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INTRODUCTION

In Algebre Locale: Multiplicites , Serre proposed a purely
algebraic definition of the intersection product 9<(M,N) of two
finitely generated modules M and N over a regular local ring R;
namely, supposing the length l(MnRN) to be finite, then

dim(R)
X = x (=ntrcrerm,m)
i=0
He then considered two properties which would justify calling X(M,N)
an intersection multiplicity:
1)if dim(M) + dim(N) = dim(R), then X(M,N)> 0 (non-vanishing
2)if dim(M) + dim(N) < dim(R), then )((M,N)= 0 (vanishing) ,

and showed that (1) and (2) held in case R contains a field, or if
R is regular over a DVR of mixed characteristic. The remaining
s0 called ramified case is still open. Most of the progress in
proving (1) and (2) in this case has been in the direction of
increasing the dimension of R. M. Hochester [H]
has verified both the vanishing and non-vanishing conjectures for
regular local rings of dimension at most four. S. Dutta({D1],
[D2], and [D3]) has also proven this result by different methods,
and has pushed the vanishing result to dimension five.

Another important conjecture about regular local rings is
Gersten's conjecture. Denoting the abelian category of finitely
generated R modules supported in codimension i by Méi), and the

X
pth Quillen K-group of this category by K (M(i)), Gersten's conjecture

R
states that the inclusion functor Méi)» Mzi'1) induces the zero map



on K-groups

(i) (i-1)
KP(MR ) = KP(MR ) '

if R is a regqular local ring. This was proven in case R contains
a field by Quillen in [Q]. If R is smooth over a DVR A (possibly of

mixed characteristic), a similar statement about the relative K~

groups Kp(Méi)) was proved by the author and H. Gillet [G-L], where

A
éZk is the subcategory of Méi)

This result reduces Gersten's conjecture for such rings to the case

M consisting of modules flat over M.
of a DVR. In the ramified case, essentially nothing is known.

The relation between Gersten's conjecture and the vanishing
part of the multiplicity conjecture was first pointed out by Gillet
{G]l. It was noted in [G-L] that only a small portion of Gersten's
conjecture is needed to prove the vanishihg theorem; in fact,
the vanishing of the maps Ko(Méi))-+ Ko(Mé1-1)) for i=1,...,4im(R)
is sufficient (see corollary1.2). The vanishing of the maps on Ko
also gives a nice structure theorem for the modules supported in
codimension i, namely that Ko(Méi)) is generated by cyclic modules
of the form R/(f1,...,fi), where f1,...,fi forms a regular sequence
(see proposition 1.1).

In this paper, we consider the K-~theory of a special type of
ramified local ring, the ring Rn,m = J\b XgreeorXy d/!g1xi-n ’
where‘ﬁLis a (mixed characteristic) DVR with maximal ideal
(n) , and the residue field k is algebraically closed of characterist
different from 2. This type of ring is in a sense the simplest
regular ramified local ring. Using a modification of Quillen

arqument in [Q], we prove the vanishing of the maps Ko(u‘i) ) =

R
(i-1) n.m
KO(MR ), and prove the vanishing theorem (2) for all
n,m
local rings with completion isomorphic to some Rn n
[4



)

Section 1.
We start out by reformulating some of the results of
[G] and [G-L] regarding the relationship between Gersten's

conjecture and the vanishing part of the multiplicity conjecture.

If R 18 a ring, we denote the category of finitely generated

R-modules supported in codimension i by Méi)

category M;i)/Méj), i{j, by Méi/j). We will drop the subscript R

» and the quotient

if the ring is clear from the context, and we will use a similar
notation for the corresponding categories of coherent sheaves on
a scheme X. If C is a closed subset of a scheme X, we denote the
category of coherent 5& modules supported on C by Mx(c), or MR(C)
if X = Spec(R). For a scheme X, the group Ko(Méi/i+1)) can be
identified with the group of cycles of codimension i on X, Zi(x),
by sending a reduced irreducible codimension i subécheme 2 of X to
the class [BZ] in KO(Méi/i+1)), and extending by linearity. If

Z is a pure codimension i subscheme of X, we let |z denote the

associated cycle.

