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Trajectory attractors for 2D Navier-Stokes
system and some generalizations.

Vladimir V.Chepyzhov* Mark I.Vishik *

Introduction

We are dealing with the non-autonomous 2D Navier-Stokes system
(]) afu+VLu+B(u)=g($at)7 (V,U)ZO, uon = 0,

z €0 CCR?, t20,u=uzt)= () =ut), g = g(z,t) = (¢',9%) = 9(t).
Here Lu = —PAu is the Stokes operator, v > 0, B(u) = P Y.°_, u;8;,u; P is the
orthogonal projector onto the space of divergence-free vector fields (see section 1).

Consider the autonomous case: g(z,t) = g(z), g(z) € H to begin with. Let for
t = 0 we be given the initial condition:

(2) u|s=0 = uo(z), uo(z) € H.

The problem (1), (2) has a unique solution u(t), t > 0, which can be represented in
the form: u(t) = S(t)uo. The family of mappings {S(t), t > 0} forms a semigroup:
S(t1)S(t2) = S(ti+12) Vg, t2 2 0, S{(0) = Id. A set A C H is said to be an attractor
of this semigroup {S(t)} (or an attractor of the equation (1)) if A is compact in H,
A is strictly invariant with respect to {S(¢)} : S(¢)A = A Vt > 0, and A attracts
any bounded set B in H :

disty(S(¢t)B,A) — 0 (t — +o00)

(see, for example, [13], [20], {2], and the references cited there).

Non-autonomous equation (1) is less studied. Let an external force go(z,t) =
go(t) in (1) depend on t, t > 0. Assume the function go(t) is translation-compact in
LY*(Ry; H) = LY (or go(t) is translation-compact in LS (Ry; H) = Ly3,). "This
means that the family of translations {go(t + k) | A > 0} forms a precompact set in
LY (respectively, in L¥2). It is easy to formulate the translation-compact criterions
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(see section 1). For example, a function go(t) is translation-compact in L%, if and
only if the following norm is bounded:

t+1
3) llgoll3 = SUP/ lgo(s)|*ds < +oo.
>0 Jt

loc

By H4(go) denote a hull of the function go in the space LyS, i.e.
Ho(g0) = ol +A) | h 2 0)] e

where | . ], means the closure in a topological space X.

Consider the family of equations (1) with external forces g(t) € Hy(90) = Z.
Let {U,(t,7) |t = 7 2 0} be the family of operators (called a process in H) such
that Uy(t, 7)u, = uy(t), t > 7 > 0, where uy(t) is a solution of equation (1) with
the external force g(¢) and with the initial condition u|i=, = u,(z), u,(z) € H.
Evidently, U,(t,7) : E — E, Uy(t,0)U,(0,7) = Uy(t,7), Up{r,7) = Id Vt > 0 >
7 > 0. Consider the family of processes {U,(t,7) | ¢ € H4+(g0)} corresponding to
the family of equations (1) with external forces ¢ € Hy(go). (To compare with
autonomous case; go(t) = go, H4(90) = {90}, Uy(t,7) = S(t — 7)). It was proved
that the family of processes {U,(t,7) | ¢ € H4+(go)} possesses a uniform (w.r.t.
g € I) attractor Ay in H. More precisely, the set Ay is compact in H, Ay attracts
any bounded set B in H uniformly w.rt. g€ ¥ :

supdisty(U,(t,7)B,Ag) — 0 (t — +oo0) V1 2 0,

9E€L
and Ay is a minimal compact, uniformly attracting set (see [9], (6], and [4] dealing
with more restrictive case). In [6], [4] the structure and the properties of the uniform
attractor for (1) was also studied.

In the present work we introduce and we study a trajectory attractor Ag for
equation (1). We point out at once that a trajectory attractor Ag is a compact,set
in the corresponding trajectory space of equations (1) that consists of their solutions
ug(t),t > 0, considering as a whole as functions of ¢ with values in H. In the previous
considerations, an attractor Ag was a compact subset of points in H.

Consider as before a fixed external force go(t) being a translation-compact func-
tion in L¥® (or in L) and let Hy(go) = T be a hull of go in LY. (The case when
go(t) is translation-compact in LY%, is studied in section 1). Let H™(Qyu,),r =
(2,2,1) be the Nicolskiy space in Q¢ 1, = Qx]ty, t2[(see [3]) of functions ¢(z,t) =
(t) = (p'p?) € H, t €]t1,t;[ with a finite norm

e gu 0y = ]Q S 1820(z, ) + Dol O] | dedt, olon = 0.
2 \fal<2

To any external force g(t) € H.(go) there corresponds the trajectory space K}.
The space K} is the union of all solutions u(t) = u,(t),t > 0, of equation (1)
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in the space H™(Q,) = H™*, Q4 = @ x |0,+oo[, (i.e. u(t) € H*(Q,,,) for
any Jt1,12[C R4). Let K* = [J,en, (o) K& be a union of all KF. The translation
semigroup {T'(h) | h > 0} acts on H™'o¢:

T(h)o(t) = @lt + B), b 2 0.
Evidently, T(h)uy(t) = ug(t + h) = upp)(t) € KI;(h)g. Therefore,
(4) T(MHKTCKtVYR2>0

(the inclusion may be strict, see section 1). It is proved that K+ is closed in H™/<,
It is clear that the semigroup {7'(k)} is continuous on H®'¢. Denote by H**(Q.,) =
H"™ a subset of H™ of functions ¢(t), t > 0, having a finite norm

leltra = D 1820117 + l9epllz < +oo,

lof<2

where ||.}|2 is defined in (3). _

A trajectory attractor of the translation semigroup {T'(h)} acting on K% is a set
Ay C Kt such that Ay is a set, compact in H™"¢, bounded in H™®, invariant with
respect to {T(h)} : T(h)Ag = Az Vh > 0, and satisfying the following attracting
property: for any set B C K*, bounded in H™%,and for any [t;,12] C R, the set
T'(h}B tends to Ag in the strong topology of the space H*(Qy,,,) i-e.

(5) diStHr(Q,l"?)(T(h)B,.AE) — 0 (h — -|-OO)

In section 2, we construct the trajectory attractor Ag of the translation semi-
group {T'(kh)} acting on K*. Section 1 deals with the trajectory attractor Ay in
"weak” topology HI'°¢(Q,) under the assumption that go(t) is translation-compact
in L¥e only. In this case T(h)B tends to Ag in the weak topology of the space
HT(Q, +,) for any [t),1;] C R4. In section 3, the structure of the trajectory attrac-
tor Ay is-described.

Trajectory attractors have been constructed for various equations and systems
of PDE for which the corresponding Cauchy problem has non-unique solution or for
which the uniqueness theorem is not proved yet (see {7}, [8], [9], [10], and [5]).

In section 4 we construct the trajectory attractor for 3D Navier-Stokes system;
the structure and some properties of the trajectory attractor are given as well. In
particular, the trajectory attractor Ay is stable with respect to a small perturbation
of the external force go(z,t); the trajectory attractor .AEQN) of the Faedo-Galerkin
approximation system of order N tends to Ay as N — 400 in the corresponding
topology. Some of other properties turns out to be unexpected.



1 Trajectory attractor for 2D N.-S. system with

translation-compact external force in L{¢.
We consider the Navier-Stokes system in a bounded domain 2 CC R?. Excluding
the pressure, the system can be written in the form:

(1.1) Owu + vLu + B(u) = g(z,t), (V,u)=0, ulsg=0,z€ Q, t >0,

where, z = (z1,%3), u = u(z,t) = (u!,u?), ¢ = g(z,t) = (¢', 9*). L is the Stokes op-
erator: Lu = —PAu; B(u) = B(u,u), B(u,v) = P(u,Vv = PY 2 w;d,v,v >0
(see [16], [15], (19], [21]). By H, V, and H; denote respectively the closure in
(L2(2))?, (HY(Q))?, and (H*(0))? of the set Vo = {v | v € (CP(N))?, (V,v) =
0}. P denotes the orthogonal projector in (L3(f2))? onto the Hilbert space H.
The scalar products in H and in V are (u,v) = [,(u(z),v(z))dz and ((u,v)) =
(Lu,v) = [,(Vu(z), Vu(z))dz and the norms are respectively |u| = (u,u)!/?
lu|l = (Lu,u)*/*. The norm in H; is ||. ||».

