebra modules.

For n = 1, these are nothing but the theorems by Eichler
[10],[11], and the above conjectures are a natural generalization
of his results. Langlands[34] has given a quite general
philosophy on correspondence of automorphic forms of any
redﬁctive algebraic groups, but we understand that his
philosophy does not give véry detailed formulation at present
for such typical and expliéit cases as treated in this paper,
and we believe that the above conjectures have its own
interest. In §2, we state our Main Theorems, which assert

that the first conjecture is true also for n = 2. The

proof consists of explicit calculation of dimensioné.

Such explicit dimension formulae, given in §3 Th.3.2,3.3,
3.4,3.5, have their own value. Our Main Theorems are

corollary to the results in §3 and [16],[19],[24].



The proof of the formulae in §3 starts from §4. In §4,
for the convenience for the readers, we giVe expository
review on the results in [15},316;,i19) how to calculate
dimensions. In §5 and §6, we list up explicit data which
‘are needed for the calculation of dimensions. Ink§7,

we give a brief survey on some related topics.



§1. Conjectures

Let G and G' be two different reductive algebraic groups
over algebraic number fields. For some good choice of G and
G', sometimes we know that there exists a correspondence

between automorphic representations T = & 7tv of GA
v

/
and = (24 T, of GA which preserves L functions,
v

where G, or G, is the adelization of G or G'. Langlands [34]

has given a general philosophy on such problems: he defined

LG or LG', and he conjectured that, if

so called L groups
G is quasi split, and if there exists a L-Homomorphism

u : LG' —_— LG, then there should exist "good" correspondence
of automorphic representations. (As for more precise contents
of this conjecture, see Langlands [34], or Borell3 J.)

For example, if G' is an inner twist of G, then I'G '__ELG',
and we can expect a good correspondence. One of the reason
of this conjecture seems to be the fact that there exists

a good character relations between 7T(, and TX.

The basic example is GL(2). The first typical results on
the relation between GL(2) and division quaternion algebras
was due to Eichler[1°7],[!|7], and later completed by many
mathematitians, notably, Shimizu[43], Jacquet-Langlands[?S].
One obvious direction of generalizations of the GL(2)-case

is GL(n), which has been studied also by various mathematitians.



Now, another direction is the symplectic groups,

because we caﬁ regard GL(2) és the sympleétic group of

size two with similitudes. Let Sp(n,R) be the symplectic
group of size 2n, and Sp(n) be its compact twist:

Sp(n) ="fg € M_(H); gty - Tn} , where H is the division
quaternion algebra over R and ~ is the canonical involution.
When n = 2, for pairs of Q-forms of Sp(2,R) and Sp(2),

Ihara (2§) raised a conjectural pfoblem on an existence

of correspondence of automorphic forms({independent from

and older than Langlands [34]). He clarified, amon§ others,
what should be the correspondence of weights(i.e.
representations at infinity) of those forms by showing

some character relations (unpublished). (As for some

other works by him, see(2f ] or §7:) Later, Hina and Masumoto
[20] gave character relations between some admissible
representations of GSp(2,F) (size four) and its inner twist,
when F is a non archimedean- local field. But, there was no
global result, and any global example had not been known
beforecli]. We would like to have some global (and rather
classical) approach to this problem, and aim a generalization
of the typical results of Eiéhler. Even if we restrict
ourselves to such typical cases, the precise formulation
had not been known before[ﬁl]JESK. Besides, such typical
cases have their own fruitful structures. Our aim of this
paper is to give good global dimensional relations in

such cases. This can . be regarded as the first step to the

proof of such correspondence of automorphic forms.



Noxy, we explain our problem more precisecly. Put

t
G = Gsp(n,@ = { g¢ M, (Q); 93°g = nig)d, nigr ¢ @7},

0 -1
where J = K 1 On) and 1n is the unit matrix of size n.

n
On the other hand, let D be the definite quaternion algebra
over Q with prime discriminant p. (We fix a prime number p.)

Put
¢ = {g€n (D); g% = nig)1, nim) € @*}.

Then, G' is an inner twist of G. Let GA(resp.GA) be the
adelization of G(resp.G'), and for any place v of Q, let

] *
Gv(resp.Gv) be the v-adic component of GA(resp.GA)..

We have G, = GSp(n,R) and G!, = GSp(n) (i.e. the group of

symplectic - similitudes). We note that G' T G_ = GSp(n,Q. ).
. . v v v

if v ¥ p,o® . We consider subgroups UA(resp.UA) of GA

(resp.GA) of the following forms:

(1.1) U, = G, P TT Gsp(n,2 (resp.

)
afp d

(1.2) u! G' P'TJ GSp(n,z) ).
A= qip q

where P{resp.P') is an open compact subgroup of Gp(resp.Gé).

and, for any prime q,

- : -1
Gspin,z) = { g€ GSp(n,Q): g, 9 '€ My ()} .



We define automorphic forms and Hecke opcrators.
Let Hn be the Siegel upper half space of degree n:
Ho= {xsi¥; X, Y €M ), *x = x, 'y = v, v> 0,16
n I ’ n ' 14 ’ A0
Y is positive definite ] .
An element g = (* B, €gsp(n,R) acts on H_ by:
cCD ' n :
2 —> (AZ+B) (CZ+D) .
Put
+
GSp(n,Q) = {g € G; ni{g) > O } and
u = U, NGspin,0".

Then, U acts on H discontinuously and vol(U\H ) is finite.

The space Sk(U) of cusp forms of weight k with respect to
U is defined by:

Sk(U) = i holomorphic functions f:on B, such that

(1) £(¥2) = £(z)det(c2+D)¥ for all & = R2e v,

(2) £(2) (@et )¥/? 15 bounded on H, } .

For any natural integer m (p} m), the action of the Hecke

operator T(m) on S#(U) is defined as follows: Put

T(m) = L} UgU, where g runs through elements of
g

Am={96 GNM, (2); thq=mJ} -

a
We take a coset decomposition T(m) = || Ug, (disjoint).
i=1

For any £ € Sk(U), we define f,T(m) by:



.

(£1T(m)) (z) = mPk-R(N*1)/2 5 f(giz)dcucizmi)'k.

i=1
Ai Bi
where gi = Ci Di).

On the other hand, let (/ ,V) be an irreducible representation
of G' . We regard P as a representation of GA~by composing
it with projection: P : G\ —> G —> GL{V).

The space MP (Up) of automorphic forms on G, of weight /o »

A
with respect to UA is defined by:

Mf,‘ () = {£: 6} —> Vv; f(uga) = P (uf(g) for all a€ G,
u € U}, and g € G} } .

As well known, we can realize V in a space of some spherical

functions. The strong approximation theorem does not hold

for G' and the 'class number' of UA is not one in general.

A 'classical' interpretation of Mf (UI'\) is given as follows:

h
Take a double coset decomposition G = 1l vu!g,G' (disjoint),

i=1 A7
and put
r = -1 '
(1.3) N 95 Uigiﬂ G'.
Put
Vr'i ={v€v' f (¥)v =v for all XGI-—'}
. r i -
then, we have
h r
- . - i
(1.4) ..MP (UA) 121 v

where the isomorphism is given by f —> (F(9;1)f(91))1=1...h .

Let f., be the representation of Sp(n) which corresponds



- — . - e s

i1 e o s

3 I {4
with thce Young diagram .. . . ‘] . } n .
n . . v

J

) N
We extend it by putting jf, (a‘ln):an for a ( R, a > 0.

We write &/.V(UA) = M/(UA). If -1 € U"\. then MV(UA) = 0 , unless

(—1)“‘} = 1. We put T'(m) = U/ u,'au, (pf/m), where g runs
g9

through elements of
' . x
At =1{g= g, €64 g,€ M, (z) and nlg ) € mz} for

all finite v } ]

Take a coset decomposition

d.
' (m) = Ll gjU}, (disjoint).
1=1

For any £ € M,(U}), £|T'(m) is defined by:

dl
(£lT* (m)) (g) = )M (g.)£(g! " 'q) , g €@G.
o, H9fley A

The (abstract) Hecke algebra spanned by T(m) (pX m) is
isomorphic to the one spanned by T' (m) (p,{m) . We sometimes

denote T'(m) by T(m). For a common eigen form f & Sk(U) or

M,(U;) of all the Hecke operators T(m) (p{ m), the L function

of £f is defined (up to the p-Euler factors) by:

L(s,F) = the denominator of > A(mm °, where T(m)f = \(m)£.
Ptm

Now, we review a typical case of Eichler's results on GL(2).
Let O be a maximal order of D and Op be its p-adic

completion. Put P' = op in (1.2). On the other hand, put

P = {g = (2 g) € GL(2,2,); ¢ =0 mod.p].



In the usual notation, U = ro(p) in this case. We write

» . .
UA = OA in this case.
. 0 1*
Theorer 1.5(Eichler [19],[11]) If we denote by S, (L ' (p))

the space of new forms of Sk(ro(p)), then for k2 2,

X, _ <0 : =
we have: Mk-Z(OA) = Sk(ro(p)) (®c, if k = 2),

as modules over Hecke algebras(i.e. this isomorphism preserves

L-functions).

The new forms S](:‘Fo(?” are actually defined as the
-1
orthogonal complement of Sk(SLz(Z” > Sk(fSI..2 (Z)f ) in

Sk(f' o (P)) with respect to the Petersson inner metric,

where p = (g -;). So, we get

Corollary 1.6 (Eichler, loc.cit.) For k=< 2, we have
dim My (0,) = dim 5, (7 (p)) - 2 dim s (SL,(2)) + s,

where § = 1, if k = 2, and & = 0, otherwise.

This Cor.1.6 will be extended for n = 2 in this paper.
But, before we state our Main Theorem, we would like tc
propose general formulations and conjectures. If we want to
generalize such a simple and beautiful typical results,

several natural questions arise:



(1) What are the corresponding weights in the general case?

(2) What kind of U or UA should be taken instead of rb(p)
and OA ?

(3) What are new forms?

The answer to the question (1) for n = 2 is given by Ihara.

The general case seems more or less known: If we take Siegel

cusp forms of degree n with weight k 2 n+1, the corresponding

weight of automorphic forms on GA should be f)k—n-

9
To questions (2) and (3), a hypothetical answer has been

given in Ibukiyama [27],[237],[24): First of all, as far as

we take UA or UA as in (1.1) or (1.2), this guestion is a local
problem how to choose P or P! Secondly, it is known that

évery reductive algebraic group over a non archimedean local
field has the unique minimal parahoric éubgroup up to
conjugation(Tits [46] ). Roughly speaking, the minimal
parahoric subgroup is a group such that its reduction mod.p

is the Borel subgroup. For example, P or P' chosen in Th.1.5

is minimal parahoric. So, it is natural to choose the minimal
parahoric éubgroup“ B of Gp or B' of Gé as the first

candidate for P or P', respectively. (aAs for another kinds of
candidates, see[23),[2¢4].) To obtain new forms, we should
subtract automorphic forms belonging to UA or UA with

P;g B or P'2 B'. To explain more precisely, we review briefly

the Bruhat-Tits thebry. The exterded Dynkin diagram of Gp

is the Coxeter graph of the affine Weyl group W of Gp, and



the set S of summits of this graph can be regarded as a

set of generators of W as a Coxeter system. We fix a

minimal parahoric subgroup B of Gp. By the Bruhat decomposition,
there is a one to one correspondence between the set of

all subsets O of S and the set of all subgroups of GP
containing B. More precisely, for each w £ W, there is a

good representative of w in Gp’ which we denote also

by w. For a subset § of S, put

P g = {the group generated by all double cosets BwB such
that w € 9) .

Such groups are called standard parahoric subgroups.

Then, we have PDD B, and Py = Pp', if and only if § =0,.

Besides, every group P which contains B is obtained in

L}

G . For f C s,

this way. For example, P,s = B and Ps' b

we put

’ and

(1.7) U (p), = GoPy TT GSp(n,z

)
qip d

1]

Uglp) = Gsp(n,Q)" N Uy (p),.

The above theory is completely the same also for G!"' and

we denote by S' the set of generators of the affine Weyl

group of GI'-'" We denote by P' the standard parahoric
subgroup defined by §'C S'. We put

(1.8)  UL(P), = G} P, 1T GSp(n,z,).

qfp

We often omit the suffix A in this case, because we do not



trcatl ‘'global® disrcte subgroups. We put Up(p) = B{p)
and!ﬂ¢(p) = B' (p). The second named author gave the

following conjectures({21);[27) :

Conjecture 1.9 - For any integer n , V = 1, we should have:

(110 > =0 Plain s
fC s
8 tS

pn+1 (T ()

_ #(0 )., '

= Z (-1 dim M, (U (p)).
§ C s
el¥ S'

1f y = 0, we should add one to the right hand side.

We define the space Sg(B(p)) of new forms of Sk(B(p)) as

the orthogonal complement of :Z: Sk(Ue(p)) {summation as
#(6)=1
9 C S

C-vector space) in Sk(B(p)) with respect to the Petersson
inner metric. We define MS(B'(p)) completely in the same way.
These definitions mean that the p-adic admissible representatisn

attached to a new form is the special representation (cf.f%‘]}.

Conjecture 1.11 For any integer n =21 and ¥ =1 , we have:
(1.12) s ) = Mlmrp)
- Y+n+1 P Y '

as modules over the Hecke algebra spanned by T(m) (pX m).

My



For n = 1, thesc conjectures arc nothing but Th.1.5 and
Cor.1.6 by Eichler. For n = 2, Conjecture 1.9 is true

(at least) for Y2 2 and p 4 3. This is our Main Theorem.
For n = 2 and p = 2, there has been given some explicit

)
examples £ € SS+3(B(p)) and £ € M)(B’(p)) in Ibukiyama [21]

such that Euler 3-factors of L(s,f) and L(s,f') coincide
with each other and satisfy the Ramanujan Conjecture at 3
(i.e. thése cannot be obtaiqed as: 'liftings' of one
dimensional automorphic forms). For general n, the

both sides of - (1:10) are expressed as a sum

of contributions of conjugacy classes of elements of G or G'.
For some conjugacy classes, we.can show the equality of
contributions. For example, the main terms(i.e. the
contribution of the unit elements) of both sides of (1.10)

coincide with each other and given by:

2(V+1) (V+2) ... (V+n) TT 2V +i+3 ;&1 < (2i)
n! 1Si€jsn  i+j (27c)n(n+1)

3 2n-
X (p=1) (p3=1) ... (p2 -1y
As for this kind of relations for another algebraic groups
which are not symplectic, see Ibukiyamal[23]
We have some results also for some kind of unipotents

elements of G or G'.



§2. Main Theorem
In this section, we explain our Main Theorem more
in detail. For n = 2, the extended Dynkin diagrams of

Gp andvcé are given as followsi

Gp O=——=0u====0 P)
So ST 52
G! 0——0
) ' ’
so s]

where f so,s1,52§» or"{sb, s; } is the set of generators

of the affine Weyl group W or W' of Gp or Gé, respectively.
We can take the minimal parahoric subgroup B of GP

as follows:

* x & &

o x* &k & &
B = GSp(Z.Zp) N g* p* * p* ’
p* p* * *

where * runs through all the p-adic integers..

We can fix representatives of si(i=0,1,2) in Gp as follows:

00-p !0 0100
s = |01 0 O s = [ 1000
0 p0 0 O ’ 1 0001 ’

60 0 1 0010

100 0

000 -1
2" loo01 o .

010 0



oC C

Put f =

-

r—

~

oT OO0
|

OO 2O

C OO -

Then, it is easy to show that

A B - 1
P{s .= B ) Bs_.B {(c D) < GSp(Z,Zp): C= 0 mod.p| ,

1 1

* * * *

* * * *

n
{]

P B UBs.,B = GSp(2,2._)n |P
{523 S2 Pl P N p* p* * p*

\p* * & *
-1
P = B|J Bs.B = P
s} 0B = P Psyf
* * p-1* *
* * * *
= Gsp(2,0)N | P ,
P p* p* *  p*
p* p* * *
* * p-1* *
* * * *
Pio s,y = OSP(2:0) N P '
0' 2 p* p* * p*
p* * * *
- -1
P = GSp (2,2 ) and P = GSp(2,2 )
{s475,) e {sgrsy) 7 o

where * runs through all the p-adic integers. For the sake

of simplicity, we write PZ so} = PO' P{so'szﬁ = POZ' etc.



