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(1)

We are dealing with the non-autonomous 2D Navier-Stokes system

atU + vLu + B(u) = g(x, t), (\7, u) = 0, ulan = 0,

x E n ce R 2
, t ~ O,U = u(x,t) = (U 1

,U
2

) =u(t), 9 = g(x,t) = (gl,g2) =g(t).
Here Lu = -Pb.u is the Stokes operator, lJ > 0, B(u) = P l:~=1 UiaXiU; P is the
orthogonal projector onto the space of divergence-free vector fields (see section 1).

Consider the autonomous case: g(x, t) =g(x), g(x) E H to begin with. Let for
t = 0 we be given the initial condition:

(2) Ult=o = uo(x), uo(x) E H.

The problem (1), (2) has a unique solution u(t), t ~ 0, which can be represented in
the form: u(t) = S(t)uo. The family of mappings {S(t), t ~ O} forms a semigroup:
S(tt}S(t2) = S(t 1+t2 } VtI, t2 ~ 0, S(O) = I d. A set ACH is said to be an lLttractor
of this semigroup {S (t )} (or an attractor of the equation (1)) jf A is compact in H,
A is strictly invariant with respect to {S( t)} : S( t}A = A Vt ~ 0, and A attracts
any bounded set B in H :

distH(S(t)B,A) ---+ 0 (t ---+ +00)

(see, for example, [13], [20], [2], and the references cited there).
Non-autonomous equation (1) is less studied. Let an external force go(x, t) =

go(t) in (1) depend on t, t ~ O. Assume the function go(t) is translation-compact in
L~OC(R+; H) =L~oC (or go(t) is translation-compact in L~O~(R+;H) =L~O~). '''This
means that the family of translations {go(t + h) I h ~ O} f~rms a precomp~ct set in
L~oC (respectively, in L~O~). It is easy to formulate the translation-compact criterions,
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(see section 1). For example, a function 90(t) is translation-compact in L~~~ if and
only if the following norm is bounded:

(3) 1
t+1

IIgoll~ = sup IgO(S)[2ds < +00.
t2:: 0 t

By 'H+(90) denote a hull of the function 90 in the space L~~~, Le.

wbere [ . ]x means the closure in a topological space X.
Consider the family of equations (1) with external forces 9(t) E 'H+(go) =~.

Let {Ug ( t, r) I t ;::: r ;::: O} be the family of operators (called a process in H) such
that Ug(t, r)u". = ug(t), t ;::: r ;::: 0, where ug(t) is a solution of equation (1) with
tbe external force g(t) and with the initial condition ult:;;;". = u".(x), u".(x) E H.
Evidently, Ug(t,r) : E ~ E, Ug(t,B)Ug(B,r) = Ug(t,r), Ug(7,r) = ld Vt ;::: B ;:::
r ;::: O. Consider the family of processes {Ug(t, r) I 9 E 1t+(go)} corresponding to
the family of equations (1) with external forces 9 E 'H+(go). (To compare with
autonomous case,- go(t) =go, 1{+(90) = {go}, Ug(t, r) = S(t - r)). It was proved
that tbe family of processes {Ug(t, r) I 9 E 1i+(go)} possesses a uniform (w.r.t.
9 E E) attractor AI; in H. More precisely, the set A E is compact in H, AI; attracts
any bounded set B in H uniformly w.r.t. 9 E ~ :

supdistH(Ug(t,r)B,AE) -+ 0 (t -+ +00) 'Vr 2:: 0,
gEE

and A E is a minimal compact, uniformly attracting set (see [9], [6], and [4] dealing
with more restrictive case). In [6], [4] the structure and the properties of the uniform
attractor for (1) was also studied.

In the present work we introduce and we study a trajeetory attraetor AE for
equation (1). We point out at once that a trajectory attractor A E is a compacttset
in the corresponding trajectory space of equations (1) that consists of their solutions
ug(t), t ;::: 0, considering as a whole as functions of t with values in H. In the previous
considerations, an attractor A E was a compact subset of points in H.

Consider a.s before a fixed external force go( t) being a translation-compact func­
tion in L~oC (or in L~~) and let 'H+(go) == ~ be a hull of go in L~oc. (The case when
90(t) is translation-c~mpact in L~~ is studied in section 1). Let Hr ( Q t1.t.J, r =
(2,2,1) be the Nicolskiy space in Q t lh = OX]t 1 ,t2 [(see [3]) offunctions ep(x,t) =
c.p(t) = (eplep2) E H, t E]t l , t2[ with a finite norm

1I'PII~r(Q'l>") =1 (L 18:ep(x, t)1
2+ 18tep(x, t)[2) dxdt, c.plan = O.

Q1l.t2 101:52

Ta any external force g(t) E 1i+(90) there corresponds tbe trajectory space x::.:.
Tbe space x::.: is tbe union of all solutions u(t) = ug ( t), t ;::: 0, of equation (1)
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in the space Hr,loc(Q+) =Hr,loc, Q+ = n x JO,+oo[, (i.e. u(t) E Hr(Qtlh,) for
any ]tbt2[C R+). Let x:.+ = UgE'H+(go) x:.: be a union of all x:.:. The translation
semigroup {T(h) I h ~ O} acts on I/r,la<: :

T(h)<p(t) = <p(t + h), h ~ O.

Evidently, T(h)ug(t) = ug(t + h) = UT(h)g(t) E x:.~(h)g' Therefore,

(4)

(the inclusion may be strict, see section 1). It is proved that JC+ is closed in Hr,loc.
It is clear that the semigroup {T(h)} is continuous' on Hr,loc. Denote by Hr,a(Q+) =
Hr,a a subset of Hr,loc of functions <p(t), t ~ 0, having a finite norm

1I<PIl~r.a = L 1I~<pII~ + llat<Pll~ < +00,
101:5 2

where 11. Il~ is defined in (3).
A trajectory attractor of the translation semigroup {T(h)} acting on JC+ is a set

AE ~ K:,+ such that AE is a set, compact in Hr,loc, bounded in Hr,a, invariant with
respect to {T(h)} : T(h)AE = AE Vh ~ 0, and satisfying the following attracting
property: for any set B C JC+, bounded in Hr,a ,and for any [tb t 2] C R+ the set
T(h)B tends to AE in the strong topology of the space Hr (Q t l,t,J Le.

(5)

In section 2, we construet the trajectory attractor AE of the translation semi­
group {T( h)} aeting on JC+. Section 1 deals with the trajeetory attractor AE in
"weak" topology H::."loc(Q+) under the assumption that go(t) is translation-compact
in L~~ only. In this case T(h)B tends to AE in the weak topology of the space,
H r(Q t l,t2) for any [tb t2] C R+. In section 3, the structure of the trajectory attrac-
tor AE is' descri bed.

Trajectory attractors have been constructed for various equations and systems
of PDE for which the corresponding Cauehy problem has non-unique solution or for
which the uniqueness theorem is not proved yet (see [7], [8], [9], [10], and [5]).

In section 4 we construct the trajectory attraetor for 3D Navier-Stokes system;
the structure and some properties of the trajeetory attractor are given as weIl. In
particular, the trajectory attractor AE is stable with respect to a small perturbation
of the external force 9o(x, t); the trajectory attractor Ar) of the Faedo-Galerkin
approximation system of order N tends to AE as N ~ +00 in the eorresponding
topology. Same of other properties turns out to be unexpected.