To describe an external force g(z,s) in (1.1) consider the topological space
L¥¢ (R4, H). By the definition, the space LS (Ry, H) = LY is L‘;"(R*, H) =LY
endowed with the following local weak convergence topology. The sequence {gn(s)}
converges to g(s) as n — oo in L, whenever f:t: (gn(s) — g(s),v(s))ds = 0 (n —
oo) for any [t1,2) € R, and any v(s) € Ly(ty, 195 H).

Let we are given some fixed external force go(s) € LY. Assume go(s) is translation-
compact (tr.-c.) in L%, i.e. the set {go(s + k) | A € Ry} is precompact in LY,

This condition is valid if and only if

and

t+1
(1.2 l9olEsrean = lolls = sup [ lao(s)ds < +o0
>0 Ji

(see {6]). By H4(go) denote the hull of a function go(s) in LY : Hi(g0) = [{go(s +
h) | h € Ry} g . Here [ . ]Lg"‘ means the closure in L% It can be shown that the

¢ 1s metrizable and the corresponding

loc
2,w?

set H.(go) being a topological subspace of LY

metric space is complete. Moreower, any function g(s) € Hy(go) is tr.c. in L

H..(5) C Hs (90), and [lgle < llgole

The translation semigroup {T(t) | ¢t > 0} = {T(¢)} acts on Hy(go0) : T(¢)g(s) =
g(s + t). Evidently, T'(¢) is continuous in LY¢, and T'(t)H.(go) C H4(g0) ¥Vt > 0.

We shall study the family of equations (1.1) with various external forces g( ., s) €
H(90)

By Q:,, denote the cylinder  x [t,¢;], where [t1,t3) C Ry.

Consider the space H(Q¢, 1,),r = (2,2,1) (see [3]), H (@4, 1,) = L2(t1,t2; H2) N
{Ow € La(ty,t2; H)}. The norm in HY(Qy, ,) is

tz
(1.3) 19lEsm @y = [ (I + 1Be0(s)12) ds.
t
Let us recall the existence and uniqueness theorem.
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Theorem 1.1 Let g(s) € La(t1,t3; H) and uo € V. Then there exists a unique
solution u(s) of equation (1.1) belonging to the space H*(Qy, +,) such that u(ty) = uo.
Moreover, u(s) € C([t1,%1], V).

This theorem is a variant of the classical result (see {14}, [15], [16], [19], [2]). The
proof uses the Faedo-Galerkin approximations method.

We shall study equation (1.1) in the semicylinder @+ = Q x Ry, where g(.,s) €
H(90)- '

Consider the space H™¢(Q,) = LI°(Ry; Ho) N {8 € LY(Ry; H)}, ie. v(s) €
H®oe(QL) if ||H11’12‘UI|§{|-(Q”,‘2) < +4co for any [t;,t2] C Ry, where I, 4, is the re-
striction operator onto the segment [t;,¢;]. We introduce two different topological
spaces HI°(Q,) and HE'*°(Q4), ("strong” and “weak”). The space HM°(Q,.)
(HEl¢(Q4)) is H™°°(Q4) with the following convergence topology. By the def-
inition, v,(s) — v(s) (n — oo0) in HI*(Q,) (in HE"(Q4)) if Ty, ua(s) —
I, 43(5) (n — oo) strongly in H¥(Qy, 1) (respectively, My ,a(s) — e 159(5) ( —
oo) weakly in H(Qy,,)) for any [t;,12) C Ry. It is easy to prove that the linear
topological space HI¢(Q,) is metrizable, for example, by means of the Fréchet
metric generated by the seminorms ||Il, ny19||Hr (g, b)) » = 0,1,2,.... The space
HE'¢(@Q,) is not metrizable, but it is a Hausdorff and Fréchet-Uryson space with a
countable topology base.

We shall use also the space H™*(Q,) that is a subspace of H™'"*(Q,). By the
definition, v(s) € H™*(Q4), if the following norm is finite

(1.4) lollira,) = Ioli. = sup IMeervllirg, )

Evidently, H™*(Q,) with the norm (1.4) is a Banach space. We shall not use the
topology generated by the norm (1.4). We need the Banach space H™*(Q,.) to define
bounded sets in H™*¢(Q. ) only.

We put into correspondence to any external force g( ., s) € H,(go) the trajectory
space K} that is the union of all solutions u(s),s > 0, of equation (1.1) in the
space H™°¢(Q,). Notice that |B(v)| < Clv|*’?||v||?||v||s’*; therefore any solution
u(s) € K} satisfies (1.1) in the strong sence of the space Liy*(Ry4, H). By Theorem
1.1, the trajectory space K} is wide enough for any g € H,(go). Denote, K+ =
x:"'-(q.(yo) = Ugen, (go)’C; .

Lemma 1.1 Ifgg(S) € L;OC(R+,H) satisfies (1.2) then K+ c H™(Q,).

This lemma will be proved later on.
Consider the translation semigroup {7'(¢) | t > 0} acting on H®**(Q,) by the
formula
T(t)v(s) = v(s+1), s >0, v € H™(Q,).

Obviously, the family of trajectory spaces {K}, g € H(go)} corresponding to the
equation (1.1) satisfies the embedding:
(1.5) T(KF C Kf iy V22 0.
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In other words, for any ¢t > 0, a function u(s +¢), s > 0, is a solution of equation
(1.1) with a shifted symbol g(s+1t) = T'(t)g(s) for any solution u(s) € K} of equation
(1.1) with a symbol g(s) € H4(go). Hence, the translation semigroup {T'(t)} takes
Kt = IC;“QO) into itself: T()K+* CK*, ¢t > 0.

In this section we study the trajectory attractor Ay, (4, of the translation semi-
group {T'(t)} acting on K+ = )C,+{+(go). The set Ay, () attracts any set T(t)B as
t — +oo in the topology of ©c° = HI'¢(Q,), where B C Kt and B is bounded in
the Banach space F§ = H™*(Q}).

Definition 1.1 Let ¥ be a complete metric space and let © be a topological space.
Consider a family of sets {K,, 0 € £}, K, C O, depending on a parameter o € L.
The family {K,, o € £} is said to be (O, X)-closed if the graph set U,exK, x {0}
is closed in the topological space © x ¥ with a usual product topology.

Proposition 1.1 Let ¥ be a compact metric space and {K,,0 € L} be (0,%)-
closed; then the set Ky = U,esK, ts closed in O.

Proof. We use the standard reasoning. Let u ¢ Ky = U,exK,. Therefore,
(u,0) & UpregKor X {0’} for any o € T. The set UpregK,r x {07} is closed in © x T, so,
there is a neighbourhood W, x O, in © x ¥ such that W, x O, N(UyresKy x {0'}) =
@, ueW,, o€ O,, where W, and O, are open sets in © and X respectively. The
family {O, | 0 € T} forms an open covering of £. Since ¥ is compact, there is a finite

N
subcovering {O,; |1 =1,...,N}. Put W(u) = (| W,,. Evidently, W(u) N Kg = 8.
i=1

Hence, for any u ¢ Ky there is a neigllbourhood=W(u) NKg =0.,1.e. Kg is closed
inX. O

Lemma 1.2 The family of trajectory spaces {K}, g € Hy(go)} corresponding to
the equation (1.1) is (©¢°, H1(go))-closed and K+ = )CZ,"“(%) is closed in ©'°.

Proof. Assume that u,{s) € K, , g» € Hi(g0), un(s) — u(s) (n — +o00) in
O%° and gn(s) — g(s) (n — +o0) in LY, We claim that u € K}. Indeed, for any
fixed [t1,12] C Ry we have: u,(s) — u(s) (n — +o0) weakly in H*(Q,+,). Thus,
Oiun(s) — Owu(s) (n — +oo) weakly in Ly(t1,12; H) and 0%u(s) — 9°u(s) (n —
+00) weakly in La(t1,t2; H) for any a = (ay, a3), |@|<2. In particular, by refining,
we may assume that u,(s) — u(s) (n — +o00) almost everywhere in @, and
B(ua(s)) — B(u(s)) (n = +o0) weakly in Ly(t,,t2; H) (see compactness theorems
in [16], [19]). Therefore we may, in the equation

Otn + vLu, + B(uy,) = gn(z,t),
pass to the limit as n — oo weakly in L,(t,,t2; H) and get

0w+ vLu + B(u) = g(z,1),



so that u(s) € K7. Finally, it follows from Proposition 1.1 that IC;'{+(90) is closed in

©%* since £ = H,(go) is a compact metric space. O
Consider the translation semigroup {T'(¢)} acting on the metric space H(go)-
Evidently, the semigroup {T'(t)} is continuous in H4(go)-

Definition 1.2 A set A is said to be a global atiractor of a semigroup {S(t)} acting
on a complete metric space X, if (1) A is compact in X and A attracts any bounded
set B :distx(S(t)B,A) — 0 (t — o00); (i1} S(t)A = A for anyt > 0.