The relations of the standard parahoric subgroups of G

are illustrated as follows:

Po2

which means that every face is the intersection of
its boundaries and every summit is spanned by simlicies

containing it. For example, P2 = P02 N P12 and

Pyy is generated by P, and P, etc.

To explain the parahoric subgroups of GI'" it is convenient

to take an another model. Put Dp =D® Qp and
Q
- _ L w0 1 ts x
et = {g €M) g§ 3% = ntg)1, niar € o | -

Then, G; 2 Gp. We fix such an isomorphism once and for all.

Let Tt be a prime element of 0p =00 Zp. We can take
: Z

a minimal parahoric subgroup B' of GE’ as follows:

B' = ( %p op)xn G*.
T(.Op Op P
We can put -
s) = (%T;q) , ana s;= ().

Then,



o T 0O\
Po = Pisey = ( ’ Pl 7y 6 and
0
o o)
\T0p P
L ' = *
P} p]s;) MZ(OP)/\ Gx -

We can illustrate these groups as follows:

o————o0 P!

PQ
B' 1

0

We define Ue(p) or U;(p) as in (1.1), and put

Ug(P) = Uy y (P), etc. In the notation of [21],[23],[24].
0

Uy p) = [tp)s U,(p) = [Cp(p)y Uglp) = [T p(p), and
Uoz(p) = K(p). You can get an expression of Ua(p) or B(p).,

if you replace p-adic integers or numbers by rational
integers or numbers in the expression of 'P. or B,

and take n{qg) to be one. We have no standard
global expression of Ué(p) or B' (p), partly because

the 'class number' of G' is not one. You can find some

explicit examples of I~i defined in (1.3) in [21],[2¢],



Main Thecorem 1 For n = 2, any integer k Z2 5, and

any prime p £ 3, the conjecture 1.9 is true, i.c., we have
the following eguality:
(2.1)

dim s, (B(p)) - dim S, (Uy(p)) - dim S, (U, (p)) - dim 5, (U, (p))
+ 2 aim S, (Sp(2,2)) + dinm S, (Uy, (p))

= dim M,_,(B'(p)) - dim M, _,(U}(p)) - dim M__; (U} (p)).

As we shall explain in §4, dimension formulae are expressed
as summations over the contributions of conjugacy classes
of elements (with ni(g) = 1) of G or G' of various
types. Any elements of G' (with n(g) = 1) are.

semi simple, because they are embedded into the compact
group Sp(2). We have G® C = G'® € = GSp(2,C).

Let C be a conjugacy class of some semi simple elements

of GsSp(2,C). It is well known that C is determined

only bf.the principal polynomial f(x) of all elements of C.
Let T(f) (resp.H(f)) be the set of all G-(resp.G'~)

conjugacy classes contained in C.

Main Theorem IIX The contribution of non-elliptic

(i.e.non torsion) conjugacy classes to the left hand side

of (2.1) is zero. For any polynomial f(x) which is the

e, S — i e e T e eeem

oxder, the contribution of T(f) to the left hand side

of (2.1) is equal to the contribution of H(f) to the zight

hand side.



Remark 2.2 This Main Theorem II can be regarded as
an evidence for the philosophy by Langlands[36] on stable
conjugacy classes.

Remark 2.3 The proof of the Main Theorem consists of
an explicit calculation of each dimension. Some of the
above mentioned dimensions have been already known:

dim Sk(Sp(Z,Z)) by Igusa[27](cf.also[16]), dim s, (U, (p))

by Hashimoto [16), dim S (p)) by Ibukiyama[24], and

x (Yo2

dim M,_, (U} (p)) (i=0,1) by Hashimoto and Ibukiyama[19].

So, we shall calculate dim Sk(B(p)) explicitly in the
following sections. We note that (2.1) has been known for
P = 2 with k2 3, although we must add one to the right
hand side, if k = 3 (cf.[24]). For general p, we need

the trace formula, but it does not work well at present,
unless k= 5. We assumed p ¥ 3, because it sometimes

makes computation easier. By virtue of the above mentioned

results, we can also assume that p f 2.



§3. Explicit dimension formulac

In this section, we give explicit formulae for the
dimensions of Sk(B(P)_)' 5, (U,(p)), and M, (B'(p)). The
proof will be found in the following sections. First, we
treat B(p) and U2 (p). Thc; dimensions are expressed as

sums of contributions of B(p)- or U2 (p)-conjugacy classes.

But, by definition, we have B(p), Uz(p) C sp(2,2).

So, it is convenient to group together those B(p)- or 02 (p)-
conjugacy classes that are contained in a Sp(Z,Z)—conjugacy
class. Representatives of the Sp(2,Z)- conjugacy classes of

elements of finite order were given by o(i(i=ol...,22) ’
B li=1,...,6), ¥,(i=1,2,3), or . 6,(i=1,2), up to sign,

according to the notation of [|b]. The non-semi-simple
Sp(2,Z)~conjugacy classes are divided into various types as
in[tt). and those which . have a contribution to the

N\
dimension formulae are of type + B;(n)(i,...,10),
A A A
&, (m,n) (i=1,...,4), + 0, (n) (i=1,2), & (n)(i=1,...,4),

A
+ ¥,;(n)(i=5,6,7), oxr 3 Ei(s) (i=1,...,4), according to

the notation in[[t]. We use above notations to denote the
set of conjugacy classes of that "type". For example,
A
0(1(resp. p ) denotes the set of Sp(2,2)-conjugacy classes
A A
which contain oy or - &, (resp. f,(n) or ~@ ,(n) for

some n& 2, n ¥ 0). For U = B(p), or U,(p), and a set C



of some Sp(2,2)-conjugacy classcs, we denote by t(U,C,k)
the total sum of the contributions to dim Sk(U) of
U-conjugacy classes contained in C. We sometimes omit U
and denote it by t(C,k), if no confusion is likely.
The principal polynomial of the above Sp(2,2)-conjugacy

classes are given as follows:

(3.1)
£,(x) = (x—1)4, or f,(-x) for :cxo, + Ei(i=1,...,4),
aQ
£,00 = (=12 (x+1)? for § (1=1,2), & (1=1,...,4),
. .
181‘1‘102)'
£4(x) = (x—1)2(x2+1) for + f,(i=5,6), * 2}}1=7.-...10)a

£,00 = =D (xPexs)jor £40-x) for 1 g (1=1,2),2 B4 (1=3,...6),

£5(x) = (=12 (x>-x+1), or £,(-x) for 1 g (1=3,4), +4,01,2),

I+

£_(x) = (x2+1)2 for + o, & (4=1,2), . (i=1 4)
6 . ' 1' i ’ [ 4 i [ AL 2N ) ’

A
£,0x) = (x%+x+1)% or £,(-x)  for & o, (1=2,3), * ¥, (1=5,6,7),

I+

fg(x) = (x°+1) (x°+x+1) or f4(-x)  for + o (1=19,20,21,22),

£g(x) = (x%+x+1) (xP-x+1) for + o, (i=7,8), o, (4=9,10,11,12),
_.4..3 .2
f1o(x)- x +x"+x“+x+1 or £,,(-x) for 2 di(i=15,16,17,18),
£.0x) = x 41 for o, (i=4,5) " .z o,
f..(x) = x3-x241 for O, (i=13,14)
12 i ’ °



Theorem 3.2 For a natural integer k< 5 and a prime

Pt 2,3, dim 5, (B(p)) is given by the summation of the

following guantities:

(k) = (pr )2 (p2e1) (2k-2) (2k-3) (2k~4) /2735,

L k) = (p+1)(1+(3%—))(—1)k/26.

0oy k) st ( Ay k) = = (pe1) (14 (1) /2.3° x [o,1,-15 3],

6 1 ... if p= 1 mod.8,
Z t(dilk) = [1' 0, 0' -1: 4]
i=4 © ... if pZ% 1 mod.8,
12 -3 4
Z t(di'k) = [110101"110007 6](1"‘( ) )) 9
i=7
1 ... if p= 1 mod.12
= -—Z—. -~ [ -

t(a13lk)+t(d141k) b 3 [0'1' 1, 3] { O otherwise,
18 . 8 ... if p= 1 mod.>5
Z t(O( k) = ‘—i'" [110101"‘1:0; SJ 1 ... if p=25
i=15 i 5 |

0 ... otherweise,
22
1219 tloty k) = -0 2 e G0 [1,0,0,-1,-1,-1,-1,0,0,1,1,1512)
LB K)+E( ByK) = (pr1) (14 () [2k-3,-ke1,-xe2; 3] /2733,

g3 KPE( oK) = (pr1) (14(72)) /273

x [-1,-k+1,-k+2,1,k=1,k-2; 6],



LB K+t (B k)

t(k}.k)+t(r2,k)

t(T 3,k = (p+1) (14

]

t(SH,k)+t(sé,k)

A A

t( P k)+e( B, k)

P A
t( p3rk)*’t( p4'k)

A A

A A
t( B k)+t( fg,k)

A A

a A
t( 6‘1.k)+t( Jz,k)

»

n

A
t( $3Ik)+t( S4lk)

[}

A A
t( $1¢k)*t( 52,k)

t(£1lk) = (P"’1)/61

(p+1) (14 (

5 (p+1) (14 (=) ) (2k-3) /253,

1
P

(

3 _ay /23
=11 (2x-3) /37,

7(p+1) 2 (-1) ¥ (2x-2) (2x-4) 72832,

g ) [0,1,1,0,-1,-1; 6] /3,

(1+(

-3

=1+ ( P

M [2,-1,-1; 3] /3%,

-1

- (1+( P

nl1,-1,0; 3]-%—

-1

> n[1,-1,-1,1; a4,

= (1+(

=1

= -

Ml1,-1,-1,1; 4)/4,
-1%/2,

- (=L 3
(3- (= /2%,

- (p+1) (1) * (2k-3) /223,

; 1)[k=2,-k+1,-k+2.,-k=1; 41/2%3,



t(E, k) =0,

: 2 2 4.2
tl&3,k) = ~(p+1)/273, t{ £4,k) = - (p+1)“(2k=-3)/2737,
t(a’-"k)"’t((rz'k) = t( 53uk)*t( 6’41}() = = (1+( P ))Y/27,
A A e A 2 -3
t(Usik)""t( 56'k)+t( 3‘7,1() = - ""3"’(1"’( P ))1
where (—%—) is the Legendre symbol and
[.to"°"tr~1; r | means that we take the value ty if
k =1i mod.r.
Theorem 3.3 For a natural integer k= 5 and a prime

number p ¢+ 2,3, dim Sy (U, (p)) = dim S, (Uy(p)) is given

by the summation of the following quantities:

(p+1) (p2+1) (2k-2) (2k-3) (2k-4) /27335,

of

(% ,X) (p+1)(1+(:£;—))(‘1)k/27.

(A, k)t 3,k = - (p+1) (1 (52)) [0,1,-15 377223,

o

] 1...if p = 1 mod.8
2. t(a,,k) = ——[1,0,0,-1;4]
=4

.

0...otherwise,

12

2, tia, k) = 201+(-2)[1,0,0,-1,0,0;6] /32,
i

i=7 P



1 ~ |V ... if p= 1 mod. 12
tidh ket (X, k) = ——lo0,1,-1; 3.,
+ 0 ... otherwise,

4 ... if p= 1 mod.5,
18
L t(et k) = ——[1,0,0,-1,0; 5]y 1 ... if p = 5,
i=15

0 ... otherwise,
22 -1 ,..-3 2
1,21.9 t(dilk) = (2+‘ p )+( p )') [1l°,0f-1'-1"'1'“1,0’0'131,1;12]/2 34
tOB K e,k = (p+2+(_; 1) [ 2k-3,-k+1,-k+2;3) /2333,

t( @ 3'k)+t( P 4Ik) (p+2+ (:%—) ) [ -1 ,"k"’“ '-k+2,1'k-1 'k-2;6]/2332,

LB 5K+t ¢ k) (p+z+(1;—) ) [X=2,-k+1,-k+2,k-1;4]/2°3,

-1

7
P )) (2k-3) /273,

t( 8’1,k)+t_( b’z,k)

S5(p+1) (1+(

LK) = (pr1) (1+ (Co)) (2k-3) /2437,

‘t(gA,k)+t( gz,k) 7(p+1)(-1)k(2k-2)(2k-4)/2832.

t(ﬁ k)+t(ﬁ x) = 3+ 0,1,1,0,-1,-1; 6] /22
1’ 2’ —p' el yU,,=1,=17 /23’

-3 2.2
S l2-1,-15 3772%5,

A
LB Kt (f k) = - (3+



ST B [1,-1,0; 3}/3% ... if p = 1 mod.3,
#s Pe 1-1L2,—1,—1:3) /3% ... if p= 2 mod.3
2 A - 4

E(B 5 k)l f g k) = = (3+ (=5 M[1,~1,-1,1;47 /2%,

B A -1 4

EOB g+t fygrk) = -3+ (-0 [1,-1,-1,15 4)/2°,
Y, a .

E(T K300 = (-n%/2%,

A A
(35Kt (3 k)

i

(3- (:I’—,—)') /24,

t( §1,k)+t( gz,k) -(p+3)(—1)k(2k~3)/243,

t( €,k = (pe1)/2%3,
t.( Ezrk) = 0,
£(€ 5k = -(p+3)/2%3,
t(E k) = - (p+1) % (2x-3) 72°32,
~ A A o -1,y /53
BT R 0 = £ 5 K)+E0) k) = = (14 () /2,
A N A -3
t‘(,‘YS'kv)*t(?,G'k“#w7'” = -1+ (373,

where the notations are same as in Th.3.2.
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Numerical examples of dim Sk(B(p)) and dim Sk(Uz(p))

for small k and p.

In the following tables, we write dim Sk(B(p))~in the second row,

and dim Sk(Uz(p)) in the third row.

(i) p=5

k 5 6 7 8 9 10 11 12 13 14 15 16

B(p) 2 15 10 43 27 90 64 166 116 267 203 412

Up(P) 4 2 2 6 6 15 13 27 20 42 37 68

(ii) p = 7
k 5 6 7 8 9 10 11 12 13 14 15 16

B(p) 1145 43 125 123 277 263 505 471 825 791 1281

UP) 2 5 7 15 17 34 37 63 61 100 104 160

(iii) p = 11

X 5 6 7 8 9 10 11 12 13 -4 15 16

B(p) 66 202 283 603 756 1340 1581 2501 2854 4190 4679 6503

U(P) 5 12 21 42 60 103 130 198 229 331 338 528

(iv) p = 13
k 5 6 7 8 9 10 11 12 13 14 15 16

B (p) 141 387 578 1140 1507 2521 3120 4710 5557 7855 9094 12236

Uy (p) 12 27 45 80 113 180 232 337 403 556 662 875




Thcorem 3.4. For a natural integer k2 5 and p § 2,3,
we have

dim Sk(B(p)) - dim Sk(UOSp)) - dim Sk(U1(p)) - dim Sk(Uz(p))

+ @im §, (U, (P)) + 2 dim S, (Sp(2,2))

12
= L Ti ’
i=1

where T, is the contribution of semi-simple conjugacy classes

whose principal polynomial is £, (x) or £, (-x) in (3.1).

Non-elliptic conjugacy classes(i.e. of infinite order)

has no contribution. Ti(i=1,...,12) are given explicitly

as follows:

T, = (p=1) (p°=1) (2k-2) (2k-3) (2k-4) /2”35,

T, = 7(p-1) 2 (-1 ¥ (k-1) (c-2) /2732,

T, = -(p-1) (1-(:-;—-))[k—z,-k+1,-k+2;k-—1; 17 /23,

T, = ~(p-1) (1-(:%-))[2)(—3, ~k+1, —k+2; 372333,

T, = ~(p-1) (1-—(33—))[-1,-k+1,-—k+2,1,k—1,k—z; 6] /2332,

Te = (p=1) (1-(12-,-)) [ -x+1,-x+2; 2] /2%3,

T, = (p=1) (1-(:-:,—” [-2x+3,~2k+2,-2k+4; 3 ]/ 2333,

Ty = (1-(:%-))(1-(2%-))[1,o,o,-1,—1,-1,—1,0,0,1,1; 12] /223,



Ty = (1-(’—3—))2 (1,0,0,-1,0,0; 6] /32,

’ . if p = 5'

1 2 ... if p= 2,3 mod.5,

10 —S_"L1iolol"1to7 5))‘
4

-3
]

... if p= 4 mod.S5,

0 ... if p= 1 mod.S5,

1. if p= 7 mod.8

-3
)

;1= [1,0,0,-1; 4] o
ee O erwise,

1 ... if p= 11 mod.12

<)
i

12 ——;— [110101"1121'27 6] {
0 ... otherwise,

where the notations are same as in Th.3.2.

