## ISOPERIMETRIC PROBLEMS HAVING

## CONTINUA OF SOLUTIONS

## by

## Robert Gulliver

Max-Planck-Institut
fir Mathematik
Gottfried-Claren-StraBe 26
5300 Bonn 3

Robert Gulliver

The isoperimetric problem asks for the hypersurface of smallest area which bounds a given volume $\mathrm{v}_{0}$. In Euclidean $\mathbb{R}^{\mathrm{n}+1}$, the unique solution - up to translations - is the sphere of the appropriate radius. The isometry group of $\mathbb{R}^{n+1}$ generates an ( $n+1$ )-parameter family of solutions, all of which are congruent to each other. A similar situation occurs in any. symmetric space.

We are interested in finding a continuum, or family depending continuously on one or more real variables, of embedded stationary solutions which are not congruent. An embedded compact hypersurface $\Sigma$ will be stationary for the isoperimetric problem in a Riemannian manifold $\mathrm{m}^{\mathrm{n}+1}$ if and only if it bounds the prescribed volume $v_{0}$ and has constant mean curvature; this follows from the first-variation formula (equation (3) below). According to a theorem of Aleksandrov, when $M$ is the Euclidean space (or, by analogous means, the hyperbolic space) $\sum$ must be a standard sphere ([1]). The family we seek can therefore exist only for less well-understood Riemannian metrics.

Theorem. There exists a Riemannian manifold $M$ of any dimension $n+1 \geq 2$, in which the compact embedded hypersurfaces bounding volume $v_{0}=1$ and having constant mean curvature include a one-parameter family $\left\{\Sigma_{t}\right\}$ with distinct mean curvatures.

Note that the hypersurfaces found in the theorem cannot be congruent, since their mean curvatures are different. This latter property also has consequences for the so-called Lagrange multiplier method. Namely, one may find hypersurfaces of constant mean curvature $H$ as stationary solutions of a second variational problem, in which the functional $A(\Sigma)+n H V(D(\Sigma))$ is considered. Here $D(\Sigma)$ is a domain with boundary $\Sigma$; $V$ denotes ( $n+1$ )dimensional volume; and $A$ is the $n$-dimensional measure, which we also call "area". In this problem, no constraint is assumed, and the constant $H$ is prescribed in advance. By contrast, in the isoperimetric problem, the resulting value $H=H\left(v_{0}\right)$ of constant mean curvature may be difficult to determine in advance. The two problems may be seen to be equivalent once it is known that the function $H\left(v_{0}\right)$ is strictly monotone. But according to our theorem, this function is no better than a relation which may assume an entire interval of values for a single number $\mathrm{v}_{0}$. In particular, our example may be relevant to attempts to generalize Gerhardt's construction of constant-mean-curvature foliations of certain Lorentzian manifolds ([2]).

This paper was stimulated by our recent collaboration with Stefan Hildebrandt ([3]), in which a variety of boundary-value
problems were considered. In each case, an example was found having an interesting continuum of solutions. In particular, we have exploited the idea which is implicit in sections 3 and 4 of [3], that one should first find a plausible family of submanifolds, and then construct the problem of which each is a solution.

We gratefully acknowledge the support of the Sonderforschungsbereich 72 at the University of Bonn, and of the Max-PlanckInstitut für Mathematik.

1. Deformation of metrics according to a foliation

It is easy to show that any codimension-one foliation has leaves of constant mean curvature in some metric. For our purpose, however, we need more control over the resulting metric. The following lemma will be applied with the Euclidean metric playing the role of $\mathrm{ds}^{2}$.

Lemma 1. Let $\left\{\Sigma_{t}: t_{2}<t<t_{3}\right\}$ be an oriented codimension-one foliation of the Riemannian manifold $\left(\mathrm{m}^{\mathrm{n}+1}, \mathrm{ds}^{2}\right)$, with unit normal vector field $v$. Suppose a second Riemannian metric $\mathrm{d} \tilde{\mathrm{s}}^{2}$ is introduced, so that $v$ remains normal to the leaves $\Sigma_{t}$. Write $\psi(x)$ for the $d \tilde{s}^{2}$-1ength of $v$, and write the $d \widetilde{s}^{2}$-area form of $\Sigma_{t}$ as $d \tilde{A}_{\Sigma_{t}}=(\varphi(x))^{n} d A_{\Sigma_{t}}$. Then the $d \tilde{s}^{2}$-mean curvature $\tilde{H}$ of $\Sigma_{t}$ satisfies
(1) $\psi \tilde{H}=H-d(\log \varphi)(\nu)$.

