Cubic Form Theorem for Affine Immersions

by

Katsumi Nomizu and Ulrich Pinkall

Current Address:

```
Katsumi Nomizu
Department of Mathematics
Brown University
Providence, RI 02912
U S A
```

Ulrich Pinkall
Max-Planck-Institut fuir Mathematik
Gottfried-Claren-Straße 26
5300 Bonn 3
FRG
TU Berlin
Fachbereich Mathematik
Straße des 17. Juni 135
1000 Berlin 12

Cubic Form Theorem for Affine Immersions

by Katsumi Nomizu and Ulich Pinkall

An important theorem, due to Pick and Berwald, in classical affine differential geometry states that if a nondegenerate hypersurface M^{n} in the affine space \mathbb{R}^{n+1} has vanishing cubic form, then it is a quadric. The main purpose of this paper is to prove a number of generalizations of this result to the case of more general affine immersions in the sense of our previous paper [7] including degenerate hypersurfaces.

In Section I we extend the notion of affine immersion in [7] to higher codimension and discuss basic formulas and examples. In Section 2 we prove some results on umbilical immersions and reduction of codimension. In Section 3 we discuss the condition that the cublc form is divisible by the second fundamental form and state a number of generalizations of the classical theorem of Pick and Berwald. The proofs of these results are given in Sections 4 and 5.

[^0]
1. Affine immersions for higher codimension

In this section we extend the notion of affine immersion in [7] to the case of higher codimension. Let (M, ∇) and ($\tilde{M}, \tilde{\nabla}$) be differentiable manifolds with torsion-free affine connections of dimension n and $\tilde{n}=n+p$, respectively.

An immersion $f: M \rightarrow \tilde{M}$ is called an affine immersion if around each point of M there is a field of transversal subspaces $x \rightarrow N_{x}$;
(1) $T_{f(x)}=f_{*}\left(T_{x}(M)\right)+N_{x}$
such that for vector fields X and Y on M we have a decomposition
(2) $\tilde{\nabla}_{X} f_{*}(Y)=f_{*}\left(\nabla_{X} Y\right)+\alpha(X, Y)$
where $\alpha(X, Y) \in N_{X}$ at each point X.
In the following we shall call N_{x} the nermal space (rather than the transversal space) with the understanding that the choice in general is not unique. We have the normal bundle N with $x \rightarrow N_{x}$. We call α the second fundamental ferm. Corresponding to Proposition 1 in [7] we have the following Proposition 1. Let $f:(M, \nabla) \rightarrow(\tilde{M}, \tilde{\nabla})$ be an affineimmersion and $x \in M$. Then a normal space N_{x} with the property that it is spanned by all $\alpha(X, Y)$, where $X, Y \in T_{X}(M)$, is uniguely determined.

Proof. Let $N_{X}{ }_{X}$ be another such normal space at x and α^{\prime} the corresponding second fundamental form defined by the equation (2) using N^{l}. Write $\alpha(X, Y)=\tau(X, Y)+\beta(X, Y)$, where $\tau(X, Y) \in T_{X}(M)$ and $\beta(X, Y) \in N^{\prime}$. Then it follows that $\tau(X, Y)=0$ and $\alpha(X, Y)=\rho(X, Y)=\alpha^{1}(X, Y)$. Since N_{X} (resp. $N^{1}{ }_{X}$) is spanned by all $\alpha(X, Y)$ (resp. $\alpha^{1}(X, Y)$), we conclude that
$N_{x}=N_{x}{ }_{x}$.
In general, for each point $x \in M$ the subspace of $T_{x}(\mathbb{M})$ spanned by $f_{*}\left(T_{x}(M)\right)$ and all $\alpha(X, Y), X, Y \in T_{x}(M)$, is called the second osculating space at x. It is determined uniquely, because it is also the span of all vectors ($\left.\tilde{\nabla}_{X} \mathcal{F}_{*}(Y)\right)_{X}$, where X and Y are all vector fields on M. Its dimension is called the second osculating dimension.

If $\xi: x \rightarrow \xi_{x} \in N_{x}$ is a normal vector field, then we write

$$
\begin{equation*}
\tilde{\nabla}_{x} \xi=-f_{*}\left(A_{\xi} \dot{x}\right)+\nabla^{1} x \xi . \tag{3}
\end{equation*}
$$

where $A_{\xi} X \in T_{x}(M)$ and $\nabla^{2} x \in \in N_{x}$ at each point. Just as in submanifold theory in Riemannian geometry, we have a bilinear mapping A, called the shape tensor:

$$
(\xi, x) \in N_{x} x T_{x}(M) \rightarrow A_{\xi} x \in T_{x}(M)
$$

at each point x. We call A_{ξ} the shape operator for ξ. The mapping of the space of normal vector fields $\xi \rightarrow \nabla^{\perp} X \xi$ is covariant differentiation relative to the normal connection.

Just as in submanifold theory we get several basic equations relating the curvature tensors $\tilde{\mathrm{K}}$ for ($\tilde{M}, \tilde{\nabla}$) and R for (M, ∇), the second fundamental form form α, the shape tensor A, etc. in the usual way. Especially, the tangential component of $\tilde{R}(X, Y) Z$ is given by

$$
\tan \mathcal{R}(X, Y) Z=R(X, Y) Z+A_{\alpha}(X, Z) Y-A_{\alpha}(Y, Z) X
$$

and the normal component by

$$
\text { nor } \tilde{R}(X, Y) Z=\left(\nabla_{X} \alpha\right)(Y, Z)-\left(\nabla_{Y} \alpha\right)(X, Z) \text {, }
$$

where $\nabla_{X} \alpha$ is defined by

$$
\left(\nabla_{X}^{\alpha}\right)(Y, Z)=\nabla_{X}^{\perp} \alpha(Y, Z)-\alpha\left(\nabla_{X}^{Y}, Z\right)-\alpha\left(Y, \nabla_{X}^{Z}\right)
$$

\bar{F} or a normal vector field ξ the tangential component of $\tilde{R}(X, Y) \xi$ is given by

$$
\tan \tilde{R}(X, Y) \xi=\left(\nabla_{Y} A\right)_{\xi}(X)-\left(\nabla_{X} A\right)_{\xi}(Y) \text {. }
$$

where $\nabla_{X} A$ is defined by

$$
\left(\nabla_{X} A\right)_{\xi}(Y)=\nabla_{X}\left(A_{\xi} Y\right)-A_{\xi}\left(\nabla_{X} Y\right)-\left(A_{\nabla_{X}^{2}}\right)(Y) .
$$

The normal component is given by
$\operatorname{nor} \tilde{K}(X, Y) \xi=\alpha\left(A_{\xi} X, Y\right)-\alpha\left(X, A_{\xi} Y\right)+R^{2}(X, Y) \xi$,
where R^{\perp} is the curvature tensor of the normal connection.
In the case where ($\tilde{M}, \tilde{\nabla}$) is projectively flat (with symmetric Ricci
tensor, see [6]), we have

$$
\tilde{R}(X, Y) Z=\tilde{\gamma}(Y, Z) X-\tilde{\gamma}(X, Z) Y,
$$

where $\tilde{\gamma}$ is the normalized Riccitensor for ($\tilde{M}, \tilde{\nabla}$):

$$
\tilde{\gamma}(X, Y)=\operatorname{Ric}(X, Y) /(\tilde{n}-1) .
$$

In this case, all the formulas above become simpler. Thus we have-
(4) $R(X, Y)=\tilde{\gamma}(Y, Z) X-\tilde{\gamma}(X, Z) Y+A_{\alpha(Y, Z)} X-A_{\alpha(X, Z)^{Y}}$

- equation of Gauss-
(5) $\left(\nabla_{X} \alpha\right)(Y, Z)=\left(\nabla_{Y} \alpha\right)(X, Z)$
- equation of Codazzi for α -
(6) $\left(\nabla_{X} A\right)_{\xi} Y+\tilde{\gamma}(Y, \xi) X=\left(\nabla_{Y} A\right)_{\xi} X+\tilde{\gamma}(X, \xi) Y$
- equation of Codazzifor A-
(7) $R^{2}(X, Y) \xi_{\xi}=\alpha\left(X, A_{\xi} Y\right)-\alpha\left(A_{\xi} X, Y\right)$
- equation of Ricci-

When the ambiant affine connection $\tilde{\nabla}$ is flat, equations (4) an (6) get
further simplified:
(4a) $R(X, Y)=A_{\alpha(Y, Z)} X \cdot A_{\alpha(X, Z)}{ }^{Y}$
(6a) $\quad\left(\nabla_{X} A\right)_{\xi}{ }^{Y}=\left(\nabla_{\gamma} A\right)_{\xi} X$.
If $\alpha=0$ at a point x, we say that f is totally geodesic at x. If $\alpha=0$ at every point $x \in M$, we say that f is totally aeodesic.

