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INTRODUCTION TO THE THEORY OF WEIGHTED PROJECTIVE SPACES
by

*
Maurco Beltrametti Lorenzo Robbiano(

INTRODUCTION. BAs the title suggests, this paper is devoted to the description
of the main features of the so called weighted projective spaces {shortly
W.p.S.). A w.p.s., is a special projective scheme, which arizes as the projec-
tive spectrum of the polynomial ring over a field k, with the extra condition
that the degrees (weights) of the variables are arbitrary positive integers.
If Q= (QD, venns qr) is the set of weights, we denote by P{Q) the associated
w.p.S. and of course if ¢ = {1, 1, ...., 1) we recover the usual projective
spaces; clearly this generalization leads to a great deal of guestions, but
first of all let us try to explain what are good motivations for the study

of such varieties.

For, it may be interesting to give some historical hints. While the origin
of the theory is not fixed with absolute precision, it shouldn't be far from
the truth to say that the first time w.p.s. appear in the literature is in EA].
Since then a great deal of interest was put on these varieties, which are
shown in [Mo} to be the natural ambient where some problems of complete in-
tersections have a natural solution {see Remark 1 after theorem 7.3) and which
are fully investigate in [De], ﬁainly in connection with the theory of duality
and the purpose of giving good classes of Gorenstein rings. More or less at
the same time a manuscript of Dolgachev, which was published in 1982, see [D ],
provides a main source for general informations on w.p.s.. It also gives some
generalizations to w.p.s. of classical theorems on ¥, suchas a version of the
Lefschetz theorem for complete intersections and the Hodge structure on ccho-~
mology of weighted hypersurfaces, Since then there was a growth of interest

on this subject from several points of view. For instance we want to mention

{(*) Members of G.N.S5.A.G.A, of C.N.R., Italy.
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the papers [C'land [pl], where w.p.s. are used as a strong tool in the classi-
fication of algebraic surfaces, and[?u] where the problem of classifying some
polarized manifolds with given sectional genus gets the solution in a w.p.S.
Other kind of applications are given in.[RZ], namely it is shown how to use
w.p.s. in order to produce good classes of factorial and almost factorial
rings (we refer to this paper for a more detailed explanationof the connection
between these algebraic properties and the theory of w.p.s.). Another recent
source of informations is [Am] where for instance some computations of the
divisor class group and the Picard group of P(Q) are given.

Many other applications are pointed out in the text; however what is essen-
tial to say is the following: w.p.s. share with ¥ a lot of good properties,
therefore if one recognizes that a projective variety is for instance a
hypersurface or a complete intersection in a w.p.s., then he may draw a lot
of consequences from the general theorems which are the subject of the pre-
sent paper.

To draw an organized picture of this beautiful theory we have divided our
paper in seven sections plus an appendix which deals with some elementary
facts connecting reflexive sheaves and Weil divisors. The first section is
devoted to recalling some fundamental things on the action of a finite group
on an algebraic variety and then we explain the relationship between inva-
riants and quotient varieties. In the second section we put our attention
on the link between the graduations on a ring A and the actions of Gm on
Spec(l); this leads to the geometric notion of quasicone and a theorem of
Flenner (see Th. 2.6) allows us to relate properties of quasicones associated
to a graded ring A and properties of Proj(A)} (see 2.7). As a special case of
this picture we have the w.p.s. P{(Q), for which the associated quasicone is
the usual affine space, but a different graduation gives rise to a different
action of Gm on Spec{A), hence to a different quotient. This is explained in

the third section, where some properties of P{Q) are examined; for instance
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it is shown that P (Q) can be considered as a quotient of v by the action of a
finite group and the associated projection is studied (see 3A.5). Moreover
some basic cohomological properties and a technique of reduction and norma-
lization of weights are explained, Properties of the sheaves C%P(Q)(n)' which
first appear in section 3, are better investigated in section 4, where also
ampléness criteria of Delorme are given., Section five is entirely devoted to
the study of an open subsetimo(Q) of P(Q), which was introduced by Mori and

Y o
is, in some sense, the "true analogous" to P . Namely on PP (Q) the sheaves

Q%P(Q)(n) behave well, while in the third section it was shown that on P{Q)

the sheaves C%P(Q)(n) have a lot of "pathologies". Section six deals with
differentials and dualizing sheaves on P(Q) and scme ideas of Dolga-

chev and Delorme are used to give a proof that the dualizing sheaf of a com-

plete intersection X in P(Q) is (QX( Z;A di —‘Q}), where the di's are the

degrees of the hypersurfaces which define X and }Q} is the sum of the weights.
In the last section we first prove a theorem which gives a full description

of the Divisor Class Group and the Picard Group of P(Q); then we recall the
weighted version, given by Mori of the classical Lefschetz theorem on comple-
te intersections and then we use it to give a generalization to w.p.s. of an
0ld result of Robbiano (see‘:Rl]).

With some exceptions the treated topics are contained in the literature,
but we want to point out that our main purpose was that of producing a uni-
fied treatment of the theory and of providing almost everywhere full proofs
and good connections among the various sources. Further it may be worth to
mention that along the paper the reader can find a good deal of examples,
remarks and guestions. ‘

Throughout the paper, k denotes an algebraically closed field of characte-
ristic O,

The content of this paper was the subject of several talks given by the
second author in Bonn, K5ln , Bochum, Osnabriick while he was Visiting Profes-
sOr at the Max-Planck-Institut Flir Mathematik (Bonn) during the winter se-

mester 1984/85.
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§ 1. Quotient varieties by the action of a finite group .

DEFINITION {.1. Let S be a set, G a group with operation denoted by -, and
identity element denoted by 1.

A map Gx 8 —>» S, (g, s} F—> gs, such that (gl-gz) s = gl-(gzs) and is = s
for every gl, g2 € G, s € § is said to be an action of G on S; it is also
said that G acts on S and if gs # s for every g # 1 and every s, then G is

said to act freely on S.

DEFINITION 1.2, If G is a group acting on S, the bijective map Tg : 8 —> 8,
s ——> gs, is called a translation and it is easy to see that the map

G ~—> Aut(8), g —> T is a homomorphism, which gives a representation of
g

G inside the group Aut(S) of the permutations of S.

DEFINITION 1.3, If G is a group acting on S, and s £ § we denote by Gs the
set g;gs ; 9€6 " and we call it the orbit of s. It is clear that orbits make

a partition on S.

DEFINITION 1.4. Let G be a variety {(not necessarily irrcducible) which is a

group. Then G is said to be an algebraic group if the two maps

GXG —> G G —> G

-1
{(x, v) —> x°y X b—> x

are morphisms of varieties.

DEFINITION 1.5. Let Gbe analgebraic groupand X a variety. If Gactson X insuch
a way that the map Gx X —>» X is a morphism of varieties, then we say that

G actsmorphically on X,or if no confusion arises, that G acts on X.

REMARKS., An algebraic group acts morphically on itself, hence translations

are easily seen to be isomorphisms of varieties, Therefore algebraic groups

are non singular. It is well-known that complete algebraic groups are commu-

tative and usually referred to as abelian varieties.




DEFINITION 1.6, Let X, Y be varieties, g X —> Y a morphism and G a group
acting on both of them. Then <9 is said to be G-equivariant if ((’ {gx) =

=g({)(x) for every g € G, x £ X.

1 D
EXAMPLES. Ga= m o, +), Gm= (k*, ) where k* = A -.0.,

n 2
/&m = Spec(k[}{]/(x - 1)), Gl(n, k) =& -~ Z(D) where D is the determinant
n+i
of the generic nxXn matrix are algebraic groups. An action of Gpon A —EO}

is the following: (A, (xo, cevny xn)) f—> (f’\xo, eers 7 xn) and the orbits

are the punctured lines through the origin.

Let now G be a group acting on an affine variety X, whose coordinate ring
is denoted by k[x] and assume that the translations are morphisms (this is

automatically true if G is algebraic and acting morphically on X).

DEFINITION 1.7. We call translation of functions given by g the k~automorphism

T, k[x:\f——-)k[x], ‘f;-——>fo*rg_1

1.8. ——> Ant i b e > is a h morphi
LEMMA The map G b} k(k[x]) given by g g is omomorphism,

hence it induces an action of G on k[x].

Proof. ’Cg.h(f) = f o T o T -1 = f o Th_l o T -1 =

(g-my-1 hl.g g

= T EeT )= Tyt TR = (T o T 0.

REMARK. If we define - (f) to be £ o T , then in general the map ¢ +—> T
g g

is nomore a homomorphism, hence it does not induce an action of G on k[x].

If G is an affine algebraic group acting (morphically) on the affine variety
X, then an action of G on X is a morphism M GX X ——» X, which corresponds
to a k-homomorphism kF : k[x] — k[ x] @ k[G] {where k[x'} and k{G] denote

the coordinate rings of X and G respectively).
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Now let g ¢ G and let M be the maximal ideal of k G : corresponding to g and

consider the composition of the following k-~homomorphisms

x(x]—> x[x]® k[G}M x[x]® x[cj/m = k&~

-1
It is easy to check that the composition sends £(X) to f£{g X} i.e. it sends

ftof o Tg—l = 4fg(f). This means that ¢ not only has the information of

the action of G on X, but it hasalso the information of the action of G on
x[x].

Now we want to study the following situation: X is an affine irreducible
variety whose coordinate ring is denoted by k[x: and G is a finite group
of order m acting on X in such a way that the translations are morphisms.
As we know, the action of G onXgives rise to an actionof Gon k[x]which cbviously
extends to an actionof Gon k{X), the quotient field of kixj.
DEFINITION 1.9. We denote by k[X| the subring of k'X] of the invariants

undexr the action of G i.e.

k[x'}G =gf € x[x]; of = TGP = £ 0T 1 = £ for every g = G/

-

[

={¢ & k(x]; f is constant on the orbits’.

t

G
In the same way, we denote by k(X) the subring of invariants of k(X).

THEOREM 1.10, The quotient X/G has a natural structure of affine variety,

G R
whose coordinate ring is k[x} , and whose field of rational functions is

k(X)G.

Proof. Step 1. k [x}G is a finitely generated k-algebra and a domain.

For every £ € k[X] let us consider the finite set ggf ; g€ G}=
= {'Eg(f); gec} i.e. the orbit of f under the action of G
on k[x:land denocte by'cyr(f) the elementary symmetric function of degree r

on the mentioned orbit. If k{?:}= k[xl, caeey xa . then denote by S5 the k—q&

gebra generated by Crr(xi}, r=1, ceee, m; i =1, ..., n.



We have the following chain of inclusions

-_—

k € s ¢ k[xf < k[x}

Now the polynomial equations

~1 m
Tr X - = - - & same - = 0
gec { gxi) X G’I(xi) X + + (-1) Gm(xi)

are satysfied by the x 's, therefore k(_x} is integral over §, hence it is a
i
finitely generated S—module. This implies that also k[x} is a finitely gene-

rated S-module (S is a noetherian ring), generated, say, by bl' seeny bt. There

fore k[x] is generated over k by the o"r(xi) s and the bj's.

.G
Step.2, The affine variety Y corresponding to k{x. can be identified with
the topological quotient X/G.
The inclusion k[x_)G s ktx] is a finite homomorphism, which corresponds

to a finite surjective morphism T : X —> Y. Now the diagram

(x> xfx]

N LS
k[X

is clearly commutative and it corresponds to the diagram
¥ e—3  x
Y
But this means that M is constant on the orbits hence we get a factorization

X ————3 Y

Let now x, x' ¢ X be elenents with different orbits. Since Gx is finite
and x' ¢ G , there exists a function f € k[x]such that flG =1, £(x") =
x b3

= 0, Let § denote c’m(f); then i‘Gx =1, §(x") = 0, hence



(W) = 1, ${ Wx')) = 0, which implies that T (x) # T (x').
Therefore ¥ is injective.
Now we have that Y can be identifiedwith %X/G as a set; but since T is conti-
nuous and closed (it is finite), then Y can be identified with X/G as a to~

pological space.

G oG e
Step 3. k(X) = K(k X' ) the quotient field of k' X7 .
The inclusion T 1is clear,

Let a/b e k(x)G and let c =—T;; Qfg(b). Since a/b = ac/bc = ac/ G*m(b) we
g
G . N
get that ac = ac/ G‘m(b) - O'm(b) € k{X)" N k|X]=k{X] and the other

inclusion is proved.

REMARK, If, in addition to the hypotheses of Theorem 1,10, we assume that G

acts freely on X, then ‘I’ turns out to be étale (see’' M p. 66).

COROLLARY 1.11. If X is normal, then X/G is normal.

Proof. If k[X}G denotes the integral closure of k[ X]G, then we have

Kx2 = k[x] k0 = lx]n ke =k ok ® = kx

PROPOSITION ~ DEFINITION 1.12, The cyclic group of order @ is an algebraic

ubgr i i b .
subgroup of Gm, which is denoted by }}Ad

. 4a ~1- 4
Proof. Namely ,‘_;dg sPec(k{_'x]/(x ~ 1)) = Spec k{x, X j/(x - 1) {remember

that k is assumed to be algebraically closed).

Let us now extend Theorem 1.10 to a more general situation; X denotes a
variety {not necessarily affine), G is a finite group of order m acting on X
in suéh a way that tfxe translations are morphisms.

As before we denote by X/G the topological quotient and by U : X —> X/G
the canonical projection. We obse;rve that for every open set U of X/G, the
translations of functions Tg operate on 'n‘-}( u ), which is stable under the

action of G. Therefore G acts naturally on | _ ¢ " in the following way



¢ x Ptu, w, D) —> (U, T, )

* X
f I

-1 -1
G ox MW T (w), (0) —— T(T (), ")x>

{g £} — > T~ (£f) = £ o T _
! g g7t

G
So we can talk about the sheaf of invariants { TT* (3x) , meaning the sheaf

associated to the presheaf defined in the folldwing way

G G
re, (1, 0N = Cw T, Y

THEOREM 1.13. If for every x ¢ X, the orbit Gx is contained in an affine

open set, then X/G has a natural structure of algebraic variety, whose struc-

ture sheaf is ( ., LQX)G.

Proof. If X is affine, the theorem is already proved (Theorem 1.10). Let now

x € X, and let Uf be an affine open set containing Gx; then U = ;;\G g U'

is an open set with the following properties:

a) it is affine as a finite intersection of affine open sets in a separated
variety;

b) it is stable under the action of G:

c) it contains Gx.

Then X can be covered by affine open sets U, which are G-stable; for every

such U, T(U) isopenand T : U = ﬁ'wl { T (U)) —> W (U) is again the

. . - Gy \
situation of Theorem 1.10; therefore ( 1V (U), I'(U, ”X) ) is an affine va-

riety; since the open sets 1T (U) cover X/G, we are done.

REMARK, The condition that for every x ¢ X, the finite orbit Gx is contained

in an affine open set is, for instance, satysfied if X is projective.

-1
REMARK, In Definition 1.7 it is essential to use g in order to get an
action (Lemma 1.8). However if G is commutative it is possible to use g and
then to define the action in the following way: (g, f) > f Tg. We shall

say that this is the natural action of G on k[x}.

Since in the following we are going to use commutative groups, we shall mainly

use the natural action.