Proof: We shall compute the mean curvature of the leaf $\Sigma_{0}$ by variational means. Choose a test function $\eta: \Sigma_{0} \longrightarrow \mathbb{R}$ having compact support, and let a family of hypersurfaces $F_{t}$ be chosen starting from $F_{0}=\Sigma_{0}$, such that the distance from $F_{0}$ to $F_{t}$ along the integral curves of $v$ through $x$ equals $t \eta(x)+O\left(t^{2}\right)$, asymptotically as $t \longrightarrow 0$. We first show that
(2)

$$
d \widetilde{A}_{F_{t}}=\left[(\varphi(x))^{n}+0\left(t^{2}\right)\right] d A_{F_{t}} .
$$

Let $\theta(x, t)$ be the $d s^{2}$-angle between $v$ and the unit normal vector to $F_{t}$. Observe that $\theta(x, t)=0(t)$ as $t \longrightarrow 0$. If $\left\{e_{1}, \ldots \ldots, e_{n}\right\}$ is a local is ${ }^{2}$-orthonormal basis for $T \Sigma_{t}$ such that $e_{2}, \ldots \ldots, e_{n}$ are also tangent to $F_{t}$, then

$$
\left\{e_{1} \cos \theta+\nu \sin \theta, e_{2}, \ldots \ldots, e_{n}\right\}
$$

is a $d s^{2}$-orthonormal basis for $T F_{t}$. Since $d \widetilde{A}_{\Sigma_{t}}=\varphi^{n} d A_{\Sigma_{t}}$ by hypothesis, we have $\| e_{1} \wedge \ldots \ldots \wedge e_{n} \tilde{\|}=\varphi^{n}$. It follows that

$$
\begin{aligned}
& \|\left(e_{1} \cos \theta+v \sin \theta\right) \wedge e_{2} \wedge \ldots \wedge e_{n} \tilde{\|}^{2}= \\
& =\cos ^{2} \theta\left\|e_{1} \wedge \ldots . \wedge e_{n} \tilde{\|}^{2}+\sin ^{2} \theta\right\| v \wedge e_{2} \wedge \ldots . \wedge e_{n} \tilde{\|}^{2},
\end{aligned}
$$

since $v$ is $d \tilde{s}^{2}$-orthogonal to $\varepsilon_{t}$. But this expression equals. $\varphi^{2 \mathrm{n}}$ plus terms of order $O\left(t^{2}\right)$, and formula (2) follows. Now the first-variation formula for area is
(3)

$$
\left.\frac{d}{d t}\right|_{t=0} \widetilde{A}\left(F_{t}\right)=-\int_{F_{0}} n \tilde{H}\left(F_{0}, x\right) \tilde{n}(x) d \tilde{A}(x)
$$

where $\tilde{\eta}=\psi \eta$ is the $d \tilde{s}^{2}$-length of the variation vector field $\eta \cup$. Thus using equation (2), we see that

$$
\begin{aligned}
& \int_{F_{0}} n \tilde{H} \psi \eta \varphi^{n} d A=\int_{F_{0}} n \tilde{H} \tilde{n} d \tilde{A}= \\
& =-\left.\frac{d}{d t}\right|_{t=0} \int_{F_{0}}\left(\varphi^{n}+0\left(t^{2}\right)\right) d A=\int_{F_{0}} n[d(\log \varphi)(\nu)-H] n \varphi^{n} d A .
\end{aligned}
$$

Since $\eta$ is arbitrary, formula (1) follows. q.e.d.

Remark 1. It is also possible, although more difficult, to give a direct derivation of the formula (1) for the mean curvature using moving frames.

It should be apparent from formula (1) that the mean curvature of the foliation $\left\{\Sigma_{t}\right\}$ is most conveniently controlled by choosing $\varphi$ to be a constant. In particular, this choice yields stronger results than, for example, a conformal
deformation ( $\varphi=\psi$ ).