Proof. One can get this Th.3.4, by straight forward
calculation, using Th.3.2, 3.3 in this paper, Th.6.2, 7.1
inllt], and Th.4 in[24]. q.e.d.

Next, we treat B'(p). In this case, every element of G'
is semi simple, and if it is of finite order, then its

principal polynomial is one of fi (x) or fi(—x) in (3.17).
For any open compact subgroup U of GA, we denote by Hi (V)

the contribution to dim MO(U) of elements of G' whose

principal polynomial is fi(x) or fiﬂ-x). For g ¢ Sp(2),

-3



it is wecll known that trpy»uﬂ depcnds only on the principal

polynomial of g and tr fv(g) = tr A, (-g). We fix an

element 95 € Sp(2) whose principal polynomial is fi(x).

Now, we state our results.

Theorem 3.5 For any U as above and any integer ) =2 0,
we have 12
dim M |, (U) = )  H (U)tr fulg,).
i=1

For any prime p ¢ 2,3, and U = uitp), Ug(p), or B' (p),

Hi(U) is given as follows:

(p-1)/2%3%s,

Hy (B* (p))

H (U3 (p)) = (p-1) (p2+1)/2%3%5,

(p2-1) 728325,

H, (U] (p))

H,(B*(p)) = H,(Uy(p)) = O,

7(p-1)2/2%32,

H, (U} (p))

Hy(B' (p)) = Hy(U3(p)) = O,

Hy (U3 (p)) = (p=1) (1-(=1-))/2%32,

- 3]-



H, (B' (p))

H, (U2 (p))

HS(B'(p))
HS(U;(p))
He (B' (p))
HG(U;(p))
HG(Ub(p))
H7(B'(p))
H7(U;(p))
H7(06(P))
Hg (B' (p))

Hg (U] (p))

H9(B'(p))

ng(u;(p))

ra

Hq(Ué(p)) =0,

(p—1)(1-(2§—))/2332.

Hg (U2 (p)) = O,
(p—1)(1-(2§-))/2332.

(p+1)(1—(:%-))/25 + 5(p-1)(1+(:%—))/253:

5(p-1)/2°3 + (1-(2%—))/25.

-1

6
273,
P ) /273

(p+1)(1-(:%—))/26 + 5(p=1) (14

2 -3

.al
P ))/2-3%,

+ (p=1) (1+(

(p+1)(1-(2%—))/223

(p-1)/2-3% + (1-(:%—))/2?32,
2

3

(p+1)(1-(:%—))/2 32 . (p-1)(1*(:%-))/2232,

HB(Ub(p)) =0,

-1 -3 2
1- (&==—)) (1-(Z2=)) /2“3,
(1-¢( D )) (1=« P ))/273

Hg(Ua(p)) =0,

=3 ,,2,,2
(= 5-17/3%,



Hio {B'(p))

Hio (U] (p))

Hyo (U3 ()

H,, (B (p))

Hy1 (03 ()

Hq, (06 (p))

H,, (B’ (p))

H12(Ui(p))

H,, (U} ()

"

n

L]

]

L]

1/5
2/5

. if p = 5,

. otherwise,

if p = 5,
if p= 4 mod.5,

otherwise,
if p = 5,
if p= 2,3 mod.5,

otherwise,

2 2
(1 (p))/2 ’

0
1/4
1/2

if p= 1 mod.8,

... if p= 3,5 mod.8,
eee if p= 7 mod.8,

2 3
(1 (p )y/27,

{

i

1/3

1/6

1/6

if p=5 mod.12,

otherwise,

if p= 5 mod.6,

otherwise,

if p= 5 mod.12,

otherwise.
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Remark The above results {for Ufl {(p) and Ub(p) has becen
already given in L 191, includéing the case where p = 2, 3.

We reproduced them here for thc convenience of the readers.
The Weyl character formula gives explicit values of tr/m(gi).

which has been calculated in [19](1) Th.3(p.596).

Theorem 3.6 For any integer J =2 0, put k = ) +3.

For any prime p ¥ 2, 3, and for the above'k, define Ti

(i=1,...,12) as in Th.3.4(, although k might be 3 or 4).

Then, we get
(B, (B' (p)) - H (U3(P)) - H,(Us(pP))) tr/&(gi) =T,
for all i = 1,...,12.

Proof. This is obtained by. straight forward calculation. g.e.d.

We see -very easily that M,AU%(p))f\ MV(Uatp)) = 0, unless
Y =0, and dim(M (U} (P)) N HO(U(')(p))) =1, if Y = 0, so the.

dimensions of new forms belonging to B' (p) is given by:
. 0 - ' - ' -
aim (8" (p)) = dim M (B' (p)) - dim M(U}(p)) - dim M (U} (p)) + 3,

where § = o, if V4 0, and § = 1, if ¥V = o.



Numcrical exampler of dimensions of M AR’ (p)), M, (U;(p)) (i=0,1),

and new forms MOV(B' {p)).

(1) p =5

v 0o 1 2 3 4 5 6 7 8 9 10 11 12 13
B'(P) 5 4 5 8 15 22 34 47 67 87 115 146 184 225
uitPl 2 o 3 o0 6 0 14 3 23 6 33 10 53 21
%P 3 o 4 1 2 2 3 3 s 5 7 8 10 11
new
forms ©0 1 1 7 7 20 17 41 39 76 75 128 121 193
(ii) p =7

% 0 1 2 3 4 5 6 7 8 9 10 11 12 13
B'(P) 5, ¢ 14 28 50- 80 122 176 244 328 430 550 692 856
vit® 5, o 5 0 16 3 29 8 55 21 85 37 133 67
BU® 43 94 9 2 3 4 5 6 8 10 13 15 18 22
new . . . . . R
forms O0° 5 8 26 31 73 88 162 181 297 332 498 541 767
(iii) p= 11

v o0 1 2 3 4 5 ¢ 7 8 9 10 11 12 13
B' (P) 5 27 74 156 285 467 718 1044 1457 1965 2582 3314 4175 5171
UiP) 5 116 3 45 16 99 48 186 106 296 182 474 318
UfP) 3 4 2 3 5 € 9 12 16 20 26 32 40 48
new '
forms 2 25 56 150 235 445 610 984 1255 1839 2260 3100 3661 4805




13

(iv) p

y o 1 2 3 4 5 6 7 8 9 10 11 12 13

B'(p) 13 53 144 304 555 911 1400 2036 2841 3833 5036 6464 8143 10087

UsP) 4 o 23 7 70 32 154 88 288 184 483 333 750 546

Ug® 2 2 3 5 8 10 14 18 24 30 39 47 58 70
new
forms 8 51 118 292 477 869 1232 1930 2529 3619 4514 6084 7335 9471
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§ 4 Arithmetic General Formula for Dimensions

4-g, This section is mostly an exposition of [15],[16], and [19].
Our purpose is to describe the general Yarithmetic" formulae for

the dimension of our space Sk(I’}Qngéygl omorphic forms for arith-
metic subgroups of Sp(n,R)y, and Sp(n). Here n is an arbitrary
positiva integer. These formulas, Theorem A in § 4-2 and Theorem

B in § 4-4, enable us to compute explicitly the dimension of Sk(I"),
ﬂk(UR) for the special gfoups considered in § 1, 2, and 3, as

we shall carry out in § 5, 6, which lead us to our main results

in this paper.

In the split case (i.e. for Sp(m,R) ), our formula is based
on Selberg’s trace formula ; and the derivation of our formula from

Selberg’s formula consists of two main parts i.e.,

(i) evaluation of certain integrals (analytic parﬁ), and

(ii) classification of conjugacy classes in I' and their
centralizers (arithmetic part)

(ii)(bis) wvhen the conjugacy classes in question are semi-simple,
ve need only GA-conjugacy classes instead of I"-conjugacy

classes, and certain - G-MaBes (see Theorem (4.31)).

On the other hand, in the compact case (i.e. for Sp(n) ), our

formulg can be obtained in quite elementary way as a special case
of the t:ace‘formula for the Brandt matrices Bf(n) (c.f. [ 15 )
which “gen'eraltizes the method of Eichler [9,10] and Shimizu [43 .].

Here the analytic part (i) is quite simple: it is nothing but
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the character computation of the finite dimensional representation
f , which is nou a classical result of H.uWeyl [so 1. Therefore,
the essential part of the derivation of our formuls consists of
only (ii)(bis), although explicit comptations are not so easy.
Moreover, as we shall see, the arithmetiﬁ part (ii)(bis) can
be handled in a unified manner in both Sp(n,R) and Sp(n) cases.
So we first describe this part in the following paragraph, uhere
certain arithmetic invariant H(g, UA) will be defined for a semi-
simple conjugacy class of GL, a Q-form of Sp(n,R) or Sp(n),
and a closed formula for it will be given. It would be convenient,
however, to describe here the motivation to introducing such invar-

iant by sketching the special meaning of it in the compact case.

In the compact case, our space ﬂk(UA) of automorphic forms

H
is isomorphic to C) VIE (c.fe. § 1 ), so we have

i=1
dim nk(uA) = _H1 dim vri
1=
4.1 - _r 3
(4.1) 5.Z='1 e JeT tr(fk(g))
H #[nncr]
= Z i
g€Lr] tr(fi(a)) i§1 # I

where [f ] denotes the set of elements of GL (or ﬁ; = Sp(n))
which have the principal polynomial f = f(x). Note that tr(rk(g):
depends only on [fJ] to which g belongs, and that the inner sum
does not involve fk o Thus the computation of din:ﬂk(UA) reduc!
to that of
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; _ Ho #InLf]
(4.2) H(F, Uy) 1=, ————
i=1 b I;

In general, the set [f] in GQ consists of infinitely many
Ga-conjugacy classes, while obviously only a finite number of
them make nontrivial contributions to dim Nk(UA). This leads to
.the following

Definition 4.3 . A conjugacy class {g} G in Ga is called
Q

"locally integral®™ (with respect to U,) if I}(\{g}c # B
Q

for some i (1< i<H).

For each Go-conjugacy class {g}G s we define an invariant similar
Q

as (4.2):

H #|I
(8.4)  H(g, Up) 1= 3 _LJ_QL[E}:_GQL
i=1 #[ I}

Clearly, {g}ca is locally integral if and only if H(qg, UA) A0 .

Note also that this implies g is of finite order.

4-1, A Formula for H(ag, UA)

Let D be a quaternion algebra over Q (definite or indefinite),

and let the group GQ be defined by

G, =: the group of similitudes of the hermitian spacs

Q -— —
(Dn’ F), F(X,y) = x1y1+...+ xnyn ’

(4.5)
= {oect (0); o'F =n(o)e1, , n(a)ea}} .,

vhere for g = (gij)’- we write tE = (Eji), ar—>a being ths

canonical involution of D, UWe may regard it as Q-rational points
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of an algebraic group G defined over Q. G is reductive.
We odenote its semi-simple part by 6! = ig €&G; n(g) = ‘l} .

In G,, we consider an open subgroup U which, as we assume throu-

A
ghout this paper, is of the form

A

2]

(4.6) u, = RRO\5,

X
= GR"—‘ZUD (U, = RNG, )

for some Z-order R of the OQ-algebra nn(D). Then G is

decomposed into a disjoint union of finite unmber of UA-Gu

double cosets:

H

i A 91 Gg -

By an "arithmetic subgroup I’ of Gq, or Ga , We mean a

H
system of subgroups (I} )i=1 » where

-1 1 -1
(4.8) I‘i = GQ O gi UAgi (= Gun gj_ uAgj_ )°

1t is this system of groups (I;‘).H with respect to which our
i

space of automorphic forms are defined.

If D is definite, then Iz are all finite groups, since they

are contained in the discrete subgroup G;
1UAgi « DOn the other hand, if D is indefinite, we have a

and the compact group

9

natural isomorphism

(8.9) Gy 5 sp(nR), g = (g5:) —> (2 B
° R i ij C D/

253 b4
gij = ( cig dii)’ A = (aij)’ B = (bij) etc.,
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vhere we identify DR = D ®Q k. and nz(lﬂ) ; and 1';’5 are arith-
metic discrete subgroups of Sp(n,R), which act on the Siegel upper
half plane Hn properly discontinuously in the usual manner.

In this case, if R is sufficiently large, we have H = 1 by the
strong approximation theorem (c.f. Knaser[_32]), which is the case
for all srithmetic subgroups of G65p(2,Q) = GQ treated in this

paper. However, to treat uniformly the two cases ( D = definite, or

indefinite), we do not assume that H =1,
We take and fix, once for éll, an open subgroup UA and a
semi-simple conjugacy class {Q}G contained in Ba . Put
: Q

2(g) =: commutor algebra of g in n_(D)
= {zél’ln(D); 29 = gz _} ’

zs(g) = z(g)xnt;u (=the centralizer of g in GQ)

Then 2(g) is a semi-simple algebra over Q, and ZG(g) is an

algebraic group, reductive, over Q. In the set {/\} of Z-orders

of 2(g), ve define two equivalence relations
=1
A.' ~ /\2 = .A2 = a/\1 a for some aéZG(g)

(4.10) A1 au Az o A2 - 8A1 a-1
=N (35 A a2’ 0 2(a))

for some a = (ap)éZG(Q)A .

An equivalence class in the second relation is usually called a G-
genus, which we denocte by LG(A) if it contains A ; it consists

of finitely many classes with respect to the first equivalence
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relation. UWe have a disjoint ogecomposition of I} N {g}c - for
qQ

each i :

(4.11) I}n{g}GQ = 11l c(o, A, 1)NT;
Afn,

vhere we put

(4.12) (g, A, i) =: {_x-1gx 3 x€ Gy 2(9)(\x51x'1~/\} ’

-1 o~ g =1 |
Bi = Qi ﬁ gi = {p\(gip B_p gipn ﬂn(D))

and the union is extended over the (actually a finite) set of &Z-
orders /A of Z(g), modulo the equivalence ~, .

Note that the set C(g,A, i) 4is stable under the conjugation by
I, , and it consists of a finite number of I'i-conjugacy classes.

i
Now we define our arithmetic invariants

| H
H(g, A ’UA):= i;‘l #[c(gsA ’ i)ﬂri /rfl;] ’
(4.13)

. ' 1
H(g, UA)'= %/:v VOI(Axn G; \Ganzs(g)m)'H(gﬁA sUA) L4

Remark 4.14, Note that these are invariants of the Ga-conjugacy

class {g}c . Since H(g, A »U,) # o for only a finite number of
Q

classes of A , the last sum is actually a finite sum. Here the
volume of the quotient N0 G; \ G;n Zt;(g)ﬂ is measured by a
suitably normalized (fixed) Haar measure of G;n 26(9)ﬁ e In the
case B; = Sp(n) (i.e« D = definite), we may take the measure so

normalized that vol(l‘;;n ZG(g)lR) = 1, Then we sea that our invariant
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H(g, U,) coincides with the one given by (4.4), since we have

the following

Lemma 4.15, (D = definite or jindefinite)

1f aec(g, A, i)AI; , then ve have

[:(a;l'ji ) =: centralizor of a in I

= /\x N r,; ( = independent of a, i 1).

For the proof, see [15 ], Lemma 4 . Thus we see that our invariant
H(g, UA) is the weighted average of the number of elements in I}
which are conjugate in G, to g ; and H(g,I\,UA) is a refine-

ment of it. We want to (indeed we should) give them some express-

ions which do not involve H, the class number of U For this

A *
purpose, we put

n(g, T3,A) = {x €6y x'gx eI}, z(a)axp;x ' A A Y

(4.16) HA(Q:UA!A) ={_XEGA3 "-19" EUA’ Z(Q)nxﬂx-‘l A A }

' Coo=1 -1
HP(Q’UP’A) ={X€Gp-, x gxeup. Z(Q),,ﬂ"fpx NAPE .

