
ISOPERIMETRIC PROBLEMS HAVING

CONTINUA OF SOLUTIONS

by

Robert Gulliver

Max-Planck-Institut
für Mathematik
Gottfried-Claren-StraBe 26

5300 Bonn 3

MPI/87-6



ISOPERIMETRIC PROBLEMS HAVING

CONTINUA OF SOLUTIONS

Robert Gulliver

The isoperimetrie problem asks for the hypersurfaee of

srnallest area whieh bounds a given volume va . In Euclidean

~n+1 , the unique solution - up to translations - is the sphere

n+1of the appropriate radius. The isometry group of m generates

an (n+1)-parameter family of solutions, all of whieh are

eongruent to each other. A similar situation oceurs in any

symmetrie spaee.

We are interested in finding a continuum, or farnily depending

eontinuously on one or more· real variables, of embedded stationary

solutions whieh are not eongruent. An embedded eompaet hypersurfaee

E will be' stationary for the isoperimetrie problem in a Riemannian

manifold ~+1 if and only if it bounds the prescribed volume

Va and has constant mean curvature; this follows from the

first-variation formula (equation (3) below). According to a

theorem of Aleksandrov, when M 1s the Euclidean space (or, by

analogous means, the hyperbolic space) Z must be a standard

sphere ([1]). The family we seek can therefore exist only for

less well-understood Riemannian metries.
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Theorem. There exists a Riemannian,manifold M of any dimension

n+1 ~ 2 , in which the compact embedded hypersurfaces bounding

volume v = 1o and having constant mean curvature include a

~-parameter family {E t } with distinct mean curvatures.

Note that the hypersurfaces found in the theorem cannot be

congruent, since their mean curvatures are different. This latter

property also has consequences for the so-called Lagrange

multiplier method. Namely, one may find hypersurfaces of constant

mean curvature H as stationary solutions of a second variational

problem, in which the functional A(E) + n H V(D(E» i5 considered.

Here D(Z) is a domain with boundary Z ; V denotes (n+1)-

dimensional volurnei and A is the n-dimensional measure, which

we also call "area ll. In this problem, no constraint is assurned,

and the constant H i5 prescribed in advance. By contrast, in

the isoperimetrie problem, the resulting value H = H(VO) of

constant rnean curvature may be difficult to deterrnine in advance.

The two problems may be seen 'to be equivalent once it is known

that the function H(va ) i5 strictly monotone. But according

to our theorem, thi5 function is no better than a relation

which may assurne an entire interval of value5 for a single

number va . In particular, our example rnay be relevant to

attempts to generalize Gerhardt l s construction of constant-

mean-curvature foliations of certain Lorentzian manifolds ([2]).

This paper was 5timulated by our recent collaboration with

Stefan Hildebrandt ([3]), in which a variety of boundary-value
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problems were considered. In each case, an example was found

having an interesting continuum of solutions. In particular,

we have exploited the idea which is implicit in sections 3

and 4 of [3], that one should first find a plausible family

of submanifolds, and then construct the problem of which each

is a solution.

We gratefully acknowledge the support of the Sonderforschungs-

bereich 72 at the University of Bonn, and of the Max-Planck-

Institut für Mathematik.

1. Deformation of metrics according to a ·foliation
=-::::: - ~ =

It 1s easy ,to show that any codimension-one foliation

has leaves of constant mean curvature in some metric. For our

purpose, however, we need more control over the resulting metric.

The following lemma will be applied with the Euclidean metric

playing the role of
2

ds .

Lemma 1. Let {L t : t
2 < t < t

3
} be an oriented codimension-one

foliation of the Riemannian manifold

normal vector field v • Suppose ~ second Riemannian metric

. Then theaAL = (~(X))ndAL
t t

Lt satisfiesof

..... 2
ds 1s introduced, ~ that v remains normal to the leaves

...,2
L t · Write $(x) for the ds -length of v, and write the

...,2
ds -area form of Lt as

.....2
ds -mean curvature
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(1 ) 1JJH = H - d (log tp) ('J) •

Proof: We shall compute the mean curvature of the leaf La

by variational means. Choose a test function n: La --->m

having compact support, and let a family of hypersurfaces

F t . be chosen starting from Fa = La ' such that the distance

equals

from Fa to Ft along the integral curves of

2tn(x) + O(t ), asymptotically as t --->

We first show that

through

o •

x

( 2) . d~
t

Let 0(x,t) 2be the ds -angle between v and the unit normal

vector to Ft . Observe that 8(x,t) = O(t) as t ---> 0 • If

{e1 , ..... ,en } is a Iocal ds 2-orthonorrnal basis for TL t such

that e 2 ' • • • • • , en are also tangent to F
t

' then

{e l' cos 0 + v s in 8, e 2 ' • · · • • , en }

is a ds 2-orthonorrnal basis for TF t . Since dAL: :: tpn dA by
t Lt-

hypothesis, we have 1I e 1A..... Aenll = tpn . It follows that

I1 (e 1 cos8 + 'J Sine)Ae2A •.•.. Aen~2=
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.....2
since v is ds -orthogOnal to

2nequals '~ plus terms of order

Et · But this expression

O(t2 ) , and formula (2) follows.