Corollary 1. Suppose that the family $\left\{\Sigma_{t}\right\}$ of hypersurfaces of a Riemannian manifold $\left(M, \mathrm{ds}^{2}\right)$ covers a subset $\Omega$ of $M$, and forms a foliation of $\Omega \backslash \Gamma$ for some closed subset $\Gamma$ of $M$. Assume that $\Sigma_{t}$ has constant mean curvature $H\left(\Sigma_{t}, x\right)=h(t)$ for all $x$ in a neighborhood $U$ of $\Gamma$, and that $H\left(\Sigma_{t}, x\right)>0$ everywhere. Let the metric $d \tilde{S}^{2}$ be defined on $\Omega \cup U$ by

$$
\mathrm{d} \tilde{s}^{2}:=\left.\mathrm{ds}\right|_{T \Sigma_{t}}+\left.\psi^{2} \mathrm{~d} s^{2}\right|_{\mathrm{N} \Sigma_{\mathrm{t}}}
$$

where $\psi(x):=H\left(\Sigma_{t}, x\right) / h(t)$. Then in the metric $\dot{d} \tilde{s}^{2}, \Sigma_{t}$ has constant mean curvature $h(t)$.

Proof: We apply formula (1) with $\varphi \equiv 1$. On $U$, we have $\psi \equiv 1$, so that $d \tilde{s}^{2}=d s^{2}$ and $\tilde{H}\left(\Sigma_{t}, x\right)=H\left(\Sigma_{t}, x\right)=h(t)$. Thus $\psi$ is well defined, smooth and positive on $\Omega \cup U$. The conclusion now follows from (1). q.e.d.
2. Construction of the example

The proof of our theorem requires us to construct hypersurfaces which bound constant volume. However, the method of Lemma 1 allows only direct control of area. Fortunately, for hypersurfaces of constant mean curvature, constant volume and constant area are equivalent.

Lemma 2. Suppose that $\left\{\Sigma_{t}\right\}$ is a family of immersed compact hypersurfaces of a Riemannian manifold $M$, and that $\Sigma_{t}$ is the boundary of a region $D_{t}$ with multiplicities. Suppose that each $\Sigma_{t}$ has constant mean curvature $h(t) \neq 0$, and that its area $A\left(\Sigma_{t}\right)$ is constant. Then the volume $V\left(D_{t}\right)$ is constant.

Proof: If $\eta: \Sigma_{t} \longrightarrow \mathbb{R}$ is the normal component of the variation vector field, then the first variation of volume is

$$
\frac{d}{d t} v\left(D_{t}\right)=\int_{\Sigma_{t}} n d A .
$$

Meanwhile, as in equation (3), the first variation of area is

$$
\frac{d}{d t} \cdot A\left(\Sigma_{t}\right)=-\int_{\Sigma_{t}} n H\left(\Sigma_{t}, x\right) \eta(x) d A(x)=-n h(t) \frac{d}{d t} V\left(D_{t}\right)
$$

Since area is assumed constant and $h(t) \neq 0$, we conclude that volume is constant. q.e.d.

Remark 2. The hypothesis $h(t) \neq 0$ is necessary, as may be seen from examples in which $M$ is locally the Riemannian product $\Sigma_{0} \times[-1,1]$.

In order to construct our example, we shall find a smooth family of strictly convex closed hypersurfaces $\Sigma_{t}$ in $\mathbb{R}^{n+1}$ whose Euclidean area is constant. We may observe that such a family cannot be a foliation, while Lemma 1 is valid only for
foliations. Therefore, as in Corollary 1 , we shall choose $d \tilde{S}^{2}=d s^{2}$ on a neighborhood $U$ of the singular set $\Gamma$ of $\left\{\Sigma_{t}\right\}$. This requires that each hypersurface $\Sigma_{t}$ must have constant Euclidean mean curvature on $U$. We shall choose $\Sigma_{t}$ to be a piece of a sphere near $\Gamma$.

Choose values $r>\varepsilon>0$, and let $\Gamma$ be the ( $n-1$ )-sphere $\left\{\left(x^{0}, x^{\prime}\right) \in \mathbb{R} \times \mathbb{R}^{n}=\mathbb{R}^{\mathrm{n}+1}: \mathrm{x}^{0}=-\varepsilon,\left|\mathrm{x}^{\prime}\right|=r\right\}$.

Lemma 3. There is a smooth family $\left\{\Sigma_{t}\right\}$ of hypersurfaces passing through $\Gamma$, each having constant Euclidean mean curvature $h(t)$ on a neighborhood $U$ of $\Gamma$, forming a foliation except at $\Gamma$, and with constant Euclidean area.

Proof: Without loss of generality, we may choose $\varepsilon$ to be small, by translating the hypersurfaces $\Sigma_{t}$.

