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INTRODUCTION. As the title suggests, this paper is devoted to the description 

of the main features of the so called weighted projective spaces (shortly 

w.p.s.). A w.p.s. is a special projective scheme, which arizes as the projec­

tive spectrum of the polynomial ring over a field k, with the extra condition 

that the degrees (weights) of the variables are arbitrary positive integers. 

If Q = (qo' •••• , qr) is the set of weights, we denote bYP(Q} the associated 

w.p.s. and of course if Q ~ (1, 1, •••• , 1) we recover the usual projective 

spaces; clearly this generalization leads to a great deal of questions, but 

first of all let us try to explain what are good motivations for the study 

of such varieties. 

For, it may be interesting to give some historical hints. While the origin 

of the theory is not fixed with absolute precision, it shouldn't be far from 

the truth to say that the first time w.p.s. appear in the literature is in [Al. 

Since then a great deal of interest was put on these varieties, which are 

shown in [Mo] to be the natural ambient where some problems of complete in­

tersections have a natural solution (see Remark 1 after theorem 7.3) and which 

are fully investigate in [De], mainly in connection \.,ith the theory of duality 

and the purpose of giving good classes of Gorenstein rings. More or less at 

the same time a manuscript of Dolgachev, which was published in 1982, see (0 ] , 

provides a main source for general informations on w.p.s •• It also gives some 

generalizations to w.p.s. of classical theorems onpr, such as a version of the 

Lefschetz theorem for complete intersections and the Hodge structure on coho-

mology of weighted hypersurfaces. Since then there was a growth of interest 

on this subject from several points of view. For instance we want to mention 

(*) Members of G.N.S.A.G.A. of C.N.R., Italy. 
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the papers [e1and [D1], where w.p.s. are used as a strong tool in the classi­

fication of algebraic surfaces, and(Fu] where the problem of classifying some 

polarized manifolds with given sectional genus gets the solution in a w.p.s. 

other kind of applications are given in [R21, namely it is shown how to use 

w.p.s. in order to produce good classes of factorial and almost factorial 

rings (we refer to this paper for a more detailedexpianationof the connection 

between these algebraic properties and the theory of w.p.s.). Another recent 

source of informations is [Am1 where for instance some computations of the 

divisor class group and the Picard group ofP(Q) are given. 

Many other applications are pointed out in the text; however what is essen­

tial to say is the following: w.p.s. share withpr a lot of good properties, 

therefore if one recognizes that a projective variety is for instance a 

hypersurface or a complete intersection in a w.p.s., then he may draw a lot 

of consequences from the general theorems which are the subject of the pre-

sent paper. 

To draw an organized picture of this beautiful theory we have divided our 

paper in seven sections plus an appendix which deals with some elementary 

facts connecting reflexive sheaves and Weil divisors. The first section is 

devoted to recalling some fundamental things on the action of a finite group 

on an algebraic variety and then we explain the relationship between inva-

riants and quotient varieties. In the second section we put our attention 

on the link between the graduations on a ring A and the actions of G on 
m 

Spec(A)i this leads to the geometric notion of quasicone and a theorem of 

Flenner (see Th. 2.6) allows us to relate properties of quasicones associated 

to a graded ring A and properties of Proj(A) (see 2.7). As a special case of 

this picture we have the w.p.s. P(Q), for which the associated quasicone is 

the usual affine space, but a different g~aduation gives rise to a different 

action of G on Spec(A), hence to a different quotient. This is explained in m 
the third section, where some properties ofP(Q) are examined; for instance 
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r 
it is shown that ll? (Q) can be considered as a quotient of P by the action of a 

finite group and the associated projection is studied (see 3A.5). Moreover 

some basic cohomological properties and a technique of reduction and norma­

lization of weights are explained. Properties of the sheaves LDp(Q) (n)1 which 

first appear in section 3, are better investigated in section 4, where also 

ampleness criteria of Delorme are given. Section five is entirely devoted to 

the study of an open subsetll?o(Q) of P(Q), which was introduced by Mori and 

is, in some sense, the "true analogous" to pr. Namely on pO (Q) the sheaves 

~P(Q) (n) behave well, while in the third section it was shown that onP(Q) 

the sheaves <!J (n) have a lot of "pathologies". Section six deals with 
P(Q) 

differentials and dualizing sheaves on ll?(Q} and some ideas of Dolga-

chev and Delorme are used to give a proof that the dualizing sheaf of a com-

plete intersection X in PCQ) is where the d,'s are the 
J. 

degrees of the hypersurfaces which define X and jQj is the sum of the weights. 

In the last section we first prove a theorem which gives a full description 

of the Divisor Class Group and the Picard Group ofll?(Q); then we recall the 

weighted version, given by Mori of the classical Lefschetz theorem on comple-

te intersections and then we use it to give a generalization to w.p.s. of an 

old result of Robbiano (see [ Rl]) • 

With some exceptions the treated topics are contained in the literature, 

but we want to point out that our main purpose was that of producing a uni-

fied treatment of the theory and of providing almost everywhere full proofs 

and good connections among the various sources. Further it may be worth to 

mention that along the paper the reader can find a good deal of examples, 

remarks and questions. 

Throughout the paper, k denotes an algebraically closed field of characte-

ristic O. 

The content of this paper was the subject of several talks given b~ the 

second author in Bonn, Kaln I Bochum, Osnabruck while he was Visiting Profes-

sor at the Max-Planck-Institut Fur Mathematik (Bonn) during the winter se-

mester 1984/85. 
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§ 1. Quotient varieties by the action of a finite group. 

DEFINITION 1.1. Let 5 be a set, G a group with operation denoted by and 

identity element denoted by 1. 

A map Gx S --'» 5, (g, s) ~ gs, such that (gl -9
2

) s = gl" (g25) and 15 = 5 

for every g1' g2 ~ G, 5 E S is said to be an action of G ~ S; it is also 

said that G acts on S and if gs ~ s for every 9 ~ 1 and every S, then G is 

said to act freely on S. 

DEFINITION 1. 2 • If G is a group acting on S, the bijective map T : S --'» S, 
9 

s ~ gs, is called a translation and it is easy to see that the map 

G ~ AUt(S), 9 ~ T is a homomorphism, which gives a representation of 
9 

G inside the group Aut(S> of the permutations of S. 

DEFINITION 1.3. If G is a group acting on S, and 5 ~ S we denote by G the 
s 

set t gs ; 9 E G and we call it the orbit of s. It is clear that orbits make 

a partition on S. 

DEFINITION 1.4. Let G be a variety (not necQs:,;al"ily irn'ducihlr') which is a 

group. Then G is said to be an algebraic group if the two maps 

GxG~ G G~G 

(x, y) 1--> x'y 

are morphisms of varieties. 

DEFINITION 1.5. Let G be an algeb.raic group and X a variety. If G acts on X in such 

a way that the map G)( X ~ X is a morphism of varieties, then we say that 

G actsmor;ehically on X,or jfno confusion arises, that G acts on X. 

REMARKS. An algebraic group acts morphically on itself, hence translations 

are easily seen to be isomorphisms of varieties. Therefore alQebraic Qroues 

are non Singular. It is well-known that complete algebraic groups are commu­

tative and usually referred to as abelian Varieties. 
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DEFINITION 1.6. Let X, Y be varieties, ~: X ~ Y a morphism and G a group 

acting on both of them. Then (-¥ is said to be G-equivariant if Cf (gx) :: 

= g tp (x) for every g G G, x c: X. 

1 
EXAMPLES. (i "" (A I +), 

a 
1 

{i = (k*, -) where k* = fA -. 0'1 
m 

~m :: spec(klx]/(x
n 

- 1», Gl(n, k) =~2 - Z(D) where D is the determinant 

n+1 ~ 
of the generic n X n matrix are algebraic groups. An action of <bm on lA - to J 
is the following: (A, (xo' .... , x

n
» J----> (Axo' 

are the punctured lines through the origin. 

•••• I 7 .. x ) and the orbits 
n 

Let nOw G be a group acting on an affine variety X, whose coordinate ring 

is denoted by klx1 and assume that the translations are morphisms (this is 

automatically true if G is algebraic and acting morphically on X). 

DEFINITION t.7. We call translation of functions given by g the k-automorphism 

f I-----» f 0 T -1 
g 

LEMMA 1.8. The mal? G ~ Aut
k 

{k[X]> given by g ~ .. > -, g is a homomorphism, 

hence it induces an action of G on klX}' 

Proof. 'C (f):: f 0 T 1 = f 0 Th-1_g-l = f 0 T lOT -1 :: g·h (g-h)- h- g 

= 1:' (f 0 T 1) = 
g h-

REMARK. If we define 'C (f) to be f 0 T , then in general the map g ~ 'L 
9 g g 

is no more a homomorphism, hence it does not induce an action of G on k[X]. 

If G 1s an affine algebraic group acting (morphically) on the affine variety 

X, then an action of G on X is a morphism fA: GX X ~ X, which corresponds 

to a k-homomorphism I.f: k[ X 1 ~ k [ x] ~ k[ G] (where k[xl and k[ G] denote 

the coordinate rings of X and G respectively). 
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-1 
Now let 9 6 G and let M be the maximal ideal of k' G ~ corresponding to 9 and 

, .. 
consider the composition of the following k-homomorphisms 

-1 
It is easy to check that the composition sends f(X) to f(g X) i.e. it sends 

f to f 0 T
g
-1 = '( 9 (f). This means that <f not only has the information of 

the action of G on X, but it has also the information of the action of G on 

k[X]. 

Now we want to study the following situation: X is an affine irreducible 

variety whose coordinate ring is denoted by k[ X: and G is a finite group 

of order m acting on X in such a way that the translations are morphisms. 

As we know, the action of G on X gives rise to an action of G on k[xl which obviously 

extends to an action of G on k (X), the quotient field of k: X:. 

DEFINITION 1.9. We denote by klx)G the subring of k~XJ of the invariants 

under the action of G i.e. 

kLX)G = f f E k[XJ; gf = 't' (f) = f o T -1 = f for every 9 C. GJ 
9 9 

:: r f EO. kl x1; f is constant on the orbits ':. 
G 

In the same way, we denote by k(X) the subring of invariants of k(X). 

THEOREM 1.10. The quotient X/G has a natural structure of affine variety, 

G 
whose coordinate ring is k[X] , and whose field of rational functions is 

G 
k(X) • 

[ 
_G 

Proof. Step 1. k Xj is a finitely generated k-algebra and a domain. 

For every f E. k[X] let us consider the finite set i gf i 9 € G} == 

== t 't
g 

(f) ; g E G J i.e. the orbit of f under: the action of G 

on k[X] and denote by' <Y r (f) the elementary symmetric function of degree r 

on the mentioned orbit. If k(X] == k[X
1

, •••• , x
n
.' then denote by S the k-al 

gebra generated by <r (x.), r == 1, •••• , m; 
r l-

i :::: 1, ..... , n. 



We have the following chain 

k S S 
G 

S;; k[X} § 

Now the polynomial equations 

Tf (X-gx.) 
m 

= X -g E G 1. 

- 4 -

of inclusions 

k[xj 

<J ex ) 
m-l 

X 
1 i 

+ •••• + (-1) 
m 

<f (x.) ::= 0 
m 1. 

are satysfied by the x.'s, therefore k[X] is integral over S, hence it is a 
~ . G 

finitely generated S-module. This implies that also k[XJ is a finitely gene-

rated S-module(S isa noetherian ring), generated, say, by b
l

, •••• , b
t

• There 
G 

fore k[X] is generated over k by the ~ (X.)'S and the b 'so 
r 1. j 

[ 
. G 

Step.2. The affine variety Y corresponding to k X~ can be identified with 

the topological quotient X/G. 

The inclusion k[X1G~ klx] is a finite homomorphism, which corresponds 

to a finite surjective morphism 1r: X ----* Y. Now the diagram· 

is clearly commutative and it corresponds to the diagram 

X ~(----.:g::..-- X 

Y 

But this means that 1r is constant on the orbits hence we get a factorization 

X _--,-1f __ ~) Y 

71 
/ ~ 

/ ./ 

X/G 

Let now x, x, € X be elements with different orbits. Since G 
x 

is finite 

and x' " G , 
X 

there exists a function f E:: k [X] such that fiG = 1, f(x t
) = 

x 

... o. Let 4 denote ~m(f); then flG
x

'" 1, f(x ' ) = 0, hence 
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~(1T(x» = 1, ~( 'Tf(x'» = 0, which implies that '1! (x) :f. '1r- (x'). 

Therefore :s is injective. 

Now we have that Y can be identified with X/G as a set; but since 'It is conti-

nuous and closed (it is finite), then Y can be identified with X/G as a to-

pological space. 

G - .,G . 1G step 3. k(X) = K(k.X~} the quotient field of k X • 

The inclusion "2 is clear. 

Let alb E k(X} G and let c = 1I 'L (b). Since alb "" ac/bc = ac/ () (b) we 
grl g m 

get that ac = ac/ G' (b)' 0' (b) E k{X) G n k/"X 1 = k rx·~G and the other 
m m 

inclusion is proved. 

REMARK. If, in addition to the hypotheses of Theorem 1.10, we assume that G 

acts freely on X, then 'II' turns out to be ~ (see :: M_ p. 66). 

COROLLARY 1.11. If X is normal, then X/G is normal. 

Proof. If k[X}G denotes the integral closure of k[X]G, then we have 

krX~G = kLX] ('\ k(X)G = kIx] n k(X)G = k'X •. k{X,G = k:X .G. 

PROPOSITION - DEFINITION 1.12. The cx:clic group of order d is an algebt"aic 

sub2roup of (Ii , which is denoted bX J'Ad" In 

Proof. =d ~ Spec (k[X]/ (X
d 

- 1})~ 
r -1., d 

Namely Spec k.X, X j/(X - 1) (remember 
L. 

that k is assumed to be algebraically closed) • 

Let us now extend Theorem 1.10 to a more general situation; X denotes a 

variety (not necessarily affine),G is a finite group of order m acting on X 

in such a way that the translations are morphisms. 

As before we denote by X/G the topological quotient and by 1{ : X ~ X/G 

the canonical projection. We observe that for every open set U of X/G,. the 
-1 

translations of functions T operate on n (u), which is stable under the 
g 

action of G. Therefore G acts naturally on I I ' in the following way .* X 
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G x 

reu, 'fr* 

-1 II 
r(1I (U), 

(g, f) 

(.9 ) 
X 

(I) ) 
X 
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) 

) 

r( u, 11"* 

II 
-1 

r(lI (u), 

, ) 
X 

t (f) = f 0 T -1 
g 9 

G 
So we can talk about the sheaf of invariants ( 11* (0

x
) I meaning the sheaf 

associated to the pre sheaf defined in the following way 

THEOREM 1.13. If for everx x ~ X, the orbit G is contained in an affine 
x 

open set, then X!G has a natural structure of algebraic variety, whose struc-

ture sheaf is (ir 0 }G. 
* X 

Proof. If X is affine, the theorem is already proved (Theorem 1.10). Let now 

x E: X, and let U' be an affine open set containing G ; then U = n g u' 
x gE G 

is an open set with the following properties: 

a) it is affine as a finite intersection of affine open sets in a separated 

variety; 

b) it is stable under the action of Gi 

c) it contains G • 
x 

Then X can be covered by affine open sets U, which are G-stablej for every 

such U, 1Y (U) is open and 1f: U :::: 11 -1 ('Tr (u» ~ II"' (U) is again the 

--- G situation of Theorem 1.10; therefore (1r (0) I r (U, < ) ) is an affine va-
X 

riety; since the open sets 11 (U) cover X/G, we are done. 

REMARK. The condition that for every x e X, the finite orbit G is contained 
x 

in an affine open set is, for instance, satysfied if X is projective. 

REMARK. In 
-1 

Definition 1.7 it is essential to use g in order to get an 

action (Lemma 1.8). However if G is commutative it is possible to use g and 

then to define the action in the following way: (g, f) ~ f 0 T • We shall 
g 

say that this is the natural action of G on k[X]. 

