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Abstract. Symplectic instanton vector bundles on the projective space P3 are a natural

generalization of mathematical instantons of rank 2. We study the moduli space In,r of

rank-2r symplectic instanton vector bundles on P3 with r ≥ 2 and second Chern class

n ≥ r + 1, n − r ≡ 1(mod2). We introduce the notion of tame symplectic instantons by

excluding a kind of pathological monads and show that the locus I∗n,r of tame symplectic

instantons is irreducible and has the expected dimension, equal to 4n(r + 1)− r(2r + 1).

1. Introduction

By a symplectic instanton vector bundle of rank 2r and charge n (shortly, a symplectic

(n, r)-instanton) on the 3-dimensional projective space P3 we understand an algebraic

vector bundle E = E2r of rank 2r on P3 with Chern classes

(1) c1(E) = c3(E) = 0,

(2) c2(E) = n, n ≥ 1,

supplied with a symplectic structure and satisfying the vanishing conditions

(3) h0(E) = h1(E ⊗OP3(−2)) = 0.
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2 SYMPLECTIC INSTANTONS ON P3

By a symplectic structure we mean an anti-self-dual isomorphism

(4) φ : E
'→ E∨, φ∨ = −φ,

considered modulo proportionality. The vanishing of the odd Chern classes (1) follows

from the existence of a symplectic structure (4), and if r = 1, then the two conditions are

equivalent. We will denote the moduli space of symplectic (n, r)-instantons by In,r.

Rank r symplectic instantons on P3 relate in a natural manner with “physical” Sp(r)

instantons on the four-sphere S4, i.e., connections on principal Sp(r)-bundles on S4 with

self-dual curvature [1]; the moduli spaces of the former are in a sense a complexification

of the moduli spaces of the latter. The relation is expressed by the so-called Atiyah-Ward

correspondence [3, 1], which relies on the fact that the projective space P3 is the twistor

space of the four-sphere S4. The present paper, with its companion [7], are the first to

study the geometry of the moduli spaces In,r. While [7] studied the case n ≡ r (mod

2), with n ≥ r, the present paper deals with the other case, n ≡ r + 1 (mod 2), with

n ≥ r + 1. We exploit as usual the monad method [8, 2, 4, 5, 11, 12], which allows one

to study instantons by means of hyperwebs of quadrics. The main result of this paper is

that a component I∗n,r of In,r that is singled out by a certain open condition (which rules

out some “badly behaved” monads) is irreducible.

Acknowledgements. This paper was written while the first author was a CNRS

“Chargé de Recherches” at Université Lille I. He thanks CNRS for support and the Depart-

ment of Mathematics of Université Lille I for hospitality. The third author acknowledges

the support and hospitality of the Max Planck Institute for Mathematics in Bonn. He

thanks the Ministry of Education and Science of the Russian Federation for partial sup-
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2. Notation and conventions

In many respects, we follow the exposition of [9], and stick to the notation there in-

troduced. The base field k is assumed to be algebraically closed of characteristic 0. We

identify vector bundles with locally free sheaves. If F is a sheaf of OX-modules on an

algebraic variety or a scheme X, by nF we denote the direct sum of n copies of F , while

H i(F) denotes the ith cohomology group of F and hi(F) := dimH i(F), and F∨ denotes

the dual of F , that is, F∨ := HomOX (F ,OX). If X = Pr and t is an integer, by F(t)

we denote the sheaf F ⊗ OPr(t). [F ] will denote the isomorphism class of a sheaf F . For

any morphism of OX-sheaves f : F → F ′ and any k-vector space U (respectively, for any

homomorphism f : U → U ′ of k-vector spaces) we denote, for short, by the same letter
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f the induced morphism of sheaves id ⊗ f : U ⊗ F → U ⊗ F ′ (respectively, the induced

morphism f ⊗ id : U ⊗F → U ′ ⊗F).

We fix an integer n ≥ 1 and denote by Hn a fixed n-dimensional vector space over k.

Throughout this paper, V will be a fixed vector space of dimension 4 over k, and we set

P3 := P (V ). We reserve the letters u and v to denote the two morphisms in the Euler

exact sequence 0→ OP3(−1)
u→ V ∨⊗OP3

v→ TP3(−1)→ 0. For any k-vector spaces U and

W and any vector φ ∈ Hom(U,W ⊗∧2V ∨) ⊂ Hom(U ⊗V,W ⊗V ∨) understood as a linear

map φ : U ⊗ V → W ⊗ V ∨ or, equivalently, as a map ]φ : U → W ⊗∧2V ∨, we will denote

by φ̃ the composition U ⊗OP3

]φ→ W ⊗∧2V ∨ ⊗OP3
ε→ W ⊗ΩP3(2), where ε is the induced

morphism in the exact triple 0 → ∧2ΩP3(2)
∧2v∨→ ∧2V ∨ ⊗ OP3

ε→ ΩP3(2) → 0 obtained by

taking the second wedge power of the dual Euler exact sequence.