For the case X = £ = H,(go) we have

Proposition 1.2 The translation semigroup {T(t)} acting on the compact metric
space ¥ = H(go) possesses a global attractor A which coincides with the w-limit

set of ¥:
A=uwE@) =) [U T(h)Z

t>0 Lh>t

, w(Z) € &,
>
where [ . |g means the closure in £. Moreower, T(t)w(X) = w(Z) V¥t > 0.

This statement follows from well-known theorems from the theory of attractors
of semigroups acting in metric spaces (see, for example, (2], [20], [13]).

Consider more general scheme. Let ¥ be a complete metric space. Let also F
be a Banach space. Assume F C ©, where O is a Hausdorff topological space. Let
a semigroup {7T'(t)} acts on © : T(1)© C O, t > 0. Let we be given a family of sets
{K:U,U € 2}: Ks - F. Put K:E = Uaeﬂxa-

Definition 1.3 A set P C © is said to be a uniformly (w.r.t. o € X) attracting
set for the family {K,,0 € L} in the topology © if for any bounded set B in F
and B C Ky, the set P attracts T(t)B ast — 400 in the topology ©, i.e. for any
neighbourhood O(P) in O there exists t; > 0 such that T(¢)B C O(P) for anyt > t;.

Definition 1.4 A set Ay C © is said to be a uniform (w.r.t. o € X) attractor of
the semigroup {T(t)} on Kx in the topology O, if Ag is compact in © and Ag is a
minimal compact uniformly altracting set of {K,,0 € L}, i.e. Ag belongs to any
compact uniformly attracting set P of {K,,0 € £} : Ay C P.

Let a semigroup acts on I, which we denote {T'(¢)} : T{)Z C X, t > 0.

Definition 1.5 The family of trajectory spaces {K,,0 € £} is said to be translation-
coordinated (tr.-coord.) if for any o € L and anyu € K,

T(t)u € Kryye V2 0.

It follows from (1.5) that the family {K}, g € Hy(g0)} is tr.-coord. with respect
to the translation semigroup {T'(t)}.



Proposition 1.3 Let £ be a compact metric space and let a continuous semigroup
{T(t)} act on £ and on © : T)E C X, T(#)O C O, t > 0. Let we be given a
family of sets {K,,0 € L}, K, C F. Assume, the family {K,,0 € £} is (0,%)-
closed and tr.-coord. Let there ezist a uniformly (w.r.t. o € ¥) attracting set P for
{Ks, 0 € £} in O, such that P is compact in © and P is bounded in F. Then
the semigroup {T(t)} acting on Kg = U,exK, possesses the uniform (w.r.t. ¢ € T)
attractor As C Kg N P in the space O,

(1.6) T(t).Ag =As VIt > 0.

Moreover,

Axr = Ay,
where A,(x) is the uniform (w.r.t. o € w(X)) attractor of the family {K,,0 € w(L)},
Auzy C Ku(z). Here w(X) is the attractor of the semigroup {T(t)} on E, T(t)w(X) =
w(X). The set Ag = A,(x) is compact in © and bounded in F.

The proof of Proposition 1.3 is given in [5], (see also [10]).

In application to the Navier-Stokes system (1.1) in this section, £ = H4(go), F =
Fe = H™(Q4), ©=0% = H"(Q,), {T(t)} is the translation semigroup, and
{K},9 € Hyi(g0)} is the family of trajectory spaces of equation (1.1). In this case
a uniform (w.r.t. o € I) attractor Ay, (y,) is called a trajectory attractor of the
family {K},g € H4(g0)}. In the next section we shall consider the "strong” space
0 = Bl = Hri(Q,).

Let us formulate the main result of this section.

Theorem 1.2 Let go(s) be tr.-c. in L’{fﬂ(R.,.,H) then the translation semigroup
{T(t)} acting on Kt = K";Mgo) possesses a trajectory attractor Ay, (g, in eiﬁc —

HEP(Q4); the set Ay, (g altracts any set B C K*, bounded in F2 = H™(Q,).
The set Ay, (go) is bounded in F*, compact in Oﬂ‘j", and tt is invariant with respect
to the translation semigroup: T(t) A, (g) = A, () for any t > 0. Moreower,

(1.7) . A (g0) = Au(a(g0))

where A1, (o)) 5 the trajectory attractor of the family (K49 € w(H4(g))},
'AQ(H_'_(QO)) - K:w('}” (90))* Any function u(s) € .A'H+ (90) is tr.-c. in @’+°°.

Notice that the topology of the space HLI(Q:,.+,) is stronger then the uniform
convergence topology of the space C([ty,t2); H), HL(Q:, ;) C C([t1,%2); H). So, we
have

Corollary 1.1 For any set B C K*, bounded in F*, one has
diStc({tl'tQ];y) (no‘rT(t)B, no‘rAu,,_(go)) — {0 (t — 00) vT 2 0.

Similarly, from the embedding HI(Qq, +,) C Cu([t1,t2); V), it follows
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Corollary 1.2 For any set B C K*, bounded in F*, and for any v € V, one has
distc(o,m) (Ho.rJuT(t)B, "o'pJuAH+(go)) = 0(t — 00) VI 20,

where J, is the mapping from HL(Qy,+,) into C([t1,t2]) : Ju(u(s)) = ((u(s),v)),
((.,.)) is the scalar product in V.

To prove theorem 1.2 we use Proposition 1.3. According to (1.5} and Lemma
1.2 we have only to check that the family of trajectory spaces {K},g € Hy(g0)}
corresponding to the equation (1.1) possesses a uniformly (w.r.t. g € Hy(g0))
attracting set P compact in ©%° and bounded in F§. This is the most difficult part
of the proof. We separate the proof of this fact into a few lemmas.

Lemma 1.3 For any u € K, g € Hy(go), the following estimates are valid:
(1.8) lu(r + t))* < e Mu(r)]* + Cillgl3, t,7 >0,

(1.9) IT(E)ulll, (ryomy < € u(0)* + CullgllZ;

where X is the first eigenvalue of the operator vL, C), = A7} (1 — e”‘)_l ;

t+1 t+1
(1.10) v / lu(s)lPds < fu(®) + Cs ] lg(s)ds,

(1.11) IT()ullLymyvy < e u(0) + Callglls,
where C3 = A1, Ca=C,+Cy, t > 0.
Proof. Taking the scalar product in H of (1.1) with u, we get

(1L12) SO + AP < SOF + Al < X OF,

and we obtain after proper integrating from 7 to 7 + ¢

T4t
fu(r + ) < e Mu(r)]? + AN / lg(s)[?e>ds.

T

Estimating the last expression, we get

41
] lg(s)Pe 2 +9ds <

T4+ T+t=1
f |g<s)|2e-“’““”ds+/ lg(s)PeH=ds 4 .. <

T4t—1 T4t-2
T4t T4t=1 T+t~2
] lg(s)[?ds + ¢ / lg(s) s + e / g(s)Pds + ... <
THt=1 T+t-2 +1-3
o2 (1 + e +e 2 +..) =lgl2 (1 —e) 7.

So, inequality (1.8) is proved. Inequality (1.9) follows directly from (1.8). In the

usual way, one derives (1.10) from (1.12). Combining (1.8) and (1.10), we get (1.11).
O



Lemma 1.4 For anyu € K}, g € Hyi(go),
7+
(1.13)  sup tllu(r +t)|* < Cy (I‘, IU(T)lz,/ |g(3)|2d3) ; Ir 20,
0<t<l T

where Ci(n1,72,73) is a continuous and increasing function with respect to each
U 2 0.