Since in the following we are going to use commutative groups, we shall mainly 

use the natural action. 
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EXAMPLE. Let us consider the natural action of 

lowing morphism 

defined by ~(X) = Xt, tp<y} = yt. 

We get the following action of ,lAd on k[X, y"; 

2 
'lIon lA given by the fol­

d 

( C; , X) ~ ( X, ( £. ,Y) ~ E: y, 

th 
(here £. denotes a primitive d- root of unity) and we get the following 

action on .Ai. 
2 

£. , (x I Y }) ~ ( £. x , E. y ) 
o 0 0 0 

The orbit of (x t Y ) is 
o 0" 

the subring of invariants 

[ 
i i 

((x, €'Y), o 0 

k[X, yfd is the 

i :: 0, 

subring 

..... , 1 d - 1 ,. Therefore 
.I 

i 
£ y ) = f(x , y ) 
000 

,- d d-l 
for every i" :: k Lx I X Y, 
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§ 2. Graded rings • 

Let A be a finitely generated k-algebra and denote by ~ the· set of the 

;E.-graduations of A and by et the set of the actions of G on Spec (A) • 
m 

PROPOSITION 2.1. There is a natural injective application of ( in ((l 

Proof. An ac.tion of ~ on Spec (A) corresponds to a k-homomorphism 
III 

Let A '" k[ x 0' •••• , x r]1 where t Xo 1 .... , x r} is a minimal set of homogeneous 

generators of A of degrees qo' •••• , qr respectively. Then, to the given gra­

duation we may associate the k-homomorphism 

deg : A ~ A [XI X -1 ] 

xi~ xi x
qi 

REMARK. There is also a converse to proposition 2.1. (see [EGA]II .p.167). 

7l-graduation Let us now study the action of G on A corresponding to a 
III 

of A. A point of G corresponds to a maximal ideal (X - t), t 
m 

t- 0 of k[X, x- i
]. 

We consider the composition 

whence we deduce the natural (see the remark at the end of § 1) action of G 

on A 

a: X A ~ A 
III 

(t , x.) ~ tqix 
l. i 

To get the action of a: on V = Max(A) c: 
m 

n+1 
Is. , let t € G and 

m 
m 

p = (a , •••• , a ) € V to P it corresponds the maximal ideal M = o r p 

= (x - a , •••• , x - a ) and it is easy to see that o 0 r r 

-1 f (M) = M • where 
p p 

m 
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.... , tqra ). Therefore the action of 
r 

this way 

~ XV ~ V 
m 

and the orbit of p is given parametrically by 

= tqoa
o 

t " 0 
= tqra 

r 

hence it is a monomial curve. 

~ on V is defined in 
m 

LEMMA 2.2. 
Q; 

The subring of invariants A m coincides with AO' 

Proof. Let a = L.a (£ Abean invariant. 
d 

Then a = ta = L: tda
d

i hence 

Lad (t d - 1) = 0 which implies ad (t d - 1) = 0 for every t €. k* and we con-

elude. 

LEMMA 2.3. ~ l xo' •••• , x r } be a minimal set of homo5/eneous genera tors 

of the graded ring A, of degrees qO" ••• _, qr respectively and assume that 

some of the q, 's are positive. Then the following conditions are equivalent 
1. 

a) deg xi > 0 

b) deg x ~ 0 , 
i 

i = 0, •••• , r 

i = a, .... , r and ::= k 

c) r+l 
The closures of the orbits in~ only meet at the ori5/in. 

Proof. The equivalence a) and b) is clear. 

a) ~ c) If p is the origin, then the orbit is the origin. The other orbits 

have no common points and they are punctured monomial curves; therefore their 

closures 'pass through the origin. 

c) =-=9a) If some q, = 0, then the orbit of the point (0, •••• , a. , •••• , 0) 
1. 1. 

is contained in the hyperplane Xi - a
i 

= 0, hence it closure does not pass 
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th 
through the origin, unless all the points of V have i- coordinate 0; but 

this means that x can be dropped from the set of generators of A. If some 
i 

qi < 0, then it is again clear from the parametric equations of the orbits 

that the origin is not in the closure, unless all the points of V have i-
th 

coordina te O. 

DEFINITION 2.4. Let A be as in Lemma 2.3 and V = Spec(A). Then V is said 

to be a 9?asicone if it satysfies the equivalent conditions of Lemma 2.3. 

Therefore the quasicones are the closed subschemes of the affine spaces, 

which are invariant under the action of GO corresponding to a "positive de­
m 

gree". As we have seen, if V is a quasicone associate to a ring A, the "de-

green action of IS on A induces an action of IS on V, which is described by 
m m 

It: xV ~ V 
m 

o < q. = deg x • 
~ i 

If all the q.'s are 1 then the quasicone is an ordinary cone. 
l. 

NOW, let us take a homogeneous element f€ Ad; it is clear that the gra­

duation of A can be extended in a natural way, by extending the action of 

G
m 

on Spec (A
f

) I 

s s n-ds 
a If t-----7 (a If ) . X 

n n 
a; 

By Lemma 2.2 we have A m = A • Now let us denote by V* the punctured qua-
f (f) 

sicone V -( 0 } and by 1\ V* ~ Proj(A) the canonical projection; since 

1T is locally described by the canonical inclusions A(f) ~ Af and since 

It:m = Af ' we can write 

Proj CA) ~ V* IG.I 
III 

and say that Proj(A) is the geometric quotient of V* under the action of It: 
III 

(for a complete theory see \Ml1). .. -
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But of course, being ~ infinite, we cannot use Theorems 1.10, 1.13 directly; 
m 

the~efore W~ mu~t push our investigation a little further. 

The graduation on A induces an action of 'u on Spec(A) in the following 
.. d 

natural way 

n 
a e A 

n n ~--------------------------------------~) a x n 

Therefore, arguing as in the example at the end of § 1, we obtain that the 

natural action of .. 'I'
d 

on A is given by 

(Era) 1---) 
n 

n 
(. a 

n 

LEMMA 2.5. The subring of invariants AJAd coincides with e A d' 
--~------~-~~~--~~~~ n n 

Proof. The inclusion e A c: AJUd is trivial. Let a = 
n nd-

,-
J a be an inva­

m m 

riant element; then (P~, a) ~ L a (. m = 
m m 

. a • Then a (1 - e. m, ::= 0 
m m m 

for every m and every [ e jUdI if am ! 0, m must be divisible by the order 

of every element of jQ and we are done. 
.. d 

So let us go on with our investigation. If f ,'." Ad' thf' ideal (f - 1) is an 

invariant ideal hence we get a homomorphism 

[ 
-1 d 

{I) A/(f - 1) ~ A/(f - 1) x, X ]/(X - 1) 

which gives rise to an action of JUd on Spec(A/(f - 1)} which can be 

[ 
-1·, 

extended to an action of ? d on Spec (AI (f - 1) u, u .~) (where u is an 

indeterminate of degree I}, by putting 

(2) A/(f - I)[U, u-
1
] ~ A/{f - 1)[U, 

II /I 
Aft u-I

] ~ A[u 1 u-1][x t 

-1 
U r--- ~ ux 

_ n 

l't I--"-~ a x n n 
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r -1] Let us now study the subring of invariants of AI (f - 1) and AI (f - 1) :... u, u 

with respect to the action of )}Ad given by (1) and (2); for, let us consider 

the homomorphisms 

01. : A(f) ----+ A/(f - 1) = A 

s 
a / f t-I --'3') a 

n n 
(sd = n) 

s n-sd 
a /f I .... -~) a u 

n n 

lIilere ~ is clearly an extension of c( • Then we have the following 

'l'BEOREK 2.6. (Flenner) 

a) 0( , ~ are injective . , 
b} A = A/(f - 1)Pd 

(f) 
(via (1) and ~ ); 

c) Af .,. (AI (f - 1)[ u, u -1] )Pd (via (2) and )3 ); 

d) ~ is ~tale. 

Proof. a) is clear and b) follows from c). 

c) It is easy to see that it is sufficient to take in account the elements 

n r -r 
a x u x 

n 

a ur xn - r and this is possible iff n - r = ). d iff r = n - ).. d iff 
n 

r 
a u = 

n 

d) See [F] lemma 2.1. I lemma 2.2. 

REMARK. It is important to note that, while p is 4§tale oC need not be SUCh; 

namely it may happen that A/(f - 1) is non singular and A(f) is singular. 

For, let A ... k[ xo' Xi' x2 ] with qo '" ql .. 1, q2 .. 2 (qi '" deq Xi) and f '" x2 • 

= 
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Then A If) C! A (2)lf) = k[ X~' XOX1 , X~, X21 (X

2

) <t. k [i, xy, iJ; on the other 

hand A/{f - 1) ~ k[xOI Xl}. 

COROLLARY 2.7. Let V be the quasicone associated to a graded ring A and let 

V* = V -to}. !f V* has one of the followins properties: irreducible, normal, 

Cohen-Macaulay, rational singularities, then Proj{A) has the same property. 

Moreover I if V* is non singular I then Proj (Al has only cyclic. quotient sinsula­

rities. 

Proof. It is a consequence of Theorem 2.6 and standard results which say 

that all these properties are stable under extending by ~tale morphisms, su£ 

pressing indeterminates, taking quotients modulo the action of finite groups. 

Therefore if Af has one of those properties, A(f) has the same property. 

COROLLARY 2.8. ~ V be the g?asicone associated to a sraded rins A, 2:=:: 
V* = V - t 03 and assume dim V = 2. If V* is non singular, then proj (A) is a 

non singular curve. 

Proof. Proj(A) is I-dimensional and normal by Corollary 2.7. 
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§ 3. The wei2hted projective space. 

Let Q = (qo' •••• , qr) be a r + 1 - uple of positive integers, denote by 

\Q'the integer L.qi and by S(Q) the polynomial ring k[TOI •••• , Trl graded 

by deg Ti '" qi" 

DEFINITION 3.1. We denote byP(Q) the scheme Proj(S(Q» and we call it the 

weishted projective space (w.p.s.) of type Q. 

r+1 {} Let U = A - to'" Spec (S (Q» - 1 m 1 be the punctured quasicone and 

denote, a$ usual, by D+ (T i) the standard affine open set Spec S.(.Q) (T
i

) of 

P(2). If SeQ) (n) means, as usual, the S(Q)-graded module which is defined 
~ 

by S(Q)(n) = seQ) we denote by ~ (n) the sheaf S(Q) (n). 
. t n+t P(Q) 

If f is a homogeneous element of seQ), we may consider the natural k-linear 

map 

seQ) ~ S(Q)(n) 
n (f) 

a 
n 

which yields jinatural k-linear map 

o 
o(n : S(Q)n ~ B (P(Q), t?P(Q) (n», 

the so called Serre homomorEhism. 

r 
We shall denote by P the usual projective space i.e. P(Q) where 

QlIC (1, 1, •••• ,1). 

3A. First ,J?roperties of P(Q). 

'l'BEOREM lA.l. '!'he w.e.s.p(Q) has the followingproJ?!rties : 

a) IP (2) is the qeometri,c quotient of U modulo the action of.. 'liven by the 
. III 

'1raduat1on of SeQ) • 
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" b) D+ (Ti ) l:!... isomorphic to ViI J4qi ~ Vi = Spec (k[TO' .... , T
i

, 

•••• , Trl)· 
c) P(Q)!!... irreducible, normal, Cohen-Macaulay (C - M), and their singu­

larities are cyclic suotient singularities hence they are rational. 

d) P(Q) is isomorphic to prj jAAQ where fQ = Jrqo x •••• XJPqr and the cano­

nical projection 11: pr ~ P(Q} corresponds to the canonical homomorphism 

S{Q)::: k[XoqO, •••• , xr
qr

] ~ S :: k[XoI •••• , Xr} 

Proof. a) See the discussion following Definition 2.4. 

b) Follows from Theorem 2.6 and the fact that 

k[TO' •••• , Ti' •••• , Tr]J(Ti - 1) ~ k[TO' •••• , .ri , •••• , TrJ 
c) Follows from Corollary 2.7. 

d) Consider the action of ~Q on S given in the following way: if £i is 
th 

a qi root of unity we define 

JA
Q 

X S ~ S 

by « [.0' •••• , E. r ), f(XO' •••• , Xr )} ~ f( (OXo' .•.. , f. X ). r r 

Then the subring of invariants is easily seen to be k[XoqO, •••• , x
r
qr] 

and if we extend the action to S(x.)' then the subring of invariants is 
l. 

k[XOqO, •••• , X qrl .• Since k[XoqO, •••• , xrqrJ is equivariantly 
r J(X

i 
ql.) 

isomorphic to S (Q)., we are done. 

COROLLARY 3A.2. 
r 

The corresp?nding morphism to 11' : P --7 P{Q) between 

the associated suasicones is p : Ar +l ~~r+l; it is given b~ the inclu­

sion 

i .. 0, •••• , r. 
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Proof. It follows directly' from the preceding theorem. 

LEMMA 3A.3. ~ a be a positive intege~ Q' = (ago' •••• , a q
r
). Then th§re 

is a natural isomorphism P (Q) ~ P (Q') • 

Proof. There is an obvious natural graded isomorphism between 5(Q') ta} and 

seQ), whence one gets 

P(QI):; Proj S(Q')"" proj\S{Q,)(a~;:;;< proj S(Q) =lP(Q) 

PROPOSITION 3A.4. 
r 

a) If Q :; (a, a, •••• , a),a ). 1 then 'it': P ---+ P(Q) 

is flat. 

b) If there exists a pair of indexes i, j such that q. # q. and if H. 
~ J ~ 

r 
denotes the hyperElane Xi == 0 ~p , ~ 1r is not flat and if G.e.D • 

•••• , q ) = 1 the ramification locus R has the following property: 
r 

i ~qi > 1 8 i 5~. ~ 'i 8 i 

c) '1'\' is ~tale if and onlx: if it is the identitz maE and if and onlz if 

Q.- (1, •••• , 1). 

r 
Proof. a) Under the assumption that Q "" (a, a, •••• , a), P (Q) :;: P by Lemma 

3A.3, hence 1r is a finite morphism between regular schemes, hence it is flat 

(see for instance [8] 10.9, p. 276). 
r 

b) We use again the fact that the action of JA
Q 

on P j s gi ven by the map 

r 
)AQ~P 

r 
~p 

£ x ) 
r r 

To prove that 1( is not flat, if qi # qj for some i # j, we need knowing 

that in this case P{Q) 1s singular (this will be proved later, see Prop. 4A.6, c» 

and then we use the following standard fact of local algebra : .. if 

Cf: A ~ B is a local homomorphism of local rings, such that If is flat 

and B is regular, then A is regular (see (Na), p. 155). 

If P - (xO' •••• I Xr ), g • ( EO' •••• , £r)' E ~i - 1 then there exist 

£1 ~ 1, i-a, •••• , r with 
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= 1 

iff there exist £i i 1 with ( £.0( - C.~) Xo( xr.. :; 0 for every c< , (> • 

Now, if all the Xi's are different from zero, then £0( '" E.f?>;: €.. for every 

of , {> ; but then £. qi :;: 1 for every i and since G.e.D. (qo' •••• , qr) = 1 t 

e::::; 1. So we have proved that the generic fiber has ql x •••• )( qr points and 

R C;;; l.J H .• 
J. J. 

th 
if now Xi = 0 and qi > I, let £ be a qi root of unity different from 1 

and let g'" (I, •••• , 1, e: , •••• , 1). Of course gp = P, hence .U > I H. G R. 
J., q1. J. 

r 
c) By arguing as in b) one can easily see that in case a} R = i~ 0 Hi if 

a > 1 and of course R = ¢ if a :::; 1. So the conclusion follows. 