Given an integer n ≥ 1, we denote by Sn (resp. Σn) the vector space S2H∨n ⊗ ∧2V ∨

(resp. Hom(Hn, H
∨
n ⊗∧2V ∨)). By abuse of notation, denote by the same symbol a k-vector

space, say U , and the associated affine space V(U∨) = Spec(Sym∗U∨).

All the schemes considered in this paper are Noetherian. By a general point of an

irreducible (but not necessarily reduced) scheme X we mean any closed point of some

dense open subset of X . An irreducible scheme is called generically reduced if it is reduced

at any general point.

3. Generalities on symplectic instantons and definition of MIn,r

In this section we enumerate some facts about symplectic instantons which are com-

pletely parallel to those for rank-2 usual instantons, see [9, Section 3].

For a given symplectic (n, r)-instanton E, the first condition (3) yields h0(E(−i)) =

0, i ≥ 0, which, together with the exact sequence 0→ E(−j−1)→ E(−j)→ E(−j)|P2 → 0

for j = 0 and (3), implies that h0(E(−1)|P2) = 0, hence also h0(E(−i)|P2) = 0, i ≥ 1.

The last equality for i = 2, together with (3) and the above sequence for j = 2, gives

h1(E(−3)) = 0, hence also h1(E(−4)) = 0. Then, from Serre duality and (4), we deduce

(5) hi(E) = hi(E(−1)) = h3−i(E(−3)) = h3−i(E(−4)) = 0, i 6= 1,

hi(E(−2)) = 0, i ≥ 0.

By Riemann-Roch and (3), (5), we have

(6) h1(E(−1)) = h2(E(−3)) = n, h1(E) = h2(E(−4)) = 2n− 2r.

By tensoring the dual Euler sequence by E we also obtain

(7) h1(E ⊗ Ω1
P3) = h2(E ⊗ Ω2

P3) = 2n+ 2r.
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Consider a triple (E, f, φ) where E is an (n, r)-instanton, f : Hn
'→ H2(E(−3)) an

isomorphism and φ : E
'→ E∨ a symplectic structure on E. Two triples (E, f, φ) and

(E ′f ′, φ′) are considered to be equivalent if there is an isomorphism g : E
'→ E ′ such that

g∗ ◦ f = λf ′ with λ ∈ {1,−1} and φ = g∨ ◦ φ′ ◦ g, where g∗ : H2(E(−3))
'→ H2(E ′(−3)) is

the induced isomorphism. We denote by [E, f, φ] the equivalence class of a triple (E, f, φ).

It follows from this definition that the set F[E] of all equivalence classes [E, f, φ] with given

[E] is a homogeneous space of the group GL(Hn)/{±id}.
Each class [E, f, φ] defines a point

(8) A = A([E, f, φ]) ∈ S2H∨n ⊗ ∧2V ∨

in the following way. Consider the exact sequences

(9) 0→ Ω1
P3

i1→ V ∨ ⊗OP3(−1)→ OP3 → 0,

0→ Ω2
P3 → ∧2V ∨ ⊗OP3(−2)→ Ω1

P3 → 0,

0→ ∧4V ∨ ⊗OP3(−4)→ ∧3V ∨ ⊗OP3(−3)
i2→ Ω2

P3 → 0,

induced by the Koszul complex of V ∨ ⊗OP3(−1)
ev
� OP3 . Twisting these sequences by E

and taking (3) and (5) into account, we obtain the vanishing

(10) h0(E ⊗ ΩP3) = h3(E ⊗ Ω2
P3) = h2(E ⊗ ΩP3) = 0

and the diagram with exact rows

(11) 0 // H2(E(−4))⊗ ∧4V ∨ // H2(E(−3))⊗ ∧3V ∨
i2 //

A′

��

H2(E ⊗ Ω2
P3) // 0

0 H1(E))oo H1(E(−1))⊗ V ∨oo H1(E ⊗ ΩP3)
i1oo

∼= ∂

OO

0,oo

where A′ := i1 ◦ ∂−1 ◦ i2. The Euler exact sequence (9) yields the canonical isomorphism

ωP3
'→ ∧4V ∨ ⊗ OP3(−4), and fixing an isomorphism τ : k

'→ ∧4V ∨ we have the isomor-

phisms τ̃ : V
'→ ∧3V ∨ and τ̂ : ωP3

'→ OP3(−4). We define A in (8) as the composition

(12) A : Hn ⊗ V
τ̃
'→ Hn ⊗ ∧3V ∨

f
'→ H2(E(−3))⊗ ∧3V ∨

A′→ H1(E(−1))⊗ V ∨
φ
'→

φ
'→ H1(E∨(−1))⊗ V ∨

SD
'→ H2(E(1)⊗ ωP3)∨ ⊗ V ∨

τ̂
'→ H2(E(−3))∨ ⊗ V ∨

f∨

'→ H∨n ⊗ V ∨,
where SD is the Serre duality isomorphism. One can verify that A is a skew-symmetric

map which depends only on the class [E, f, φ], but does not depend on the choice of τ , and

that A ∈ ∧2(H∨n ⊗ V ∨) lies in the direct summand Sn = S2H∨n ⊗ ∧2V ∨ of the canonical

decomposition

(13) ∧2(H∨n ⊗ V ∨) = S2H∨n ⊗ ∧2V ∨ ⊕ ∧2H∨n ⊗ S2V ∨.
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Here Sn is the space of hyperwebs of quadrics in Hn. For this reason we call A the (n, r)-

instanton hyperweb of quadrics corresponding to the data [E, f, φ].