Now the first-variation forrnula for area is

(3 )

where n = tPn ..... 2
is the ds -length of the variation vector

field nv . Thus using equation (2), we see that

f n H n f H dAtP n ~ dA = n n =
F' F O0

d f (~n O(t 2))dA n= - dt f n[d(log+ = ~) (v) - H] n~ dAt=O F O
.

FO

Since n is arbitrary , formula ( 1 ) follows. q.e.d.

I

Remark 1. It is also possible, although more difficult, to give

a direct derivation of the formula (1) for the rnean curvature

using moving frames.

It should be apparent from forrnula (1) that the mean

curvature of the foliation {E
t

} is most conveniently controlled

by choosing ~ to be a constant. In particular, this choice

yields stronger results than, for example, a conformal

deformation (~= w) ·
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Corollary 1. Suppose that the family {E t } of hypersurfaces

of a Riemannian manifold (M,ds 2 ) covers a subset n of M,

and forms a foliation cf n...... r for seme closed subset . r cf

M . Assurne that Et has constant mean curvature H(Et,x) = h (t)

for all x in a neighborhood U of r , and that H(Et,x) > 0

everywhere. Let the metric ds2 be defined on n u u ~----

where ~(x) := H(Et,x)/h(t) . Then in the rnetric ds2 , Et has

constant mean curvature h(t)

Proof: We apply formula ( 1 ) with l.P ::: 1 . On U , we have

W ::: 1 that d5'2 = d5
2

arid Ei (E t ,x) H(Et,x) = h(t)so =

Thus W i5 weIl defined, smooth and positive on n u u . The

conclusion now follows from (1).

2. Construction of the example
:c::=::z::=====~ ==:a =

q.e.d.

The proof of our theorem requires us to construct hyper-

surfaces which bound constant volume. However, the method of

Lemma 1 allows only direct contral of area. Fortunately, for

hypersurfaces af constant rnean curvature, constant volume and

constant area are equivalent.
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Lemma 2. Suppo5e that {E
t

} i5 ~ family of immersed cornpact

hyper5urf,aces of a Riemannian manifold M, and _tha t ~t is the

boundary of a region Dt with mUltiplicities. Suppose that

each Et has constant rnean curvature h(t) * 0 , and that its

area A(E t ) is constant. Then the volume V(Dt ) 15 constant.

Proof: If n: Lt --->m is the normal component of the

variation vector field, then the first variation of volume i5

Meanwhile, as in equa~ion (3), the first variation of area is

Since area is assumed constant and h(t) * 0 , we conclude that

volume is constant. q.e.d.

Remark 2. The hypothesis h(t) * 0 is necessary, as may be seen

from examples in which M is locally the Riemannian product

La x [-1, 1] .

In order to construct our example, we shall find a srnooth

family of strictly convex clo5ed hypersurfaces E
t

in ~n+1 ,

whose Euclidean area is constant. We may,observe that such a

family cannot be a foliation, while Lemma 1 is valid only for
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foliations. Therefore, as in Coroliary 1, we shall choose

.....2 2
ds = ds on a neighborhood U of the singular set r of

{E
t

} · This requires that each hypersurface Lt roust have

constant Euclidean rnean curvature on U. We shall choose Lt

to be a piece of a sphere near r .

Choose values r > E > 0 , and let r be the (n-1)-sphere

{ (x0 , X t) E lR x lRn = lRn + 1 : x 0 = - E , Ix 'I = r}

Lemma 3. There 'is a srnooth farnily {L't} of hypersurfaces-

passing through r , each having constant Euclidean rnean

curvature h(t) on a neighborhood U of r , forrning a-
foliation except at r , and with constant Euclidean area.-- ---

Proof: Without 1055 of generality, we rnay choose E to be

small, by translating the hypersurfaces Lt .

