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Monoidal cofibrant resolutions of dg algebras

Boris Shoikhet

Abstract. Let k be a field of any characteristic. In this paper, we construct
a functorial cofibrant resolution R(A) for the Z≤0-graded dg algebras A over
k, such that the functor A  R(A) is colax-monoidal with quasi-isomorphisms
as the colax maps. More precisely, there are maps of bifunctors R(A ⊗ B) →
R(A)⊗R(B), compatible with the projections to A⊗B, and obeying the colax-
monoidal axiom.
The main application of such resolution (which we consider in our next paper) is
the existence of a colax-monoidal dg localization of pre-triangulated dg categories,
such that the localization is a genuine dg category (not just an object of the
homotopy category of dg categories), whose image in the homotopy category of
dg categories is equivalent to the Toën’s localization.

Introduction

0.1 The Main Theorem

Let k be a field of any characteristic.
It is known that any associative algebra A over k admits a free resolution, that is, a free

associative dg algebra R(A) endowed with a quasi-isomorphism of algebras pA : R(A) → A.
Here we specify this claim as follows. Having two associative algebras A and B over k, A⊗B is
an associative algebra again. We want to choose a functorial free resolution R(A) for all algebras
A over k, such that R(A⊗B) and R(A)⊗R(B) are related by a functorial quasi-isomorphism,
defined over A⊗B.

More precisely, we want to find a functor A R(A) with R(A) a free associative dg algebra,
such that there exist a morphism of bifunctors

β : R(A⊗B)→ R(A)⊗R(B)

such that for any two algebras A,B the map β(A,B) is a quasi-isomorphism, the diagram

R(A⊗B)
β //

pA⊗B &&MM
MMM

MMM
MM

R(A)⊗R(B)

pA⊗pBwwooo
ooo

ooo
oo

A⊗B

(0.1)
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is commuative, and such that for any three algebras A,B,C, the diagram

R(A⊗B ⊗ C) //

��

R(A⊗B)⊗R(C)

��
R(A)⊗R(B ⊗ C) // R(A)⊗R(B)⊗R(C)

(0.2)

is commutative. A functor F : M1 → M2 between two monoidal categories, with a map of
bifunctors β : F (A ⊗ B) → F (A) ⊗ F (B) for which the diagram (0.2) commutes, is called
colax-monoidal (see Definition 5.1 below for the precise definition of a colax-monoidal functor).

We explain below in this Introduction (see Section 0.2 below) why the existence of such
resolutions R(A) is important for applications.

In fact, in this paper we allow for algebras themselves A,B, . . . to be dg algebras (not just
usual algebras, concentrated in degree 0). We use the technique of closed model categories,
introduced and developed by Quillen in [Q].

Roughly speaking, the theory of closed model categories is a homological algebra in non-
abelian (an non-additive) setting. A closed model category is a category C with some three
classes of morphisms, called weak equivalences, fibrations, and cofibrations. The class of weak
equivalences is the most essential. In abelian setting, the weak equivalences of complexes are
the quasi-isomorphisms of complexes. The goal of the theory is to construct the localization
(or homotopy category) HoC = C[W−1] by the class of weak equivalences, and for some special
“right or left exact” functors F : C→ D, to construct its total derived functor F : HoC→ HoD.

In this paper, we assume the reader has some familiarity with the foundations of closed
model categories. We use contemporary texts [Hir], [GS], and [DS] as references on closed
model categories.

The closed model structure on the category of associative dg algebras Algk over a field k of
any characteristic (and as well, for the category of dg algebras over any operad, over a field of
characteristic 0) was constructed by Hinich [Hi]. For this structure, the weak equivalences are
the quasi-isomorphisms of dg algebras, the fibrations are the component-wise surjective maps
of dg algebras, and the cofibrations are uniquely defined from the weak equivalences and the
fibrations, by the left lifting property.

Let us recall an explicit description of the cofibrant objects.
A dg associative algebra A is called standard cofibrant if there is an increasing filtration on

A, A = colim Ai,
A0 ⊂ A1 ⊂ A2 ⊂ . . .

such that the underlying graded algebra Ai is obtained from Ai−1 by adding the free generators
graded space Vi,

Ai = Ai−1 ∗ T (Vi)
such that

d(Vi) ⊂ Ai−1
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for i ≥ 1, and A0 has zero differential. Here ∗ is the free product of algebras, which is the same
as the categorical coproduct of algebras, and T (Vi) is the free graded algebra on generators Vi.

The description is: any cofibrant dg associative algebra is a retract of a standard cofibrant
dg algebra.

As follows from this description, for Z≤0-graded dg algebras, the concepts of free dg algebras
and of cofibrant dg algebras coincide. For Z-graded dg algebras, the two concepts are not the
same: for a cofibrant Z-graded dg algebra, the underlying graded algebra is free, but the
differential has special “triangular” form.

For the description of the closed model structure on the category of simplicial associative
algebras, see (1.9) below.

Denote the category of Z≤0-graded associative algebras by Alg≤0
k .

Our main result is:

Theorem 0.1. Let k be a field of any characteristic. There is a functor R : Alg≤0
k → Alg≤0

k

and a morphism of functors w : R→ Id with the following properties:

1. R(A) is cofibrant, and w : R(A)→ A is a quasi-isomorphism, for any A ∈ Alg≤0
k ,

2. there is a colax-monoidal structure on the functor R, such that all colax-maps βA,B : R(A⊗
B)→ R(A)⊗R(B) are quasi-isomorphisms of dg algebras, and such that the diagram

R(A⊗B)
βA,B //

&&MM
MMM

MMM
MM

R(A)⊗R(B)

wwooo
ooo

ooo
oo

A⊗B

is commutative,

3. the morphism w(k
q
) : R(k

q
)→ k

q
coincides with α : R(k

q
)→ k

q
, where α is a part of the

colax-monoidal structure (see Definition 5.1), and k
q
= 1

Alg≤0
k

is the dg algebra equal to

the one-dimensional k-algebra in degree 0, and vanishing in other degrees.

Note once again, that in the context of this Theorem, the words “cofibrant” and “free” are
synonymous.

0.2 Applications

Here we explain why Theorem 0.1 is interesting. The results mentioned here will be proven in
our sequel paper(s).

Some of our intentions is to use the ideas of [KT] in the differential graded context. Kock
and Toën (loc.cit.) work with simplicial algebras. They emphasize that their methods may not
work for non-cartesian monoidal categories. The matter is that the standard definition of weak
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Segal monoids, they essentially use, assumes that the monoidal product is isomorphic to the
cartesian product.

There is, however, a definition due to Leinster [Le], of weak Segal monoids in non-cartesian
monoidal categories. (Note that the category of vector spaces, the category of complexes of
vector spaces, etc. are non-cartesian monoidal, as the monoidal product is the tensor product
and the cartesian product is the direct sum).

Working with the Leinster’s definition, one needs to know a finer monoidal property of the
localization (see Theorem 0.3 below) than the one used in [KT].

Let CatdgU denotes the category of U-small dg categories over a field k, let CCatdgU denotes

the category of colored U-small dg categories over k, and let, finally, Catpre−tr
U (resp., CCatpre−tr

U )
denotes the category of U-small pre-triangulated dg categories (resp., the category of colored
U-small pre-triangulated dg categories) over k. The either of these three categories is symmetric
monoidal, with ⊗k as the monoidal product.

Tabuada [Tab] constructed a closed model structure on the category of U-small dg categories;
this structure is assumed in the two following statements.