Denote WA := Hn ⊗ V/ kerA. Using the above chain of isomorphisms we can rewrite

the diagram (11) as

(14) 0 // kerA // Hn ⊗ V
cA //

A
��

WA
//

∼= qA
��

0

0 kerA∨oo H∨n ⊗ V ∨oo W∨
A

c∨Aoo 0.oo

In view of (7), dimWA = 2n + 2r and qA : WA
'→ W∨

A is a skew-symmetric isomorphism.

An important property of A = A([E, f, φ]) is that the induced morphism of sheaves

(15) a∨A : W∨
A ⊗OP3

c∨A→ H∨n ⊗ V ∨ ⊗OP3
ev→ H∨n ⊗OP3(1)

is surjective and the composition Hn⊗OP3(−1)
aA→ WA⊗OP3

qA→ W∨
A ⊗OP3

a∨A→ H∨n ⊗OP3(1)

is zero. Applying Beilinson spectral sequence [6] to E(−1), we see that E ' ker(a∨A ◦
qA)/ Im aA. Thus A defines a monad

(16) MA : 0→ Hn ⊗OP3(−1)
aA→ WA ⊗OP3

a∨A◦qA→ H∨n ⊗OP3(1)→ 0 ,

whose cohomology sheaf

(17) E2r(A) := ker(a∨A ◦ qA)/ Im aA.

is isomorphic to E. Twisting MA by OP3(−3) and using (17), we obtain the isomorphism

f : Hn
'→ H2(E(−3)). Furthermore, the fact that qA is symplectic implies that there is

a canonical isomorphism of MA with its dual which induces the symplectic isomorphism

φ : E
'→ E∨. Thus, the data [E, f, φ] can be recovered from A. This leads to the following

description of the moduli space In,r. Consider the set of (n, r)-instanton hyperwebs of

quadrics

(18) MIn,r :=


A ∈ Sn

∣∣∣∣∣∣∣∣∣∣∣∣∣

(i) rk(A : Hn ⊗ V → H∨n ⊗ V ∨) = 2n+ 2r,

(ii) the morphism a∨A : W∨
A⊗OP3 → H∨n ⊗OP3(1) defined

by A in (15) is surjective,

(iii) h0(E2r(A)) = 0, where E2r(A) = ker(a∨A ◦ qA)/ Im aA
and qA : WA

'→ W∨
A is a symplectic isomorphism

associated to A by (14).


It is a locally closed subscheme of the affine space Sn.

Theorem 3.1. The natural morphism

(19) πn,r : MIn,r → In,r, A 7→ [E2r(A)],
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is a principal GL(Hn)/{±id}-bundle in the étale topology. Hence In,r is a quotient stack

MIn,r/(GL(Hn)/{±id}), and is therefore an algebraic space.

Proof. See [9, Section 3]. �

Each fibre F[E] = π−1n ([E]) over an arbitrary point [E] ∈ In,r is a principal homogeneous

space of the group GL(Hn)/{±id}. Hence the irreducibility of (In,r)red is equivalent to the

irreducibility of the scheme (MIn,r)red.

We can also state:

Theorem 3.2. For each n ≥ 1, the space MIn,r of (n, r)-instanton nets of quadrics is a

locally closed subscheme of the vector space Sn given locally at any point A ∈MIn,r by

(20)

(
2n− 2r

2

)
= 2n2 − n(4r + 1) + r(2r + 1)

equations obtained as the rank condition (i) in (18).

Note that from (20) it follows that

(21) dimAMIn,r ≥ dim Sn − (2n2 − n(4r + 1) + r(2r + 1)) = n2 + 4n(r + 1)− r(2r + 1)

at any point A ∈MIn,r. Hence,

(22) dim[E] In,r ≥ 4n(r + 1)− r(2r + 1)

at any point [E] ∈ In,r, since MIn,r → In,r is a principal GL(Hn)/{±id}-bundle in the

étale topology.

4. Explicit construction of symplectic instantons

4.1. Example: symplectic (n+ 1, n)-instantons. We give a construction of symplectic

(n + 1, n)-instantons and describe their relation to usual rank-2 instantons with second

Chern class c2 = 2n. This relation is given at the level of spaces of hyperwebs of quadrics

MIn+1,n and MI2n,1, interpreted as spaces of monads.

Denote by Isomn+1,n−1 the set of all isomorphisms

(23) ζ : Hn+1 ⊕Hn−1
'→ H2n.