Then we obviously have the following

Lemma 4,17, The map x"'gx > x  induces the following

bijection for each i (1€ isSH):

c(a, A, i)(\fi ?-; - ZG(Q)\"(Q,I;:A)/I;-.
(c.f. [15 ] ,Lemma 3 )

The next lemma plays a ksy role in our problem, since it snables us

to get rid of H from H(g, UA) :
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Lemma 4.18. For each double coset 'CQ g:‘uA in (4.7),

we have 8 bijection induceo from the map a gI’u t—> a

(aeGQ, ueUA):
Zﬁ(g)\ ”A(QsUA.A)0609;1UA / UR

~

—— ZG(Q)\N(QDI}_:A)/-I;

( IDCQCito ’Lemma: 5)

Corollary 4.19, Ve have

) |
H(g, A,u,) = 2:1#[25(9) \M(g,T},A)/ I}]
l=

To proceed further, ws note that HA(g,UA,I\) is not stable under

the action of ZG(Q)A from the left, and therefore put
(4.20) n:(Q:UA,A) =3 'U “A(Q:UA’A') .

NEL ).
Now consider the natural projection:

p: ZG(Q)\NA(QvUAnA)/ UA —_— ZG(Q)A\N:(Q’UA'A)/ UA

s

1;1' [zgte) N\ (3,0, M)/ UP] .

Lemma 4.21, The map # above is ho(A;G)-_t_,_q_-one, vhere

ho(I\;G) is the two-sided G-class number of A defined by the

following formula
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(6.22)  h_(A36) =z #[2.(9) \2.(a)-1(A) /(A O G,)]

1A) = {z€z.(0),; zAz =AY .
(loc.cit. (18) ).

Definition Let Zc(g)A be decomposed into a disjoint union

h
(4.23) 25y = AL 25(9) v, (A N Gp) s

and put
IET Y ¥ 2% ALTA Yip 0 2(3))-

(i) The number h = h(A;G) of cosets in (4.23) 'is called G-
class number of A, or ILGON) (note that it depends only on the
G-genus LGOA)).
(ii) The invariant of LG(A) definsd by
h 1

(4.248) me(A) =: 3% vol(AgnGQ\GRﬁZG(g)R)
is called "G-MaB (or G-measure)" of A, or LG(A)'

Note that these invariants do not depend on the choice of (yj)
in the decomposition (4.23). It is not difficult to prove the
following

Lemma 4.25, We have

hAsE) = 3 h (A 56)

K
N L (NY,

&®)
m(A) 3/\"‘%:;. (A)/hD(A ;6) vol( N xncu\r;;"nz‘;(g)R )
G ~

( loc.cit., , Lemma 7 ).
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Combining these results, we finally get the following expression

of our invariant H(g,UA)

Theorem 4.26, We have
Higu) = 2 mcN) TT e (gu, A)
S STV T
where

eo(aUiA) = £ [25(), \Mo(a,upuA)/ v ]

Proof. By (4.19), (4.21), ve have

I

H(g,u,) 2, hy(AsG) vol( Axncq\(};ﬂzc(g)ﬁ)

A
x #[25(9) 4 \ Ma(9,u,,0)7 uy]

LE:(A) KeLg(N), "o(K38)-vol (N xpy Gu\c';n ?g(9)p)

x TJ #[ZG(Q)p\ ”p(gvup:Ap)/ Up] .

Here we used the fact that 'ﬂ:(g,UA,A) depends only on the G-

genus LG(A). The assertion nov follous from lemma (4.25). q.e.d.

Ve note that the sum in (4.26), which is seemingly extended over

all G-genera of Z-orders in Z(g), is actually a finite sum (c.f.

Remark (4.14)). Moreover, the products are always finite; thus ue

have

(1) 1f A\ is fixed, cp(g,Up,Ab) = 0, or 1 for .all but fin;tely
many pe.

(ii) For a given p, cp(g’up’Ab) # o only for finitely many
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classes AP/’\' ; moreover such /\p/,v is unique for all but

finitely many p .

Remark 4.27, The G-Mal mc(/\) can be evaluated in a well knoun

manner by using theory of Tamagawa numbers (c.f. Weil [49 _] , See

also [19 ],(1)» § 3).

It would be worth noting that, in the same way as Theorem
(4.26), we can combine (4.11), (4.13), (4.19) and (4.21) to

obtain a closed formula for the sum of the number of I"i-conjugacy

classes in I'in{g}cu (1<i<H) :

Theorem 4.28, Notations being as above, we have, for a semi-

simple element geGa :

= o /7]

i=l

%}\) Ase) TT e (aupu )
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4-2, General Dimension Fformula (Compact Case)

Assume that D is definite. Then our space nS(UA) of
automorphic forms of weight § for an open subgroup UA of GA
is defined as in § 1 . Combining the results iﬁ the precesding
paragraph and (4.1), we immediately have the following general

formula for dim ”P(UA) (2 special case 0= 1,8 = 1 of [ﬁSJ ):

Theorem A. For a finite dimensional representation § of Sp(n),
e have

(4.30)  dimMe(uy) = 2 ngn/gn“(g(g” Lf(;A)"G('\’TpT cp (905, A0),

where the first sum is extended over the set of polynomials f(x)

of degree 2n which are producté of some cyclotomic polynomials,

and the second is over the set of locally inteqral GQ—conjugacz

classes belonging to f(x), and the third is over the G-genera of

Z-orders LGQN) of Z(g) for each representative g of [f]/E' .
Q

4-3, Parametrization of semi-simple Conjugacy Classes

In the actual calculation of dimensions using (4.30), or
(4.40) in the next paraaoraoh. a fundamental role is played by the

following

Theorem 4,31 (Hasse Principle for conjugacy classes in GQ, G;)

Two elements g,, 9, of G (resp. 65) are Gg- (resp. Ga- )

conjugate if and only if they are conjugate in Gp (resp. G; )

for all p . (c.f. asai[2 ], ana [19], § 2).
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for each monic polynomial f(x)é€ Q[x] of degree 2n such that
xznf(x-1) = f(x), we denote by GI[f] the set of semi-simple
elements of 51‘ vhose principal polynomial is f(x). Then the
above theorem means that the following natural map induced by the
inclusion map is injective:

(4.32) GLfF /36 C—> G,Lf] /?; .

This reduces our problem to classify the Gn-conjugacy classes to
those for Gp-conjugacy classes, if we can determine the image of
this map. The latters are much easier than the former, because there
are only finitely many ( € 4, if .n=2 ) Gp-conjugacy classes in each
Gp[fj , and we can choose a representative of classes in Gp [rl

to have a very simple form which enable us to compute cp(g,up,Ap).

If the map (4.32) is surjective (hence bijective), we need
nothing more than just putting local data together. However, this
is not aluays the case; so we shall describe here the image of this
map, under the following conditions: n = 2, f(x) = f‘i(x) (1€ 1£12)
are as in § 3 (for details as well as the general case, sese [193 ,

§2).

Proposition 4,33,

(1) 1f fr(x) is either one of f,(% x), f,(x), f3(z x), f,u(% x),

fs(i,x), fa(i x), or f10(1 x), then (4.32) is surjective.

(ii) 1t f(x) = fﬁ(x) or f7(1 x), then the centralizer of each

element ge¢ Ga[f] is expressed as

(4.34) 2.(g) = a(a)* - z,(a)* ,
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vhere Zo(g) is a8 quaternion alaoebra over Q such that

L@@ F = 0@ F (F=al] HAr(x) ¥ ata) ),

and the product formula 1T invp(zo(g)) = 1  for the invariants
p

gt_(Zo(g)b) determines the image of (4.32) which has index 2

in  G,Lf1 /g .
A

(iii) I1f f(x) = fg(x), fi1(x) or f12(x); then for each slement

g¢ Gu[f] , g2 belongs to either fﬁ(x) or f7(i x), and the image

of (4.32) is determined by Zo(gz) as in (ii) above, which has

also index 2 in G,[f] /'\4 .
—_— = _— A GA

4-4, General Dimension Formula (Split Case)

Ltet I" be an arithmetic subgroup of G; = Sp(n,Q), or a Q-
form of Sp(n,R). The dimension of SR(I1) is first expressed by
Godement [13 ] as an integral of an infinite series

- a,(k)
(4.35)  dim 5 (T") = ikl L\H YZG:I‘HX(Z) dz ,

where k> 2n, and

o - n=1 I (k- 251 4+ )
" (21r)“(““”/2 TT T (k-n + 4)

14
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HX(Z) = det(l-ﬁy—z——) det (CZ+0) "det(Y) (Y= (‘é D)),
anu  dZ = (oet Y)-n—1 dx dY (Z = x+iY) is an invariant measure on

Ho 3 Z(I"') =: center of I' .

Our purpose here is to sketch briefly how one reformsit to a
more manageable formula, suitable for an explicit computation.
fhis has been done in the case n = 2 by, Christian [ 6 ], rmorita
[39 ], and Arakaua [ 1 ](Q-rank one case), for the special case of
princAipal congrusnce subg~roups I" = T"(N), N23, and by the first
named author for arbitrary I" ([16],(1) ). |
The main idea of the reformulation is well known and a routine; ue
should exchange the integral and infinite sum in (4.35) and then
combine the integrals in each conjugacy classes of I7 , to get a
closed expression as a sum extended over the set of conjugacy classes

of I'. But this is allowed only if I"\Hn is compact, which never

1
aQ

[%] , atcording as D = MZ(Q) or not, while I"\Hn is compact if

occurs in our case with n2 2, since the Q-rank of G is n or

and only if Q-rank of G is o . However, uve can save this diff-

Q
iculty by introducing certain dumping factors and replacing HY(Z)
by HY(Z;S) = Hr(z)x(a oumping factor in s). In order to justify
this argument we have to choose dumping factors and make estimations
of sums of HY(Z;S) to apply Lebesgue’s theorem for various subsets
of I" . Substantial part of these estimations has been established
by Christian[5]. Ue omit the details and refer to [16], § 2,

vhere the case n = 2 wvas discussed using resuls of [5].

The second difficulty is the fact that C(Y;I"), the centralizer of

¥ in I'", is not,a lattice of C(];G;) (see Example (4.37) ).

aluays
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1 . ..
This means that VOJ(L(X-I’)\C(Y;GP)) is not aluays finite. To
2

save this point, we first observe:

Propositibn 4.36, For any Ye I, there exists a connected

closed subgroup CO(X;q%) of C({;G;) which is characterized,

modulo compact semi-direct factor, by the follouing properties

: 1 . . 1
(i) CO(X;I‘) =: CO(X,GR)F\I" is a lattice of CO(Y,GR)
(ii) [c@f;T): c @; )] <
Example 4.37, Let I' =5p(2,2) and ¥= () 3) €& I with
s = tsemy(z). Then C(¥igy) ¥ 0(s) xR, and C(/;T") is a
lattice of c(y;c;) if and only if oa(s) ={Ae GL,(2); asta - s}
is a lattice of 0(S) ; it is easy to see that this is equivalent

to that either S is definite, or - dst(S)é€ (ux)z. Thus wve have,

removing the compact factor 0(S) if S is definits,

C(Y;G;) if S is indefinite, - det(5)¢ (Qx)z

1
C_(¥;Gg) =
0 ’"R 10X t X\ 2
{0 % x =%} if s is definite, or - det(s)e (2%)%.
Definition ~ 4.38, Tuo elements’ X1, Y2 of I are said to

belong to the same "family", if (i) Co(]ﬁ;cé) = Co(xziﬁ%) and
(ii) VY = ¥pg » where ¥; = ¥ ¥;, (i=1,2) is the Jordan

decomposition.

Now we divide the set 1 into disjoint union of three sub-

sets I“e‘, Idh), and TP

(i) r'®  consists of elliptic elemsnts and + 1 .

( An element ¥ £ + 1 of c;,l is called elliptic, if it has a



-53-

fixed point in H_ ; or equivalently (unoer the condition JYe T7),
it is of finite order.)

(ii) r™  consists of those elements Ye I wuwhich are of
"hyperbolic” type i.e., ¥ has a real eigenvalue # % 1,

(iii) TP  onsists of "p-unipotent (or parabolic)" elsments of
I" i.e., those elements Yé€ I'- ® uhose semi-simple factors Y,

belong to I'(e) ; equivalently, Y is p-unipotent if and only if

some power of Y is unipotent, from which the name comes.

Ve denote the contributions to (4.35) of each of these subsets by
Tk(I"‘e)), Tk(I“m), and Tk(P‘p)) respectively,

Proposition 4.39, for semi-simple element ¥ of I , c(¥;I")

is aluesys a lattice of C(‘X;cl;‘). Moreover, for the subset 1"(8),

the termuise integrability is valid without dumping factors.

Note that, in the casse Y€ I"(E), the integral 1I(Y) = 1(3':5),5=0
depends only on the conjugacy class {g}cﬁ ; and this has been
evaluated by Langlands [_33] in a more general context ( see § 4-5
and Remark (4.55)). After these remarks, we can immediately apply
results of § 4-1 to obtain the following

Theorem B¢® (Elliptic Contributions)

With the notations of § 4-1, we have for k> 2n

' ) . (
(a.40) T, (D) Zf'getf;dl'é\atk(g) L53.(/\):-|G<1\)Tpr e, (a,up0A,)

vhere we put
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i

t, (9) a, (k) I(g)

s [

Note that the above formula for Tk(I“e)) is completely analogous

Hg(Z) Jaz .
Co5Gp) \ Hy,

to the dimension formula (4.30) in Thebrem A . In both cases,
the factors tr(§(g)) and tk(g), being invariants of Cg-conjugacy
classes {g}c s, may be regarded as an "archimedsan local factor
Co(BrUnps A" s With Uy = o A= C(g,[‘.ﬂ) = ZG(g)R . As for the

explicit formulas for them, see § 4-5.

Let us next consider I"(h) and I‘(p) :

Theorem B(h)
For I"m) » we have Tk(Pm)) = 0o , since for any Ve I'(h),

(4.41) Io(]’;s) =: HX(Z;S) dZ = o .

fcomc,;) \H,

This is knouwn in general as the "Selberg’s Principle" (c.f. Warner
[a8]).

Theorem B'® (parabolic Contributions)

For I"(p), we have

. Py - 3 im H
(6.02) T (PP = s 2. v(F) Un r(s)

vhere the sum is extended over a complete set of I"-conjugacx

classes of families F € P, and v(F) = Vol(c (y-P)\co(r;GA))
0 4
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for Y€ F . The zetafunction {(s;F) attached to the family F
is given by

an(k)' IO(X'S)
[c@:T): £ c (¥;T )]

(4.43)  Ts;F) = 2
Yer/

with Io(y,s) as in (4.41).

Remark 4,44, From the finiteness of the number of cusps of I7,

it follous that the set of non-conjugate families in I is
finite, so that the sum in (4.42) is a finite sum. Roughly
speaking, g‘s;F) is a zetafunction corresponding to F which is

(a part of) a lattice, not necessarily hoﬁogsneou&, in a vector

space contained in the unipotent radical of @& parabolic subgroup.
The t;pical cases (i.e., purely unipotﬁnt elements) have been treated
by Shintani [45] » In general, however, it is not easy to evaluate

:fz g(s;F).

4-5, Formulas for tr§(g), tk(g) and their Relations

Here we shall describe the explicit formulas for "o -factors"
trf, (g) and t, (g) of our dimension formulas (4.30), (4.40) ,
for semi-simple (elliptic) element g . In our group G; = Sp(n)

or Sp(n,R), wve take the standard compact Cartan subgroup
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18,
Li62
H o =+49(8) = . ¢ Sp(n); B4,..,8 €M
‘ 0i8n
(4.45)
( ( cosB, sing, h A
o. .‘
.coan 51n8n
H =19(8) = ESpUuR);Bjem o
—sinB1 cosB1
-sinen cosB
. \ )

7/

Here in Sp(n), we identify @ with the subalgebra of H =R + Ri
+ Rj + Rij by J:T-—)i. Note that any (resp. elliptic) eslement
of Sp(n) (resp. Sp(n,R)) is conjugate to an element of H .