REMARK. The interpretation of JP(Q) given by Theorem 3A.l.a) shows that, while 
r 

P is obtained by qu~tienting U with respect to the partition given by the 

straight lines through the origin, P(Q} is obtained by quotienting U with 

respect to the partition given by the monoidal curves of parametric equations 

.... , q 
x :;: a t r 

r r 

EXAMPLES. 1) Let Q:;: (1, •••• , 1, n), n i 1. ThenP(Q) can be identified 

with the cone xr of vertex (0, •••• , 0, 1) which projects the Veronese variety 
n 

v oPr
-

1
). Namely there are canonical isomorphisms 

n 
(n) 

P{1, •••• , 1, n):; proj(S(Q})-" Proj(S{Q) )~ 

~ proHk[TOI •••• , Tr_1
1(n'[Trl> = r 

X • 
n 

2) As in the example 1) it easy to see that if Q :; (1, •••• , 1, n, n), nil, 

thenP{Q) Can be identified with the cone, whose 

given by Xo ::; ••.• == x = 0 and projecting the 
r-2 

vertex is the line inpr 
r-2 Veronese variety v (lP ) • 

n 

3) Let Q • (I, Ql' •••• , qr): qi > 1, i == 

r-l 

1, •••• , n. ThenPlQ) can be 

thought of as a compactification of .JA , given by adj oiningP(Ql' •••• , q ). 
r 
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r ql qr] 
S(Q)(T

O
) = k Tl/TO ' •••• , Tr/TO 

whence D+(T
O

) ~ A
r 

and of coursep(Q) - D+(T
O

) coincides withP(ql' •••• , 

4) Let us consider 
r 

the action of JAQ on P described in theorem 3A.l, d); 

q ). 
r 

let m = l.c.m.(qo' •••• , q ), a ~ N+and let at. , •••• , Cl( be positive integers such 
r 0 r 

that oCiqi = am. Let F be the weighted hypersurface ofP(Q) given by the 

equation (holOOgeneous of degree am). 

po : L.... 
i 

c:(i 
T '" 0 

i 

and let 'F be the hypersurface of pr given by the equation 

'Fo!:.xam=o 
o i i 

rJ 

Of course F is invariant under the action of I)JQ and it is clear that F is the 
....., 

quotient of F under the action of ]A Q' 

REMARK. If we assume that (qi' qj) m 1 for every i, j, i ~ j, then of course 

m = -rfqi and the Chinese Remainder Theorem gives an isomorphism 

7Zm~ ~ ., •••• • Zqr· Moreover one gets an isomorphism of algebraic groups 

which is described by the isomorphism 

t 

therefore the action of 

m/qo ... t m/qr 
t 8 ...... .... 

r 
JJ on P described in 'I'heorem 3A.l, d) can be 
r'Q . 

expressed in the following way 

r 
Pm x P ) 

where (. is a primitive 1ft th root of 1. 

r 
p 

For instance if Q. (2, 3, 5), m - 30 and we have the above described action 
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2 
of III on JP • The quotient is P(2, 3, 5); if moreover F is the curve of '-30 

p2 of equation x30 + y30 + z30 = 0, it is invariant under the action of 

JM- 30 and its quotient is the weighted curve of JP(2, 3, 5) of equation 

3 B. structure and homological eroperties of the erOjectin~ quasicones. 

t.et now A be a finitely generated k-algebra and let ito' •••• , tr3 be 

q • 
r 

a minimal set of homogeneous generators of positive degrees qo' •••• , 

Then of course there exists a homogeneous ideal ~ of S{Q) such that 

A~ S(Q)/~ • Write X = proj(A) and denote by p the canonical projection 

r+l { -1 
P : U = A - to 1 ~ JP(Q}, by C

x 
the inverse image p (X). 

If ~CX is the sheaf of ideals defining the embedding of Cx in U and if i 

r+l 
is the embedding of U inA I we get the following commutative diagram 

X ( 
)- P(Q) 

t t p 
C 

, 
IJ> U 

X 

1 i 1 
c+ < ~ JAr +1 

X 

+ r+l 
where C is the schematic closure of C inA 

X X 

p. 92). 

i.e. = ~c+ (see [a], x 

DEFINITION 3B.1. We say that C+ is the erojecting 3uasicone of X inP(Q). 
X 

Notation: in the following we denote as usual by ---S(2) (n) • 

~JP(Q)(n) the sheaf 

LEMMA 3B.2 a) There is a canonical isomorphism of schemes 
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b) The maps p*, p* are isomorphisms between the sheaves 

m ~ )(n), which are inverse to each other. 
nt:..7Z P{Q 

(~ and u--

o 
c) The Serre homomorphism seQ) ~ ~ H OP(Q), t0

P
(Q) (n» is a graded iso-

morphism. 

d) If ~(n) is the kernel of the morphism of schemes 

then 

(!J (n) 
X 

o 
e) If I is the ideal of seQ) corresponding to m H (P(Q), -~ (n», via the Serre 

n 
isomorphism, then -J c+ ::; Ii 

-- X 
f) I is a saturated ideal, hence depth(S(Q)/I) ~ 1. 

Proof. a), b) For every i = 0, •••• , r there is a canonical isomorphism 

1& seQ) (n) (T-) 
n E Z l. 

Since p is locally defined from the inclusion 

and since 

U :z y Spec (S (Q) T
i

) 

we get the conclusions. 
r+1 

c) Since JA clearly ver if ies the property S 2 of Serre, \-/0 get 

r+l r (U, (?u) ~ r (A , ~r+l) == seQ) 

Combining with a) we are done. 

d) We have the following exact sequence 

o ~ 19 J:j (n) ~ 19 <2 (n) --T 19 (9 (n) ~ 0 
n E 7J. n ~ 7l. P (Q) n 6. 71,. X 

By using the isomorphism of a) one gets that • (l(n) is the sheaf of 
nE7L 

-1 
ideals defining the inclusion of p (X) in U. Therefore 

h( e 'J~n» .. 1* ~ 1 .. ~ + 
nEll. p- (X) Cx 
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l-

e) We use the Serre isomorphism to identify i*( $ _~ (n» with the sheaf 
n t- /Z 

associated to a well defined ideal I of seQ). Therefore 

I := ° r+l ° H (fA , i*( In ~j (n» = H (JP{Q) I 
n .: Z 

= 6) HOcp(Q), ~ (n». 
n~7L. 

f) Follows from the preceding description. 

$ 
n· 

" (n» "" 

DEFINITION 3B.3. We say that I is the ideal of the projecting quasicone c
x
+' 

with respect to the inclusion XC P (Q) • 

PROPOSITION 3B.4. ~ XC P{Q} be a closed subscheme, C + its projecting 
X 

$luasicone, I C seQ) the ideal of C +. Then 
X 

a) There is a canonical injective graded homomorghism 

° d.; seQ) II ~ $ H (X, tDx (n» 
nEZ 

i 
b) .!!. depth(S (Q) II) = t > 1 then 0\ is an isomorphism and H (X, \Yx (n» = (0) 

for every n if ° ~ i ~ t - 2. 

c).!!.X =P(Q), then HiCP(Q), <.9
P

(Q) <n» =(O)for every n if i"l 0, rand 

Hr(Il?(Q), <'?P(Q) (n» ~ S(Q)_n_IQI 

proof. We consider the standard exact sequence of local cohomology 

and the isomorphisms 

i i-1 If) 
Htl'f1l \ (S (Q) II) ~ H (Cx' VCX) for i > 1 

(see for instance [H], p. 212, 217). Since depth(S(Q)/I)=t> lbyLemma3B.2.f) one gets 

o H(rrn.} (S(Q) II) == (0). Reasoning as in 3B.2, we have an i!;omorphism of sheaves 

C9c -::;::; e "TJ 19 (n). So we get a). 
X n € "'" X 

i i 
If t > 1, H\II'tq (S(Q)/I) =(0), i < t, hence H (Cx ' t9cx ) =CO), i = 0, ••• _, t - 2. 



- 22 -

This proves b) and the first part of c) since if X = P(Q) one has t ~ r + 1. 

For the second part of c) see [DJ, 1.41. 

DEFINITION 3B.5. If X is a closed subscheme ofP(Q), we say that X is quasi­

smooth with respect to the inclusion X~P(Q) if the projecting quasicone 

C + is smooth outside the vertex. 
X 

REMARK. If XCP(Q) is quasismooth, then the only possible singularities 

of X are cyclic quotient singularities. This comes directly from 2.7. 

3C. Reduction of the weights 

We have already seen (see 3A.3) that if Q' = (aq , •••• , aq ), then o r 

P(Q') SI! P(Q). Now we can say a little more 

PROPOSITION 3C.1. If v : JP(Q'} ,...,) P(Q) is the isomorphism described in 3A.3, 

then 

v* 0p (Q) (n) = ~(Q') (an) 

<"?P(Q) (n) == (S (Q) (n»""" ~ (S(Q') (a) (n»""" -;: 
......, 

(S{Q') (an» Proof. 

= 

DEFINITION 3c.2. If G.C.D.(qO' •••• , qr) = 1 we say that Q is reduced. 

After 3C.l we may assume that Q is reduced and we fix the following nota-

tions 

d. = G.e.D. (qo' · .. ., , q. l' qi+l' .... , qr ) ~ lo-

a = l.c.m. (dO' · . ., .. , d. l' d. l' d ) 
i 1.- ~+ 

., ... , 
r 

a == l.e.m. (dO' · ... , d ) . 
r 

LEMMA 3C.3. The followin2 relations hold 
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a) ail q
i 

for i :; 0, • ••• I r' , ( It I " means "divides") 

b) (qi' d, ) = 1 for i ::: 0, · ... , r; 
l. 

c) (d, , d, ) ::: 1 for j :f ii 
J l. 

d) (a, , d, ) = 1 
l. l. 

for i ::: 0, · ... , r' I 

e) a,d. := a for i = 0, · ... , r; 
l. 1. 

f) d.la. for 
J 1. 

j =I i. 

Proof. Easy exercise. 

Therefore we may associate to Q the new r + 1 - ple 

LEMMA - DEFINITION 3C.4. The following conditions are equivalent 

a) d.::: 1 for every i :; 0, •••• , ri 
l. 

b) Q::: ~. (in this case we say that Q is normalized), 

In particular, for every given reducp.d Q, ~ is normalized i.e. Q ::: Q. 

Proof. a) ~b) Clear. 

To prove that ~ ::: Q we have to show that 

G.C.D·(qO/aO' •••• , qi-l/a i-l' qi+l/a i+l' •••• , qr/ar) ::: 1. 

Since the G.C.D. of the numerators is d. , it is sufficient to show that d 
1. i 

divides the denominators. But this is exactly 3C.3.f). 

PROPOSITION 3C.S. There exists a natural isomorphism of F(Q) andF{Q}. 

Proof. Let S· be the graded subring of seQ) defined by 

Sf = 6) seQ) 
nEll an 

It is well known that Proj SI = Proj seQ). We are going to show that 

q.d. 
1. 1. 

= q.a.d./a. 
1. 1. 1. 1. 

:::: aq./a. by 
1. 1. 
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3C.3. el, and q fa is an integer by 3C.3.a). 
f i 

So 5 
Conversely if a monomial TO •••• Tr r belongs to S', then soqo + •••• 

+ 5 q 
r r 

:= A a, whence 

5.q. :: - L Sjqj + ).. aid
i

, 
l. 1. j :I t 

But d Iq. if i # j hence s.q. t Cdt). Since (q., d.) = 1 this implies that 
i] 1.1. 1. 1. 

51.' e (d.). In conclusion S' ~ seQ') where Q' = (a q fa , .... , aq fa ) hence 
1. 0 0 r r 

Proj (5') ~ Proj (S{~» by 3A.3 and we are done. 

= (6, 10, 15), Q := (1,1,1). 

COROLLARY 3C.6 
1 

For everr Q == (qo' ql) there is an isomorphism lP(Q) ,~ P • 

Proof. We may assume Q to be reduced. Then (dO' d 1' :: {ql' qO}i 

Now we recall that (q., d.> ~ 1, therefore for every integer n we may write 
1. 1. 

n :: bi(n)qi + Ci(n)d
i 

where b. (n), c.(n) are uniquely determined by the condition 
1. l. 

o " b. (n) " d 
1. i 

In this way to every n we have associated two integers b. (n), c. (n). 
l. 1. 

r 

PROPOSITION 3C.7. a) The number tf (n) = (n - iZ:;J Obi (n) qi )fa is an integer; 

r 

b) There is an isoIlX)rphism of sheaves <9
P

(Q) (n) =:;, C>]p(Q) (n - i0
0 

b i (n)ql) 

and the isomorphlsm P(Q) ~ p(Q) :?!. 3C.S induces an isomorphism of sheaves 

<"?P(Q) (n) ~ C9p (Q) ( tf tn» 

Proof. a) It is sufficient to show that n - ~ b
i 

(n)qi is a multiple of d
j 
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for every j = 0, ••.• , r. Now n - Lb.(n)q. = n - b.(n)q. -z:.b.<n)q. = 
~ 1. ) J ir j 1. 1. 

c.{n)d. -L.. b.(n)q.; but d.lq. if j:-J i and the conclusion follows. 
J J i:-Jj l. 1. J 1. 

b) Let us show that a monomial TOSO •••• 

b· (n) 
by T. l. • Namely the relation 

l. 

T sr of degree n + hd. is divided 
r 1. 

implies that n = s,q, + A d. since d.lq., j :-J i. 
1. 3. 3. J 3. 

By definition of b (n) it follows that s. ~ b (n). Therefore, if p is a 
i 3. i 

multiple of a, it is also a multiple of every d. , whence a monomial of 
1 

bO(n) b (n) 
degree n + p is a multiple of T " •• T r • Therefore o r 

leD bo(n) b (n) .-. €S/ (S(Q) (n» = \J:} (T • '" T r ) StQ) (n - ,_ b. (n)q.) 
p, a p p p, a/p 0 r 3. 3. P 

and this equality between S' = e seQ) -graded modules induces an isomorphism 
n an 

between 

(remember thatP{Q) = Proj S'}. But we have alr03uy seen (see JC.S) that 

(a) - - f S' == S(Q>, hence in the isomorphism P(Q) =::. P(Q), the shea 

l?JP{Q) (n - L hi (n)qi) corresponds to <2
pm

) ( if (n). 

3D. Examples and pathologies. 

1. 
o 

It may happen that H (lI? (Q), <9p (Qll» = (OJ and it happens exactly if qi > 1, 

i .. 0, •••• , r. 

This follows from 3B.2c). 

2. It may happen that cDJP (Q) (n) -::: c9JP (Q) (n' ) I n "I n·. 

For example if Q =(2,4, 5), n = 5, (dO' d
1

, d
2

) = (1, 1, 2) and let us 
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5 '" 0 . 2 + 5 . 1; 5 '" 0 4 + 5 • 1; 5 1 . 5 + 0 . :.: 

b
1

(S) == 0, and 

after 3C.7 .b) • 

REMARK. If Q = Q this pathology does not occur because d 
i 

hence b (n) = 0, i = 0, •••• , r. 
i 

1, i 

3. Even if Q '" Q it may happen that cJP(Q) (n) is not invertible. 

For example let Q '" (1, 1, L) and consider the open set D+{T
2

>. Then 

r(D+(T2 ), <.9P (Q)(1» "" S(Q)(1)(T
2

) ::OL a/'S. a EO: S(Q)2h+t}' 

0, •••. , r 

It is easy to see that S(Q) (1)( is minimally generated over SCQ)(T ) by 
T2 ) 2 

TO' T1 and it is not free as the following relation shows 

2 
T1 /T2 • TO - TOT1/T2 . Tl = O. 

It may be worthwhile to observe that in the case Q ~ (1, 1, 1) the module 

S(Q)(1) (T ) is minimally generated over SeQ) by T
2

• 
2 (T

2
) -

4. A sheaf c? ( (n), n > 0, may be invertible but not ample. 
P Q) 

1 
For example, let Q "" (3, 5); then Q '" (1, 1) and the isomorphism P(Q) ~ P 

induces an isomorphism of sheaves l? (n):::: c.' 1 ( '.I \n» by JC.7. So let 
P(Q) P 

n = 'l.; then t.f (2) "" -1, hence <'?P(Q) (2) ';;;# c.?p 1 (-1) which is invertible but 

not ample. 