Theorem 0.2 (to be proven later). Let k be a field of any characteristic. There is a functor

R : Catpre−tr
U → C

dg
U and a morphism of functors w : R→ Id with the following properties:

1. R(C) is cofibrant, and w : R(C)→ C is a weak equivalence, for any C ∈ Catpre−tr
U ,

2. there is a colax-monoidal structure on the functor R, such that all colax-maps βC,D : R(C⊗
D)→ R(C)⊗R(D) are weak equivalences of dg categories, and such that the diagram

R(C ⊗D)
βC,D //

&&MM
MMM

MMM
MM

R(C)⊗R(D)

wwooo
ooo

ooo
oo

C ⊗D

is commutative.

To prove Theorem 0.2, we firstly extend our Main Theorem 0.1 from Z≤0-graded dg algebras
to Z≤0-graded dg categories, this is rather straightforward. In the next step, we extend the result
from Z≤0-graded dg categories to pre-triangulated dg categories. It seems that the analogous
statement is not true for general Z-graded dg categories (not the pre-triangulated ones).

Theorem 0.3 (to be proven later). There is a localization functor

L : CCatpre−tr
U → Catdg[U]

from colored pre-triangulated U-small dg categories to dg U-categories, with the following prop-
erties:
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(i) L is colax-monoidal, with weak equivalences of dg categories as the colax maps β(C,D),

(ii) β(C,D) is defined over C ⊗D, for any two pre-triangulated dg categories C,D,

(iii) the image of L(C, S) under the projection to the homotopy category HoCatdgU coincides
with the Toën dg localization [To], Sect.8.2.

Toën defines a localization of the dg categories with nice homotopy properties (see [To],
Corollary 8.7) as the homotopy colimit of some push-out-angle diagram. It is possible to com-
pute this homotopy colimit as the genuine colimit of a cofibrant replacement of the initial dia-
gram. We use the cofibrant resolution R(C), given in Theorem 0.2, for this replacement. (In
fact, the push-out-angle diagrams and the pull-back-angle diagrams in a closed model category
admit closed model structures, with component-wise weak equivalences as the weak equiva-
lences, see [DS], Section 10).

We use Theorem 0.3 for a conceptual proof of the Deligne conjecture for abelian n-fold
monoidal categories, as well as for proofs of other results in deformation theory. The details
will appear elsewhere.

0.3 Plan of the paper

We start with proving a direct analogue of Theorem 0.1 for simplicial associative algebras over
k, instead of Z≤0-graded dg associative algebras (see Theorem 1.1 below). It turns that the
Theorem becomes much simpler in the simplicial setting. We solve it by an explicit construction,
which reminiscences the construction used by Dwyer-Kan in their first paper [DK1] on simplicial
localization. This is done in Section 1.

The rough idea of the remaining Sections is to “transfer” the solution of Theorem 1.1 for
simplicial algebras to a solution to the Main Theorem 0.1, using the Dold-Kan correspondence
and passing to the categories of monoids. One should say, it is not very straightforward. The
main techniques we use are, along with some well-known results on closed model categories,
at first, some results on weak monoidal Quillen pairs, due to Schwede and Shipley [SchS03],
and, at second, a result that the bialgebra axiom is fulfilled in the context of the Dold-Kan
correspondence (proven independently in [Sh2] and, before, in [AM]).

Sections 2 and 3 are preparatory to the culminating Section 4, where the Main Theorem
is proven (as Theorem 4.1). In Section 2 we recall those results on monoids, due to Schwede-
Shipley [SchS03], which do not deal with homotopy theory, and discuss the role of the bialgebra
axiom, following [Sh2]. In Section 3 we recall the Dold-Kan correspondence, emphasizing on its
monoidal properties.

In Section 4 all different parts of the game play together, and lead us to the proof of the
Main Theorem.

In Section 5 we collect the definitions expressed in some commutative diagrams, these are
the precise definitions of a lax-monoidal and of a colax-monoidal functors, and formulate the
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bialgebra axiom. This Section is included to the paper to ease the reader’s reference.

0.4 Notations

Throughout the paper, k denotes a field of any characteristic. An “algebra” always means an
“associative algebra”. All our algebras have unit.

All differentials in this paper have degree +1, as is common in the algebraic literature.
Let ∆ be the category whose objects are [0], [1], [2], [3], and so on, where [n] denotes the

completely ordered sets with n + 1 elements 0 < 1 < 2 < · · · < n. A morphism f : [m] → [n]
is any map obeying f(i) ≤ f(j) when i ≤ j. A simplicial object in a category C is a functor
∆opp → C, and a cosimplicial object in C is a functor ∆→ C. We denote by C∆ the category of
simplicial objects in C and by C∆opp

the category of cosimplicial objects in C. This notation is
indeed confusing, but seemingly it is traditional now.

All categories we consider in this paper are small for some universe. We do not meet here any
set-theoretical troubles related with the localization of categories, and we ignore the adjective
“small” in all our formulations (except Section 0.2).
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1 The case of simplicial algebras

The category Alg∆k of simplicial algebras over field k is monoidal, with degree-wise ⊗k as the
monoidal structure, and it admits a closed model structure. We recall this closed model structure
in Section 1.2 below. We refer to this closed model structure in the following result.

Theorem 1.1 (Main Theorem for simplicial algebras). Let k be a field of any characteristic.
There is a functor R : Alg∆k → Alg∆k and a morphism of functors w : R→ Id with the following
properties:

1. R(A) is cofibrant, and w : R(A)→ A is a weak equivalence, for any A ∈ Alg∆k ,
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2. there is a colax-monoidal structure on the functor R, such that all colax-maps βA,B : R(A⊗
B)→ R(A)⊗R(B) are weak equivalences of simplicial algebras, and such that the diagram

R(A⊗B)
βA,B //

&&MM
MMM

MMM
MM

R(A)⊗R(B)

wwooo
ooo

ooo
oo

A⊗B

is commutative,

3. the morphism w(k q) : R(k q) → k q coincides with α : R(k q) → k q, where α is a part of
the colax-monoidal structure (see Definition 5.1), and k q = 1Alg∆k

is the simplicial algebra
equal to the one-dimensional k-algebra k in each degree.

1.1 The construction

The idea is very easy. Let A q be a simplicial algebra. There is the forgetful functor Alg∆k →
Vect∆k to simplicial vector spaces, having a left adjoint functor of “free objects”. This is the
functor A q  (TA) q, with

(TA)k = T (Ak) (1.1)

where T (Ak) is the free (tensor) algebra. We consider the cotriple, associated with the pair of
adjoint functors (L is the left adjoint to R)

L : Vect∆k � Alg∆k : R

(see [W], Section 8.6). Explicitly,
T = L ◦R (1.2)

This implies that there are maps of functors ϵ : T → id and δ : T → T 2 obeying the cotriple
axioms. These axioms guarantee that the following collection of algebras (FA)k, k ≥ 0, has a
natural structure of a simplicial algebra (FA) q:

(FA)k = T ◦(k+1)Ak

(there is the (k+1)-st iterated tensor power in the r.h.s.), such that the natural map FA q → A q,
T ◦(k+1)Ak

ϵk+1

−−−→ Ak, is a weak equivalence of simplicial algebras.
Explicitly, having such a functor T with maps of functors ϵ : T → id and δ : T → T 2, the

simplicial structure on (FA) q is defined as follows.
When Ak = A for any k, (A q is a constant simplicial algebra), the formulas for simplicial

algebra structure on (FA) q are:
di = T ◦iϵT ◦(n−i) : T ◦(n+1)A→ T ◦nA

si = T ◦iδT ◦(n−i) : T ◦(n+1)A→ T ◦(n+2)A
(1.3)
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The cotriple axioms then guarantee the simplicial identities (see [W], Section 8.6.4 for detail).
In general case, when A q is not constant, the simplicial algebra (FA) q is defined as the

diagonal of the bisimplicial set
(FA) q = diag((FA q) q) (1.4)

For two simplicial algebras A q and B q, there is a canonical embedding

βA,B : F (A⊗B) q → (FA) q ⊗ (FB) q
defined on the level of algebras by iterations of the map

α : T (A⊗B)→ T (A)⊗ T (B)

(a1 ⊗ b1)⊗ · · · ⊗ (ak ⊗ bk)
α−→ (a1 ⊗ · · · ⊗ ak)⊗ (b1 ⊗ · · · ⊗ bk)

(1.5)

The component (βA,B)k : (T
◦(k+1)Ak) ⊗ (T ◦(k+1)Bk) → T ◦(k+1)(Ak ⊗ Bk) is defined as the

iterated power α◦(k+1).