We first assume that g = g(8) is regular i.s., C(g;G;) = H ;

equivalently, Bi+8j¢21 for any 1i,j . Then we have

Theorem ( Weyl [50 ]) The irreducible character of Sp(n) which

corresponds to the Young diagram

1 2 e e o .‘k

1] 21 +0 k

takes the following value at the regular element g = g(8):

det [sin(k+n+1-3)8,]

det [sin(n+1-j)Bi]

(4.46)  tr f (a(8)) =
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Its dearee is given by

(4.47) o (x) = [T

(2k+2n+2-i-3)

i< 3 (2n+2-i-3)
We note the relation:
. (4.48) d (k) = c,-a,(k+n+1) ,
c. = 1 [T (2n+2-i-3) .

2n(n+2)1‘-n(n+1)/2 i< 3

Theorem (Langlands[33 ],see also Harish-Chandra[14 ])

Assume that k>2n, and g = g(8B) € Sp(n,R) has an isolated fixed

point on H_, which is the case for regular element. Then the

integral tk(g) = an(k)-l(g) in (4.40) is given by

n -ik8;

(4.49) tk(Q(g)) = m=1 - ” (i =§-1)
1T (1_e-i(9j+9{)) "J—- *
i<

Here, in the integral (4.40), we are taking the measure of
C(g;q;) such that its volume is equal to 1 . (Note that the conu-

ition on the isolated fixed point implies that C(g;q;) is compact).

Assuming that g is regular, we note that there are 2"
conjugacy classes in Sp(n,R), each represented by g(# Byseest 8,)»
wvhich are conjugate to g in Sp(n,C), the complexification of
sp(n,R), while in Sp(n), g9(% B8,,..,+ B ) are all conjugate to g .
By comparing the above two formulas, it is easy to observe the

following
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D)

”
Theor e (Character Relation; reyular case)

(4.50) ‘trfk(g(sv..,an))

n(n+1) ;ZL

E; = +1

= ('1) tk+n+1(g(£191""£nen)) i

This kind of character relations seem to be more or less well
knoun to the experts in more general context, as long as regular
elements are concerned. It seems less knouwn, however, that similar
relation remains to hold also for singular elliptic elements, under
a suitable formulation, e.g., normalization of Haar measurses, Ih
fact, the relation (4.48) may be viewed as giving such relation
in the extremely singular case g =% 1.

Here we note that the relation (4.50), which has been noticed
(as well as (4.49)) in the case n = 2 by Y.lhara around 1962, was
one of the motivations to his conjectural question in [28], vhich

is our main problem in this paper.

For singular elements g , we need much more involved notations to
state the formulas for trfk(g) and tk(g); therefore we shall only
give them in the case n = 2 below. As for the character relation,

we content ourselves with the following description.

Theorem (Character Relation; general case)

Under a suitable normalization of the Haar measures, the following

relation holds for arbitrary elliptic element g(8):

n(n+1)

(4.51)  trf (a(8)) = (1) > (-1)PE8) L (a(ee)) ,
£

%) If g is regular, tk(g) is in fact a character of a2 representa-
tion belonging to discrete series (c.f. [14]).
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wvhere £ = (Ei) runs over all possible vasluer in (% 1) 50 that

g(eB8) = 9(5191,..,tn9n) are all non-conjuocate, and b(EB) denotes

the complex dimension of the fixec point set of g(€8) in H_ .

Remark 4.52, It is easy to see that b(8) is given by
b(e) =#{(i,3); 1€i<j<n, B+0,€2m2} .

Moreover, from Langlands’ formula for tk(g) ix:[ss], it is observed
that tk(g(B)) is a polynomial of k of degree b(8), modulo some

eZTrik/m

factors (me&). This observation is used to get asymptotic

formulas for dim Sk(I’) as a function of k (c.f. [17:]).

Now assume n = 2. The Weyl’s formula for trfk(g(e)) for
singular element is derived from the formula (4.46) by taking

limits ; we have

(k+2)sin(k+1)8 - (k+1)sin(k+2)8

trj&(g(ﬂ,e)) B 2sinB(1~-cosB)
(k+1)cos(k+1)Bsin(k+2)8 ]
trfk(g(B,B)) = [ ~(k+2)cos(k+2)Bsin(k+1)8
(4.53) 3
2 sin™8
k
trf (a(0;)) = (T3l (k1) (k+2)

The basic idea is similar also in the split case; here, however,
the limit should be taken as a distribution ( i.e., the limit form-

ula of Harish-Chandra, see[ 33 ] ,[14 ] ). The results are as follous:
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; [(k_1)e-i(k-2)9 ) (k_z)e-i(k—1)8]

2 1Tzsin8(1—cose)

(2k-3)

(4.54) tk(g(B,-B)) =
251T251n28

(-1)K(2k-2) (2K-4)

t (a(0,m)) =
29 ¢n~4

Remark 4,55, In [16], the first named author has computed the
integral tk(g) by completely elementary method and obtained the
above results. The constants in the denominators are dus to the
usual normalization of the Haar measure of C(g;q;), which will be
. . e

cancelled by multiplying vol(c(g;Iq)\C(g,qP)) (g€ I’ ). Also,

ve note that the above result for tk(g(O,ﬂﬁ) does not agree with
Langlands’ formula ([33], (2), p 101); this is because the factor
5{H)
]

is missing in the denominator of (2), [33 ].

4-6, P-unipotent (Parabolic) Contributions (n = 2)

We assume n = 2, and describe briefly the zetafunction
g(s;F) attached to each family F of p-unipotent elements of I7,
There are seven cases to be distinguished according as the types

of their zetafunctions.

(i) elliptic/parabolic After normalizing by qﬁ—conjugatinn

simultaneously, we may assume that
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cos8 o sing o
4.50) = A(e t) = °c 1 ° t (sin@ # o, t £ o)
(4. X = B(8, - -s5ine © cosd o ’ ’
o] o 1

and the family F = F(Y) 4is given by
F(Y) = {6(8, atn); n€& 2, atn # o} (oca<).
1 A
We have CO(X;G.R) =={_B(o,u ); uéﬁ_} .

Theorem P-1 ([163,Theorem 1-5)

Under these notations, we have

_~i(k-3/2)8
S(s,F) B 23‘(1' sing sin-g
(4.57) x [e'f"(s+1)/2;(s+1,a) + afw(5+1)/2§(s+1,1—a?]’
. 1 3 . 3
iiz C(s;F) = = sinasing’ [cos(k-z)a + cot*(n:a)s.ln_(k-ez)e] .

o0
Here, C(s,a) = Z (nﬂl~a)"s is the Hurwitz zetafunction, and
n=0

" cot (x) if x # V/a1
cot” (x) =
o - if x € aZm.

(ii) paraelliptic The normalized form of an element of this
type is
cos8 sin8 tcosB tsing
A -ty -
(4.58) *,g X(B.f) - sinB cosB8 -tsinB tcosB (t,sinB £ o),
s] o cos8 sing
o o -5inB cosB

and the family is given by
A
F(Y) = {‘}'(9, atn); né€Z, atn # o j’ (ocgax<1),
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we have EO(X;C:{) = {_ g(o.u); uGG?j .

Theorem P-2 (loc.cit. Theorem ]1-6)

under these notations, we have

. - 1
§lssm) 237 sin’e
(4.59) x[e-i“(s+1/2)C(25+1,a) +eiﬂ(s+1/2)g(2s+1,1-a)]
1
. . o ‘ - »
ii;’l C(S,F) = m (1 + i cot (‘n’a)).

(iii) S -parabolic (nondegenerats case)

A 1 o 7 ©
. D 1 0
(4.60) o 0 -1

A
F(Y) ={S(m+c,am+bn+ac); m,n€ Z, m+c,amtbn+ac # o}'

(a’béd’ (a’b) = 1, b>0, 056(1)-

We have
1 o t‘l (o]
1 .
Co(x;%) = o 1 o tz » t-,’tzEIR L
(o] o 1 (o]
o o o 1

Theorem P-3 (loc.cit. Theorem I-7)

Under these notations, we have

) - 23(;;b}k E’: [a'm(SH)/ZC(S”'jbE) +ai‘n‘(s+1)/2€(s+1’b-g-c)]
j=o | ,
(4a.61) x[ain(s+1)/2§(5+1,a(j;°2) +B-ﬂr(s+1)/zf(s+1’b-ab(jw))]
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W b-3

Lm Z(<3F) = —3“")'(_; 2. [1 + icod (LT "_)”1 —icotn(2li*et )]
s*“ 27p J=u L b

(iv) §-pasrabolic (degenerste case)

(4.62) Y = g(t,o), (t # o, f : as in (4.60)),

F(Y) ={§(n. 0); ned} .

We have

1 o u o
1 o a o b u,a,b,c,d € R
Co(56g) = ;

o o 1 o ad-bc = 1 °
o cC o d

Theorem P-4 (loc.cit. Theorem 1-8)

Under the above notations, ws have
(=) % (2k-3) s+1

[(siF) = 573 L (s+1)cos (=),

(4.63)

(=1)*(2x-3)
lim H = - .
e glesh) L

(v) To describe the purely unipotent contributions, we need some
preparations. We note first that, if Io(]/,s) £ 0 for a unipotent

element of I', then [ is conjugate in G, to an element of the

Q
following form

(a.64)  Y=p() =(5 §) s="Ts,

vwith either (i) det S = o, (ii) -det 56(0")2, or Sz0 i.e., S =
definite. This, in particular, means that such Y belongs to the

unipotent radical PU of a parabolic Q-subgroup P of .G which

Q
corresponds to a point cusp that Y fixes, If det S # 0, we can
associate in this way a lattice L = Puﬂr‘ » which we also regard

as a lattice of sz(ﬂ), the 2x2 symmetric real matrices via a
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fixed isomorphism pU(R) s 5N2(m) . We have an action of a3 Levi-

subgroup Pm of P on PU' vhich may be assumed as
T —> AT'A (TE SN, (K), AEGL,(®))

under an isomorphism Pm(&) g’GL2(ﬁ). Moreover, for simplicity, uve

assume that

(4.65) PAT = (P, N T)-(PyaT)

We denote by (Pmr\I")o the image of P,NI" in GLZ(R), and put
(PM(II‘): = (Pm(\I')(\SLz(m). Alsc put, for Y =g 3’(5)9.1 as

above,
(4.66) 0L (S) = {Aé (PO T),; asta = sJ’ .

If § is as in (ii), (4.64), the family F represented by ¥ is

given by
FY) = 9{ 7(57); sedt, -dat(s’)e-(u")2 or S2 oj

t

We divide F into two parts F* and F° according as S° satis-

fies S°z 0, or -det(S')é(Qx)z

Theorem P-5 (loc.cit. Theorem I-9)

Notations being as above, we have

]
se L mod (PNI")  #0+(5)(det S)

(L' ={seL; s>o})
r
lim Z(s3F%) = 21t o1yl g \ M)
slo 2T [(p0r"),: (PynI")} ] vol(\SMy(R))

Lo = 7%

(4.67)

s+3/2
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Theorem P-6 (loc.cit. Theorem 1-10)

t
;Fs = = 1. ZZ: 1
Z(s:F) 247 _)Z.—J s¢ L§ mod B, |det s|s+3/2
(4.68)
lim C(s-Fs) ! Zt:', —-ijT
H =T 77 ’
s}o 2°3  3=1 dj

Here notations are as follows: let 01,..,Bt be the set of non-

equivalent cusps of (P NI’ ); in Hy. Take VESL,(Q) such that

s

V<B;> = o0, and put Ly =: v’1(: :)tv"1n L . By Ais the parabo-

lic subqgroup of (PnnI"): which stabilizes B8.. The module

i
vt

V has a unique basis of the form

J
(&)} (&), . .
(*1 °9, (*27 %) 31 >0, P51 P20 ,
o d. o J
3
and c. is def‘lned

{ 1 (t?cj/zdj)l.) }
1 .

Finally in the case (i) det S = o, the family F represented by

YT=0 ]’(s)g-1 may be assumed to be given by

1 o dn o 1 x
r('{).—. g o 1 o ol néa-"o} o (deqy)

o o 1 o

o o o 1

< o} De7t,

and we hava CD(Y;G&) = C(]’;L“;)



Theorem P-7 (loc.cit. Theorem }-11)

Notations beiny as above, we have

Lim E(s5F) 2k-3
im S, = -
sjo > 233 242

66~
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) Conjugacy Classes of UZ(D)(=r;(U)) and B(p)

——

(Proof of Theorem 3-2, 3-3 )

5-1. In this section, we shall use the usual notation:
~f
U.‘(p) = I:,(p)o Uz(p) = r::(p), and U12(p) = 5p(2,z) .

.Ua shall describe the comjugacy classes in I"')'(p) and B(p) of
those elements (or families) which make nontrivial contributions

to dim Sk(rg(p)), dim Sk(B(p)), in such a form that is sufficient
to work out the explicit formulas for them, as presented in § 3,
if we put all data given here to our general formulas (4.30),
(4.40), anc¢ (4.42), Since I';'(p) (resp. B{(p)) is a subgroup of
Sp(2,Z) (resp. I';(p)), and the lisvt of conjugacy classes of the
latter groups has been given in [16], § 6, 7 , wue need not begin

at the beginning. So, we mainly apply the global method (i.e., arg-
ument on I ~conjugacy plasses) also for semi-—sin{pla elements. Of
course, in that case we can replace it by the local method described
in Theorem B‘e), as excuted in [24] for Uoz(p)(-: K(p)), and in [16]

?

(11) for other arithmetic subgroups in Q-rank one case.
In general, for two lattices I'T‘, I’2 of G& such that 17‘2

I, [1'; : I;]<°0 , we have a bijection in the same way as (4.17)

(s.) WinoT /’1‘1; s (T )\NE,0,3)/ T

for any Y€ IT‘, where we put n,n;,5,) ={x61'7|; x-1)'x61"2}.

Let ]’1)00: ]’d (d = d(X) = #[C(Y3ITI)\”(¥:I‘1:I12)/I;] ) be a Fomp-
lete set of representatives of I"z-conjugacy classes in {]’}ani .
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Je oefine "relative MaC" of Y with respoct to :["1/1"'2 » by
d
(v0)  m@T/L) - 5 [csT)ieasT)]

Then the elliptic contributions to dim Sk(I; ) (i=1,2) are related

as follows: namely for ‘XGI?E)

(5.3)"

(e)
T, WA D®) = n(GT/T) Tk(‘(f}r;‘ )
Thus to compute the elliptic contributions for I}, = I7(p), B(p),
it suffices to calculate the relative MaB’s for each conjugacy
class {Y}r. of I = sp(2,Z), I;(p). On the other hand, the p-
1

unipotent (parabolic) contributions require more careful treatmant.

Lemma 5.4, As a complete set of representatives of the coset
space Sp(2,l)/Ig(p) (resp. I;(p)/ B(p) ), we can take the follouwing

[5p(2,2):T(p)] = (p+1)(p*+1) (xesp. [T (p):B(P)] = p*1 ) elements:

(1) sp(2,2)/T(p) :

1 o o o c 1 o o
X1(a,b,c):= a 1 oo xz(a;b):‘ ,1 °© o o
. b ¢ 1 -a a o o 1
c o o 1 b 8 1 o
o-a=-1 o o o o -1
e o 1 o o - o o-1 o
x3(a). 1 o o o Xq ¢ o 1 o o
a o o 1 1 o o o
(i1) T,(p)/8(p) :
1 o o o o 1 o o
.- t 1 o o ‘- 1 o o o
Z4(t): o o 1 -t Z; ¢ o o o 1 *
o o o 1 o o 1 o

®) If T,, I are defined by U;,, U,, respectively as in (4.8),

we have the following relstion:

A
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Here a,b,c, and t runy over the integers moculo p .

gy using this lemma and the list of conjugacy classes of
sp(2,2), IL(p) given in [16 ], we can find a complete set of
representatives x,,..,x4 of the double cosets of (5.1), uhere
x; are taken from the above set of representatives. This can be
 done in completely elementary way, and we omit the details of the
calculations. In the follouwing, we describe only the list of these
xi’s wvith the invariants attached to each conjugacy classes such
as n(];I}/I;), which are necessary to obtain explicit formulas

for dim 5, (T7(p)), and dim S, (B(p)).