3



(1.2)

1 Trajectory attractor far 2D N.-S. system with
translation-compact external force in L~o~.,

We consider the Navier-Stokes system in a bounded domain 0 ce R 2
• Excluding

the pressure, the system can be written in the form:

(1.1) 8t u + IILu + B(u) = 9(X, t), (V, u) = 0, ulan = 0, x E 0, t ~ 0,

where, x = (x}, X2), u = u(x, t) = (u 1,u2), 9 =9(X, t) = (91, g2). L is the Stokes op­
erator: Lu = -P6.u; B(u) = B(u,u), B(u,v) = P(u, V)v = PE~=1 u j 8x ,v, 11 > 0
(see [16], [15], [19], [21]). By H, V, and H2 denote respectively the closure in
(L2(f2))2, (H 1(fl))2, and (H2(fl))2 of the set Vo = {v I v E (Cgo(0))2, (V,v) =
O}. P denotes the orthogonal projector in (L2(0))2 onto the Hilbert space H.
The scalar products in Hand in V are (u, v) = fn(u(x), v(x))dx and «u, v)) =
(Lu,v) = fn(Vu(x), Vv(x))dx and the nonns are respectively lul = (U,U)1/2 and

Ilull = (Lu, u)I/2 . The norm in H2 is 11.112.
To describe an external force g(x, s) in (1.1) consider the topological space

L~~(R+,H). By the definition, the space L~~(R+,H) = L~~~ is L~OC(R+, H) = L~oc

endowed with the following local weak convergence topology. The sequence {9n (s)}
converges to g(s) as n ~ 00 in L~~~ whenever h:2 (gn(s) - g(s), v(s)) ds ~ 0 (n ~
00) for any [tl,t2l ~ R+ and any v(s) E L2(t},t 2;H).

Let we are giyen some fixed external force 90(s) E L~oc. Assurne 90 (s) is translation­
compact (tr.-c.) in L~~~, Le. the set {go( s + h) I h E R+} is precompact in L~~~.

This condition is valid if and only if

1
t+1

IlgolliQ(R-t;H) = Iigoll~ = sup Igo(s)1 2ds < +cc
2 t~O t

(see [6]). By 'H+(go) denote the hull of a function go(s) in L~~~ : 1i+(go) = [{go(s +
h) I h E R+}] L'<;><; • Here [ . ]L'oc means the closure in L~~. It can be shown t hat the

2,UI 2,w '

set 1i+{go) being a topological subspace of L~o~ is metrizable and the corresponding
metric space is complete. Moreower, any fu~ction g{s) E 1i+(go) is tr.-c. in L~~~,
1i+(g) ~ 1i+(90), and Ilglla ::; IIgolla'

The translation semigroup {T(t) I t ~ O} = {T(t)} acts on 1i+(90) : T(t)g(s) =
9(S + t). Evidently, T(t) is continuous in L~~~ and T(t)1-l+(go) ~ 'H+(go) Vt ~ O.

\Ve shall study the fan1ily of equations (1.1) with various external forces g( . ,s) E

1i+(9o)
By Q tlh denote the cylinder n x [tl, t2], where [tl, t2] C R+.
Consider the space H r(Qtlh), r = (2,2,1) (see [3]), Hr(Qtt.t,J = L2 (t}, t2 ; H2 ) n

{ßtv E L2(t}, t2 ; H)}. The norm in Hr(Qtlh) is

(1.3)

Let us recall the existence and uniqueness theorem.
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Theorem 1.1 Let g(s) E L2 (t 1 , t2 ; H) and Uo E V. Then there exists a unique
solution u (s) 0f equation (1.1) belonging to the space Hr (Qt} ,t2) such that u (t l ) = uo.
Moreover, u(s) E C([tt, t2], V).

This theorem is a variant of the classical result (see [14], [15], [16], [19], [2]). The
proof uses the Faedo-Galerkin approximations methode

We shall stucly equation (1.1) in the senlicylincler Q+ = n x R+, where g(., s) E

H+(go).
Consider the space Hr,loc(Q+) = L~OC(R+; H2 ) n {atV E L~OC(R+; H)}, i.e. v(s) E

Hr,loc(Q+) if IIIItlhVIl~r(Qtlh) < +00 for any [tl, t 2] C R+, where IItl.t2 is the re­
striction operator onto the segment [tl, t2]. We introduce two different topological
spaces H~,loc(Q+) and H~,loc(Q+), ("strong" and "weak"). The space H:,loc(Q+)
(H~,loc(Q+)) is W,loc(Q+) with the following convergence topology. By the def­
inition, vn(s) -+ v(s) (n -+ 00) in H:,loc(Q+) (in H:;"loc(Q+)) if IItltt2vn(s) -+

IItl.t2v(s) (n -+ 00) strongly in Hr(Qtlh) (respectively, IIt1,t2vn(s) ---" TIt1,t2V(S) (n-+
00) weakly in H r (Q t l.t2)) for any [tb t 2 ] C R+. It is easy to prove that the linear
topological space H;,foc(Q+) is metrizable, for example, by means of the Frechet
metric generatecl by the seIllinorms Illln,n+ivIIHr(Qn,n+tl' n = 0,1,2, .... The space
H:;"loc(Q+) is not metrizable, but it is a Hausdorff and Frechet-Uryson space with a
countable topology base.

We shall use also the space Hr,a(Q+) that is a subspace of Hr,loc(Q+). By the
definition, v(s) E Hr,a(Q+), if the following norm is finite

(lA) IIvlI~r,a(Q+) = Ilvll~,a = ~~~ IInt,t+lvll~r(Qt,t+d'

Evidently, Hr,a(Q+) with the norm (1.4) is a Banach space. We shall not use the
topology generated by the nonn (1.4). vVe need the Banach space Hr,a(Q+) to define
bounded sets in H r ,loe ( Q+) only.

We put into correspondence to any external force g( . , s) E 1-l+ (go) the trajectory
space Je: that is the union of all solutions u(s), s ~ 0, of equation (1.1) in the

space Hr,loc(Q+). Notice that IB(v)1 ~ ClvI1/21IvI121Ivll~/2; therefore any solution
u(s) E Je: satisfies (1.1) in the strong sence of the space L~OC(R+,H). By Theorem
1.1, the trajectory space K: is wide enough for any 9 E 1-l+(go). Denote, Je+ -
Je~+(go) = UgE1i"+(90)Je:·

Lemma 1.1 11 go(s) E L~OC(R+, H) satisfies {1.2} then Je+ C Hr,a(Q+).

This lemma will be proved later on.
Consider the translation semigroup {T(t) I t ~ O} acting on Hr,loc(Q+) by the

formula
T(t)v(s) = v(s + t), s ~ 0, v E Hr,loc(Q+).

Obviously, the family of trajectory spaces {Je:, gE 1-l+(go)} corresponding to the
equation (1.1) satisfies the embedding:

(1.5) T( t)Je: ~ Je~(t)9' Vt ~ O.
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In other words, for any t ~ 0, a function u(s + t), s ~ 0, is a solution of equation
(1.1) with a shifted symbolg(s+t) = T(t)g(s) for any solution u(s) E K; of equation
(1.1) with a symbol g(8) E 1-l+(go). Hence, the translation semigroup {T(t)} takes
K+ = Kt

t
(90) into itself: T( t)K+ ~ K.+, t 2:': O.

In this section we study the trajectory attractor A'Ht (90) of the translation semi­
group {T(t)} acting on K.+ = K.~t(90)" The set A'Ht(90) attracts any set T(t)B as
t -+ +00 in the topology of B~c = H~,loc(Q+), where B C K.+ and B is bounded in
the Banach space :F~ = Hr,Q(Q+).

Definition 1.1 Let E be a eomplete meirie spaee and let e be a topologieal spaee.
Consider a /amily 0/ sets {K.(1' u E E}, K.(1 c 8, depending on a parameter u E E.
The /amily {K(1' u E E} is said to be (B, E)-c1osed i/ the graph set U(1EEK(1 X {u}
is closed in the topological spaee B X E with a usual produet topology.

Proposition 1.1 Let E be a eompact metrie spaee and {Ku,u E E} be (B,E)­
closed; then the set KE = U(1EEK(1 is closed in 8.

Proof. \Ve use the standard reasoning. Let u r/:. K.E = UuEEK:u ' Therefore,
(u, u) r/:. Uu/EEKu' X {U/} for any u E E. The set Uu/EEK.ul X {U/} is closed in ex E, so,
there is a neighbourhood Wu x 0(1 in ex E such that W u x 0(1 n (U(1'EEK(11 x {u'}) =
0, u E W(1, u E 0(1, where W(1 and 0(1 are open sets in Band E respectively. The
family {Ou lu E E} forms an open covering of E. Since E is compact, there is a finite

N
subcovering {OUj li = 1, ... , N}. Put W(u) = nWu ;. Evidently, W(u) n!CE = 0.

i=l
Hence, for any u ~ Kr. there is a neighbourhood W(u) n KE = 0., i.e. Kr. is c10sed
in E. 0

Lemma 1.2 The /amily 0/ trajectory spaces {K.;, 9 E 1-l+(go)} eorresponding to
the equation (1.1) is (8~, 'H+(go))-closed and K.+ = K~t(90) is closed in B~c.