Proposition 1.1. Let R be a regular domain,.and suppose the maps

KO(M(i))-+ KO(M(1~1)) are zero for i=t1,...,dim(R). Then KO(M(i))
is generated by the cyclic modules-R/(f1,...,fi), where f1,...,fi

forms a regular sequence.

Proof. We proceed by induction on i, the case 1=0 being trivial.

We have the exact sequence

. .y O a
- K1(M(i~1)) - K1(M(l 1/lh - KO(M(i)) - KO(M(i-ﬂ) - .



By assumption, & is the zero map, hence 6 is surjective. 1In
addition, we have the isomorphism (X = Spec(R))

(1=171)) . o K(x)* .

K, (M
i-1

X in X
Furthermore, if 2 is a reduced irreducible subscheme of X of codimen-~
sion i, defined by a prime ideal_ils of R, and if f is in R(g - fo} '
then
(1.1) 5(£) = [R/fR] in k') ; R = R/
Fix such a quotient ring R = R@? , and an element f of R - ﬁf .
By induction, there are complete intersection ideals 11""'Ik and
and integers Nygeee,ny such that

[®] = (=1},

3

M

n.[R/I. in K, (M
, PylR/14) 0!
Lift £ to an element F of R so that F acts as a non-zerodivisor
on R/Ij for each j. We can do this as R is Cohen-Macauley, and hence
the R/Ij have no embedded components. Then

[R/£] = n,[R/1,,F] in K, (M

3

HWMA

1

Thus [R/f] is in the subgroup of KO(M(i)) generated by complete
intersections. The proposition then follows from the computation

(1.1), and the surjectivity of 6.
g.e.d.

Corollary 1.2. Let R be a regular local ring, and let M and N

be finitely generated R-modules with l(MnRN)<'w. Suppose the

(i-1)

maps KO(M(i))‘3 KO(M ) are all zero, for i=1,...,dim(R).

Suppose further that dim(M)+dim(N) ¢ dim(R). Then



dim(R) i R
z (-1) l(Tori(M,N)) =0
i=0
Proof. Suppose codim(supp(M)) = i, codim(supp(N)) = j. We first

note that, if N' is a finitely generated R-module, with
codim(supp(N'))=j, and

0 - M -»Mz—bM3->0
is an exact sequence of finitely generated R-modules with
codim(supp(Mk))=i,and l(MkaN')<m, then vanishing holds for
one pair (Mk,N') if and only if it holds for the other two.
A similar remark holds for a module M' with support in codimension
i, and an exact sequence of modules 0 - N1 - N2 - N3 - 0 of
modules with support in codimension j, and with l(M'nNk)<m, for

k=1,2,3. In addition, the vanishing statement is easily proven

if either M or N is a complete intersection (see [S] pp.137-8 ).

From the proposition, [M] is a sum of complete intersections in
KO(M(i)), hence a sum of complete intersections in KO(M(C)) for
some suitable C of codimension i on Spec(R). In addition, by
induction, we may assume that vanishing holds for all pairs (M,N')
with 1(MBN') <=, and N' supported in codimension j+1..Thus we
may assume that N = R/J for some ideal J of R. We can embed N in

a complete intersection R/I,
0 - N=R/J - R/I - N" = 0 ’

such that 1(R/IgM)<», codim(R/I)=j, and supp(N")n C is just the
closed point of Spec(R).



Since I is a complete intersection, vanishing holds for (M,R/I),
and since [M] is a sum of complete intersection in KO(M(C)),
vanishing holds for (M,N"). Thus vanishing holds for (M,N), which

proves the corollary.
g.e.d.