5-2. Conjugacy Classes of Ti(p). (p = prime, # 2,3)

We use the notations of [16 ], Theorem 6-1. However, for the
convenience of readers, we reproduce here the matrix representatives
of each conjugacy classes of Sp(2,Z), end those of Sp(2,R) teken
in the standard Cartan subgroup H as in (4.45) for elliptic
elements. The symbol +)Y means that -} should be added, though

ve urite +} alone.

(5.5) 7= ido ’ do =1, ~ g(o,0)
d(l’) = 1, X = x1(°:°1°)

m(Y:5p(2,2)/T3(p)) = [sp(2,8): ()] = (p+1)(p%+1) .
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0 O 3 [¢]

(.0) X= '_':o(.‘ = o uv o 1 ~ u(Tiy2, /2)
~1 o U o
o -1 o o

8(¥) = (p+1) (1+(=))
x = X,(a,b,ab), Xz(o,b,o) with b2+ s o (mod p)

n(Y55p(2,2)/Ty(p)) = (p+1) (1+(53)) .

o o 1 o

(5.7) ¥= 2o, = o o o 1| ~, g(Z/3,21/3) ; and dy o,
- 0 - [e]
o -1 o -1

dy) = (p+1) (1+(=2))
x = X,(a,b,8b), X(0,b,0) with bZ+b+1 = o (mod p)

n(¥350(2,2)/T3(p)) = (p*+1) (14(ZD)) .

o o o -1 .
(5.8) Y=d4 = |1 ? o ol ~n g(-T/4, 3W/4); and g =°(43 .

) o o
o o 1 o

dY) = 4 if p =1 (mod 8)
o otherwise
2 - e &

X = x1(a, a“, -a ) with a'+1 z o (mod p)

m(¥;Sp(2,2)/T)(p)) = d(f) .

Here, and throughout the following, we are confusing the integers

mod p with elements of the finite field Fp, writing a-1 the

integer x (mod p) such that ax = 1 (mod p).

o -1 -1 o

(5.9) ¥=2o =|-1 1 o -1| (/4 3T/4)
6 1 -1 -1 o
o 1 0O o



d(Y) - { 4 if p z Vv (mou 8)

o otheruise

b —3b+3 -3b+3

m(y3sp(2,2)/T,(p)) = o(¥) .
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(b-1)a+ 1 = o

o]

(5.10) ¥=z2d, = [o o 1 -1]N a(-T1/3,-2173)
7 -
(o}

1 o o
1 o o

d(Y) = 200+(= ))

(mod p)

x = X,(a,a,-1), x4(a,-3,1) with al-a+1 = o (mod p)

m(¥;Se(2,2)/TY(p)) = 2(1+(<))

o o-1 o

(5.11) ¥= tolg = lg -1 o -1J ~ 9(-27/3,-T/3)

o 1 o
o 1 o o

d¥) = 2(1+(= ))
2

m({35p(2,2)/Ty(p)) = 2(1+(=3))

-1

o
o

(5.12) ¥ =olg = [

0 0 =0
Q =0 =
000

of) = 201+(=D)
al+at

X ={X1(a,az,1) ese wWith
2

X1(a,a2,-1) eee wWith a"=-a+l1 =z

m
(=}

1§
o

n(¥;5p(2,2)/TU(p)) = 2(1+(3))

o (mod p)

(mod p)

0] ~ g(2w/3, -T/3); and a,10 =d9-1.
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-1 o -1
(£12) Y=o [ 0 o
5 -

1 o

]NQ("?TT/:S. T/3); ang 0(12 =0{,H"1

o0 —C

a(1) = 2(1+(=3))

X = x1(o,b,o), xz(o,b) with b2+b+1 = o (mod p)

n(¥350(2,0)/T7(p)) = 2(1+(3))

-1
?]N g(-7/6,5M/6); and d‘M -_-0(13 L
)

(5.14) X:d.'a = [

00 -0
0O-00
=000

a(y) = {4 if p=1 (mod 12)

o otheruwise

x = x1(a,-a-2,-a-1) with a%-2a%+1 2 o (mod p)

n(¥;5p(2,2)/T1(p)) = d@¥)

c 1 1 1
(5.15) ¥=20,c =|0o o 1 o~ g(ZW/5,-4%/5) ;
o o o 1
-1 o o -1
. 2 3 4
and Olyg =05y HKyg =57, Mg =Xyg
ay) = 4 if p =1 (mod 5)
1 p = S
0 otheruwise

If p=5, x = X1(2,2,2),

if p=1 (mod 5), x = X1(a,b,c) with

al+a-1 =0, b 1+(1+a)c, cZec+ EI%— = o (mod p)

m(¥35p(2,2)/T0(p)) = d(f)
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-1

(5.16) ¥= tofyg = .

0

-1
and ofyy = Bhg

N 9(-2773, . -T/2) ;

=000
I

o34 "'0(197 , q’zz ="’(195

o) = 2+(Z)+(=2

. ={X1(o,b,o) with b%+b+1 = o , and

Xz(o,b) with b2+1 = o (mod p)

o((35p(2,2)/T0(p)) = 2+ (Fh)+ (3

g

o o 1 o) 1
(5.17) ¥ = ¢ 6, =] o 1 o o]~ g(-27/3, 0); and B8, = B
-1 o -1 o
. O 0 O 1J
[ 06 0o =1 0 1
Y- $208; =]o 1t o o}~ g(-T/3}0); and 8, = 63
1 o 1 o
L. o o "o 1.
- ‘
d(y) = 2+ (—g = m([;Bp(Z,l)/I';(p))

X = Xz(o,o) and X1(o,b,o) with b2+b+1 = o (mod p)

o 5 -1 .o
(5.18) ]’a + 85 = ? 1 o OJ rn q9(-T/2,0); and Bg = Bg1
°o o o 1 |
dF) = 2+ () = n(y35p(2,2)/T}(p))

X = xz(o,o) and x1(o,b,o) with b2+ & o (mod p)

[0 -1 o o]
(5.19) ¥ = 3’1 = |1 o o o| ~, g(W/2,-T/2)
o o o -1
o o 1 o/
{o -1 1 07
T=¥Vo= |1 o o-1| ~ g(T/2,-T/2)
o o o -1
L0 o 1 ol
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d(y) = 1+ ()

x =‘x1(a,o,o) uvith az+1 = o(moo p)

m(¥35p(2,8)/T (p)) = (p+1)(1+(=1))

o -1 o o
1-1 o ol n 9(20/3,-27/3)
o o -1 =1
o o 1 o

(5.20) '(: + {3 =

-3
X = x1(a,o,o) with a2-a+1 = o (mod p)

n(¥35p(2,2)/Ty(p )) = (p*1)(1+(=2))

1 o o o 1 o o -1

(5.21) 3’= 81 = |o-1 o o and 82 = o =1 1 oln g(o,F)
o o 1 o o o 1 o
o o o -1 o 0o o -1

d(a”): 2

x = X,(0,0,0), X,(0,0)

n(@350(2,2)/T(p)) = 2(p+1)

P-unipotent classes

We first note that I;?p) has two point cusps and tiree
one dimensional cusps, corresponding to the following parabolic

subgroups:

. i -1
Print cusps: PéJ = xj (: :) xj ’ xA1 = 14, Xy = x1(o,1.o)
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One acimensional

”

Lot o [

cusps : p1 xj (K jo
o

O0OXxO0
O x x
2T X X 3

X.‘ = 14' X2 = X1(0,O,'1), 'X3 = XZ(O,O) .

Lach family of p-unipotent elemsnts belong to (at least) one of
‘these parabolic subgroups, up to Ig(p)~cunjugatio?. Ig the
following, we give a typical element of sach fam%%?T%%éTé%lin [16],
Theorem 6-1, and describe the decomposition of it into I:(p)-

conjugacy classes. We put, for each class x-ﬁrx of Ig(p),

1,0x) =t [c (<pxssp(2,2)): e (TP TheN] -

A o o 1 o A A Aq
(5.22) r= 28,(n)=]o0o 1 o n|AB8(M/3,n); and B,(n) =B, (~-n)
1 1 0 1 o 2 1
o o o 1

n¢ 2 o}

dy) =3+ (=3

X = xz(o,oj, x1(o,b,o) with b2+b+1 = o (mod p)
ces n: arbitrary
X4 eoe n =20 (mod p)
io(x) = 1 for each x .
A o o-1 o A A_q
(5.23) {= + Gs(n) ={o 1 o n|nB8(4F/3,n); and pa(n) = By (-n)
1 o-1 o
o o o 1 neZ-{of

d(f) =3+ (5

X = xz(o,n), x1(o,b,o) with b2+b+1 & o (mod p)
oo n: arbitrary
X4 coe n=o (mod p)

io(x) = 1 for sach x.
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- o 1 1
) A -1 1" o n AP A A~
(5.24) Y= 2 Bb(n) =121 6 o o A A(2W73,n-1/3); Bb(n) = B (-n)
o o o né& sl
’ -3
ay) = 3 + (_E)
X = xz(o,o), X1(a,b,o) with bz-b+1 =0, a = (2-b)"1
eee N: arbitrary
X1(0,-1,3) eee 3n=1 =z 0 (mod p)
io(x) =1 for each x .
A o o-~1 o
o 1 o n a . Aoq
(5.25) ¥=28,(n) = |7 _ o o]~ 8(-T/2,n); Bg(n) = 85" (-n)
o o o 1

ne Z-{o}

dy) =3+ (5

X = xz(o,o), X1(o,b,o) with b2+1 = o (mod p)
eee n: arbitrary

X eee N 5 0 (mod p)

4
io(x) =1 for each x .
o o 1 -1 A
A 1 1 o n. 4 A-1
(5.26) ¥= % Bg(n) =121 o o o ™ 8(T/2,n-1/2); 810(n) = B4 (-n)
o o 1 neZ

-1
d(r) =3 + (——p
~b 2
X = x2(o,o), x1(537’b’°) vith b“+1 = o (mod p)
esese N: arbitrary

X1(o,-1,-2) eee 2n-1 = o (mod p)

i (x) =1 for each x .



(5.27) = ff,(n) = [

00O -0

() = 201+(3)

'x1(a,o,o)
X =
1.x1(39'a:1)

(5.28) ¥= T,(n) = [

00 -0

d(Y) = 2(1+(=3))

with

x1 (a’o’o)
X =
X1(o,-2,c) vith

(5.29) V= F5(n) = [

00 -0

a@) = 2(1+(=))

x1(a,o,o)

S FNCERY
A 0
(5.30) = F(n) = [;
0

d(y) = 201+(=))

{X1(a,o,o)
X =

X1(1/2,b,1) with b

1
o
o
o

000 =

with

000 —
-0 J0

with

with

o
n+1
o
1

2

2

1
n
o
1

1
n+1
o
1

2

-n
o
-1
o

-n
o

-1
o

n
1

(¢]

-n
-1
-1

o

+1

} /\/2,)(-7"/2.n). n &2 —{o}

+1

+1

a*+1 z o, n:arbitrary,

82+1 = 0,

with b2+1 = 0,

o, n:arbitrary, io(x)

o, nzo (mod p), io(x)

A
J n Y (-T/2,n+1/2), neZ

c“+4 = o, 2n+1zo0 (mod p), io(x)

] s ?("WZH),. ne l-—{o)'

n:arbitrary, io(x)

n=zo (mod p), io(x)

A \
]NY(-—T/Z,nH/z), néZ

vith a2+1 s 0, n:arbitrary,

io(x) =
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-

]
-

!
o

io(x) = 1

o, 2n+iz0 (mod p), io(x) = p
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-1 -n =-2nNn

(o]
. A
(L.31) 3’= + ;5("') = l; -; _? :?} N)'(ZW/B,n) nél-{o)
o

o 1 o)

a(7) = 2(1+(=D))
i‘x1(a,o,o) with a2-a+1 = o, n:arbitrary, io(x) = 1
X =

X,(a,-2,1) vith a%-a+ = o, nzo (mod p), io(x) = p

c -1 -n -2n
fs) - - A
(5.32) 7=+ ¥e(n) = [l 1 _’1‘) ~n ¥ (2073,041/3), nez
o o 1 o

a(f) = 2(1+(=))

x1(a,o,o) with a’-a+1 = 0, n:arbitrary, io(x) = 1
X =

X1(2,3b,3) with bZ+b+1 s o, 3n+i=o0 (mod p), io(x) = 1

-1 «p =2n

- A
M D |~vwEsee3) nez

o 1 o

(5.33) ¥= 2 ¥,(n) =

00 =

d(y) = 2(1+(=2))

x1(a,o,o) with aZ-a+1 = o0, n:atbitrary, io(x) = 1
X =
2

x1(2,3b/2,3/2) with b +b+1=0, 3n+2=zo0 (mod p), io(x) =

A 1 o m o
(5.34) Y = S.' (myn) = Jo -1 o n my,n€Z -io}
o o 1 o
o o o -1
d(y) = 4
X1(o,o,o) }- myn:arbitrary io(x) = 1
X = Xz(o,o)
X,(0,1,0) ... = o (mod p) i,(x) =p
X2(o,1) cee = o (mod p) 1o(x) = p



dy) = 4

x1(°’°:°)
x =< X,(0,0)

]
PAY
(5.37) Y= §4(m»") = [l )
[

d(na4

-1

0 -3

-1

m,n:arbitrary, i,
. n=o0 (mod p) i,

2m m+2

1 1

n} m,n €T '{0}

(x)

(x)
(x)

m-2 DJ m,n€d, my2n-m

o -1

m,n:arbitrary,

see mE o0 (mOd p)

e n =0 (mod p)

OO0 -0

o

x1(°:°r°)‘} ses m,n:arbitrary,

X = Xz(oso)
x1(°32’°) .
x1(°:2’°4)

(5.38) T= % f.,(m) - [

d(f) = 3

000 -

2m-1 = o (mod p)

4n-2m+1 = o (mod p)

om o

-1 o oJ mez -{o}
o 1 o
o o0 -1

14(x)

io(x) =
io(x) =

2m-1 m
m-} ';' m,nk Z,
-1

15(x)

15(x)

14(x)

-79-
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x1(o,u,o) es. m:arbitrary, iu(x) = 1
x = x?(o,o) ... m:arbitrary, io(x) = p+1
X1(o,1,o) ees m = 0o (moc p), io(x) =p
N 1 o m -1
(5.39) Y= _-O_-Sz(m) =lo -1 1 o mea -{o)
o o 1 o
o o o -1
d(X) = 3
X, (0,0,0) «es m:arbitrary, io(x) = 1
X = Xz(o,o) .. m:arbitrary, io(x) = p+1
X2(0,2) ees m =0 (mod p), io(x) = p
1 o s s 8 ]
_ 1 S12) 1 512
(s.40) ¥= +€(s),&(s) = | , , 5125 | 5= ey, s, )
°c e 1 o det S £ o
0o o o 1
d(y) = 2
. X1(o,o,o) eee S:arbitrary; L = snz(z), (pmnp)o g’GI;(p)
x1(o,1,n) ese S,55,, = 0 (mod p); L = (pl pl)(\smz(z)
pd &
(P, AT ), ¥ 6I1%(p)
where
6T, (p) = { (25 €n,(2); e =0 (mod p)}
b
6T (p) = { () €5L,(2); b = o(mod p) § .