Proof. Assume that un{s) E K9n , 9n E 1-l+{9o), un{s) -+ u{s) (n -+ +00) in
B~c and gn (s) -+ g(s) (n -+ +00) in L~~. We claim that U E K;. Indeed, for any
fixed [tb t~} C R+ we have: un(s) ->. u(s) (n -+ +00) weakly in Hr {Q tl.t2). Thus,
ßtunCs) ->. ßtu(s) (n -+ +00) weakly in L2(t l , t 2 ; H) and ßOu(s) ->. ßOu(s) (n -+

+00) weakly in L2 ( t}, t2 ; H) for any Q' = (ab 0'2), 10'1 :::;2. In particular, by refining,
we may assume that U n ( s) -+ U ( s) (n -+ +00) almost everywhere in Qt 1 ,t"J and
B(un(s)) ->. B(u(s)) (n -+ +00) weakly in L2(t 1 , t2 ; H) (see compactness theorems
in [16], [19]). Therefore we may, in the equation

pass to the limit as n -+ 00 weakly in L2 (tI, t~; H) and get

Btu + vLu + B(u) = g(x, t),
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so that u(s) E Jet. Finally, it follows from Proposition 1.1 that Kt+(90) is closed in

8~oc since E = 11+ (go) is a compact metric spa.ce. 0

Consider the translation semigroup {T( t)} acting on the metric space 11+ (go).
Evidently, the semigroup {T(t)} is continuous in 11+(go).

Definition 1.2 A set A is said to be aglobai allractor 0/ a semigroup {S(t)} acting
on a complete metnc space X, if (i) A is compact in X and A attracts any bounded
set B : distx(S(t)B, A) ~ 0 (t ~ (0); (ii) S(t)A = A for any t 2: o.

For the case X = E = 11+ (go) we have

Proposition 1.2 The translation semigroup {T(t)} acting on the compact metrie
space E = 11+(go) possesses aglobai allractor A which coincides with the w-limit
set of E:

A = w(E) =n[U T(h)E] ,w(E) ~ E,
t2: 0 h2: t E

where [ . ]E means the closure in E. A10reower, T(t)w(E) = w(E) Vt 2: O.

This statement follows from well-known theorems from the theory of attractors
of semigroups acting in metric spaces (see, for example, [2], [20], [13]).

Consider more general scheme. Let E be a complete metric space. Let also :F
be a Banach space. Assume:F ~ 8, where e is a Hausdorff topological space. Let
a semigroup {T(t)} acts on E> : T(t)E> 5; E>, t 2: O. Let we be given a family of sets
{Ku,O' E E}, Ku 5; :F. Put Kr. = UuEEKu '

Definition 1.3 A set P 5; 8 is said to be a uniformly (w.r.t. u E E) attracting
set /or the /amily {Kq,O' E E} in the topology e i/ for any bounded set B in :F
and B 5; K E , the set P attracts T(t)B as t ~ +00 in the topology 8, i.e. for any
neighbourhood O(P) in E> there exists t1 2: 0 such that T(t)B 5; O(P) /or any t 2: t 1 •

Definition 1.4 A set AE ~ 8 is said to be a uniform (w.r.t. 0' E E) attractor 0/
the semigroup {T(t)} on Kr. in the topology 8, if Ar. is compact in e and Ar. is a
minimal compact uni/ormly altracting set of {K: q , er E E}, i.e. Ar. belongs 10 any
compact uniformly attracting set P 0/ {K q , (f E E} : AI: ~ P.

Let a semigroup acts on E, which we denote {T(t)} : T(t)E ~ E, t 2: o.

Definition 1.5 The farnily 0/ trajectory spaces {Kq , (f E E} is said to be translation­
coordinated (tr.-coord.) if for any er E E and any u E K q

T( t)u E KT(t)q Vt 2: O.

It follows from (1.5) that the family {K:,g E 11+(go)} is tr.-coord. with respect
to the translation semigroup {T(t)}.
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Proposition 1.3 Let E be a eompact metne spaee and let a eontinuous semigroup
{T(t)} aet on E and on e : T(t)E ~ E, T(t)E> ~ 8, t ~ O. Let we be given a
/amily 0/ sets {Ku, u E E}, Ku ~ .1". Assume, the /amily {Ku, u E E} is (6, E)­
closed and tr.-eoord. Let there exist a uniformly (w.r.t. a E E) attraeting set P /or
{Ku, u E E} in eJ such that P is eompaet in E> and P is bounded in F. Then
the semigroup {T(t)} aeting on K:,E = UuEEK:u possesses the uniform (w.r.t. u E E)
attraelor AE ~ K: E n P in the spaee e,

(1.6)

MoreoverJ
AE = Aw(E),

where Aw(E) is the uniform (w. r. t. u E w(E)) attraetor of the family {Ku, u E w(E)},
Aw(I:) ~ K:w(I:)' Here w(E) is the attractor 01 the semigroup {T(t)} on E, T(t)w(E) =
w(E). The set AI: = Aw(I:) is eompaet in E> and bounded in F.

The proof of Proposition 1.3 is given in [5], (see also [10]).
In application to the Navier-Stokes system (1.1) in this section, E = 11.+ (go), F =

.1"+ = Hr,a(Q+), e = e~ = H:;"loc(Q+), {T(t)} is the translation semigroup, and
{x::: ,9 E 11.+ (go)} is the family of trajectory spaces of equation (1.1). In this ca.se
a uniform (w.r.t. u E E) attractor A'H+(go} is called a trajeetory attraetor of the
family {K:,g E 7l+(go)}. In the next section we shall consider the "strong" space
E> = E>~c = H;,loc(Q+).

Let us formulate the main result of this section.

Theorem 1.2 Let go(s) be tr.-c. in L~~~(R+, 11) then the translation semigroup
{T(t)} aeling on K+ = K~+(90) possesses a trajectory attractor A'H+(go) in e~c =
H:;"foc(Q+); the set A'H+(go) altraels any set B ~ K,+, bounded in:F+ = Hr,a(Q+).
The set A 1t+(90) is bounded in .1"+, compact in E>~cJ and it is invariant wilh respeet
to the translation semigroup: T(t)A'H+(go) = A'H+(go) for any t ;::: O. A10reowerJ

(1.7)

where ~(1i+(go)) is the trajectory attractor 01 the lamily {Kg,g E w(11.+(go))}J
.Aw('H+(go)) ~ KW('H+(go))' Any lunetion u(s) E A'H+(90} is tr.-c. in e~c.

Notice that the topology of the space H:;'(Qtl,t.J is stronger then the uniform
convergence topology of the space C([t 1l t 2]; H), H:;'( QtJ,t.J c C([tl, t2]; H). So, we
have

Corollary 1.1 For any set B C K+, bounded in F+, one has

Similarly, from the embedding H:;'(Qtl,t1) c Cw([t l , t 2 ]; V), it follows
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Corollary 1.2 For any set B C K+, bounded in F+, and for any v E V, one has

distc([o,r» (no.rJvT(t)B, no.r Jv A1{+(90») ~ 0 (t ~ 00) vr ~ 0,

where Jv is the mapping /rom H~(Qtl.t2) into C([tl,t~]) : lv(u(s)) = «u(s),v)),
« . , .)) is the scalar product in V.

To prove theorem 1.2 we use Proposition 1.3. According to (1.5) and Lemma
1.2 we have only to check that the family of trajectory spaces {K::,g E l1+(go)}
corresponding to t he equat ion (1.1) possesses a uniformly (w. r. t. 9 E 11+ (go) )
attracting set P compact in E>~c and bounded in F'+. This is the most difficult part
of the proof. We separate the proof of this fact into a few lemmas.