This clearly coincides with the principal homogeneous space of the group GL(2n). Besides,

for any ζ ∈ Isomn+1,n−1 let pζ : S2n � Sn+1 be the induced epimorphism, and, for any

monomorphism i : Hn ↪→ Hn+1 let pr(i) : Sn+1 → Sn be the induced epimorphism.

Note that MI2n,1 is irreducible [10, Theorem 1.1], and one has the following result [10,

Theorem 3.1].
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Theorem 4.1. There exists a dense open subset MI∗2n,1 of MI2n,1 such that, for any

hyperweb A ∈ MI∗2n,1 and a general ζ ∈ Isomn+1,n−1 the rank of the homomorphism B =

pζ(A) : Hn+1 ⊗ V → H∨n+1 ⊗ V ∨ coincides with the rank of A : H2n ⊗ V → H∨2n ⊗ V ∨:

(24) rkB = rkA = 4n+ 2.

SetW4n+2 := H2n⊗V/ kerA and let cA : H2n⊗V � W4n+2 be the canonical epimorphism

and qA : W4n+2
∼→ W∨

4n+2 be the induced skew-symmetric isomorphism so that A =

c∨A ◦ qA ◦ cA. Now a morphism of sheaves

(25) aA : H2n ⊗OP3(−1)
u→ H2n ⊗ V ⊗OP3

cA→ W4n+2 ⊗OP3

and its transpose
taA = a∨A ◦ qA : W∨

4n+2 ⊗OP3 → H∨2n ⊗OP3(1)

yield a monad

(26) MA : 0→ H2n ⊗OP3(−1)
aA→ W4n+2 ⊗OP3

taA→ H∨2n ⊗OP3(1)→ 0

with the cohomology sheaf E(A), [E(A)] ∈ I2n,1 (see (16) and (17)).

Let

(27) iζ : Hn+1 ↪→ H2n

be the monomorphism defined by the isomorphism (23). The composition aB : Hn+1 ⊗
OP3(−1)

iζ
↪→ H2n⊗OP3(−1)

aA→ W4n+2⊗OP3 and its transpose taB = a∨B ◦ qA yield a monad

(28) MB : 0→ Hn+1 ⊗OP3(−1)
aB→ W4n+2 ⊗OP3

taB→ H∨n+1 ⊗OP3(1)→ 0

with the cohomology sheaf

(29) E2n(B) := ker taB/imaB, c2(E2n(B)) = n+ 1.

The symplectic isomorphism qA : W4n+2
∼→ W∨

4n+2 induces a symplectic structure on

E2n(B),

(30) E2n(B)
φB→
'
E2n(B)∨.

Moreover, (24) implies an isomorphism Hn+1⊗V/ kerB ' W4n+2, hence a monomorphism

of spases of sections h0(taB) : W4n+2⊗OP3

taB→ H∨n+1V
∨ in (28). Hence (28) and (29) imply

h0(E2n(B)) = 0. This together with (30) means that E2n(B) is a symplectic instanton:

(31) [E2n(B)] ∈ In+1,n.



8 SYMPLECTIC INSTANTONS ON P3

Note that by construction the monads (26) and (28) fit in the commutative diagram

(32)

0 // Hn+1 ⊗OP3(−1)
aB //

� _

iζ
��

W4n+2 ⊗OP3

qA

∼=
//

∼=

W∨
4n+2 ⊗OP3

a∨B // H∨n ⊗OP3(1) // 0

0 // H2n ⊗OP3(−1)
aA // W4n+2 ⊗OP3

qA

∼=
// W∨

4n+2 ⊗OP3

a∨A //

w∨ ∼=

H∨2n ⊗OP3(1) //

i∨ζ

OOOO

0,

In view of (29) and (30) and the canonical isomorphism H2n/iζ(Hn+1) ' Hn−1, from this

diagram we obtain the quotient monad

(33) MA,B : 0→ Hn−1 ⊗OP3(−1)
aA,B→ E2n(B)

φB→
'
E2n(B)∨

a∨A,B→ H∨n−1 ⊗OP3(1)→ 0

with the cohomology sheaf

(34) E2(A) = ker(a∨A,B ◦ φB)/im aA.

4.2. Example: a special family of symplectic (n, r)-instantons. Now assume n ≥ 3

and, for any integer r, 2 ≤ r ≤ n− 1, consider a monomorphism

(35) τ : H2n−r+1 ↪→ H2n

such that, in the notation of (27),

(36) τ(H2n−r+1) ⊃ iζ(Hn+1).

We obtain a hyperweb of quadrics

Aτ ∈ S2n−r+1

as the image of A ∈ MI2r under the projection S2n � S2n−r+1 induced by τ . The corre-

sponding monad

(37) Mτ : 0→ H2n−r+1 ⊗OP3(−1)
aτ→ W4n+2 ⊗OP3

a∨τ ◦qA→ H∨2n−r+1 ⊗OP3(1)→ 0,

has a rank-2r cohomology bundle

(38) E2r(Aτ ) = ker(a∨τ ◦ qA)/im aτ .

where aτ := aA ◦ τ . By construction, E2r(Aτ ) inherits a natural symplectic structure

(39) φr : E2r(Aτ )
'→ E2r(Aτ )

∨.

