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Introduction

Consider n'" ... ,nd E ~ without cornmon factor, then for

any n E ~ large enough n E r = < n" ... ,nd > the semigroup

generated by n" ... ,nd . The Frobenius's change money problem

consists to find the biggest g E~ - r in function of

n" ... ,nd · This problem has been studied fram the

cornbinatorialpoint af view and only are known the solutions

for d = 2 (Sylvester) and d = 3 (Rödseth) .In fact using

the terms of index of regularity one can remark that g is

the index of regularity of the Hilbert function.of the ring
n

1
n

dk[t , ... ,t ] and can be interpreted by using syzygies, see

[Mo], in fact the reader can see all the results in this like

one generalisation paper of the Frobenius's problem: namely

describe using cornbinatorics the syzygies of a monomial curve.

Here we give positive solutions for .affine and projec'tive

monomial curves in k 3 and ~3 respectively and an easy

criteriurn for a projective monomial curve in W3 to be

arithmetically Cohen-Macaulay in terms of its semigroup.

I thank the Max-Planck-Institut for its generous hospitality,

Monique Lejeune for her encouragement and S. Sertöz, A. özlük

to write me about this problem and G. Valla for interesting

discussions.
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§ o.

a a
do. 1 - Consider a monomial curve A = k[t 1 , ... , t ] g.iven

parametrically by X
1

a
1

, · · · , Xd

a
d this is graded= t = t a,

ring and the Hilbert function H (n) = dirn. A
" K n takes values

o or 1. Further if a 1
, •.• ,an are relatively prime, then

H(n) = 1 for all n large. The smallest nurnber g such

that H(n) = 1 for all n > g is called the index of

regularity of the Hilbert function. Then it is clear that

g is the biggest integer g ~ r where r is the semigroup

generated by a
1

, ••• ,ad . Sometimes it is called the Frobenius

number.

0.2 - Now consider A as a quotient of the weighted polynomial

where weight" (X.) = a. then as an
1 1

R-module A has a syzygies (i.e. free resolution)

Eil R[-nd _2 ,i] -+

i
-+R-+A -+ 0

and we have the relation

g :::::: max {Ud - 1 . }" - I a. ·
i ,1 i::::::1 1

Fer more about index of regularity see also [Mo].
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§ 1. Some generalities about equations and relations cf curves

1.1. - Let C a curve given parametrically in

Call P the ideal of this curve in k[X 1 , ... ,Xd ] . Consider

a E m such that (a,m) = 1 . And the curve C given parametrically

] m a a
in k[X 1 , ... 'Xd by X1 = t , X2 = 1.P 2 (t ), .. ,. 'Xd = (Pd (t ) , "call

the ideal of this curve in k[X 1 , ... ,Xd ] • Also for one element

f E k[X 1 , ••• ,Xd ] we put f the element r:= f(X~'X2, ... ,Xd)

1.1.1 - Remark. We can also replace the ring of polynornials by the

ring of convergen~ power series or the ring of formal powe~ series.

1.2 - Lemma. f E P ~ f E P . In particular if f 1 , ... ,f s is a

minimal system of generators of P, then f
1

, ... ,rs is a minimal

system of generators of P. As a consequence P is a complete

intersection if and only if Pis.

1.2.1 - Remark. The proof of all the facts in this section comes from

the following trivial claim, where R is the ring of polynomials.

Any f E R can be written as

~ ~ a-1~
f = ~O + X1I 1 + •.. + X1 ~a-1
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where f. ER.
~

1.2.2 Proof of 1.2. - By definition P (resp. P is the Kernel of

the rnorphisrn" R ---> k[t] sending X1 to t
m

and Xi to ~2(t)

(resp. X. to ~. (ta» and this proves the first assertion in
~ ~

1 .2.

<"o.J

In order to prove the second assertion, we take f E P and we

write it like in 1.2.1

then we claim that f. are such that f. E P , we replace the
~ ~

pararnetrisation of C in f but then the powers of t in

l'0 (X 1 (t) , • ~ • , Xd ( ~) ) are in a Z

1 ~ i S a-1 , this implies that

those of X~ti

f. E P for any
~

in

i ,

mi+ 0: Z

in particular

after the"first assertion in 1.2 f i E P ~ and this 1s enough to

prove the second assertion in 1.2.