The proof is analogous to one given in [2]. We sketch the main points of it for
convenience of readers. For brevity sake, we suppose without lose of generality that
v =1 and 7 = 0. Multiplying equation {1.1) by tLu we get:

(110) L @uOI?) — @I + i) + (B, L) <

tlg(t)(* -tIIU( Nz

Recall that (u, Lu) = ||u||?, (Lu, Lu) = ||u||3. We have also that

(1.15) (B(u), Luv) < |B(u)lljullz ~
/2

(1.16) |B(u)] < (/ Jul* IVUIng«) < cllulloallulla;

(1.17) llloa < eallul™?ul”, Jlulloa < eallully[ll*’?

(see inequalities (1.17) in {15], [21]). It follows from (1.15), (1.16), and (1.17) that

(1.18) 1B(u)| < eallully®[lullul'?,
t te
(1.19) t(B(u), Lu) < tesllullplulllul? < Fllully + S lulllul’.

Using (1.14) and (1.19) we obtain
(1.20) % (tlluI*) + tlu@llz < Tl +2tlg(@)]® + teallu@l*lu®)?,

Denote z(t) = t]ju(t)||?>. Consequently,

2/(2) < b(t) + ¥(1)2(t), b(t) = [[u(®)* + 2tlg(8)2, 7(2) = callw(®)*u(®)]"

Applying Gronwall inequality, we get:

+(t) < l “b(s) exp ( / t 7(9)d0) ds < ( fo ' b(s)ds) exp ( /O t 'y(s)d.s) .

Using (1.12), we have
t t
(1.21) () + / u(s)|1%ds < u(0)[? + A~ / l9(s)*ds.
0 0

10



Therefore

tlu@®l* <

(/; (||u(3)|-|2 + 2s|g(s)|*) ds) exp (Ltallu(s)||2|u(3)|2ds)
(|u(0)|2 + (A7 +2) /: |9(-9)|’d3) exp (C4 (Iu(o)lg ot /Dt lg(S)I’d.g) 2)

Finally,
(1.22) sup t||u(t )||2 < (F |u{0) f 1g(s) 2d.s)
0<t<T

IA

where Ci(n1,72,73) = (2 + (A7 4 2m) 93) exp (04 (n2 + /\'lﬂa)z) .0
Inequality (1.13) implies that

4741
(1.23) lut + 7+ D)2 < G, (1, e+ )P, [ |g(s)|'~'ds)

t+71

Taking sup in (1.23) with respect to 7 > 0, we obtain according to (1.9) that
1T+ 1l vy < o (LITOBIE gy, IT()g2) < Ca (e1u(0), llgl2)
Hence

Corollary 1.3 For anyu € K}, g € Hi(g0),

I7(t + Dulll.myvy < Co (e (0P, llgllz) , £ 2 0

Lemma 1.5 For anyu € K}, g € Hy(g0),

T4 T4+
(120 [ (s = 1) (1) + o)) s < © (r,lu(rw, / |g<s)|2ds);

7+1
(125) 17+l = s [ (@I + 10w ds <
Ca (e u(®)I, llgll2) ,
where 7,1, are positive and any.

Proof. It is sufficient to prove (1.24) for = 0 and v = 1. It follows from (1.20),
(1.21), and (1.22) that

11



[ shuotes < [ puoias 420 [ looras
co (sup )P ) ( s, ) [ s <
[u(O)? + A~ / oCo)fas 20 [ lolods
s (lsr 42 [ |g(s)12ds)2c. (P, [ sras)
(126 &5 (R, [ lato)fas)

Now, equation (1.1) implies directly that

1/2

([ somore)” = ([ ) " ([ o)

(1.27) o " sl aluCs) Pl ids) "

0

We have used inequality (1.18). At the same time by (1.22) and (1.26), we get

r r r
]0 () lalle()Plu(s)lds < / sllu(s) [ us)Pds + [ sllu(s)|Bds <

(Ossggrlu(t)l")(sux) @) [ u(o)tas + 05 (0, uto / s(o)fds) <
029 (BOF+3 / |g(s)1’-’ds) 6 (r o, / s(o)ds) + ()

Combining (1.27) and (1.28) we obtain

(1.29) /Orslatu(s)Pds <cr (r, |u(0)|2’,£F |g(s)|2ds) .

Summing (1.26) and (1.29), we derive (1.24). From (1.24) it follows for I' = 2 that
t4742 tHT+2
(1.30) ()13 + |0eu(s)|?) ds < Cy (2, |u(t + T)|2,] |9(3)|243) :

t+1+1 i+r
Taking sup in (1.30) with respect to 7 > 0, we obtain according to (1.9) that

I+ ul, < Cy (20Tl Ly 20T (@) < Ca (e uO)F, lgl?)

12



Lemma is proved. O
Lemma 1.1 follows from more general

Lemma 1.6 For any u € K}, g € Hy(g0),

74T

ey
(1.31) ,/, (||v(s)||§ + [8iv(s)]*) ds < Cs (||u(7)||2,/ |g(3)|2ds) ;

T+1
[ullza = sup [ T2 + [Buuts)Pds < Co (I, gl . 7T 2 0.

Proof. Similarly to (1.20) we get

L (IuOI7) + I3 < 2090 + el (o),
A1) < B0)+90a0), 50 = WO, b = 2P,

a) < (2004 [sds)ew ([ (s)ds)
)

So, using (1.21), we obtain,as above, (1.31). Finally, combinig (1.31) with 7 € [0,1]
and (1.25) with 7 €}1, 4oo[we get

IA

T+1
s =sup [ (o)l + o)) ds <

max {Cs ([u()I% Igl12) . Ca (RO 9l2)} = C5 (lu(0)I, Iali)

Lemma is proved. O

Coming back to the proof of Theorem 1.2, we construct the uniformly attracting
set P in ©%° for the translation semigroup {T'(¢)} acting on K* IC.H+(Q y- From
(1.25) it follows that

(132) 7@+ Dullfe < Cole™|lullia llgllz) < Ca (e Ilullz o llgoll2)
Vu € K, since ||g]la < |lgo|le for any g € H.(go). Consider the set
Po={veFi|lvllra < Ca(l, llgoll2)}-

Evidently, P, is a desired attracting set. Indeed, if B C K* N F3 is a bounded set
of trajectories then e~*|ju|2, < 1 for any u € B when t > &' >> 1 and therefore,
by (1.32) T(t + 1)B € F,. Hence P, is even a uniformly absorbing set. Notice
that the set Pp is bounded in F§ and compact in ©%° = HL**(Q.). The latter is
true since the topology in HE ""’(Q ) is generated by the weak topology of Banach
spaces H™(Qe1;) = La(ti,t2; H2) N {Owv € La(ty,12; H)}. Recall that u,(s) —
u(s) (n — +o0) weakly in H*(Qy,,) whenever dyu,(s) — dyu(s) (n — +o0) weakly
in La(t1,t2; H) and 8%u(s) — 9%u(s) (n — +oo0) weakly in Ly(ty,t2; H) for any
a = (m,a,), Ja|<2. That is, a bounded set in H*(Qy, ) is weakly compact in

H(Qu00)-

13



Remark 1.1 The set P, being a compact subspace of H%'*°(Q,) is a metrizable
space and the corresponding metric space is compact. This proposition follows from
the fact that a ball of a separable Banach space endowed with the weak topology of this
space is metrizable and compact. The translation semigroup {T(t)} is continuous on
Py and T(t) takes Py into itself: T(1)Py C Py for anyt > 0. So the Proposition 1.2
is applicable. In particular the set A = w(Py) is a global attractor of the semigroup
{T(t)} acting on Py. Moreower, A = Ay, (y,) because Py is a uniformly absorbing set
of the family of trajectory spaces {K}, g € Hy(go)}. This reasoning proves the first
part of Theorem 1.2. To prove property (1.7) we have to use more subtle reasoning

(See [5]).