2
EXAMPLE, Let us consider the natural action of ‘“d on A  given by the fol-

lowing morphism
@: k[X, Y] —> k[x, Y}Gi k[T]/(Td - 1) = kiX, ¥, t”

defined by ({’(X} = Xt, L?(Y) = ¥Yt.
We get the following action of /A& on k[x ‘ YE
(€, X)) —> £ X, (€, Y £ Y,
th
(here £ denotes a primitive d= root of unity) and we get the following

action on A

{ £, (Xol Yo)) —> £XD: EYO)

X . i i . 3
The orbit of (xc, YO).J.S {( £ X 1 £ yo), i=0, ..., d - 1;. Therefore

-

the subring of invariants k[x, Y}’Md is the subring

Sy, L

—d

i i : r.d
{f(x, 0;ECEx,, £y) = fx_, y) forevery i.=k[X, X



§ 2. Graded rings .

Let A be a finitely generated k-algebra and denote by g the.set of the

Z-~graduations of A and by (. the set of the actions of Gm on Spec(A).

PROPOSITION 2.1. Thexe is a natural injective application of (0 in ({ .

Procf. An action of & on Spec(A) corresponds to a k~homomorphism
— m

-1 -1
A—-——)A@ka.x ]c: A[x, X

Let A = k xo, ceesys X ], where {xo, ceeny Xr} is a minimal set of homogeneous
r

generators of A of degrees Agr veeer qr respectively, Then, to the given gra-

duation we may associate the k-~-homomorphism

~1
deg :A-———>A[x,x ]

ai
p—>» X X
X i

REMARK. There is also a converse to Proposition 2.1. (see [EGA] 11 ,p.167).

Let us now study the action of Gm on A corresponding toc a / -graduation
of A, A point of & corresponds to a maximal ideal (X - t), t # O of k[x, X l.
m

We consider the composition

-1 {ig, pt) -1
p:a—> ae k[x, '] —> a® k[x, SR VIS SRS

whence we deduce the natural (see the remark at the end of § 1) action of &
m
on A
& x A ~—> A
m

q;
lX.

t, x,}) +—> ¢t
1 1

n+i
To get the action of ¢ on V= Mx(d) © P » let t € € and
m
p= (ao, vreas ar) € V ; to p it corresponds the maximal ideal Mp =

-1
= (x - & "o e . X - & d -t i =
0 o ¢ X r) and it is easy to see that P (Mp) Mp where



90 g

p' = (t agr eeees t rar). Therefore the action of Gm on V is defined in

this way

G XV —>V
m

(t, (@, caney ar)} > (tqgao, ceesy tq

r
0 ar)

and the orbit of p is given parametrically by

- +30
x, =t 24
t#£0
X = tqra
X X

hence it is a monomial curve.

[
LEMMA 2.2, The subring of invariants A ™ coincides with AO.
b . < = 4
Proof. Let a = -»ade Abe an invariant. Then a = ta = 4. t ad; hence
a . o a
Zlad(t - 1} = 0 which implies ad(t - 1) = 0 for every t £ k* and we con-

clude.

LEMMA 2.3, ILet {30, ey Xr}' be a minimal set of homogeneous generators

of the graded ring A, of degrees qd, «assy @ respectively and assume that
r

some of the qi's are positive, Then the following conditions are eguivalent
a) deg X, >0 , 1i=0, ...v, ¥ ;

b) deg xi >0, i=0, «...., r and AO =k

+1
¢) The closures of the orbits indm? only meet at the origin.

Proof. The equivalence a) and b) is clear,

a) ===pc) If p is the origin, then the orbit is the origin. The other orbits
have no common points and they are punctured monomial curves; therefore their
closures pass through the origin.

C) ===pa} If some qi = 0, then the orbit of the point (0, ...., ai, censy )

is contained in the hyperplane xi - ai = (, hence it closure does not pass
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through the origin, unless all the points of V have i—th coordinate 0; but
this means that xi can be dropped from the set of generators of A, If some
qi < 0, then it is again clear from the parametric equations of the orbits
that the origin is not in the closure, unless all the points of V have i-

coordinate O.

DEFINITION 2.4. Let A be as in Lemma 2.3 and V = Spec(A). Then V is said

to be a quasicone if it satysfies the equivalent conditions of Lemma 2.3.

Therefore the gquasicones are the closed subschemes of the affine spaces,

which are invariant under the action of & corresponding tc a "positive de~
m

gree”, As we have seen, if V is a quasicone associate to a ring A, the "de~

gree" action of & on A induces an action of ¢ on V, which is described by
m m

& XV—>YV
m

(t, 2, veeep @a }) +——> (tqoa cases tqra Yy, O0< g, =degx. .
r r i i

0 o’

If all the g 's are 1 then the quasicone is an ordinary cone.
i

Now, let us take a homogeneous element f € Ad; it is clear that the gra-
duation of A can be extended in a natural way, by extending the action of

& 5 A
n on Spec( f)’

A -——-a»A[x x !
£ £

N~
a/fs > (a /fs) - X ds
Ik I

By Lemma 2.2 we have Afmm = A(f). Now let us denote by V* the punctured qua-

sicone V"{()}and by T : v* —3> Proj(aA) the canonical projection; since

T is locally described by the canonical inclusionsg A(f) L Af and since

A = A €m we can writ
e g 7 €
Proj(a) == V*/Gm

and say that Proj(a) is'the geometric quotient of V* under the action of Gm

(for a complete theory see 'Mt]).
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But of course, being ¢ infinite, we cannot use Theorems 1.10, 1.13 directly;
m

therefore we must push our investigation a little further.

The graduation on A induces an action of [ud on Spec(a) in the following

natural way

a 2eg A®kk£x, x"l} — A@kk{_x, X-l_]/(x@l - 1) = A[x, x
a & A | > a xn
n n n

Therefore, arguing as in the example at the end of § 1, we obtain that the

natural action of /%H.On A is given by
Ap&jx A —> A

n
(E.an):——~> € a

LEMMA 2,5, The subring of invariants Aﬁ*d coincides with g An

d'
Proof., The inclusion ® &4 _C. A/ud is trivial. Let a = ?”. a be an inva-
—— n nd — m m
. m - m
riant element; then (<, a) —> Z. a £ = . a.Thena (1 - & ) =20
; m m m m m

for every m and every £ e /ud; if a # 0, m must be divisible by the order
m

of every element of ;qd and we are done.
“

So let us go on with our investigation. If £ = A, the ideal (f - 1) is an

dl
invariant ideal hence we get a homomorphism

-1 4d
(1) A/(E - 1) —> a/(f - DX, X J/x - 1)

which gives rise to an action of /ud on Spec(A/{f - 1}) which can be

"'1'1
extended to an action of }*d on Spec{d/(f - I)Cu, u i) (where u is an

indeterminate of degree 1), by putting

@ A/ - D[, v ] —> a/ce - Ofu, vk 76 -0

I .

— -1 -~ -1 -1
AP,u 1 ~w>AE,u ]F,x !

u et B+ <
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-1
Let us now study the subring of invariants of A/(f - 1) and A/(f - 1) ;ru,. u ]
with respect to the action of /Md given by (1) and (2); for, let us consider
the homomorphisms

ol :A(f) —> A/(f - 1) =&

.

a /fst-—-—-—:* a {sd = n)
n n

17— -1

P:Af—-a»a/(f—n[u,u J-AEx, u J
a/fsi———->'5 un—Sd
n n

where P is clearly an extension of o , Then we have the following

THEOREM 2.6. (Flenner)

a) o , p are injective .

b) A(f) = A/(f - g)ﬂd (via (1) and of )

c) Af = (A/(f - 1)[u, u“ll)ﬂd (via (2) and el )i
d) (_*, is étale.

Proof. a) is clear and b) follows from c).
c) It is easy to see that it is sufficient to take in account the elements

-1 I o - X — ¥ — n r -r
of ’A'[u., u ] of the type a u . If anu is invariant, then anu = an X u x =
n

a ur xn-—r and this is possible iff n-xr = Ad iff r=n - Ada iff
n

— T A
au = @(an/f ).

d) See [F] lemma 2.1., lemma 2.2,

REMARK, It is important to note that, while P is étale ol need not be such;

namely it may happen that A/(f - 1) ie non singular and A(f) is sinqular.

Fo t A ki X X, X : = = »
r, let A = [0, ;o 2]withq0~q1u1,q2 2 (q, = deg X) and £ = X,
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Then A o« A(Z)

- x[%%, xx, %%, x o k[xz XY y2}~ on the other
) (£) [0' ¢ By 2] i ' b

o1

hand A/(f - 1) = k[xo, XI].

COROLIARY 2.7. Let V be the guasicone associated to a graded ring A and let

v* = v —{0}. If v* has one of the following properties: irreducible, normal,

Cohen~Macaulay, rational singularities, then Proj{(A) has the same property.

Moreover, if V* is non singular, then Proj(A) has only cyclic guotient singula~

rities.

Proof. It is a consequence of Theorem 2,6 and standard results which say
that all these properties are stable under extending by étale morphisms, sup
pressing indeterminates, taking quotients modulo the action of finite groups.

Therefore if A ” has one of those properties, A has the same property.

(£)

COROLLARY 2.8. Let V be the quasicone associated to a graded ring A, let

vk = Y -~ {0} and assume dim V = 2. If V* is nonsingular, then Proj (A) is a

non sinqular curve,

Proof. Proj{a) is 1-dimensional and normal by Corollary 2.7.
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§ 3, The weighted projective space.

Let Q = (qe, cesay qr) be a r + 1 - uple of positive integers, denote by

‘Q! the integer Z.qi and by S(Q) the polynomial ring k[TO, cenes 'I‘r] graded

deg T =gq. .
hyegiqi

DEFINITION 3.1. We denote by ®(Q) the scheme Proj{(S(Q)) and we call it the

weighted projective space (w.p.s.) of type Q.

r+i
let U =4 - {0} = Spec(S{Q)) - iml be the punctured guasicone and

denote, as usual, by D (T i) the standard affine open set Spec S(Q) (T.) of
i

Q). If S(Q) (n) means, as usual, the S{Q)-graded module which is defined

by S(Q)(n) d by the sheaf S(Q) (n)
Y (Q. nt—-S(Q)M_t we denote by P(Q)(n) e sheaf Q)(n).

1f £ is a homogeneous element of S(Q), we may consider the natural k-linear
map

S(Q} > S(Q){n)}
Qn (Qn(f)

an
a b
n 1

which yields anatural k~linear map

0
Xt S(Q)n ~3> H P(Q), OP(Q) (n)),;

the s0 called Serre homomorphism,

We shall denote by Pr the usual projective space i.e. P(Q) where
Q = (1 r 1 7 s ewneg 1) »

3A. Pirst properties of P(Q).

THEOREM 3A.1. The w.p.s. ®(Q) has the following properties

a) P(Q) is the geometric quotient of U modulo the action of Gm given by the

graduation of S(Q) ,
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a9
b D = LR N . R
) A (Ti) is  isomorphic to Vi/ ,“qi where Vi Spec(k[’l‘o . ’ Ti'

L2 3R Tr])‘

c) ®{Q) is irreducible, normal, Cohen-Macaulay {(C -~ M}, and their singu~

larities are cyclic gquotient singularities hence they are rational.

d) » i i x = ces -
) B(Q) is isomorphic to P /}ug where }MQ /}Aqo X . X Maq, and the cano
nical projection T : " —> P(Q) corresponds to the canonical homomorphism

q q
s(Q) = k[x 0, weess xr ’-’]L—-—) s = k[xo, ey xr].

0

Proof. a) See the discussion following Definition 2.4.

b) Follows from Theorem 2.6 and the fact that
k{TO' LI I 3 Ti; seney Tr‘]‘/(Ti - 1) : k[TO! L ] Ti, “-an ey Tr]

¢} Follows from Corollary 2.7.
a) Consi::r the action of P‘Q on S given in the following way: if E‘i is
a qi root of unity we define
’*Q X8 —>8

by (( 60' easny E’r)' f(XG, sesss Xr)) —3 £( ﬂo}(o: EXY szr}'

q q
0 0, ...., X_ r]

, then the subring of invariants is

Then the subring of invariants is easily seen to be k[x
and if we extend the action to §

k[xoqo, ceers xrqr} ‘
(x; )

(xi}
. Since k[xgqo, ceeey qur} is equivariantly

isomorphic to S(Q), we are done,

r
COROLLARY 3A.2. The corresponding morphism to W : P ——> IP{Q) between

the associated guasicones is p : A+l —--—-a-.Ar“; it is given by the inclu-

sion

k x . e s - » 08 x -
{ o ' ’ xr k XG' ! r}

n.
It is free and a base is given by the monomials T{'X. 3 where 0 g o, < q,
1 m— 1

L4

i = Og wseey Yo

Consequently 1, (-Q;pr =@ COP(Q) {~ f_-ni)



- 16 -

Proof, It follows directly from the preceding theorem,

LEMMA 3A.3. Let a be a positive integer Q' = (aqo, ceees aqr). Then there

is a natural isomorphism P(Q) = P(Q').

Proof. There is an obviocus natural graded isomorphism between S(Q') (@) ana

S{Q), whence one gets

®(0") = Proj S(Q') = Proi(s@") ®x proi s =®(Q)

PROPOSITION 3A.4. a) If Q9 = (a, &, .c0., 2),8a 3 1 then T: Pr —> P (0}
ig flat.

b) If there exists a pair of indexes i1, j such that qi # qj and if Hi

denotes the hyperplane Xi =0 in Pr, then U is not flat and if G.C.D.

(qo, cevay qr) = 1 the ramification locus R has the following property:

U

Cr © H
i, q3_>IH:L""IS."'LiJ i

€) W 1is étale if and only if it is the identity map and if and only if
Qn = (1, L 1) -

r
Proof, a) Under the assumption that Q = (a, a, ..., @), P(Q) == P by Lemma
3A.3, hence I is a finite morphism between regular schemes, hence it is flat
(see for instance [H] 10.9, p. 276).

r
b) We use again the fact that the action of }JLQ on® is given by the map
r r
’&Q xXr —>r

(¢ EO, csaey Er ), (xo: asesy xr})""—} { ono: senny grxr)

To prove that T is not flat, if g " # qj for some i # j, we need knowing
that in this case P{(Q) is singular (this will be proved later, see Prop. 4A.6, c))
and then we use the following standard fact of local algebra: if
(p: A —> B is a local homomorphism of local rings, such that tp is flat
and B is regular, then A is regular (see [Ma], p. 155).

q
Ifp= (xo, esesy xr), g = { EO' cesey Er), gii = 1 then there exist

Ei ¥ 1, L =0, ..., £ with
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on - Erxr

iff th exist twith { £, - &_.) x x_ = 0 for every .
£ there ex Ei F1lw { o p) X, % of , )
Now, if all the xi’s are different from zeroc, then € i E.ﬁz £ for every

o 4 (3 ; but then e =1 for every i and since G.C.D.(qg, seeer qr) = 1.

€= 1. So we have proved that the generic fiber has qlx enee X qr points and

R &« U H..
i i
th ; .
If now %, = 0 and a > 1, let £ be a qi root of unity different from 1
andlet g = {1, vvuoy 1, €, veeey 1). Of course gp = p, hence i%i>1ﬂig R.
x .
¢) By arguing as in b) one can easily see that in case a) R = iL.___J o Hi if

a> 1 and of course R = @ if a = 1. So the conclusion follows.

REMARK. The interpretation of ®(Q) given by Theorem 3A.1.a) shows that, while
r

r ig obtained by quotienting U with respect to the partition given by the
straight lines through the origin, P(Q) is obtained by quotienting U with

respect to the partition given by the monoidal curves of parametric eguations

EXAMPLES, 1) Let Q = {1, ...., 1, n), n # 1. Then P(Q) can be identified
: x . .
with the cone Xn of vertex {0, ...., 0, 1) whichprojects the Veronese variety

r~1
VnCP } . Namely there are cancnical isomorphisms

(1, ..., 1, n) = Proj(S(Q}) = Proj(s(Q) (“);gé

= Proj(k[‘l’o, eveoy Tr-—l](n)['rr]) = X:.