Lemma 1.3 For any u E Kt, 9 E 1i+(go), the Jollowing estimates are valid:

(1.8) lu(r + t)l~ :::; e->.tlu(r)12 + Cdlgll~, t, T ~ 0,

(1.9) IIT( t )ullico(ß.+;H) ~ e->.t lu(O) 1
2+ eIlig11; ;

where .-\ is the first eigen value 0/ the operator v L, Cl = .-\-1 (1 - e->') -1 j

(1.10) V [+1 lIu(s)11 2ds ::; lu(tW + C2[+1 Ig(sWds,

(1.11) vllT( t)1l1Ii2(ß.+;v) :::; e->.t Ill(O)12 + 03 11911;,
where O2 = ,\-1, 0 3 = Cl +O2 , t ~ O.

Prüof. Taking the scalar product in H of (1.1) with u, we get

d d
(1.12) dt lu(t)l~ + Alu(t)1 2

~ dt lu(t)12 + vllu(t)11 2
:::; .-\-119(t)12

,

and we obtain after proper integrating from r to r + t

lu(r + tW ::; e-,ltlu(rW + A-1e-A(T+') jTH Ig(sWeA'ds,

Estimating the last expression, we get

jT+' Ig(sWe-A(T+.-a)ds <

j

T+t jT+t-1
19(s)12e->'(T+t-6)ds + Ig(s)l~e->'(1"+t-·)ds +... <

T+t-1 T+t-2

j

T+t j,+t-1 jT+t-2
Ig(S)[2ds + e->' Ig(s)1 2ds + e-2>' Ig(s)1 2ds + ... <

T+t-1 T+t-2 T+t-3

11911; (1 + e->' + e-2>. + ...) = 11911; (1 - e->.)-l .

So, inequality (1.8) is proved. Inequality (1.9) follows directly from (1.8). In the
usual way, one derives (1.10) from (1.12). Combining (1.8) and (1.10), we get (1.11).
o
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(1.14)

Lemma 1.4 For any u E x:.:, 9 E 'H+(go),

where Cd1}1 ,1}'2, 1}3) is a continuous and increasing fu nction with respeet to each

1}i ~ O.

The proof is analogous to one given in [2]. We sketch the main points of it for
convenience of readers. For brevity sake, we suppose without lose of generality that
11 = 1 and T = O. Multiplying equation (1.1) by tLu we get:

1 d 1
"2 dt (tllu(t)1l 2

) - "2 llu (t)1I 2+ tllu(t)lI~ + t(B(u), Lu) <

tlg(tW + ~tllu(t)II~.

Recall that (u, Lu) = lIull'2, (Lu, Lu) = Ilull~. We have also that

(1.15) (B(u), Lu) ~ IB(u)llIulb,

(1.16) IB(u)J ::; c(fn luI2JV'uI2dx) 1/2 ::; cllullo.4I1ulh.4;

(1.17) lIullo,4 ~ ctilull l
/
2Iul l/2

, Ilullo,4 ~ c21Iull~/211ulll/2

(see inequalities (1.17) in [15], [21]). It follows from (1.15), (1.16), and (1.17) that

(1.18) IB(u)1 ~ c31Iull~/211 ulllul l
/
2,

(1.19) t(B(u), Lu) ::; tC3I1ull~/2l1ulllull/2::; ~lIull~ + t~ lIuWlul2.

Using (1.14) and (1.19) we obtain

(1.20)

Denote z(t) = tllu(t)11 2
• Consequently,

z'(t) ~ b(t) + ,(t)z(t), b(t) = lIu(t)1l2 +2tlg(t)12, ,(t) = c4Ilu(t)1I2Iu(t)12.

Applying Gronwall inequality, we get:

z(t)::; l' b(s ) exp ([1'(O)dO) ds ::; (1' b(S )ds) exp (1' 1'(S )ds) .

Using (1.12), we have

(1.21) lu(tW + l' Ilu(s)112ds ::; lu(OW + >.-1 l' Ig(s)1 2ds.

10



Therefore

tllu(t)11 2 <

(l' (1Iu(8)11 2+ 28Ig(8)12) d8) exp (l' c..1lu(8)1l2Iu(8) 12d8) <

(lu(OW + (,\-1 + 2t) l'19(8Wd8) exp (C4 (lu(O)12 + ,\-1 l'19(8Wd8) 2)

Finally,

(1.22) sup tllu(t)112::; Cl (r,lu(O)12, rr 19(5) 12dS) ,
O$t$r 10

where C1(7]1 , 7]2, 7]3) = (1]2 + (,X-l + 21]t} 1]3) exp (C4(7]2 + ,X-I 7]3)2) . 0

Inequality (1.13) implies that

Taking sup in (1.23) with respect to T ~ 0, we obtain according to (1.9) that

Hence

Corollary 1.3 For any u E K;, 9 E 'H+(90),

where T, t, r are positive and any.

Proof. It is sufficient to prove (1.24) for T = 0 and v = 1. It follows from (1.20),
(1.21), and (1.22) that

11



+

+

Now, equation (1.1) implies directly that

([' sI8,v(S) 12dS) 1/2 <

([' slg(s)12dsY/2 <

(1.27)

(
r ) 1/2 ( r ) 1/21sllu(s)ll~ds + 1sIB(u)12ds +

( r ) (r )1/2C~ r, lu(O)I"1 Ig (s) 12 ds + r l
/
2 1 Ig (s) ,2ds +

(

r ) 1/2

C3 1s1I u(s)11211 u(s) 11 21u(s)Ids

We have used inequality (1.18). At the sanle tilne by (1.22) and (1.26), we get

l rsllu(s)112I1u(s)112Iu(s)lds ::; l rsllu(s)11 4 Iu(s)12ds +l rsllu(s)ll~ds ::;

C~~~r lu(t)1
2
) C~~~r t l1 u(t)11

2
) [ Ilu(s)11 2ds + C~ (r, lu(O)12,[' Ig(s )12dS) <

(1.28) (lu(O)12+ r l
[' Ig(S) 12dS) 2Cl (r, lu(O)I" [' Ig(S) 12dS) + C~(.).

Combining (1.27) and (1.28) we obtain

(1.29) [' sI8,u(s)12ds ::; C; (r, lu(O)12,l r
Ig(S) 12dS) .

Summing (1.26) and (1.29), we derive (1.24). From (1.24) it follows for r = 2 that

(1.30) l
t
+
T
+

2

(1Iu(s)ll~ + 18t u(s)1 2) ds ~ C3 (2, lu(t + r)1 2 , lt+T+2Ig(s),2ds) .
t+T+l t+T

Taking sup in (1.30) with respect to r ~ 0, we obtain according to (1.9) that

IIT(t + l)ull;,a ~ C3 (2, lIT(t)ullL.,(~;H)' 211T(t)gll~) ~ C4 (e-.\tlu(O)1 2
, IIgll~) .
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Lemma is proved. 0

Lemma 1.1 follows from more general

Lemma 1.6 For any u E Je: 1 9 E 'H+(go),

(1.31) [+f (IIv(s)ll~ + lo,v(sW) ds ~ C5 (1Iu(T)11 2
, [+r Ig(sWdS) ;

IlulI~.• = ~~~ [+1 lIu(s)lI~ + lo,u(sWds ~ C6(lIu(O)1I2,IlglI~) , T, r ~ O.

Proof. Similarly to (1.20) we get

d
dt (lI u(t)11 2

) + lIu(t)lI~ < 21g(t)]2 +c.. l]u(t)1l 4
Iu(t)1 2

,

z~(t) < b1(t) + ,(t)zdt), zt{t) = Ilu(t)1I 2
, b1(t) = 2[g(t)1 2

,

ZI(t) < (Zt(O) + lbt(S)ds)exp(l,(S)ds).

So, using (1.21), we obtain,as above, (1.31). Finally, combinig (1.31) with T E [0,1]
and (1.25) with T E]1,+oo[we get

l
T+l

llull;,a = sup (llu(s)lI~ + 18tu(s)12) ds <
T~O T

max {Gs (lI u (0)11 2
, 1I911~) 1 G4 (lu(0)12, llgll~)} = G~ (llu(0)112, llgll~) .