Section 2.
We now begin our study of the particular rings Rn m’
14

= 2 .
Rn'm Aﬁx.‘,o-o’xnd /ig1xi n I’

where ,ﬁL is a complete DVR with maximal ideal (n), and residue
field k. We assume that k is algebraically closed, and that

char (k)#2. The method of Quillen consists in taking a generic
fibering of Spec(Rn’m) by curves; one can easily see that a generic
such fibering consists of a family of deformations of a curve

with an ordinary double point (o.d.p.). We therefore begin with

a study of the versal deformation space of such a singularity.

We include the proof of the following result, lemma 2.1, for the
sake of completeness; one can also recover this result from the

general theory using the less explicit infinitesmal methods.

Notation: Let B = Spec(A), T = Spec(R), and U = Spec(S), where

A is a complete local ring with residﬁe field k, and R and S are
complete local A-algebras. Since k is algebraically closed, the
tensor product RnAS is again local, and we denote the completion

of this ring at the maximal ideal by RQAS. We denote Spec(RﬁAS)

by TQBU.



Lemma 2.1. Let p:U -» B be the morphism of~A_-schemes

spec (| §x,y,tl/xy-t) > Spec(A [td). Then p:U » B is the versal
deformation space (amoung_j&—schemes) of an ordinary double point,
i.e., if gq:X » T is a flat map of complete local,JL-schemes,

with T and X the completion of.ﬁ\—schemes of finite type, and if
q-1(0) is isomorphic to Spec(kix,yl]/xy=0), then there is a map
£:T » B such that X = UQBT.

Proof. Since q-1(0) has embedding dimension two, we may assume
that X is a closed subscheme of T séec(ABu,vﬂ). If T = Spec(R),
this latter is just Spec(Rfu,vi]). X is of relative dimension one

over T, and is flat, hence X is defined by a single equation F=0,

- i)
F = 'Z_aiju : aij in R .
i)
Since the characteristic is different from two, we may assume,
after a linear change of coordinates, that a10=a01=a20=a02=0, and
a11=1. Then F—a00 = uv + higher order terms. Since R is complete,

we can choose new coordinates x and y for Rfu,vi] so that

F - 50 = XY- Defining £ by f£*(t) = a50 completes the proof.

gqg.e.d.

Lemma 2.2. Let D cB be the discriminant locus t=0, D, = p-1(D)

the inverse image of D in U, IJCDU the subscheme defined by

t=x=0, and At:UQBU the diagonal. Then the divisor Q = LQBL + A
is a principal divisor on UQBU.

Proof. One sees easily that Q is defined by x ® 1 = 1 & x in
A .
_A[tx,y.ts]-Aw}A_bx.y,t] .

-~ 1



™~

If £:Y » B is a morphism, Y complete and local, and
p:X - Y the pullback family UQBY, we denote the discriminant
subscheme £ ' (D) of Y by Dy, and the subscheme p;1(L) of X by Ly.
We note thétp restricts to’a regular, surjective morphism

p:LY d Dy.

As U » B is the versal deformation space for an o.d.p.
over A , it follows from general nonsense that the complete
fiber product pZ:UQBU - U, together with the diagonal section

:U - UX U is the versal deformation space for deformations of

SA B
an o.d.p., together with a section. If q:W - 2 is such a family,

with section s:2 -+ W, we therefore have a map g:2 -» U such that

W is the pullback (UQBU)QUZ, and s is the pullback of s In such

A'
a case, we have the divisors on W, Az=s(Z), and Qz=p;1(Q). QZ

is principal, and Q, = a, + L, .

Lemma 2.3. Let Y = Yn,m = Spec(Rn’m), and let g:Y 4S§ec{Ajz1,...z

n-2
be a generic linear projection, mapping the closed point 0* of Y

An—
to the closed point 0 of ;AP 2. spec\bz.yee.,2 i). Then

.A- def 1 n-2

1) g-1(0) has an o.d.p. at 0*

A e
2) the discriminant subscheme QA contained inlﬁx.z is

isomorphic to Spec(Rn_z,m_z) for n>3, m>3. If m=2,

n >2, then DA is defined by n=0.