2) As in the example 1) it easy to see that if D = (1, ..., 1, n, n), n # 1,
then P{Q) can be identified with the cone, whose vertex is the line in B%
r-2

given by x0 T oyuen = xr 2 = 0 and projecting the Veronese variety vnOP Je

3) Let @ = (1, ql, cveey qr), q »1,4i=1, ...., n. Then P(Q) can be

) r-1
thought of as a compactification of A ¢ Given by adjoiningl’(ql, csony qr) .

Namely D*(TO) = Spec(S(Q) (T )) and it is clear that
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_ 94 dr
S(Q) x,) = k['rl/'ro ; eeens TI(TO

whence D+('r0) & Ar and of course P(Q) - D_,,(To) coincides with P(ql, eseseyr qr).

4) Let us consider the action of }MQ on ®° described in theorem 3a.1, 4);

let m = L.Colle (Q.y oeves q_r) , a € Ntand let Ahgr seeer a(rbepositive integers such

0
that o(iqi = am. Let F be the weighted hypersurface of P(Q) given by the
equation (homogeneous of degree am).

of
F:2.7T Lag
i i

r
and let F be the hypersurface of P given by the equation

~o am
F Z:X‘ = 0
i i

Of course F is invariant under the action of /uQ and it is clear that F is the
gquotient of F under the action of }u Q'
REMARK, If we assume that (qi, qj) = | for every i, j, i # j, then of course

m = 'ﬂ'q i and the Chinese Remainder Theorem gives an isomorphism

Z’.x'n% Zqo 0 .... qur. Moreover one gets an isomorphism of algebraic groups

wmg /}Aqox ceee X ﬂ"qx

which is described by the isomoxrphism
n - o~ qO - qr -
k[T - 1) = Wx Vg R ....0 k[xr]/(xr - 1)

t s t™%0g . ..., @Mk

therefore the action of ’AQ on ]?r described in Theorem 3A.1, d) can be
expressed in the following way

r
P

Y

Pax T

ol m/ o m/
q0:1:0, eeees £ Iry

of
(E ] (XG' ceeny Xr)) o ( & r)

th

where £ is a primitive m root of 1,

For instance if Q = (2, 3, 5), m = 30 and we have the above described action
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2
of wBO on® . The quotient is ¥(2, 3, 5); if moreover F is the curve of

2 30 30 3
P of equation X  + ¥ + 2 0 = 0, it is invariant under the action of

},\3 0 and its quotient is the weighted curve of P(2, 3, 5) of equation

15 10 6
0 1 2

3 B. Structure and homological properties of the projecting guasicones.

Let now A be a fihitely generated k~algebra and let {t 0! Tt tr} be
a minimal set of homogeneous generators of positive degrees qe, cenny qr'
Then of course there exists a hox;aageneous ideal ¢ of S{Q) such that

A S(Q)/o. . Write X = Proj(A) and denote by p the canonical projection

+1 -1
p:U =4\r ~{0} -3 2{Q), by cx the inverse image p (X).

£ Y Cy is the sheaf of ideals defining the embedding of Cx in U and if i

o
is the embedding of U in .Ar 1, we get the following commpntative diagram

x o P
1 1o
c. S—s U

+ r+
where c‘:X is the schematic closure of Cx in A ! i.e. ix ﬁcx = {jcgi (see [H],

p. 92).

DEFINITION 3B.1. We say that C; is the projecting quasicone of X in P{(Q).

Notation: in the following we denote as usual by \9

B(Q) {n) the sheaf
P, T
S{Q) (n).

LEMMA 3B.2 a) There is a canonical isomorphism of schemes

‘ ) 3
U = Spe»c{n ez (QP(Q) {n})
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b) The maps p*, p, are isomorphisms between the sheaves (QU and

@ Y {(n), which are inverse to each other.
ney “FiQ)
0
¢) The Serre homomorphism S(Q) —> g H ®(Q), C%P(Q)(n)) is a graded iso-
morphism.,

a) If {S(n) is the kernel of the morphism of schemes

wm(g) (n) —> Ux(n)

then

*

5C§ =i (n 22 ).j(n))

0
e} If I is the ideal of S(Q) corresponding to ® H ®(Q), '3(n)), via the Serre
n

~

isomorphism, then 5(:; = I;

£) I is a saturated ideal, hence depth(S(Q)/I) » 1.

Proof, a), b) For every i = 0, ...., r there is a canonical isomorphism

S(Q)Ti o2 n SZ s{Q) {(n) (Ti)

Since p is locally defined from the inclusion

and since
u=LJs
! Spec(s(Q)q,)
we get the conclusions,
r+1
¢c) Since A clearly verifies the property 82 of Serre, we get

+1
rw, o) = re Qr+1) = 8@

Combining with a} we are done.
d) We have the following exact sequence

0 ———> (] ]
. N (n) “"nez_wr(m(“) g I O, () —> 0

By using the isomorphism of a) one gets that n o {j(n) is the sheaf of
€z

ideals defining the inclusion of pnl(x) in U. Therefore

i - -
*hez Jamyymts J:jp“l(x) 5{:;
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L.

e) We use the Serre isomorphism to identify i 832 J{n)) with the sheaf
n

associated to a well defined ideal I of S(Q). Therefore

0, r+1 ‘ 0
I=0@® ", i, ®_ Jm) =B ®Q, e, ()=
n«+zZ n -

= o

= e ®w®w, "wm).
néz

f)} Follows from the preceding description,

DEFINITION 3B.3. We say that I is the ideal of the projecting quasicone CX+,

with respect to the inclusion X< P(Q).

PROPOSITION 3B.4. Let X< P(Q) be a closed subscheme, CX+ its projecting

quasicone, I S(Q) the ideal of CX"'. Then

a) There is a canonical injective graded homomorphism

0
d: S(Q)/I —> ngz B (X, Ox(n))

b) If depth(S(Q)/I) = t > 1 then & is an isomorphism and Hl(x, @x{n)) = {0)

for every n if 0 g i £t - 2.

c) If X =P(Q), then HiCP(Q), (DP(Q) (n)) =(0)for every n if i # 0, r and

x
H ' = 8§
®(Q) @P(Q) (n)) (Q)_n__in

Proof. We consider the standard exact sequence of local cohomology

0 —> (8{Q) /1) ~—>» S(Q)/T ~—> HO(CX, ('I‘}Cx} s Hlm (8@ /1) —> 0

HO
frc
and the isomorphisms

i

i-1 L
H{mg (S(Q/I) = H (C,, (.QCX) for i > 1

(see for instance {H], p. 212, 217). Since depth(S(Q)/I)=t > 1 by Lemma 3B.2.f) one gets

0
H{_'m,} (S{Q) /1) = (0). Reasoning as in 3B.2, we have an isomorphism of sheaves

(QCX:E n.?z @x(n). So we get a).

IfFt>1, g

{md

(S(Q) /1) =(0), i < t, hence s"(cx, O =10), i = 0, ..., £ - 2.
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This proves b) and the first part of c) since if X = P(Q) one has ¢t = v + 1.,

For the second part of c) see [D], 1.41.

DEFINITION 3B.5. If X is a closed subscheme of P(Q), we say that X is guasi-
smooth with respect to the inclusion X & ®P(Q) if the projecting quasicone

Cx+ is smooth outside the vertex.

REMARK., If X< P(Q) is quasismooth, then the only possible singularities

of ¥ are cyclic quotient singularities, This comes directly from 2.7.

3C. Reduction of the weights

We have already seen (see 3A.3) that if Q' = (aqo, ceeer aqr), then

P(Q') « P(Q). Now we can say a little more

PROPOSITION 3C.1. If v : HQ" =5 ®(Q) is the isomorphism described in 3A.3,

then
« (9 =
v Q) (n) P(Q')(an)
~ {a) ~ ~
Proof. (QP(Q)(n) = (S(Q)(n)) = (S(Q") (n)) = (S(Q")1tan)) =
= Oy m-

DEFINITION 3C.Z2., If G.C.D.(qo, cevey qr) = 1 we say that Q is reduced.

After 3C.1 we may assume that Q is reduced and we fix the following nota-

tions
d = s\reils weawg «sn s
i G.C.D (qor qi—l' qi+1: ’ qr)
a, = l.c.m.(d csma eeae
i c.m.(d,, vy G440 a4y
a_ ==

= l.c.m.(do, ceses dr).

LEMMA 3C.3. The following relations hold




a) aii q; for i=0, veee, r; ("]" means "divides)
b) (qi, di) = 1 for i=0, cove, ¥}
c) (d.,d) =1 for i # i;
3 i
a) (ai, di) = 1 for 1 =0, cave, I;
e) ad =a for i=0, eoee, r;
ii
£} d,]a, for 3 # L.
i

Proof. Easy exercise.

Therefore we may associate to Q the new r + 1 -~ ple

Q= (qO/aQ’ ceeny qr/ar}

LEMMA ~ DEFINITION 3C.4. The following conditions are equivalent

a) di = 1 for evexry i = 0, ...., r;

b} Q@ =T . (in this case we say that Q is normalized).

In particular, for every given reduced Q, U is normalized i.e. 5 = 5‘

v At ot o et

Proof. a) <==pb) Clear,
To prove that T = 5" we have to show that

GQCOD. a LR 2 O * s e ® &= 1‘
(dy/age PRy Gy g e R

Since the G.C.D. of the numerators is 4,, it is sufficient to show that 4.
i . i

divides the denominators. But this isexactly 3C.3.f).

PROPOSITION 3C.5. There exists a natural isomorphism of P(Q) and P(Q).

Prxoof. Let S' be the graded subring of S{Q) defined by

S' =@ s(Q)
nez7 an

It is well known that Proj S' = Proj S{Q). We are going to show that

4 d.
s' = kT 0, .... r}. deg T, * = = =
[0 ’ . '1‘r | Namely deg i qidi qiaidi/ai aqi/axi by
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3c.3. &), and qi ai is an integer by 3C.3.a}.

5 s
Conversely if a monomial '1‘0 O.... Tr ¥ pelongs to S', then soqo T

- /\ a, whence
r'r

= - Z:_.a s A a
s.q. ot jqj + a,d, Ae Z .
But dilqj if i # j hence s.q; € (di)' Since (qi, di) = 1 this implies that

s, € {(d.). In conclusion §8' = S{Q') where Q' = (a g./a_, ...., aq /a } hence
i i 0 0 Y r

Proj (S') & Proj (S(T)) by 3A.3 and we are done.

[

2
EXAMPLE. P(6, 10, 15) = ¥ . Namely (do, dl' dz) (5, 3, 2); (ao, al, a2) =

= (6, 10, 15), Q@ = (1, 1, 1).

1
COROLLARY 3C.6 For every Q= (qo, ql) there is an isomorphism P(Q) 2 P .

Proof. We may assume Q to be reduced. Then (do, dl) = (ql, qo);

(aol al) = (CIO: ql)? Q= {1, 1).

Now we recall that (qi, d. ) = 1, therefore for every integer n we may write
i

n=>5> + C d
i(n)q:L i(n) i

where bi(n), ci(n) are uniquely determined by the condition

0< b (n}) <4,
i i

In this way to every n we have associated two integers bi(n) , ci(n) .

X

PROPOSITION 3C.7. a) The number ) = (n - 2.

bi(n) qi)"/a is an integer;

r
b = -
) There is an isomorphism of sheaves wP(Q) {n) OJP(Q} {n iZ;'_o bi(n)qi)

and the isomorphism P(Q) = P(Q) of 3C.5 induces an isomorphism of sheaves

(DP(Q) n) = cﬂp@( P (n))

Proof. a) It is sufficient to show that n - 2 bi(n)qi is a multiple of d
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b
for every 3 = 0, ...., ¥. Nown - Zz.b,(n)q, =n = Db {n)lq, -~«—Db (njg., =
i i i Joipy i i

c {n)d, —.Z: b.{n)Jg,; but d,{q, if j3 # i and the conclusion follows.
3 Joigy * i 1k

s s
b) Let us show that a monomial TO 0 .... ’I’r ¥ of degree n + hdi is divided

bi {n)

by Ti . Namely the relation

S + ees 85 g =n + hd,
: i

OqO r'r
implies that n = + a ince d i i.
mplie s.q, A , sinc jlqi' 3£ i

By definition of b (n) it follows that si > bi(n). Therefore, if p is a
i

multiple of a, it is also a multiple of every di, whence a monomial of

bo(n),, , ,  byin)

degree n + p is a multiple of T0 . . Therefore
bg(n) b, (n) o
B, (si@my = B (r cree Ty 5(0)(n - b, (n)g.)
p, a/p ° }p < a/p(O r © i qlp

and this equality between 8' = g S(Q)an—graded modules induces an isomorphism

between

OIP(Q)(n) and Ozp(g) (n - Z:bi(n)qi)

(remember that P(Q) = Proj 8'). But we have already seen (sce 3C.5) that

st (a); S(0), hence in the isomorphism P(Q) 2= P(Q), the sheaf

V) (n - 2. bi(n)qi) corresponds to v

3D. Examples and pathologies.

0 )
1. It may happen that H GP(Q»(ﬁanfl}) ={0}and it happensexactly if q, > 1,

This follows from 3B,Z2¢).

. o ' # n'
2. It may happen that (93?(9) (n) o (,’)P(Q) (n'), n #n

For example if O =(2, 4, 5), n = 5, (dy, @, d) = (1, 1, 2) and let us

1° 72
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compute 5 - bO(S) -2~ bl(S) -4 - b2(5) - 5.

5=0-+-2+5 - 1; S=0--44+5-1; 5=1-5+0 - ¢
hence bD(S) = {, bl(S) = Q, b2(5) = 1 and

OP(Q)(S) ~ OP(Q) 0) = OP(Q)

after 3C.7.b).

REMARK, If @ ='§ this pathology does not occur because di =1, 1 =0, veeey T

hence bi(n) =0, 1i=0, ...., r.

3, Even if Q = § it may happen that (QP(Q) (n) is not invertible.
For example let Q¢ = (1, 1, 2} and consider the open set D+(T2). Then
(D, (T)) LQ (1)) = s{Q) (1) = a/Th, a € S{Q) ’
720 e () (-rz) 2 2h+1
ro (r.), ) = S(Q) = a/'rh, a € 5(Q) .. -
+ 2 Q) (Tz) 2 2h_
It is easy to see that S(Q)(l)(T ) is minimally generated over S(Q)(T ) by
2 2
TO' ‘I‘1 and it is not free as the following relation shows
T 2/'1' T T T /T T 0
1 2 0 01”2 1 )

It may be worthwhile to observe that in the case Q = (1, 1, 1) the module

S(Q)(i)(Tz) is minimally generated over S(Q)(Tz) by Tz.

4, A sheaf LQP(Q)(H)' n>o0, may be invertible but not ample.

— i
For example, let Q = (3, 5); then Q = {1, 1) and the isomorphism P(Q) = P

induces an isomorphism of sheaves LQP(Q)(H) = LﬁIJ( 'Z4n)) by 3C.7. So let

n = 2; then LftZ) = -1, hence LQP(Q)(z) == C%pl(—l) which is invertible but

not ample.

