Cubic Form Theorem for Affine Immersions

by

Katsumi Nomizu and Ulrich Pinkall

Current Address:

Katsumi Nomizu Department of Mathematics Brown University Providence, RI 02912 U S A Ulrich Pinkall Max-Planck-Institut für Mathematik Gottfried-Claren-Straße 26 5300 Bonn 3 FRG 1

:

•

TU Berlin Fachbereich Mathematik Straße des 17. Juni 135 1000 Berlin 12

Cubic Form Theorem for Affine Immersions

by Katsumi Nomizu¹ and Ulrich Pinkall

An important theorem, due to Pick and Berwald, in classical affine differential geometry states that if a nondegenerate hypersurface M^n in the affine space \mathbb{R}^{n+1} has vanishing cubic form, then it is a quadric. The main purpose of this paper is to prove a number of generalizations of this result to the case of more general affine immersions in the sense of our previous paper [7] including degenerate hypersurfaces.

In Section 1 we extend the notion of affine immersion in [7] to higher codimension and discuss basic formulas and examples. In Section 2 we prove some results on umbilical immersions and reduction of codimension. In Section 3 we discuss the condition that the cubic form is divisible by the second fundamental form and state a number of generalizations of the classical theorem of Pick and Berwald. The proofs of these results are given in Sections 4 and 5.

¹ Supported in part by an NSF grant. This work was done while he was visiting Max-Planck-Institut für Mathematik, Bonn.

1

1. Affine immersions for higher codimension

In this section we extend the notion of affine immersion in [7] to the case of higher codimension. Let (M, ∇) and $(\widetilde{M}, \widetilde{\nabla})$ be differentiable manifolds with torsion-free affine connections of dimension n and $\widetilde{n} = n + p$, respectively.

An immersion $f: M \to \widetilde{M}$ is called an affine immersion if around each point of M there is a field of transversal subspaces $x \to N_x$:

(1)
$$T_{f(x)} = f_{*}(T_{x}(M)) + N_{x}$$

such that for vector fields X and Y on M, we have a decomposition

(2)
$$\widetilde{\nabla}_{X} f_{*}(Y) = f_{*}(\nabla_{X} Y) + \alpha(X, Y)$$

where $\alpha(X,Y) \in N_x$ at each point x.

In the following we shall call N_{χ} the <u>normal space</u> (rather than the transversal space) with the understanding that the choice in general is not unique. We have the normal bundle N with $x \rightarrow N_{\chi}$. We call α the <u>second</u> <u>fundamental form</u>. Corresponding to Proposition 1 in [7] we have the following

<u>Proposition 1.</u> Let $f: (M, \nabla) \rightarrow (\widetilde{M}, \widetilde{\nabla})$ be an affine immersion and $x \in M$. <u>Then a normal space</u> N_X with the property that it is spanned by all $\alpha(X,Y)$, <u>where</u> $X,Y \in T_X(M)$, is uniquely determined.

Proof. Let N_X^1 be another such normal space at x and α^1 the corresponding second fundamental form defined by the equation (2) using N^1 . Write $\alpha(X,Y) = \tau(X,Y) + \beta(X,Y)$, where $\tau(X,Y) \in T_X(M)$ and $\beta(X,Y) \in N^1$. Then it follows that $\tau(X,Y) = 0$ and $\alpha(X,Y) = \beta(X,Y) = \alpha^1(X,Y)$. Since N_X (resp. N_X^1) is spanned by all $\alpha(X,Y)$ (resp. $\alpha^1(X,Y)$), we conclude that

$$N_{x} = N_{x}^{1}$$

In general, for each point $x \in M$ the subspace of $T_X(\widetilde{M})$ spanned by $f_*(T_X(M))$ and all $\alpha(X,Y), X,Y \in T_X(M)$, is called the <u>second osculating</u> <u>space</u> at x. It is determined uniquely, because it is also the span of all vectors $(\widetilde{\nabla}_X f_*(Y))_X$, where X and Y are all vector fields on M. Its dimension is called the <u>second osculating dimension</u>.

If $\xi: x \mapsto \xi_X \in \mathbb{N}_X$ is a normal vector field, then we write (3) $\widetilde{\nabla}_X \xi = -f_*(A_{\xi}X) + \nabla^+_X \xi$,

where $A_{\xi}X \in T_X(M)$ and $\nabla_X^{+} \xi \in \mathbb{N}_X$ at each point. Just as in submanifold theory in Riemannian geometry, we have a bilinear mapping A, called the <u>shape tensor</u>:

 $(\xi, x) \in \mathbb{N}_{x} \times \mathbb{T}_{x}(M) \rightarrow A_{\xi} X \in \mathbb{T}_{x}(M)$

at each point x. We call A_{ξ} the <u>shape operator</u> for ξ . The mapping of the space of normal vector fields $\xi \mapsto \nabla^{\perp}_{X} \xi$ is covariant differentiation relative to the normal connection.