5. The canonical homomorphism 

<'?P(Q) (n) • c..?P(Q) (m) ~ <"?P(Q) (n + m) 

may be not an isomorphism. 
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For, let Q = (2, 3); the isomorphismJP(Q)~ plYields the following isomorphisms 

of sheaves (see 3C.7) 

( t..) """ fr. (1) 
lP (Q) v = \JlP l • 
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§4. properties of the sheaves rn (n) _ Vp(Q) • 

We have just seen that the behavior of the sheaves (0 (n) is not the 
P(Q) 

same as in the usual projective space, so that we are led to analize the si-

tuation in a more accurate way. 

4A. sections of c2 ) (n) over standard open sets. 
JP(Q 

Let us fix some notations; let Q = lqo' •••• , qr} and let A be a commuta­

tive ring with identity. Let L be a subset of \0, •••• , rl, let A[T 1 be l ~ lIlSL 
the polynomial ring over A generated by l T

l
, 1 t L} and choose n c "£., d E IN+. 

DEFINITION 4A.1. We define A[L, n, dJ to be the sub-A-module of A[Tl]l~ L' 

generated by all the monomials 

b 1T b b T = T I such that deg T 
It L 1 

= L... b q :::: n mod. d 
IE.L 11-

It is clear that A[L, 0, d] is an A-algebra, A[L, n,d] is an A[L, 0, d]-module 

and there are natural homomorphisms of A[L, 0, d)-modules 

A[L, n, d] Q A(L, nt, d]~ A[L, n + nt, d] 

A[LI n, d] ~ HOm(A[L I n', d} A[L, n + n', d]l. 

REMARKS. 1) If d = 1, A[Lt n, 1] = A[Tlllt:: L' 

2) If din, A[L, n, d] :: A[L, 0, dJ. 

DEFINITION 4A.2. Let I = lO' .... , rJ; if J~ I we define d
J 

to be the G.C.D. 

of the qi'S, i ~ J. We put 

DJ = i'i J D+(Ti} = Spec{SlQ) (T
J

}) 

where T = -rr Ti and we call G the group of the rational monomials 
J iE J J 

i.e. such that L.. c.q. :: O. 
i6J ~ ~ 
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REMARKS. 1) The group G is free of rank # J - 1 since it is isomorphic to 
J 

the group of the integral solutions of L_ q v ::: 0 
iE:.J {'''i • 

2) ArG ] = (A[T] ) l J i i 6 J (T J) , 

EXAMPLE. Let Q ::: (1, 2, 3, 4, 5), J = tl, 2, J j. In this case GJ is the free 

group of rank 2 whose elements are the rational monomials T
C 

::: T~2 T~3 T:4 

such that 2c
2 

-2 

-3 2 
O. Two generators of G

J 
are for instance T2 T

3
, 

T2 T4' 

PROPOSITION 4A.3. ~ J be a non empty subset of I = ~ 0, •••• , r} and fix a 

rational monomial M = 
J 

t, }If T ~ of degree d
J

• Then there are isomorphism: 
l.€ J i 

£fA-modules (depending on M ) 
J 

r(DJ , (9P{Q) (n» ~ A[G
J
1(I - J, n, dJ} 

which are compatible with the homomorphisms described after 4A.l. 

Proof. Of course = SeQ) (n) is generated 
(T ) 

J 

rational monomials T
a 

such that a ~ 0 if i f. I - J and 
i 

Such a monomial T
a 

can be written in the form T
a 

::: 

a· 
Now, deg(.IT T. 1.) ::: 

1.E.J 1. 
ed 

J 
for a suitable e and 

a· 
deg{. "IT T.~) 

~ e -1-J 1. 
= n - ed 

J 
n mon(d ). 

J 

Dividing by Me we get the following map 
J 

TT 
if J 

)' 
1---' 

i~ I 

a' T 1. 
i 

r<D, (9. )(n» = S{Q)(n) ) ---,)00 A[GlrI - J, n, d
J
l 

J P (Q (T
J 

J _ i J 

over k by the 

TT a· T 1. 
i C 1-J i' 

an injective homomorphism of A-modules. Let us show that it is surjective. 

A rational monomial of A[GJ][r - J, n, d
J
l is a product of T

C 
Tb where 

and deg TC 
• L:: c q • 0, deq Tb = ~ b q 

i E J iii 6 I .. J i i 
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a c b).. 
The element T ~ T • T 1M has degree n, hence it is a section of 

r(D
J

, ~(Q) (n» and it ~y be written as (Tc/M;) Tb. But 

d (T
c/)..) \ d h d . . d . b -'A TC b eg M

J 
~ - A Ji ence, ~v~ ~ng y M

J 
we get . T • 

EXAMPLES. 1. Let Q = (1, 2, 3, 5, 7), J = r 4 J. 
a a· 

Then G
J 

;: identity, d
J 

== 7, M
J 

== T 4' Given a monomial T := IT T i ~ the number 

e is a
4 

hence the isomorphism 

r(D+(T4 ), t?P{Q) (n» == A[GJ1(I - J, n, 7] 

is obtained by deleting the variable T
4

-

2. Let Q = (1, 2, 3, 5,7), J = [2, 3, 4}_ 

c c2 c3 c4 Now G
J 

is the group of monomials T = T2 T3 T4 such that 3c
2 

+ 5c
3 

+ 7c4 = 

-4 -2 = 0, hence it is freely generated by T2 T3 T4 and T2 T3 T
4

- We have d
J 

= 1 

3 -2 
and we may choose M

J 
to be T 3 T 4 • Therefore 

r (D , 
J 19p (Q) (n» ~ A[GJ1[I - J, n, 1] = A[GJ , TO' 

I -4 -2 
TO' TIJ == A T2 T3 T

4
, T2T3 T4 , 

3. Let Q = 0, 1, 1), J=~112J. 

Then A[G
J
1 ::; A[Tl • T;l]. M

J 
= T1' d

J 
= 1. Therefore 

r(DJ , <.?lI?2(n»~ A[T/T2, TO] 

PROPOSITION 4A.4. !!!:! J be a non empt¥ subset of I. 

Tl ] :::: 

a) If n = h • dJI then r(D
J

, t?P(Q} (n» is free of rank 1 over 

r (D J' C::>p (Q) ) and a generator is M~. 

b) If Q is normalized and n is not a multiple of dJ1 then r(D
J

, C?p(Q) (n» 

is not free over 

Proof. a) Since n = h . 

h 
MJ,and the multiplication 

d there is a rational monomial of degree n, namely 
J 

h 
by M

J 
yields the isomorphism 
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S(Q) lT
J

) ---7 seQ) (n) (T
J

> 

b) If dJ..r n then # (I - J) ~ 2 (otherwise d = 1). NOw, for every i6 I - J, 
J 

G.C.O.Cqo' ..•• , gi' .... , qr) = I, therefore we may choose solutions of the 

integral equation ~ a.q. = n with ith coordinate zero. Hence we get ratio-
1. 1. 1. 

nal monomials of degree n, in which the variable T. does not appear. If 
1. 

SeQ) (n>(T
J

) has a unique generator over S{Q){ , this must be of the type 
T J } 

b ......,- b· T = II T 2 because if 
i6 J i 

b 
the variable T. (i E I - J) appears in T then it 

l. 

has necessarily a positive exponent and so the particular monomials where 
b 

Ti does not appear cannot be a multiple of T with coefficient in seQ) (T
J
)' 

T
b __.,-,- b . 

However, if 1\ T 1. is a generator, then every monomial of S{Q)(n) (T
J

) 
i6 J i 

«--
has degree n = L-- q b which is a multiple of d • This is a contradiction. 

i 6 J i i J 

On the other hand 

= S(Q}(n) which is a localization of 
(TI' 

S(Q) (n)(T
J

) and it is free of rank 

lover seQ) by a). Thus the rank of 
(TI ) 

:'(D l'jl"' (n» 
. J' JP(Q) 

is 1 and the 

proof is complete. 

COROLLARY 4A.5. Let m = I.c.m.{qo' •••• , q ), then 
--- r 

a) tDp (Q) (d. m) is invertible for every c{ 6 Z 

b) The canonical morphisms 

<"?P(Q) Cd. m} Q l?p(Q) (p) ~ <JP(Q) (o{m + p), 

<.9JP(Q) (p) ---7 ~ <..? (<'?JP(Q) (d. m), C?lI?(Q) (O<m + p» 
P(Q) 

are isomorphisms. 

Proof. a) Of course 0( m is a multiple of every d
J

, hence I.'lJP(Q) (ct m) is 

invertible on every standard open set. 

b) It can be checked by standard computations on the open sets D+{T.> and 
1. 

by means of 4A.3. 



- 32 -

REMARK. If Q m (1, 1, 2), ~ (1) is not invertible, while 
P(Q} 

invertible and it easy to see that c?p(Q)(l) a c?P(Q) (1) ~ 

(9 ) (2) is 
P{Q 

c..?P(Q) (2) 

is not an isomorphism. Therefore the first part of b) cannot be generalized 

even in the case Q = Q. On the other hand, if Q = Q, then the natural morphism 

l0p (Q) (a) ~ ~ l? (c.?P(Q) (b), ~(Q) (a + b» 
P(Q} 

is an isomorphism for every integers a, b (see [De], 4.1 p. 210). 

PROPOSITION 4A.6. a)!!:.!. J be a non empty subset of I such that d
J 

= 1; ~ 

r(D
J

, t?P(Q» is a localization of a ?olynomial ring hence D
J 

is non sin2u-

lar. Moreover the canonical projection p 

isomorphic to the canonical projection 

u ~P(Q) restricted to D is 
J-

b) _If Q is normalized and d ~ 1, then D is singular; 
J -- J';;;;';;"~~~~ 

c) !! Q is normalized, thenP(Q) is non singular if and only if Q = (1, 1, ••• 1). 

Proof. a) By 4A.3 we get that seQ) is isomorphic to k[G 1fT.l . • Since 
(TJ ) JJl ~j ~ f I-J 

G
J 

is a free group, seQ) (T ) turns out to be a localization of a polynomial 
J 

ring. Let now M be a rational monomial of degree 1. Then of course 
J 

S(Q)T
J 

= SeQ) (TJ}[M
J

, M;l] . 
b) For semplicity, let us prove b) in the case J = ~<;, so that D

J
;:: D+(T

i
). 

We have already seen (3A.l) that D+(T.) can be identified with V.fIU ,where 
l. ~ V qi 

Vi = SpeC(k[To' •••• , T., .... , T l) and the action of :I\q. is given in the 
l. r} / ~ 

following way 
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r 
Therefore the action of rqi on V i ~,/A can be described by the matrix 

• 

o 

More precisely the action of 

o 

= A 
g 

r 
~ on~ gives rise to a representation 

I qi 

which is clearly injective. Now, the quotient D+(T.) is non singular iff the 
l. 

representation of }ltqi is generated by pseudoreflections (see [Dl' 1,3.2) and 
q. 

g yields a pseudoreflection iff f(Ag - I) ~ It Le. iff 9 J = 1 for all the 
th 

indexes except i and possibly another one. If t. is a primitive q. root of 
1. 

unity, 9 is a pseudoreflectioniff £. qj == 1 for all the indl'xes except one at 

most. But this happens iff q.lq. for every j except one at most. Since Q is 
1. ] 

normalized this is possible iff q. = 1. 
1. 

c) Follows from b). 

REMARK. If Q is normalized and J == I - f i J then d
J 

== 1 hence 4A.4, a), 

4A.6, a) can be applied to the open set D
J 

= jr; i D+{T
j
). 

4B. Ampleness criteria. 

r 
In the following let Q = (qo' •••• , qr)' IQI == i ~o qi and m = 

= l.c.m. (qo' •••• I qr)' For every non empty subset J of I == t 0, •••• I r}, 

let m =l.c.m. <q J . 
J tiiE.J 

DEFINITION 4B.l. We let G{Q} be the rational number defined in the following 
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way 

G{Q) = - q 
0 

if r = 0 

G(Q) = -IQI+ l/r . L [(: -'J I mJ] if r > O. 
.> 

2 " Y~ r + 1 #J = V 

DEFINITION 4B.2. We say that an integer n satisfies the condition D(n) if 

equivalently 
r + 

(A) given the relation i~O Biqi = n + hm with h ~ f~ and BO' •••• , Br 

natural numbers, then there exist b
O

' •••• , b
r 

natural numbers with Bi ~ b
i

, 

i = 0, •••• , rand L.,b.q. = hm. 
l. l. 

r B 
(B) every integral monomial T ::: IT 

i = 0 
b r 

Tbi of an integral monomial T ::: IT 
i ::: 0 i 

B· T l. of degree n + hm is divisible by 
i 

degree hm. 

DEFINITION 4B.3. We define F(Q) or simply F to be the smallest integer such 

that n > F implies that D(n) holds. We define E(Q) or simply E to be the smallest 

integer such that n > E implies that. D(mn) holds. In particular m E ~ F. 

We have the following 

LEMMA 4B.4. .!E. Qi denotes the r-ple (qo' •••• , q i' •••• I q ) then 
r 

r 
.~o G(Q.) = r . G{Q) - m . 
l. = J. 

Proof. --- If s. = ?;-. q. , then by definition 
l. Jrl. J 

[C -:r G(Q.) = 
l. 

- s 
i 

hence 

- r/QI + l{(r - 1) ,---
2~r 

ft'r - 2) -1 J II v 2 (r + , - v) .,;;;-. "J 
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Now, since 

.(: - 2
2
)-1 :::; (: - 21)-1 (r+1-Y)/(r-l) YV 

we get 

Therefore 

1)-1 L Ill] + m 

2 #J ==y J 

r ,[C 1'-1 

L G(Q. ) == -rIQj+ C \ 
~ 2} i":::; 0 2~Y~ r + 

mJJ - m · 

::;: r( -\Ql+ (l/r) > , 

:;:; r . G(Q) - m. 

PROPOSITION 4B.5. For every n > G(Q) the condition D(n) holds, hence F ~ G(Q). 

Proof. we use a double induction on the pair (hi r) with 11 ~ 0, r ~ 0 (remind 

that h is the integer appearing in the definition of D(n». 

Of Course the statement is true for h = a and also for r ::: O. It is also easy 

to show that if the statement is proved for h == 1, then it is true in general; 

for, it is sufficient to replace n with n + (h - 1) m. Therefore it is suffi­

cient to prove the statement for (1, r) assuming that it holds for {I, r - I}, 

hence for (h, r - 1),every h. Let 

r 

L.. 
i=O 

then 

> r . G(Q) + rm, 

hence, by 4B.4.: 

r r 
r'L Biqi > L G{Qi) + m(r + 1) 

i • 0 i = 0 
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But r . .. L ( L BjqJ')' hence for at least one index i we have 
i j ¥ i 

L B,q > G(Q,> + m. 
j # i J j ~ 

Now, if J = I = A m and by induction the statement is true for 
i J 

(A , r - 1); hence we get an r-uple (B
O

' •••• , r:r-, 
i ... 

..... , B ) such that 
r 

~ BJ,qJ' = m. Therefore the (r + l)-uple (B
O

' ••.• , Bi = 0, 
j ¥ i 

the problem. 

•••• I B ) solves 
r 

LEMMA 4B.6. ~ X be a projective k-scheme, Y a Cartier divisor on Xi ~ 

A = 48 A where A .. r (X, t!J (pY» and let tJ)¥ be the rational map associated 
p p p X 1 

to the complete linear system 'yl. Then, if A is generated by Al ~ k-algebra, 

~y(X) ~ Proj(A). 

Moreover if Y is ample then the following conditions are equivalent 

a) A is generated by A ~ k-algebrai 
1 

b) Y is very ample. 