Besides, in view of (36), the monad (37) can be inserted as a midle row into the dia-

gram (32), extending it to a three-row commutative anti-self-dual diagram. We obtain, in

addition to the quotient monad (33), two more quotient monads:

(40) M′
τ : 0→ Hn−r ⊗OP3(−1)

a′τ→ E2n(B)
φ→
'
E2n(B)∨

a′∨τ→ H∨n−r ⊗OP3(1)→ 0,
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E2r(Aτ ) = ker(a′
∨
τ ◦ φ)/im a′τ ,

(41) M′′
τ : 0→ Hr−1 ⊗OP3(−1)

a′′τ→ E2r(Aτ )
φτ→
'
E2r(Aτ )

∨ a′′∨τ→ H∨r−1 ⊗OP3(1)→ 0,

E2(A) = ker(a′′
∨
τ ◦ φτ )/im a′′τ .

Since h0(E2n(B) = hi(E2n(B)(−2)) = 0 by (31), from (40) we easily deduce:

(42) h0(E2r(Aτ )) = hi(E2r(Aτ )(−2)) = 0, i ≥ 0, c2(E2r(Aτ )) = 2n− r + 1.

By definition, this together with (39) means that

(43) [E2r(Aτ )] ∈ I2n−r+1,r.

Remark 4.2. Observe that, in view of (35), the maps τ belong to the set

Nn,r := {τ ∈ Hom(H2n−r+1, H2n)| τ is injective and im τ ⊃ im iζ}.

When A ∈ MI2n,1(ζ) is fixed, Nn,r parametrizes some family of hyperwebs Aτ from

MI2n−r+1,r. Since Nn,r is a principal GL(H2n−r+1)-bundle over an open subset of the

Grassmannian Gr(n− r, n− 1), it is irreducible. Thus the family of the three-row exten-

sions of the diagram (32) can be parametrized by the irreducible variety MI2n,1(ζ)×Nn,r.

Hence the family Dn,r of isomorphism classes of symplectic rank-2r bundles obtained from

these diagrams by formula (38) is an irreducible locally closed subset of I2n−r+1,r.

Note that it is a priori not clear whether the closure of Dn,r in I2n−r+1,r is an irreducible

component of I2n−r+1,r.

Definition 4.3. Let 2 ≤ r ≤ n − 1. We say that A ∈ MI2n−r+1,r satisfies property (*)

if there exists a monomorphism i : Hn ↪→ H2n−r+1 such that the image B of A under the

projection S2n−r+1 � Sn induced by i is invertible as a homomorphism B : Hn ⊗ V →
H∨n ⊗ V ∨.

Property (*) is clearly an open condition on A. Moreover, since π2n−r+1,r : MI2n−r+1,r →
I2n−r+1,r is a principal bundle (Theorem 3.1), if an element A ∈ π−12n−r+1,r([E2r]) satisfies

(*), then any other point A′ ∈ π−12n−r+1,r([E2r]) satisfies (*). We thus say that a symplectic

instanton E2r from I2n−r+1,r is tame if some (hence any) A ∈ π−12n−r+1,r([E2r]) satisfies

property (*). It is obviously an open condition on [E2r] ∈ I2n−r+1,r.

Remark 4.4. Using (36), we see that any [E2r] ∈ Dn,r is tame. We define

(44) I∗2n−r+1,r := I(1) ∪ . . . ∪ I(k),

where I(1), . . . , I(k) are all the irreducible components of I2n−r+1,r whose general points are

tame symplectic instantons. By definition, Dn,r ⊂ I∗2n−r+1,r, hence I∗2n−r+1,r is nonempty.

We also set MI∗2n−r+1,r = π−12n−r+1,r(I
∗
2n−r+1,r), so that the map π2n−r+1,r : MI∗2n−r+1,r →

I∗2n−r+1,r is a principal bundle with structure group GL(H2n−r+1)/{±1}.
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5. Irreducibility of I∗2n−r+1,r

5.1. A dense open subset Xn,r of MI∗2n−r+1,r. Reduction of the irreducibility of

I∗n,r to that of Xn,r.. In this subsection we recall some known facts about usual rank-2

instantons considered as symplectic (2n, 1)-instantons. Given an integer n ≥ 1, set

(45) S0
n := {A ∈ Sn | A : Hn ⊗ V → H∨n ⊗ V ∨ is an invertible map}.

This is a dense open subset of Sn.

We need some more notation. Let B ∈ S0
n. By definition, B is an invertible anti-self-dual

map Hn ⊗ V → H∨n ⊗ V ∨. Then the inverse

(46) B−1 : H∨n ⊗ V ∨ → Hn ⊗ V

is also anti-self-dual. Consider the vector space Σn,r := H∨n−r+1⊗H∨n ⊗∧2V ∨. An element

C ∈ Σn,r can be viewed as a linear map C : Hn−r+1 ⊗ V → H∨n ⊗ V ∨, and its dual

C∨ : Hn ⊗ V → H∨n−r+1 ⊗ V ∨. As the composition C∨ ◦ B−1 ◦ C is anti-self-dual, we can

consider it as an element of ∧2(H∨n−r+1 ⊗ V ∨) ' Sn−r+1 ⊕ ∧2H∨n−r+1 ⊗ S2V ∨ (cf. (13)).