1.3 Proposition. - We cons1der a syzygies of the ideal

P c k[X 1 , ... ,Xd ] then a syzygies of P is obtained by changing

X1 by x~ in any matrix syzygies of P. In particular if the

<"o.J

resolution for P 15 minimal so it is for P and the Betti

numbers of P and P are the same. If P is the ideal of a

<"o.J

monornial curve then the sh1fts in the graded syzygies af P

are obtained fram those of P.
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Proof. - 1.2 says us that if P is genera ted by f 1 , •.. ,f
s

then P 1s generated by f 1 , ••• ,ts ' that means that the

proposition is true at the first step of syzygies. Now

suppose that there is a relation

s
L gifo = 0 with gi E R

o 1 ~
~=

thenwe can use 2.1.1 to write

this implies that

+ ••• +

s s
L go 0 t. + X1 . L g1 iti +

i=1 ,1 1 ~=1'

in R = k [ X 1 " • • • , X d ]

s
L 9 1 ot. = 0

i=1 Ct 1 - ,1 1

but monomials in each sum are different from other sums because the

powers of X
1

are not in the same set. In particular we conclude

that

s .
L g. 0 r i = 0 V j in R

i=1 J,1.

s
but this implies L gOlf. = 0 in R, that means that the relations

i=1 J 1.
in the {t

1
, ••• ,fs } are generated by the relations in {f

1
, •.. ,f

s
}

just by changing X
1

by Ct
X1 •

Now if K
n

i5 the n-syzygies of P (resp. K
n

the n-syzygies of

and if we suppo5e that K
n

i5 generated by a set of generators of

Kn . just by changing X
1

by X~, then the same method apply to
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show that Kn + 1 is genera ted by Kn + 1 just by changing x 1 . by

X~ . This gives the proof of the Proposition.

1.4 Definition. - Let

cochain complex over

C = {C d} and Cl = {C' d'}q' q q' q

R . The tensor product (C @ C')

be two

is the'

cochain complex defined by

(C 0 C,)n = ~ (Ci 0 c,j)
i+j=n

with the differential n
E:

n
E --> (C (9 C 1 )n-1

i(a 0 b) ~> d. a 0 b +(-1) a @ d~ b
1 ]

The following lemma is weIl known, also it will be useful in the

next section.

1.5 Lemma. - Consider a prime ideal P in a regular ring R (here

R = k[X
1

, ••• ,X
d

] ) and suppose that we add a new variable Wand a

new equation W-~(X1, ... ,Xd) . Call P1 the ideal in

R,. :::: k[X 1 , •• ,. ,Xd,W] generated by a basis of P and W-tp(X 1 ,··· ,Xd )

Let SO be the syzygies of P over k[X
1

, ••• ,X
d

] , we also call

SO the syzygies of P over k[X
1

, ••. ,x
d

,W] . Then the syzygies

5, of P
1

is S, := SO 0 (0 --> R1e ~> R1 --> 0) where

G :::: W-~(X1'··· ,Xd ) ·
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1.6 Example. - Consider the monomial eurve given parametrieally

in the fourth dimensional space by X = t 4 , y = t 6 , Z = t 7

U = t
9

. Call p the prime ideal defining thi8 curve in

k[X,Y,z,ul . It 1s weIl known that P 18 generated by the

following elements:

a = x 3 - y2

b = xu - YZ

c = X2y - Z~

d = x2z - YU

e = Xy2 - ZU

f = y3 - u2

Let <p(X,y,Z,U) = YZ = t 13 , then after 1 . 3 and 1 .5 we ean say

that the prime ideal P of the curve given parametrically by

X = t 4a , Y = t 6a , Z = t 7et , U = t 9a , W = t
13 is generated by

P = (a,b,c,d,e,f,g = wet - Xy)

for any a natural number prime with 13.

This is a powerful method to find syzygies without cornplieated

calculations.

1.7 Exarnple 2. - Consider a rnonomial curve C in k 3 , given

pararnetrieally by X = t a , y = t
b

, Z = t
e

, a,b,e being three

natural numbers. In· order to study equations of this curve we

ean assume that a,b,e are relatively prime. Secondly by
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using 1.3 we can assurne that a,b,c are coprime two by two.