Lemma 1.2. The collection of maps {βℓ}, ℓ ≥ 0, defines a map of simplicial algebras

β : (F (A⊗B)) q → (FA) q ⊗ (FB) q
Proof. Denote the product(s) in Ak by ⋆, the product in T (V ) by ⊗, and the product in T (T (V ))
by

⊗
. Then the formulas for ϵ : T → id and δ : T → T 2 are as follows:

ϵ(a1 ⊗ · · · ⊗ ak) = a1 ⋆ · · · ⋆ ak
δ(a1 ⊗ · · · ⊗ ak) = a1

⊗
· · ·

⊗
ak

(1.6)

The statement of Lemma now follows directly from formulas (1.3), expressing the simplicial
faces and degeneracies maps in ϵ and δ.

Our goal in this Subsection is to prove that R(A q) = (FA) q solves Theorem 1.1. We need
to prove

Lemma 1.3. 1. For any simplicial algebra A q, the simplicial algebra FA q is cofibrant in the
closed model structure on Alg∆k ,

2. the map βA,B : (F (A⊗B)) q → (FA) q ⊗ (FB) q is a weak equivalence.

Before proving the above Lemma, we need to remind some results concerning the closed
model structure on the category Alg∆k , which goes back to Quillen [Q], Section 4.3.
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1.2 The closed model category of simplicial algebras

Firstly recall the model structure on the category Vect∆k of simplicial vector spaces over field k.

(i) A map f : X → Y in Vect∆k is a weak equivalence if it induces an isomorphism
on homotopy groups π q(X)→ π q(Y ),

(ii) a map f : X → Y is a fibration if it induces a surjection π qX → π0(X) ×π0(Y )

π q(Y ).

(iii) A map f : X → Y in Vect∆k is a cofibration if it has a form

Xn → Yn = Xn ⊕ Vn

for some collection of vector spaces {V0, V1, V2, . . . }, such that each simplicial
degeneracy map si : [n+ 1]→ [n] maps Vn to Vn+1, n ≥ 0.

(1.7)

The model category Vect∆k described above is cofibrantly generated (see [GS], Section 3, for
a beautiful short survey of cofibrantly generated model categories). Recall that it means, in
particular, that there are given sets I of generating cofibrations, and J of generating acyclic
cofibrations, subject to the following two properties:

1. the source of any morphism in I obeys the Quillen’s small object argument to the category
of all cofibrations; the source of any morphism in J obeys the small object argument to
the category of all acyclic cofibrations;

2. a morphism is a fibration if and only if it satisfies the left lifting property with respect to
any morphism in J ; a morphism is an acyclic fibration if and only if it satisfies the left
lifting property with respect to any morphism in I.

Concerning the Quillen’s small object argument, see [GS], Section 3.1, or [Hir], Section 10.5, for
thorough treatment. The meaning of these two conditions is that they make possible to prove
the last axiom (CM5) of a closed model category axioms, which is in a sense the hardest one
(see loc.cit.).

See [GS], Examples 3.4, for explicit description of the sets I and J in the category Vect∆k .
There is a pair of adjoint functors

L : Vect∆k � Alg∆k : R (1.8)

As the left-hand side category is a cofibrantly generated model category, the model structure can
be “transferred” to the right-hand-side category, and this model category is again cofibrantly
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generated. This transfer principle is explained in [GS], Theorem 3.6, and [Hir], Theorem 11.3.2.
As is explained in [GS], Sections 3,4, the assumptions of Theorem 3.6 are satisfied in (1.8).

In the situation when assumptions of Theorem 3.6 of [GS] are fulfilled, the sets L(I) and
L(J) are generating cofibrations (resp., generating acyclic cofibrations) for the category in the
right-hand side.

The obtained closed model structure on Alg∆k has the following explicit description, see [GS],
Section 4.3.

(i) a map f : X → Y is a weak equivalence if π∗f : π∗X → π∗Y is an isomorphism,

(ii) a map f : X → Y is a fibration if the induced map X → π0X ×π0Y Y is a
surjection.

(iii) a map f : X → Y is a cofibration in Alg∆k if it is a retract of the following free
map:

Xn → Yn = Xn ⊔ T (Vn)

as algebras, for some collection {V0, V1, V2, . . . } of vector spaces, such that all
degeneracy maps si : [n+ 1]→ [n] maps Vn to Vn+1, n ≥ 0.

(1.9)

See [Q], Section 4.3 and [GS], Proposition 4.21 for a proof.

1.3 Proof of Theorem 1.1

Firstly we prove

Lemma 1.4. For any simplicial algebra A q, the simplicial algebra (FA) q is cofibrant, and the
projection p : (FA) q → A q is an acyclic fibration.

Proof. We need to find vector spaces Vi such that (FA)n = T (Vn) and such that all degeneracies
maps si : [n + 1] → [n] define maps of algebras T (Vn) → T (Vn+1) induced by some maps
of generators Vn → Vn+1. We set Vn = T ◦n(Vn), it is clear that this choice satisfies the both
conditions. The statement that the map (FA) q → A q is both a weak equivalence and a fibration,
is clear.

Next follows

Lemma 1.5. For any two simplicial algebras A q, B q, the map βA,B : F (A⊗B) q → (FA) q⊗(FB) q
is a weak equivalence.
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Proof. It is a straightforward and simple check that the diagram

F (A⊗B) q βA,B //

pA⊗B ''NN
NNN

NNN
NNN

(FA) q ⊗ (FB) q
pA⊗pBvvnnn

nnn
nnn

nnn

A q ⊗B q
(1.10)

is commutative. The map pA⊗B is a weak equivalence by Lemma 1.4, the product pA ⊗ pB
is a weak equivalence by Lemma 1.4 again, and by Condition A (Lemma ??). Then, the
commutativity of the diagram (1.10) implies, by 2-out-of-3 axiom of closed model category,
that the third arrow βA,B is also a weak equivalence.

2 Monoids and the Bialgebra axiom

2.1 The category of monoids

Let M be a symmetric monoidal category, MonM be the category of monoids in M. There is
the forgetful functor

f : MonM→M

Under some conditions, the functor f has a left adjoint functor , “the free monoid functor”.
Recall the following result, from [ML], Chapter VII.3:

Lemma 2.1. Let M be a monoidal category with all finite colimits, such that the functors ?⊗ a
and a⊗? (for fixed a) commute with finite colimits. Then the functor M→MonM, X 7→ T (X),
with

T (X) = 1M
⨿

X
⨿

X ⊗X
⨿

. . . (2.1)

is left adjoint to the forgetful functor.

When the finite colimits exist, and there is the inner Hom functor (a right adjoint to the
monoidal product), the functors ? ⊗ a and a⊗? commute with colimits by general categorical
arguments.