4 A An-
Proof. Define the linear projection gd%t - 152.2 by 21=L1‘x)'

i=1,...,,n=2, and let z z, be new linear functions of

n-1’

A
n
XqresesX SO that Zys...,2, are coordinates for%gL . Write Li

n
as

Li(x) = § aijxj ; i=1,...,n ; aij in A .



Substituting this into P(x) =

M3

x%, we may write P(z) as

P(2) =ij'bijzizj ; bij in __/\_ .
Denoting by Bij the reduction of bij to an element of k, the
matrices (bij) and (Sij) both have rank m. The ramification

locus of g is the simultaneous solution of

P(z)=m Se— =3P _ - :
n-1 n
P _
As 3;; = 2 i bikzi' we can (for a general cohice of (aij)) solve
for z and z_ in terms of z z using 2.3k 0, and
n-1 n 17 "%n-2 9z, 4 9z, ’

substitute into P(z)=n to yield the equation

cijzizj
for the discriminant locus. In addition, we have

%) rank(cij)f m-2
rank(cij)f m—2 .

Specializing to the projection z, = X0 i=1,...,n, we have

ap m-2 5
+-—=22, , and the discriminant locus is given by .I z7 = n .
3zk k {=1 1

Thus, in this case, we have equality in (*), hence we get erality
in (*) for a general choice of (aij). This proves the lemma.

g.e.d



We now proceed to the study of the K-theory of the rings

Rn n° We first consider a rather trivial case.
I 4

Lemma 2.4. Let R = kbx1,...,xnﬂ . Then, for each i=1,...,n, the

map KO(Méi)) - Ko(Méi_1)) is the zero map.

Proof. As this is essentially the same as the original argument
of Quillen, we only give a sketch. Let Z be a codim i subvariety of

ﬁ\]r:= Spec(R), and let g.ﬁﬁ -».ﬁ]r:q be a general linear projection.

Then Z is quasi-finite over its :image in4a£-1, and since.ﬂ§*1 is

Hensel, Z is in fact finite over its image. Form the pullback

diagram
An

. A P
B A W
o
:

an~ &
g

1 Z

where s is the section induced by the inclusion of 2 in.a;.
Since p, is smooth, and W is local, s(Z) is defined by a single
equation u=0 for some u in k[W]. This gives the exact

A
sequence of coherent sheaves onﬁ-\]r:

xu
0 »p(ly = pula-s -0 i

As p*(ét) is in Méi¢1)

, this shows[bz]= 0 in K, (Méi-”). Finally,
if M is in Méi), then M has a composition series with relative
quotients of the form k{2] , where 2 is a subvariety ofji; of

codimension at least i. This proves the lemma.
qg.e.d.



We are now ready to prove our main result. We fix

integers n>m>2, and let R denote the ring Rn m°
- - ’

Theorem 2.5. The map Ko(Méi)) - Ko(Méi—1)) is zero for

ig1pcco'dim(R) .

Proof. We proceed by descending induction on i. For i=dim(R)=n+1,
Ko(Méi)) is just Z, generated by the class of the residue field k.
Let R be the finite J\-algebra

R = R/(XZ""’xn) =J\ixﬂ/x2- n .

(n)y,

R defines an element of K, (M and the exact sequence

0+R - R - k=0
xX

shows that k goes to zero in KO(M(n)).

We now consider the case i>1, assuming the result for
i+1,...,dim(R). Using induction on m, we assume
the result for the rings Rn' R’ with n'<n, the' case n' = 0 'being

-
trivial. From the exact sequence
- K ‘M(1+1)) - K (M(i)) + K (M(i/1+1)) -
0 - 70 0
and induction, we see that xo(u(i’) is isomorphic to Ko(u(i/i+1)),
which in turn is isomorphic to the group of codimension i cycles

on X=Spec(R). Let Z be a reduced, irreducible subscheme of X of

codimension i. We need only show that the class of 0& in KO(M(1-1)



is zero.