Lemma is proved. 0

Coming back to the proof of Theorem 1.2, we construct the uniformly attracting
set P in e~c for the translation semigroup {T(t)} acting on K.+ = Je~+(go). From

(1.25) it follows that

(1.32) Il T (t + 1)ull;,a ::; C4 (e-.xtllull;,a, Ilgll~) ::; C4 (e->.tllull;,a1 IIgoll:)

Vu E Je+, since llglla ::; llgolla for any 9 E 'H+(go). Consider the set

Po = {v E~ Illvl];,a ::; C4 (1, llgoll~)}·

Evidently, Po is a desired attracting set. Indeed, if B ~ K.+ n F+ is a bounded set
of trajectories then e-.xtllull~a ::; 1 for any u E B when t ~ t' ~ 1 and therefore,,
by (1.32) T(t + l)B ~ Po. Hence Po is even a uniformly absorbing set. Notice
that the set Po is bounded in :F+ and compact in e~ = H::/OC(Q+). The latter is
true since the topology in H~,loc(Q+) is generated by the weak topology of Banach
spaces H r (Q tl,t2) = L2(tt,t2;1/2) n {8tv E L2(tl,t 2;H)}. Recall that un(s) -->.

u(s) (n -+ +00) weakly in [fr (Qtl ,t2) whenever 8tun (s) -->. 8tu(s) (n -+ +00) weakly
in L2(tl,t 2 jH) and 8au(s) -->. aau(s) (n -+ +00) weakly in L2(tl,t 2;H) for any
a = (at, 0'2)' 10'1::;2. That is, a bounded set in Hr (Q t l.t2) is weakly compact in
H r

( Qtl.t2)·
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Remark 1.1 The set Po being a eompaet subspaee 0/ H:;"loc(Q+) is a metrizable
spaee and the eorresponding metric space is compact. This proposition /ollows from
the fact that a ball of a separable Banach space endowed with the weak topology 0/ this
space is metrizable and compact. The translation semigroup {T(t)} is continuous on
Po und T(t) takes Po into itself: T(t)Po ~ Po for any t ~ O. So the Proposition 1.2
is applicable. In partieular the set A = w(Po) is aglobai allractor 0/ the semigroup
{T(t)} aeting on Po. Moreower, A = A'H+(90) because Po is a uniformly absorbing set
0/ the /amily 0/ trajectory spaces {K:, 9 E 1-l+(go)}. This reasoning proves the first
part of Theorem 1.~. To prove property (1.7) we have to use more subtle reasoning
(See [5J).

2 Trajectory attractor for 2D N.-S. system with
translation-compact external force in L~oc.

Now consider the case w hen the external force 9(x, s) in (1.1) is a tr .-c. function
in L~OC(R+jH). The space L~OC(R+,H) = L~oc is endowed with the following loeal
strong convergence topology. The sequenee {gn (s)} eonverges to g(s) as n -t 00 in
L~oC whenever .ft:2 Ign(s) - g(s)1 2ds -t 0 (n --+ 00) for any [tl, t 21~ R+. The spaee
L~oc is metrizable and complete. A funetion g(09) E L~oc is tr.-e. in L~oc wbenever the
set {g(09 +h) I h E R+} is preeompact in L~oc. The criterion of funetions to be tr.-c.
in L~oC is given in [6]. We reeall: a function g(s) E L~oc is tr.-e. in L~oC if and only if

Ci) for any h ~ 0 the set {J/+h
9(s, x)ds I t E R+} is precompact in Hj

(ii) there is a positive function ß(s) > O,S > 0, such that ß(s) -+ 0 + (s -+ 0+)
and

I
t+1

t Ig(s) - g(s + 1)1 2ds ::; ß(III) Vt 2:: o.

Remark 2.1 Let us give a simple sufficient condition. A function g(s) E L~oc ts

tr.-c. in L~oC if
IlTIo,lg(. ,09 + t)IIH6(Qo,d ::; M Vt ~ 0

/or some 0 > O. Here HS(Qo.d = HS(n x [tb t2]) is the Sobolev space 0/ order o.

Let we be given a fixed tr.-c. in L~oC function go(s). Evidently, go(s) is tr.-c.
L~~~ a.s weIl. Consider the set {90(o9 + h) 1 h E R+}. Notice that [{go(s + h) 1 h E

R+}]t1oc =({go(s + h) I h E R+}]L1OC and the corresponding topologieal subspaces
2,\11 2

of L~~~ and L~oc are honleoIllorphic. Hence, 1-l+(go) = ({go(s + h) 1 h E R+}l=: does
not depend on :=: = L~~ or :=: = L~oc. As usually, the topological spaee 1-l+(go) is
compact and any function g(s) E 1-l+(go) is tr.-e. in L~oc, 1-l+(g) ~ 1-l+(go), and
lIg11a ~ lIgolla'

Now eonsider the "strong" space H;·loc( Q+) introdueed in seetion 1. Reeall that
vn(s) -+ v(s) (n ~ 00) in H:,loC(Q+) if TIt1hVn(S) -+ TI t1 .t2 V(S) (n ~ 00) strongly in
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Hr(Qtlh) with respect to the norm (1.3) for any [tl, t 2 ] ~ R+. The linear topological
space H:,loc(Q+) is metrizable and complete.

To any 9 E 11.+(90) there corresponds the trajectory space JC: that is the union
of a11 solutions u(s),s ~ 0, of equation (1.1) in the space Hr.loc(Q+). Consider tbe

family {K:, 9 E 1-l+(go)} and the union K,~t(go) = U'Ht(go)Kt·

In this sectioo we study the trajectory attractor A'Ht (go) of the translation semi­
group {T(t)} acting 00 K,+ = JC~t(go) in tbe "strong" topological space H:,loc(Q+).
Tbe set A'Ht(go) attracts any set T(t)B as t -+ +00 in the topology of e~c =
H;,loc(Q+), where B C K,+ and B is bounded in the Banacb space :F:;' = IP,t1(Q+).

Theorem 2.1 Let go(s) be tr.-e. in L~oc. Then the trajectory attraetor A'Ht(go) in
H:u,loc(Q+) of the translation semigroup {T(t)} aeting on K+ from the Theorem 1.2
serves as the trajeetory attractor in H:·1OC(Q+) of this semigroup. In partieular, fOT
any set B C K+

The set A'Ht(go) is bounded in F+, eompaet in H:,loc(Q+). Any funetion u(s) E

A'Ht(go) is tr.-e. in H:·10C(Q+).

Notice if the trajectory attractor in H:,loc(Q+) exists then it coincides with
the trajectory attractor A'Ht(go) in H~,loc(Q+) since the -embedding H:,loc(Q+) ~

H~,loc(Q+) is continuous and the trajectory attractor is the minimal attracting set.
So to apply Proposition 1.3 we have to produce an attracting set PI that is compact
in H;·loc(Q+) and bounded in F:;' = lIr,t1(Q+).

From tbe continuous embedding H;(Qtlh) c C([t}, t2]; V) and from Theorem
2.1, it fo11ows

Corollary 2.1 For any set B C K,+, bounded in F+, one has

distc([o.rJ;V) (TIo,rT(t)B, 1l0,rA'Ht(90)) -+ 0 (t -+ 00) vr ~ O.

Proof of Theorem 2.1. Consider the set p~ = Po n K:.+, where Po is the ab­
sorbing set constructed in the section 1. Evidently, the set p~ is uniformly absorbing
for the family {Jet, 9 E 1-l+(go)}. Put

Tbe set PI is uniformly absorbing for the family {Kt, 9 E 1-l+(90)} as weIl. To
complete tbe proof of Tbeoreln 2.1 we bave to establisb tbe fo11owing

It is easy to prove the following statement using the diagonal process.
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Proposition 2.1 The set B is compact in H;,loc(Q+) if and only if the set no,rB
is compact in H r (Qo,r) for any r > o.