We say that a monoidal category M is good when the assumptions of Lemma 2.1 hold.
Let now M1,M2 be two symmetric monoidal categories, and let F : M1 →M2 be a functor.

Suppose a lax-monoidal structure ℓF is given. Then there is a functor Fmon = Fmon(ℓF ) : MonM1 →
MonM2, depending on ℓF . For a monoid X in M1, the underlying object of Fmon(X) is defined
as F (X), and the monoid structure is given as

F (X)⊗ F (X)
ℓF−→ F (X ⊗X)

mX−−→ F (X) (2.2)

We have immediately:
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Lemma 2.2. In the above notations, the following two diagram is commutative:

M1
F // M2

MonM1
Fmon

//

OO

MonM2

OO (2.3)

Here the vertical upward arrows are the forgetful functors.

2.2 The left adjoint functor on monoids

Suppose now that the functor F admits a left adjoint functor L : M2 → M1. In this case, we
want to construct a functor Lmon : MonM2 →MonM1, left adjoint to the functor Fmon.

The following Lemma (and the construction in its proof) is due to [SchS03], Section 3.3:

Lemma 2.3. Suppose the monoidal categories M1 and M2 are good, and suppose that the functor
L left adjoint to F exists. Then the left adjoint functor Lmon : MonM2 →MonM1 exists, and
it makes the diagram

M1

��

M2

��

Loo

MonM1 MonM2
Lmon
oo

(2.4)

commutative. Here the downward vertical arrows are the free monoid functors.

Proof. The second claim is a formal consequence from the existence of Lmon, as the free monoid
functors are left adjoint to the forgetful functors. The value Lmon(X) (for a monoid X in M1)
is defined as the co-equalizer

TD(L(TM1(X)))
α //

β
// TM2(LX) (2.5)

where TM denotes the free (tensor) monoid in a monoidal category M, see (2.1). The map α in
(2.5) comes from the map TM1(X)→ X defined from the monoid structure on X, and the map
β in (2.5) is defined from the following map L(TM1(X))→ TM2(LX):

L(X ⊗X ⊗ · · · ⊗X︸ ︷︷ ︸
n factors

)
cL

n−1

−−−−→ L(X)⊗ L(X)⊗ · · · ⊗ L(X)︸ ︷︷ ︸
n factors

where cL is the colax-monoidal structure on L adjoint to the lax-monoidal structure ℓF on F .
The check that the functor Lmon, defined by (2.5), is left adjoint to the functor Fmon, is

straightforward and is left to the reader.

Now we pass to the situation when the functor F admits, besides the lax-monoidal structure
ℓF , a colax-monoidal structure cF , compatible by the bialgebra axiom (see Section 5.3 below).
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2.3 The Bialgebra axiom

Fix some notations on adjoint functors.
Let L : A � B : R be two functors. They are called adjoint to each other, with L the left

adjoint and R the right adjoint, when

MorB(LX, Y ) ≃ MorA(X,RY ) (2.6)

where “≃” here means “isomorphic as bifunctors Aopp ×B→ Sets”.
This gives rise to maps of functors ϵ : LR → IdB and η : IdA → RL such that the composi-

tions

L
L◦η−−→ LRL

ϵ◦L−−→ L

R
η◦R−−→ RLR

R◦ϵ−−→ R
(2.7)

are identity maps of the functors.
The inverse is true: given maps of functors ϵ : LR→ IdB and η : IdA → RL, obeying (2.7),

gives rise to the isomorphism of bifunctors, that is, to adjoint equivalence (see [ML], Section
IV.1, Theorems 1 and 2).

In particular, the case of adjoint equivalence is the case when ϵ : LR→ IdB and η : IdA → RL
are isomorphisms of functors. In this case, setting ϵ1 = η−1 and η1 = ϵ−1, we obtain another
adjunction, with L the right adjoint and R the left adjoint.

Let ϕ ∈ MorB(LX, Y ). The following explicit formula for its adjoint ψ ∈ MorA(X,RY ) will
be useful:

X
η−→ RLX

R(ϕ)−−−→ RY (2.8)

and analogously for the way back:

LX
L(ψ)−−−→ LRY

ϵ−→ Y (2.9)

(see [ML], Section IV.1).
Let now C and D be two symmetric monoidal categories, F : C → D a functor. Suppose

a lax-monoidal structure ℓF and a colax-monoidal structure cF on F are given. The bialgebra
axiom is some compatibility condition on the pair (cF , ℓF ), see Section 5.3. Recall the following
simple fact from [Sh2], Section 2:

Lemma 2.4. Let C and D be two strict symmetric monoidal categories, and let F : C � D : G
be an adjoint equivalence of the underlying categories. Then given a pair (cF , ℓF ) where cF is
a colax-monoidal structure on F , ℓF is a lax-monoidal structure on F , one can assign to it a
pair (cG, ℓG) of analogous structures on G. If C and D are symmetric monoidal, and if the pair
(cF , ℓF ) satisfies the bialgebra axiom (see Section 5.3), the pair (cG, ℓG) satisfies the bialgebra
axiom as well.

13



Proof. Suppose (cF , ℓF ) are done. We firstly write down the formulas for ℓG and cG.

Formula for ℓG:

GX ⊗GY η−→ GF (GX ⊗GY )
cF−→ G(FGX ⊗ FGY )

ϵ⊗ϵ−−→ G(X ⊗ Y ) (2.10)

Formula for cG:

G(X ⊗ Y )
ϵ−1⊗ϵ−1

−−−−−→ G(FGX ⊗ FGY )
ℓF−→ GF (GX ⊗GY )

η−1

−−→ GX ⊗GY (2.11)

When we now write down the bialgebra axiom diagram (see Section 5.3) for (cG, ℓG) we see
due to cancelations of ϵ with ϵ−1 and of η with η−1, that the diagram is commutative as soon
as the diagram for (cF , ℓF ) is.

Lemma 2.5. Let C,D be two symmetric monoidal categories, and let F : C → D be a functor.
Suppose a lax-monoidal structure ℓF on F is given. Consider the functor

Fmon = Fmon(ℓF ) : MonC→MonD

defined in (2.2). Then the map Fmon(X)⊗Fmon(Y )→ Fmon(X⊗Y ), defined on the underlying
objects as ℓF , is a map of monoids, and, therefore, gives a lax-monoidal structure on Fmon. Let
now cF be a colax-monoidal structure on F . If (ℓF , cF ) satisfies the bialgebra axiom, the map
Fmon(X ⊗ Y ) → Fmon(X) ⊗ Fmon(Y ), defined on the underlying objects as cF , is a map of
monoids, and, therefore, gives a colax-monoidal structure on Fmon.

The both claims are straightforward checks. The second claim was, in fact, our motivation
for introduction of the bialgebra axiom in [Sh2].

3 The Dold-Kan correspondence

We use the following notations:
C(Z) is the category of unbounded complexes of abelian groups, C(Z)+ (resp., C(Z)−) are the

full subcategories of Z≥0-graded (resp., Z≤0-graded) complexes. The category of abelian groups
placed in degree 0 (with zero differential) is denoted by Mod(Z), thus, Mod(Z) = C(Z)−∩C(Z)+.

3.1

The Dold-Kan correspondence is the following theorem:

Theorem 3.1 (Dold-Kan correspondence). There is an adjoint equivalence of categories

N : Mod(Z)∆ � C(Z)− : Γ

where N is the functor of normalized chain complex (which is isomorphic to the Moore complex).

14



We refer to [W], Section 8.4, and [SchS03], Section 2, which both contain excellent treatment
of this Theorem.