Thus the condition

(47) D − C∨ ◦B−1 ◦ C ∈ Sn−r+1, D ∈ ∧2(H∨n−r+1 ⊗ V ∨)

makes sense.

Consider an arbitrary direct sum decomposition

(48) ξ : Hn ⊕Hn−r+1
'→ H2n−r+1.

Under this decomposition, we can represent the hyperweb A ∈ S2n−r+1 considered as a

homomorphism A : Hn ⊗ V ⊕Hn−r+1 ⊗ V → H∨n ⊗ V ∨ ⊕H∨n−r+1 ⊗ V ∨ by the (8n− 4r +

4)× (8n− 4r + 4)-matrix of homomorphisms

(49) A =

(
A1(ξ) A2(ξ)

−A2(ξ)
∨ A3(ξ)

)
,

where

(50) A1(ξ) ∈ Sn, A2(ξ) ∈ Σn,r := Hom(Hn, H
∨
n−r+1)⊗ ∧2V ∨, A3(ξ) ∈ Sn−r+1.

Under this notation, the decomposition (48) induces the isomorphism

(51) ξ̃ : S2n−r+1
∼→ Sn ⊕Σn,r ⊕ Sn−r+1, A 7→ (A1(ξ), A2(ξ), A3(ξ)).

Let Isomn,r be the set of all isomorphisms ξ in (48). According to Definition 4.3, there

exists ξ ∈ Isomn,r such that the set

MI∗2n−r+1,r(ξ) := {A ∈MI2n−r+1,r | A satisfies property (∗) for the monomorphism
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iξ : Hn ↪→ H2n−r+1 determined by ξ}
is a dense open subset of MI∗2n−r+1,r. Now take A ∈ MI∗2n−r+1,r(ξ) and consider A as

a matrix of homomorphisms (49). By definition, the submatrix A1(ξ) of this matrix is

invertible. Hence by an appropriate elementary transformation we reduce the matrix A to

an equivalent matrix Ã of the form

(52) Ã =

(
idH∨n⊗V ∨ A1(ξ)

−1 ◦ A2(ξ)

0 A2(ξ)
∨ ◦ A1(ξ)

−1 ◦ A2(ξ) + A3(ξ)

)
.

Since rkÃ = rkA = 2(2n− r + 1) + 2r = 4n+ 2, we obtain the following relation between

the matrices A1(ξ), A2(ξ) and A3(ξ):

(53) rk(A2(ξ)
∨ ◦ A1(ξ)

−1 ◦ A2(ξ) + A3(ξ)) = 2.

Consider the embedding of the GrassmannianG := Gr(2, H∨n−r+1⊗V ∨) ↪→ P (∧2(H∨n−r+1⊗
V ∨)), and let KG ⊂ ∧2(H∨n−r+1 ⊗ V ∨) be the affine cone over G. Set KG∗ := KGr {0}.
We can now rewrite (53) as

(54) A2(ξ)
∨ ◦ A1(ξ)

−1 ◦ A2(ξ) + A3(ξ) ∈ KG∗,

where

(55) A2(ξ)
∨ ◦ A1(ξ)

−1 ◦ A2(ξ) ∈ ∧2(H∨n−r+1 ⊗ V ∨), A3(ξ) ∈ Sn−r+1.

Now consider the set

(56) X̃n,r := {(B,C,D) ∈ S0
n ×Σn,r ×KG∗ | D − C∨ ◦B−1 ◦ C ∈ Sn−r+1}.

Since for an arbitrary point y = (B,C,D) ∈ X̃n the point ξ̃−1(B,C,D−C∨◦B−1◦C) lies in

S2n−r+1, hence may be considered as a homomorphism Ay : H2n−r+1⊗V → H∨2n−r+1⊗V ∨
of rank 4n + 2, we have a well-defined (4n + 2)-dimensional vector space W4n+2(y) :=

H2n−r+1⊗V/ kerAy together with a canonical epimorphism cy : H2n−r+1⊗V � W4n+2(y)

and an induced skew-symmetric isomorphism qy : W4n+2(y)
∼→ W4n+2(y)∨ such that

Ay = c∨y ◦ qy ◦ cy. Now similarly to (25) a morphism of sheaves

(57) ay = cy ◦ u : H2n−r+1 ⊗OP3(−1)→ W4n+2(y)⊗OP3

is defined, together with its transpose tay = a∨y ◦ qy : W∨
4n+2(y) ⊗ OP3 → H∨2n ⊗ OP3(1),

and we introduce an open subset Xn,r of the set X̃n,r,

(58) Xn,r :=

{
y ∈ X̃n,r

∣∣∣∣∣ (i) tay is epimorphic,

(ii) [ker tay/imay] ∈ I∗2n−r+1,r

}
.