5. The canonical homomorphism

OP(Q) (n) & @P(Ql (m) > LQP(Q) (fl + m)

may be not an isomorphism,
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1
For, let @ = (2, 3); the isomorphismP(Q) = P yields the following isomorphisms
of sheaves (see 3C.7)

O )= O

P (Q) ]Plf (9 {4) = (9

6) = (5 (1),
B(Q) { ‘/pi{

1’ p)
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§4. pProperties of the sheaves LOP(Q) (n).

We have just seen that the behavior of the sheaves [ /)P Q) (n) is not the

same as in the usual projective space, so that we are led to analize the si-~

tuation in a more accurate way.

4A. Sections of 0]P(Q) {n} over standard open sets.

Let us fix some notations; let Q = (qo, seeesy Q@ ) and let A be a commuta-
r

tive ring with identity. Let L be a subset of {0, ceses r}, let A{Tlllé 1 be

-

the polynomial ring over A generated by ETl, l1e L} and choose ns 2, d e wt.

DEFINITION 4A.1. We define AlL, n, d] to be the sub-A-module of A[TJI e’

generated by all the monomials

b TT 1 Pl
T = T = = d.
leL Tl such that deg 1e1 blql = nmod. d

It is clear that A[L, 0, d] is an A-algebra, A[L, n,d] is an A[L, 0, d]-module
and there are natural homomorphisms of A [L, o, d} -modules

A[L, n, d] e A[L, n*, d]-——-> A[L, n+n', d]

A[L, n, d] —_ Hom(A[L, n', d], A[L, n+n', d]).

REMARKS. 1) If d = 1, A{L, a, 1] = A[T]]léL.

2) If dn, A[L, n, d] = A[L, 0, d].

DEFINITION 4A.2. Let I = {o, ceens r}; 1f 3G I we define d_ to be the G.C.D.

of the q,'s, i € J. We put

i

p_= N D.(T.) = Spec(S(Q)

where T =

7 : .
5T ieg N and we call GJ the group of the rational monomials

¢ . M 1Sy - b
T = T s .e. = 0.
ieg in S(Q) (TJ) i.e. such that £ ciqi 0
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REMARKS. 1) The group G’;r is free of rank % J -~ 1 since it is isomorphic to

the group of the integral solutions of Z: g.x, =0,
ied "1 i

2) A[GJ] B (A[Ti}ie 5 (T .

EXAMPLE. Let Q = (1, 2, 3, 4, 5), J = 11, 2, 3 {. In this case Gy is the free

. . o} Cy  C3 €4
group of rank 2 whose elements are the rational monomials T = T2 T3 T4

-

such that 2c:2 + 3c3 + 404 = 0. Two generators of GJ are for instance T2 'I‘3,

T T .
2 4

PROPOSITION 4A.3. Let J be a non empty subset of I =10, .,.., r}and fix a
L.

s .
rational monomial MJ = 'lelJ T 1 of degree dJ. Then there are isomorphisme
i i

of A-modules (depending on MJ)

M0 Gpgy ) 2 A[GJ][I -3, n, dJ],

which are compatible with the homomorphisms described after 4A.1.

Proof, Of course F(DJ, ) (n)) = 5(Q)(n) is generated over k by the

Q) {T_)
J o
rational monomials Ta such that a, 3 0 if 1 € T - J and ~—_ a_q, = n.
i ieI 171

a a aj a.

Such a monomial T can be written in the form T = 11 7.t . TT 7%,
ieJ i ieI-J 1

a.

Now, deg( T _ T ) = ed_ for a suitable e and
1E g 1 J

it

a:

d ) =n -ed A
eg(ig’l;_J Ti ) n-e . n mo (dJ).
Dividing by Mi we get the following map

Mo, (91»(9)‘““ = S(Q) (n) (x,) —_— A[GJ}[I -3, n, dJ]

ay a; , e - a.
which sends T° = T vt (7_rimy - T T . This is clearly
iel i ied 1 J iseI-Jd i
an injective homomorphism of A-modules. Let us show that it is surjective.
C b
A rational monomial of A[GJ][I - J, n, dJ] is a product of T -+ T where

c (N b b,
T = (1_oqi, g = 1T T i
iedg ! ie I-3

and deg T = :O,deg*rbsa bq=n+)\dJ, Ae .

2
ieg S1% ier-g il
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b
The element 'I'a = Tc R /M;‘ has degree n, hence it is a section of
. (I b
D and it may be written as (T /M - T . But
ro.. OP(Q)(n)) Y nas (T /M)

c, A s -A c b
deg (T /MJ ) = - A dJ; hence, dividing by MJ we get T - T .
EXAMPLES. 1. Let Q = (1, 2, 3, 5, 7), J={4}.

a aj
Then G, = identity, dJ =7, Mo=T,. Given a monomial T =T1_Til the number

e is a, hence the isomorphism

4
P4t O o) () = A[GJ][I -3, n, 7] = A[I - J, n.?i.l

r{Q)
is obtained by deleting the variable T4.

2. Let Q = (1, 2, 3, 5, 7, J={2, 3, 4}.

c Cn £ €
Now GJ is the group of monomials T = T22 T33 T44 such that 3<:2 + Sc:3 + ‘7c:4 =

. ~4 -2
= 0, hence it is freely generated by 'I‘:2 T3 T4 and T2 T3 'I'4. We have dJ =1

3 -2
and we may choose MJ toc be T3 T 4" Therefore

ro_, LQP(Q) (n)) = A[GJ][I -3, n, 1] = A[GJ, T, Tz] =

-4 -2
= A T
[Tz 3 Tar TT3 Ty Tor TJ
3.Let Q=¢1,1, 1), J ={1, 2}.
-1
Then A[GJ] = [’1‘1 . '1‘2 }, MJ = Tl' dJ = 1, Therefore

ro_, (DPg (n)) = A[Tl/Tz, T0]

PROPOSITION 4A.4, Let J be a non empty subset of I.

a) fn=h - dJ, then F‘(DJ, OP(Q) {n)) is free of rank 1 over
h
F(DJ, (QP(Q))andagenerator is MJ.

b) If Q is normalized and n is not a multiple of dJ, then {"'(DJ, OP(Q) (n})

i t £ .
s not free over r‘(DJ, L?P(Q))

Proof., a) Sincen = h - dJ there is a rational monomial of degree n, namely

h
”,3' and the multiplication by Mﬁ yields the isomorphism
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s —> 5
Q) () (Q) (n) (z,)

b) If dJ,‘/n then #({(I - J) 2 2 [(otherwise dJ = 1). Now, for every iel - J,
G.C.D. (qO, ceeey qi, ccesy qr) = 1, therefore we may choose solutions of the
integral equation Z}; a.q, = n with i*®  coordinate zerc. Hence we get ratio-

nal monomials of degree n, in which the variable Ti does not appear. If

5(Q) {n) (T-) has a unique generator over S{Q) )" this must be of the type
J J
b
Tb = ;‘ZJ T]il because if the variable T {(ieI -~ J) appears in T then it

has necessarily a positive exponent and so the particular monomials where

b
Ti does not appear cannot be a multiple of T with coefficient in S(Q) ()"
J

b b
However, if T = T[_ 7T 1 is a generator, then every monomial of S{Q)(n)

ied i (T5)
has degree n = Z:j q. b which is a multiple of d . This is a contradiction.
On the other hand D = 8 4d D =
n the other hand  I'(D_, Omm(“” (Q) (n) (zp) 2" r_, LQP(Q)m))

= 8(Q)(n) ) which is a localization of S{Q){(n} T and it is free of rank

(Ty . (T3
1 over S(Q) (Tp) by a). Thus the rank of :ﬁ{DJ’ ,QJP(Q) (n}} is 1 and the

proof is complete.

COROLLARY 4A.5. Let m = l.c.m.(qg, -..., q ), then

a) @P(Q) (dm) is invertible for every o« &€ 7% :
b) The canonical morphisms
— .o( ,
&%(Q}(dm) QOP(Q) O:p(g)( m + p)
. A
Opg® —>Bm Gy, lam oy (om + B))
Q)

are isomorphisms.
Proof. a) Of course of{m is a multiple of every dJ, hence ('OP(Q) (cAm) is

invertible on every standard open set.
b) It can be checked by standard computations on the open sets D, ('.?i) and

by means of ;12\.3.
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REMARK. If O = (1, 1, 2, © (1) is not invertible, while (7 (2) is

invertible and it easy to see that LQP(Q)(I) 2 L%p(Q)(l) (QP(Q)(Z)

is not an isomorphism. Therefore the first part of b) cannot be generalized

even in the case Q = Q. On the other hand, if Q@ = §, then the natural morphism

Ho . b
LOP(Q)(a>——->~_n3L%{Q)<(9P(Q}(b) (%(Q)<a+ })

is an isomorphism for every integers a, b (see [De], 4.1 p. 210).

PROPOSITION 4A.6. a) Let J be a non empty subset of I such that dJ = 1; then

ro, O

) is a localization of a polynomial ring hence DJ is non singu-

r{Q)

lar. Moreover the canonical projection p : U —> P(Q) restricted to DJ is

isomorphic to the canonical projection

-1
DJ 'Y Spec(k[k, X ]) -_—> DJ;

b) If Q0 is normalized and dJ # 1, then DJ is singular;

c) If Q is normalized, then P(Q) is non singular if and only if Q0 = (1, 1, ...1).

Proof. a) By 4A.3 t that 8 i i hic to kiG HT . Sinc
} By we ge a (Q}(TJ) is isomorphic to [‘J[j}i.eI—J ince

G_ is a free group, S(Q)(T turns out to be a localization of a polynomial

J
J)
ring. Let now MJ be a rational monomial of degree 1. Then of course
S(Q) . = S(Q) M, M"
T (TJ){ ' g ] '
b) For semplicity, let us prove b} in the case J = Ei;, so that DJ = D+(Ti).

We have already seen (3A.1) that D+(Ti) can be identified with Vi/ﬂﬁq , where
i

is given in the

Vi = SPEC(R[TO, cevay Ti' ceens T;I) and the action of j‘\qi

following way

Tjt——~—> gqj Tj where gqi = 1.
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o .
Therefore the action of /Aqi on Vi:-‘-: A can be described by the matrix

s —

dr
g

e

A

b o X
More precisely the action of }Mq onA gives rise to a representation
i

qu_ —> GL (k)
L Y

which is clearly injective. Now, the quotient D, (Ti) is non singulaxy iff the
representation of /u aj is generated by pseudoreflections (see [D}, 1-3.2) and
g yvields a pseudoreflection iff f’(Ag -I) g1, i.e, iff gqj = 1 for all the
indexes except i and possibly another one. If £ is a primitive qih root of
unity, g is a pseudoreflectioniff f;qj = 1 for all the induxesexcept one at
most. But this happens iff qi‘qj for every j except one at most. Since Q is
normalized this is possible iff qi = 1.

c) Follows from b).

REMARK, If @ is normalized and J = I - {1} then dJ = 1 hence 4A.4, a)},

4A.6, a) can be applied to the open set D_ = j{;\ N D+(Tj) )

4B. Ampleness criteyria.

r
In the following let Q = (Qy, «-sss qr), [e] = iZ__;.,O q, and m =
= l.c.m.(qc, werny qr). For every non empty subset J of I ={O, , r},
let m_=1l.c.m. .
N iqi}ie:{

DEFINITION 4B.1. We let G(Q) be the rational number defincd in the following
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way
G(Q)=—q0 if r=20
-1 b
r -1
G = -lgl+ t/xr - ) ) . om | if x>0
25 YL+ 1 \v -2 #J =

DEFINITION 4B.2. We say that an integer n satisfies the condition D(n) if

equivalently

X +
(a) given the relation J . B g =n +hmwithh ¢ N and B,, ...., B
i=0 i1 0 r

natural numbers, then there exist bO' csesy br natural numbers with Bi > bi'
i=0, «..., £ and Z,biq, = hm.
i

:

X
i=

B B . s
{B) every integral monomial T = 0 Til of degree n + hn is divisible by

b r
an integral monomial T = i” 0 lei of degree hm,

DEFINITION 4B.3. We define F(Q) or simply F to be the smallest integer such
that n > F implies that D(n) holds. We define E(Q) or simply E to be the smallest

integer such thatn > E implies that D(mn) holds. In particular m E g F,

We have the following

LEMMA 4B.4. }_@Qi denotes the r-ple (qo, erecr G4 weeey, qr) then

i

r
1;0 G(Qi) =r - G(Q) - m .

Proof, If s = . 9., then by definition
- i 3 #1773 -
r - 2\-1 — f
G(Q,) = - s, + 1/(xr - 1) L L m
i i 2&Vvgr I =¥ J
v - 2
hence

r 'r - 2\ ~1

- - _ i
in;O G(Qi) = riQi + 1/{(r - 1) 2%—\-{-1_ \
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Now, since

r - 2\1 r - 1y~1
(r +1-¥Y)/{xr - 1) - =

Y -2 V- 2
we get
r-1\-1 {}r ~ 1\-1
2 Som =)l J n|+m
24V K+ 1{iv-2 #J =¥ 2$V<rhv-2 #J =Y
Therefore '

2]
o~
o
Lt
U

1

~
Lol
+4

b

i
al
T
i
0
“+
—
>
~
lal
S

r - G{(Q) - m.

i

PROPOSITION 4B,.5. PFor every n > G(Q) the condition D(n) holds, hence F £ G{(Q).

Proof. We use a double induction on the pair (h, r) withh » 0, r > 0 (remind
that h is the integer appearing in the definition of D(n)}).

Of course the statement is true for h = 0 and also for r = 0. It is also easy
to show that if the statement is proved for h = 1, then it is true in general;
for, it is sufficient to replace n with n + (b - 1) m., Therefore it is suffi-
cient to prove the statement for (1, r) assuming that it holds for (1, r - 1),

hence for (h, r - 1}, every h. Let

r
z Bg, > G(Q) +m
. ivi

i=0

then
r. E Biqi >xr - G(Q) + rm,
i=0
hence, by 4B.4.:

r r
z'}?: . Biqi > E G(Qi) + mir + 1)

i=0
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X
But r - B = B hence for at least one index i we have
iZ:O 2t 2 N

E Bg, >G(Q ) + m,
373 i

i#L

Now, if J =1 - ii}, m= A ,mJ and by induction the statement is true for
i

()\i, r - 1); hence we get an r-uple (BO, veoey /}, erany Br) such that
2 B q, = m. Therefore the (r + i)-uple (B, ...., B, =0, ...., B} solves
574 i3 0 i r

the problem,

LEMMA 4B.6. Let X be a projective k-scheme, Y a Cartier divisor on X; let

A=@6A where A = X Y d let be th tional map associated
p ip HisIe Ay mx, @x(p))an L{)Y e ratio p

to the complete linear system ‘Yl. Then, if A is generated by Al as a k-algebra,

kpy(x) = Proj (A},

Moreover if Y is ample then the following conditions are equivalent

a) A is generated by A1 as a k—-algebra;

b) Y is very ample,

Proof. Let
N .
P, X— — =>P =P([(X, LQX(Y)) = Proj(Symm(A ),

2p

and let Lp be the image of ["(X, (DX(Y)) in (X, LDX(pY)). If L is the graded algebra

g Lp' then it is known that pr(x) = Proj{L). But clearly A is generated by
Al implies that Lp = AP for every p, hence (?Y(X) = Proj(A).