Proof. Let 

and let L be the image of rex, 12 (YDf/Jp in r (X, (9 (pY». If L is the graded algebra 
p X X 

$ L , then it is known that ~v(X) = Proj(L}. But clearly A is generated by 
p P .. 

Al implies that Lp = A for every p, hence 
p 

<f> Y (X) = Proj (A) • 

Assume now that Y is ample and let q be a natural number such that Z = qY is 

very ample. 

a) ====;> b) We have 

x ~ <f z (X) ~ Proj (A (q» :;:;:. Proj (A) ~ 'f Y (X) 
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hence tfy is an isomorphism and Y is very ample. 

b) ~a) If Y is very ample, then it corresponds to an hyperplane section in 

a suitable embedding of X in pN, then Al ~ rex, f?X(1» and the conclusion 

follows. 

THEOREM 4B. 7. a) The sheaf c? ) (m) is ample; 
F(Q 

b) If n > F, the sheaf CJp(Q)<n) is generated by global sections. 

c) If n > 0, n > E, ~ <9p (Q)(nm) is very ample; 

d) For every P €: 7L the sheaf 'CJP(Q) (p) is coherent; 

e) For every P E 7l the sheaf L?p(Q) (p) is Cohen Macaulay (C M). 

Proof. 11"1 S • 
b) Let u €. r(D+(T

i
), \JP(Q) (n)}; then u == U/T

i 
wl.th s > 0 and 

srn-s sm 
U ~ seQ) • Assume that U is a monomial. Therefore u = U T, IT, with 

sq, +n 1 l. 
1. 

sm-s 
deg(U T, ) = sq, + n + q (sm - s) = sq,m + n. 

l. 1 i l. 

sm-s 
Since n > F the condition D(n) holds hence we may write UT = A • B where 

i 

A is a monomial of degree nand B a monomial of d0gree sq.m. In conclusion 
1. 

sm 
u = AS/T, and A defines a global section of 

1. 

sm 
B/Ti E c?JP(Q» and we are done. 

c) By assumption n > E, hence the condition D(mn) holds, which implies that 

every monomial of degree pmn = (p - 1) ron + ron is divisible by a monomial of 

degree {p - 1} mn; thus a monomial of degree pmn is the product of monomials 
(mn) (mn) 

of degree mn and this implies that seQ) is gonc,rated by 5(Q) 1 as a k-alge-

bra. Now ~P(Q) (mn) is invertible by 4A.5.a) and roP(Q}, t9JP(Q) (ron» = 

== S(Q)ron '" i oJ, hence if we choose a non trivial section of tJ ) (ron) we 
1I? (Q 

get a divisor Y such that Llp(Q) (ron) ~ C?JP(Q) (Y). By lemma 4B.6 we nave 

that tfy OP (Q» is isomorphic to Proj (S(Q) (ron)} which is isomorphic to 

proj (S (Q> }. 
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d) We know that ~ (~m) are invertible by 4A.5. Since the property of 
lI? (Q) 

being coherent is local, it is sufficient to show that 

c..?P(Q)(P) III <9p(Q)(~rn)~ \.0p(Q)(c(m + p) (see4A.5) is coherent for some 

o 
d. • On the other hand t?lI?(Q) (0( m + p) is generated by H CP(Q), 0

JP
{Q) (d m + p» 

by b) and this is isomorphic to S(Q)~ I which is a finitely generated vector 
...... rn+p 

space. 

e) After c) we may choose an integer n such that C2 (nm) is very ample; 
P (Q) 

accordingto[SGA2J Exp. XII, 1.4 it is therefore sufficient to show that 

i . 
H (JP(Q) I (!) ( (p)" t? (0{ nm»;: (0) for ~ < rand c( » O. But 

P Q) P(Q) 

19p (Q) (p) e t9p (Q) (c;;( ron) ~ t9p (Q)' (p + C( nm) 

by 4A~5 and Hi(JP(Q)f t? (p + d nm» = (0) for i < r by 3B.4, b). 
lP(Q) 

a) The sheaf <Dl!?(Q) (m) is invertible by 4A.5, a) and (:~(Q) (m)en "" cJP(Q) (nm) 

<see 4A. 5 ,b» is very ample. Therefore ~ (Q) (m) is ample. 

REMARK 1. We have already seen that 

mE" F ~ G(Q). 

Thus ~P(Q) (mn) is very ample for every n > 0 such that n > G(Q)/m. 

COROLLARY 4B.8. The scheme P(Q) is projective. 

Proof. P(Q) = Proj{S(Q}} ~ Proj(S(Q) (mn». But seQ) (ron) is generated by its 

part of degree 1. This gives an embedding of Proj(S(Q) (ron)} in ProjiSymm(S(Q} (mn;) =: 

N 
=P. 

REMARK 2. The same result can be obtained by consideringP(Q} as a quotient 
r 

ofP by the action of the finite group ~Q (see 3A.l.d) and then applying 

numerical criteria of ampleness (see [H11, p. 30), 
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REMARK 3. Let Q = (qo' qi' qZ) and assume that Q is normalized. Then 

m = qoq q and 
1 2 

1 
G(Q) = 2(qOq1q 2 + QOql + qOQ2 + Q1 Q2) - (qo + ql + qZ) 

But this number is easily seen to be strictly smaller than mt so by Remark 1 

we get that 

l?p(Q) tm) is very ample. 

However, if r = 3, this fact is no longer true in general. For, let Q = 
= (1, 6, 10, 15). In this case G(Q) is between 1 and 2. Therefore 

(9p{Q)(m' 30) is very ample for m ~ 2. But we are going to show that 

t?p(Q)(30) is only ample without being very ample. 

4 2 
Namely the monomial TOT1 T2 T3 has degree 60 but it cannot be expressed as 

(30) 
the product of two monomials of degree 30. Thus S(Q) is not generated by 

its part of degree 1, hence (2 )(30) is not very ample by 4B.6. 
P(Q 
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§ 5. The regular locus of MorL 

Let Q = (qo' •••• , qr) and put as usual d = G.C.D·(qO' •••• , q ), 
r 

m = l.c.m.(qo' •••• , qr}' For every prime number p let us denote by -..) the 
p 

number of indexes i such that pVq and denote by 
'\ i 

"Y (Q) = min \ .y p 1 
p, p prime ( J 

From the definition of Y(Q) we have immediately 

PROPOSITION 5.1. a} Y(Q) > 0 iff d '" 1, Le. Q is reduced; 

b) Y (Q) > 1 iff Q is normalized; 

c) V (Q) > s iff for everx choice of s wei2hts the G.C.D. of the others 

d) V (Qi > r - 1 iff the wei2hts are ~irwise c02rimei 

e) v(Q) == r + 1 iff Q = (1, .... , 1). 

is 

DEFINITION 5.2. For every integer h we denote by Sh the closed sub scheme of 

P(Q) which is defined by the ideal I(S ) generated by those indeterminates 
h 

Ti such that hjqi' 

With the notation V+(S(Q) ) we indicate, as usual, the set of relevant 
n 

primes P such that p2 seQ) • Then we can prove the following 
n 

LEMMA 5.3. 

b) V (Q) := codim (U s ); 
h h 

U. Shi h prJ.me 
him 

1 ; 

c) For everx inte2er h, Sh is a set theoretic com21ete intersection for every 

N immersion of P(Q) in P given by a sheaf (!) (n) • 
P(Q) , 

= n 0 V+(S(Q) 1) a ~ am+ 

Proof. a) Let a be a natural number such that pta. Therefore S n cS n U S ; 
P a- P a 



S =~. In conclusion if h = pal 
p 1 

c Sp U •.. U Sp 
1 s 
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•... U S a 
Ps s 

b) It follows from al, after remarking that if p is a prime number, then by 

definition y(p) = codim S • 
P 

c) Namely Sh is defined set-theoretically by i T:/qi, h r qil~ and T
i

n
/qi define 

1. 

hyperplane sections of If (JP (Q» if 

C9p (Q) en) • 

N <f : ll? (Q) ---?- ll? is given by a very ample 

d) Let P be a relevant prime ideal such that P ~ LJ S. Then for every 
h > 1 h 

prime h, h dividing mt one has P~ Sh by a)i hence there exists a homogeneous 

element Fh (actually an indeterminate) of degree d
h 

such that h t d
h 

with 

Fh ~ P. Therefore the ideal generated in ~ by the d; sand m is the unit 

ideal, hence there exist positive integers a
h 

such that 

and Tf Fah E S(Q) - P. 
h am+l 

Conversely assume that P e Sh for a prime h such that him. This means that 

P contains all the Ti's such that h f qio But of course every monomial of 

S(Q) 1 must contain such an indeterminate (whatever a is chosen). Then 
am+ 

p~. 8(.Q) l' 
am+ 

EXAMPLE. Let Q = (1, 2, 3,4). Then Q = Q, m = 12. Therefore LJ S = 
h h 

is not of pure codimension. 

DEFINITION 5.4. 
o 

We denote by lI? <Q) the open set JP(Q) - hl.J 1 Sh and'we call 

it the M-regular locus ofP(Q). 
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PROPOSITION 5.5. a} Y (Q) :::: 0 iff pO (Q) = ¢i 

b) Y (Q) = 1 iff po (Q) is quasi affwe and non empty; 

c) If o . Y (Q) > 1 ~ P (Q) conta~ns a complete subscheme of dimension 

,,) (Q) - 1 and does not contain any complete subscheme of dimension greater 

than or equal to V (Q) • 

Proof. a) It follows from the definitions. 

b) By b) of 5.3 (see also the proof), if Y(Q) = 1 there exists an indetermi­

nate Ti which defines a component of hld 1 She Therefore the complement is 

o 
quasi affine ad if h~ 1 Sh is pure thenP (Q) is affine. The converse follows 

from c). 

c) It follows from the description given in Lemma 5.3. 

PROPOSITION 5.6. a) The following conditions are equivalent 

i) <9
P

(Q) (1) f:. 0; ii} d = 1; iii) po (Q) r ¢ 

b) For every n E 7L , the sheaf L9]po (Q) (n) is invertible i 

.n Qn,f) 
c) {Vpo (Q) (I}) = UJl?o (Q) (n) for every n E 7L i 

d) JPO(Q) is the largest open subset of P(Q) with the properties b), c). 

Moreover if Y (Q) > 1, ~ pO (Q) is the largest open subset of JI? (Q) with 

the property b). 

Proof. a) r(D+{T
i
), l?p(Q} (1» = S(Q)(!) (Ti) and the latter is clearly 

reduced to 0 if and only if d is greater than 1. The equivalence between 

ii) and iii) follows from 5.1, a) and 5.5, a). 

b) Let P be a relevant homogeneous prime of seQ), P ~ l_l S. Then by 5.3, 
h > 1 h 

d) there exists a homogeneous element F, F~ P, F € seQ) for a suitable 
am+l 

a. Therefore P € D+(F) and there is an isomorphism of S{Q) -modules 
(F) .. 

seQ) (am + I) ) -= (S(Q)} ~ S(Q) • F 
(F F am+l (F) 
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This shows that l? 0 (am + 1) is invertible in the neighborhood of every 
l1? (Q) 

o 
p € JP (Q), hence it is invertible. But 

( 
~a\0n 

<9pO (Q) (n):::: c.?]po(Q) (am + 1) e <.9P (Q) (- ml ) 

by 4A.5 and all of them are invertible. 

c) We use again the same technique as in b)i we first observe that it suffices 

to show that 

is an isomorphism for every a, b. This natural morphism is induced by the na-

tural S(Q)-module homomorphism 

S(Q) (a) e seQ) (b) ~ S(Q) (a + b). 

Now let P~ pO(Q). Then, as in the proof of b) there exists a homogeneous 

element F~ P, FE seQ) • Moreover we can choose an indeterminate T{ of 
am+1 ..... 

degree q. such that T. ~ P. Then of course it is sufficient to show that 
~ ~ 

is an isomorphism. But 

c. a 
S(Q) (a) ):::: seQ) (F/T.~) 

(FTi (FTi) ~ 

where c. = am/q. and similary 
~ ~ 

and 

c· b 
S(Q) (b) (FT.) :::: seQ) (P/T~) 

~ (FTi ) i 

c· a+b 
seQ) (a + b) ):::: seQ) (FIT, l.) 

lFT i (FT i) l. 

hence the conclusion follows immediately. 

d) Let U be an open set with the properties b), c) and lot x be a closed 

point of U; we must show that x e pOtQ) i by 5.3, d) it is sufficient to show 

that if P is the homogeneous prime ideal corresponding to x, then there 

exists a homogeneous element F E seQ) l-P for a suitable a. 
ami' 
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Since l?p(Q) (m) is ample by 4B.7 and bl, c) hold, there exists a suitable 

a such that 

l? ) (am + 1) ~ <2. (1) e {9 () eel 
JP(Q JP(Q) JP(Q) m 

is generated by global sections. Therefore there exists an element F ~ seQ) am+l 
o 

= H OP(Q), C?JP(Q) (am + 1ll generating the stalk of 19 (am + 1) at x, i.e. 
F(Q) 

(lQ ) (am + 1 » 
JP(Q x = <!J . F 

1I? (Q) , x 

Let now G be an element of seQ) such that G4 P. Again we may assume that 
m 

fA I~ a~l 
~ (m(am + 1» = ~ . G 

JP(Q) x lI?(Q), x 
am+l m 

and by c) we get that G and F both generate c? (m(am + 1» . Therefore 
JP (Q) x 

am+l ill ,f) m 
G IF is invertible in ~ which means that also F ~ p. SO we have 

1I? (Q) , x 

got an element F ~ seQ) -Po .. am+1 

Let now U be an open set with the property b). We first note that property 

c) is equivalent to 

c' ) «(!) )(1)! )em ~ (!) () 
JPlQ U lI?(Q} m I U 

o 
by 4A.S. Therefore U - JP (Q) is the closed subset of U which is the locus of the 

points of U where e'l does not hold. Let 

be the canonical morphism; it corresponds to a section of the invertible sheaf 

10 fA -m 0 
Vp (Q) (m) I U e ( \./JP (Q) (1) I U) and U - JP (Q) is defined by the vanishing of 

. 0 such a section hence either eod~m (U -1I? (Q» = 1 or the section does not 
U 

vanish. But, if Y (Q) > 1, then codim ) CF (Q) - JP 
0 

(Q» = Y (Q) > 1. Therefore 
P(Q 

o 
U ~ lP (Q) and we are done. 

PROPOSITION 5.7. ~ p be the canonical projection p 

o -1 0 
U = P CP (Q», then 
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a) o po, ° 
U ~ P (Q) ~s a (b -bundle, hence P (Q) S; Reg(JP(Q»; 

-- m 

b) (?pO(Q) (l) generates PicOPo(Q». Moreover if Q is normalized then 

Pic oP° (Q» == 7Z • 

Proof. a> The morphism p is locally defined by the inclUSions seQ> ~ seQ) • 
(F) F 

o 
If Q is not reduced, thenP (Q) ~ ~ (5.5, a» hence we may assume Q to be re-

duced. Since G.C.D.(q , •••• , q ) ::: 1, 
o r 

hence there exist a • sa. E. IN, a I':: 1N+ 
i ' ~ 

there exist b 's such 
i 

r 
such that L a,q, '" 

, ~ ~ 
~ ::: 0 

that L b,q, ::: 1 
~ ~ 

am + 1. Let G be 

a nonzero element of seQ) 1 and F a nonzero element of seQ) • Then 
am + am 

deg(G/F) = 1 and it is easy to see (see also 4A.6.a» that 

It is therefore sufficient to prove that the open sets of the type D+(FG} cover 
o 0 

P (Q). For I let p E. lP (Q); by 5.3, d) there exists an integer a such that P ff V {S (Q) ) , 
+ am+l 

hence there exists G ~ SeQ) 1 and P 6 D+{G). On the other hand P$ V+(S{Q) ) 
am+ am 

for every a, hence there exists F € S (Q) , P <::. D+ (F). Therefore P €. D+ (FG) • 
am 

000 
b) Since P (Q) is smooth, Pic (JP (Q» ::: Cl (JP (Q»; moreover 

I f'I ~n ~O(Q) (n) ~ \"'/pO{Q) (1) by 5.6, c) hence, to show that (9 0 ,(1) generates 
lP (Q 

Pic~o{Q» it suffices to prove that for every subvariety D of codimension 1 

ofpo(Q) there is a homogeneous prime element F of seQ) such that Supp D::: V+(F). 