Since the conditions (i) and (ii) on a point y ∈ X̃n,r in (58) are open, from (54) and (55)

we obtain the following result.
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Proposition 5.1. There exist a decomposition ξ ∈ Isomn,r, a dense open subset MI∗2n−r+1,r(ξ)

of MI∗2n−r+1,r and an isomorphism of reduced schemes

(59) fn,r : MI∗2n−r+1,r(ξ)
'→ Xn,r, A 7→ (A1(ξ), A2(ξ), A3(ξ)).

The inverse isomorphism is given by the formula

(60) f−1n,r : Xn,r
'→MI∗2n−r+1,r(ξ) : (B,C,D) 7→ ξ̃−1(B, C, D − C∨ ◦B−1 ◦ C),

where ξ̃ is defined by (51).

The proof of the following theorem will be given in Subsection 5.2.

Theorem 5.2. Xn,r is irreducible of dimension (2n−r+1)2+4(2n−r+1)(r+1)−r(2r+1).

From Proposition 5.1 and Theorem 5.2 it follows that MI∗2n−r,r is irreducible of dimension

(2n− r + 1)2 + 4(2n− r + 1)(r + 1)− r(2r + 1) for any n ≤ 3 and 2 ≤ r ≤ n− 1. Hence

I∗2n−r+1,r is irreducible of dimension 4(2n− r + 1)(r + 1)− r(2r + 1) for these values of n

and r. Substituting 2n− r + 1 7→ n, we obtain the following main result of the paper.

Theorem 5.3. For any integer r ≥ 2 and for any integer n ≥ r − 1 such that n ≡
r − 1(mod2), the moduli space I∗n,r of tame symplectic instantons is an open subset of an

irreducible component of In,r of dimension 4n(r + 1)− r(2r + 1).

5.2. Proof of the irreducibility of Xn,r. In this subsection we give the proof of Theorem

5.2. Consider the set X̃n,r defined in (56). Since Xn,r is an open subset of X̃n,r, it is enough

to prove the irreducibility of X̃n,r. In view of the isomorphism S0
n
'→ (S∨n)0 : B 7→ B−1,

we rewrite X̃n,r as

(61) X̃n,r := {(B,C,D) ∈ (S∨n)0 ×Σn,r ×KG∗ | D − C∨ ◦B ◦ C ∈ Sn−r+1}.

Fix a direct sum decomposition

Hn
'→ Hn−r+1 ⊕Hr−1.

Then any linear map

(62) C ∈ Σn,r = Hom(Hn−r+1, H
∨
n ⊗ ∧2V ∨), C : Hn−r+1 ⊗ V → H∨n ⊗ V ∨,

can be represented as a map

(63) C : Hn−r+1 ⊗ V → H∨n−r+1 ⊗ V ∨ ⊕ H∨r−1 ⊗ V ∨,

or else as a block matrix

(64) C =

(
φ

ψ

)
,
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where

(65)

φ ∈ Hom(Hn−r+1, H
∨
n−r+1)⊗ ∧2V ∨ = Φn−r+1, ψ ∈ Ψn,r := Hom(Hn−r+1, H

∨
r−1)⊗ ∧2V ∨.

Similarly, any D ∈ (S∨n)0 ⊂ S∨n = S2Hn ⊗ ∧2V ⊂ Hom(H∨n ⊗ V ∨, Hn ⊗ V ) can be

represented in the form

(66) B =

(
B1 λ

−λ∨ µ

)
,

where

(67) B1 ∈ S∨n−r+1 ⊂ Hom(H∨n−r+1 ⊗ V ∨, Hn−r+1 ⊗ V ),

λ ∈ Ln,r := Hom(H∨r , Hn−r+1)⊗ ∧2V, µ ∈Mr−1 := S2Hr−1 ⊗ ∧2V.

By (64) and (66) the composition

C∨ ◦B ◦ C : Hn−r+1 ⊗ V → H∨n−r+1 ⊗ V ∨ (C∨ ◦B ◦ C ∈ ∧2(H∨n−r+1 ⊗ V ∨))

can be written in the form

(68) C∨ ◦B ◦ C = φ∨ ◦B1 ◦ φ+ φ∨ ◦ λ ◦ ψ − ψ∨ ◦ λ∨ ◦ φ+ ψ∨ ◦ µ ◦ ψ.

By (64)-(67) we have

S∨n ×Σn,r = S∨n−r+1 ×Φn−r+1 ×Ψn,r × Ln,r ×Mr−1,

and there are well defined morphisms

p̃ : X̃n,r → Ln,r ×Mr ×KG, (B1, φ, ψ, λ, µ,D) 7→ (λ, µ,D).

and

p := p̃|Xn,r : Xn,r → Ln,r ×Mr−1 ×KG,

where Xn,r is the closure of X̃n,r in (S∨n)0×Σn,r×KG. We now invoke the following result

from [9]:

Proposition 5.4. Let n ≥ 2. For any B ∈ (S∨n)0 and for a general choice of the decom-

position Hn '→ Hn−r+1 ⊕Hr−1, the block B1 of B in (66) is nondegenerate.