Incidentally we see that if one of the three numbers say c

belongs to the semigroup generated by a,b I then c = ma + nb I

with m,n E ~ ,and we can write Z = xmyn . 1.5 says us that

C is a complete intersection (in fact a plane curve) .
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§ 2. Monomial e~rves in k 3

2.0 - Let a,b,e € ~ such that (a,b,c) = 1 and that

k[ta,tb,tc ] be a curve C of ernbedding dimension 3. Let

R = k[X,Y,Z] with grading given by weight (X) = a , weight

(Y) = b , weight (Z) = c . After J. Herzog ([He], [K]) we

know that if k[ta,tb,tc ] is not a complete intersection,

his syzygies are like follows

0 R
2 M

R
3

R k['ta ,tb ,tc] 0~> -> -> -> ->

X l--> t a

Y'~> t b

Z 1--> t
C

Now we improve this result giving explicitely the matrix M. The

equations . of the curve C in k 3 being the 2 x 2 minors of the

matrix M. The problem to find M is in fact equivalent to the

solution of the Frobenius's c~ange money problem in dimension 3

(cf. [Rö ] ) :

Problem. - Find the biggest g € ~ who can't be written

g = cx a + ß b + Y c , wi th ct, ß, y €:N

2.1 - In order to relate both problems we introduce the Apery.

sequences. Let r be the semigroup generated by a,b,c and
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s € f , then the Apery sequence f(s) 1s by the definition

f(s) = {I E f/l - s V- r} •

2.1.1 - Remark. - Let (a,b) = d and f' = <a/d, b/d> the

semigroup generated by a/d and b/d . Suppose that

f' (a/d),. = {y b/d + zc / (y,z) E V}

then

f(a) = {y b + izc / (y,z) E V, 1~i~d} .

2.1.2 - It follows from rernark 2.1.1 that in order to descrlbe

the Apery sequence f(a) we can consider only the case where

(a,b) = 1 •

Let So be the unique integer such that

and o < So < a

put

fraction

: = a and consider the Jung-Hirzebruch continuous

s : ~ a = q1 s 0 - 51 q. ~ 2, s. ~ 0
-1 1 1

So = q2 s 1 - 52

5 = qm+1 5
rn-1 rn

and the sequences P., R. defined by
1. 1
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P-1 ;;;; 0, PO;;;; 1, P. 1 ;;;; P. Q. - P. 1 .-'-iJ"_.' -1+ 1 1 1- -

R~ =
1

s.b - P.C
1 1

a

s b-co
a

Then· {s.}
1

and are strictly decreasing sequences, P.
1

is a strictly increasing sequence of integersiRrn+1 is a

negative integer, and for any i we have siPi+1 - si+1Pi ;;;; a .

2.2 - Definition. - Let v the unique integer nurnber s.t.

R +1 :;;; 0 < Rv v

This is equivalent to saying that
S s

v+1 ~ c < ~
Pv +1 b P v

can state the nice theorem of Rödseth.

. Now we

2.3 - Theorem ([Rö]). - With the above notations, anyelement

e E f(a) can be written e;;;; yb + zc , we suppose ~hat z is

the minimal with this property and when this is the:case the

pair (y,z) is unique. Now let

B ;;;; {(y,z)/sv - sv+1 ~ Y < s ,
v o ~ z < P 1 - P }, v+ v

then f(a) ;;;; {yb + zc/(y,z) E A U B} .

And now we can describe the syzygies of a rnonornial curve C

given by X;;;; t a , y ;;;; t b , Z ;;;; t C
•
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2.4 - Theorem. - Let a,b,c three natural nurnbers if a,b

are not coprime by using 1.3 we can suppose (a,b) = 1 i

then with the above notations the matrix syzygies for the

curve C in k 3 is:

R s -sv+1X \) Y \)

s P
M Y v+1 Z

\)=
p -P -R +1

Z
\)+1 \) X \)

Moreover the curve C is a cornplete intersection if one of

is null.

Proof. - By defin~tion of the sequences

the relations

s., P., R. we have
~ ~ ~

( 1 )

(2 ) s b = R a + P c\) \) v

the third relation is a consequence of the first two. Also

we use the relation

Now by [He] p.10 it is enough to prove the following claims:

Claim I. - Pv+1c is the least multiple of c in <a,b>.
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Claim 11. - i) s b is the least multiple of b in <a,e>
\)