The both categories Mod(Z)∆ and C(Z)− are symmetric monoidal in natural way. However,
neither of functors N and Γ is monoidal.

There is a colax-monoidal structure on N , called the Alexander-Whitney map AW : N(A⊗
B)→ NA⊗NB and a lax-monoidal structure on N , called the shuffle map ∇ : N(A)⊗N(B)→
N(A⊗B).

Recall the explicit formulas for them.
The Alexander-Whitney colax-monoidal map AW : N(A ⊗ B) → N(A) ⊗ N(B) is defined

as
AW (ak ⊗ bk) =

∑
i+j=k

difina
k ⊗ dj0b

k (3.1)

where d0 and dfin are the first and the latest simplicial face maps.
The Eilenberg-MacLane shuffle lax-monoidal map ∇ : N(A)⊗N(B)→ N(A⊗B) is defined

as
∇(ak ⊗ bℓ) =

∑
(k,ℓ)-shuffles (α,β)

(−1)(α,β)Sβak ⊗ Sαbℓ (3.2)

where
Sα = sαk

. . . sα1

and
Sβ = sβℓ . . . sβ1

Here si are simplicial degeneracy maps, α = {α1 < · · · < αk}, β = {β1 < · · · < βℓ}, α, β ⊂
[0, 1, . . . , k + ℓ− 1], α ∩ β = ∅.

Let us summarize their properties in the following Proposition, see [SchS03], Section 2, and
references therein, for a proof.

Proposition 3.2. The colax-monoidal Alexander-Whitney and the lax-monoidal shuffle struc-
tures on the functor N enjoy the following properties:

1. the composition

NA⊗NB ∇−→ N(A⊗B)
AW−−→ NA⊗NB

is the identity,

2. the composition

N(A⊗B)
AW−−→ NA⊗NB ∇−→ N(A⊗B)

is naturally chain homotopic to the identity,

3. the shuffle map ∇ is symmetric,
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4. the Alexander-Whitney map AW is symmetric up to a natural chain homotopy.

Recall a Theorem proven independently in [AM], Sect. 5.4, and (later) in [Sh2], Sect. 2:

Theorem 3.3. The pair (∇, AW ) of the lax-monoidal shuffle structure and the colax-monoidal
Alexander-Whitney structure, defined on the normalized chain complex functor N : Mod(Z)∆ �
C(Z)−, obeys the bialgebra axiom.

This Theorem, along with Proposition 3.2 (1.), play crucial role in the proof of Main The-
orem in Section 4.

3.2 Monoidal properties

Let F,G : C→ D be two functors between monoidal categories.

Definition 3.4. Suppose the functor F is colax-monoidal, with the colax-monoidal structure
cF , and G is lax-monoidal, with the lax-monoidal structure ℓG. A morphism of functors Φ: F →
G is called colax-monoidal if for any X,Y ∈ C, the diagram

F (X ⊗ Y )

cF
��

Φ // G(X ⊗ Y )

F (X)⊗ F (Y )
Φ⊗Φ // G(X)⊗G(Y )

ℓG

OO
(3.3)

As well, when F is lax-monoidal with the lax-monoidal structure ℓF , and G is colax-monoidal
with the colax-monoidal structure cG, a morphism Ψ: F → G is called lax-monoidal, if for any
X,Y ∈ C the diagram

F (X)⊗ F (Y )
Ψ⊗Ψ //

ℓF
��

G(X)⊗G(Y )

F (X ⊗ Y )
Ψ // G(X ⊗ Y )

cG

OO
(3.4)

Each of the functors N and Γ admits both lax-monoidal and colax monoidal structures.
Therefore, the compositions N ◦ Γ and Γ ◦N are both lax- and colax-monoidal.

Here are the main monoidal properties concerning the Dold-Kan correspondence, from which
(ii) is used essentially in our proof of Main Theorem 4.1 below.

Lemma 3.5. (i) the adjunction map ϵ : N ◦ Γ→ Id is lax-monoidal,

(ii) the adjunction map ϵ : N ◦ Γ→ Id is colax-monoidal.
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Proof. The claim (i) is Lemma 2.11 of [SchS03]. The claim (ii) is proven analogously, we present
here the proof for completeness. We need to prove the commutativity of the diagram

NΓ(X ⊗ Y )
φ //

,,YYYYY
YYYYYY

YYYYYY
YYYYYY

YYYYYY
YYYY
N(Γ(X)⊗ Γ(Y ))

AW // NΓ(X)⊗NΓ(Y )

ϵ⊗ϵ
��

X ⊗ Y

(3.5)

Here φ is the colax-monoidal structure on Γ adjoint to the shuffle lax-monoidal structure on N ,
see (2.11). The explicit formula for φ is:

Γ(X ⊗ Y )
ϵ−1⊗ϵ−1

−−−−−→ Γ(NΓ(X)⊗NΓ(Y ))
∇−→ ΓN(Γ(X)⊗ Γ(Y ))

η−→ Γ(X)⊗ Γ(Y ) (3.6)

Now the horizontal composition map in (3.5) is:

NΓ(X ⊗ Y )
ϵ−1⊗ϵ−1

−−−−−→ NΓ(NΓ(X)⊗NΓ(Y ))
∇−→ N ΓN (Γ(X)⊗ Γ(Y ))

η−1

−−→ N(Γ(X)⊗ Γ(Y ))

AW−−→ NΓ(X)⊗NΓ(Y )
(3.7)

where the map η−1 is applied to the “boxed” ΓN factor.
Now the idea is to use the identity AW ◦ ∇ = Id (Lemma 3.2 (1.)) to “cancel” the second

and the fourth arrows in (3.7). We have:

Lemma 3.6. The following two compositions are equal:

N ΓN (Γ(X)⊗ Γ(Y ))
η−1

−−→ N(Γ(X)⊗ Γ(Y ))
AW−−→ NΓ(X)⊗NΓ(Y ) (3.8)

and
NΓ N(Γ(X)⊗ Γ(Y ))

AW−−→ NΓ (NΓ(X)⊗NΓ(Y ))
ϵ−→ NΓ(X)⊗NΓ(Y ) (3.9)

where in the first (corresp., second) equation the map η−1 (corresp., ϵ) is applied to the boxed
factors.

Clearly Lemma 3.5 (ii) follows from Lemma 3.6 and Lemma 3.2 (1.).

Proof. For an adjoint equivalence L : C� D : R with the adjunction isomorphisms ϵ : LR→ Id

and η : Id→ RL, the two arrows LR L
ϵ−→ L and L RL

η−1

−−→ L coincide.

Remark 3.7. The adjunction map η : Id → Γ ◦ N is both lax-monoidal and colax-monoidal
only up to a homotopy, see Remark 2.14 in [SchS03]. The reason is that the another order
composition ∇ ◦AW is equal to identity only up to a homotopy.
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4 Main theorem for Z≤0-graded dg algebras

4.1

Here we prove our main result:

Theorem 4.1. Let k be a field of any characteristic. There is a functor R : Alg≤0
k → Alg≤0

k

and a morphism of functors w : R→ Id with the following properties:

1. R(A) is cofibrant, and w : R(A)→ A is a quasi-isomorphism, for any A ∈ Alg≤0
k ,

2. there is a colax-monoidal structure on the functor R, such that all colax-maps βA,B : R(A⊗
B)→ R(A)⊗R(B) are quasi-isomorphisms of dg algebras, and such that the diagram

R(A⊗B)
βA,B //

&&MM
MMM

MMM
MM

R(A)⊗R(B)

wwooo
ooo

ooo
oo

A⊗B

is commutative,

3. the morphism w(k
q
) : R(k

q
)→ k

q
coincides with α : R(k

q
)→ k

q
, where α is a part of the

colax-monoidal structure (see Definition 5.1), and k
q
= 1

Alg≤0
k

is the dg algebra equal to

the one-dimensional k-algebra in degree 0, and vanishing in other degrees.