Assume now that Y is ample and let g be a natural number such that Z = qY is
very ample,

a) ===pb) We have

X= @ 0= proj(a'?) = proja) = P, )
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hence ('?Y is an isomorphism and Y is very ample.

b) === a) If Y is very ample, then it corresponds to an hyperplane section in
N

a suitable embedding of X in P , then Al’é’: Mx, fﬁx(l)} and the conclusion

follows,

THEOREM 4B.7. a} The sheaf OP(Q) {m} is ample;

{n) is generated by global sections,.

b If n > F, the sheaf
If ’ e shea 0JP(Q)

c) Ifn >0, n>E, then (_9 {nm} is very ample;

P{Q)
d) For every p ¢ //. , the sheaf 'OJP(Q) {p) is coherent;
e) For every pg 7 , the sheaf (DI-‘(Q) {p) is Cohen Macaulay (C - M},
s
Procf. b) Letu € ["(p,(r), O {n)); then u = U/T, with s > 0 and
— + i P (Q) i
sSm~S _sm |

U € s(Q) . Assume that U is a monomial. Therefore u = U T, /T with

sqi-i-n i i

o

sm-s
deg{u T ) =s8g, +n+g {(sm~s) =sgm+ n,
i i i i

-

sSm-s
Since n > F the condition D{n) holds hence we may write U‘I‘i = A - B where
A is a monomial of degree n and B a monomial of degree sqim. In conclusion

s
u = AB/Tim and A defines a global section of (Q}P Q) {n) while

sm
B/T .
/T € o, (), (’OIP(Q)) and we are done

¢} By assumption n > E, hence the condition D{mn) holds, which implies that
every monomial of degree pmn = {p - 1) mn + mn is divisible by a monomial of
degree {p - 1) mn; thus a monomial of degree pmn is the product of monomials

{mn)

- {mn )
of degree mn and this implies that S(Q) is gencrated by S(Q} , @s a k-alge-

bra. Now 0 {mn) is invertible by 4A.5.a) and [ {®{Q), O {mn})} =

»(Q) P{Q}
= S(Q)mn #i()}, hence if we choose a non trivial section of LQIP(Q) (mn) we

get a divisor Y such that (2 {mn) = &,

2(0) P(Q) {Y). By lemma 4B.6 we have

that L&m(Q)) is isomorphic to Proj(s{(Q) (mn)) which is isomorphic to

Proj(s(Ql).
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d) We know that (/)

P (Q) {«( m) are invertible by 4A.5. Since the property of

being coherent is local, it is sufficient to show that

(939(9) (p) @ O]P(Q) (dm) =2 LQJpc:f,z)

{ddm + p) (see 4A.5} is coherent for some

0
{{m + p) is generated by H P(Q), i (ofm + p)}

o/ . On the other hand O]P(Q) »{Q)

by b) and this is isomorphic to S(Q)o(m+ , which is a finitely generated vector
P

space.

e) After c¢) we may choose an integer n such that OJP(Q) (nm) is very ample;

according to[SGAZ} Exp. XII, 1.4 it is therefore sufficient to show that

H ®(Q), Op g ® @ Up g (@ 0m) = (0) for i < rand & >> 0. But

& 7 '

LOP(Q) (p) Op(g)“" mn) Lﬂmg) (p + o nm)

by 4A.5 and H (®(Q), (QP(Q) (p + ol nm)) = (0) for i < r by 3B.4, b).

a) The sheaf O]P(Q) (m) is invertible by 4A.5, a) and (‘F,]P(Q) (m)ﬁn a4 (’I)}P(Q) {nm)
{see 4A.5,b)) is very ample. Therefore (QJP(Q) (m} is ample.

REMARK 1. We have already seen that
nE £ F £ G(Q).

Thus LO]P(Q) (mn) is very ample for every n > 0 such that n > G{(Q)/m.

COROLLARY 4B.8. The scheme P(Q) is projective.'

Proof. TP{(Q) = Proj(S{Q)) = Proj{(s{Q) (mn)). But S(Q) (mn) is generated by its
part of degree 1,This gives an embedding of Proj (S(Q) (mn)) in Proj (Symm(S(Q) (mni)) =
= ]PN.

REMARK 2. The same result can be obtained by considering P(Q) as a quotient

r
of P by the action of the finite group }MQ {see 3A.1.d) and then applying

numerical criteria of ampleness (see [Hl], p. 30).
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REMARK 3, Let Q = (qo, q, ., qz) and assume that Q is normalized. Then

1

= s}
n q0q1q2 an

1
G(Q) = ~{g 9.9, + 494, +494

249003, * 99y * pd, t 4 9y) - (a

2 Tt ay)

0
But this number is easily seen to be strictly smaller than m, so by Remark 1

we get that
C%P(Q)(m) is very ample.

However, if r = 3, this fact is no longer true in general. For, let Q =
= (1, 6, 10, 15). In this case G(Q) is between 1 and 2. Therefore

Q

(m - 30) is very ample for m 3> 2. But we are going to show that

P{Q)
(%P(Q)(BO) is only ample without being very ample.
i , 4 2 _
Namely the monomial TGTl T2 T3 has degree 60 but it cannot be expressed as
(30) |
the product of two monomials of degree 30. Thus S(Q) is not generated by

its part of degree 1, hence ()

30) is not very ample by 4B,6.
®(Q) y ampie by
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§5. The regular locus of Mori.

Let Q = (qo, cenng qr) and put as usual d = G.C.D.(qo, ceeny qr),

m= l.,c,m, (qo, cveny qr). For every prime number p let us denote by \)p the

number of indexes i such that p,zf'qi and denote by
Q) = min
V@ P, p prime (i\)P }

From the definition of V({(Q) we have immediately

PROPOSITION 5.1. a) V(Q) > 0 iff & = 1, i.e. Q is reduced;

b) Y(Q) > 1 iff Q is normalized;

c) Y(Q) > s iff for every choice of s weights the G.C.D. of the others is 1;

d) ~N(Q) » r -~ 1 iff the weights are pairwise coprime;

e) Q) =r+1iff Q= (1, ..y 1),

DEFINITION 5.2. For every integer h we denote by Sh the closed subscheme of
P(Q) which is defined by the ideal I(Sh) generated by those indeterminates
T t
i such that h)’qi. .
With the notation V,.(5(Q) ) we indicate, as usual, the set of relevant
n
primes P such that P2 S{(Q) . Then we can prove the following
n
LEMMA 5.3. a) (J

h315h T n ézime Sn
him

b = i "
YV codim (1‘?1} Sh) :

¢} For every integer h, Sh is a set theoretic complete intersection for every

immersion of P(Q) }_riIPN given by a sheaf UJP(Q) {n);

= N
A Ps = NS,

Proof. a) Let a be a natural number such that p [ a. Therefore S “acspnu Sa:
p —

) n ) n ’
namely if p a ( a then either p ( q, or a ( q,; moreover if p ( m then
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a a

S =@, In conclusion if h = 1.... S then 8 I S S

p 9 Py Ps t o= plﬁllu U Pas
s

cs .. US
= Sp U USp

b} It follows from a), after remarking that if p is a prime number, then by
definition VY (p) = codim Sp.

n/q;

n/q;
c) Namely Sh is defined set~theoretically by g T, ; h ‘r qii; and T a1 define
i .

i
1
N
hyperplane sections of LPOP(Q)) if L? : P{Q) —> P is given by a very ample

(QIP(Q) tn).

S, . Then for every

d) Let P be a relevant prime ideal such that P ¢ hL>J : 5n

prime h, h dividing m, one has P ¢ Sh by a); hence there exists a homogeneous
element Fh {actually an indetermjnate) of degree dh such that h { dh with

Fh & P. Therefore the ideal generated in Z by the dh' s and m is the unit

ideal, hence there exist positive integers ay such that Zf_ﬂ_ahdh = 1 + am

a
and Fh¢sg - P,
T n € (Q)am+1

Conversely assume that P & Sh for a prime h such that h*m, This means that
P contains all the Ti‘s such that h { qi. But of course every monomial of

S(Q)mn+ 1 must contain such an indeterminate {(whatever a is chosen). Then

»

PO Sm)amﬂ

EXAMPLE, Let Q = {1, 2, 3, 4), Then Q = Q, m = 12. Therefore Lé Sh =
= 8 P =
2U 53, I(Sz) (TO, Tz), I{SB) (‘1‘0, Tl' Tj) so that the locus USh

is not of pure codimension.

DEFINITION 5.4. We denote by JPO(Q) the open set P{Q) - hg . sh and-we call

it the M-regular locus of ®P(Q).
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PROPOSITION 5.5. a) V{Q) =0 iffiPO(Q) = @;

b} V(Q) = 1 iff ]PO(Q} is guasi affine and non empty;

c) If VY (Q) > 1 then ]PO(Q) contains a complete subscheme of dimension

v (Q) - 1 and does not contain any complete subscheme of dimension greater

than or equal to v (Q).

Proof, a) It follows from the definitions.
b) By b) of 5.3 (see also the proof), if VY (Q) = 1 there exists an indetermi-

nate Ti which defines a component of hLS, . Therefore the complement is

1Sh

)
guasi affine ad if hLi! 1 S, is pure then P (Q) is affine. The converse follows

h
from c).

c) It follows from the description given in Lemma 5.3.

PROPOSITION 5.6, a) The following conditions are equivalent

D@ () #£0; il d=1; iii) PO(Q) # @

P(Q)
b) For every ne¢ Z , the sheaf LQIPO Q) {n) is invertible;
on
c) (\D]PO(Q) (1) = OIPO(Q) (n) for every n ¢ 7 ;

d) PC(Q) is the largest open subset of P(Q) with the properties b), c).

Moreover if <~ (Q) > 1, then P°(Q) is the largest open subset of P(Q) with

the property b}.

Proof. a) P(D+{Ti}, OIP(Q) {1)) = S(Q)(l)(Ti) and the latter is clearly

reduced to 0 if and only if & is greater than 1. The equivalence between
ii) and iii) follows from 5.1, a} and 5.5, a).

b) Let P be a relevant homogeneous prime of S(Q), P & h‘>1 ) Sh' Then by 5.3,

d) there exists a homogeneous element F, F & P, F € S(Q) +1 for a suitable
am

a. Therefore P ¢ D, (F) and there is an isomorphism of S(Q) -modules

(F)

s = = .
(Q) (am + 1) (F) (S(Q)F)amﬂ 5(Q) (F) F
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This shows that (%PO {am + 1} is invertible in the neighborhood of every

Q)

o
PE P (Q), hence it is invertible, But

={ D
C%?D(Q)(n) ( »°(Q)

Ra\&n
(am + 1) @ (%P(Q)(~ m) )

by 4a.5 and all of them are invertible,.
€) We use again the same technique as in b); we first observe that it suffices

to show that

9 (a) & (%L

2° () ®) —> (D, fa+b)

°(Q) P°(Q)
is an isomoxrphism for every a, b. This natural morphism is induced by the na-
tural S(Q)-module homomorphism
S(Q) (a) @ S(Q)(b) — S(Q>ka + b).
Now let P¢ P°(Q). Then, as in the proof of b) there exists a homogeneous

element F & P, F & S{Q) . Moreover we can choose an indeterminate Ti of
a

m+1
degree qi such that 'I‘i & P. Then of course it is sufficient to show that
S(Q) (a 8 S(Q) (b —> S5(Q)(a + b)
Qfa) ) @ S@B) Q) ( (Fry)
is an isomorphism. But

S(Q) (a) - s (F/r, hH
(FT;) @) i

where ¢, = am/qi and similary
- Cib
5(Q) (b) S(Q%FT‘fF/Ti )

(FT;) B

i

and

a+b

Ci
s(Q) (a + b)( = S(Q) (F/Ti )

FTy) FT3)

hence the conclusion follogs immediately.

d) Let U be an open set with the properties b}, ¢} and let x be a closed
point of U; we must show that x.e:PO(Q); by 5.3, 4) it is sufficient to show
that if P is the homogeneous prime ideal corresponding to x, then there

exists a homogeneous element F € S(Q)am+1-P for a suitable a,
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Since OJP(Q) {m) is ample by 4B.7 and b), c) hold, there exists a suitable

a such that

v : Ra
(DJP(Q) (am + 1) = OIP(Q)(I) @ OJP(Q) (m)

is generated by global sections. Therefore there exists an element F ¢ S(Q)am+1 =

0
= i t x, i.e.
H ®(Q), @P(Q) {am + 1)) generating the stalk of O]P(Q) {am + 1) at x, i.e

(@P(Q)(am +1)) = LQI,(Q),X- F

Let now G be an element of S(Q)m such that G & P. Again we may assume that

amt+1
{(n{am + 1))} = (.9 - G
O o) = x P(Q), x
+
and by c) we get that Gam 1 and Fm both generate ('Q].P(Q) {m{am + 1))x. Therefore
+1 m
Gam /Fm is invertible in QO which means that also F & P. S0 we have

B, x

ot an element F 8 -P.
g emen € (Q)am+1

Let now U be an open set with the property b). We first note that property
c) is equivalent to

am .
ct) ‘(ng)‘”lu’ = @}P(Q)(mqu

by 4A.5. Therefore U - ]PO (0} is the closed subset of U which is the locus of the

points of U where c¢') does not hold. Let

g2m
( @P(Q)“)‘U) — (%’(Q)(m)h}

be the canonical morphism; it corresponds to a section of the invertible sheaf

w]P(Q) {m) [ 2 (DJP(Q) (I)h,).“m and U - ]PO(Q) is defined by the vanishing of

such a section hence either codimU(U - JPO (0)}) = 1 or the section does not
vanish. But, if VY (Q) > 1, then codimP(Q)CP(Q)~PO(Q)) = Y(Q) > 1. Therefore

e}
U= P (Q) and we are done.

PROPOSITION 5.7. Let p be the canonical projection p : U —> P(Q) and let

-1
ut® =p ~®@°(Q)), then
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o p ) . o
a) U ——=> P (Q) is a Gm—bundle, hence ¥ {(Q) & Reg(P(Q));
b) (DPO(Q) (1) generates Pic(®P®(Q)). Moreover if 0 is normalized then

Pic@®®(Q)) =Z .
Proof. a) The morphism p is locally defined by the inclusions S(Q) (F) —> S(Q)F-

Q
If Q is not reduced, then P (Q) = @ (5.5, a)) hence we may assume Q to be re-
duced, Since G.C.D, (qo, seeny qr) = 1, there exist bi's such that Z: biqi =1
r
hence there exist ai's, a € N, a€ N' such that J~ a.q, =am+ 1. Let G be
i
i=20

a nonzerc element of S(Q)a and F a nonzero element of S{Q) am’ Then

+ 1

L]

deg (G/F) 1 and it is easy to see (see also 4A.6.a)) that

S = S(FG)[G/F, F/G] = S(FG)[X' x”l]

It is therefore sufficient to prove that the open sets of the type D,(FG) cover

) C) :
P {Q). For, letP€ P (Q); by 5.3, d) there exists an integer a such that P & V+(S Q) am+1) ’

hence there exists G ¢ S_(Q}a and P € D;{G). On the other hand P & V+(S{Q)am)

m+1

for every a, hence there exists F ¢ S(Q)am, P & D.(F). Therefore P ¢ D (FG).
. o . R ' o

b) Since P (Q) is smooth, Pic{lP (Q)) = C1l(P (Q)); moreover

(OJP‘—"(Q) n) = (D °(0) (1)Qn by 5.6, ¢) hence, to show that (2 o (1) generates

P P}
Pic(®®(Q)) it suffices to prove that for every subvariety D of codimension 1

of PO(Q) there is a homogeneous prime element F of S(Q) such that Supp D = V+(F) .
If D is such a subvariety , then pm1 {D) is a subvariety of ‘codimension 1 of
o) r+1
v A hence there exists a homogeneous prime element F & S(Q) such that
-1
Supp(p " (D)) = V(F). Therefore Supp D = V_(F).