An affine immersion $f:(M, \nabla) \rightarrow(\tilde{M}, \tilde{\nabla})$ is said to be umbilical at $x \in M$ if there is a 1 -form ρ on N_{x} such that
(8) $A_{\xi}=\rho(\xi)$ I for every $\xi \in N_{x}$.
where I denotes the identity transformation. If f is umbilical at every point, we say that f is umbilical. If f is umbilical and the ambiant connection $\tilde{\nabla}$ is projectively flat, then the normal connection is flat (i.e. $\mathrm{R}^{+}=0$) as follows from (7).

We now discuss a few examples.
Example 1. Let (M, g) and (\widetilde{M}, \tilde{g}) be Riemannian or pseudo-Riemannian manifolds with Levi-Civita connections ∇ and $\tilde{\nabla}$, respectively. An isometric immersion $f:(M, g) \rightarrow(\tilde{M}, \tilde{g})$ gives rise to an affine immersion $(M, \nabla) \rightarrow$ ($\widetilde{M}, \tilde{\nabla}$). Here, of course, there is a natural choice of normal space N_{x} as the orthogonal component of $T_{x}(M)$ relative to \tilde{g}.

Examole 2. Curves in affine space \mathbf{R}^{3} are studied in [1], Chapter 3. Also see [5] for surfaces in \mathbf{R}^{4}.

Example 3. Graph immersion. Let $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{p}$ be a differentiable function and consider the graph immersion $f: M=\mathbb{R}^{n} \rightarrow \tilde{M}=R^{n+p}$ given by

$$
\begin{equation*}
f(x)=(x, F(x)) \in \mathbb{R}^{n} \times \mathbb{R}^{p}=\mathbb{R}^{n+p}, \quad x \in \mathbb{R}^{n} . \tag{9}
\end{equation*}
$$

For each $x \in M$, let N_{x} be the subspace of $T_{x}\left(\mathbb{R}^{n+p}\right)$ that is parallel to the affine p-space R^{p} of \mathbb{R}^{n+p}. We get on affine immersion $f:(M, \nabla) \rightarrow(\tilde{M}, \tilde{\nabla})$,
both spaces $M=\mathbb{R}^{\boldsymbol{n}}$ and $\hat{M}=\mathbb{R}^{\boldsymbol{n +}} \boldsymbol{p}$ with the usual flat affine connections. As in Example 3 in [7], the second fundamental form α is given essentially as the Hessian of the function F with values in \mathbb{R}^{p} identified with each N_{x}. We have also $A=0$. Thus f is umbilical but not totally geodesic.

Example 4. Centro-affine immersion. Supppose M is an n-dimensional submanifold immersed in $\bar{M}=R^{n+p}$. Assume that there exists an affine ($p-1$)-subspace $V=R^{p-1}$ in \mathbb{R}^{n+p} such that for each point X of M the affine p-subspace spanned by x and V is transversal to M. Choosing N_{x} to be the tangent space at \times of this transversal affine p-space, we write equation (2) and define an affine connection ∇ on M. The resulting affine immersion f : $(M, \nabla) \rightarrow \mathbb{R}^{n+p}$ is a generalization of centro-affine nypersurface in [7]. We show that f is umbilical and that ∇ is projectively flat. To see this, let $x_{0} \in$ M and let $\xi_{0}=\lambda_{0} x_{0}+U_{0}$ be a normal vector at x_{0}, where x_{0} is also considered as a position vector for the point x_{0} froma fixed point of R^{n+p}. To compute A_{ξ} we extend ξ_{0} to a normal vector field $\xi=\lambda_{0} x+U_{0}$ and find $\hat{\nabla}_{X} \xi=\lambda_{0} \times$. Thus $A_{\xi}=-\lambda_{0}$. This shows that f is umbilical. Next we consider another submanifold transversal to the family of normal affine p-spaces to M. It is given by a mapping of the form (10) $\quad x \in M \mapsto \varphi(x)=\lambda x+F(x)$, where $\lambda: M \rightarrow \mathbb{R}^{+}$and $F: M \rightarrow \mathbb{R}^{D-1}$. The connection induced by 9 on M is

$$
\nabla_{X} X^{Y}=\nabla_{X} Y+\mu(X) Y+\mu(Y) X, \text { where } \mu=d(\log \lambda) .
$$

Bytaking an affine n-space as $\varphi(M)$, we can get ∇° to be a flat affine connection. This means that ∇ is projectively flat.
2. Umbilical immersions and reduction of codimension

First we prove the following result on umbilical immersions.
Iheorem 2. Let $f:\left(M^{n}, \nabla\right) \rightarrow\left(\mathbf{R}^{n+p}, \tilde{\nabla}\right)$ be an umbilical affine immersion. where n. 2. Then it is affinely equivalent to a araphimmersion or a centro-affine submanifold immersion.

Proof, Let ρ be the 1 -form on the normal bundle such that $A_{\xi}=\rho(\xi)$ l. From Codazzi's equation (6a) and from $\left(\nabla_{X} A\right) \xi^{=}\left(\nabla_{X} \rho\right)(\xi) 1$, we get $\left(\nabla_{X \rho}\right)(\xi) Y=\left(\nabla_{Y} \rho\right)(\xi) X$ for any two vectors X and Y. Thus $\nabla_{X} p=0$ for any X. Thus Ker $\rho_{x}=\left\{\xi \in N_{x} ; \rho(\xi)=0\right\}$ has constant dimension. Now we show that the distribution $x \in M^{n} \rightarrow \operatorname{Ker} P_{x} \subset T_{x}\left(R^{n+p}\right)$ along the immersion f is parallel in R^{n+D}. This is obvious, however, because if ξ_{t} is parallel along a curve x_{t} in M^{n} relative to the normal connection, then $p\left(\xi_{t}\right)$ is constant since $\nabla p=0$.
i) Case where $\rho \neq 0$. Take a normal vector field $\xi \in \mathbb{K} e r \rho$, and consider the mapping $x \in M^{n} \rightarrow y=x+\xi / \rho(\xi) \in \mathbb{R}^{n+p}$. Then for any tangent vector X we get

$$
\begin{aligned}
\tilde{\nabla}_{X} y & =X+[-X(\rho(\xi)) \xi] / \rho(\xi)^{2}+\left(-\rho(\xi) X+\nabla_{X}^{\perp} \xi\right) / \rho(\xi) \\
& =-\left[X(\rho(\xi)) / \rho(\xi)^{2}\right] \xi+\left(\nabla^{\perp} x^{\xi} \xi\right) / \rho(\xi)
\end{aligned}
$$

and

$$
\rho\left(\tilde{\nabla}_{x} y\right)=0
$$

so that $\tilde{\nabla}_{X}(y) \in \operatorname{Ker} p$. This means that all points y lie in the ($p-1$)-dimensional affine subspace, say V, through one point Y_{0} and paraliel to the parallel distribution Ker p. It now follows that for each $x \in M^{n}$ the
normal space N_{x} cotncides with the tangent space at x to the p-dimensional affine subspace generated by X and V. We conclude that M^{n} is a centro-affine submanifold immersed in \mathbf{R}^{n+p}.

Finally, consider the case where $\rho=0$, thus $A=0$. For any normal vector field ξ, we see that $\tilde{\nabla}_{X} \xi=\nabla^{\perp}{ }_{X} \xi$ belongs to N_{x}. This means that the normal spaces $N_{x} \subset T_{x}\left(R^{n+D}\right)$ are parallel in R^{n+D}. Since M^{n} is transversal to this family of parallel p-dimensional affine subspaces N, it is a graph.