For each $t>0$ we shall first choose $\Sigma_{t}$ so that it agrees in the half-space $\left\{x^{0} \leqq 0\right\}$ with the sphere passing through $\Gamma$ and centered at $(t, 0)$. The radius $R=R(t)$ of this sphere satisfies

$$
\begin{equation*}
R(t)^{2}=r^{2}+(t+\varepsilon)^{2} \tag{4}
\end{equation*}
$$

and its Euclidean mean curvature is $h(t):=1 / R(t)$. Note that $d R / d t>0$.

We next extend the above spherical cap to form a closed, convex, Lipschitz-continuous hypersurface $\Sigma_{t}$ having area
independent of $t$. For simplicity, we may choose $\Sigma_{t}$ to agree in the half-space $\left\{x^{0} \geq 0\right\}$ with the sphere of radius $\rho(t)$ and centered at $(\gamma(t), 0)$, where $\gamma>0$ and

$$
\begin{equation*}
\rho(t)^{2}-\gamma(t)^{2}=\rho_{1}(t)^{2}:=r^{2}+2 \varepsilon t+\varepsilon^{2} . \tag{5}
\end{equation*}
$$

Note that $\Sigma_{t}$ meets $\left\{x^{0}=0\right\}$ in the $(n-1)$-sphere of radius $\rho_{1}(t)$. Write $\alpha_{n-1}$ for the measure of the unit ( $n-1$ )-sphere in $\mathbb{R}^{n}$. We may compute
(6) $\frac{1}{\alpha_{n-1}} A\left(\Sigma_{t}\right)=\int_{0}^{\rho}\left(R^{2}-s^{2}\right)^{1 / 2} R s^{n-1} d s+\left(\int_{\rho_{1}}^{\rho}+\int_{0}^{\rho}\right)\left(\rho^{2}-s^{2}\right)^{1 / 2} \rho s^{n-1} d s$. Observe that for fixed $s$, the integrand of the first integral is a decreasing function of $R$. More precisely, we find

$$
\begin{equation*}
\frac{1}{\alpha_{n-1}} \frac{d}{d t} A\left(\Sigma_{t} \cap\left\{x^{0} \leq 0\right\}\right) \leq-\delta_{n} t r^{n-2} \tag{7}
\end{equation*}
$$

where $\delta_{n}>0$ is independent of $\varepsilon \in(0, r)$ and uniform for $0<b_{0} \leq t / r \leq b_{1}$. Meanwhile, the last term of equation (6) is an increasing function of $\rho>\rho_{1}$, if $\rho_{1}$ is held constant. Now choose $t_{0}$ satisfying $r b_{0}<t_{0}<r b_{1}$, and choose a value for $\rho\left(t_{0}\right)$ with $\rho_{1}\left(t_{0}\right)<\rho\left(t_{0}\right)<R\left(t_{0}\right)$. These choices determine $\Sigma_{t_{0}}$; let $a_{0}$ be its area. For all other $t \in\left(r b_{0}, r b_{1}\right)$ we define $\rho(t)$ by the condition that

$$
\begin{equation*}
A\left(\Sigma_{t}\right)=a_{0} \tag{8}
\end{equation*}
$$

and let $\gamma(t)>0$ be determined by equation (5).
We shall now show that $\left\{\Sigma_{t}: r b_{0} \leq t \leq r b_{1}\right\}$ is a Lipschitz foliation in the half-space $\left\{x^{0}>-\varepsilon\right\}$, for small values of $\varepsilon$. As $t$ tends to a value $t_{1}$, we may compute the derivative at $t=t_{1}$ of the distance to $\Sigma_{t} \cap\left\{x^{0} \geq 0\right\}$ along various radial lines from $\left(y\left(t_{1}\right), 0\right)$. This derivative assumes its minimum either along the $x^{0}$-axis, where it equals $d(\rho(t)+\gamma(t)) / d t$; or at $\Sigma_{t} \cap\left\{x^{0}=0\right\}$, where it equals $\left(\rho \rho_{1} / \rho\right) d \rho_{1} / d t=\varepsilon / \rho>0$. That is, the foliation property will follow from positivity of

$$
\begin{equation*}
\frac{d}{d t}(\rho(t)+\gamma(t))=[(\gamma+\rho) d \rho / d t-\varepsilon] / \gamma, \tag{9}
\end{equation*}
$$

where we have used the derivative of equation (5). Now for $\varepsilon=0$, we have $\rho_{1}(t)=r$ independent of $t$, and also

$$
\frac{d}{d t} A\left(\Sigma_{t} \cap\left\{x^{0} \leq 0\right\}\right)<0
$$

by inequality (7). Equation (8) now implies that $A\left(\Sigma_{t} \cap\left\{x^{0}>0\right\}\right)$, which we know to be an increasing function of $\rho$, is also a strictly increasing function of $t$; therefore $d \rho / d t>0$. But this implies that $d(\rho+\gamma) / d t>0$ by equation (9), for $\varepsilon=0$. By continuity, we have $d(\rho+\gamma) / d t>0$ for sufficiently small $\varepsilon>0$.