Proof of Lemma 2.1. Fix any r > o. Let un(s) = T(I)un(s) = un(s + 1) be
any sequence from PI, un(s) E K::

n
n Po, 9n E ,}-l+(go). Without lose of generality,

we may assume that

(2.1 )

for some 9 E 1i+ (9o). Let us show that t he sequence {un ( S )} is precornpact in
Hr(Qo,r). Since un(s) E Po, we have

(2.2)

where the positive function M( 0) is not decreasing. We can represent the function
un(s) as a surn of two funetions:

u"(s) = u~(s) +u;(s), s ~ 0,

wbere u~(s) and u2(s) are solutions of the following problems:

(2.3)

(2.4)

8tU 7(t) + Lu7(t)

u~(O) =
0, t ~ 0,

u~(O), u~lan = 0, Ilu~(O) 1I ~ MI

(2.5)
(2.6)

8tu~(t) + Lu~(t) = -B(u"(t)) +9"(t), t ~ 0,

u~(O) = 0, u~lao=O.

Respectively, iL"(s) = ü~(s) + iL~(s).

Since u~ is a solution of the Stokes problem (2.3), (2.4), we obtain

o::; t ::; r. Let ljJ (t) be the cu toff [unetion:

ljJ(t) =1, t ~ 1; ljJ(t) == 0, 0 ::; t ::; 1/2; ljJ E C;o(R), ljJ(t) ~ O.

It follows from (2.3) that

8t (ljJ(t)u7(t)) + L (ljJ(t)u7(t)) = ljJ'(t)u7(t),

Differentiating this equation in t and denoting 8t (t/;(t)u1(t)) = p", we get

atp" + Lp" = ljJ"(t)u7(t) + ljJ'(t)atU7(t),

p"(O) = 0, p" lao = o.
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So,

(2.8)

1'+1 (IL8,(,pu7W + r8;(,pu7W) ds

C 1'+1 (lu7l' + 18,u71') ds <

Combining (2.8) and (2.7), we ohtain

(2.9) 1'+1 tt?(s) (1I8,u7(s)lI~ +i8;u7(s)I') ds ::s: M6(t + 1).

Now we apply the operator L to both sides of equation (2.3) and get:

L2U~(t) = -atLu~(t),

Lu;lan = -ßtu~(t)lan = O.

Therefore

(2.10) 1'+1 ,p'(s)IL'u7(s)I'ds = 1'+1 ,p'(s)18, (Lu7(s)) I'ds ::s: M 6 (t + 1).

Finally, by virtue of (2.7), (2.9), and (2.10), we conclude:

In particular, the sequence {u~(s)} is compact in Hr ( Ql,r+d and {U~(3)} is compact
in H r ( Qo,r).

Now we shall prove that the sequence {u~(s)} is compact in Hr(Qo,r+l) as
weIl. According to (2.5) it is sufficient to prove that the sequence B(un(s)) =
B(un

( s), un
( s)) is precompact in L2 (0, r + 1j H). (From (2.1) it follows that the se­

quence {gn(s)} is precompact in L2 (0, r+l; H)). The sequence {un(s)} is bounded in
Hr(Qo,r+d, hence, by refining, we mayassume that un(s) --->. u(s) (n ---+ +00) weakly
in Hr(Qo,r+d. Thus, ßtun(s) --->. ßtu(s) (n ---+ +00) weakly in L2(0, r + 1; H) and
iPu(s) --->. ßOu(s) (n ---+ +00) weakly in L2 (0, r + 1; H) for any Q' = (0'1,0'2), lal~2.

Let us prove that

(2.11) B(un(s)) ---+ B(u(s)) (n ---+ +00) strongly in L2(0, r + 1; H).

By the Nicolskiy theorem (see [3])

(2.12) Hr(Qo,f+d C H:(Qo,r+d, r = (rI, r 2,r3), p = (Pl,P2,P3), q 2:: 2,

whenever

(2.13) pj/rj :::; 1 - (1/2 -1/q)(l/rl + l/r2 + l/r3), j = 1,2,3.
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Moreower, the embedding (2.12) is compact if inequalitiei in (2.13) are strict.
The values r = (r., r2, r3) = (2,2,1), P = (PI, P2, P3) = (1, 1,0), q ~ 4 suit the

conditions (2.13), since pj/rj ~ 1/2 ::; 1 - (1/2 - l/q)2,. So we conclude that

(2.14) 11 ::; IIL,(Qo.r+Jl ::; CqllvIIHr(Qo.r+Jl' i = 1,2; 2 ::; q ::; 4.

For q < 4 the embedding Hr(Qo,r+.) ce HJI.l,O)(Qo.r+.) is compact. Similarly,
taking P = (Pb P2, P3) = (0,0,0), pJ)rj = °< 1 - (1/2 - l/qd2 for any ql ~ 2, we
obtain

II v llLqt (Qo,rtd ~ C~lllvIIHr(Qo,rtd

and the embedding Hr(Qo.r+d ce Lql (Qo,r+d is compact.
Finally we get

and, by (2.14) and (2.2),

Therefore, the right-hand side of (2.15) tends to zero as n -t 00 and (2.11) is proved.
Thus, the right-hand sides of (2.5) forms a precompact set in L2 (0, r + 1; H)

and, hence, the set of solutions {u2(s)} is precompact in Hr(Qo.r+d. Consequently,
{u~(s)} is precompact in H r ( Qo,r). The sum {un(s)} of two precompact sequences
{u~(s)} and {u2(s)} is precOlnpact in Hr(Qo.r). Lemma 2.1 is proved. 0
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3 On the structure of trajectory attractors

In this section we shall describe the structure of trajectory attractors from Theorems
1.2 and 2.1 in terms of eomplete trajectories of equation 1.1, i.e. when solutions
U ( 8), 8 E R, are determined on the whole time axis R.

Let the function 90(x, 8) satisfies (1.2) and let H+ (go) be the hull of go in
L~~(R+,H). As usually, H+(go) is a complete metric space and the translation
semigroup {T(t)} aets on H+(go), T(t)H+(go) ~ H+(go), T(t) is continuous for
any t ~ O. Consider the attraetor w(H+(go)) of the semigroup {T(t)} on H+(90),

(3.1 )

(See Proposition 1.2).
Similarly to L~OC(R.r,H) and L~(R+,H) we consider spaces L~OC(R, H) and

L2(R, H) of functions on the whole axis. The space L2(R, H) has a norm: .

Consider any external force 9 E w(H+(go)). The invariance property (3.1) implies
that there is a function 9dS), gl E w(H+ (go)) such that T( 1)gl = g. Consider the
function ((8),8 ~ -1, ((8) = 91(8 + 1). Obviously, ((8) _ g(8) for 8 ~ 0, hence,
((8) is a prolongation of 9(S) on the semiaxis [-1, +00[. In such doing, there is
g'J E W(1i+(90)) such that T(I)g2 = 9I,T(2)g2 = g. Put ((8) = 92(8 + 2) for
8 ~ -2. Evidently, the function ((8) is weIl defined, sinee 92(S + 2) = 91(8 + 1)
for 8 2: -1. Continuing this process, we define ((8) = 9n(8 + n) for 8 E [-n, +00[,
where gn E w(1i+(go)) and n E N. We have defined a function ((8),8 E R, which
is a prolongation of the initi al external force ((8 ), 8 E R+. Moreover, the funet ion
((8) satisfies the following property: n+(t(s) E w(H+(90)) for any t E R, where
(t(s) = ((t + 8). Here n+ = no,oo is the restriction operator to the semiaxis R+.
Evidently, ((8) E L2(R, H) and !I(lli2(RiH) ~ 11901li2(R+;H)"

Definition 3.1 (i) A Junclion ((8) E L2(R, H) is 8aid lo be a comp/ele external
force in w(1i+(go)) iJ n+(t(8) = n+((t + 8) E w(1i+(go)), 8 E R+, for any t E R.

Cii) Let Z(go) be the set 0/ all comp/ete externat Jorces in H+(go).

As it was showed above, for any symbol 9 E W(1-l+(90)) there exist at least one
complete external force ((s) which is the prolongation of 9 for negative 8. Notice at
once, that, in general, this prolongation need not be unique.