2 Trajectory attractor for 2D N.-S. system with
translation-compact external force in L¥*.

Now consider the case when the external force g(z,s) in (1.1) is a tr.-c. function
in L¢(Ry; H). The space L¥(Ry, H) = LY is endowed with the following local
strong convergence topology. The sequence {g.(s)} converges to g(s) asn — oo in
Li¢ whenever f:’ |gn(3) — g(s)|*ds — 0 (n —» c0) for any [t,1;] € R,. The space
LY is metrizable and complete. A function g(s) € LY is tr.-c. in L whenever the
set {g(s+h)|h € R;} is precompact in L. The criterion of functions to be tr.-c.
in L¥° is given in [6]. We recall: a function g(s) € L¥° is tr.-c. in L¥* if and only if

(i) for any h > 0 the set {f‘H'h g(s,z)ds |t € Ry} is precompact in H;

(i1) there is a positive function S(s) > 0,s > 0, such that 8(s) — 0+ (s — 0+)
and

/:H l9(s) = g(s + Di*ds < B(ll)) vt 2 0.

Remark 2.1 Let us give a simple sufficient condition. A function g(s) € LY® is
tr.-c. in LY if
ITong( .8 + t)”H‘(Qo,l) <MVYt>0

for some 8§ > 0. Here H*(Qo,1) = H*( x [t1,13]) is the Sobolev space of order é.

Let we be given a fixed tr.-c. in LY° function go(s). Evidently, go(s) is tr.-c.
LY as well. Consider the set {go(s + k) | k € Ry }. Notice that [{go(s + k) | h €
R+}]L12¢,>3 = [{go(s+h) | h € R }] i and the corresponding topological subspaces
of L{¢, and LY are homeomorphic. Hence, H1(go) = [{go(s + k) | h € Ry }]= does
not depend on Z = L{¢ or = = L¥°. As usually, the topological space Hy(go) is
compact and any function g(s) € Hi(go) is tr-c. in L¥°, Hi(g9) € H4(go), and

llglla < ligolla-
Now consider the "strong” space H"*¢(Q,) introduced in section 1. Recall that

va(8) = v(s) (n — o0) in HF¢(Q4) if Ty, ,va(s) — I, 1,v(s) (n — o0) strongly in

14



H*(Qq, t,) with respect to the norm (1.3) for any [t,,2] € R,. The linear topological
space H"'°°(Q,) is metrizable and complete.

To any g € H4(go) there corresponds the trajectory space K} that is the union
of all solutions u(s),s > 0, of equation (1.1) in the space H*¢(Q,). Consider the
family {K}, g € H1(go)} and the union K, () = Un, (5K . '

In this section we study the trajectory attractor Az, (4) of the translation semi-
group {T(t)} acting on Kt = IC,",}+(“) in the "strong” topological space HF*¢(Q.).
The set Ay, (g,) attracts any set T(t)B as t — +oo in the topology of ©Y° =
HM¢(Q,), where B C K* and B is bounded in the Banach space F§ = H™*(Q4).

Theorem 2.1 Let go(s) be tr.-c. in L¥°. Then the trajectory atiractor Ay, (g,) in
HE'oc(Q) of the translation semigroup {T(t)} acting on K+ from the Theorem 1.2
serves as the trajectory attractor in HM°°(Q,) of this semigroup. In particular, for
any set BCK*

dist yr(g, ) (T(1) B, A, (g)) — 0 {t = 00) VT' > 0.

The set Ay, () 18 bounded in F*, compact in HMe(Q,). Any function u(s) €
A, (go) 8 tr-c. in HP(Q4).

Notice if the trajectory attractor in H°¢(Q,) exists then it coincides with
the trajectory attractor Ay, (q) in HE"*(Q) since the embedding HI'**(Q4) C
Hrlee(Q,) is continuous and the trajectory attractor is the minimal attracting set.
So to apply Proposition 1.3 we have to produce an attracting set P, that is compact
in HI*¢(Q,) and bounded in F§ = H™*(Q4).

From the continuous embedding HI(Q,.,) C C([t1,t2]; V) and from Theorem
2.1, it follows

Corollary 2.1 For any set B C K*, bounded in f:"', one has
distc([o‘rlzv).(no_rT(t)B, HO.FA‘H+(90)) —0(t > 00) VI 2 0.

Proof of Theorem 2.1. Consider the set Py = P, N K*, where P, is the ab-
sorbing set constructed in the section 1. Evidently, the set Py is uniformly absorbing
for the family {K}, g € Hy(go)}. Put

P =S(1)Py = {ig(s) Sug(s+1), s 20| uy(s) e K NPy, g€ Hi(g0)}

The set P, is uniformly absorbing for the family {K}, g € H,(go)} as well. To
complete the proof of Theorem 2.1 we have to establish the following

Lemma 2.1 The set P, is compact in HF"¢(Q,).

It is easy to prove the following statement using the diagonal process.

15



Proposition 2.1 The set B is compact in HF'"°(Q.) if and only if the set IlorB
is compact in H*(Qor) for any T’ > 0.

Proof of Lemma 2.1. Fix any I" > 0. Let @4"(s) = T'(1)u™(s) = u*(s + 1) be
any sequence from Py, u"(s) € K} N Py, gn € Hy(go). Without lose of generality,
we may assume that

21) f 19(5) = g(s)[*ds = 0 (n — oo)

for some ¢ € H,(go). Let us show that the sequence {@i"(s)} is precompact in
H™(Qor). Since u"(s) € Py, we have

(2.2) ™ (Ml Er(@o gy & M(F+1) Vrn €N,

where the positive function M(0) is not decreasing. We can represent the function
u"(s) as a sum of two functions:

u"(s) = u}(s) +uj(s), s 20,

where u}(s) and uj(s) are solutions of the following problems:

(2.3) duul(t) + Luf(t) = 0,t>0,

(2.4) up(0) = f(0), uflea =0, [[u7(0)|| < M)

(2.5) dau3(t) + Luj(t) = —B(u(1) +ga(t), £ 20,
u3(0) = 0, uzlon = 0.

Respectively, 4"(s) = 4} (s) + @5 (s).
Since u} is a solution of the Stokes problem (2.3), (2.4), we obtain

N [ (RO + 00T () ds < Malt + 1, T O)]) = M2+ 1),
0 <t <T. Let 9(t) be the cutoff function:
Y()=1Lt2>1; 9(t)=0,0<t<1/2; v € CF(R), ¥(t) > 0.
It follows from (2.3) that '
8, (H(u3(0) + L ($(D (1)) = (2 (1),
Differentiating this equation in ¢ and denoting 8, (%({)ul(t)) = p, we get

ap" + Lp" = $"()ui(t) + ¥’ (1) 0w} (1),
pn(O) = 0, pn|an = 0.
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So,

141 t+1

A (ILBbu)[ + B2 (u3) ) ds = / (5 ()12 + 0™ (5)|?) ds <
(2.8) C/!+l(|u;l|2+|8¢u;'|2)ds < My(t+1).

Combining (2.8) and (2.7), we obtain

t+1
(2:9) |90 (103 )1B +10232 (6)F) ds < Mot + 1),
0
Now we apply the operator L to both sides of equation (2.3) and get:
) = —aLu(),
Lu?lan = —agu’;(t”ag =0

Therefore
t+1 t+1
@10) [ WL = [ w10 (Lup(e) Pds < Mot + 1),
0 0
Finally, by virtue of (2.7), (2.9), and (2.10), we conclude:

t+1
./1 (N0euf (s)lI2 + 107wl ()I* + Nuf ()17 + i (s)II3) ds < Ma(t +1).

In particular, the sequence {ul(s)} is compact in H*(Q; r41) and {@}(s)} is compact

in H(Qo,r)-

Now we shall prove that the sequence {uj(s}} is compact in H"(Qor41) as
well. According to (2.5) it is sufficient to prove that the sequence B(u"(s)) =
B(u"(s),u"(s)) is precompact in Ly(0,I" + 1; H). (From (2.1) it follows that the se-
quence {g»(s)} is precompact in Ly(0,I'+1; H)). The sequence {u"(s)} is bounded in
H'(Qo,r+1), hence, by refining, we may assume that u,(s) — u(s) (n — 4-00) weakly
in H7(Qo,r+1). Thus, Giu,(s) — diu(s) (n = +oo) weakly in L,(0,T + 1; H) and
0°u(s) — 0°u(s) (n — +oo) weakly in Ly(0,T + 1; H) for any a = (e, a2), |a]|<2.