Finally, the inequality $\rho(t)<R(t)$ remains true for $t$ in an appropriate closed interval about $t_{0}$. Geometrically, this
means that $\Sigma_{t}$ has an interior angle uniformly less than $\pi$ at $\left\{x^{0}=0\right\}$. We now smooth $\Sigma_{t}$, in some canonical way, inside the region $\left\{-\varepsilon / 2<x^{0}<\varepsilon / 2\right\}$, so that its area is decreased by a constant value $\delta>0$. For example, the smoothing may be done by convolution with one of a family of positive mollifiers on $s^{n}$, where $\Sigma_{t}$ is represented as a graph in central projection. For $\delta$ sufficiently small, the resulting family of smooth hypersurfaces is a foliation except at $\Gamma$, and $\varepsilon_{t}$ has constant mean curvature $h(t)$ on $U:=\left\{x^{0}<-\varepsilon / 2\right\}$.
q.e.d.

We may now summarize the proof of the theorem stated in the introduction. From Lemma 3, we find a smooth family (with uniform estimates) of strictly convex hypersurfaces $\Sigma_{t}$ in $\mathbb{R}^{n+1}$, each containing $\Gamma$, forming a foliation of an open set $\Omega \backslash \Gamma$, having constant Euclidean mean curvature $h(t)$ on a neighborhood $u$ of $\Gamma$, and such that $A\left(\Sigma_{t}\right)$ has a constant value $a_{1}$. Let $D_{t}$ be the open set bounded by $\Sigma_{t}$. As in Corollary 1 , we write $\psi(x):=H\left(\Sigma_{t}, x\right) / h(t)$ and define a new Riemannian metric on $\Omega \cup U:$

$$
\mathrm{d} \tilde{s}^{2}=\left.\mathrm{d} \mathrm{~s}^{2}\right|_{\mathrm{T} \Sigma_{\mathrm{t}}}+\left.\psi^{2} \mathrm{ds}\right|_{N \Sigma_{t}}
$$

Then $\Sigma_{t}$ has constant $d \tilde{s}^{2}$-mean curvature $\tilde{H}\left(\Sigma_{t}, x\right)=h(t)$ in the new metric. We may extend $d \tilde{s}^{2}$ arbitrarily to all of $\mathbb{R}^{n+1}$. Note that $\tilde{A}\left(\Sigma_{t}\right) \equiv a_{1}$. It now follows from Lemma 2 , applied to
$\mathbb{R}^{n+1}$ with the metric $d \tilde{S}^{2}$, that the volume $\widetilde{V}\left(D_{t}\right)$ is constant. By homothetic rescaling, we may assume $\tilde{\mathrm{V}}\left(\mathrm{D}_{\mathrm{t}}\right) \equiv 1$. The theorem is proved.

Remark 3. It will be obvious to the reader that the family of hypersurfaces $\left\{\Sigma_{t}\right\}$ may be perturbed in many independent ways so that it still satisfies the conclusions of Lemma 3 for some closed set $\Gamma$. It appears likely that few of these families will lead to isometric Riemannian structures on $\mathbb{R}^{n+1}$. Intuitively, in other words, one expects that the class of metrics having the properties stated in the theorem has infinite dimension and infinite codimension among all Riemannian metrics.

Remark 4. It is not clear to us whether the extension of $d \tilde{s}^{2}$ to all of $\mathbb{R}^{\mathrm{n}+1}$ may be chosen so that the specific family of hypersurfaces we have constructed will have minimum area among hypersurfaces bounding volume one. It may be noted, however, that the variation vector field has nodal domains which are consistent with a minimizing condition subject to one constraint.

## Bibliography

1. Aleksandrov, A.D.: Uniqueness theorems for surfaces in the large, V. Vestnik, Leningrad Univ. 13, 19 5-8 (1958). Amer. Math. Soc. Transl. 21, 412-416.
2. Gerhardt, C.: H-surfaces in Lorentzian manifolds. Comm. Math. Phys. 89, 523-553 (1983).
3. Gulliver, R. and S. Hildebrandt: Boundary configurations spanning continua of minimal surfaces. Manuscripta Math. 54, 323-347 (1986).