The idea is to use the solution of the analogous problem for simplicial algebras (given in
Theorem 1.1 in Section 1), and “transfer” it to dg algebras using the Dold-Kan correspondence.

More precisely, consider the Dold-Kan correspondence

N : Mod(Z)∆ � C(Z)− : Γ

The functorsN and Γ form an adjoint equivalence of categories; therefore, we have some freedom
which of these two functors to consider as the left (right) adjoint. We consider Γ as the right
adjoint. From now on, we use the notations: Γ = R, N = L.

The functor L comes with the colax-monoidal (Alexander-Whitney) structure AW and with
the lax-monoidal (shuffle) structure ∇. They induce a lax-monoidal structure ℓR and a colax-
monoidal structure cR on the functor R by the adjunction, as is explained in (2.10) and (??).

Consider the functor Rmon : Alg≤0
k → Alg∆k , induced by the functor R and from its lax-

monoidal structure ℓR, on the categories of monoids (see Section 2.1). It admits a left adjoint
functor Lmon, defined in Section 2.2.

From now on, we use the notation F(A) for the solution of Theorem 1.1 (instead of former
notation R(A), which we now reserve for solution to Theorem 4.1).
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Define
R(A) = Lmon(F(Rmon(A))) (4.1)

where A ∈ Alg≤0
k .

There is a projection pF : F(R
mon(A))→ Rmon(A). Define the projection

pA : R(A)→ A (4.2)

as the composition of the projection pF with the adjunction map Lmon ◦Rmon → Id.
We claim that this functorR gives a solution to Theorem 4.1. We need to prove the following

statements:

Proposition 4.2. (i) the functor R : Alg≤0
k → Alg≤0

k has a natural colax-monoidal structure
β,

(ii) R(A) is cofibrant, and the projection pA : R(A) → A is a weak equivalence, for any A ∈
Alg≤0

k ,

(iii) the diagram

R(A⊗B)
βA,B //

pA⊗B &&MM
MMM

MMM
MM

R(A)⊗R(B)

pA⊗pBwwooo
ooo

ooo
oo

A⊗B

(4.3)

commutes; consequently, it follows from (ii) and from the 2-out-of-3 axiom that βA,B is a

weak equivalence for any A,B ∈ Alg≤0
k .

The three items of this Proposition rely on three different theories: they are the bialgebra
axiom for (i), the Schwede-Shipley theory of weak monoidal Quillen pairs for (ii), and the
monoidal property of the Dold-Kan correspondence (Lemma 3.5) for (iii). We give the detailed
proof in the rest of this Section.

4.2 Proof of Proposition 4.2, (i)

The functorR = Lmon◦F◦Rmon is a composition of three functors. The functor Lmon comes with
its colax-monoidal structure (adjoint to the lax-monoidal structure on Rmon), and the functor
F has the colax-monoidal structure (1.5). It remains to define a colax-monoidal structure on
Rmon (a priori Rmon has only a lax-monoidal structure).

Recall that the functor L = N has the Alexander-Whiteney colax-monoidal structure AW
and a lax-monoidal structure ∇, compatible by the bialgebra axiom (see Theorem 3.3). Then
it follows from Lemma 2.4 that the adjoint lax-monoidal and colax-monoidal structures on R
obey the bialgebra axiom as well. In general, the lax-monoidal structure on R induces a lax-
monoidal structure on Rmon : MonD →MonC (the same as the lax-monoidal structure on R
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for the underlying objects), but that is not true for the colax-monoidal structure. When the
both structures are compatible by the bialgebra axiom, Lemma 2.5 says the colax-monoidal
structure, defined on the underlying objects as the one on R, defines a colax-monoidal structure
on Rmon.

Thus, R is a composition of three functors, each of which comes with natural colax-monoidal
structure. Therefore, R is colax-monoidal. We always assume this structure when refer to a
colax-monoidal structure on R.

4.3 Quillen pairs and weak monoidal Quillen pairs

4.3.1 Quillen pairs and Quillen equivalences

To prove the statement (ii) of Proposition, we need firstly to recall some definitions on Quileen
pairs of functors between two closed model categories, and to recall some results of Schwede-
Schipley [SchS03] on weak monoidal Quillen pairs.

In classical homological algebra one can derive left exact or right exact functor. When we
work with closed model categories, we try to extend the classical homological algebra to non-
abelian (and non-additive) context. A typical examples are the category of topological spaces
and the category of dg associative algebras. How we can define the notions of a left (right)
exact functor (i.e., of those functors we can derive) in such generality? The answer is given (by
Quillen) in the concept of a Quillen pair of functors.

To motivate the definition below, recall the following simple fact:

Lemma 4.3. Suppose A,B are two abelian categories, and let

L : A� B : R

be a pair of adjoint functors, with L left adjoint. Then L is right exact and R is left exact.

Prove as an exercise, or see the proof in [W], Theorem 2.6.1.
Morally, we can not say in abstract situation what is the right (left) exactness, be we

now what adjoint functors. These are (among other assumptions) the functors we can derive.
Therefore, they come in pairs.

Definition 4.4. Let C,D be two closed model categories, and let

L : C� D : R

is a pair of adjoint functors, with L the left adjoint. The pair (L,R) is called a Quillen pair of
functors if

(1) L preserves cofibrations and trivial cofibrations,

(2) R preserves fibrations and trivial fibrations.
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It is proven (see, e.g., [Hir], Prop. 8.5.7) that, under these conditions, L takes weak equiva-
lences between cofibrant objects to weak equivalences, and R takes weak equivalences between
fibrant object to weak equivalences.

It is proven that a Quillen pair of functors defines an adjoint pair of functors between the
homotopy categories,

L : HoC� HoD : R

The next step is to find conditions on (L,R) under which the pair (L,R) is an adjoint
equivalence. This is the case when (L,R) is a Quillen equivalence.

Definition 4.5. A Quillen pair
L : C� D : R

is called a Quiilen equivalence if for any cofibrant object X in C and for every fibrant object Y
in D, a map f : X → RY is a weak equivalence if and only if the adjoint map f ♯ : LX → Y is
a weak equivalence.

It is proven (see e.g. [Hir], Theorem 8.5.23) that if (L,R) is a Quillen equivalence, the
functors

L : HoC� HoD : R

form an adjoint equivalence of categories.
All these results are due to D.Quillen [Q].

4.3.2 Weak monoidal Quillen pairs

Here we recall a result on weak monoidal Quillen pairs which is essential for our proof of
Proposition 4.2, (ii) below. Our intention here is not to give a throughout treatment (as it
would be just a copy of published papers), but rather to recall very briefly the definitions and
results, for convenient reference in the next Subsection.

The categories we consider here are at once closed model and monoidal. There is some
reasonable compatibility between these two structures on a category C, which guarantee, in
particular, that HoC is a monoidal category. The concept is called a monoidal model category.
We do not reproduce this definition here as we do not use it practically, all our categories in
this paper fulfill this definition. The interested reader is referred to [SchS00].

The following definition is due to Schwede-Shipley [SchS03] (Definition 3.6).

Definition 4.6. Let C,D be monoidal model categories, and let

L : C� D : R

be a Quillen pair of the underlying closed model categories. Suppose there is a lax-monoidal
structure ℓ on the functor R, denote by φ the adjoint colax-monoidal structure on L.