If D is such a subvariety 
-1 

then p (D) is a subvariety of codimension 1 of 

a r+l 
U ~ 1A hence there exists a homogeneous prime element F 6 S (Q) such that 

-1 
Supp(p (D» == V(F). Therefore Supp D == V (F). 

+ 

Now, if Q is normalized, then V (Q) ~ 2 and there is a positively dimensional 

complete variety X contained inpo(Q) (see 5.1, b) and 5.5, c». Since 
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c? o( (1) is ample by 4B.7 and 5.6, d), also its restriction to X is ample, 
P Q) 

hence no powerof it can be trivial. 

COROLLARY 5.8. If (9 (n) ~ 0, then it is reflexive of rank 1. 
P(Q) 

Proof. If t9
P

(Q) (n) f 0 then n is a multiple of G.C.D·(qO' ••.. , qr)' Hence 

by 3C.1 we may assume that Q is reduced and by 3C. 5 and 3C. 7 we may assume that Q is 

normalized. We know that ]!:,o(Q) ~ Reg(F(Q)')~ F{Q} (see 5.7) .Let j : FO(Q)~jp(Q) 

denote the canonical inclusion; then t? (n) = j* 10 0 )(n) and jp (Q) jp (Q 

cOdimp(Q) (J?(Q) - pO(Q» ~ 2 by 5.1, b). On the other hand is inver-

tible by 5.6" so the conclusion follows by Appendix Theorem 17. 

Another way of getting this result is by using the remark following Corollary 

4A.5. 

COROLLARY 5. 9. ~ X be a closed sub scheme of P (Q) and assume that XC po (Q) • 

Then X is non singular if and only if X is quaSi-smooth (see 3B.5). 

proof. It follows directly from 5.7, a). 

EXAMPLES 1. If X q:: po (Q) I X may be quasi-smooth and singular. Take for 

instance X = P (1, 1, 2). 

2. If X ~jpo(Q), X may be not quasi-smooth and non singular. For instance 

X is non singular. On the other hand Spec(A) has the line TO = T2 = 0 as the 

singular locus. Now Y (Q) = 1 and po (Q) == P(Q) - r2 = o} I so that X¢ po (Q) • 

Let us make some computations on the last example: 
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Over A/(T l - 1) the action of JA2 is described by TO ~ TO' T2 ~ - TZ 

therefore (see 2.6): 

Moreover A ~ A/(T - 1) is a flat and finite morphism,A ) is regular, 
(Tll 1 (Tl 

A/(T
1 

- 1) is not regular. 

REMARK (see 3A.4). The canonical projection ~: pr ~P(Q) induces 

'h-0:Uo 0 
1\ ~p (Q) which is flat. Namely we have seen that 

= $ t9
P

(Q) (- 1: ni ) (see 3A.2). But overpo(Q} the sheaves t?p(Q)(n> are 

o 
invertible, hence the morphism 1\ is flat. For instance, if Q ~ (1, 1, 2), 

3 
we know thatP(Q) is isomorphic to the cone ofP which projects a smooth 

conic andpo(Q) is the cone except its vertex. All the fibres of 11 have 2 

points (not necessarily distinct), while on the vertex there is only ~ point 

and at this point the morphism is not flat. The corresponding local rings are 

~ kfx, Y, z] /(Xy - l) L loc 

and (k[Xot Xl' xl ) ~k[X, yJloc' Clearly the morphism 
ZJ (X

O
' Xl) 0 , 

k[X2, Xy, y2] ~ krX, y] 
loco t: 

is not flat. 
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§6. DifferentialS:an.dduallzlng sheaves on P(Q). 

In the first part of this section we deal with some generalities on regular 

differential forms onP(Q), while the second part is mainly devoted to compute 

the dualizing sheaf of a complete intp.rsection inP{Q). 

6A. Regular differentials. 

Let A be a ring (commutative with identity), B an A-algebra and M a B-modu-

Ie. An A-derivation of B into M is an A-linear map d: B ~ M such that 

d(bb ' ) = bd(b ' ) + b ' d(b) and d(a) = 0 for every a E A. 

DEFINITION 6A.l. We define the module of relative differentials of B over A 

to be a B-module ..QB/A together with an A-derivation d : B ~ flB/A which 

satysfies the following universal property: for every B-module M, and for 

every A-derivation d ' : B ~ M, there exists a unique B-module homomorphism 

f : ...Q I ~ M such that d ' = fo-d. 
B A 

It is well-known and easy to see that (JLL , d) exists and it is unique 
B/A 

up to isomorphism (see [Ma J>. 

PROPOSITION 6A.2. (First exact sequence). ~ A ~ B ~ C be homomorphisms 

of rings. Then there is a natural exact sequence of C-modules 

Proof. See [MaJ, p. 186. 

PROPOSITION 6A.3. (Second exact sequence). ~ B ~ A-algebra, I an ideal of 

B and C = B/I. Then there is a natural exact sequence of C-modules 

1/12 Lilli C ~ ..n 0 
B/A B CIA ~ 

where for everr bE I, If 0 denotes itl image 1n 1/12, then db = db e 1. 
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Proof. See [Ma J, p. 187. 

Let now f : X ~ Y be a morphism of schemes and let us consider the as­

sociate diagonal morphism !J.: X ~ X lC
y 

X. Then X is isomorphic to D. (X) 

(see [H1, II, 4) which is a closed subscheme of an open subset W of X Xy X. 

DEFINITION 6A.4. Let Jj be the sheaf of ideals of b. (X) in W. Then we de­

fine the sheaf of relative differentials of X over Y to be the sheaf Jl
x

/ y = 

= 6* (!l/,l) on x. 

PROPOSITION 6A.5. If X and Y are affine, then Definitions 6A.4 and 6A.l 

Proof. See [Ma], p. 182. 

r 
Let now consider the usual projective space X =P

k
• 

THEOREM 6A.6. There is an exact sequence of sheaves on X 

o~n/ ~ 
X k 

(1\ r+l 
\:.,I (-1) ~ 

X 
(.1) ~ 0 

X 

(The exponent r + 1 in the middle means a direct sum of r + 1 copies of 

Proof. See [a], p. 176. 

DEFINITION 6A.7. If x is a smooth, r-dimensional scheme over k, then we de­

fine the sheaf of ith reQHlar differentials of X (over k) to be 

. . i 

1l~ = Jl~/k = 1\ il Xjk 

Furthermore we say that n r 
V0 = ~~ is the canonical sheaf. 

X X 

("'\i r 
So now let us compute ~L when X =P • To this end let us consider a 

X k 

slightly more general situation, which will be useful in the following_ 
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Since SeQ) is a polynomial ring it is easy to 

•••• , T rJ graded by 

see that.o. is 
S(Q) 

q. :; deg T .• 
1. 1. 

a free mo-

dule generated by ~dTOI "'~I dT
r
1 hence it can be given a structure of gra-

r 

ded S(Q)-module by putting deg(dT.) 
1. 

= qi; consequently Jl ;:::-: $ S (Q) (-q ). 
seQ) i=O i 

i 
Therefore 1\ ~ becomes a free graded module with basis given by 

S (Q) 

t dT j 1/\ •••• A dT j i; 0 ~ j 1 < •••• < j i ~ r] I hence 

i 

1\ n S (Q) -;;:;, 0 ~ j 1 < 

In particular 

r+l 

1\ J1
S

{Q)== S(Q)(-IQI). 

Let now f
O

' •.••• , fr be elements of degree q .•• ~ respectively (e.g. f. :::: T.) 
O"r J. 1. 

and consider the graded homomorphisms 

i 

1\ ..0. SeQ) 

We get the complex 

i-1 

---~) 1\ fiS(Q) 

i 

l--~> L 
h = 1 

r+l 6 r A 1 
o ---;. 1\ D. r+l) I\..D. ~ .... ~ Sl ) --7 seQ) 

seQ) seQ) seQ 

which is isomorphic to the Koszul complex K(f
O

' •••• r fri S(Q» and such that 

Coker 6.
1 

= seQ) l(f
O

' •••• , f
r
). 

Assume now that f , •••. , f is a regular S(Q)-sequence. Then the complex is a r 

exact and we may consider the graded modules 

i i-1 i+l i 

Syz. = ker ( A il ~ A fl ):;:: Im( 1\ il --7 
1. seQ) seQ) seQ) 1\ ~(Q)} 
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In particular we have exact sequences for every n 

i 

(*) 0 --.-,.. syzi (n) ~ 1\ .o.S(Q) (n) ~ Syzi_l (n) ~ 0 

Let us go back to the usual projective space, hence assume that Q = (1, •••• , 1) 

and S(Q) = S = k[X
O

' •••• , X
r

] with deg Xi = 1. Then we have the following 

i i-1 
THEOREM 6A. 8 • !f Syz i denotes the graded module ker ( A .D.. S -4- 1\ ..0.) 

S 

and if (Syz.)'V is the associated sheaf onpr, then there is an isomorphism 
~ 

i 'V 

..0. r"" (Syz.) 
P l. 

In particular WJPr ~ <9JPr (-r -1). 

Proof. Let us consider the exact sequence of Theorem 6A.6. Now 

Therefore 

and the theorem is proved for i = 1. So we make induction on i. 

Let now p : U -4-pr be the canonical projection. From the globalization of 

the first exact sequence (6A.2) we get the exact sequepce 

p* .1l pr ~ n u ~ ...Q U/.D?r --+ 0 

Now the standard map b 1 

of sheaves ~ 1 : (Jl s('" 

: n ~ S g1 ven by dx. I--» x. induces a morphism 
S l. l. 

~ C)~r+l which is clearly surjective if restric-

ted to U. Therefore we get a surjective morphism 

Let us prove that LlU I> 0( = O. For I we know that the morphism p is locally 

given by the inclusions S ~ S I hence it is sufficient to show that 
(Xi) Xi 

6 u 0 0{ applied to the differential of a monomial of degree 0 {Xi may have 
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r 
negative exponents} is zero. Let 1T 

s. 
X.J, s. ~ 0, j ~ i be such a monomial. 

Then, recalling that 

j = 0 
t:" 

L s = 0, 
n = 0 n 

s· ( 6 0 c( )( d (11" X . J}) = 
U J 

] J 

s· 
X J 

j 

s -1 
s X n )dX 

n n n 

=L(TT s· X J 
j 

s '>" s· 
s X n) =< (L-., s )'rrx.J = O. 

n n n n J 
n j ~ n 

Therefore t:. U factors through a surjective morphism ~: n u/.D?r ~ t9. u 

on the other hand ..o.u/IPr is invertible (see [H], III, 10.4) I hence b. is an 

isomorphism. 

Note that the sheaves .o.u~' 19 u are clearly isomorphic since ..o.u/lPr is 

trivial because it is invertible and Pic(U)= (0). Indeed the argument above 

shows that just the canonical map 6 is an isomorphism. Now we have an exact 

sequence 
0( 

o ~ K ~ p*..opr ~ ..nu ~ c!) ~ 0 
U 

Since (!)u' ilu' p* ilpr are locally free sheaves of ranks 1, r + 1, r re-

spectively, also K is a locally free sheaf of rank 0 hence K = (Oland we get 

the exact sequence of locally free sheaves 

<..9 ~ 0 
u 

For every i = 1, •••• , r one has the exact sequence 
i i i-1 
A p* r'\ ---?- f\ Sl. ~ 1\ p* rJ fib /\ ~Lpr U ~-lI?r ---?- 0 

i.e. 

Now we apply p* and we get again an exact sequence since we are dealing with 

locally free sheaves. On the other hand the projection formula (see [H], 

p. 124) yields 

..o..:!r Q (~ <9pr (n» '" 
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i 

while p*n~ can be easily computed to be (~ /\, 11s<n);~ (as in the proof 

of 3.B. 2 a), b». Therefore we get exact sequences 

i 

o ~ ~.D.!r(n) ~ (~ A Jls<n»' ~ ~.CL!~\n)~ 0 

By comparing with the exact sequences (*) we get the diagrams 

i 
i 

i-1 
o~ eil r (n) ~. (ED 1\ .Q s\n»' ~ ED_nJpr (n)~ 0 n Jp n 

I q1 . It id c·: 
I ~ i-I 

'f i Vi 
rv n s(n»rv 

N 
o~ (El Syz. (n» ~ {El 1\ ~ lED Syz (n) > ~o 

n ~ n n i-I 

where in the middle we have the identity, the right-side morphism 01 is 
i-I 

an isomorphism by the induction and the morphism V<. is induced by the 
1.-1 

commutativity of the right-side square. Clearly 

morphism, so the proof is complete. 

:.l turns out to be an iso­
i 

At this point we are naturally led to make the following consideration. 

Let Q = (qo' •••• , qr)' S(Q> = keTo' •••• , Tr] graded by deg Ti = qi and con-

sider the exterior algebra complex associated to the elements qOTO' •••• , q T 
r r 

as in·the discussion preceding Theorem 6A.8. Denote, as before, by Syz. the 
1. 

graded module of i-th syzygies of the complex, which is isomorphic to the 

DEFINITION 6A.9. 
i .~ 

We define ..0.. to be (Syz.) and call it the sheaf of 
JI? (Q) 1. 

the i-th re~lar differential forms onJl?(Q). 

REMARK. It is easy to see that the proof of 6A.8 cannot be extended to P(Q). 

Moreover even the proof of 6A.6 cannot be extended, hence overp(Q) it is 

r't t'\ 1 not even true that ~L = ~L in the new sense. 
P(Q) P(Q) 
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i 
So now the most important step is to show that the new sheaves Jl 

JP(Q) 

behave well and this will be achieved in the next theorem, for which we need 

the two following results. 

LEMMA 6A.I0. Let G be a finite group whose order is invertible in k and let 

it act on a polynomial rin9 B =: k[X
1

, •• , .X
n
1' If G is generated by pseudo-

reflex ions and A 
G = B then there is a canonical isomorphism of A-modules 

proof. See [D], 2.2.2. 

LEMMA 6A.l1. If 
r it : JP ~ P (Q) is the canonical projection of 3A. 1 t 

then there is a canonical isomorphism 

i puQ i 
..0.. P{Q) --::::. 11* (iLprJ 

Proof. See [D J , 2 • 2 • 3 • 

So we are ready to prove the following important 

THEOREM 6A.12. .!f W = NonsingoP(Q» ~ j w ~JP(Q) is the inclusion, 

then there is a canonical isomorphism 

Proof. Let us consider the commutative diagram 

-1 
7T (W) 

71' ~ . 111" 
W ~ :I>(Q) 

Since W is non singular, then the action of ?Q on 
-1 

1T (W) coincides locally 

with that one of a group G generated by pseudorefle ctions( see [ 01, 1.3.2). 



- 55 -

Hence by 6A.I0 and 4A.6 we get 

Jl i ,G{D.. i 
. W == 1r * 1t -1 (W) ) 

Sincep(Q) is normal (see 3A.l.c», codim OP(Q) - W) ~ 2 hence 
P(Q) 

1r-
1 

«.1) ) 2 th t 
" ~ I so a 

j~il~-l (W) = -Q!r (they are locally free sheaves) 

Then 

6B. Duality. 

