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§ 1. Introduction.

The relation between the growth of an entire function and its zeroes was studied early
by Hadamard. R. Nevanlinna considered this problem for meromorphic functions and con-
structed a famous theory well-known as the value distribution theory. Nevanlinna theory
in higher dimensions is constructed by Griffiths, King, Stoll, Carlson and others. In [2],
[3], [5] we give a p—adic version of value distribution theory in one—dimensional case. In
the present paper we consider the relation between the growth of a p—adic holomorphic
function of several variables and the distribution of its zeros. This problem is a part of our
plan to construct p—adic analog of Nevanlinna theory in higher dimensions. As we have
mentioned in [4] this study is stimulated by the papers about the relation between Nevan-

linna theory and number theory (see [6], [7]).

To generalize p—adic Nevanlinna theory to higher dimensions in [4] we introduced the
notion of heights for p—adic meromorphic functions of one variable. In the present paper
this notion is defined for p—adic holomorphic functions of several variables and used to
prove an analog of the Poisson—Jensen formula. It is well-known that in the higher dimen-
sional case the set of zeros of a holomorphic functions is not discrete. This makes it difficult
to use analytical arguments. Here the Poisson—Jensen formula is described in terms of rela-

tions of global and local heights. Almost all of the arguments in this paper are easy "geo-
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metrically" but require longer proofs using the analytic definitions, which are often

omitted.
The author would like to thank the Max—Planck—Institut fiir Mathematik in Bonn for
hospitality and financial support.

§ 2. Heights for holomorphic functions of several variables.

2.1. Let p be a prime number, Qp the field of p—adic numbers, and Cp the p—adic com-
pletion of the algebraic closure of Qp . The absolute value in Qp is normalized so that

Ip| = p—1 . We further use the notion v(z) for the additive valuation in Cp which ex-
tends ordp . Let D1 be the open unit disk in Cp :

D, —{zEC |z] <1} ,

and D=D; x..xD, be the "unit polydisk" in Ci]: . Let f(zl,...,zk) be a p—adic holo-

morphic function on D represented by a convergent series

zk) 2 a_ z By (1)

This means that for all (z,,...,z;) € D we have

. m, _
lmilm |a.mz | =0,



m_ ™ Tk
where a_ = aml“‘mk’ z =2z, .z, and |m|=m; +..+m.Forevery

(tl,...,tk) € IR_]:_ we have

|Iili!§lm{V(am) + ml_tl too+mt} =0

From this it follows that for every (tl,...,tk) € IR_lf_ there exists (ml,‘..,mk) € N for
k
which v(a_)+ ) mi. is minimal.
i=1
2.2 Definition. The height of the function {(z,,...,z,) is defined by

k

He(t), 0ty ) = O(Iri 1|1< {v(a ) + 2 mt.} .
= mise i=1

2.3 Definition. The group of functions mod 0(1) on D denoted by (D) is defined by

(D) = {function g : D — R}/ {bounded functions}

2.4. Let f be a holomorphic function on D , the relative height associated to f is defined

by the equivalent class of the following function in the group ¥(D) :
ﬁf: D —— R, where ﬁf(zl,...,zk) = Hv(z)),....,v(z))

2.5. We set



I{ty,ty) = {(my,...my) €N
k

v(ag)+ ) mit = Ht,..t)}
i=1
+

L (t)-0ty) = min{m, | 3(m,,...,m,,...,mp ) € Ity )}
n(t),ty) = max{m | I(m,,....m,....mp ) € It )}
DE ety = 0T (bt )ty

hi(ty,oty) = m5(ty bt

By(bg,00nty) = 1;‘;(t1,...,tk) —hT(tpty)

Bt ynty) = ) Blby,enty)
i=1

n

2.6. Definition. h{(tl""’tk) is called the local height of the function f(zl,...,zk) at
(t]_v")tk) = (v(zl))'--sv(zk)) .

2.7. Remark. The local height induces a function on Cg : 'Ef : C; ——R
Ef(zl,...,zk) = h{v(z;),...,v(z}))
2.8. Proposition. 1) If ﬁ{(z?,...,zg) #0 then f(z,,...,z;) haszerosat v(z) = v(zq) ,

1 1
i=1,.k.

2) If ﬁf(zl,...,zk) =0 then f(zl,...,zk) # 0 and we have

M {z,,..2)
|1(z),-z )| =P % .

2.9. We now give a geometrical interpretation of heights. Consider the function represen-
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ted by the series (1). For ecah (m,,...,m;) we draw the graph Pml"‘mk

v(amzm) as a function of (tl,...,tk) . We obtain a hyperplane in RET1 .

which depicts

k
I‘m]L...mk Pl T v(_a’ml...mk) + z mit;
i=1
k
Since | llim {v(a) + 2 mt.} = o foreach (t;,..t)) € IR_}:_ there exists a hyper-
m|--o .
i=1

plane which lies below any other one at (tl,...,tk) € [R_l*‘_ , i.e.

t (P )St (F ’ /)
k41 m,..my k+1 m;..my

foral T _, ¢+ . Let H be the boundary of the intersection of all parts in RE of the
m,..my +

half—spaces lying below the hyperplanes T’ . It is easy to see that if (t,,...,t,,
m,..my 1 k

b +1) is a point of H then we have

b = Beltyty)

2.10. Proposition. H is the boundary of a convex polyedron in IR_li‘_ xR.

2.11. Proposition. In the one—dimensional case (k=1) the local height h{t) is equals to

the sum of valuations of zeros of f(z) at v(z) =t.