We now prove two results concerning reduction of codimension for affine immersions.

The first is a variation of Erbacher's result in Riemannian geometry [3].
Proposition 3. Let $f:\left(M^{n}, \nabla\right) \rightarrow\left(\boldsymbol{R}^{n+p}, \widetilde{\nabla}\right)$ be an affine immersion. Suppose $\cdot N_{1}$ is a subbundle of the normal bundle N such that
i) $N_{1}(x)$ contains the range of α_{x} for every $x \in M^{n}$;
ii) N_{1} is parallel relative to the normal connection.

Then $f\left(M^{n}\right)$ is contained in a certain ($n+q$)-dimensional affine subspace of R^{n+D}, where $q=\operatorname{dim} N_{1}(x)$.

Proof. We can easily check that the distribution $x \rightarrow \Delta(x)=T_{x}(M)+$ $N_{1}(x)$ along the mapping f is parallel in \mathbf{R}^{n+p}. Thus we have a parallet distribution Δ of dimenison $n+q$ on \mathbb{R}^{n+p}. If x_{t} is a geodesic in $\left(M^{n}, \nabla\right)$, we see that $f\left(x_{t}\right)$ lies in the affine $(n+q)$-space R^{n+q} through $x_{0} \in M^{n}$ and tangent to Δ. It follows that $f\left(M^{n}\right) \subset \mathbb{R}^{n+q}$.

The next result is known in the Riemannian case (for example, [10],

Lemma 28, p. 362; see [2] for its further generalization).
Proposition 4. Let f: $\left(M^{n}, \nabla\right) \rightarrow\left(R^{n+p}, \tilde{\nabla}\right)$ be an affine immersion. Suppose there exists a nonzere normal vector field ξ and a bilinear symmetric function h on M^{n} such that $\alpha(X, Y)=h(X, Y) \xi$ for all tangent vectors X and Y. Assume furthermore that rank $h \geq 2$ at every point. Then $f\left(M^{n}\right)$ is contained in an $(n+1)$-dimensional affine space R^{n+1} of R^{n+p}.

Proof. Let $\left\{X_{1}, \ldots, X_{r}, X_{r+1}, \ldots, X_{n}\right\}$ be a basis in $T_{x}\left(M^{n}\right)$ such that $\left\{X_{r+1}, \ldots, x_{n}\right\}$ is a basis of $\operatorname{Ker} h_{x}$ and $h\left(X_{i}, X_{j}\right)= \pm \delta_{i j}$ for $1 \leq i, j \leq r$, where by assumption $r_{2} 2$. For any $X=X_{i}, 1 \leq i s n$, there is $Y \neq X$ among X_{1}, \ldots, X_{r} so that $h(X, Y)=0$ and $h(Y, Y) \neq 0$. Now from Codazzi's equation (5) we get

$$
\left(\nabla_{X} h\right)(Y, Z) \xi+h(Y, Z) \nabla_{X}^{\perp} \xi=\left(\nabla_{Y} h\right)(X, Z) \xi+h(X, Z) \nabla^{1}{ }_{Y} \xi .
$$

Set $Z=Y$ and consider this equation modulo span \{\}\}. We obtain $h(Y, Y) \nabla^{2} X^{\xi}=0 \bmod \operatorname{span}\{\xi\}$ and hence $\nabla^{\perp} X^{\xi} \in \operatorname{span}\{\xi\}$. This being true for every $X_{i}, 1$ si $s n$, and thus for every $X \in T_{x}\left(M^{n}\right)$, it follows that $N_{1}=\operatorname{span}\{\xi\}$ is parallel relative to the normal connection. We may now apply Proposition 3 to N_{1}.

0
Suppose an affine immersion $f:\left(M^{n}, \nabla\right) \rightarrow\left(R^{n+p}, \tilde{\nabla}\right)$ has the second osculating dimension $n+1$. Then around each point we may choose a normal vector field ξ such that $\alpha(X, Y)=h(X, Y) \xi$. The rank of h is independent of the choice of such ξ, and we define it as the rank of α.

Corollary. Suppose that the second osculating dimension of an affine immersion $f:\left(M^{n}, \nabla\right) \rightarrow\left(\mathbb{R}^{n+p}, \tilde{\nabla}\right)$ is $n+1$ and that the rank of α is 22 at evervpoint. Then $f\left(M^{n}\right)$ is containedin an ($n+1$)-dimensional affine subspace \mathbf{R}^{n+1} of \mathbf{R}^{n+p}.
3. Cubic form

For an affine immersion $f:(M, \nabla) \rightarrow(\widetilde{M}, \widetilde{\nabla})$, where $\tilde{\nabla}$ is projectively flat, we define the cubic form to be
(11) $\nabla \alpha: T(M) \times T(M) \times T(M) \rightarrow N$ that is,
(118) $(\nabla \alpha)(X, Y, Z)=\left(\nabla_{X} \alpha\right)(Y, Z)$.

By (5), $\nabla \alpha$ is symmetric in X, Y, and Z.
We explain briefly our motivation and goal. For an isometric immersion of a Riemannian manifold M into a Riemannian manifold \bar{M} of constant curvature, the condition that $\nabla \alpha=0$ has a significant geometric meaning [4]. For the geometry of affine immersions, we might first consider the weaker condition that $\nabla \alpha$ is divisible by α. (Actually, this is a projective notion as we we shall further study in a subsequent paper.) In the present paper we deal with the case where the osculating dimension for $f:\left(M^{n}, \nabla\right) \rightarrow\left(R^{n+p}, \tilde{\nabla}\right)$ is $n+1$. In this case, it turns out that the condition $\alpha \mid \nabla \alpha$ depends only on the image $f\left(M^{n}\right)$ and not on the connection ∇ (induced from $\widetilde{\nabla}$ by choosing a normal vector field ξ along $f\left(M^{n}\right)$). Furthermore this condition characterizes a quadric when the rank of α is 22 . Now the detail follows.

We say that $\nabla \alpha$ is divisible by α (denoted by $\alpha \mid \nabla \alpha)$ if there is a 1 -form p on M such that

$$
\begin{equation*}
\alpha(X, Y, Z)=p(X) \alpha(Y, Z)+p(Y) \alpha(Z, X)+p(Z) \alpha(X, Y) \tag{12}
\end{equation*}
$$

for all tangent vectors X, Y and Z; or equivalently
(128) $\alpha(x, x, x)=3 \rho(x) \alpha(x, x)$
for all tangent vectors x.
When the codimension p is 1 , choose a normal vector field ξ and write $\alpha(Y, Z)=h(Y, Z) \xi$. We have

$$
\begin{aligned}
\left(\nabla_{X} \alpha\right)(Y, Z) & =\left(\nabla_{X} h\right)(Y, Z) \xi+h(Y, Z)\left(\nabla_{X}^{2} \xi\right) \\
& =\left[\left(\nabla_{X} h\right)(Y, Z)+\tau(X) h(Y, Z)\right] \xi=C(X, Y, Z) \xi,
\end{aligned}
$$

where t is the transversal (normal) connection form and C is the cubic form as already defined in [7]. Thus $\alpha \mid \nabla \alpha$ if and only if (13) $C(X, Y, Z)=\rho(X) h(Y, Z)+\rho(Y) h(Z, X)+\rho(Z) h(X, Y)$ for all tangent vectors X, Y and Z. We may write (13) as $h \mid C$. In the special case where ξ is equiaffine so that f is an affine immersion in the sense of relative geometry (i.e. $\tau=0$), (13) may be expressed by writing $h \mid \nabla h$.