Proof. See [9, Proposition 7.3]. By applying this proposition r times, we can find a de-

composition Hn
∼→ Hn−r+1 ⊕Hr−1 such that B1 : H∨n−r+1 ⊗ V ∨ → Hn−r+1 ⊗ V in (66) is

nondegenerate, i.e., B1 ∈ (S∨n−r+1)
0. �



14 SYMPLECTIC INSTANTONS ON P3

Let X be any irreducible component of Xn,r considered as a reduced scheme and let X
be its closure in Xn,r. Fix a point z = (B1, φ, ψ, λ, µ,D) ∈ X not lying in the components

of Xn,r different from X . Consider the morphism

(69) f : A1 → X , t 7→ (B1, t
2φ, tψ, tλ, t2µ, t4D), f(1) = z,

which is well defined by (68). By definition, the point f(0) = (B1, 0, 0, 0, 0, 0) lies in the

fibre p−1(0, 0, 0). Hence, p−1(0, 0, 0) ∩ X 6= ∅. In other words,

(70) ρ−1(0, 0, 0) 6= ∅, where ρ := p|X .

Now, it follows from (68) and the definition of X̃n,r that

(71) p̃−1(0, 0, 0) = {(B1, φ, ψ) ∈ (S∨n−r+1)
0 ×Φn−r+1 ×Ψn,r | φ∨ ◦B1 ◦ φ ∈ Sn−r+1}.

Consider the set

Zn−r+1 = {(B, φ) ∈ (S∨n−r+1)
0 ×Φn−r+1 | φ∨ ◦B ◦ φ ∈ Sn−r+1}.

It carries a natural structure of a closed subscheme of (S∨n−r+1)
0×Φn−r+1. Comparing the

definition of Zn−r+1 with (71) we see there are scheme-theoretic inclusions of schemes

(72) ρ−1(0, 0, 0) ⊂ p−1(0, 0, 0) ⊂ p̃−1(0, 0, 0) = Zn−r+1 ×Ψn,r.

By [9, Theorem 7.2], Zn−r+1 is an integral scheme of dimension 4(n − r + 1)(n − r + 3).

This together with (72) implies that

(73) dim ρ−1(0, 0, 0) ≤ dim p−1(0, 0, 0) ≤ dimZn−r+1 + dim Ψn,r = 4(n− r+ 1)(n− r+ 3)

+6(r − 1)(n− r + 1) = (n− r + 1)(4n+ 2r + 6).

Hence in view of (70)

(74) dimX ≤ dim ρ−1(0, 0, 0) + dim Ln,r + dim Mr−1 + dimKG

≤ (n− r + 1)(4n+ 2r + 6) + 6(r − 1)(n− r + 1) + 3(r − 1)r + (8n− 8r + 5)

= (2n− r + 1)2 + 4(2n− r + 1)(r + 1)− r(2r + 1).

On the other hand, formula (21) — with n replaced by 2n− r + 1 — and Proposition 5.1

show that, for any point x ∈ X such that A := f−1n,r(x) ∈MI∗2n−r+1,r(ξ),

(75) (2n− r + 1)2 + 4(2n− r + 1)(r + 1)− r(2r + 1) ≤ dimAMI∗2n−r+1,r(ξ) = dimX .

Comparing (74) with (75), we see that all the inequalities in (73)-(75) are equalities. In

particular,

(76) dim ρ−1(0, 0) = dim(Zn−r+1 ×Ψn,r) = dimX − dim(Ln,r ×Mr−1 ×KG).
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Since by Theorem [9, Theorem 7.2] the scheme Zn−r+1 is integral and so Zn−r+1 ×Ψn,r is

integral as well, (72) and (76) yield the equalities of integral schemes

(77) ρ−1(0, 0, 0) = p−1(0, 0, 0) = p̃−1(0, 0, 0) = Zn−r+1 ×Ψn,r.

Now we invoke the following easy lemma which is a slight generalization of Lemma 7.4

from [9]. The proof of this lemma is left to the reader.

Lemma 5.5. Let f : X → Y be a morphism of reduced schemes, where Y is an integral

scheme. Assume that there exists a closed point y ∈ Y such that for any irreducible

component X ′ of X the following conditions are satisfied:

(a) dim f−1(y) = dimX ′ − dimY ,

(b) the scheme-theoretic inclusion of fibres (f |X′)−1(y) ⊂ f−1(y) is an isomorphism of

integral schemes.

Then

(i) there exists an open subset U of Y containing y such that the morphism f |f−1(U) :

f−1(U)→ U is flat and

(ii) X is integral.

Applying assertions (i)-(ii) of this lemma to X = Xn,r, X
′ = X , Y = Ln,r ×Mr−1 ×

KG, y = (0, 0), f = p, and using (76) and (77), we obtain that Xn,r is integral of dimension

(2n− r + 1)2 + 4(2n− r + 1)(r + 1)− r(2r + 1). Theorem 5.2 is thus proved.
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