Note that GIL(p), GI;"(p) both have two cusps o, i®0. The

invariants described in

(4.68)

?);

are given as follouws:

(c,d) = (2,1)

(i) For x = Xx,(0,0,0) = 14 »
=i : Ly= (PL PHNsm,@), By =2 (]
=0 :lg= (o PPOSN@), By =2 (1 0 (e,0) = (20,1)
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(ii) for x = X1(o,1,o),

P2 PL)ysm,(2), By = £ ()

B = io0 : LG = (pl U DZ1); (c,0) = (29239)

B=0: Lg= (gz p:)nsmz(Z), Bg = * (; D5 (c,9) = (20,0)

Remark: In the case (ii) above, the Levi-component P should

m
be chosen carefully, so that (4.65) holds: namely

-1 A O 1, 1
P, = x _a) s AecGL,(Q)) x, x = (2 2)*x.(o,1,0) .
n {(u tA1)_ zj' o 1, 7

2
1 o o o
(5041) X: t Gd(n) == [o] 1 o n n&d “{0}
o o 1 o
o o o 1
d(¥) = 3
X,(0,0,0) ... n:arbitrary, i,(x) = p(p+1)

X,(0,0) eee nN:arbitrary, i(x) = 1

. 3
X esee N =0 (mod p), 1o(x) =p .
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5-3. Conjugacy Classes of b(p) (b = prime £ 2,3)

Le first recsll, for the convenience of readers, that the

coset space Sp(2,1)/I;(p) has the following complete set of

representatives:

a-b -1 o -b a8 o -1
o 1 o o . 1 o o o
Y.(a,b) = [T 0 o o (or Yj(ab) = | § o 2 )
b o o 1 o b 1 o
a b-1 o 1 © o o
b ¢ o -1 o a o -1
Yo(a,b,e) = |7 o o, Yy(a) = |0 2 9°)
o 1 o o o 1 o o
2
Ya = T4 ( [sp(2,2): T (p)] = (p+1)(p*+1) )

wvhere a,b,c runs over the set of integers modulo p . UWe shall
make full use of the results of [16 ], § 7 where the decomposition
of 5Sp(2,2)~-conjugacy classes into I;(p)-conjugacy classes is
described. In the following list, dy({) is the number of B(p)-

conjugacy clsses contained in the set {y-1]'y}1‘(p)(\8(p),
o

where y is as above; and d()Y) denotes the sum of dyC{) .

(5.42) Y=2%o : d@@) = 1, x =2,(0) (y = v,)
m(Y;50(2,Z)/8(p)) = (p+1)%(p2+1)

In the next tuo casegs, B denotes the integer mod. p, which

generates F; .
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7 j . -1 . ,p=1
(L.63) Y= of a={ed; 123k, 3B /A
!
TRVATE o 4 (uv)a=1
order of centra-
y p(mod 8) dy(o(.') ces X lizer in B(p)
(p‘g)/a so e 21(t),tGA 4
1 e 21(9(9”)/8) 8
1
Yz(i,o,i) 1 cee 21(1) 8
1 seoe 21(0) 16
and
(p-S)/B LN Z1(t)’te A 4
Yz(-i’O,"i)
5 1 cee Z4(7) 8
i=g(P-1)/4 1 ees 2,(0) 16
3,7 o
Yz(i’o’-i) 1,5 2 coo 21(0), 22 16
3,7 o
2 (2=0) Z4(t): 8
] 2 (a=1) (bt+a)2+1 20 | 8
-9
2 (otheruise; there are 4
Yz(a,b,-a) such pair; (a,b))
with
b2¢ 2 2 (a=o) Z,(t): 8
a"+b"+1z0 S (bt+a)2+1 EO
A - e
2 (otherwisej there are EB— 4
such pain;(a,b))
3,7 o

From this table, we get (see also Remark (5.45)):

m(¥;5p(2,2)/8(p)) = 2(p*+1)(1+(Z1))



' - p=1 . p-1
(5.a4) V=0, o B = {BJ; 1535’-’3-. JrL,;}/fv
unv v & (uv)6=1
order of centra
y p(mod 12) Gy(dg) I , lizer in B(p)
1 oo 2,(alP7112) 12
Yz(u,o,w) 1 1 eee 24(1) 12
1 L N ) 21(0) 36
and
Yz(a’o’a) (p'?)/12 oo e 21 (t)’ te B 6
7 1 ees 2.(1) 12
1
_a(p-1)/6
w=8 1 ese 2,(0) 36
5,11 o
_ 11,7 2 eee 2.(0), 2 36
Yz(w,o,a)) 1 2
5,11 o
2 (a=o0) 21(t): 12
. 2 (a=-2) bt2+(2a+1)t-bz=o 12
Y2(a,b,-1-a) 2 (otheruise; there are E%%é 6
such pairs (a,b))
with
b # 0 2 (a=-2) 12
aZ+ar14p? | 7 =7
- o 2 (otheruise; there are ET7 6
= such pairs (a,b))
5,11 o

From this table, we get (see

also Remark (5.45)):

n(¥isp(2,2)/8(p)) = 2(p+1) (14(F)) .
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Remark 5.45, The above lists for B(p)-conjugacy classes belon-
ging to Oly» o and 0(3 are obtained after somewhat complicated
calculations. We gave these lists in order to make our description
consistent. Indeeo, it is worth noting that the relative MaB of
of, (resp.ofy, 0(3) coincides with that of 3’1, 3’2 (resp. 3’3),
for which the calculation is quite easy. This fact can be proved
without computing the former, by the metgod described in § 4-1
(see footnote to (5.3)). Of course similar observation can be
made for the group I7(p). The complicated situation for y;=on,
olp» and 0(3 comes from the fact that the quaternion algebras

2 (Y) attached to their centralizers are definite, so that the
class numbers h(A;G) of their &-orders are big (c.f. Theorem
(4.28)), while for ¥ =Y., 25’ }B, z,(Y) are indefinite, and

we have hQﬂ;G) = 1 by strong approximation theorem [ 32 ] .

(5.46) ¥ = ol A5

dy(x)a{z if p=1 (mod 8) .
o otheruvise

21(t) coe t2+a =0 for y = Yz(c,a,a): a2+1 = 0

21(t) e t24pt-n =0 forya=a Yz(-1,b,1):b2+250

if p = 1 (mod 8)

8 =
m(¥;sp(2,2)/8(p)) = { _
1 otherwise .
(5.47) ¥ = tofg
d () = {2 if p =1 (mod B)

o otheruise



a8

at+l
2.
3Ja"+2a+1 = o

o
Lte+t+ o for

21(t) .

tz+(b+1)t+ E%l

b2+1 = 0

Z1(t) cos )

m(T;sp(2,2)/8(p)) = { 8 if p =1

o otherwise

(5'48) X =tq7
a (@) = 1+ ()
2,(1), 2,(-1) ...
for

X =

n(;5p(2,2)/8(p)) = (1+(=))°

(5.49) Y =il
o) = 1+ (5
for

X = 21(0), Z,

n(¥;5p(2,2)/8(p)) = (1+(=))°

(5.50) }l= dg, 0{10

) = 1+ ()

"l

m(¥;sp(2,2)/8(p))

2,(t) «.. at’-1 5 0 for y

z,(t) ... t = (-b+1)/2 for

w

(1+(=3))°

y = Y2(2a,a,23):

y = Yz(a,o,c)z

-86-
y = Y2(2a+1,a,2a+1):
for

Y = Y,(b,b,1):

(mod 8)

for y = Y1(o,b): bZ+b+1 =0

382+1 =0

32+a+1 = c2+c+1 0

= Yz(a,o,o): a2+at1 =0

y = Yz(-2,b,1):b2+3 =0
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(5.51) §= oqyqs s,

-3
dy({) = 1+ (—;)

X = 21(0), z, for y = Yz(a,o,c): a2+a+1 = c2+c+1 = 0
-3,,3
m(Y35p(2,2)/8(p)) = (1+(=D))
(5'52) X= d‘]s’ d14
dyq) = {2 if p =1 (mod 12)
o otheruise

Z.(t) tZ 3 —— for = Y,(a,o0,a): aZ+a+1 = o

x 1 LA ®= a+1 y = 2 Ty ] . £
2 - ) 2
21(t) cee t°+bt-1 2z 0 for y = Yz(-1,b,o): b“+1 =z o

m(¥356(2,2)/8(p)) = 2(1+(T3)) (1+(=D))

(5.53) Y =20.,.., o,

2 if = 1 (mod 9),0r =5
dy({) = P T ( ): P
o otheruwise

2
X = 21(t) eee t5H EgT ttazo0 for y = Yz(a,b,c):
ad+ad+alia+ =0, b =1

-1
= a+1* © =3

m(¥;sp(2,2)/8(p)) = 8 if p
1 if p =5

1 (mod 5)

o otherwise

(5.54) Y=xHg,..,0,,
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dy(a’) - 2 if p =1 (mod 12)
o othervise
x = 2.(o0), 2 for = Y. . al+ + 2
= 1 » 2, y = Y, 8,0,c): a“+a+1 = c“+1 z o

n(F350(2,2)/8(0)) = 201+(Z)) (1+(2D))

(5.55) ¥ =2f,,.., @,
-3
) = 1+ (=)

X = Zl(o), zZ, for y = Y1(a,o): a2+a+1 =0

n(¥35p(2,2)/8(p)) = 2(p+1)(1+(=2))

(5.56) ¥ =tf., B,

-1
d ) =1+ (3h)

X = 21(0), z, for y = vY,(a,0): aZ+1 =0

m(¥350(2,2)/8(p)) = 2(p+1) (1+(73))

(5.57) ¥ =1, (resp. §5)

-1

d = 14+ (—
&) (=H  for y
1 for y

Ya

Y;(o,b)(resp. Y;(b,b)): b2+1§o

o for y =Y
X = ) 4

Z,(t) ... t41
‘{21(0) for y = Y{(o,b) (resp. Y3 (b,b))

n(T35p(2,2)/8(p)) = 2(p+1) (1+(<1))
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(t.ve) ) =1l

-3
a () = iw(—;) for y =Y,
1 for y = Yi(o,b): bZ+b+1 =0

2

Z,(t) ... t°-t+1 =0 for y =Y,
X =

21(0) .ee for y = Y3i(o0,b)
n(F35p(2,2)/8(p)) = 2(p+1)(1+(=3))

(5.58) ¥=&,, 8,

d @) = 2 for y =1y,
X = 21(0): 22

m({35p(2,2)/8(p)) = 2(p+1)?

P-unipotent classes

The group B(p) has four point cusps and four one-dimensional
cusps; the parabolic subgroups corresponding to these cusps are

given as follous:

. -1 2 *
Point cusps: PoJ = X, xj ’

x

X9 = Yu X, = Yz(o,o,o), 3 = Y1(o,o), and

x4 = Y3(0)°2,
-1

J
P1 # xj

One dimensional

cusps xj ’

ox xx
OO0 Xx0O
ox X Xx
x X x %X

Xd = YZ(O,O,D)‘ZZ
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Wwe put, for each element Y° of §(p),

= i) = [ sse(2,2)): € @ s8(e))]

i
o

o (¥) = 1+(%) i =1

82-a+1 = 62-C+1 = O

m(y;sp(2,2)/8(p)) = 2(1"(:%))2

(s.61) T == 63(n),84(n)
o) = (=) 5 i =1

x = Z,(0), z, for y =Y,(c,0), Yz(a,o,o):

az-a+1 = cz-c+1 = 0

n({:5p(2,2)/8(p)) = 2(1+(<2))?

A A
(5.62) 7=1+¢ Bs(n),Bs(n)
=3y .-
@) = 142 5, =
X = Z1(E§l), zZ, for y = Y1(c,o): c2—c+1 =0
21(0), 21(-3) for y = Y2(33-1,a,o): 3a2-3a+1 =0

m(¥sSp(2,2)/8(p)) = 2(1+(2))?

(5.63) ¥ =12 37(n),38(n)

A Q) = (D) 5 iy =1
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X = 21(0), Z2 for y = Y1(c,o), Yz(a,o,o):

2

c +1 az+1 =0

m(y:Sp(2,2)/8(p)) = 2(1+(53))?

(5.64) Y=+ Sg(n),ﬁm(n)
o (f) = () ;i =1

21(5%1); z, for y = Y,(c,0): c2+1

]
]
o

2,(0), 2,(2) for y = Y,(a,0,0): a’+l = o
n(¥;sp(2,2)/8(p)) = 2(1+(70))°
(5.65) ¥ = ?1(n)
d (1) = (=
. j z,(t) with :i:b;:ar:?r Y = Y45¥,(0,0,0) 5 i = 1

21(0) for y = Y;(o,b):b2+1 =0, i_ =1, n:arbitrary

0

21(1) for  y = Y;(o,b): i,=p,nzo (mod p)

(5.66) T = Tp(n)
d () = 1+(:%

r 21(t)‘ with t2+1 20 for y =Y, Y2(0,0,1/2); ig=1
X = ¢ n:arbitrary

p » 2
21(0)" for y = Y1(-1/2,b) 241 5 0, i =1
n: arbitrary

21(1) for y = Y;(-1/2ab) : i, =p, 2n+1 5 o (mod p)

.



L.67) Y= Fy(n)

' -1
d = 1+ (—
L&) (=)
[ 2,(t) with t%+1 20 for y = Y4r¥5(0,1/2,0), i =1
n:arbitrary
21(0) for y = Y;(b,b):b2+1 =0, i =1
n:arbitrary

L Z,(7) for y = Yi(b,b): i, =p, n =z o (mod p)

(5.68) ¥ = Fo(n)
a.@) = (T

(2,(t) with 2

+1

o for y = Y40 Y2(0,1/2,1/2),io=1

x =12,(a) for y = ¥j(b-1/2,):b%1 g 0, i_ = 1

n:arbitrary

‘21(1) for y = Y;(b-1/2,b), i, = p, 2041 = o (mod p)

(5.69) 3’=:I:fs(n)
o) = (D)

[ z,(t) with t
n:arbitrary

n:arbitrary

2t+1 20 for y = Yo i =1

21(0) for vy Y;(o,b):b2+b+1 = 0, i = 1, n:arbitrary

4 21(1) for

<
!

= Y; (o,b), i°= P, N = o (mod p)
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N
(s.70) =2} (n)
a,(f) = 1+(:%)

(z,(t) with t%-t#1 =0 for y =Y, i =1
n:arbitrary

2,(t) with t%t+1 zo0 for y = Y,(-1/3,0,1/3),
io = 1, n:arbitrary
4 "b 2 e
21(0) for y = Y1(2E;T,b):b +b+1 =0, i_ =1,

n:arbitrary

” "b 2b ¢
| 24(1) for y = Y1(7E;T,b), i=p, 3n = TEE (mod p)

A
(5.71) ¥ =2[;(n)

-3
dy(r) = 1+(——p-)

[ 2,(t) with £2

n:arbitrary

2,(t) with t%4t+1 20 for y = v,(-2/3,0,2/3),

io = 1, n:arbitrary

. -2b 2
21(0) for y = Y1( T5+71? b):b“+b+1 = 0, i = 1,

o
-nszarbitrary

L4 'Zb db
21(1) for y = Y1(7E$T, b), i°= 1, 3n = 55+7 (mod p)

-t+1 =20 for y =Y, in = 1

3

K/ A
(5.72) Y = §&,(m,n) (resp. 5,(m,n))

dycr) =2 for y= Y, Yz(o,o,o), Y3(o), Y;(o,o)
(reSp. Y4’ Y2(°v1/2:°): Y3(°)l Y;(O:O))
X = 21(0), z, (resp. 21(0), 21(2)) iy =1
condition on (m,n):

4 lY2(°:°o°)t Yz(o,%,o) ' Y3(°) ' Y;(O:D)

arbitrary

Y

m=n = o(mod p)l n=o l mz=o
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A A

(5.73) Y = Js(m,n) (resp. S}(m,n))
dY(X) = 2 for y = Yd’ YZ(Z,D,O), Y;(0,0), Y;(O,-Z)
(resp. Y4’ Y2(1/2:°:°): Y;(0,0), Y;(O"z))
X = 21(0), Z1(-1) (resp. 21(0), 21(-4) )» ij =1

condition on (m,n);

Ya ]Yz(z,o,o),Yz(%,o,o)] Y;(o,o) ] Y;(p,-Z)
arbitrary m=nz=o (mod p) r23§ o ra:p= 2n
2m # 1 2m-4n g 1

n A
(5.74) Y =2& (n) (resp. §,(n))

dy(r) = 2 for y =Y, Yz(o,o,o) (resp. Yar Y;(o,o))
21(0), 21(2) for Y;(o,o), i, =1
Y4 I Yz(o,o,o), Y;(o,o)

n:arbitrary l n=o (mod p)

(5.75) ¥ = + €,(s), €5(5)

dy(r) _ {1 for vy

2 for vy

Y4: YZ(O,O)
¥5(o)
. 21(0) for Y,, Yz(o,o)

21(0), z, for Y3(o)

y Y4 Y2(o,o) . Y3(°) Y3(°)
x 21(0) 21(0) 21(0) 21(0)
L @D R @D | ¢
i, 1 p° P | p?




for sach family, the corresponding Levi-component is isomorphic to

PaB(p) ¥ GT,(p) = {(2 )€ tLy(@); ¢ = o (mos »)] .