Now, if Q is normalized, then V (Q) > 2 and there is a positively dimensional

complete variety X contained in ]POCQ) {see 5,1, b} and 5.5, c)}. Since
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(QPO(Q) (1) is ample by 4B.7 and 5.6, d), also its restriction to X is ample,

hence no power of it can be trivial,

COROLLARY 5.8, If C%P(Q)(n) # 0, then it is reflexive of rank 1.

Proof., If (QJP(Q) {n) # 0 then n is a miltiple of G.C.D.(qo, cerny qr). Hence

by 3C.1 we may assume that Q is reduced and by 3C.5 and 3C.7 we may assume that Q is

normalized, We know that JPO(Q) < Reg(IP(QY)% P{Q) {(see 5.7).Let j: »° {(Q)—->P(Q)

denote the canonical inclusion; then (DJP(Q) (n) = 4 LOIPC’(Q) {n) and
codi%P(Q)GP(Q) - P°(Q)) » 2 by 5.1, b). On the other hand C%P(Q)(n) is inver-

tible by 5.6, so the conclusion follows by Appendix Theorem 17,
Another way of getting this result is by using the remark following Corollary

4A.5.

COROLLBRY 5.9. Let X be a closed subscheme of P{Q) and assume that X< P°(Q).

Then X is non singular if and only if X is quasi-smooth (see 3B.5).

Proof, It follows directly from 5.7, a).

EXAMPLES 1. If X @ P°(Q), X may be quasi-smooth and singular. Take for

instance X =®{1, 1, 2.

2. If X ¢P°(Q), X may be not guasi-smooth and non singular. For instance
- 2 2 .
let Q= (2, 2, 1), A = k[TO, T, Té]/(TO - T,T,) and X = Proj(a). Then

., (2) (2} 2
X = Proj(a but A = - i X = h
3 ( ), bu k{xo, X, xé]/(xo X X)) with deg X, = 1, hence

X is non singular. On the other hand Spec{A) has the line TO = T2 = 0 as the
(e}
singular locus. Now VY (Q) = 1 and P°(Q) = P(Q) *i’l‘z = 0}: so that X¢& P (Q).

Let us make some computations on the last example:

2 2 2 2 -
= =
(Tl) = k TD/TI' TZ/TII/((TO/TI) - TZ/TI) = le, Y]/(X - Y) X[Xl
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2 2
a/ (T, - Dz k{:TO. Tz}/(fro - T).

Over A/(T1 - 1) the action of yA2 is described by T, t+—> Tyr T2 ez = T

0 2

therefore (see 2.6):
(A/(T1 - 1))} o k[‘ro, Tzl/(TO - T2)= kfx, Yj/(x - Y)

Moreover A ) <> A/(T1 - 1) is a flat and finite morphism A is regular,

(T1

A/(T1 - 1) is not regular.

(Ty)

REMARK (see 3A.4). The canonical projection ﬂ‘::Pr —> P(Q} induces

o o o
T : U —>P (Q) which is flat. Namely we have seen that 1, (ler =

= @ QQP(Q)(* 2 ni) {see 3A.2). But over P°(Q) the sheaves CQP(Q)(H) are
invertible, hence the morphism ﬁ‘o is flat. For instance, if Q¢ = (1, 1, 2},
we know that P(Q) is isomorphic to the cone of2P3 which projects a smooth
conic andZPO(Q) is the cone except its vertex. All the fibres of I have 2

points (not necessarily distinct}, while on the vertex there is only one point

and at this point the morphism is not flat. The corresponding local rings are

xjr. ., 7, T ) (kix_, X x2 )
[o' 1’ 2}(1*0, T.) 0= [o' 1 2}(xo, x,) 0°

jie

= «[¥%, xx., ¥, X ) = kxS, Ry, v ~
- [o' 071" "1’ 2](::(2}, XK, xf) o= Tt ](xz, xy, vH T

2
=2 x[x z] XY - %
: ¥, loc/( Y )

nd (kjX_, X , X ) = k[x ¥ . Clearly the morphism
& ([0’ Y 2](::0, X0 . ]loc P

k[xz, XY, Yz]loc, — k[x, ¥]

is not flat,
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§6. Differentials:anddualizing sheaves on P(Q).

In the first part of this section we deal with some generalities on regular
differential forms on P {(Q), while the second part is mainly devoted to compute

the dualizing sheaf of a complete intersection in P(Q).

6A. Regular differentials,

Let A be a ring (commutative with identity), B an A-algebra and M a B-modu-
le. An A-derivation of B into M is an A~linear map d : B —> M such that

d(bb'} = bd(b') + b* d(b) and d(a) = 0 for every a € A.

DEFINITION 6A.1. We define the module of relative differentials of B over A

to be a B-module '(lB/A together with an A-derivation d : B —> 'CZB/A which

satysfies the following universal property: for every B-module M, and for
every A-derivation d' : B —> M, there exists a unique B-module homomorphism

£: Q0 —> M such that d' = fed.
B/A

It is well-known and easy to see that ('(lB/A' d) exists and it is unique
up to isomorphism (see [ﬁé}).

PROPOSITION 6A.2. (First exact sequence), Iet A —> B ~——> C be homomorphisms

of rings. Then there is a natural exact sequence of C-modules

_Q.B/AQBC—-» .Q.C/A-——-> ..Q.C/B--—:»o

Proof. See [?a], p. 186,

PROPOSITION 6A.3. (Second exact sequence). Let B 35_A~algebra; I an ideal of

B and C = B/I. Then there is a natural exact sequence of C-modules

2
/1 ﬂB/A 8,c —> QC/A > 0

vhere for every b ¢ I, }_{5 denotes its image in I/Iz, then J'S =db @1,
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Proof., See [yé], p. 187,

Let now £ : X —> Y be a morphism of schemes and let us consider the as-
sociate diagonal morphism A : X —3 XxY X. Then X is isomorphic to A (X)
(see [H], II, 4) which is a closed subscheme of an open subset W of X g X.

DEFINITION 6A.4., Let Y be the sheaf of ideals of A (X) in W. Then we de-

fine the sheaf of relative differentials of X over Y to be the sheaf ..Q.x 7y =

= A*(ﬁ/’jz) on X.

PROPOSITION 6A.5. If X and Y are affine, then Definitions 6a.4 and 6A.1

agr ee,

Proof. See [Ma], p. 182,
r
Let now consider the usual projective space X = IPk.

THEOREM 6A.6. There is an exact sequence of sheaves on X

0 —> .Q.x > @x(-j,)rﬂ — @x —_— 0

/k
{The exponent r + 1 in the middle means a direct sum of r + 1 copies of

(.’)X(-l)).

Proof., See [H}, p. 176,

DEFINITION 6A.7. If X is a smooth, r-dimensional scheme over k, then we de-

fine the sheaf of i™P regular differentials of X (over k) to be
. . i
i i
..Qx - _Q.X/k - /\ _Q X/k

r
Furthermore we say that ) = ..Q.x is the canonical sheaf.

i X
So now let us compute Qx when X = P . To this end let us consider a

slightly more general situation, which will be useful in the following.
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Let as usual Q = (qo, esany qr), 5(Q) = k[’ro, ceney Tr] graded by qi = deg Ti.

Since S{Q) is a polynomial ring it is easy to see that Q is a free mo-

s(Q)

dule generated by {dTO, cneay dTr} hence it can be given a structure of gra-
r

ded S(Q)-module by putting deg(dTi) =q,i consequently ﬂS(Q) = @ S(Q) (—qi) .
i=0

i
Therefore N\ _O..S(Q) becomes a free graded module with basis given by

{del/\ ....Adei;O IS j1 < vaee < ji £ r}, hence

AQ

= . SO (~gs, = eave = qs.)
s5(Q) 0~\<j1<..@..<3isr Q qu 9
In particular
r+1
N Q= sw@lab.

. 8(Q)

Let now fo, ooy fr be elements of degree g ,.,,qr respectively {(e.g. fi = Ti)

o

and consider the graded homomorphisms

i i-1
Ay N 'Q'S(Q) A ‘QS(Q)

i
h+1
dyjl'\""/\dyji P—— Z (-1) fjh dyjlf\"”/ﬁ'\ ....f\dyji
h =1 h

We get the complex

A

r+i r
—_— AN N — 0 -1 s
0 A ‘Qsm) A Qs(cz) 5(Q) Q

which is isomorphic to the Koszul complex K(fo, ceees fr; S{Q)) and such that
Coker A = SQ)/{f , oo, £).
1 c r

Assume now that fo, vesag fr is a regular S(Q)-sequence. Then the complex is

exact and we may consider the graded modules

i+1 i

i i-1
Syzi = ker( A QS(Q) —> A QS(Q)} = Im(/\ QS(Q) —_ A QS(Q))



- 51 -~

In particular we have exact sequences for every n
i

(*) 0 —> syz_ (n) —> AL (1) —> syz__ () —> 0

s(Q)
Let us go back to the usual projective space, hence assume that Q = (1, ...., 1)

and S(Q) = S = k[xo, ceens xr] with deg X, = 1. Then we have the following

i i-1
THEOREM 6A.8. If Syzi denotes the graded wmodule ker( A QS —_— —Q-S)

r R :
and if (Syzi)m is the associated sheaf on ® , then there is an isomorphism

i ~
-Q-:pr = (Syzi}

{(-r -1},

In particular (U r = @]Pr

Proof. Let us consider the exact sequence of Theorem 6A.6. Now

r+l r+l, ~
(DPr(-n = (8(-1)" ) = c.ﬂ.s)

Therefore
N Fav
[ et =
Qprs ker {0 — s}) (syz)

and the theorem is proved for i = 1., So we make induction on i.
et now p : U —> PY be the canonical projection. From the globalization of

the first exact sequence (6A.2) we get the exact sequence
Q0,2 0 — Q — 0
»r u u/pr
Now the standard map 1},1 : .Q_s -3 8 given by dxir———-——> xi induces a morphism

of sheaves 31 : (,O_S)" —> 0mr+1 which is clearly surjective if restric-

ted to U. Therefore we get a surjective morphism
: —
Dy Ly 9y
Let us prove that AU e = 0, For, we know that the morphism p is locally

given by the inclusions S > 8 "X hence it is sufficient to show that

(Xi) 1

AU o o applied to the differential of a monomial of degree 0O (Xi may have



- 52 -

r
negative exponents) is zero. Let || X?j, s . » 0, j # i be such a monomial.
j=20
r.
Then, recalling that 2:;0 s = 0,
n:

S S s5.-1
o X J = ‘\. J . n =
by )(d(TTXj )) A [ CTI X, s X 7o)X

n
n i #n

S S S
= R oy o . 1=
;. (.Tr x3 s %™ (Zﬁ, s TTx3 = 0.
n i#n

Therefore ZSU factors through a surjective morphism A :jq'uﬂpr — LQU.

On the other hand .flu is invertible (see [H}, 111, 10.4), hence & is an

/Pt
isomorghism.

Note that the sheaves .(20 re LQU are clearly isomorphic since .(20 r is

/P
trivial because it is invertible and Pic(U) = (0), Indeed the argument above
shows that jﬁst the canonical map A fis an isomorphism. Now we have an exact
sequence

o
0-——>1<—-——>p*_(1]Pr——->.QU—-—-> (9U--—->o

Since (OU, J:lu, p*.flnm.are locally free sheaves of ranks 1, r + 1, r re-
spectively, also K is a locally free sheaf of rank O hence K =(0land we get
the exact sequence of locally frée sheaves

0 —> p*(}) LQ—-——)(Q-—-—-—)O

BT U U
For every i = 1, ...., r one has the exact sequence
i i i-1

0—> A p*Q ,— AN — ApQ e O —0
i.e.

Oﬁep*ﬂérwﬂi——;p*ﬂggl—-»o

Now we apply p. and we get again an exact sequence since we are dealing with
locally free sheaves, On the other hand the projection formula (see [H],
p. 124) yields

i

i » .
Py = Qprop, O = Q0@ 0, m =00
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. 1 -~
while p*j]_; can be easily computed to be (g ,Am jjzs(n)) {as in the proof
of 3,B. 2 a}, b)). Therefore we get exact sequences
i i ~
0 —> © —_— (D —_— B
°L) ) @ A ._Q_S(n)) 0.{,

By comparing with the exact sequences (*) we get the diagrams

i
i o~ i-1
00— 00 (m — @ A O ) — el ‘tn—>0

s |
0 W A ;§ ~£1 ~ ~
—_— (g Syzi(n)) —_— (g S(n)) —_— (g Syzi*lin)) — 0

i
id ; (o

v

where in the middle we have the identity, the right-side morphism d . ) is

-

an isomorphism by the induction and the morphism A 1 is induced by the
l-—

commutativity of the right-side square. Clearly X  turns out to be an iso-
i

morphism, so the proof is complete.

At this point we are naturally led to make the following consideration.
let Q = (qo, ceesy qr), S5(Q) = k[‘l‘o, ceans Trj graded by deg Ti = qi and con-
sider the exterior algebra complex associated to the elements qOTO' easey qur
as in-the discussion preceding Theorem 6A.8. Denote, as before, by SyzfL the

graded module of i~th syzygies of the complex, which is isomorphic to the
Xoszul complex X(g T e : 8 .
piex (qO o’ 7 qur Q)

i o~
DEFINITION 6A.9. We define ‘Q‘P( to be (Syz,) and call it the sheaf of

Q)
the i~th reqular differential forms on P(Q).

REMARK, It is easy to see that the proof of 6A.8 cannot be extended to P(Q).
Moreover even the proof of 6A.6 cannot be extended, hence over P(Q) it is

i
not even true that ) = ) in the new sense.
Q) P(Q)
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i
So now the most important step is to show that the new sheaves ijP(Q)

behave well and this will be achieved in the next theorem, for which we need

the two following results.

LEMMA 6A.10, Let G be a finite group whose order is invertible in k and let

it act on a polynomial ring,B==kEX1, ....XQ}. If G is generated by pseudo-

G
reflexions and A = B then there is a canonical isomorphism of A-modules

i i
G
A 'QA/k= €A ‘Q"B/k)
Proof. See [b], 2.2.2,

LEMMA 6A.11., If v :}Pr ~——> P{Q) is the canonical projection of 3A.1,

then there is a canonical isomorphism

i — #AQ i
Qo™= T g
Proof. See [D], 2.2.3.

S50 we are ready to prove the following important

THEOREM 6A.12. If W= Nonsing{(P(Q)) and § : W —> ®(Q) is the inclusion,

then there is a canonical isomorphism

. i
= 3, L

i
'Q'JP(Q)

Proof. Let us consider the commutative diagranm

'n'*l (W) —2s p°

Tr'i- l’:r
W —3> P(Q)

Since W is non singular, then the action of 4ﬁuQ on TT_l(w)coincides locally

with that one of a group G generated by pseudoreflections(see [ D], 1.3.2).
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Hence by 6A.10 and 4a.6 we get

i

Dy = (Q "Hw;

Since P(Q) is normal (see 3a.1.q)), codigb(Q)GP(Q) - W) > 2 hence

codi%PrGPr - TTﬂl(W)) > 2, so0 that

3. -fl a-ten S)jir (they are locally free sheaves)
Then
. i ) Mo }
J*QW” (Q “I(W) = M4 j (Qﬂ""i(w) =
Mo i i
=T, (.Qpr)'s _QP(Q).

6B, Dualitz.

First, let us recall some general facts on duality whose source are, for

instance,[:H},‘[G], [ax], [R].