We first assume that Z is not contained in the singular

locus of X%Af. Let g:X - %R;z be a general linear projection,
2

Ap—
chosen so that 2 is quasi-finite overlﬁx. , and which is smooth

at a generic point of Z., As in lemma 2.4, Z is then finite over

A n-2 .
g&L . We have the diagram

-

s being the section induced by the inclusion of 2 in X, and £:2 * U

the map induced by viewing p2:W +Z as a family of deformations of an

Let u be a defining equation for the divisor QZ of Ww. ©.d.p

We have the exact sequence of coherent 0}( modules

xu

0 "q*(bw) qy OW) - q*(agz) -0,

(i-1)

hence (g, ( BQ )1 = 0 in Ky(Mp ). On the other hand, as a
2

(Weil) divisor on W, we have

1o} = J1,l + 1a,) ,

(1/i+1)

R ) we have

hence in KO(M

Iz} = aq.teh - q.(in)) .



An-
Viewing g:X - Yq§x-2 as a family of deformations of an

o.d.p., there is a map h:Y » B, compatible with the map £:2 » U

such that X 2 Ux Y. The cycle 2' = q,(|L,|) is supported on L,

and is mapped via g to q(D,) = D Let g':L, = D, be the

Y Y
restriction of g to Ly, Then the support of 2' is §-1(q(Dz)),
and the fibers of g are irreducible, hence 2' is of the form
§-1(Zo) for some cycle 2z, of codimension i-1 on D,. Since

DY is isomorphic to Spec(R 2) if m>3, or to

n-2,m-
Spec(kix1,...,xn_20) if m=2, we apply induction in the first case,

or lemma 2.4 in the second case to see that

= ; (i-2/1)
Zo = 0 in KO(MDY ) .
Thus 2Z' = 0 in X (M(i-z/i)), and hence Z' = 0 in K (M(i—1/i+1)).
0 LY 07X
Therefore,
_ (i=-1/1i+1)
lbz] = 0 in K, (My ) .
As KO(M§i+1)) already goes to zero in Ko(Méi)) by induction,
we have KO(M41_1)) = KO(M41—1/1+1)), which proves the theorem

in this case.

If 2 is contained in the singular locus of X§A¥, then
for a general linear projection g:X = Y=%£:2, Z is contained
in Ly.n}/\\;’-z. As this is isomorphic to an ﬁ; for suitable r,
lemma 2.4 takes care of this case. Finally if i=1, then Z is
a Cartier divisor on X. X being local, Z is a principal divisor,
hence[aél= 0 in K,(My). This completes the proof.of the theorem.

q.e.d.



/1

Corollary 2.6. For n>m>2, and for i=1,...,n+1, KO(Méi)) is generated
n,m
by the cyclic modules Rn,m/(f1""'fi)' where f.',...,f1 form_ a

regular sequence.

Proof. This follows immediately from proposition 1.1 and the

theorem.

Corollary 2.7. Let R be a noetherian, local ring, and suppose

the completion of R is isomorphic to Rn m for some n and m.
14

Then the vanishing theorem holds for R.

Proof. Let M and N be two finitely generated R~-modules. Denote

_ A .

by M ana N the completed modules MERRn,m' and N“RRn,m’ Then

dim(R)=dim(Rn m),dim(M)=dim(M), and dim(N)=dim(N). Suppose that
’

A N
l(MnRN) is finite. Then 1(M5R, "N) is also finite, and
¥

ntm

R
1(Tor§(M,N)) = l(Torin’m(ﬁ,ﬁ))

for each i. The corollary then follows from the theorem, and

corollary 1.2,
g.e.d.

Essentially the same technigue can be used to prove the

analogue of Theorem 2.5 for the Henselization at tx1,...,xn) of

m
J\.[x1"“'xn]/2xi- L
i=1 -

m
and for the local ringqj\[x1,...,xn] (x1"..'xn)’// - xi -
i=1



15
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