For each t > 0 we shall first choose Lt so that it'

agrees in the half-space {xC ~ O} with the sphere passing

through rand centered at (t,O) .. The radius R = R(t) of

this sphere satisfies

(4) R(t) 2 = r 2 + (t+E) 2

and its Euclidean mean curvature is h(t) := 1/R(t) . Note that

dR/dt > ° .
We next extend the above spherical cap to form a closed,

convex, Lipschitz-continuous hypersurface L
t

having area
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independent of t. For simplicity, we may choose Et to agree

in the half-space {xO ~ O} with the sphere of radius p(t)

and centered at (y(t) ,0) ,where y > ° and

(5 )

Note that L
t

meets {xO = O} in the (n-1)-sphere of radius

P1 (t) · Write a n- 1 for the measure of the unit (n-1)-sphere

in mn . We may compute

( 6 )
0 1 2 2 1/2 (0 p\ 2 2 1/2 n-1

~lA(Lt) = J (R -5) Rs
n

- 1ds + ,J.> + Jo)(P -s) ps ds.
n- 0 P1

Observe that for fixed s , the integrand of the first integral

is a decreasing function of R. More precisely, we find

( 7)
n-2r

where ö > 0 is independent of E E (D,r) and uniform for
n

o < b O ~ t/r ~ b 1 . Meanwhile, the last term of equation (6) is

an increasing function of P > P, , if 0, is held constant.

Now choose t o satisfying rbO < t o < rb
1

, and choose a value

for p(t
O

) with 0, (tO) < p(tO) < R(tO) . These choices determine

Et ; let a O be its area. For all other t E (rbO' rb,) we
o

define p(t) by the condition that
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and let y(t) > 0 be determined by equation ( 5) •

We shall now show that {E t
. rbO :s; t :s; rb

1
} is a.

Lipschitz foliation in the half-space {x0 -E} for small> ,

values of E . As t tends to a value t 1 we may compute

the derivative at t - t of the distance to Et n {x0
~ O}- 1

along various radial lines from (y (t
1

) ,0) . This derivative

assumes its minimum either along the xO-axis, where it equals

d{p(t) + y{t»/dt or at Lt n {x
0 O} where it equals. = ,,

(P1/ P) dP1/dt = E/p > 0 . That is, the foliation property will

follow from positivity of

( 9 ) cldt(P(t) + y(t» = [(y + p)dp/dt - E]/y ,

where we have used the derivative of equation (5). Now for

e: = 0 , we have P1 (tl = rindependent of t, and also

by inequality (7). Equation (8) now implies that o
A (L

t
n {x > O}) ,

which we know to be an increasing function of p, is also a

strictly increasing function of t; therefore dp/dt > 0 . But

this implies that d(p + y)/dt > 0 byequation (9), for e: = 0 .

By continuity, we have d(p + y)/dt > 0 for sufficiently small

E > 0 .

Finally, the inequality p{t) < R{t) remains true for t

in an appropriate closed interval about t o . Geornetrically, this



- 11 -

means that Lt has an interior angle uniformly less than rr

oat {x = O} • We now smooth Lt
, in some canonical way, inside

the region {-E/2 o
< x < E/2} ., so that its area is decreased "

by a constant value ö > 0 . For example, the srnoothing may be

done by convolution with one of a family of positive rnollifiers on

Sn , where Et i5 represented as a graph "in central projection.

For ö sufficiently small, the resulting family of smooth

hypersurfaces 1s a foliation except at r, and Et has

constant mean curvature h(t) on U:= {xO
< -s/2} .

q.e.d.

We may now 5ummarize the proof of the theorem stated in the

introduction. From Lemma 3, we find a smooth family (with uniform

estimates) of strictly convex hypersurfaces Et in mn + 1 , each

containing r, forming a foliation of an open set n,r , having

constant Euclidean rnean curvature h(t) on a neighborhood U

of r, and such that A(E
t

) has a constant value a
1

• Let D
t

be the open set bounded by Et '. As in Corollary i, we write

~(x) := H(Et,x)/h(t) and define a new Riemannian metric on

n u U :

-2 -Then Lt has constant ds -mean curvature H(Et,x) = h(t) in the

new metric. We rnay extend ds2 arbitrarily to all of mn + 1 •

Note that A(E t ) = a
1

• It now follows from Lemma 2, applied to



- 12 -

n+1 -2 . - .
~ with the metrie ds , that the volume V(Dt ) ~s eonstant.

By homothetie resealing, we may assume V(D t ) = 1 . The theorem

is proved.

Remark 3. It will be obvious. to the reader that the family of

hypersurfaees {E t } may be perturbed in rnany independent ways

so that it stillsatisfies the eonelusions of Lemma 3 for some

elosed set r. It appears likely that few of these families

will lead to isometrie Riemannian struetures on mn
+ 1 . Intuitively,

in othe~ words, one expects that the class of metries having the

properties stated in the theorem has infinite dimension and

infinite codimension among all Riemannian metries.

Remark 4. It is not clear to us whether the extension of ds2

to all of mn + 1 rnay be chosen so that the specific family of

. hypersurfaces we have constructed will have minimum area among

hypersurfaces bounding volume one. "It may be noted, however,

that the variation vector field has nodal domains which are

consistent with a minirnizing condition subject to one constraint.
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