By analogy to section 1, we introduce in the cylinder Q = n X R the space
Hr,loc(Q) = L~OC(Ri H2) n {8tv E L~OC(Rj ll)}, i.e. v(s) E Hr,loC(Q) if

IIntl,t2VII~r(Qll"2) < +00 V' [tl, t2]~ R.
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We shall use the topological spaces H;,loc( Q), H~,loc( Q), and the Banach space
Hr,a(Q) with the norm:

Ilvll~r,8(Q) = Ilvll;,a = sup IIIIt ,t+l vll~r(Qt,ttd'
tER

Let we be giyen some compiete external force ((8 ), s E R, in w (1-l+ (go) ). Consider
the equation

(3.2) atU + vLu + B(u) = ((x, t), (V, u) = 0, ulan = 0, x E fl, t E R,

Definition 3.2 The kernel JC, 0/ equation (3.~) with the complete extemal force
((8) E Z(go) is the set 0/ all solutions u(s), 8 E R, 0/ the equation (:J.~) that are
bounded in the space Hr,a(Q).

The following Theorem specifies the structure of the trajectory attractor from
Theorems 1.2 and 2.1.

Theorem 3.1 (i) Let go(8) be tr.-c. in L~~(R+,H) then the trajectory allractor

A1it (go) in H~,loc(Q+) 0/ the translat ion semigroup {T (t)} acting on JC + = K.t
t

(00)

can be represented in the fonn:

(3.3) A'Ht(oo) = AW('H+(go» = TI+ U Je, = TI+Kz(go)'

'EZ(go)

The set JeZ(go) is compact in H~·loc(Q) and it is bounded in Hr,a(Q). For any ( E
Z(go) the kernel K, is not empty. A ny /unction u(8) E K, is tr.-c. in lI~,IOC(Q).

(ii) Let 90(S) be tr.-c. in L~OC(R+,H) then the set JeZ(oo) is compact in H;,loc(Q)
and any function u( s) E K, is tr.-c. in H:,loc( Q).

The proof of Theoreln 3.1 is given in [5] and it uses the invariance property 1.6
of the trajectory attractor A1it (go) : T( t )A1it (go) = A'H+(go) Vt 2:: o.

Remark 3.1 It was 7nentioned above that, in general, the prolongation ((8) of an
external force g(s) E w('H+(go» for 8 < 0 need not be unique. Let us describe an
important case when it is unique. Let 90(S) be tr.-e. function in L2(R+; H), i.e.
the set {90(S + h) I h E R+} is preeompact in the Banach space L~(R+; H) with the
uniform norm (l.fl) and, henee, the hull 'H+(90) is compact in L2(R+; H). It ean be
proved that there exists a unique function 90(8),S E R, such that 90(05) is tr.-e. in
L2(R; H) and

l
t+1

t 190(s) - 90(s)1
2
ds ~ 0 (t ~ 00).

Therefore, W(1-l+(90» = 'H+(go). Tr.-c. Junctions in L2(Rj H) are also called al­
most periodic functions in the Stepanov sence. These Junctions meet all the main
properties of usual almost periodic funetion (in the Bohr or Bochner-A merio sence,
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see (IJ). In particular, the translat ion semigroup {T (t)} is invertible on 'H+ (go) and
'H+(go) = n+'H(go), where 'H(go) = [{go(s + h) I h E R}]L2(R;H) is a hull of the al­
most periodic funetion 90. Finally, in (3.3) Z(go) = 'H(90) and every external force
g(8) E w('H+(go)) possesses a unique prolongation for s < 0 as an almost periodie
funetion.

To condude the seetion we describe the uniform (w.r.t. 9 E 'H+(go)) attractor
A1{+ (go) for the family of processes {Ug( t, r) I t ~ r ~ O}, 9 E 'H+(go), corresponding
to the equation (1.1). By Theorem 1.1, for any 9 E 'H+ (go), one defines a process
{Ug(t,r) I t ~ r ~ O} acting on V: Ug(t,r)u-r = ug(t), where Ug(t) is a solution of
(1.1) with the ini ti al condition u It=-r = U-r l r ~ O. Now consider the set Z (go). By the
similar way, to any ( E Z(go) there corresponds a complete process {U«(t, T) I t ~
T, T ER}, Ug(t, T)U-r = u,(t), where udt) is a solution of (3.2) with the initial
condition Ult=-r = U-r, T E R. Consider the kernel !C, corresponding to (.

By !C,(t) we denote a kerne! section at time t ER: !C,(t) = {u(t) I u(.) E
!C,} c V. It is dear that

U,(t, r)!Cdr) = K'.,(t) Vt 2:: T, T E R.

Using Theorem 3.1, Corollary 2.1, and Corollary 1.2 we get

Corollary 3.1 (i) If 90(8) is tr.-c. in L~OC(R+,H) then the set

(3.4) A1{+(go) = U !C,(O)
,eZ(go)

is the uniform (w.r.t. 9 E 'H+(go)) attraetor A1{+(go) in V of the family of processes
{Ug(t, T) I t ~ T ~ O}, 9 E 'H+(go), the set A 1t+(go) is compact in V. .

(ii) If 90(8) is tr.-c. in L~~(R+,H) then the set A1{+(go) defined in (3.4) serves
as the uniform (w.r.t. 9 E 11.+(go)) attractor in Vw (with a weak topology ofV) and it
is bounded in V. In partieular, A 1i+(go) is the uniform attraetor in H l - 6 , A1{+(go) ce
Hl - 6 , 0 < 8 ::; 1.

4 Trajectory attractors für 3D N.-S. system.

In this section we shall construct a trajectory attractor for the non-autonomous
Navier-Stokes system in a 3D domain n ce R 3

. The structure of the trajectory
attractor will be described and same properties of the attractor will be given. Only
the brief general scheme will be sketched, without proofs and detailed explanations.
This part will be expounded in more detail in another publication (see also [7], [10],
[18]).

Consider 3D Navier-Stokes system in the semicylinder Q+ = n x R+ :

(4.1) atU + IILu + B(u) = g(x, t), (\7, u) = 0, ulan = 0, x E n cc R 3
, t ~ 0,
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where, x = (Xl,X2,X3), U = U(X,t) = (U 1,U2,U3),g = g(X,t) = (91,92,g3). L
is the 3D Stokes operator: Lu = -Pßu; B(u) = B(u, u), B(u, v) = P(u, V)v =
P l:~=1 Ui8xj V. The spaces Hand V are detennined similar to the 2D case. Suppose
g(x, t) E L~OC(R+, H).

Let we are given an initial external force go(x, t) E L~OC(R+, H) in (4.1). Assume
h . . Lloe (R H) - Lloe •t at go IS tr.-c. In 2,w +, = 2,w' l.e.

(4.2)

Let E = 'H+(go) =[{go(s + t) I t ~ O}]L~~(R.t,v') be a huH of the function go(s) in

the space L~~(R+,H). It can be proved that 'H+(go) is a complete metric space. The
translation semigroup {T(t)} is continuous on 'H+(go) and T(t)'H+(go) ~ 'H+(go) for
auy t ~ 0, moreower, for any 9 E 'H+(go) one has; Ilgll~ ~ lIgoll~.

Ta study the trajectory attractor of the equation (4.1) we consider the family of
these equations with various external forces 9 E 'H.+(go).

To describe a trajectory space Je: of equation (4.1) with the external force
9 we shall consider weak solutions of equation (4.1) in the space L~OC(R+;V) n
L:C(R+i H). If u(s} E L~OC(R+j V) n L:C(R+; 11) then equation (4.1) makes sence
in the distribution space D'(R+; V'), where V' is the dual space of V. This is a usual
way to define weak solutions of equation (4.1) (see [16J).

Definition 4.1 The trajectory space Je: is the union 0/ all weak solutions u(.9) E
L~OC(R+; V) n L:C(R+; H) of equalion (4-1) with the external force 9 that satisfy the
Jollowing inequality:

(4.3)
1 d
2" dt lu(t)12 +vllu(t)112 ~ (g(t), u(t)) , t E R+.

The equality (4.S) should be read as folIows: fOT any /unction 1P(s) E C~(]O, +oo[),
t/J ?:. 0,

1 r+OCJ r+ oo {+oo
(4.4)- 2" 10 lu(s)1 21P'(s)ds + v Jo 11u(s)1I 21jJ(s)ds ~ 10 (g(s),u(s))1P(s)ds.