2.12. Definition. A point (t;,...,t,) € IRf_ is called a critical point of {(z,,...,2;) if
hf(tl,...,tk) $0.



2.13. Proposition. The set of critical points of the function (z,,...,z,) denotes by A(H)

consists the sides of the polyedron H .

2.14. Remark. It is easy to see that for every finite parallelpiped of IR}_
P={0< <t <s <+, i=1,.,k}, HNP xR is consisted of the parts of a finite

number of hyperplanes I’ . In fact, these are hyperplanes I’ for which
m m,..m

there exists at least one index i such that m, = n:ih (tl,...,tk) for some

(tl,...,tk,tk+1) EPxR.
2.15. Example. Consider the function

f(zl,zz) = log(1+z1) —log(1 + 22)
The simple computation gives us:

. . i .
0 if ty<t, or t;>t,#1/p(p ) Vi

_ 1 if t1>t2=1/tp(pi) for some i
hy(t)tg) = i
p/p-1 if t1=t2=1/¢(p) for some i

Lol i b =ty=t, 1/p(p') <t<1/p(p )

where ¢{(n) is the Euler function, (p(pi) = pi—pi_1



(0 if ty<t;  or t2>t11=1/(p(pl) Vi -

. _ i .
ho(ty,t5) = Loif t§3>";1—1/‘:F’(P ) for some i
2ltpla _ | : |
p/p-1 if t,=t;=1/p(p") for some i

o'l it =ty=t , 1/p(p') <t<1/p(p")

(0 if t2>t1=I=1/tp(pi)Vi or t1>t2=f=1/go(pi)Vi
1 if t1>t2=1/ga(p]:) for some i or
h(t,t,) = | t2>t1=1/qo(p1) for some i

2p/p-1 if t1=t2=1/(,o(pl) for some i

L2p' 0 it =ty=t, 1/p(p})<t<1/p(p' ™)
1/p-1 + [log (p-1)t,] if t.<t
Hf(trtz):{ 1 K v
5:1-+ [logp(p—l)t2] if $;>t,

where [x] denotes the largest integer being equals or less than x .

The set of critical points is

1 1 i *
—-—,——+t], t, ER ,1=0,1,...}
{[w(pl) op) ¥ 2T

ud [t —1—,—1—,tER,i=0,1,...]
{[l+dﬂ)dﬂj 17

U{(t,t), tEﬂ%+} .



§ 3. The Poisson—Jensen formula.

3.1. For every (tl,...,tk) € ER_I"_ we denote

h{(tl""’ti""’tk) 6111_1.10 hf(t e,...,tk) .

Note that the function hdt,,...,t,) i8 continuous only at the points (t,...,t,) such that
1 k 1 k

Btyty) = 0

but can be continuous in some variables separately while hyt,,...,t,) $0.

3.2. Let (tg,...,tg) and (t;,..,t,) be two points of IR_]: . We set

—€.
_ i 0— 0
6i - h (tli...,ti-l,ti ,-..,tk_) -

€.
i 0— 0
—b; (t b 1’t1’t1+1’ tk_) +

zhf(tr b1 Spt 1+1’ tk_)

8

where €, = sign(t(i]—ti) and the sum in the right extends over all s, € (t?,ti) .

3.3. Theorem (the Poisson—Jensen formula)

Hf(t(l),...,tg) — H{ty,-ty) =.2 ;5.



3.4. Remark. When k=1 we have the Poisson—Jensen formula proved in [4].

3.5. Remark. Theorem 3.3 is not symmetric in variables Lot and we obtain several
formulas to express the global height in terms of local heights. From this one can deduce
the equalities between local heights. This fact is similar to the one in the case of holomor-

phic functions of two complex variables (see H. Cartan [1]).

3.6. Remark. In view of Theorem 3.3 the relative height ﬁf induced by f depends only
on the local height.

3.7. Theorem 3.3 is proved by using the following remarks.

1) For every finite parallelpiped P (see 2.4) and every hyperplane L in general
position L N H NP is a hyperplane of k—1 dimension.

2) If the hyperplane t, =8, = const is not in general position then the hyperplane

t, = s,—€ i in general position with € enough small. On the other hand we have

lim H{...,8:—€,...) = H{...;5:,...) .
lim B ge,) = o)

3) The set of critical points A(H) is a union of planes of dimensions equal or less
than k-1 (see 2.12, 2.13).

4) Suppose S = 8 u..u Sy_; » where S, is the hyperplane t, =s;, i=1,..k-1.
By replacing Si by Si': t, = s,—€ one can assume that Si are in general position. Then
the intersection SN A(H) NP is a finite set of points.

5) By the remarks above the proof of Theorem 3.3 is reduced to the proof of Poisson-

—Jensen formula on one—dimensional case (see [4]).
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