First, let us recall some general facts on duality whose source are, for 

DEFI~ITION 6B.1. Let X be a proper scheme over k which is equidimensional 
o 

of dimension d. A dualizing sheaf for X is a coherent sheaf LJ on X together 
X 

. n 0 with a trace morph~sm t : H (X, ~ X) ~ k such that for all coherent shea-

ves Ij. on X, the natural pairing 

followed by t gives an isomorphism 

M. 0,...., n k V 
Hom(·.::r,w ) ~H (X,';}') X . {"v" means dual} 

Now it is well-known that for a proper scheme over k a dualizing sheaf 

exists and it is unique up to isomorphism and the natural pairing of 6A.l3 

can be extended to the so called Yoneda pairing 



- 56 -

which, composed with t, gives rise to the pairing 

(Y) 

THEOREM 6B.2. If, in addition, X is Cohen-Macaulay (C-M) then (Yl is non 

singular, hence it gives the isomorphisms 

d-p M_ 0 P v 
Ext ('.:r, W ) -...) If" (X, ::r) , p ~ 0 

X 

PROPOSITION 6B.3. The following conditions are equivalent 

a) X is Gorenstein, 

b) 
o 

W X is invertible. 

COROLLARY 6B.4. !f X is C-M ~ ~is locally free of finite type then the 

isomorphisms of 6B.lyield the isomorphisms 

Proof. If ~ is locally free of finite type then the canonical morphism 

H:-' no r Y.. r. 
"J' '"'0 ~~(J-'-J-) 

is an isomorphism (see Bourbaki) for every 19x-module s.. and (see [G], p. 265) 

Ext i (~.' c:r ) == Hi (X, Hom ( ~, ~ » 

COROLLARY 6B.5. 
o 

If X is non singular, then W X = W X t the canonical sheaf. 

COROLLARY 6B.6. Let W = Nonsing(X) and let j : W ~ X be the canonical 

embedding. If codim (X 
X 

THEOREM 6B. 7. .!!. Y C X is a closed sub scheme of codimension c and both Y and 

X are C-M then 

o c.t\ 0 
W = Ext (v , W ). 

Y -- Y X 
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At this pOint we can draw some consequences forthe weighted projective spaces. 

COROLLARY bB.8. The following isomorphism holds true: 

Proof. P(Q) is a C-M, normal· scheme (see 3A.l) of dimension r, therefore we can 
a o 

apply 6B.6 and we get W = 
JP(Q) -

j* tV W where W ::: Nonsing (P (Q». On the other 

o r (\ 
hand W -;;;;:.0. by 6B.5 and j* J..L.. 

W W vl 
= n;(Q) by 6A.l2. 

So we have only 
r 

to show that Sl c:: 
JI? (Q) -

~ ( (-\QI). We know that, by definition, 
JI? Q) 

.Q
r .,...... = (Syz ) 
JP (Q) r 

and 

being the complex exact. Therefore Syz ~ S(Q) <-\QI> and we are done. 
r 

COROLLARY 6B.9. ~ Q ::: Q and let XCJI?{Q) be a complete intersection of multi-

degree Cd
l

, •••• , d ). Then 
c 

Proof. ··By definition there exist c forms F
l

, •••• , Fc such that F
I

, ...... I F 
c 

is an S(Q)-sequence and if I ::: (F
t

, •••• I F ) then X::: proj(S{Q)/I). Let us con­
c 

sider the Koszul complex associated to F , •.•• , F and call it~ •• ThenK.resol-
1 c 

ves S(Q)/I and it is a complex of graded free S(Q)-modules. Applying f'-I to 

E ~ S(Q)/I ~ 0 

we get a resolution of l?X given by sheaves of the 

,.... 
denote byE. =E. this complex which resolves 

type ~ C?JP(Q} (n i )· 

By [De] Prop. 5.4, 

Let us 
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for every i > 0 and n E ~ • ThereforeE. is acyclic for the functor 

Hom ( •••• , 
- (!)P(Q) 

~p(Q)(-IQI». By standard arguments of homological algebra 

we get that Ext~ (C)x' l0p (Q) (-IQ\» can be computed as the i-th homology 
P{Q) 

of E •. In particular ~~ ( t.? X I t9p (Q) (-I Q I» is the homology of 
lP (Q) 

~ Hom(C-' ) (L d.), <!J'Yn(Q) (-IQI» -+ 0 
- P(Q . ~ ...­

~ 

Ii 
.} 

~ (') (L. d -IQj) ~ 0 
P (Q) i i 

where the vertical isomorphisms follow from the remark after 4A.S. This homo­

logy is clearly t9x (LT d i -I QI ). On the other hand 

Ext~ (CJ I t9
P

{Q) (-IQI)} ~ W; 
- P(Q) X 

bYi6B.7 and 6B.8. 

For more details on duality onp(Q) see [De] where some consequences are 

drawn, particularly in connection with the Gorenstein property. For instance 

we have the following 

COROLLARY 6B.I0. a) The schemeP(Q) is Gorenstein if and only if m divides 

b) If m divides ~ d
i 

-/QI then the scheme X £f 6B.9 is Gorenstein. 

Proof. a) It follows from 6B.3, 6B.8 and 4A.4. 

b) It follows from 6B.3, 6B.9 and 4A.4. 

COROLLARY 6S.11. ~ Q ~ Q and let Xc P{Q) be a complete intersection of 

multidegree (d
l

, .... , d ). Then the arithmetic genus of X is p (X) = 
c - - a 
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d - 1 
By definition p (X) 

a ==L 
i == 0 

i i 0 
( -1 ) H (X, W ), d == dim X ::::: r - c, and 

X 

by 6B.9 

p (X) 
a 

r-C-1 

L. 
i '"' 0 

(_l)i ai(x, c.9x<L; ... d
i 

-IQ\» 
~ 

Since depth S(Q}/r == r - c - 1, all the Hils vanish for ° < i ~ d - 1 

by 3B.4, b) second part. Therefore 

p (X) == HO (X, (!) (L d. -I QI» ::: (S(Q) /I).J 
a X ~ q 

i 

by 3B.4, b) first part. 

REMARK. The formula of 6B.9 is a typical adjunction formula, which has ano-

ther formulation under different assumptions. Namely, if X is a quasismooth 
-1 

subscheme ofP(Ql and p (X) is denoted by C {p : U ---*P(Q} is the canoni­
X 

o 
cal projection) and if d ::: dim X then W 

X 
Gim( n d+1). == p* ~LC As a consequence, 

X 

it can be deduced the following adjunction formula: 

If X is a quasismooth subscheme of P(Q), then 

r-d 
o n r 6.a A AIPxCQ) 

W X -::::. lI?(Q) /\ /V 

~.N ~ (Q) denotes the normal bundle of X ~ P (Q) • 

For details see [Dl, 3.3. 
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§7. On wei2hted complete intersections. 

We have already seen some properties of the weighted complete intersections 

at the end of the last section. In this section we are going to make some com-

putations of the Divisor Class Group and the Picard group ofP{Q) and of weig~ 

ted complete intersections. 

Let us just· recall that by m we denote the l.c .m. (q , •••• , q ) and by a the o r 

l.c.m.(d I •••• , d ). The description of the above mentioned groups forP(Q) o r 

is contained in the following 

THEOREM 7.1. Assume Q to be reduced; then 

a) CloP(Q) ) =~ generated by [C9p (Q) (a) ); 

b) IfQ=Q~ CloP(Q» = 7l 2enerated by [(!)p (Q) (1)J 1 

c) Pic (P(Q) ) = 7L generatp.d by [C9p (Q) (m>} 

d) JI?(Q) is locally almost factorial (i.e. the local class groups are tor-

sion)and it is locally factorial if and only if Q; (1, ..•• , 1). 

Proof. A proof can be found in[R2]. See also (Am] for another proof of a), 

b), c) with some generalizations. with regard to a), b) we only want to point 

out that the proof of [R2] is based on a more general theory of Demazure (see 

[nem]>, which describes the normal graded k-algebras by means of suitable Weil 

divisors with rational coefficients and on some consequences drawn by Watanabe 

(see [w1> on the description of the associated class groups. In any case an 

essential step in the proof of a), b) is to recognize that the sheaves 

~p{Q)(n) are reflexive of rank 1 (see 5.8). 

As for the proof of c) it is clear that Pic(P(Q» = 71. , being a subgroup of 

Cl (P (Q» and we may assume Q = "Q" since if Q -I Q, then c.?p (Q) (m)::t~ (Q") (m/a) 

by 3C.7 and m/a = 1.c.m.{qO/aO' •••• , qr/ar)' So we may use 4A.4. As we know, 

the sheaves cDp(Q) ( ~ m) are invertible and if n is not a multiple of m then 
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there exists aT. such that r (D+ (T ), (J (n» is not free over 
l. i JP(Q) 

r(D+(Ti ), 0 p {Q»' To conclude that <..9JP(Q) (n) is not invertible we need 

showing that PiC(D+{T
i
» =«D. For we know that D+(T

i
) = Spec k[T

O
' •••• , Ti , 

•••• , T
r
1fcIi 

and 

krTO' •••• , T., •••. , TJfqi:::;; e k[TO' •••• , T .•.... , T] L l. r n l. r nq. 
l. 

Therefore D+(T.) is the spectrum of a ring which can be naturally graded over 
l. 

~ and whose part of degree ° is k. By [FO], 10.4, p. 43 its Pic is trivial. 

As for d), we observe that by [B-O], Prop. 2.1 and by a}, b), c) it turns out 

thatp{Q} is locally almost factorial and it is locally factorial iff m = a. 

But JP(Q)~ P('Q") and a(Q") :::;; 1, so JP(Q) is locally factorial iff m(Q") :::;; 1 that 

is iff Q :::;; (1, 1, ••.. , 1>. 

COROLLARY 7.2. • ••• , q'), assume that 
r 

qo ~ •••• ~ qr' qo ~ •••• .::s q~ and that Q :::;; Q, Q' == Q! • .!E.. JP(Q) is isomorphic to 

P{Q') ~ Q =: Q'. 

~. (see also [Am]). The isomorphism tf betweenJP(Q) and P(Q') induces 

an isomorphism If* between Cl(]?(Q'» and Cl(]?(Q». Since [l?p(QI) (1)] 
generates Cl(]?(Q'», the inverse image ( f) * [(!) (1 >J"' is a generator of -, JP(Q') 

CIOP(Q» hence If* 19JP (Q') tl) ~ t9P {Q) (1) because no multiple of 19(-1) 

has global sections. Consequently tp* UOp(QI) (s) = L9P {Q) (5) for every 

s 6 Z I therefore 

dim
k 

g0(p(Q}, C9p (Q) (5» = dimk H°(p{Qt), c..?JJ?(Q')<S» 

But g°oP(Q), c?P(Q) (5» :::;; S(Q}s by 3B.2.c). This means that the Poincare 

series of seQ) and seQ'} coincide. Now it is sufficient to prove the following 

.... , q ' ) 
t' ' 
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qo ~ •••• ~ q~ are such that Pt(S(Q» ::: Pt(S(Q'» then Q 

care serie). 

Q' (herp. P is the Poin­
t 

we prove the Claim by inducti?n on r. If r = 0, it is clear. Let qu ~ qo and let 

us evaluate bOth series at qO' Then we find 

dim(SlQ)qo) = dim(S(Q')qo) ~ 0 

whence q' = q • But o 0 

P t (S ( Q» ::: 1/ (t qo - 1) .••. ( t qr - 1 J t 

hence we find 
q q' q' 

(t r _ 1) = 1/(t 1 - 1) •••• (t r - 1) 

If we denote by Q ::: (q , •.•• , q ), QI = 
o 1 r 0 

(qi, •••• , q~) Wp get by induction that 

Qo = QO and the proof is completp.. 

NoW, starting from the funnamental theorem 7.1, we may try to compute the divi-

sor class group and the Picard group of suitable subschemes ofP(Q). 

First, let us recall the following result of Mori (see [Mo], 3.7) which yields a 

"weighted version" of the classical Lefschetz theorem on complete int:ersections 

THEOREM 7.3. ~ X be a projective variety which is a complete intersection in a 
o . 

weighted erojective spaceP(Q) and such that XC F (Q). Then 

a) .!! dim X ~ 3 ~ Pic (X) ~ 7L generated bl [ Ox (1) ] ; 

b) If dim X = 2 then there is an exact sequence 

a ~ 7L ~ Pic {X} ~ K ~ 0 

where 1 goes to [(9 X ( 1)] under a< and K is torsion free. 

Proof. a) The assumption that XCpo(Q) already implies that Q is normalized by 

5.1, b) and 5.5. Now 

x = prOj(k[To' .... , 
where deg T. ::: q.t deg F

j 
= 

l. l. 

k[TO' •••• , Trl. Let 

•••• , F » 
c 

d
j 

and F
1

, •••• , Fc is a regular sequence in 
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homomorphism which is finite and free (see 3A.2). This implies thatif we put 

Gi = If(F
i
), then G

i
, ...• , G

c 
is a regular sequence in k[XOI ••.• , x;} Look 

at 

x = prOj(k[X
O

' •••• , X
r
]/{G

i
, .... , G

c
}) 

embedded in III and consider 1\: J1?r ~ ]? (Q) (see 3A.l, d» which induces 

1T: X ~ X. Arguing as in 3A.2 we get that 

o 
But X C]I? (Q), hence the sheaves IA (n) are invertible, whence ~ f~~ is ~X 11* ~X 

locally free. Now 1T'induces 1r* : pic (X) ~ Pic (X) and since it comes from an 

equivariant homomorphism, one has 11"* l?x(l) = (Qx(1). We know that X is an 

usual complete intersection in JPr such that dim X ~ 3, hence the "usual" 

Lefschetz theorem applies to say that Pic (X) '" 7Z. . [ l?x (1 >]. Therefore we 

have only to show that 11'* is injective. For, let .e e Pic (X) be such that 

-rr't ~ (9.... • We deduce that 
X 

and by using the projection formula 

<:.') (- L ..... eX.n 
X 1. 

i 

Since X is projective, the Krull-Schmidt thp.oren implies that .e ~ 19 (n) 
X 

-1 
for some n € LZ • If n -F 0 we may assume n > 0 by interchanging .l!. and Jl. • 
Therefore ~ is ample and since 11 is finite also is ample. 

This is a contradiction and the proof is complete. 
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b) As in the case above one has a morphism "iT: X ---7 X which induces an injec-
,.. 

tive morphism 1r* ~ Pic(X) ~ Pic(X). Then we get an exact diagram with com-

mutative left square 

o ----7' ~ ----7' Pic (X) ----7' K ~ 0 

J id l 1f * 
r ' 

o ----7' 7/... 
(.' 

~ Pic (X} ~K~ 0 

where 1 goes to [<.?x(1)], [c..?X(1)]under 0( I (. respectively andK is torsi.on 
-.J' 

free as proved in tRl]. The diagram induces an emberlding K~ K so the asser-

tion follows. 

A consequence of Theorem 7.3 b) is the following (compare with statement 7.6): 

COROLLARY 7.4. Let X be a normal Erojective surface which is a complete inter­

section in a weighted projective spacep(Q} and such that XCpo(Q). Then every 

prime Cartier divisor of X which is a set-theoretic complete intersection on X 

is actually a complete intersection on X. 

Proof. It runs as in [R~, §3. 
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REMARK 1. It should be noticed that Theorem 7.3 was an essential tool to 

prove the following fact, which was the motovating point for introducing 

weighted complete intersections: let Y be a complete intersection of multi-

degree (d
1

, .. ", . , d ) inpN, dim Y ~ 3 and assume that Y is an ample divisor 
c -

in a smooth projective variety X. Then there exists seN such that X is 

a weighted complete intersection of multidegree (d
1

, •••• , d
c

) inP(!, .... , 

and s divides d
i 

for every i (see [Me]>. 

REMARK. 2. In [DJ, it is proved another version of the "weighted Lefschetz 

theorem". Namely the following is true. Let X be a projective variety of di-

mens ion ~ 3 which is a complete intersection in a weighted projective space 

P(Q) and such that X is quasismooth. Then Pic(X)~:Z 

Of course theorem 7.3 of Mori and the theorem above of Dolgachev lead 

naturally to the following 

QUESTION 1. Is there a version of the Leschetz theorem for every complete 

intersection inP(Q)? 