We prove
Lemma 1. Let $f:\left(M^{n}, \nabla\right) \rightarrow\left(R^{n+1}, \widetilde{\nabla}\right)$ be an affine immersion with a normal vecter fleld ξ. If we change ξ to
(14) $\xi=(\xi+U) / \lambda$
where U is a vector field on M^{n} and $\lambda: M^{n} \rightarrow R-\{0\}$, then writing

$$
\tilde{\nabla}_{X} f_{*}(Y)=f_{*}\left(\widehat{\nabla} X_{X} Y\right)+\hat{h}(X, Y) \xi
$$

We have an affine immersion $f:\left(M^{n}, \hat{\nabla}\right) \rightarrow\left(R^{n+1}, \tilde{\nabla}\right)$ and
(15) $\quad \hat{\nabla}_{X} Y=\nabla_{X} Y-h(X, Y) U$
(16) $\hat{\hbar}=\lambda h$
(17) $\hat{\tau}=\tau+\eta-d(\log \lambda)$
(18) $\hat{C}(X, Y, Z) / \lambda=C(X, Y ; Z)+\eta(X) h(Y, Z)+\eta(Y) h(Z, X)+\eta(Z) h(X, Y)$,
where η is the 1 -form such that $\eta(X)=h(X, U)$ for all X.
Proof. The verification is straightforward if we note

$$
\begin{aligned}
& \left(\hat{\nabla}_{X} \hat{\kappa}\right)(Y, Z)=X \hat{h}(Y, Z)-\hat{\hbar}\left(\hat{\nabla}_{X} Y, Z\right)-\hat{\hbar}\left(Y, \hat{\nabla}_{X}, Z\right) \\
& \tilde{\nabla}_{X} \xi=-f_{*}(5 X)+\hat{\tau}(X) \xi
\end{aligned}
$$

and

$$
\hat{C}(X, Y, Z)=\left(\hat{\nabla}_{X} \hat{\hbar}\right)+\hat{\tau}(X) \hat{f}(Y, Z) .
$$

Now observe that if $f: M^{n} \rightarrow \mathbb{R}^{n+1}$ is an immersion which admits a transversal vector field ξ, then we may induce an affine connection ∇ in such a way that $f:\left(M^{n}, \nabla\right) \rightarrow\left(R^{n+1}, \widetilde{\nabla}\right)$ is an affine immersion. As a consequence of Lemma 1 we have

Proposition 5. If an immersion $f: M^{n} \rightarrow \mathbb{R}^{n+1}$ has the property that $h \mid C$ for some choice of normal vector field ξ, then it has the same property for any choice of normal vector field. Also the rank of h does not depend on the choice of ξ.

In particular, the property that h is nondegenerate does not depend on the choice of ξ; we say that f is nondegenerate if h is.

In the case where the second fundamental form h of an affine immersion $f:$ $\left(M^{n}, \nabla\right) \rightarrow\left(\mathbb{R}^{n+1}, \tilde{\nabla}\right)$ is indefinite, we can give the following geometric interpretation of the condition $h \mid C$.

Proposition 6. If h is indefinite, the following statements are equivalent:

1) $h \mid C$;
2) a geodesic in (M^{n}, ∇) whose initial tangent vector is null is a null curve (relative to h);
3) all geodesics in (M^{n}, ∇) with null initial tangent vectors are geodesics in R^{n+1}.

Proof.

1) $\rightarrow 2)$: Assume $C(x, x, x)=3 \rho(X) h(X, X)$ for all $X \in T M$, where p is a certain l-form. Then

$$
\left(\nabla_{x^{h}}\right)(x, x)=(3 \rho-\tau)(x) h(x, x)
$$

Suppose x_{t} is a geodesic in $\left(M^{n}, \nabla\right)$ such that $h\left(\vec{x}_{0}, \vec{x}_{0}\right)=0$. The above equation implies $(d / d t) h\left(\vec{x}_{t}, \vec{x}_{t}\right)=(3 p-r)\left(\vec{x}_{t}\right) h\left(\vec{x}_{t}, \vec{x}_{t}\right)$. Thus the function $\varphi(t)=h\left(\vec{x}_{t}, \vec{x}_{t}\right)$ satisfies the differential equation
$d \varphi / d t=\varphi(t) \varphi(t)$, where $\varphi(t)=(3 p-\tau)\left(\vec{x}_{t}\right)$.
We know that a solution $\varphi(t)$ of this equation with $\varphi(0)=0$ must be identically 0 . Thus x_{t} is a null curve.
2) $\rightarrow 3$): This is obvious from $\tilde{\nabla}_{t} \vec{x}_{t}=\nabla_{t} \vec{x}_{t}+h\left(\vec{x}_{t}, \vec{x}_{t}\right)$.
3) $\rightarrow 1$): Let $X \in T_{X}(M)$ be null, i.e. $h(X, X)=0$. If X_{t} is a geodesic in $\left(M^{n}, \nabla\right)$ with initial tangent vector X, then by assumption 3) we have

$$
0=\tilde{v}_{t} \vec{x}_{t}=\nabla_{t} \vec{x}_{t}+h\left(\vec{x}_{t}, \vec{x}_{t}\right) \xi=h\left(\vec{x}_{t}, \vec{x}_{t}\right) \xi
$$

so that $h\left(\vec{x}_{t}, \vec{x}_{t}\right)=0$. Hence
$\left(\nabla_{t} h\right)\left(\vec{x}_{t}, \vec{x}_{t}\right)=(d / d t) h\left(\vec{x}_{t}, \vec{x}_{t}\right)-2 h\left(\nabla_{t} \vec{x}_{t}, \vec{x}_{t}\right)=0$.
At $t=0$ we have
$\left(\nabla x^{h}\right)(x, x)=0$
and hence $C(x, x, x)=\left(\nabla_{X} h\right)(x, x)+r(x) h(x, x)=0$. What we have shown is that $h(x, x)=0$ for $x \in T M$ implies $C(x, x, x)=0$. It follows that $h \mid C . \square$

We now state a number of generalizations of the classical result. The proofs will be given in subsequent sections.

Theorem 7. Let $f:\left(M^{n}, \nabla\right) \rightarrow\left(\mathbb{R}^{n+1}, \widetilde{\nabla}\right)$ be an affine immersion with a normal vector field ξ for which $\tau=0$. If rank $h 22$ and $\nabla h=0$ at every point, then $f\left(M^{n}\right)$ lies in a quadric.

Remark 1. More precisely, $f\left(M^{n}\right)$ lies in a cylinder $Q^{r} \times R^{n-r}$, where Q^{r} is a nondegenerate quadric in an affine subspace \mathbb{R}^{r+1} and \mathbb{R}^{n-r} is an affine subspace transversal to \mathbb{R}^{r+1}.

Remark 2. This theorem extends the classical Pick-Berwald theorem (see [1] as well as the result in relative geometry (see [8]), which are for nondegenerate hypersurfaces. See also [9].

The formulations of the following. Theorems 8 and 10 are based on the observations in Proposition 5.

Ineorem 8. Let $f: M^{n} \rightarrow \mathbb{R}^{n+1}$ pe a nondegenerate immersion. Then $f\left(M^{n}\right)$ lies in a quadric if and only if $h \mid C$.

We examine the following question: given (M^{n}, ∇); under what conditions can we find an affine immersion $f:\left(M^{n}, \nabla\right) \rightarrow\left(R^{n+1}, \widetilde{\nabla}\right)$ such that $f\left(M^{n}\right)$ lies in a nondegenerate quadric in \mathbf{R}^{n+1} ?

We proceed as follows. If there is an affine immersion $f:\left(M^{n} ; \nabla\right) \rightarrow$ ($\mathbf{R}^{n+1}, \widetilde{\nabla}$) such that $f\left(M^{n}\right)$ lies in a nondegenerate quadric Q^{n} in \mathbb{R}^{n+1}, then we can choose a normal vector field ξ^{0} and obtain the second fundamental form n^{0} and the induced affine connection ∇^{0} on M^{n} from
such that h^{0} is a pseudo-Riemannian metric and ∇^{0} is the Levi-Civita connection of h^{0}. We may write, as in Lemma $1, \xi=\left(\xi^{0}+U\right) / \lambda$, where U is a certain vector field on M^{n} and λ a nonzero function. We find

$$
\begin{equation*}
\nabla_{X} Y=\nabla^{0} X^{Y}-h^{0}(X, Y) U . \tag{19}
\end{equation*}
$$

In the case where Q^{n} is not locally convex, h^{0} is indefinite. A geometric interpretation of (19) is the following. A null geodesic of ∇^{0} is a geodesic of ∇. Conversely, an affine connection ∇ with this property relative to $\left(h^{0}, \nabla^{0}\right)$ must be of the form (19) for a certain vector field U.