Let us prove that
(2.11) B(u"(s)) = B(u(s)) (n — 400) strongly in La(0,T + 1; H).
By the Nicolskiy theorem (see [3])

(2.12)  H"(Qor41) C H(Qors1), r=(r1,72,73), p = (p1,p2,P3), ¢ 22,

whenever
(2.13) pilri <1 —(1/2=1/q)(}/ri + 1/r2 +1/73), § =1,2,3.
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Moreower, the embedding (2.12) is compact if inequalities in (2.13) are strict.
The values r = (ry,72,73) = (2,2,1), p = (p1,p2,03) = (1,1,0), ¢ < 4 suit the
conditions (2.13), since p;/r; <1/2<1—(1/2 —1/¢)2,. So we conclude that

Ov )
(2'14) “E”LQ(QO,I‘i-I) -<— Cq”U”Hr(Qg'[‘+1)1 1= 1)2; 2 S q S 4‘

For ¢ < 4 the embedding H*(Qor4+1) CC H}"""’(Qo,m) is compact. Similarly,
taking p = (p1, p2, p3) = (0,0,0), pj/r;j= 0<1—(1/2—1/q,)2 for any ¢, > 2, we
obtain

”v”qu(QO,l‘+1) < C;l ”v”Hr(Qo,I‘H)

and the embedding H"(Qo,r+1) CC Lq, (Qo,r41) is compact.
Finally we get '

| B(u") - B(H)HLQ(O,F+1:H)
|B(v") — B(u)|| < ||B(x™ = u,u")|| + || B(u,u" — u)||

1/2 1/2

C (/ |u™ — u|2|Vu“|2d:1:ds) +C ([ [u? |V (u" — u)|2d:r:ds)

Qo,r+1 Qo,r+1

1/3 1/6

Ci (] |Vu"|3dxds) (/ Ju™ — u|6d:r:d3) +
Qo.r41 Qo,r41

1/6 1/6

(2.15) Cy (/ |u|6d$ds) (/ |V (u" — u)|3d:t:ds)

QoI +1 Qo,r41

Since H (Qor41) C€C HS(Qors1) and H(Qors1) CC Le(Qors1), we get

IA

IN

] |V(u™ — u)Pdzds — 0, / ju® — u|®dzds — 0 (n — c0)
Qo,r+1

Qo,r41

and, by (2.14) and (2.2),

f |Vu"Pdzds < M'.
Qo.r41

Therefore, the right-hand side of (2.15) tends to zero as n — oo and (2.11) is proved.

Thus, the right-hand sides of (2.5) forms a precompact set in L2(0,I' + 1; H)
and, hence, the set of solutions {u}(s)} is precompact in H*(Qo ry1). Consequently,
{43(s)} is precompact in H*(Qo,r). The sum {@"(s)} of two precompact sequences
{@3(s)} and {@3(s)} is precompact in H*(Qor). Lemma 2.1 is proved. O
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3 On the structure of trajectory attractors

In this section we shall describe the structure of trajectory attractors from Theorems
1.2 and 2.1 in terms of complete trajectories of equation 1.1, i.e. when solutions
u(s), s € R, are determined on the whole time axis R.

Let the function go(z,s) satisfies (1.2) and let H,(go) be the hull of go in
LY (R4, H). As usually, H,(go) is a complete metric space and the translation
semigroup {T'(t)} acts on Hi(go), T(t)H+(90) C H4(g0), T(t) is continuous for
any t > 0. Consider the attractor w(H,(go)) of the semigroup {T'(t)} on H,(go),

(3.1) T(t)w(H+(g0)) = w(H4+(g0)) Vt 2 0,

(See Proposition 1.2).
Similarly to L{°(Ry,H) and L(R4,H) we consider spaces Ly°(R,H) and
L3(R, H) of functions on the whole axis. The space L}(R, H) has a norm:

1+1
||(||f:g(n;y) = SUP/ |¢(s)]*ds < +o0.
teR Jt

Consider any external force g € w(H4(g0)). The invariance property (3.1) implies
that there is a function g;(s), 91 € w(H4+(go)) such that T'(1)g, = g. Consider the
function ({s),s > —1, {(s) = gi1(s + 1). Obviously, {(s) = g(s) for s > 0, hence,
¢(s) is a prolongation of g(s) on the semiaxis [—1,+oo[. In such doing, there is
g2 € w(H4(go)) such that T(1)g, = ¢1,T(2)g2 = g. Put {(s) = g2(s + 2) for
s > —2. Evidently, the function ((s) is well defined, since gz(s +2) = qi(s + 1)
for s > —1. Continuing this process, we define {(s) = gn(s + n) for s € [—n, 00|,
where g, € w(H4(go)) and n € N. We have defined a function {(s),s € R, which
is a prolongation of the initial external force {(s),s € R;. Moreover, the function
((s) satisfies the following property: I1,.(:(s) € w(H4(go)) for any t € R, where
Ce(s) = ¢(t + s). Here I} = Ilp s is the restriction operator to the semiaxis R;.
Evidently, {(s) € L3(R, H) and ||C||2;(R;H) < ||90||§,;(R+;H)'

Definition 3.1 (i) A function ((s) € L}(R, H) is said to be a complete external
force in w(Hy(g0)) f 4(e(s) = M1 L(t + 8) € w(H4(g0)), s € Ry, foranyt € R.
(ii) Let Z(go) be the set of all complete external forces in Hy(go).

As it was showed above, for any symbol ¢ € w(H.(g0)) there exist at least one
complete external force {(s) which is the prolongation of ¢ for negative s. Notice at
once, that, in general, this prolongation need not be unique.

By analogy to section 1, we introduce in the cylinder Q = @ x R the space
H™ee(Q) = LPe(R; Hy) N {8 € LP*(R; H)}, i.e. v(s) € H™(Q) if

"Ht;.th”i]r(Q'l'.?) < 400 V[tl,tgl g R.
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We shall use the topological spaces H™"°¢(Q), HE'*°(Q), and the Banach space
H™*(Q) with the norm:

||U||§4r-a(Q) = “’U”?-,a = sup I|Ht.t+1v||i;r(q,,,+l)-
tel
Let we be given some complete external force {{s),s € R, in w(H+(go)). Consider
the equation

(3.2) du+vLiu+ B(u)=((z,t), (V,u)=0, ulsa=0,z€Q, t€R,

Definition 3.2 The kernel K¢ of equation (3.2) with the complete external force
((s) € Z(go) is the set of all solutions u(s),s € R, of the equation (3.2) that are
bounded in the space H"*(Q).

The following Theorem specifies the structure of the trajectory attractor from
Theorems 1.2 and 2.1.

Theorem 3.1 (i) Let go(3) be tr.-c. in L’{fu(R_HH) then the trajectory atlractor
A, (g0) in HE'(Q4) of the translation semigroup {T(t)} acting on Kt = KI;+{QO)

can be represented in the form:

(3.3) Ary o) = Auirtaioon = e | K¢ = 4K z50).
{E€Z{g0)

The set Kz(4) is compact in HE'%(Q) and it is bounded in H™*(Q). For any ¢ €
Z(go) the kernel K¢ is not empty. Any function u(s) € K¢ s tr.-c. in HL'°(Q).

(ii) Let go(s) be tr.-c. in LY*(Ry, H) then the set Kz(4) is compact in HF¢(Q)
and any function u(s) € K¢ is tr.-c. in HF°¢(Q).

The proof of Theorem 3.1 is given in [5] and it uses the invariance property 1.6
of the trajectory attractor Ax, () : T(2)An, (g0) = Any(ee) V2 2 0.

Remark 3.1 [t was mentioned above that, in general, the prolongation ((s) of an
external force g(s) € w(Hy(go)) for s < 0 need not be unique. Let us describe an
important case when il is unique. Let go(s) be tr.-c. function in L}(Ry; H), i.e.
the set {go(s+h) | h € Ry} is precompact in the Banach space L3{(R.; H) with the
uniform norm (1.2) and, hence, the hull H,(go) is compact in L3(R4; H). It can be
proved that there ezists a unique function go(s),s € R, such that §o(s) is tr.-c. in
L3(R; H) and

t41
[ l90(s) — do(s)|*ds — 0 (¢ — co).