or ii) (R\)-Rv +1 )a 1s the least multiple of a in <b,c> •

Proof of Claim I. - Suppose that there exists y, O<y<P\)+1

such that yc E <a,b> , then (O,y) € A U B by 2.3 and

ye E f(a) , i.e. yc = Ab this contradicts the minimality

condition on the coefficient given to define A and B

(see 2. 3) •

Proof of Claim II. - Suppose that there exists y, O<y<s
v

such that yb € <a,e>, y minimal with this property by 2.3

(y,O) E A U B , and yb = AC , using the Claim I P \)+1

and we can write yb = (A-P\)+1)c + bS\)+1 + (-R\)+1)a But

yb € f(a) then -R\)+1 = 0 . If Rv +1 * 0 we get a eontra­

diction and we have proved the part i) of the Claim II. If

R
V

+1 = 0 , because y is minimal we must have 5\)+1 = 0 and

P = 0 or y = s and A = P the first relation isv+1 v+1 \)+1

impossible by definition of s. , P. . From the relation
l. 1

P S\)+1 b get that 6
c

p l' =0
b wherec = we s\)+1 = - , ,\)+1 a \J+ a

a. = (b,e) and 0 = (s\)+1' pv+1) and by ( 4 ) that

(Sv- s \)+1)0(b/a) + (P\)+1 - pv)o(e/~) = a in partieular 0

divides a. Now using (3) we obtain

o R = a , i.e. ö divides a = (b,e)v

this implies 0 = 1 by hypothesis. Now it is clear that if

ya E <b,e> then a divides y ; this implies that R av is
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the least multiple of a in <b,c> and finish the proof

of 2 4 Note that R - R -R because in this case Rv +
1

= 0 .• • v - v v+1

The last affirmation in 2.4 is clear from the description

of the matrix syzygies.

2.5 - Remark. - The results in this section are used in

[Mo-1] to construct a large series of examples where the

symbolic Rees ring ~ p(n) is noetherian.
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§ 3. Syzygies of projective monomial curves in F 3

3.0 - We consider the projective- curve given by the para­

metrisation X = ua , Y = ubta - b , Z = uCta - c , W = t a when

a,b,c are natural numbers a>b>c>O . Related with this

projective curve we have two associated affine curves putting

respectively u = 1 or t = 1

C X = ua , Y = ub z = uC

D Y = t a - b , Z = t a - c , W = t a .

Many people have studied the question of finding the

syzygies of a projective monomial curve, specially Bresinsky

and Renschuch, now using the results on section two it is

possible to give equations and syzygies in function of the

invariants introduced there. This algorithm is of special

interest in cases where computer fails because of high number

of computations. Using the algorithm in section 2 and then

Bresinsky-Renschuch [B-R] and Bresinsky [B]i computation of

syzygies needs only fourth operations on integer numbers.

3.1 proposition. - Consider the morphism ~ k[X,Y,Z,W] ~ k[u,t]

given by X = ua , Y = ubta - b , Z = uCta - c , w = t a where a>b>c

and we assurne (a,b) = 1 . The notations are those introduced

in section 2 and we put R!- = s. - P. - R. for any j . Then
] ] ] ]

the ideal Ker~ is generated by the polynomials



p
Z v+1

- 15 -

S -R -R'Y v+1 X v+1 W v+1

L R -R R'-R 1iX v V+1 w v v+1

R P S -R 1

X Vz v _ y V w v

s -s P -p
Y v v+1 z v+1 v

R' s- v-1 v-1
W y

RV - 1 Pv - 1x Z

We repeat this last group by changing v by v-1 and so on.

The process stops when we find

equation will be

s. R. P. R~
Y l. _ X l.Z l.w l.

-R~' s R. P.
instead of W l.y i_x l.Z l.

R~ ~ 0 , then the last
l.

3.1.1 - The proof is a direct consequence of Dur algorithm

described in section 2 and Bresinsky-Renschuch [B-R]. The

syzygies follows from these equations by using Bresinsky

[B ].

3.2 - In the case where (a,b) * 1 we can give the following

receapt to find the equations:
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Let A : = (a,b), and a = a/~, b = b/A . Let Si' P. , R
i be

1.

the sequences associated to a,b,c using 2.1.2. Then we

define the sequences s. , P. , R. associated to a,b,c by:
1. 1. 1.

Put Ri = si - Pi - Ri and the equations obtained with these

values in 3.1 are a minimal basis defining the curve

y = ubta - b , Z = uCta - c , w = t a '.

a
X = u ,

3 3 11 h · B -- [ua , ubta - b , uCta - c , tal. - Coro ary. - T e r1.ng is

a Cohen-Macaulay ring if and only if

the matrix syzygies is given by

R ' ~ 0 . In this case
v

. s 1y v+

p -p
Z v+1 v

s -s
y v v+1

p
Z v

-R -R "
X v+1 w v+~

Proof. - This follows from the above proposition and the

weIl known fact (see for example [S-V'] pp ..16 7) .

3.3.1 - Lemma. - Let C be a monomial curve in 3
lPk ' then

C is arithmetically Cohen-Macaulay if and only if the ideal

defining C in the ring k[X,Y,Z,W] has at most three

generators.

3.3.2 - Rernark. - Corollary 3.3 answers a question of

Stückrad and Vogel ([S-V2] p. 101); namely say when the ring

B is Cohen Macaulay in terms of a,b,c . Note also that this

corollary make superflows case i of Lemma 2 rS-V2].
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