In order to prove this, let K be the difference tensor: $K(X, Y)=\nabla_{X} Y$ $\nabla^{0} X^{Y}$. Take any $X \in T_{X}(M)$ with $h^{0}(X, X)=0$. If X_{t} is a geodesic for ∇^{0} with inital tangent vector X, then it is a null geodesic and, by assumption, it is a geodesic for ∇. Thus $\nabla_{t} \vec{x}_{t}=0$, which implies $K\left(\vec{x}_{t}, \vec{x}_{t}\right)=0$, in particular, $K(x, x)=0$. We have shown that $K(x, x)=0$ whenever $h^{0}(x, x)=0$. By taking a basis $\left\{X_{1}, \ldots, X_{n}\right\}$ in $T_{X}\left(M^{n}\right)$, write $K(X, Y)=\sum_{i=1}^{n} K^{i}(X, X) X_{i}$. Since
$h^{0}(X, X)=0$ implies $K^{i}(X, X)=0$, we have $K^{i}(X, Y)=a^{1} h^{0}(X, Y)$, is i $s n$. Then $K(X, Y)=\left(\Sigma^{n}{ }_{i=1} a^{i} X_{i}\right) h^{0}(X, Y)$. Thus we have (19) with $Z=-\Sigma^{n}{ }_{i=1} a^{i} X_{i}$.

We can now state
Proposition 9. A differentiable manifold with an affine connection $\left(M^{n}, \nabla^{n}\right)$ admits an affine immersion into a (not locally convex) nondegenerate quadric 0^{n} in \mathbf{R}^{n+1} if and only if M^{n} admits a oseudo-Riemannian_(not Dositive-definite) metric of constant sectional curvature whose null geodesics are geodesics of ∇.

Theorem 10. Let $f: M^{n} \rightarrow R^{n+1}$ bean immersion with rank $h \geq 2$ everywhere. Then $f\left(M^{n}\right)$ lies in a quadric if and oniy if $h \mid C$.

Remark 3. If $h \mid C$ and if the affine connection ∇ induced by f relative to some choice of a transversal vector field is complete, then $f\left(M^{n}\right)$ is a cylinder as in Remark 1 above. Even for the standard $S^{2} \subset \mathbf{R}^{3}, \nabla$ is incomplete for most choices of ξ.

Theorem 11. Let $\mathrm{f}:\left(M^{n}, \nabla\right) \rightarrow\left(\mathbf{R}^{n+p}, \tilde{\nabla}\right)$ De an affine immersion, $n \geq 2$. Then $f\left(M^{n}\right)$ is contained in a quadric Q^{n} of an affine subspace R^{n+1} of R^{n+p} if and only if the osculating dimension is $n+1$, rank $\alpha 22$, and $\alpha \mid \nabla \alpha$.

4. Proofs of Theorems 7 and 8

We start with a few lemmas.
Lemma 2. Let $f:\left(M^{n}, \nabla\right) \rightarrow\left(R^{n+1}, \tilde{\nabla}\right)$ be an affine immersion and assume that $\tau=0, \nabla h=0$ and rank $h 22$ everywhere. Then

1) Ker h is 8 parallel distribution on (M^{n}, ∇);
2) $x \in M^{n} \rightarrow f_{*}\left(\right.$ Ker $\left.h_{x}\right)$ is adistribution along f which is parallel in $R^{n+1} ;$
3) There is a constant p such that $5 X=p X$ mod Ker h for every $X \in T M$. Proof. 1) Let Y_{t} and Z_{t} be parallel vector fields along a curve x_{t} in M^{n}.

Then $\nabla \mathrm{h}=0$ implies that

$$
d h(Y, Z) / d t=h\left(\nabla_{t} Y, Z\right)+h\left(Y, \nabla_{t} Z\right)=0
$$

Thus $h\left(Y_{t}, Z_{t}\right)$ is constant. If $Y_{0} \in$ ker h at x_{0}, then it follows that $Y_{t} \in \operatorname{Ker} h$ along the curve x_{t}. This shows that dim Ker h is constant and the distribution $x \rightarrow \operatorname{Ker} h_{x}$ is parallel on M^{n}.
2) Let Y_{t} be a parallel vector field belonging to Ker h along a curve x_{t}. Then

$$
\tilde{\nabla}_{t} f_{*}\left(Y_{t}\right)=f_{*}\left(\nabla_{t} Y_{t}\right)+h\left(\vec{x}_{t}, Y_{t}\right)=0,
$$

which shows that $f_{*}\left(Y_{t}\right)$ is parallel in \mathbb{R}^{n+1}. This proves that $x \rightarrow f_{*}\left(\operatorname{Ker} h_{x}\right)$ $C T_{f(x)}\left(\mathbb{R}^{n+1}\right)$ is parallel in \mathbb{R}^{n+1}.
3) From $\nabla h=0$ we get $h(R(X, Y) Y, Y)=0$ for sll $X, Y \in T_{X}\left(M^{n}\right)$. Using the equation of Gauss: $R(X, Y) Y=h(Y, Y) S X-h(X, Y) S Y$, we get (20)

$$
h(Y, Y) h(5 X, Y)=h(X, Y) h(5 Y, Y) .
$$

In $T_{x}(M)$ choose a basis $\left\{X_{1}, \ldots, X_{r}, X_{r+1}, \ldots, X_{n}\right\}$ such that $\left\{X_{r+1}, \ldots\right.$, x_{n}) is a basis of $\operatorname{Ker} h_{x}$ and $h\left(x_{i}, x_{j}\right)= \pm \delta_{i j}$ for $1 \leq i, j \leq r$. By assumption, $r 22$.

For each $X_{j}, i \leq i \leq r$, choose $X_{j}, i \leq j \leq r, j \neq i$; we get $h\left(s X_{j}, X_{j}\right)=0$ from (20). Thus $S X_{i}=\rho_{i} X_{i}$ modKer h_{x}. We want to show that $p_{i}=\cdots=\rho_{r}$. If $i \neq j$ among $1, \ldots, r$, then $Z=X_{i}+X_{j}$ or $x_{i}+2 x_{j}$ has the property that $h(Z, Z) \neq 0$ and may be chosen as part of an orthonormal basis (after normalization) of a supplementary subspace to Ker h. Thus by what we have seen above we get

$$
s\left(x_{i}+x_{j}\right)=p\left(x_{i}+x_{j}\right) \quad \text { or } \quad s\left(x_{i}+2 x_{j}\right)=p\left(x_{i}+2 x_{j}\right)_{i}
$$

with a certain constant p. Then we get

$$
p_{i} x_{i}+p_{j} x_{j}=p X_{1}+p X_{j} \text { or } p_{j} x_{i}+2 p_{j} x_{j}=p X_{i}+2 p x_{j} .
$$

It follows that $\rho_{j}=\rho_{j}=\rho$. We have thus shown that all ρ_{j} 's are equal. Call this number p. We have shown $S X=p X$ mod Ker h for every $X=$ x_{1}, \ldots, x_{r}.

Now let $1 \leq j \leq r$ and $r+1 \leq i \leq n$. (20) implies $h\left(S X_{j}, X_{j}\right)=0$. This shows that $S X_{i} \in \operatorname{Ker} h$. So $S(K e r h) \subset K e r h$. We can write $S X=p X \bmod K e r h$ for every $X=X_{r+1}, \ldots, X_{n}$. Hence $S X=p X \bmod \operatorname{Ker} h$ for all $X \in T_{X}(M)$.