Therefore, w(Hy(g0)) = H4+(go). Tr.-c. functions in Li(R; H) are also called al-
most periodic functions in the Stepanov sence. These funcltions meet all the main
properties of usual almost periodic function (in the Bohr or Bochner-Amerio sence,
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see [1]). In particular, the translation semigroup {T'(t)} is invertible on H,(go) and
Hy (o) = M H(Go), where H(Go) = [{Jo(s + k) | A € R}]rar.mry s a hull of the al-
most periodic function go. Finally, in (3.3) Z{go) = H(§o) and every ezternal force
9(s) € w(H4(go)) possesses a unique prolongation for s < 0 as an almost periodic
function.

To conclude the section we describe the uniform (w.r.t. g € Hy(go)) attractor
A, (g0) for the family of processes {Uy(t,7) |t > 7 > 0}, g € H,(go), corresponding
to the equation (1.1). By Theorem 1.1, for any ¢ € H4(go), one defines a process
{Uy(t,7) |t 2 7 > 0} acting on V : Uy(t, 7)u, = uy(t), where uy(t) is a solution of
(1.1) with the initial condition u|;=r = u,, 7 > 0. Now consider the set Z(go). By the
similar way, to any ( € Z(go) there corresponds a complete process {U¢(t,7) |t >
7, T € R}, Uy(t,7)u, = u¢(t), where uc(t) is a solution of (3.2) with the initial
condition u|=r = u,, 7 € R. Consider the kernel K¢ corresponding to (.

By K¢(t) we denote a kernel section at timet € R : K¢(t) = {u(t) | u(.) €
K¢} C V. 1t is clear that

Uct, T)K¢(T) =Ke(t)VE2 1, 7 € R.
Using Theorem 3.1, Corollary 2.1, and Corollary 1.2 we get

Corollary 3.1 (i) If go(s) is tr.-c. in Li°(Ry, H) then the set

(3.4) Anoy = |J Ke(0)
{€Z(g0)

is the uniform (w.r.t. g € Hi(go)) attractor Ay, (4 in V of the family of processes
{Ug(t,7) [t 2 7 20}, g € Hi(go), the set Ay, (4) is compact in V. '
(i1) If go(s) is tr.-c. in L.'z‘ffu(R.;., H) then the set Ay, (y,) defined in (8.4) serves
as the uniform (w.r.t. g € Hi(go)) attractor in 'V, (with a weak topology of V) and it
is bounded in V. In particular, Ay, (4 ts the uniform attractor in Hy_s, Ay, (g) CC

Hl_g, 0<6S].

4 Trajectory attractors for 3D N.-S. system.

In this section we shall construct a trajectory attractor for the non-autonomous
Navier-Stokes system in a 3D domain 2 CC R> The structure of the trajectory
attractor will be described and some properties of the attractor will be given. Only
the brief general scheme will be sketched, without proofs and detailed explanations.
This part will be expounded in more detail in another publication (see also [7], [10],
(18)).

Consider 3D Navier-Stokes system in the semicylinder @, = Q x R :
(4.1) Bu + vLu + B(u) = g(z,t), (V,u) =0, ufsgn =0, z€ QA Ccc R? t >0,
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where, = = (z1,22,23), u = u(z,t) = (v, uv®,u®), g = g(z,t) = (¢',9%¢%). L

is the 3D Stokes operator: Lu = —PAw; B{u) = B(u,u), B(u,v) = P(u,V)v =
P E‘?:l u;0z,v. The spaces H and V are determined similar to the 2D case. Suppose
9(z,t) € LY*(Ry, H).

Let we are given an initial external force go(z,t) € L*(R4, H) in (4.1). Assume
that go is tr.-c. in LYS (R4, H) = L2, iee.

2,un

t+1
(4.2) loulEgcm vy = ool = sup [ lao(s)PPds < oo
teRy Jt .

Let ¥ = Hy(g0) = [{go(s+1t) |t > 0}]1,',?3(R+,V') be a hull of the function go(s) in

the space L% (R, H). It can be proved that H.,(go) is a complete metric space. The
translation semigroup {T'(t)} is continuous on H4(go) and T'(t)H+(go) € H+(go) for
any t > 0, moreower, for any g € H,(go) one has: ||g||2 < ||g0]|2.

To study the trajectory attractor of the equation (4.1) we consider the family of
these equations with various external forces g € H4.(go).

To describe a trajectory space K} of equation (4.1) with the external force
g we shall consider weak solutions of equation (4.1) in the space LY¢(R,;V) N
LI(Ry; H). If u(s) € LY(Ry; V) N L2%(Ry; H) then equation (4.1) makes sence
in the distribution space D'(R4; V'), where V' is the dual space of V. This is a usual
way to define weak solutions of equation (4.1) (see [16]).

Definition 4.1 The trajectory space K} is the union of all weak solutions u(s) €

LYe(Ry; VYN LI(Ry; H) of equation (4.1) with the external force g that satisfy the
following inequality:

(4.3) 5 P +vllu)|* < (9(2),u(t)), t € Ry

The equality (4.8) should be read as follows: for any function ¥(s) € C§°(]0, +o0),
P20,

+o0 +oo +o0
war s [ s+ [ luPeeds < [T (600 u(s) vl
Let us formulate the existence

Theorem 4.1 Let g € LY*(Ry; H) and ug € H; then there ezists a weak solution
u(s) of equation (4.1) belonging to the space LY*(Ry; V)N LI(Ry; H) such that
u(0) = uo and u(s) satisfies the inequality (4.4).

The existence theorem is a classical result (see [14], [15], [16], [19]). The proof
uses the Faedo-Galerkin approximations method. To get inequality (4.4) one has to
pass to the limit in the corresponding a priori equality involving the sequence {un}
of the Faedo-Galerkin approximations.
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Remark 4.1 For 3D case, the uniqueness problem is still open. Also, it is not
known whether any weak solution of (4.1) satisfies inequality (4.5).

It can be showed that any weak solution u(s) € L¥*(R4; V)N LI(Ry; H) of the
equation (4.1) satisfies

/4w e L°(Ry; H) VeO<e< 1/4

(see [16]), and
du € Lif(Ry; V')

(see {20]). Consider the following space:

Feo= PRy V)N LRy H)N
{8 v e LYRu;VIIN{v|dwe LRy V)],

where ¢ is fixed, 0 < ¢ < 1/4. The space fi“ is endowed with the following ”weak”
convergence topology.

Definition 4.2 A sequence {v,} C Fi° converges (in a weak sense) to v € Fi° as
t = o0 if vu(s) = v(s) (n > o0) weakly in La(t1,12; V), *-weakly in Lo, (t1,t2; H),
" un(s) = 8% u(s) (n — o) weakly in Ly(ty,ty; H)}, and dva(s) — Byv(s)
(n — o0) weakly in Lyp5(ty,t2; V')} for any [ty,ts) C Ry.

The space F{° with the above weak topology is denoted by ©%°. We shall use
also the space

Fi = LBy V)NLL(Ry; H)O
{018 € L{RuV)IN{v|dwe Lys(Res V)],

that is a subspace of F1°°. If X is a Banach space then LS (R,; X) means the subspace
of LI**(R4; X) having the finite norm

t+1
V||F arm .y = SU / v(s)||5 ds.
Il Ile(m,x) tzg t llv( )”X

Similarly, the space L3(R; X) has the norm

t+1
v||? i, =sup/ v(8)||% ds.
Il 7srix) sup | llv(s)II%

Lemma 4.1 (i) K} € F} for any g € Hy(go);
(ii) for any u(s) € K}

(4.5) IT (e llrs < Clul I o) €XB(=M) + Ro Vi 2 0,

where A is the first eigenvalue of the operator vL; C depends on A and Ry depends
on A and ||go||i;(n+;v,).
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Put
K:g = U K:;1 L= H+(90)'

g€H 1+ (g0)

The translation semigroup {T'(¢) | ¢t > 0} acts on K¢ :
T(t)u(s) =u(t +s), s >0.
Evidently
T(t)u(s) € K}, Yu €K7, 20,

so, the family {K}, g € H,(go)} is translation-coordinated. Therefore
T(t)KE C Kf vt >0.

It is clear that every mapping T'(t) is continuous in ©'°.
It follows from (4.5) that the ball By = |[v]lzs < 2Ro serves as a uniformly

absorbing set of the translation semigroup {T'(t)} acting on K¥. The set Bo is
bounded in F} and it is compact in Ofﬁ".