The triple (L,R, ℓ) is called a weak monoidal Quillen pair if
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(i) for all cofibrant objects X,Y in C, the colax-monoidal map

φX,Y : L(X ⊗ Y )→ L(X)⊗ L(Y )

is a weak equivalence,

(ii) for some cofibrant replacement q : Ic → I of the unit object in C, the composition

L(IcC)
L(q)−−→ L(IC)

µ−→ ID

is a weak equivalence (where µ is a part of colax-monoidal structure, see Definition 5.1).

A triple (L,R, ℓ) is called a weak monoidal Quillen equivalence, if is a weak monoidal Quillen
pair, such that the underlying Quillen pair (L,R) is a Quillen equivalence.

We use essentially the following result from [SchS03] (Theorem 3.12 (3)).

Theorem 4.7. Let (L,R, ℓ) be a weak monoidal Quillen equivalence, and let

L : C� D : R

be the underlying Quillen pair. Suppose that the unit objects in C and D are cofibrant, and
suppose that the forgetful functors MonC → C and MonD → D create model structures in
MonC and MonD (see the explanation just below). Then

Lmon : MonC�MonD : Rmon (4.4)

is a Quillen equivalence.

Remark 4.8. 1. See [GS], Section 3, or [Hir], Chapter 11, for detailed explanation of the
meaning of “the forgetful functors generate closed model structures”. This concept refers to the
transfer of closed model structures for cofibrantly generated model categories. See loc.cit. for all
these concepts, as well as for a proof that our categories C = Mod(Z)∆ and D = C(Z)− satisfy
this assumptions.

2. The Quillen equivalence (4.4) is not a weak monoidal Quillen equivalence. In fact, the
natural monoidal structure on MonM for a monoidal model category M, is not a monoidal
model category in general. For instance, the monoidal bifunctor does not commute with the
coproducts as a functor of one argument, for fixed another one.
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4.4 Proof of Proposition 4.2, (ii)

We need to prove that, for any dg algebra A ∈ Alg≤0
k , the dg algebra R(A) is cofibrant, and

the projection
pA : R(A)→ A (4.5)

is a quasi-isomorphism of dg algebras.
Consider the Dold-Kan correspondence. In [SchS03], Section 3.4, there is given a criterium

for when a triple (L,R, ℓ) is a weak Quillen equivalence. It is proven as well, that this criterium
works in the following two cases. The first case is the case of the Dold-Kan correspondence,
with Γ = R the right adjoint, with the lax-monoidal structure being the adjoint to the colax-
monoidal structure AW on N = L. The second case is the case when N = R is the right
adjoint, with the lax-monoidal shuffle structure ∇. In our applications, we need only the first
possibility. Let us summarize.

Lemma 4.9. Consider the Dold-Kan correspondence

N : Mod(Z)∆ � C(Z)− : Γ

Use the notations L = N , R = Γ, and let ℓ be the lax-monoidal structure on R, adjoint to the
colax-monoidal structure AW on L. Then (L,R, ℓ) is a weak Quillen equivalence.

Now we apply Theorem 4.7.

Corollary 4.10. In the above notations, the adjoint pair of functors

Lmon : Mon(Mod(Z)∆)�Mon(C(Z)−) : Rmon (4.6)

is a weak Quillen equivalence.

Proof. It follows immediately from Lemma 4.9 and from Theorem 4.7.

Now we pass to a proof of the claims of Proposition 4.2, (ii).

Proof. Prove that R(A) is cofibrant dg algebra for any A ∈ Alg≤0
k .

Indeed,
R(A) = Lmon ◦ F ◦Rmon(A)

We know that F(?) is cofibrant (Lemma 1.4), and that (Lmon, Rmon) is a Quillen equivalence,
in particular, a Quillen pair (Corollary 4.10). By Definition of a Quillen pair, Lmon maps
cofibrations to cofibrations. As Lmon maps the initial object to the initial object, it maps
the cofibrant objections to cofibrant objects. Therefore, R(A) is cofibrant, as F(Rmon(A)) is
cofibrant.

Prove that, for any A ∈ Alg≤0
k , the projection pA : R(A)→ A is a weak equivalence.
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The projection
pA : L

mon ◦ F ◦Rmon(A)→ A (4.7)

is adjoint to
p♯A : F ◦R

mon(A)→ Rmon(A) (4.8)

According to Corollary 4.10, the pair (Lmon, Rmon) is a Quillen equivalence. We are going to
apply the defining property of Quillen equivalences, see Definition 4.5. Moreover, F ◦Rmon(A)
is cofibrant by Lemma 1.4 (as F(?) is cofibrant by this Lemma), and Rmon(A) is fibrant by the

description in Section 1.2. Moreover, the map p♯A is a weak equivalence, again by Lemma 1.4.
Therefore, pA is a weak equivalence as well, by Definition 4.5.

4.5 Proof of Proposition 4.2, (iii)

The claim of Proposition 4.2, (iii) follows from the two Lemmas below. The first one is straight-
forward, while the second one is very essential, and is based, by its own, on the Key-Lemma
4.13 formulated and proven below in this Subsection.

Lemma 4.11. For any X,Y , the following diagram is commutative:

Lmon(F(Rmon(X ⊗ Y ))) //

��

Lmon(F(Rmon(X)))⊗ Lmon(F(Rmon(Y )))

� �
LmonRmon(X ⊗ Y ) // LmonRmon(X)⊗ LmonRmon(Y )

(4.9)

Lemma 4.12. For any X,Y , the following diagram is commutative:

LmonRmon(X ⊗ Y ) //

pX⊗Y ((QQ
QQQ

QQQ
QQQ

Q
LmonRmon(X)⊗ LmonRmon(Y )

pX⊗pYttjjjj
jjjj

jjjj
jjjj

X ⊗ Y

(4.10)

Proof of Lemma (4.11): We have the commutative diagram:

Lmon(F(Rmon(X ⊗ Y )))
cR//

��

Lmon(F(Rmon(X)⊗Rmon(Y )))

��
Lmon(Rmon(X ⊗ Y ))

cR // Lmon(Rmon(X)⊗Rmon(Y ))

(4.11)

by tautological reasons. Now consider the diagram

F(Rmon(X)⊗Rmon(Y )) //

**UUU
UUUU

UUUU
UUUU

UU
F(Rmon(X))⊗ F(Rmon(Y ))

tthhhhh
hhhh

hhhh
hhhh

h

Rmon(X)⊗Rmon(Y )

(4.12)
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from Lemma 1.10. The composition of the diagram (4.11) with the application of Lmon to the
diagram (4.12) gives the diagram in Lemma 4.11.

Proof of Lemma (4.12): We firstly describe the functor Lmon explicitly, with its colax-
monoidal structure.

Recall that the functor Lmon : MonC → MonD is constructed as the left adjoint to the
functor MonC ← MonD : Rmon. The functor Rmon coincides with the functor R on the un-
derlying objects, and the monoid structure is defined from a lax-monoidal structure ℓR on R
(see (2.2)). Then ℓR defines a lax-monoidal structure on Rmon as well, and the colax-monoidal
structure cLmon is defined from ℓR by the adjunction (see (2.11)).

Here we give a more explicit description of this colax-monoidal structure on Lmon.
Recall (see ???) that the value Lmon(X) (for a monoid X in C) is defined as the co-equalizer

TD(L(TC(X)))
α //

β
// TD(LX) (4.13)

where TM denotes the free (tensor) monoid in a monoidal category M, see (2.1). In particular,
it is some quotient of the free monoid TD(LX).

From now on, we restrict ourselves with the case of the Dold-Kan correspondence, C =
Mod(Z)∆, D = C(Z)−, L = N , R = Γ.