DEFINITION 6B.1. Let X be a proper scheme over k which is equidimensional

. . L . o
of dimension d. A dualizing sheaf for X is a coherent sheaf (b _ on X together

: o
with a trace morphism t : Hn(x, 68 x) -3 k such that for all coherent shea-
ves ™ on X, the natural pairing
o d d o
Hom(%, w ) X H (X, 3) —> B (X, W )

followed by t gives an isomorphism

[+]

—~ v
X) —— Hn(x,fﬁ) ("v" means dual)

Hom(é?,gu

Now it is well-known that for a proper scheme over k a dualizing sheaf
exists and it is unique up to isomorphism and the natural pairing of 6A.13

can be extended to the so called Yoneda pairing
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a- s) d o
Ext T (3w X B — mx, w))
which, composed with t, gives rise to the pairing

{Y) Extdwp(ér w;) X HP(ny‘ } —> k

THEOREM 6B.2. If, in addition, X is Cohen-Macaulay (C-M) then (Y] is non

singular, hence it gives the isomorphisms

a- —_
Ext P('B*,w;) ~5 &%, pyo

PROPOSITION 6B.3. The following conditions are equivalent

a) X is Gorenstein,

o
b) u)x is invertible.

COROLLARY 6B.4. If X is C-M and % is locally free of finite type then the

isomorphisms of 6B.1yield the isomorphisms

2 Px, BV 0wy = %, )Y, p3o0

proof. If M« is locally free of finite type then the canonical morphism

5 &g —> Hom($, ()

is an isomorphism {(see Bourbaki) for every wx—module 9 and (see [G], p. 265)

Exﬁi({jn,(&> - wh(x, g_cgg(@,% ))

o
COROLLARY 6B.5. If X is non singular, then Q}x = "QX' the canonical sheaf.

COROLLARY 6B.6. Let W = Nonsing(X) and let j : W —> X be the canonical

o o
embedding. If codi - > t = 7 = 3 .
g ) mx(x W) 2 2, then (.QX I ww 3, ww

THEOREM 6B.7. __;_g_ Y X is a closed subscheme of codimension ¢ and both Y and

X are C~M then

s}

Wy

C [a]
Ext {(Dy,wx).



- 57 -

At this point we can draw some consegquences forthe weighted projective spaces.

COROLLARY 6B.8. The following isomorphism holds true:

O
Wi = Opg o

Proof, P(Q) is a C~M, normal scheme (see 3A.1) of dimension r, therefore we can

o
apply 6B.6 and we get wIP(Q) = e W) W where W = Nonsing (P{Q)). On the other
o r r
hand ) = Q_ by 6B.5 and 4 L2 =2 by 6A.12.
¥ Q)

So we have only to show that Q). We know that, by definition

¥ D.JP(Q) Yp (o 1€l ¢+ by '

.Q.r = (8Syz )N
P(Q} Yo

and

syz = 3o s(o) ¢
Yz = /\ti Q a; 0,

being the complex exact. Therefore Syz 5(Q) (-]@]) and we are done.

COROLLARY 6B.9. Let Q = a and let X C P{Q) be a complete intersection of multi~

degree (di' cseny dc). Then

= Ul o a -leh.

(o]

W g

Proof. By definition there exist c forms Fl' SN Fc such that Fl' veees FC

is an S5{Q)~-sequence and if I = (Fl' seeng Fc) then X = Proj{(S{Q)/I). Let us con~-
sider the Koszul complex associated to Fl' crens FC and call it X, Then X, resol~

ves S(Q)/I and it is a complex of graded free S{Q)-modules. Applying ~~ to
XK —> s(Q)/IT —> 0

we get a resolution of (9 given by sheaves of the type ? LO]P(Q} (ni). Let us

denote by H, =p122‘_ this complex which resolves LQX. By [De} Prop. 5.4,

v -0 =0
Ext%(g) @P(Q)(n) (DP(Q)< Q)
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for every i > 0 and n ¢ Z . Therefore H, is acyclic for the functor

Hom (eeeer @O (-]9])). By standard arquments of homological algebra
— O P

we get that _}_E:_x_p:zg ((DX, LOZP(Q) (-]12])) can be computed as the i-th homology
PQ)

of ¥..In particular E’S_Ec (0)(' LQP(Q) ("IQU) is the homology of
P(Q)

Hom @0 (-7 a), 0. t-lo| —> Hom(&  (Lan, O, jo]y =0
—— @ Pyl P(Q) ' — p L

P(Q)
b ¥ B (Q); i 0
I i
2. a- — & Z.a -lg}) —> 0
H LOIP(Q)(J'#i dj leh) )JP(Q)( ii 2l

where the vertical isomorphisms follow from the remark after 4A.5. This homo-
logy isclearly (Dx( Z} di -|Q{). On the other hand
c o
Ext (U0, G, -le = w

wp(g) X T{Q) X

by ;6B.7 and 6B.8.

For more details on duality on P(Q) see [De] where some conseguences are
drawn, particularly in connection with the Gorenstein property. For instance

we have the following

COROLLARY 6B.10. a) The scheme P(Q) is Gorenstein if and only if m divides
lof:

b) If m divides Z; d. »IQ{ then the scheme X of 6B.Y is Gorenstein.
e i —

Proof. a) It follows from 6B.3, 6B.8 and 4A.4.

b} It follows from 6B.3, 6B.9 and 4A.4.

COROLLARY 6B.11. Let O = Q and let X< P(Q) be a complete intersection of

multidegree (dl' ceeny dc). Then the arithmetic genus of X is pa(X) =

- = 2. a -
dim (S(Q)/I), , where ! T 4, lQ]-
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d -1 .

Proof. By definition p (X) = 2 (-1}l Hl(x, a;o), d=4dim X =r - ¢, and

Proof a / X
i=20

by 6B.9

r-¢-1 i1
X = — —
p_(X) Zi*o (-1 B (X, LDX(Zi,.di el

Since depth S(Q)/I = r - ¢ - 1, all the HY's vanish for 0 < 5 < & - 1

by 3B.4, b) second part. Therefore
G
p_(X) = H (X, LQX( 2' a, -leln = s/,
i
by 3B.4, b) first part.
REMARK. The formula of 6B.9 is a typical adjunction formula, which has ano-

ther formulation under different assumptions. Namely, if X is a quasismooth

-1 .
subscheme of P(Q) and p (X) is denoted by Cx(p : U > P(Q) is the canoni-

; ; : . o G, a+1
cal projection) and if 4 = dimX then hjx =P, (_flc . &s a consequence,
X

it can be deduced the following adjunction formula:

If X is a guasismooth subscheme of ®(Q), then

r-4a
o __ x »(Q)
wxxﬂ;\p(q) & A /Vx

»r
where A/ X(Q) denotes the normal bundle of X in ®(Q).

For details see [D], 3.3.
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§7. On weighted complete intersections.

We have already seen some properties of the weighted complete intersections
at the end of the last section., In this section we are going to make some com-
putations of the Divisor Class Group and the Picard group of P(Q) and of weigh
ted complete intersections,

Let us just recall that by m we denote the l.c.m, (qo, ceeny qr) and by a the
l.c.m. (do, ceeeyz dr)' The description of the above menticned groups for P (Q)

is contained in the following

THEOREM 7.1,' Assume Q to be reduced; then

a) CLP(Q)) = Z generated by [CQJP(Q) (a)];

b) If Q= Q then ClLEP(Q)) =7 generated by [wJP(Q) (1)];
Pi = ted b ;
c) ic(®(Q)) =7  generated by [('OIP(Q) (m)]

d) ¥(Q) is locally almost factorial (i.e. the local class groups are tor-

sion)and it is locally factorial if and only if 6 = (1, ..., 1)

Proof. A proof can be found in [R2]. See also [Am] for another proof of a),
b), ¢) with some generalizations. With regard to a), b) we only want to point
out that the proof of [RZ] is based on a more general theory of Demazure (see
[Dem]) ¢ which describes the normal graded k-algebras by means of suitable Weil
divisors with rational coefficients and on some consequences drawn by Watanabe
(see [wl) on the description of the asscciated class groups. In any case an
essential step in the proof of a), b) is to recognize that the sheaves

w]?{Q) (n) are reflexive of rank 1 (see 5.8).

As for the proof of ¢) it is clear that Pic(®(Q)) = Z , being a subgroup of

Cl (®{Q)) and we may assume Q = {J since if Q # §, then ('QP( )(m):s(? {m/a)

o) P (D)

by 3C.7 and m/a = l.c.m. (qo/ao, cesey qr/ar). So we may use 4A.4. As we know,

the sheaves L{)JP(Q) { X m) are invertible and if n is not a multiple of m then
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there exists a T, such that [T(D,(T,), UJP(Q) {n)) is not free over
(D (T,) }. To conclude that (n) is not invertible we need
R (T, (QP(Q) @:ch)

-

showing that PiC(D+('I‘i)) = (), For we know that D+(Ti) = Spec k[TO, esaar T,

i
crney 'I'l:l%{qi and

) Pa )
KIT ., eeees, Ty eeea, T =9k meens Ty wneny T
k[ O’ ’ ir ’ I] g [Tor L4 i' ' r]nqi

Therefore D (Ti) is the spectrum of a ring which can be naturally graded over

N and whose part of degree 0 is k. By [Fo], 10.4, p. 43 its Pic is trivial,
As for d}, we observe that by [B-—O], Prop. 2.1 and by a}, b}, c) it turns out
that P(Q) is locally almost factorial and it is locally factorial iff m = a,
But P(Ql P(T) and a(f) = 1, so P(Q) is locally factorial iff m(Q) = 1 that

is iFfE Q= (1, 1, evee, 1),

COROLLARY 7.2, Let Q = (qo, ennay qr), Q' = (q('), seens q;:), assume that

dy € eee £ q(‘) Leen o & q;: and that 9 = §, Q' = QL If P(Q) is_isomorphic to

0

B(Q') then @ = ©'.

Proof. (see also EAm]) The isomorphism (f between P(Q) and P(Q') induces

an isomorphism c{)* between ClIP(Q')) and CLP(Q)). Since [('OIP{Q‘)“)]

generates Cl{P{Q'}), the inverse image (_f?* [(ﬁp (ll)j ig a generator of

(9%

Cl{P(Q)) hence ‘-?* w]P(Q') (1) = (DJP(Q) {1) because no multiple of (9(»1)

y = (9 {s} for every

has global sections. Consequently q?* (911? Q") (s B(Q)

s¢ FZ , therefore

.0 oas 0 .
d:.mk H ®Q), (QIP(Q)(S}) dlmk H (P(Q"), (DP(Q,)(S))

But BO®(Q), ©

s = 8 by 3B.2.c¢)}. This means that the Poincaré
13“})( ) (Q)s 3’4 }

series of S5{Q) and S(Q') coincide. Now it is sufficient to prove the following

CLAIM: If Q = (q ./ «.vuy 9)r 9y € +oee £ and Q' = (ql, .ovn, Q)
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q6~s cees & q; are such that Pt(S(Q)) = Pt(S(Q‘)) then Q = @' (here Pt is the Poin-

caré serie).
We prove the Claim by induction on x. If r = 0, it is clear. Let qU £ qé and let
us evaluate both series at qo. Then we £ind
dim(S(Q)g ) = dim(S(Q')}, ) # O
%o 9o

whence q' = . But
qO qO

q q
PSIQN) = 1/(£ 0 - 1) +ene (£ - 1),
hence we find
L] L

q q q
/et - 1) sere (£ - 1) = I,I(tq1 - 1) cees (£ F - 1)

1If we denote by Q0 = {g ey qr), Qé = (q;, erees q;) we get by induction that

1'

QU = Qé and the proof is complete,

Now, starting from the fundamental theorem 7.1, we may try to compute the divi-
sor class group and the Picard group of suitable subschemes of P{Q).
First, let us recall the following result of Mori (see [Mo], 3.7) which yields a

"weighted version" of the classical Lefschetz theorem on complete intersections

THEOREM 7.3. Let X be a projective variety which is a complete intersection in a

o
weighted projective space P(Q)} and such that XC P (Q). Then

a) If dim X » 3 then Pic(X)= 7.  generated by [wxm];

b) XIf dim X = 2 then there is an exact sequence

0 —> Z 25 pic(X) —> K —> 0

where 1 goes to [CQX(I)] under of and K is torsion free.

Proof. a) The assumption that X < P°(Q) already implies that © is normalized by

5.1, b) and 5.5. Now

. -

X = Pr03(k[To, ey Trj/(Fl, veeey FC))

where deg T, = deg F =4 a F
g i qi' ] 3 . and

k[TU, ceeey Tr]. Let

gf et FC is a regular sequence in
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P - k[‘l‘o, cenes *rr] —_— k[XO, cevey xr_k

43 i
be defined by LF(Ti) = Xil. If deg Xi =1fori=20,...., ¥, {Pis a graded

homomorphism which is finite and free (see 3A.2). This implies that if we put

Gi = Q{J(Fi), then G

gt s Gc is a regular sequence in k[xo, anaey X& Look

at
L id .
X = Proj(k[xo, veses Xr]/{Gl, ceney Gc))

embedded in P° and consider I : P¥ —> P(Q) (see 3a.1, d)) which induces

™: ¥ —> X. Arguing as in 3A.2 we get that

x
= 8 (- Z )
R Olf 0g d, < wx i"Odi
] . X
But XCT P (Q), hence the sheaves wx(n) are invertible, whence 'ﬁ'* 0’}? is

locally free. Now T induces qI'* : Pic(X) —» Pic (¥) and since it comes from an

equivariant homomorphism, one has q* L_’)x(l} = (93«{(1) . We know that X is an

R . . r .
usual complete intersection in ¥ such that dim X » 3, hence the "usual”

Lefschetz theorem applies to say that Pic(X) =Z - [(9..}2(1)] . Therefore we

have only to show that q* is injective. For, let L € pic(X) be such that

w %: (9).{.. . We deduce that

_ )
Te WL = T, (93{- ® D, ¢ e o)
0 o, <q i

and by using the projection formula

ol = Lan,Og=LoC o O L a)

0g o i < a9 i
Since X is projective, the Krull-Schmidt theorenm implies that -\’f :‘."‘&QX{n}

=1
for some neZ.Ifn#0we may assume n > O by interchanging .E and ,(2 -

Therefore .ﬂ is ample and since N is finite also fﬂr*,ﬁq: CQ-'}? is ample.

This is a contradiction and the proof is complete,
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b) As in the case above one has a morphism 7 : X —> X which induces an injec~
~
tive morphism TW* : Pic(X) ~—> Pic(X). Then we get an exact diagram with com-

mutative left square

0 —3 Z —> Pic(X) —> K —> 0

lid iﬂ*
0 —> Z <> pic(X) —> K —> 0
where 1 goes to [(.Qx(.i)], [U)fi(l)]under d , c,‘. respectively and K is torsion
free as proved in {Rl]. The diagram induces an embedding K &—> X so the assexr-

tion follows.

A consequence of Theorem 7.3 b) is the following {compare with statement 7.6):

COROLLARY 7.4. Let X be a normal projective surface which is a complete intexr-

section in a weighted projective space P(Q) and such that X< P°(Q). Then every

prime Cartier divisor of X which is a set-theoretic complete intersection on X

is actually a complete intersection on X.

Proof. It runs as in [Ri], §3.
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REMARK 1., It should be noticed that Theorem 7.3 was an essential tool to
prove the following fact, which was the motovating point for introducing

weighted complete intersections: let Y be a complete intersection of multi-

N .
degree (dl' conay dc) in¥® , dim ¥ > 3 and assume that Y is an ample divisor

in a smooth projective variety X. Then there exists s « A/ such that X is

a weighted complete intersection of multidegree (dl' ceens dc) in®(1, ...., 1, s)

and s divides di for every i (see [Mcﬂ).