Lemma 4.2 The family {K}, g € £} is (0%, H,(go))-closed and KF is closed in
(Clied

In such a way, by Lemmas 4.1 and 4.2, Proposition 1.2 is applicable.
Let w(H4(go)) denote the global attractor of the semigroup {T'(t)} on Hy(go).
Here

w(Hy(g0)) = [

720

U T(t)H+(go)}
Lice,

t>7

is an w-limit set of H4.(go).

Let Z(go) be the set of all complete external forces in H;(go), i.e. the set of all
functions {(s),s € R, {(s) € LY*(R, H) such that {; € w(H4(go)) for any ¢t € R,
where (;(s) = T14{(s + t),s > 0. Evidently, for any g(s) € w(H+(go)) there is at
least one function { € Z(go) such that {(s) is a prolongation g¢(s) for negative s. To
any complete external force { € Z{go) there corresponds the kernel K of equation
(4.1). The kernel K, consists of all weak solutions u(s),s € R, of the equation

Ou + vLu+ B(u) = {(z,t), t € R,
that satisfy inequality (4.4) and that are bounded in the space

F* o= LAR;V)NLL(R;H)N
(018 € LIR;V)IN{v|dwe L;H(R; V).

Let us formulate the main
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{T(t)} acting on K& (£ = Hyi(go)) possesses a trajectory atiractor As = Ay, (g)
in ©%¢. The set Ay, (g,) is bounded in Fi and compact in ©°. Moreower,

Theorem 4.2 Let go(s) be tr.-c. in LY (Ry; H) then the translation semigroup

Astyg0) = Auirtpeoy = e | K¢ =Kz

{€Z(g0)

The kernel K¢ is not empty for any { € Z(go); the set Kz(g,) is bounded in F*
and compact in ©'¢,

The detailed proof of Lemma 4.1, Lemma 4.2, and Theorem 4.2 will be given in
(5]

Notice that the following embedding is continuous: O C L¥*(R4; Hy—5), 0 <
§ <1, so, we get

Corollary 4.1 For any set B C Kt bounded in F§
distr, o) (HorT() B, MorKz(s,)) — 0 (t — 00),
where I is fized and any.

In conclusion, we shall formulate some properties of trajectory attractors of the
Navier-Stokes system.

I) Let in (4.1) go(z,s) = gi1(z, s) + a(z, s), where ¢1(z, s) and a(z, s) are tr.-c.
functions in LY (R4; H). Assume that T(t)a — 0 (t — +o0) in LY%(Ry; H), i.e.

(4.6) L (a(s + ), (s)) ds — 0 (¢t — +o0)

for any ¥(s) € L,(0,1; H). Then the trajectory attractors corresponding to £ =
Hi(g1 + a) and to &) = Hy(g1) coincide:

(4.7) Ay (gr+a) = Ary (1)

In particular, if gy = 0 then Ay, (a) = An,(0) = {0}.

For example, the function a(z,s) = ¢(z)sin(t?) satisfies (4.6) for any ¢ € H.
Thus more and more rapidly oscillating additional term a(s) does not effect on the
trajectory attractor. The equality (4.7) is valid as for 3D as for 2D N.-S. systems.

IT) Let in (4.1) go(z,s) = go.(z,5) = g1(z, s) + €g2(z, 8), where g;(z, s) are tr.-c.
functions in LY%(Ry; H) and le] < 1. Put A(e) = Ay, (g.)- Then A(e) is lower
semi-continuous with respect to €. More precisely. It can be proved that the ball

By = ||v||}-1 < R, being a topological subspace of @ff‘ is metrizable and in this
metric:
(4.8) distea+oc (A(e), A(0)) — 0 (t — o).
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The radius R; is big enough to provide the inclusion: A(e) € B, for any ¢, |e| < 1.
For the 2D N.-S. system (1.1) the property (4.8) is also valid with diste#oc being
replaced by distyr,i.c or by dist;ric depending on the tr.-c. class the external force
belongs to.

ITT) Let A’(’fﬁ)(Pwno) = AW) be the trajectory attractor of the Faedo-Galerkin
approximation system of order N for the equation (4.1), where Py is the projection
onto the finite-dimensional subspace of H spanned by the first N eigenfunctions of

the Stokes operator. Then
distepe (AN, Ax, (5)) — 0 (¢ = o0).

In other words, for any neighbourhood O(Ay,(y,)) in ©/2° there is N; such that
AWN) C O(An, (g)) for any N > Ny.

References

[1]) L.Amerio and G.Prouse, Abstract almost periodic functions and functional equa-
tions. Van Nostrand, New-York,1971.

[2] A.V.Babin and M.1.Vishik, Attractors of evolution equations, North Holland,
1992; Nauka, Moscow, 1989.

[3] O.V.Besov, V.P.llin, and S.M.Nicolskij, Integral representations of functions
and embedding theorems, Moscow, Nauka, 1975.

[4] V.V.Chepyzhov and M.1.Vishik, Attractors of non-autonomous dynamical sys-
tems and their dimension, J.Math. Pures Appl., 73, N3, 1994, pp.279-333.

[5) V.V.Chepyzhov and M.1.Vishik, Evolution equations and their trajectory at-
tractors, J.Math.Pures Appl., to appear.

[6] V.V.Chepyzhov and M.1.Vishik, Non-autonomous evolutionary equations with
translation-compact symbols and their attractors, C.R.Acad.Sci.Paris, 320,
Série 1, 1995, pp.153-158.

[7] V.V.Chepyzhov and M.I.Vishik, Attractors of non-autonomous 3D Navier-
Stokes system. Uspekhi.Mat.Nauk, 50, N4,1995, p.151.

[8] V.V.Chepyzhov and M.I.Vishik, Attractors of non-autonomous evolutionary
equations of mathematical physics with translation-compact symbols. Us-

pekhi.Mat. Nauk, 50, N4,1995, pp.146-147.

[9] V.V.Chepyzhov and M.1.Vishik, Attractors of non-autonomous evolution equa-
tions with translation-compact symbols. Operator Theory: Advances and Ap-
plications , Vol. 78, Bikhauser Verlag, 1995, pp. 49-60.

26



[10] V.V.Chepyzhov and M.1.Vishik, Trajectory attractors for evolution equations,
C.R.Acad.Sci.Paris, 321, Série I, N10, 1995, pp.1309-1314.

[11] C.M.Dafermos, Semi-flows associated with compact and almost uniform pro-
cesses, Math. Systems Theory, Vol. 8, 1974, pp.142-149.

[12] C.M.Dafermos, Almost periodic processes and almost periodic solutions of evo-
lutional equations, Proceedings of a University of Florida, International Sym-
postum, New York Academic Press, 1977, pp. 43-57.

[13] J.K.Hale, Asymptotic behaviour of dissipative systems, Math. Surveys and
Mon., 25, Amer.Math.Soc., Providence, RI, 1987.

[14] E.Hopf, Uber die Aufangswertaufgable fir diee hydrodynamischen Grundgle-
ichungen, Math. Nachr., 4, 1951, pp.213-231.

[15] O.A.Ladyzhenskaya, Mathematical problems in the dynamics of a viscous in-
compressible liquid, Moscow, Nauka, 1970.

[16] J.-L.Lions, Quelques méthodes de résolutions des problémes auz limites non
linéaires. Dunod, Gauthier-Villars, Paris, 1969.

[17) G.R.Sell, Non-autonomous differential equations and topological dynamics I,
I, Amer. Math. Soc., Vol. 127, 1967, pp. 241-262, pp. 263-283.

[18] G.R.Sell. Global attractors for 3D Navier-Stokes equations, Univ. of Minnesota,
Preprint, 1995, pp.1-26.

[19] R.Temam, On the Theory and Numerical Analysis of the Navier-Stokes Equa-
tions, North-Holland Publ. Comp., 1979.

[20] R.Temam, Infinite-dimensional dynamical systems in mechanics and physics,
Springer-Verlag,1988.

[21] M.1.Vishik and A.V.Fursikov, Mathematical problems of statistical hydrome-
chanics, Dordrecht, Boston, London, Kluwer Academic Publishers, 1987.

Institut for Information Transmission Problems
Russian Academy of Sciences

str. Ermolovoy 19, Moscow 101447, GSP-4, Russia
e-mail: chep@ippi.ac.msk.su

27