It now remains to show that p is a constant. Since $\tau=0$, we have Codazzi's equation $\left(\nabla_{X} S\right)(Y)=\left(\nabla_{Y} S\right)(X)$ (see [7]). We extend a basis $\left\{x_{1}, \ldots, x_{r}, x_{r+1}, \ldots, x_{n}\right\}$ as before to vector fields in a neighborhood with the property that they still form a basis and $\left\{x_{r+1}, \ldots, x_{n}\right\}$ form a basis of Ker h at each point. Then

$$
\begin{aligned}
\left(\nabla_{X} s\right)\left(X_{j}\right) & =\nabla_{X}\left(s X_{j}\right)-S\left(\nabla_{X} X_{j}\right)=\nabla_{X}\left(\rho X_{j}+z\right)-s\left(\nabla_{X} X_{j}\right) \\
& =\left(X_{i} \rho\right) x_{j}+p\left(\nabla_{X} X_{j}\right)+\nabla_{X} z-S\left(\nabla_{X} X_{j}\right) \\
& =\left(x_{i} \rho\right) x_{j} \bmod \operatorname{Ker} h,
\end{aligned}
$$

where $Z \in \operatorname{Ker} h$ and $\nabla_{X} Z \in \operatorname{Ker} h$, since Ker h is parallel. Thus by Codazzi's equation, we have

$$
\begin{equation*}
\left(x_{i} \rho\right) x_{j}=\left(x_{j} p\right) x_{i} \text { mod Ker } h . \tag{21}
\end{equation*}
$$

This holds for all i and j. If $1 \leq i \leq r$, then, using $r<2$, take $j-i, 1 \leq j \leq r$. Then (21) implies that $X_{j} p=0$. If $r+1 \leq i \leq n$, then take $j, i \leq j \leq r$. Then
(21) implies $X_{j} p=0$. We have thus shown that $X p=0$ for every $X \in T_{X}(M)$.

Remark. In case rank $h=1$ and $\left\{X_{1}, \ldots, X_{n}\right\}$ is abasis in $T_{x}(M)$, where $\left\{x_{2}, \ldots, x_{n}\right\}$ is a basis of Ker h, we cannot conclude $X_{1} p=0$ (there is an example showing that p is not a constant).

Lemma 3. Under the assumptions of Lemma 2 define for each $x \in M^{n}$ a blinear symmetric function g in $T_{f(x)}\left(\mathbb{R}^{n+1}\right)$ as follows:

$$
\begin{array}{ll}
g\left(f_{*} X, f_{*} Y\right)=h(X, Y) & \text { for } X, Y \in T_{x}\left(M^{n}\right) \\
g\left(f_{*} X, \xi\right)=0 & \text { for } X \in T_{x}\left(M^{n}\right) \tag{22}\\
g(\xi, \xi)=\rho . &
\end{array}
$$

Then 9 is parallel relative to the connection $\tilde{\nabla}$ in \mathbb{R}^{n+1}.
Proof. We want to show that

$$
X g(U, V)=g\left(\tilde{\nabla}_{X} U, V\right)+g\left(U, \tilde{\nabla}_{X} V\right)
$$

for all vector fields U and V along f and for all $X \in T_{x}\left(M^{n}\right)$.

1) If $U=f_{*}(Y), V=f_{*}(Z)$ for vector fields Y and Z on M^{n}, then the above identity follows from $\nabla_{X} h=0$ and $g(\xi, U)=g(\xi, V)=0$.
2) If $U=f_{*}(Y)$, and $V=\xi$, then

$$
X g(U, \xi)=0, \quad g\left(\tilde{\nabla}_{X} U, \xi\right)=g\left(f_{*}\left(\nabla_{X} Y\right)+h(X, Y) \xi, \xi\right)=h(X, Y) \rho
$$

and

$$
\begin{aligned}
g\left(U, \tilde{\nabla}_{X} \xi\right) & \left.=g\left(U,-f_{*}(S X)\right)=g\left(U,-\rho f_{*}(X)+f_{*}(Z)\right) \quad \text { (where } Z \in K e r h\right) \\
& =-\rho h(Y, X)+h(Y, Z)=-\rho h(Y, X) .
\end{aligned}
$$

So the above identity holds.
3) If $U=V=\xi$, then we have $X g(\xi, \xi)=X p=0$ as well as $g\left(\tilde{\nabla}_{X} \xi, \xi\right)=$
$\left.g\left(-f_{*}(S X)\right), \xi\right)=0$.
Remark. At each $x \in M^{n}$,

$$
\text { Ker } g=f_{*}(\operatorname{Ker} h) \text { if } \rho \neq 0 \text { and } \operatorname{Ker} g=f_{*}(\operatorname{Ker} h)+\operatorname{span}(\xi) \text { if } \rho=0 \text {. }
$$

Lemme 4. We identify $f(x), x \in M^{n}$, with the position vector and simply write it as x. Define a function on M^{n} by $g(x)=g(x, x) / 2$ and a 1 -form λ on $T_{f(x)}\left(R^{n+1}\right)$ for $x \in M^{n}$ by

$$
\begin{align*}
& \lambda\left(f_{*} X\right)=g(X, x) \text { for } \quad X \in T_{x}\left(M^{n}\right) \tag{23}\\
& \lambda(\xi)=g(x, x)+1 .
\end{align*}
$$

Thend is paraliel relative to $\tilde{\nabla}$ in \mathbb{R}^{n+1}.
Proof. We have

$$
\begin{aligned}
& \left(\tilde{\nabla}_{X^{\lambda}}\right)\left(f_{*} Y\right) \\
& =X\left(\lambda\left(f_{*} Y\right)\right)-\lambda\left(\tilde{\nabla}_{X} f_{*} Y\right)=X g\left(f_{*}(Y), X\right)-\lambda\left(f_{*}\left(\nabla_{X} Y\right)+h(X, Y) \xi\right) \\
& =g\left(\tilde{\nabla}_{X} f_{*} Y, X\right)+g\left(f_{*} Y, f_{*} X\right)-g\left(f_{*} \nabla Y Y, X\right)-h(X, Y)(g(\xi, X)+1)=0
\end{aligned}
$$

and

$$
\begin{aligned}
\left(\widetilde{\nabla}_{X}\right)(\xi) & =x(\lambda(\xi))-\lambda\left(\widetilde{\nabla}_{X} \xi\right)=x(g(\xi, x)+1)-\lambda\left(\widetilde{\nabla}_{X} \xi\right) \\
& =g\left(\widetilde{\nabla}_{X} \xi, x\right)+g(\xi, x)-\lambda\left(\widetilde{\nabla}_{X} \xi\right)=0 .
\end{aligned}
$$

Thus λ is parallel in \mathbb{R}^{n+1}.
We are now in position to prove Theorem 7.
Proof of Theorem 7. First we note that the parallell-form λ in Lemma 4 is nothing but a covector in the dual vector space \mathbb{R}_{n+1}. Thus there is an affine function φ on \mathbf{R}^{n+1} such that $d \varphi=\lambda$. Moreover we may assume that $\varphi\left(x_{0}\right)=q\left(x_{0}\right)$ for some point x_{0}. Now obviously $d \varphi=d y$ on M^{n}. Hence $\boldsymbol{q}=\boldsymbol{\psi}$ on M^{n}. This means that $f\left(M^{n}\right)$ lies in a quadric.

Remark. For any affine coordinate system in \mathbb{R}^{n+1} we may write

$$
\varphi(x)=\sum_{i, j=1} \quad a_{i j} x^{i} x^{i}, \quad \varphi(x)=2 \sum_{j=1} \quad a_{j} x^{i}+b .
$$

Suppose rank $g=r+1$. Then we may retake an affine coordinate system so that $\varphi(x)=\Sigma_{i, j=1} \quad a_{i j} x^{i} x^{j}$, where the matrix $\left[a_{i j}\right]$ is nondegenerate. We can further simplify the quadratic equation $\varphi(x)=\varphi(x)$ for $f\left(M^{n}\right)$ into

$$
\Sigma_{i=i} \varepsilon_{i}\left(x^{i}\right)^{2}= \pm 1 \text { or } x^{r+2}=\sum_{i=1} \varepsilon_{i}\left(x^{i}\right)^{2} \text {, where } \varepsilon_{j}= \pm 1
$$ by a change of affine coordinate system.