REMARK 2. 1In [D], it is proved another version of the "weighted Lefschetz
theorem", Namely the following is true. Let X be a projective variety of di-
mension 2> 3 which is a complete intersection in a weighted projective space

P(Q) and such that X is quasismooth. Then Pic(X)z 7 .

Of course theorem 7.3 of Mori and the theorem above of Dolgachev lead

naturally to the following

QUESTION 1. Is there a version of the Leschetz theorem for every complete

intersection in P(Q)?

REMARK 3., If we look more carefully at the proof of theorem 7.3 we see that

what we need is that Pic(X)s: 7 generated by [Lum |- Therefore, if

n
X
dimX=2 and X is sufficiently general then we may use the classical Noether

theorem to get the desired conclusion. However X is not a priori sufficiently

general, because in the equations defining i’the variable xi only appears

with exponents multiple of qi.

The remark above leads naturally to the following

QUESTION 2. Is there any "Noether type" theorem for weighted complete inter-

sections of dimension 27

It should be noted that a partial answer to Question 2 was given recently

by Steenbrink (see [S]), who proved that for a sufficiently general surface




- 65 -

X of (1, 1, a, b) with G.C.D.(a, b) = 1, Pic(X)=t . .

For the next application we need the following

LEMMA 7.5. Let Q = 0 and let n be such that (/7 ;P (n) 1s invertible. Then

Q)
LDJP(Q) (sn) o LQJP(Q) (n)@s for every s € 7. .
Proof, By 7.1, n = am hence (DIP(Q) {sn) = OJP(Q) {sam) is invertible. Of
course also (9 (n)Qs is invertible,
»r{Q)

To show that they are isomorphic it is sufficient to prove that their re-

strictions to IPO(Q) are isomorphic and this follows from 5.6, d).

In the following, if X is a subscheme of P(Q) and I is the ideal of X,

then we denote by S(X) = 8(Q)/I and by o(x : S{X) —> g HO(X, (Dx(n)) the

Serre~homomorphism (see 3B.4).

THEOREM 7.6. Let Q = § and let X be a normal closed subvariety of P(Q).

Assume that the Serre homomorphism dx is an isomorphism and that

Pic(X)/ Z [@x(m)] is torsion free. Then every Cartier prime divisor D

of X which is a set-theoretic complete intersection (s.t.c.i.) on X is

actually a complete intersection {(c.i.) on X.

Proof, Since D is s.t.c.i. on X there exists d ¢ N and a form F ¢ S(Q)d

m
such that D = Z(F}) n X {set-theoretically). Let us consider ¥ & S(Q)md =

=@, O

P Q) {md)). Since (QX(md) is invertible by 4A.5, F' defines an

effeétive Cartier divisor A such that

23
o == by 7.5
wm(g) (A LDMQ) (md) LDP(Q) {m) (by )

On the other hand, Z(F) A X = D and the restriction of / to X is a Cartier
divisor, having D as its support. Since D is prime it follows that

A-x=qD
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hence

&q ) N . 2d
@xcm e O, (D) = Opgy D e NS

The assumption on the torsion freeness of Pic(X)/ f”"”x(m) implies that

8s
@X(n) o @x(m) P (Dx(ms)

for a suitable s. The assumption on the Sexre homomorphism implies that the

canonical map

5(Q) = HOGP(Q), (O (ms)) —> HO(X, D (ms))
ms ) X

»(Q

is surjective. Then there exists a form G & S(Q) . which defines a Cartier
m

divisor div(G) such that

div(G) - X = D {scheme theoretically).

REMARK 1. From the arguments above it turns out that significant applications
of Theorem 7.6 would follow from a generalizedLefschetz type theorem in which

the assumption "X< P°(Q)" occurring in 7.3 was removed.

REMARK 2. While a global section of an invertible sheaf yields a Cartier
divisor, it should be noted that if we take for instance Q = (i, 1, 2), the
global equation TO = Qvyields a Weil divisor on P{Q)} which is not a Cartier

divisor. This corresponds to the fact that )

i t i tible.
:P(Q)(l) is not invertible

We conclude this section with some remarks on the following question. By

means of 7.3 some examples are constructed in [RZ] of smooth varieties X
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with dim X » 3 which are c.i., in P(Q) with Q = § and whose projective coordi-
nate ring is U.F.D. Moreover such varieties do not have immersions in any P
such that the corresponding projective coordinate ring is U.F.D. Here we
remark that examples of this kind can be constructed also in dimension 2.
Namely, if we drop the assumption "X smooth" then P{1, 1, 2) is such an exam-—

ple, but if we want to keep the assumption, then we may consider for instance

A

3 2
k[TO, T T, ‘I‘3]/(TO-J~T

= 3, .
1-!-T2T3), Q {2, 1, 5)

w
]

5 3 2 5 3
k[T P +p 7 b£EL, Q=
[0' T T, Ty 4]/('1'0 [Ty Ty # BT +TT ), b F 1,0

L]

(6, 10, 15, 1, 29).

Asji:isprovedin[?], A, B are U,P.D., hence the smooth surfaces X = Proi{A},
Y = Proj(B) have a normalized U.F.D. immersion in ®{(2, 3, 1, 5) and

{6, 10, 15, 1, 29) respectively. Using the results of £R2}, §8 3, 4 we know

N
that X, Y have no U.F.D. immersion in any PP .
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APPENDIX: Reflexive modules and Weil divisors.

First, let us recall some results from algebra. All the rings we consider

are noetherian and the modules are of finite type.

LEMMA 1. Let A be an integral domain and let M, N be A-modules with N torsion

free. Let (F: M ——3> N be an A-homomorphism and let }r < Spec(A) be such

that (6F = (0., Then (f = 0.

Proof. Easy, left to the reader.

LEMMA 2. Let A be an integral domain, M, N submodules of the fraction field

K(a) and let Spec (A) be such that M, ~ N, =~ A . . Then every A-homo-
ana ‘et & De sucn that &- Ho y

morphism q’: M ~—> N is the multiplication by an element of K{(a).

Proof. From the assumptions one sees that %3% is the multiplication by an
element a/b € K(A). Consider the A-homomorphism by - a. One has (bt{ ~a) = 0,
+

b

hence bLF - a = 0 by Lemma 1 and we are done,

PROPOSITION 3, Let A be a normal ring and let M be an A-module of finite

type. Then the following are equivalent

a) M oz Mk,
b} M=A: (A : M);

c) M= NOM . htip) = 1;
A P

d) Every A-reqular sequence of lenght two is a M-regular sequence too.

proof. See [Fol, p. 23-24,

THEOREM 4. (The Approximation Theorem for Krull Domains). Let A be a Krull

domain and denote by v the valuation associated to the principal Vvalua-

tion ring A ., For each 4;'33 Spec(A) let n(f;) be a given integer such that

n(ﬁo) = 0 for almost all }F . FPor every finite set ey ﬁor there is

[1’

an £ in K(A}* such that v (f) = n()P }  and v (f) > 0 otherwise.
— B oo -
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Proof. See [FS_{, p. 26-27.

From now on let (X, (Qx) be a noetherian, irreducible, normal scheme of
finite type over a field k, and let X (X) be the constant sheaf of rational

functions.

PROPOSITION 5. Let M,H'E?_ submodules of finite type of K ({X) and let x € X

be such that ﬁx ~ M o= O . Let g H —> H' be an (.P'X-homomorphism.
% =€t oe an AOmomorphism

X, X

Then QF is the multiplication by an element of K (X).

Proof. Lemma 2 says that for every affine open subset U of X one has

L?IU = F(U), F(U) rational function on U (hence on the whole X). Therefore
the F(U)'s give the same rational function on X since they coincide on non
empty open subsets.

Now we refer to W-div(X) as tothe set of the Weil divisors on X and if
D€ W-div(X) the sheaf (QX(D) is defined in the following way: if U is an open

set, then . [ (U, wxéb)) ={f & K(X)*; (div(f) + D)lU > 0.

LEMMA 6, 'The sheaf (_DX(D) is a submodule of finite type of X (X},

Proof. It suffices to give a local proof. Let x ¢ X and put A = LDX <!
7

L = LDX(D) , L' = CQX(—D)X. Note that L' # O in view of Theorem 4. Let
X

0 #fe&L' and take 1 ¢ L. Then
div(fl} = div(f) + div{(l) = div(f) + D + div(l) - D > O

that is fL & A which implies L ¢ (1/f)A and we are done since A is noetherian.

LEMMA 7. Let M be a submodule of finite type of K (X). Then

(DX :r" = Eg‘nwx(ﬂ' @X)-

Proof. The inclusion "< " is clear. Let U be an affine open subset belonging

to an affine covering of X and write A = [ (U, (_f)x), M= [{U,M). Let
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a/b, +«..., a /b be generators of Mover A, a_, b € A. Since a_, b_ are
11 r r i i i i
not zero, there exists a point Y such that a (fp) # 0, b () # O,
. i i

i=1, .cc., ¥. Therefore M = A and Proposition 5 gives the result.

v T

-di . = ‘
LEMMA 8. For every D € W-div(X), (zx : QQX(D) Hom X( £9X(D), (,x).

Proof. U?X(D) is a (Qx—module of finite type, so Lemma 7 applies.

LEMMA 9. Let £ ¢ K(X)* and let D, D' ¢ W-div(X). Then we have

i = .
a) wxcdwcfn (1/£) O
b) LQX(D) . (_QX(D‘) el (QXm + D');

. i = () i .
c) (Qx(n) (ﬁx(dw<f)) ( (O * div(£))

Proof. a) and b) are clear. To prove c), let g ¢ [ (U, '”&(D + divi{f}}).
Then (div(g) + D + div(f))lU 2 0, that is (div{gf) + D}’U » 0, so

g = gf -+ (1/£) where gf ¢ [(U, (D)), 1/£ ¢ [(U, * (aiv(D).

REMARK. The equality in b) is not true in general. Indeed, take

X = Spec k[x! b & Z]/ (xy - 22) ’ }P = (xl Z) r }P' = (YI z) r D =L“I:”; .
| - ' v - : n . '
D [;f,. ] Then (me + D) QQX(dlv(z)) # L.X(m t.’)xw ).

LEMMA 10. Let D, D' € W-div(X) and let (p: (_OX(D) —_— LQX(D') be an iso-

morphism, Then D' = D - div(f).

Proof., Proposition 5 and Lemma 9, c¢) vield (ﬂ;(u') = { (5;(D)) =
=f - LOX(D) = LOX<~ div(£)) - (Qx(D) = LOX(D—dJ.v(f)).
PROPOSITION 1i. For every D € W-div(X), LQX(—D) = LOX : LQX(D).

Proof. The inclusion "¢" is clear. The converse can be proved locally. The-

refore we may assume X = Spec A. Let £ € K (X) = K(A) be such that
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fe A: A(D) and write div(f) = D + T. We have to prove that T 2 0. In view

of Theorem 4 there exists g £ K(A)* such that div(;g) = ~D + S where

Supp S N Supp T = ¢ and S 2 0. Hence g€ A(D), so div{fg) = div(f) + div(g) 20
Since div(f) + div{(g) = T+ 8 and Supp SN Supp T = @ it follows that

T > 0.

COROLLARY 12. If D& W-div(X), then (_QX{D) = 09

" e (QX(D)) o~

~ D **_
(QX( )
Proof. It follows from Lemma 7 and Proposition 9.

As well as the sheaves (9X(D) , all the invertible sheaves can be vonsidered

as submodules of ¥ (X). In fact one has

LEMMA 13, Let .& be an invertible sheaf on an integral scheme X. Then there

exists p' g K(X) such that £ ~ £ °'.

Proof, See [H], p. 145,

THEOREM 14. Let / be a submodule of ){(X). Then the following are equivalent:

a) £ is invertible;

b} There exists a submodule L' of X (X} such that - L= @X;
c) L = LQX (D) for some Cartier divisor on X.

Proof. a) == c) There exists an open covering (Ui}i of X such that

= ., Then Proposition 5 implies that -‘3 = div(f )}
£lUi = @xluj_ ropost e lug wxlui( £y

for some £, € XK( ["(U., D).
i i X

f

¢) == b). Lemma 9, b) gives the inclusion (-’)X{D) . f’x{—-D) Lo (,')X. The

b=

equality can be proved locally, so it follows from Lemma 9, c).

b) ==pa) Let x e X, (A, WL) = (Qx o LT .ex, L' = ﬁ'x. Then L - L' = A,

14

so that L& {1/1') A for every 0 # 1' ¢ L'. Therefore L and L' are A-modules
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of finite type, Now L - L' = A can be read as L ® L' = A, hence
L/WLL@ L'/va. L' o~ A/W{ , so that Nakajama's Lemma implies that g (L) =

= (L") = 1 where " }A(-)" means the minimal number of generators.
/

LEMMA 15, Let D € W-div(X) and let D' be a Cartier divisor. Then

LS&(D) . LDX(D') = LQX(D +D').

Proof. Lemma 39, b) gives the inclusion '«". The converse follows from Lemma

9, c).

COROLLARY 16, Let D € W-div(X). Then D is a Cartier divisor if and only

if there esists a divisor D' such that {QX(D) - @x(D‘) = (,')X.
Proof. The "only part" is clear by taking D' = -D. The converse follows from

Theorem 14, b).

Now, let U be a nonsingular open subset of X such that codimx(X\U) > 2 and

let 7 : U —> X be the canonical embedding. We have the following

THEOREM 17, Let M be a submodule of ¥ (X}. Then the following conditions

are equivalent

a) M= ’\QX (D) for some (uniquely determined) D ¢ W-div(X);

b) M is a rank one, reflexive module of finite type;

c) j*H is an invertible sheaf and M = j+i*H.

Proof. a) ===>Db). It follows from Lemma 6 that M is of finite type and from
Corollary 12 that it is reflexive., To show that it has rank one it is sufficient

to find a point x € X such that]“l £~ LQX x° For this we just take a point
X

’

x which does not belong to Supp(D).

b) === c) To prove that 3j*M is invertible, take x ¢ U and write M = (§*M) ,
x

A= Ox . Bince M is of finite type there exists £ € A such that Mg (1/f)A.

,x

Hence M o~ fM = (r , {{ ideal of A. Up to dividing by the greatest common
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divisor of the generators of (X (remember that A is regular hence U.F.D.),

we may assume (.= (1) or ht( () > 2. To conclude, it suffices to exclude

ft

the case ht{{{ ) > 2. Therefore we have only to prove that A : ™. A if
o=

L3

ht(h ) >» 2 (indeed it would follows A : (A : 0L ) = A # "% and A
so A : (A : (L )= [ **by Lemma 6, contradiction). Thus assume ht{{{ ) > 2

and let us prove that A : {I, C A. Let (a/b)y. £ A and let (ai, heney ar)

be a system of generators of {{, . Now we can take a, b to be coprime and we
know that A is U.F.D. because it is regular, then ai & {b) but ht{ ) 2 2,
whence b = 1,

Moreover from Proposition 3, c) one deduces M = j,.3j*M,

c) ==>a) j*M = (QU(D) for some Cartier divisor D on U. Then D gives rise to
a uniquely determined Weil divisor on U, which we denote again by D. Clearly
such a divisor extends to the whole X since codimx (X\U) > 2. Therefore M =

Jxj*M = (DX(D) .
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