Let us formulate the existence

Theorem 4.1 Let 9 E L~OC(R+; H) and Uo EH; then there exists a weak solution
u(s) 0/ equation (4.1) be/onging to the space L~OC(R+j V) n L:=(R+j H) such that
u(O) = Uo and u(s) satisjies the inequality (4.4).

The existence theoreln is a classical result (see [14], [15], [16], [19]). The proof
uses the Faedo-Galerkin approximations method. To get inequality (4.4) one has to
pass to the limit in the corresponding apriori equality involving the sequence {um}
of the Faedo-Galerkin approxilnations.
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(see [16]), and

Remark 4.1 Far 3D case, the uniqueness problem is still open. Also, it is not
known whether any weak solution 0/ (4.1) satisfies inequality (4.3).

It can be showed that any weak solution u(s) E L~OC(R+; V) n L:C(R+; H) of the
equation (4.1) satisfies

8:/4
-

e
u E L~OC(R+i H) Ve 0 < e < 1/4

8tu E L~/~(R+; V')

(see [20]). Consider the following space:

F~OC = L~OC(R+; V) n L:C(R+; H) n
{v I8t

1
/
4

-
e

V E L~OC(R+; V')} n {v Iatv E L~i3(R+; V')},

where c is fixed, 0 < e < 1/4. The space :F~oc is endowed with the following "weak"
convergence topology.

Definition 4.2 A sequence {vn } C F!:c converges (in a weak sense) to v E F!tc as
t -+ 00 i/ vn(s) -+ v(s) (n -+ 00) weakly in L2(tI, t2 ; V), *-weakly in Loo (tl, t2 ; H),
8tl/4-eVn(S) -+ a:/4

-
ev(s) (n -+ 00) weakly in L2(tI, t2 ; H)}, and 8tvn (s) -+ atv(s)

(n -+ 00) weakly in L4/ 3(tI, t2;V')} /or any [tb t2] c R+.

The space :F~oc with the above weak topology is denoted by e~c. We shall use
also the space

.r; = L~(R+; V) n L~(R+; H) n
{v 1Bt

1
/
4

-
e v E L~(R+;V')} n {v 18tv E L:/3(R+;V')},

that is a subspa.ce of :F!:c.lf X is a Banach space then L:(R+i X) means the subspace
of L;C(R+; X) having the finite norm

j
t+l

Ilvll~(1(R-r;x) = sup IIv(s)ll~ds.
P t?:o t

Similarly, the space L:(Rj X) has the norm

Ilvll~(1(R;X) = supI t

+
1

Ilv(s)lI~ds.
P tER t

Lemma 4.1 (i) K: E :F+. for any 9 E 1i+(go);
(ii) for any u(s) E K:

(4.5) IIT(t)u(. )11/+ ::; Gllu(. )1l1eo (o,1;H) exp( -At) + Ro Vt 2:: 0,

where A is the first f}igenvalue 0/ the operator vL; G depends on A and Ro depends
on A and 119oI112(ll.+;\/I).
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Put
JCi; = U JC:, E =1-l+(90).

gE1'i+(go)

The translation semigroup {T(t) I t 2:: O} acts on JCt :

T(t)u(s) = u(t + s), s 2:: O.

Evidently
T(t)u(s) E JC~(t)g \tu E Je:, t 2:: 0,

so, the family {Je:, 9 E 1-l+(go)} is translation-coordinated. Therefore

It is clear that every mapping T(t) is continuous in e~.

It follows frolll (4.5) that the ball Bo = lIvll.F+ ~ 2Ro serves a.s a uniformly
absorbing set of the translation semigroup {T (t)} acting on JC t. The set Bo is
bounded in ,7="+ and it is compact in 8~c.

Lemma 4.2 The family {Je:, 9 E E} is (e~, 1-l+(go))-closed and Jet. is closed in
aloe0+,

In such a way, by Leillillas 4.1 and 4.2, Proposition 1.2 is applicable.
Let w(1-l+(go)) denote the global attractor of the semigroup {T(t)} on 1-l+(go).

Here

W('H+(9o)) = Q[~T(t)'H+(90)] L\~
is an w-limit set of 1-l+(go).

Let Z(go) be the set of all cOlnplete external forces in 1-l+(go), i.e. the set of all
functions ((8),8 E R, ((8) E L~OC(R, H) such that (t E w(1-l+ (go)) for any t E R,
where (t(8) = TI+((8 + t),s 2:: O. Evidently, for any g(8) E w(1-l+(go)) there is at
least one function ( E Z(go) such that ((8) is a prolongation g(s) for negative s. To
any complete external force ( E Z(go) there corresponds the kernel JC, of equation
(4.1). The kernel Je, consists of all weak solutions u(s), s E R, of the equation

8t u + lILu + B(u) = ((x, t), t E R,

that satisfy inequali ty (4.4) and t hat are bounded in the space

r = L~(Rj V) n L~(Rj H) n
{v Ia:/4

-
ev E L~(Rj V')} n {v I8tv E L~/3(R; V')}.

Let us formulate the main
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Theorem 4.2 Let 90(s) be tr. -c. in L~~':u (R+ j 11) then the translation semigroup
{T(t)} aetin9 on K~ (E = 'H+(go)) possesses a trajeetory attractor AI; = A1{t(go)
in e~. The set A1{t(go) is bounded in:Fi- and compact in e~c. Moreower,

A1{t(go) = Aw(1{t(go)) = TI+ U K, = TI+Kz(go)'
(EZ(go)

The kerne! K, is not empty for any ( E Z(90); the set KZ(go) is bounded in :Fa
and compact in e1oc •

The detailed proof of Lemma 4.1, Lemma 4.2, and Theorem 4.2 will be given in
[5] .

Notice that the following embedding is continuous: e~ C L~OC(R+; H1- S), 0 <
8 ~ 1, so, we get

Corollary 4.1 For any set B C K+ bounded in :Fi-

dist~(O,r;Hl_6) (TIo,rT(t)B, TIo,rKz(go)) ---+ 0 (t ---+ 00),

where r is fixed and any.

In conclusion, we shall fonnulate some properties of trajectory attractors of the
Navier-Stokes system.

I) Let in (4.1) 90(X,S) = gl(X,S) + a(x,s), where 91(X,S) and a(x,s) are tr.-c.
functions in L~~':u(R+; H). Assunle that T(t)a ---+ 0 (t ---+ +00) in L~~(R+; H), Le.

(4.6) [ (a(s + t), 1/J(s)) ds --t 0 (t --t +00)

for any 'ljJ(s) E L2 (O, 1; H). Then the trajectory attractors corresponding to E ­
'H+(91 + a) and to EI = 1-l+(gd coincide:

(4.7)

In particular, if 91 =0 then A1{t(a) = A1{t(o) = {O}.
For example, the function a(x,s) = <.p(x)sin(t2 ) satisfies (4.6) for any <.p E H.

Thus more and more rapidly oscillating additional term a{s) does not effect on the
trajectory attractor. The equality (4.7) is valid as for 3D as for 2D N.-S. systems.

11) Let in (4.1) 90(X, s) = 90~(X, s) = 91 (x, s) +C92(X, s), where 9i(X, s) are tr.-c.
functions in L~~(R+; H) and kl ~ 1. Put A(c) = A1{t(gOIl)' Then A(c) is lower
semi-continuous with respect to c. r..1ore precisely. It can be proved that the ball
Bo = Ilvll:F'+ ~ R1 being a topological subspace of e~c is metrizable and in this
metric:
(4.8) disteloc (A(e),A(O)) ---+ 0 (t ---+ 00).

+
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The radius R t is big enough to provide the indusion: A(e) ~ BI for any e, leI ~ 1.
For the 2D N.-S. system (1.1) the property (4.8) is also valid with disteloc being

+
replaced by distHr,loc or by distH~,loc depending on the tL-Co dass the external force
belongs to.

111) Let ~l(PNgo) =A(N) be the trajectory attractor of the Faedü-Galerkin
approximation system of order N for the equation (4.1), where PN is the projection
ooto the finite-dimensional subspace of H spanned by the first N eigenfunctions of
the Stokes operator. Then

In other words, for any neighbourhood O(A'H+(go)) in e~ there is Nt such that
A(N) ~ O(A1-l+(go)) for any N ~ Nt.
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