Before we prove Theorem 9 , we need two lemmas.
Lemma 5. Let $f:\left(M_{;}^{n} ; \nabla\right) \rightarrow\left(R^{n+1}, \tilde{\nabla}\right)$ be a nondegenerate affine immersion with a normal vector field ξ and second fundamental form h. Then we can change ξ to $\xi=\xi / \lambda$ for some $\lambda: M^{n} \rightarrow \mathbb{R}^{+}$so that the volume element $\hat{\omega}$ for the second fundamental form \hat{h} for $\hat{\xi}$ colncides with the volume elment ω induced by ξ from the standard volume element $\tilde{\omega}$ in \mathbb{R}^{n+1}.

Proof. Assume that the volume element ω_{h} for h is equal to $\mu \omega$, where $\mu: M^{n} \rightarrow R^{+}$. Choose $\lambda=\mu^{-n / 2}$. Then $\hat{h}=\lambda h$ implies that $\hat{\omega}=\lambda^{n / 2} \omega_{h}=$ $\mu^{-1} \omega_{n}=\omega$.

Lemma 6. Let $f:\left(M^{n}, \nabla\right) \rightarrow\left(R^{n+1}, \tilde{\nabla}\right)$ be a nondegenerate affine Immersion such that $\omega=\omega_{h}$. If the cublc form C vanishes, then $\tau=0$.

Proof. We recall from [7]

$$
C(X, Y, Z)=\left(\nabla_{X} h\right)(Y, Z)+\tau(X) h(Y, Z) \quad \text { and } \quad \nabla_{X} \omega=\tau(X) \omega
$$

If $\hat{\nabla}$ denotes the Levi-Civita connection for h and if $K_{X}=\nabla_{X}-\hat{\nabla}_{X}$, then

$$
\left(\nabla_{X} h\right)(Y, Z)=-h\left(K_{X} Y, Z\right)-h\left(Y, K_{X} Z\right),
$$

because $\hat{\nabla}_{X} h=0$. Using $C=0$, we get
(24) $\quad \tau(X) h(Y, Z)=h\left(K_{X} Y, Z\right)+h\left(Y, K_{X} Z\right)$.

Take an orthonormal basis $\left\{X_{1}, \ldots, X_{n}\right\}$ for h, where $h\left(X_{i}, X_{j}\right)=\varepsilon_{i}= \pm 1$ and $h\left(X_{i}, X_{j}\right)=0$ for $i \neq j$. Taking $Y=X_{i}, Z=\varepsilon_{j} X_{i}$ in (24) and summing over i, we get $n \tau(X)=2$ trace K_{X}.

On the other hand, applying $\nabla_{X}=\hat{\nabla}_{X}+k_{X}$ on $\omega=\omega_{h}$ we obtain

$$
\tau(X) \omega=\nabla_{X} \omega=K_{X} \omega_{h}=-\left(\operatorname{trace} K_{X}\right) \omega_{h}=-\left(\operatorname{trace} K_{X}\right) \omega,
$$

that is, $\tau(X)=$ - trace K_{X}. Comparing this with the previous relation, we conclude that trace $K_{X}=0$ and $\tau=0$.

Now we can prove Theorem 8.
Proof of Theorem 8. Choose a normal vector field ξ and consider the given immersion f as an affine immersion $\left(M^{n}, \nabla\right) \rightarrow\left(\mathbb{R}^{n+1}, \widetilde{\nabla}\right)$. By assumption, $h \mid C$, that is, we have (13). By Lemma 4 we may change ξ to another normal vector field $\hat{\xi}$ and the corresponding cubic form as in (18) in Lemma 1. Since h is nondegenerate, we can choose U so that $\eta=-p$ and achieve $\mathbb{E}=0$. Moreover, by choosing λ suitably as in Lemma 5 , we can also make $\hat{\omega}$, volume element for \hat{h}, colncide with ω. Now we can apply Lemma 6 and conclude $\hat{\tau}=0$. By Theorem 7 we conclude that $f\left(M^{n}\right)$ is a qudric.

The converse is obvious from the following well known fact. If $f\left(M^{n}\right)$ is a nondegenerate quadric in $\mathbb{R}^{\boldsymbol{n + 1}}$, then with a suitable choice of affine coordinate system $f\left(M^{n}\right)$ is expressed etther by

$$
x^{n+1}=\sum_{i, j=1} \quad a_{i j} x^{i} x^{j} \text {, where }\left[a_{i j}\right] \text { is a nonsingular matrix }
$$

or by

$$
\Sigma_{i=1} \varepsilon_{i} x_{i}^{2}=1, \text { where } \varepsilon_{i}= \pm 1
$$

In the first case, $\xi=(0, \ldots, 0,1)$ is a normal vector field (called the affine normal in the classical theory, see [7], Proposition 6) for which $\tau=0$,
$n\left(\partial / \partial x^{i}, \partial / \partial x^{j}\right)=a_{i j}$, and the induced affine connection ∇ on $M^{n}=R^{n}$ (with affine coordinates x^{1}, \ldots, x^{n}) is flat. Thus $C=\nabla h=0$. In the second case, by considering an appropriate flat pseudo-euclidean metric on \boldsymbol{R}^{n+1}, the affine normal ξ coincides with the metric normal. We have $\tau=0 ; h$ coincides with the usual second fundamental form in the metric sense and $\nabla \mathrm{h}=0$. Thus $\mathrm{C}=0$ again.

5. Proofs of Theorems 10 and 11

We now give a proof of Theorem 10. Let Ω be the set of points x in M^{n} such that Ker h has constant dimension in a neighborhood of x. Then Ω is an open subset. It is dense for the following reason. Let x_{0} be an arbitrary point in M^{n} and let U be any neighborhood of x_{0}. Let $x \in U$ be a point where dim Ker h attains the minimum on U. Then rank h_{x} is equal to the maximum of rank h on U and rank $h_{y}=$ rank h_{x} and thus dim Ker $h_{y}=\operatorname{dim} \operatorname{Ker} h_{x}$ for all points y in a neighborhood V of x. Thus $x \in \Omega$, showing that Ω is dense. For Theorem 10 it is sufficient to show that $f\left(M^{n}\right)$ is contained in a quadric around each point \times of Ω.

Let $x_{0} \in \Omega$. In a certain neighborhood of $x_{0}, x \rightarrow \operatorname{Ker} h_{x}$ defines a distribution of dimension, say, $n-r$. We show that it is totally geodesic and integrable. Let X and Y be vector fields belonging to Ker h. For any tangent vector X we have by assumption (13)

$$
X h(Y, Z)-h\left(\nabla_{X} Y, Z\right)-h\left(Y, \nabla_{X} Z\right)=p(X) h(Y, Z)+p(Y) h(Z, X)+p(Z) h(X, Y) .
$$

Since $X, Y \in K e r h$, this equation is reduced to $h\left(\nabla_{\dot{X}} Y, Z\right)=0$. Since Z is arbitrary, it follows that $\nabla_{X} Y \in \operatorname{Ker} h$. Thus $[X, Y]=\nabla_{X} Y-\nabla_{Y} X \in$ Ker h.

Now let H an $(r+1)$-dimensional affine subspace in \mathbf{R}^{n+1} through $f\left(x_{0}\right)$ and transversal to $f(L)$, where L is the leaf of the distribution Ker h through x_{0}. Then near x_{0} the foliation \mathbf{F} of \mathbf{R}^{n+1} by $(r+1)$-dimensional affine subspaces parallel to H gives rise to a foliation F of M^{n} by r-dimensional submanifolds.

Choose a convex neighborhood V of $f\left(x_{0}\right)$ such that the follations F and Ker h are defined on the component U of $f^{-1}(V)$ that contains x_{0}. Set $N=$ $f^{-1}(H) \cap U$. Then $f_{N}: N \rightarrow H$ is a nondegenerate hypersurface in H.