Therefore we have the following invariants (c,d) for each cusp of

GIZ(p) (c.f.

Z 2 4 Z
L ¢ D Sald) ¢ .2 ¢ D
Beic0 t.‘s 1 p 1
t.= o o] 0
8.=(" &) 2
8% 14 d = 1 p 1 p
cC = 2 2 2 2p
B= o ty=1 P P p
Bg=(oz 1) | .20 ° o X °
o d = 1 p 1 8]
c = 2p 2p 2 2p

(5.76) ¥ = + £,(a)
'dy(x) = 2 for

X = Z.,(D)’ 22

y = ,Y4’ Yz(o:oso)

Ya Yz(o,o,o)
Z,(o) ig="p ip= 1
m:arbitrary m = o (mod p)
, iy =1 i =0p
2 m:arbitrary m= o (mod p)




§6. Local data for B’ (p).

In this section, we shall give local data which are
necessary to calculate dim M, (g’ (p)). The local data for
q = p have been given in 19, so we shall calculate
cp(g, Rp,/\p) and masses, where g is a torsion element of Gs
and o o

R =( P P).
2
ro, O,

Throughout this section, we assume that p {: 2, 3.

Proposition 6.1

. ¢1 o0 -1 o
Put g = (o 1), or (0_1). Then,

Ayod1emif AR,

O ... otherwise.

=

et /\ be the order of M,(0) such that /\p = R_ and

P
N

q" Mz(Oq) (@ # p). Then,

M (A) = (p?-1)7273%s.

Proof. This is obvious, because [P’1 : B'])= p+1.(cf. 19 (I)Prop.9)

Proposition 6.2 If the principal polynomial of g ¢ G;

is £, (x) or £, (-x) for some i = 2, 3, 4, 5, 8, or 9, then

cp(g,Rp,/\p) = 0 for all orders of Z(g)é.
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Proof. We assumed p ¥ 2, 3, so it is known that

-1
O 1 O
cp(g, ( P Py, /\p) = 0 for any above g and any Ap.

no o
| p

([19](111)). Thus, our Prop. is obvious. q.e.d.

Next, we treat elements g € Gl*; such that f.(g) = 0 or f,(xg) = 0.

Put 2z, (g)p = 2,(9) % Qp, vhere 2z _(g) is the quaternion

algebra over Q defined as in [19]1(12) (p.562). For /\p C z(g)p.

we define dp(/\p) and ep(/\p) as in [193(I)Prop.12(p.572).
Put F = Q[g]) and o = 2lg]. As we have assumed p % 2,3,

(-—g—-) $# 0, where (-—g-) is the lLegendre symbol. By definition,

F
h : X ’ s = -1,
we have Zo(g)pg Fa Dp% F, so ( 5 ) | 1, if zo(g)p

is not division.

Proposition 6.3.  If zo(g)'pxi_s split and (_Fp—) = -1,
we get o_o
2 s e if Ap - ( P p) = A [ 4
R = PO, ©
cplay 5 Ag) PP
o ... otherwise,
where o, = © ® 2, We have ep(/\) = 1 and dp(/\) = p+1.

Proof. If ,zo(g)p is split and (_{T') = -1, then g is G;-conjugate



U
to (Lo (3), where W € Op is of order 3, 4, or 6. So,

we put g = ‘: uc,’). By virtueof [197(I1I) Prop 2.5(1),

if x"1gx € B'C Pb, then x ¢ ZG* (g)-Pé. We can put

P
= 2 2 + 2 Tt + 2 ¢ h F_=F
Op = Zp * Zpt P i - gop Q -
52(. Q;, nze Q;, and £t = -TE, Then,
-1 -1
. - 1 w 'a o -1 ’
P = J_l(o 1)B'_LL(TC o )B's where

a

aé€ ZP[E J runs through a set of complete representatives

1Tt1a

of z [£]/pz [&]). If x € 2 a9 (g 4 )B', then
P P p

s -nly -1 = -

- 1la, _ , W, (w-@&)c”'a

(0 1 )g(o 1 ) = | o ’ w ) € B,

so a € pop. Thus, we get x ¢ ZG* (g)B' in this case.

- P
o~} -1 '
For x = (m ),wegetx gx = gEB.Now, assume
o -]
that (m ) = hk, where h ¢ Z «(g) and k € B'.

P

o_ o
Then, h € Z,,(g9) N P(') c (P op" which is a contradiction,

P POy %

because h € B'. Thus, we get cp = 2. We have

Z_ €2
AN = P P) and we get dp(/\) = p+1. g.e.d.
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Proposition 6.4 f z (g) is division, we get

(i) if +%—) = 1, - then
2 ... 1f A~ 2@ AR =A,

c_(g,R e N ‘{
P p 0 ... otherwise

and d (N\) = e (A) =1,
(ii)if (——g—)'= -1, then

cp(g,Rp, /\p) = 0 for any /\p’

Proof. By virtue of Prop.2.6(i1)in[l9}1I1) (p.398), the
above (ii) is obvious. So, assume that (-%——) = 1,

We can assume that g = (: g) € G;, where a,b € Qp are

different roots of fs(x) = 0, f7(x) = 0, or f7 (-x) = 0.

1f x-1gx € B', then x € ZG* (g)P' .by virtue of [19](III)Prop.2.6.
' P

(i). In the similar way as in the proof of Prop.6.3, we can

-1
show that x € ZG* (g)B' or ZG*(g) (.?C T )B*', and these
o
p P
two double cosets are disjoint. q.e.d.

For g € G; such that fi(:g) = 0 (i= 1o, 11, or 12), it is
that = = -

obvious tha cp(g,Rp, /\p) 0, unless /\p zp[g]

From now on, we put cp(g) = cp(g,Rp, Zp[gJ ). For a fixed

i =10, 11, or 12, denote by t the number of G;-conjugacy



classes in 1 g € G;: fi(g) = o) .

Proposition 6.5. Let g ¢ G; be of order 5 or 1o.

(i) 1f p = 5, thencp(g)=1,gm3t=1for1=10.

(ii) 1f p $+ 5, then cp(g) = 0.

Proof. By virtue of (I)Prop.19(ii) and (III)Prop.2.8(ii),
the above (ii) is obvious. Assume p = 5. Then, we can put

o-¢

g = (6'1 w ), wvhere W 1is an element of Op such that

wz -wW-1=0, and geop, £2 = -3, Ewﬂ;& . If x.1gx6 B',

then x ¢ Qp(g)P;', by virtue of 19l Prop.19(iv). It is easy

to see x & Qp(g) (-;E ?)B'. qg.e.d.

Proposition 6.6. Let g be of order 8. Then,

(i) if p= +1 mod. 8, then cp(g) =0,

(ii) if p= 3, or 5 mod. 8, then c,lg) = 4 and t = 1.

Proposition 6.7. Let g be an element of G; such that

f12(g) = 0. Then,

(1) if p= +1 mod.12, then cp(g) 0,

(ii) if p =5 mod.12, then cp(g) 4, t = 1, and

2
Zo (g )p split,

(11i) if p= 7 mod.12, then cp(g) = 4, t = 1, and

2
z° (g )p division.
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Proof of Prop.6.6 and 6.7. By virtue of [I9])(I)Prop.20, 21,
and {(II1I) Pr.op.2.9, 2.0, the above (i) of Prop.6.6 and 6.7
are obvious. If p = 3, 5 mod.8(resp.p= 5, 7 mod.12),

we can write f.” (x) (resp.fn(x)) as a product of quadratic
polynomials in Qp[ x]:

2

£.(x) = (x*+ax+b) (x2+ab” !

1

x+b ') (i=11 or 12),

wvhere b $ 1. We can take WE Op such that w 2+aw+b = 0.
Put w1 = W and w2 = b°1w . Then, g is G;-conjugate to
w, ° -1
] *
( o wz). If x gx € B' for some x € Gp, then

x € AzG;(g)Pf' or zG;(g) (Lt ,S)P'. by virtue of [197(I)Prop.21.

We have P; = .U. (1 O)B'—U. (° 1)B', where a runs through
a 2 1 1o
a set of representatives of

{x ¢ op; tr(x) =0} 7/ {x enop; tr(x) = 0} .

In the similar way as in the proof of Prop.6.4(ii), we

have x ¢ ZG*(g)yiB' (1 = 1,2,3,0or 4), vhere
P

10 " Tt O . _ .01 -

These four double cosets are disjoint. q.e.d.



§7. Related topics
Here, we would like to take this opportunity to
write briefly on some related topics.

(1) Ihara lifting For n = 2, Ihara[2f] has shown

that there exists a kind of lifting of aytomorphic forms

of 5,,,,([p(p)) to MV(U;(p)), where
ab —
Cotp) = {(c g) € SL,(Z); c =0 mod.p | .

(Actually, he did not assume that the discriminant . of D is
a prime. As for this , sce his paper.)

More exactly, we can take the representation space v,

of pv (for n = 2) as follows: We identify H (the Hamilton

quaternions) with R4. V, 1is the set of real valued

2 Q'Rs.such that

homogeneous polynomials f(x,y) on H
1) f(ax,ay) = N(a)f(x,y) for all a € Hf and
2) Af =0,
where N{a) is the reduced norm of a and D is the usual
Laplacian. Sp(2) acts on V, Dby

fix,y) — £(x,y)g) for all g € Sp(2).
For the sake of simplicity, we assume here that the class
number of U1(p) is one, i.e. dim My(U1(p)) = 1 for V =0,
although, as Ihara has kindly shown us, his theory works
completely in the same way without any such restriction.
pat [ = U1(p)f\ G'. Then, under the above assumption,
we get

Myl = { £€V ; £((x,y)&) = £lx,y) for all FEL) .



Let £ ¢ Myju;(p)) be a common eigen form of all the

Hecke operators T(m). For such f, put

” zm : T
‘yf(t) = Z fix,yle i(N(x)+N{y)) . T EH..

(x,y)e 02

Then, Jf(t) € Sy, TP

Theorem 7.1{Iharal2¥]) Assume that £(1,0) * 0. Then,

Qf is also a common eigen form (of the Hecke operators

of [",(p)), and we get

L(s,£) = § (s-V-1) § (s=V~2)L(s, )
up to Euler p-factors.

This Ihara{s result was the first one among results on
lifting obtained later by many mathematitians. For
example, the Saito-Kurokawa lifting may be regarded as

a similar version of Ihara lifting for the split group
Sp(2,R). The second named author has extended Th.7.13

to general n: under similar condition on f

as £(1,0) +#+ 0 for n = 2, he expressed the eigen values of f
by some group theoretical numbers and coefficients of
some one dimensional automorphic forms, and at least for

n = 3, gave L(s,f) explicitly.

Some examples of Th.7.1 have been given by
VIhara(loc.cit.). We give here another example. We assume

n=2. Put p=2and V = 2. Then, dim MV(U;(Z)) = 1 and
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this space is spanned by:
£(x,y) = N(x)2 - 3N(X)N(y) + N(y)2.
Then, by Th.7.1, we have
L(s,f) = <(s-5) €(s-6)L(s,h),
up to Euler 2 factors, where h is the unique normalized

cusp form of SS(FO(Z)). On the other hand, MaaB[38]

has shown that

L(s,F) = ¥ (s-5) ¥ (s-6)L(s,h),

for some F € Ss(["e(n) (unique up to constant),

where [ o (1) is the unique index two subgroup of Sp(2,2)
which contains the level two principal congruence subgroup.
So, (£,F) gives an example for Langlands philosophy. But,
this example is less essential than the examples in [21].
because this is a relation through one dimensional forms
and does not satisfy the Ramanujan Conjecture. In our

set up in Conjecture 1.11, there is no relation,

at least apparently, between old forms and those forms
obtained from lifting. As for another aspect between

lifting and old forms, see(24]

(2) Construction of automorphic forms For n = 1, it is well!known

that we can construct the forms in Sk(f-'0 (p)) from M, , (0,)

through the Weil representation: We can embed Sp(1) 2= SU(2)
to SO0(4), and roughly speaking, we can get forms in

Sk(r'o(p)) through theta functions

2rciQ(n)

’

S(f) = 2. Pplnle
n€ 2
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where Q are quadratic forms of four variables and P are
spherical functions(i.e.automorphic forms of Sp(1)).

In our case of n = 2, the situation is fairly different.
We can embed Sp(2) to SO(8) for example, and get a Siegel
modular form in a similar way, but the weight of this
form cannot be V +3. On the other hand, we have

Sp(2)/+1 = SO(5). By using this isomorphism, it has been
shown in[25], that we can construct automorphic forms

on §;T§T§;( the non trivial double cover of Sp(2,R))
from forms belonging to Sp(2), and that this construction

preserves L-functions. Let f’(f’.fz) be the representation

of Sp(2) whose Young diagram is 1i.1.] - f; .
1 - L]

Then, f(f1,f2) factors through SO(5) if and only if

f1+f2 = even. We assume this. Then, from any form

A e'-Mf(f1,f2)(U;(P))(n’= 2), we can construct a vector

valued Siegel modular form ¢(9 ) of weigﬁt

det(fffz*s)@ sym(f,) , where Sym(f,) is the symmetric

tensor representation of GL(2) of degree fz. We can develop

the Hecke theory on Sp(2,R) and define L-series. By

some local thoery similar to Yoshida{51], we can show

that “L{(s,¥) = L(s, 6(9F)) up_té finitely many Euler

factors. It is very plausible that there exists a similar
P, g

mapping from forms of Sp(2,R) to those of Sp(2,R).

So, the above results might be regarded as the first half



of an explicit mapping of forms of 3%{2) to those of

Sp(2,R).

(3) A relation to supersingular abelian varieties

We have some geometrical interpretation of dim Mo(Ui(p))
(i = 0,1) and the Hecke operators. Let Hn be the class
.number of the principal genus of the definite guaternion

hermitian space D" with metric N(x1)+...+§(xn) for

n — [} ’ .
(Xyreeenx)) €r Put U= GWT;I' (GLn(Oq)r\ Gq).

Then, dim M (U) = H_, so dim My (U} (p)) = H, (cf.Shimura [44 ]).

For n = 1, it is known by Deuring [81] that 81 is equal to
the number of isomorphism classes of super singular

elliptic curves E over fields of characteristic P.

It is clear that the Brandt matrices defined by ﬁichler[S]
coincide with matrices which consists of numbers of

isogenies between supersingular elliptic curves.

Now, we assume n = 2. We have similar (but slightly different)
relation also for these cases: Hn is egqual to the number

of principal polalizations of e? up to Aut(En)(cf.Ibukiyama-
Katsura-Oort [26), J.P.Serrel42]). Combining this fact

for n = 2 with some geometrical consideration, the number

of supersingular curves of genus two with prescribed
automorphism groups have been counted(Ibukiyama-Katsura—Oort'.
loc.cit.) This gives an example of explicit descriptions

of [ﬁi in (1.3) up to isomorphisms. Next, let AC1(1=1...Hn)
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be the complete set of representatives of the principal
polarizations of " up to Aut (E"). For natural integers m,
put

sy50m = #{ge Ena(E); @*(C)= mCy f/ Awt(E )

o——

where = denotes the algebraic equivalence. Put S(m) = (sij(m)).

On the other hand, denote by H(m) = (hij(m)) the Brandt
matrix, i.e., the matrix inﬁuced from the Hecke operator
T(m) on the right hand side of (1.4). Then, changing the
numbering, if necessary, we get H(m) = S(m).

The class number Hi of the non-principal genus in D2 is

equal to dim Mo(Ua(p))(cf.ShimuraFH]). It is known by
Katsura-oort [31) that H) is equal to the number of

irreducible components of the set of principally polarized

supersingular abelian surfaces in the coarse moduli scheme

2,1°
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