REMARK 3. If we look more carefully at the proof of theorem 7.3 we see that 

generated by [ ~(L ( 1) :. Therefore, if 
XJ 

dim X = 2 and X is sufficiently general then we may use the classical Noether 

theorem to get the desired conclusion. However X is not a priori sufficiently 

general, because in the equations defining X the variable X. only appears 
1. 

with exponents multiple of q .• 
). 

The remark above leads naturally to the following 

QUESTION 2. Is there any "Noether type" theorem for weighted complete inter-

sections of dimension 2? 

It should be noted. that a partial answer to Question 2 was given recently 

by Steenbrink (see [5]>, who proved that for a sufficiently general surface 

1, s) 
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x .£!JP(1, 1, a, b) with G.C.D.(a, b) ;::: 1, Pic(X}-;:;' ~ 

For the next application we need the following 

LEMMA 7.5. ~ Q == Q and let n be such that c:) (n) LS invertible. Then 
JP(Q) 

• ('\ I f) £Is 7'. 
v]!?(Q) (sn) = \... JP(Q) (n) for every s ..:: 

Proof. By 7.1, n == am hence c9 ) (sn) 
lP(Q 

;::: c?JP(Q) (sam) is invertible. Of 

also <!J (n) ~s is invertible. 
JP(Q) 

course 

To show that they are isomorphic it is sufficient to prove that their re­

strictions to JE,o(Q) are isomorphic and this follows from 5.6, d). 

In the following, if X is a subscheme ofJP(Q) and I is the ideal of x, 

then we denote by SeX) == S(Q)/1 and by 0( : SeX) ~ (!) aO (X, t9 (n» the 
X n X 

Serre-homomorphism {see 3B.4). 

THEOREM 7.6. Let Q;::: ~ and le~ X be a normal closed subvariety ofJP(Q). 

Assume that the Serre homomorphism ~ is an isomorphism and that 
X 

Pic(X)/71.· [l9x{m)] is torsion free. Then every Cartier prime divisor D 

of X which is a set-theoretic complete intersection (s.t.c.l.) on X is 

actually a complete intersection (c.i.) on X. 

Proof. Since D is s. t.c. i. on X there exists d tE AI and a form F E S (Q) d 

m 
such that D = Z(F) (\ X (set-theoretically). Let us consider F E S (Q) = 

md 

= nO oP (Q), <D (md». since 
JP(Q) 

effective Cartier divisor ~ 

t? (rod) is invertible by 4A.5, F
m 

defines an 
X 

such that 

(9JP(Q) ( D.) ~ 
0d 

<.9P {Q) (md) ~ 19JP(Q) (m) (by 7.5) 

m On the other hand, Z(F ) n X = D and the restriction of L\ to X is a' Cartier 

divisor, having D as its support. Since D is prime it follows that 
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hence 

(9 (D) ~ eo (!) (qD) ~ C0 ) (t::. ) 9 L0 f-~ 
X X lP (Q X X 

9d 
(m) 

The assumption on the torsion freeness of Pic (X) / ...,... ... ?, (m) implies that 
• X_ 

<9 (D) '2:: l.9 (m) 9S:::::: t9 (ms) 
X X X 

for a suitable s. The assumption on the Serre homomorphism implies that the 

canonical map 

S(Q) 
ms 

o 
= H (P(Q) I 

o (0 (ms)) ~ H (X, ~ I) (ms» 
lP(Q) - X 

is surjective. Then there exists a form G E seQ) which defines a Cartier 
ms 

divisor div(G) such that 

div(G} • X ::; D (scheme theoretically). 

REMARK 1. From the arguments above it turns out that significant applications 

of Theorem 7.6 would follow from a generalized Lefschetz type theorem in which 

the assumption "XC po (Q) 01 occurring in 7.3 was removed. 

REMARK 2. While a global section of an invertible shedf yields a Cartier 

divisor, it should be noted that if we take for instance Q = (I, 1,2), the 

global equation TO = 0 yields a Weil divisor on lP (Q) which is not a cartier 

divisor. This corresponds to the fact that r!) (1) is not invertible. 
lP(Q) -

We conclude this section with some remarks on the following question. By 

means of 7.3 some examples are constructed in [R2] of smooth varieties X 
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with dim X 9 3 which are c.i. inF(Q) with Q = Q and whose projective coord i­
N 

nate ring is U.F.D. Moreover such varieties do not have immersions in any~ 

such that the corresponding projective coordinate ring is U.F.D. Here we 

remark that examples of this kind can be constructed also in dimension 2. 

Namely, if we drop the assumption fiX smooth" then]?{1, 1, 2) is such an exam-

pIe, but if we want to keep the assumption, then we may consider for instance 

r 1 53 2 
B :::; k Co I T l' T 2' T 3' T 4/ {TO + T 1 + T 2 ' 

~ (6, 10, 15, 1, 29). 

As it is proved in [r], A, Bare U.F .D., hence the smooth surfaces X == proj (A) , 

Y == Proj(B) have a normalized U.F.D. immersion in]?(2, 3, 1,5) and 

P(o, 10, 15, 1, 29) respectively. Using the results of [R2-" §§ 3, 4 we know 

that X, Y have no U.F.D. immersion in anyF
N

• 
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APPENDIX: Reflexive modules and Weil divisors. 

First, let us recall some results from algebra. All the rings we consider 

are noetherian and the modules are of finite type. 

LEMMA 1. Let A be an inte2ral domain and let M, N be A-modules with N torsion 

free. Let tr : M ---7- N be an A-homomorphism and let }I~ ~ Spec (A) be such 

that <{'If = O. Then r O. 

Proof. Easy, left to the reader. 

LEMMA 2. Let A be an integral domain, M, N submodules of the fraction field 

K(A) and let Jf c Spec (A) be such that M 't ~ Nit'';::::: A. • Then every A-homo­

morphism 'f: M ---+ N is the multiplication by an elemp.nt of K(A). 

Proof. From the assumptions one sees that <f;p is the multiplication by an 

element alb E: K(A). Consider the A-homomorphism blf - a. One has (b Lf - a) = 0, J.r 
hence b Lf - a = 0 by Lemma 1 and we are done. 

PROPOSITION 3. Let A be a normal rin2 and let M be an A-module of finite 

type. Then the following are equivalent 

a} M "-' M**; 

b) M = A : (A M) i 

c) M ~ MYp ht UP) = 1 ; 

d) Every A-re<iJUlar sequence of lenght two is a M-regular sequence too. 

Proof. See [FO}I p. 23-24. 

THEOREM 4. (The Approximation Theorem for Krull Domains). Let A be a Krull 

domain and denote by v 

tion rin2 A • For each 

n ('f') = 0 for almost all 

an f in K(A)* such that 

the valuation associated to the principal valua-

I~ in Spec (A) let n (1)) be a 2iven integer such that 

JP . For every finite set I"' l' .... , "P r there is 

v (f) = n( 1'1) 
'ri 

and v (f) > 0 otherwise. 
.? 
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Proof. See [F~, p. 26-27. 

From now on let {X, c?x' be a noetherian, irreducible, normal scheme of 

finite type over a field k, and let K (X) be the constant sheaf of rational 

functions. 

PROPOSITION S. ~11,K' ~ submodules of finite type of K (X) and let x E X 

be such that J1 ~ Ii' ~ (!) • Let lP: n ~ K! ~ (:' -homomorphism. 
x x X, x -- 1 X 

~ tf is the multiplication by an element of K(X). 

Proof. Lemma 2 says that for every affine open subset U'of X one has 

tfrU = F(U}, F(U) rational function on U (hence on the whole X). Therefore 

the F(U)'s give the same rational function on X since they coincide on non 

empty open subsets. 

Now we refer to W-div (X) as to the set of the Weil divisors on X and if 

D e W-div(X) the sheaf cD
x 

(D) is defined in thp. foJ.lowing way: if U is an open 

set, then. r(U, 19x(D» ={f ~ K(X)*; (div(f) + O)lu ~ 0 • 

LEMMA 6. The sheaf c9. (D) is a submodule of finite type of X. (X). 
X 

Proof. It suffices to give a local proof. - Let x E. X and put A = c!) , 
XI X 

L = C!J (D) , L' = C9 (-D) • Note that L' #- 0 in view of Theorem 4. Let 
X x X x 

o .; f ELf and take 1 G. L. Then 

div(fl} = div(f) + div{l) = divef) + D + div(l) - D ~ 0 

that is fL ~ A which implies L ~ (l/f)A and we are done since A is noetherian. 

LEMMA 7. ~It be a submodule of finite type of l< (X). Then 

Proof. The inclusion "~" is clear. Let U be an affine open subset belonging 

to an affine covering of X and write A = r{U, t!),M= 
X 

r {U, H. J. Let 
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a /b , •••• , a /b be generators of M over A, a. I b. E A. Since a. 1 bare 
1 1 r r 1 1 1 i 

not zero, there exists a point .1" such that a i <J}:» 1- 0 , b i ( '1'-') " 0, 

i = 1, •••• , r. Therefore M.",(_ = AJf and proposition 5 gives the result. 

LEMMA 8. For eveEY D 6 W-div(X), c!) : <!J. (DJ = Hom 
X X .............. r 

X 

Proof. t? (D) is a cD -module of finite type, so Lemma 7 applies. 
X X 

LEMMA 9. ~ f E. KJX)* and let D, D' E W-div(X). Then we have 

a) (!) (di v (f) ) = 
X 

(1/f) 0· x' 

b) CJ (D) . (!) (D') C (9
X

(D + D'); 
X X 

c) (!) (D) . C!J (div(f» ::: (f) (0 + div(f». 
X X X 

Proof. a) and b) are clear. To prove c), let g t:;. r (u, . .'~ (D + div (fl) ) • 

Then (div(g) + D + diV(f»lu ~ 0, that is (div(gf) + O)lu? 0, so 

g = gf . (l/f) where gf, E reu, 0 x(0», l/f (. r(U, ., x(div(f». 

REMARK. The equality in b) is not true in general. Indeed, take 

X :: Spec k [x, Y I z ]/ (xy _ z 2 ) , 

(!) (D + 0') :::. 

Jr = (x, z) I Jf'::: (Y I z) to::· 'I:' i , 

D' = ['f '1- Then <.9 (div (z» t­
X 

e() (D} 
X X 

LEMMA 10. Let D, D' E. W-div (X) and let tf: 
morehism. Then D' == D - div(f). 

Proof. Proposition 5 and Lemma 9, c) yield 

(J (D) ~ 
X 

<!J. (D') :::. 
X 

c? (- div(f» . (Q (D) :::. 
X X 

t!) (D-div(f». 
X 

<...1) {D'} • 
X 

o (D') be an i50-
X 

( 0. (D» = 
X 

PROPOSITION 11. For eve!X DE. W-div(X) I <.9 (-D) == li) : 
X X 

19 (D). 
X 

Proof. The inclusion lie" is clear. The converse can be proved locally. The-

refore we may assume X .. Spec A. Let f E. K (X) ... K(A) be such that 
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f E A : A(D) and write div(f} = D + T. We have to prove that T ~ O. In view 

of Theorem 4 there exists g £ K(A)* such that div(g) = -D + S where 

Supp S n Supp T ::: ¢ and S ~ O. Hence g € A{D), so div(fg) ::: div(f) + div(g) ~ 0 

Si.nce div(f) + div{g) = T + Sand Supp S n Supp T := ¢ it follows that 

T ~ O. 

COROLLARY 12. If D ~ W-div(X), then <9x (D) ~ ::~ C9
X 

(D» ~ 

~ t9 (D)**. 
X 

Proof. It follows from Lemma 7 and Proposition 9. 

As well as the sheaves ~ (D), all the invertible sheaves can be considered 
X 

as submodules of K (X). In fact one has 

LEMMA 13. ~.e be an invertible sheaf on an integral scheme X. Then there 

exists ..e' E. K (X) such that .e ~ f. I 

~. See [H], p. 145. 

THEOREM 14. ~;, be a submodule of )(X). Then the following are equivalent: 

a) ~ is invertiblei 

b) There exists a submodule l' ~ K (X) such that (9. 
X' 

c) 1:.. = e? (D) for some Cartier divisor on X. 
X 

Proof. a) ~ c) There exists an open covering r Ui]i of X such that 

.e Iv. ;; 
~ 

~ I • Then proposition 5 implies that x,Ui 

for some f. E K( r (U., (!)). 
~ ~ X 

c) ~ b). Lemma 9, b) gives the inclusion (f; (D) • 
X 

<!) I (div(f.) 
X Ui ~ 

equality can be proved locally, so it follows from Lemma 9, c). 

b) ===:;;. a). Let x E X, (A,)1\,) = <f) L ::: ..e I L'::: D, • Then L . L' = A, 
X, x' x 0(..,. x 

so that L £ (1/1') A for every 0 :;. I' 6 L I. Therefore Land L I are A-modules 
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of finite type. Now L . L' ~ A can be read as L® L' ~ A, hence 

L/'Y\'t,L® L'/r!T,L' ~. A/m, , so that Nakajama's Lemma implies that 

= .U (L') ::: 1 where II LA (.)" means the minimal number of generators. 
/ ;--

LEMMA 15. ~ D ~ W-div(X} and let 0' be a Cartier divisor. Then 

19 (0) • t.9 (O') = t9 (0 + 0'). 
X X X 

(/. (Ll = 

Proof. Lemma 9, b) gives the inclusion "e-". The converse follows from Lemma 

9, c). 

COROLLARY 16. Let D 6. W-div(x). ~ D is a Cartier divisor if and only 

if there esists a divisor D' such that ~X(D)' ~x(D') = 19
x

. 

~. The "only part" is clear by taking D' -0. The converse follows from 

Theorem 14, b). 

NOW, let U be a nonsingular open subset of X such that codim (X\U) ? 2 and 
X 

let j : U ~ X be the canonical embedding. We have the following 

THEOREM 17. ~ 11. be a submodule of J<.<X). Then the following conditions 

are equivalent 

a) }1.::: \!) (O) for 
X 

some (uniquely determined) o t: W-div(X); 

b) M. is a rank one, reflexive module of finite tX.ee i 

c) j*}i is an invertible sheaf and 1\== j.j*tt· 

Proof. a) ~ b). It follows from Lemma 6 that M. is of finite type and from 

Corollary 12 that it is reflexive. To show that it has rnnk one it is sufficient 

to find a pOint x €. X such that K ';t (9 • For this we just take a pOint 
x X,x 

x which does not belong to Supp(D). 

b) ~ c) To prove that j*t{ is invertible, take x E U and write M = (j*J1) , 
x 

A ::: <!) • Since M is of finite type there exists f e A such that M t;; (l/f)A. X,x 

Bence M ::::!.. fM .,. ()'(" Ut. ideal of A. Up to dividing by the greatest common 
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divisor of the generators of OL (remember that A is regular hence U.F.D.), 

we may assume (f~:; (1 ) or ht ( c,t) ~ 2. To cone lude, it suf f iee s to exc lude 

the case ht «()f...,) >,.. 2. Therefore we have only to prove that A : '\', = A if 

ht( Ot ) ? 2 (indeed it would follows A : (A : (;'(,) = A ~ '''. and A : Ot. = ,'Or * ., , 
so A : (A : Or... ) :; J:, ** by Lemma 6, contradiction). Thus assume ht ( r.lG) ? 2 

and let us prove that A : £'l ~ A. Let (a/b) I):" ~ A and let (a , •••• , a ) 
1 r 

be a system of generators of Vt • Now we can take a, b to be coprime and we 

know that A is U.F .D. because it is regular, then a, E (b) but ht ( ()-"') + 2, 
~ 

whence b = 1. 

Moreover from Proposition 3, c) one deduces M = j*j*M. 

c) ~a) j*M = (!) (D) for some cartier divisor D on U. Then D gives rise to 
U 

a uniquely determined Weil divisor on U, which we denote again by D. Clearly 

such a divisor extends to the whole X since codim (X\U) ~ ~. Therefore M = 
X 

hj*M = (!) X (D) • 
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