We choose a new normal vector field ξ for f_{N} that lies in H and translate it parallelly along each leaf in \mathbf{R}^{n+1}, thus getting a normal vector field ξ for $f: U \rightarrow \mathbb{R}^{n+1}$. For vector fields X and Y tangent to N the equation $\widetilde{\nabla}_{X} Y=$ $\nabla_{X} Y+h(X, Y) \xi$ shows that $\nabla_{X} Y$ is tangent to N, because $\widetilde{\nabla}_{X} Y$ and ξ lie on H. This means that N is totally geodesic in U (relative to the affine connection induced by f with the new normal vector field ξ). The same equation also shows that the second fundamental form h_{N} for f_{N} is simply the restriction of h for f and is nondegenerate. The affine immersion f_{N} also has the property that its cubic form C_{N} is divisible by h_{N}.

Now just as we have done to reduce the proof of Theorem 8 to Theorem 7, we take once more a new normal vector field to f_{N} such that $C=0, \tau=0$ and $\nabla h_{N}=0$ and extend it to a normal vector field ξ for f by parallel transiation in \mathbb{R}^{n+1}. Relative to this ξ, f still has the property that C is divisble by h, that is, $C(X, Y, Z)=p(X) h(Y, Z)+p(Y) h(Z, X)+\rho(Z) h(X, Y)$ for some 1 -form p. We have $p(X)=0$ for $X \in T N$.

The rest of the proof proceeds as follows. We shall show that
(i) N is umbilical in \mathbb{R}^{n+1};
(ii) $\left(\nabla_{X} \rho\right)(Z)=0$ for every $X \in T N, Z \in K e r h$.
(iii) If $\rho \neq 0$, the images $f(L)$ of all leaves L meet in a certain affine ($n-r-1$)-dimensional subspace, say K, so that $f\left(M^{n}\right)$ lies on the cone with vertexK and base $f(N) \subset H ;$
(iv) If $\rho=0$, then all $f(L)$'s are parallel in \mathbb{R}^{n+1} and $f\left(M^{n}\right)$ is a cylinder. We now prove these statements.
(i) Since N satisfies $\tau=0$ and $\nabla h_{N}=0$, we know from Lemma 2 of Section 4 that $S=A_{\xi}$ is a constant multiple of I. We show that $A_{X}=\rho(X)$ I for every $X \in K e r . h$ (note that Ker h_{X} and ξ_{X} span the transversal space for N in \mathbb{R}^{n+1}). If $Y \in T N$, then extending X to a vector field in Ker h, we see that the equation (13) reduces to $h(\rho(X) Y, Z)=-h\left(\nabla_{Y} X, Z\right)$. Since this holds for every $Z \in T N$ at every point of N, we see that $A_{X}=p(X) 1$.
(ii) From $A x=p(X) I$ on $T N$ for every $X \in K e r h$, and from Codazzi's equation for the submanifoid N in \mathbf{R}^{n+1} we get

$$
\left(\nabla_{X} \rho\right)(Z) Y=\left(\nabla_{Y} \rho\right)(Z) X \text { for } X, Y \in T N \text { and } Z \in \operatorname{Ker} h .
$$

Since $\operatorname{dim} N=$ rank h22, we may take X, Y to be linearly independent. Thus $(\nabla \times p)(Z)=0$ for every $X \in T N$ and $Z \in K e r h$.
(iii) We first show that $X \in N \rightarrow f_{*}\left(\right.$ Ker $\left.P_{X} \cap \operatorname{Ker} h_{X}\right)$ is parallel in R^{n+1} along N. Let $Z \in K e r p_{x} \cap K e r h_{x}$ be a vector field and let $X \in T N$. Then $\left(\nabla_{x} \rho\right)(Z)=0$ implies that $x \rho(Z) \cdot \rho\left(\nabla_{x} Z\right)=-\rho\left(\nabla_{x} Z\right)=0$. Then $\tilde{\nabla}_{x} Z=$ $\nabla_{x} Z \in \operatorname{Ker} \rho_{x}$. On the other hand, (13) implies
$-h\left(Y, \nabla_{X} Z\right)=\rho(Z) h(X, Y)=0$ for every $Y \in T N$
so that $\nabla_{X} Z \in \operatorname{Ker} h$. Thus $\tilde{\nabla}_{X} Z=\nabla_{X} Z \in \operatorname{Ker} h$. It follows that $\tilde{\nabla}_{X} Z \in \operatorname{Ker} p$ n Ker h. We have shown that $x \rightarrow f_{*}($ Ker $p \cap$ Ker $h)$ is parallel in R^{n+1} so that these subspaces are all parallel, say, to a subspace W.
(iii) Assume $p \neq 0$ on N. Let X be a vector field $\neq 0$ on N belonging to Ker h at every point and consider

$$
x \in N \rightarrow y=x+X / \rho(X)
$$

For every $Y \in T N$, we have by a similar computation to that in Theorem 2 that $\rho\left(\tilde{\nabla}_{X} Y\right)=0$. Also we show that

$$
\tilde{\nabla}_{Y} y=-\left[\left(\nabla^{+}{ }_{Y} x\right) / \rho(x)^{2}\right] x+\left(\nabla^{1} Y^{X}\right) / \rho(X)
$$

is in Ker h. Here, of course, $\nabla^{\perp} Y^{X}$ is the Ker h-component of $\tilde{\nabla}_{Y} X$ for the submanifold N. But $\tilde{\nabla}_{Y} X=\nabla_{Y} X$ because $h(Y, X)=0$. We know from Lemma 2 applicable to N that $\nabla_{Y} x \in \operatorname{Ker} h$. So $\tilde{\nabla}_{Y} X \in \operatorname{Ker} h$. Thus $\tilde{\nabla}_{Y} y \in \operatorname{Ker} p \pi$ Ker h .

Let x_{0} be the point we started with and let $y_{0}=x_{0}+X / p(X)$ for any nonzero vector field X on N in Ker h. Then all points $y=x+X / p(x)$ lie in the affine subspace through y_{0} and parallel to W. If X is replaced by any vector field Y in Ker h, this affine subspace does not change because $X / \rho(X)-Y / \rho(Y) \in \operatorname{Ker} \rho \cap \operatorname{Ker} h$.
(iv) Suppose $p=0$ on N. Then $x \in N \rightarrow f_{*}\left(\right.$ Ker $\left.h_{x}\right)$ is parallel in R^{n+1}, because if X is a vector field belonging to $\operatorname{Ker} h$ on N and $Y \in T N$, then $\widetilde{\nabla}_{Y} X=$ $\nabla_{Y} X$ Ker h as in Lemma 2 again. Thus there is an ($n-r$)-dimensional affine subspace to which all $f(L)$'s are parallel. Thus $f\left(M^{n}\right)$ is contained in the cylinder $f(N) \times W \subset \mathbb{R}^{n+1}$. We have completed the proof of Theorem 10.

Finally, Theorem 11 follows Proposition 4, its corollary and Theorem 10.

References

[1] Blaschke,W., Differentjalgeometrie, Band II, Springer, Berlin, 1923
[2] Dajczer, M. and Rodriguez, L., Substantial codimension of submanifolds: global results, IMPA preprint 1986
[3] Erbacher, J., Reduction of the codimension of an isometric immersion, J. Differential Geometry 5(1971), 338-340
[4] Ferus, D., Symmetric submanifolds of Euclidean space, Math. Ann. 247(1980), 81-93
[5] Klingenberg, W., Uber das Einspannungsproblem in der projektiven and affinen Differentialgeometrie, Math. Z. 55(1952), 321-345
[6] Nomizu, K. and Pinkall, U., On a certain class of homogeneous projectively flat manifolds, SFB/MPI Preprint 85/44; to appear in Tohoku Math J.
[7] Nomizu, K. and Pinkall, U., On the geometry of affine immersions, MPI Preprint 86-28
[8] Simon, U., Zur Relativgeometrie: Symmetrische Zusammenhánge auf Hyperfląchen, Math. Z. 106(1968), 36-46
[9] Simon, U., Zur Entwickelung der affinen Differentialgeometrie nach Blaschke, Gesammelte Werke Blaschke, Band 4, Thales Verlag, Essen, 1985
[10] Spivak, M. A Comprehensive Introduction to Differential Geoemtry, Vol. 5, Publish or Perish Inc. 1975

[^0]: 1 Supported in part by an NSF grant. This work was done while he was visfting Max-Planck-Institut for Mathematik, Bonn.