Consider the shuffle lax-monoidal structure ∇ on L. This structure defines a functor
L̃mon : MonC→MonD, as in (2.2). We claim that the functors Lmon and L̃mon coincide.

Key-lemma 4.13. For the Dold-Kan correspondence and the above notations, the two functors

Lmon, L̃mon : MonC→MonD

coincide. Moreover, the colax-monoidal structure cLmon on Lmon (a priori defined by adjunc-
tion from the lax-monoidal structure on Rmon) coincides on the underlying objects with the
Alexander-Whiteney colax-monoidal structure AW on L (the latter defines a colax-monoidal
structure on monoids as the pair (∇, AW ) obeys the bialgebra axiom, see Lemma 2.5).

Proof. Consider the definition (4.13) of the functor Lmon, in the special case of the Dold-Kan
correspondence. It gives that Lmon(X) is the quotient of the free dg algebra T (LX) by the
two-sided ideal, generated by

AW (L(x⊗ y))− L(x ⋆ y), x, y ∈ X (4.14)

where ⋆ is the product in X.
Now the crucial idea, special for the case of Dold-Kan correspondence, is that the subspace

in L(X)⊗L(X) generated by the elements AW (L(x⊗y)) coincides with the entire space L(X)⊗
L(X).
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Indeed, we know from Proposition 3.2, (1.), that the composition

L(X)⊗ L(X)
∇−→ L(X ⊗X)

AW−−→ L(X)⊗ L(X)

is the identity map of L(X)⊗ L(X). Then, if we have any element ω ∈ L(X)⊗ L(X), we can
write it as

ω = AW (∇(ω))

This claim simplifies the ideal (4.14). Namely, we have now that this ideal is generated by

L(a)⊗ L(b)−m⋆(∇(L(a)⊗ L(b))) (4.15)

where the notation m⋆ in the second summand assumes the composition

L(X)⊗ L(X)
∇−→ L(X ⊗X)

L◦⋆−−→ L(X)

The latter formula is precisely the equation (2.2), which defines the monoid structure on F (X)
from a lax-monoidal structure on F and from a monoid structure on X.

All other claims of Key-Lemma follow from this argument as well.

We continue to prove Lemma 4.12. The diagram (4.10) may be now rewritten as

LR(X ⊗ Y ) //

pX⊗Y &&NN
NNN

NNN
NN

LR(X)⊗ LR(Y )

pX⊗pYvvnnn
nnn

nnn
nnn

X ⊗ Y

(4.16)

where the horizontal map comes from the colax-monoidal structure on R (adjoint to the lax-
monoidal structure ∇ on L), and from the colax-monoidal structure AW on L. The projections
comes from the adjunction maps.

Now the commutativity of diagram (4.16) is precisely the statement of Lemma 3.5 (ii). We
are done.

Theorem 4.1 is proven.

5 Diagrams

5.1 Colax-monoidal structure on a functor

Definition 5.1 (Colax-monoidal functor). Let M1 and M2 be two strict associative monoidal
categories. A functor F : M1 → M2 is called colax-monoidal if there is a map of bifunctors
βX,Y : F (X ⊗ Y )→ F (X)⊗ F (Y ) and a morphism α : F (1M1)→ 1M2 such that:
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(1): for any three objects X,Y, Z ∈ Ob(M1), the diagram

F (X ⊗ Y )⊗ F (Z)
βX,Y ⊗idF (Z)

**UUU
UUUU

UUUU
UUUU

U

F (X ⊗ Y ⊗ Z)

βX⊗Y,Z

55kkkkkkkkkkkkkk

βX,Y ⊗Z ))SSS
SSSS

SSSS
SSS

F (X)⊗ F (Y )⊗ F (Z)

F (X)⊗ F (Y ⊗ Z)
idF (X) ⊗βY,Z

44iiiiiiiiiiiiiiii

(5.1)

is commutative. The functors βX,Y are called the colax-monoidal maps.
(2): for any X ∈ ObM1 the following two diagrams are commutative

F (1M1 ⊗X)

��

β1,X// F (1M1)⊗ F (X)

α⊗id
��

F (X) 1M2 ⊗ F (X)oo

F (X ⊗ 1M1)

��

βX,1// F (X)⊗ F (1M1)

id⊗α
��

F (X) F (X)⊗ 1M2
oo

(5.2)

5.2 Lax-monoidal structure on a functor

Definition 5.2 (Lax-monoidal functor). Let M1 and M2 be two strict associative monoidal
categories. A functor G : M1 → M2 is called lax-monoidal if there is a map of bifunctors
γX,Y : G(X)⊗G(Y )→ G(X ⊗ Y ) and a morphism κ : 1M2 → G(1M1) such that:

(1): for any three objects X,Y, Z ∈ Ob(M1), the diagram

G(X ⊗ Y )⊗G(Z)
γX⊗Y,Z

uukkkk
kkkk

kkkk
kk

G(X ⊗ Y ⊗ Z) G(X)⊗G(Y )⊗G(Z)

γX,Y ⊗idG(Z)
jjUUUUUUUUUUUUUUUU

idG(X) ⊗γY,Zttiiii
iiii

iiii
iiii

G(X)⊗G(Y ⊗ Z)
γX,Y ⊗Z

iiSSSSSSSSSSSSSS

(5.3)

is commutative. The functors γX,Y are called the lax-monoidal maps.
(2): for any X ∈ ObM1 the following two diagrams are commutative

F (1M1 ⊗X)

��

F (1M1)⊗ F (X)
γ1,Xoo

F (X) 1M2 ⊗ F (X)

κ⊗id

OO

oo

F (X ⊗ 1M1)

��

F (X)⊗ F (1M1)
γX,1oo

F (X) F (X)⊗ 1M2

id⊗κ

OO

oo

(5.4)
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5.3 Bialgebra axiom

This axiom, expressing a compatibility between the lax-monoidal and colax-monoidal structures
on a functor between symmetric monoidal categories, seems to be new.

Definition 5.3 (Bialgebra axiom). Suppose there are given both colax-monoidal and lax-
monoidal structures on a functor F : C → D, where C and D are strict symmetric monoidal
categories. Denote these structures by cF (X,Y ) : F (X ⊗ Y )→ F (X)⊗ F (Y ), and lF : F (X)⊗
F (Y ) → F (X ⊗ Y ). We say that the pair (lF , cF ) satisfies the bialgebra axiom, if for any for
objects X,Y, Z,W ∈ ObC, the following two morphisms F (X ⊗Y )⊗F (Z ⊗W )→ F (X ⊗Z)⊗
F (Y ⊗W ) coincide:

F (X ⊗ Y )⊗ F (Z ⊗W )
lF−→ F (X ⊗ Y ⊗ Z ⊗W )

F (id⊗σ⊗id)−−−−−−−−→

F (X ⊗ Z ⊗ Y ⊗W )
cF−→ F (X ⊗ Z)⊗ F (Y ⊗W )

(5.5)

and

F (X ⊗ Y )⊗ F (Z ⊗W )
cF⊗cF−−−−→ F (X)⊗ F (Y )⊗ F (Z)⊗ F (W )

id⊗σ⊗id−−−−−→

F (X)⊗ F (Z)⊗ F (Y )⊗ F (W )
lF⊗lF−−−−→ F (X ⊗ Z)⊗ F (Y ⊗W )

(5.6)

where σ denotes the symmetry morphisms in C and in D.
Thus, the commutative diagram, expressing the bialgebra axiom, is

F (X ⊗ Y )⊗ F (Z ⊗W )

(5.5)

((

(5.6)

66
F (X ⊗ Z)⊗ F (Y ⊗W ) (5.7)
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