Just as in submanifold theory we get several basic equations relating the curvature tensors \tilde{R} for $(\tilde{M}, \tilde{\nabla})$ and R for (M, ∇) , the second fundamental form form α , the shape tensor A, etc. in the usual way. Especially, the tangential component of $\tilde{R}(X,Y)Z$ is given by

 $\tan \tilde{R}(X,Y)Z = R(X,Y)Z + A_{\alpha}(X,Z)Y - A_{\alpha}(Y,Z)X$

and the normal component by

nor $\widetilde{R}(X,Y)Z = (\nabla_X \alpha)(Y,Z) - (\nabla_Y \alpha)(X,Z)$,

where $\nabla_X \alpha$ is defined by

٠

$$(\nabla_{\chi}\alpha)(\Upsilon,Z) = \nabla^{\perp}_{\chi}\alpha(\Upsilon,Z) - \alpha(\nabla_{\chi}\Upsilon,Z) - \alpha(\Upsilon,\nabla_{\chi}Z).$$

For a normal vector field ξ the tangential component of $\Re(X,Y)\xi$ is given by

$$\tan \widetilde{R}(X,Y)\xi = (\nabla_Y A)_{\xi}(X) - (\nabla_X A)_{\xi}(Y),$$

where $\nabla_X A$ is defined by

$$(\nabla_{\chi} \wedge)_{\xi}(\Upsilon) = \nabla_{\chi}(\wedge_{\xi}\Upsilon) - \wedge_{\xi}(\nabla_{\chi}\Upsilon) - (\wedge_{\nabla_{\chi}^{+}\xi})(\Upsilon).$$

The normal component is given by

nor
$$\tilde{R}(X,Y)\xi = \alpha(A_{\xi}X,Y) - \alpha(X,A_{\xi}Y) + R^{+}(X,Y)\xi$$
,

where R^{\pm} is the curvature tensor of the normal connection.

In the case where $(\widetilde{\mathbb{M}}, \widetilde{\nabla})$ is projectively flat (with symmetric Ricci tensor, see [6]), we have

 $\widetilde{R}(X,Y)Z = \widetilde{\mathfrak{F}}(Y,Z)X - \widetilde{\mathfrak{F}}(X,Z)Y,$

where $\tilde{\mathbf{x}}$ is the normalized Ricci tensor for $(\tilde{\mathbf{N}}, \tilde{\mathbf{v}})$:

$$\tilde{\mathfrak{F}}(X,Y) = \operatorname{Ric}(X,Y)/(\tilde{n}-1).$$

In this case, all the formulas above become simpler. Thus we have

(4)
$$R(X,Y) = \mathfrak{F}(Y,Z)X - \mathfrak{F}(X,Z)Y + A_{\alpha(Y,Z)}X - A_{\alpha(X,Z)}Y$$

- equation of Gauss-

(5)
$$(\nabla_{\mathbf{Y}}\alpha)(\mathbf{Y},\mathbf{Z}) = (\nabla_{\mathbf{Y}}\alpha)(\mathbf{X},\mathbf{Z})$$

-equation of Codazzi for α -

-equation of Codazzi for A-

(7)
$$R^{+}(X,Y)\xi = \alpha(X,A_{\xi}Y) - \alpha(A_{\xi}X,Y)$$

- equation of Ricci-

When the ambiant affine connection $\widetilde{\nabla}$ is flat, equations (4) an (6) get

further simplified:

(4a)
$$R(X,Y) = A_{\alpha}(Y,Z)^{X} - A_{\alpha}(X,Z)^{Y}$$

(6a) $(\nabla_{\chi}A)_{\xi}Y = (\nabla_{\gamma}A)_{\xi}X$.

If $\alpha = 0$ at a point x, we say that f is <u>totally geodesic</u> at x. If $\alpha = 0$ at every point $x \in M$, we say that f is <u>totally geodesic</u>.

An affine immersion f: $(M, \nabla) \rightarrow (\widetilde{M}, \widetilde{\nabla})$ is said to be <u>umbilical at</u> $x \in M$ if there is a 1-form ρ on N_x such that

(8)
$$A_{\xi} = \rho(\xi) I$$
 for every $\xi \in N_{\chi}$,

where I denotes the identity transformation. If f is umbilical at every point, we say that f is <u>umbilical</u>. If f is umbilical and the ambiant connection $\tilde{\nabla}$ is projectively flat, then the normal connection is flat (i.e. $\mathbb{R}^{+} = 0$) as follows from (7).

We now discuss a few examples.

<u>Example</u> 1. Let (M,g) and $(\widetilde{M},\widetilde{g})$ be Riemannian or pseudo-Riemannian manifolds with Levi-Civita connections ∇ and $\widetilde{\nabla}$, respectively. An isometric immersion f: $(M,g) \rightarrow (\widetilde{M},\widetilde{g})$ gives rise to an affine immersion $(M,\nabla) \rightarrow$ $(\widetilde{M},\widetilde{\nabla})$. Here, of course, there is a natural choice of normal space N_x as the orthogonal component of T_x(M) relative to \widetilde{g} .

<u>Example 2</u>. Curves in affine space \mathbb{R}^3 are studied in [1], Chapter 3. Also see [5] for surfaces in \mathbb{R}^4 .

<u>Example</u> 3. <u>Graph immersion</u>. Let $F: \mathbb{R}^n \to \mathbb{R}^p$ be a differentiable function and consider the graph immersion f: $\mathbb{M} = \mathbb{R}^n \to \widetilde{\mathbb{M}} = \mathbb{R}^{n+p}$ given by

(9) $f(x) = (x,F(x)) \in \mathbb{R}^{n} \times \mathbb{R}^{p} = \mathbb{R}^{n+p}, x \in \mathbb{R}^{n}.$

For each $x \in M$, let \mathbb{N}_{x} be the subspace of $T_{x}(\mathbb{R}^{n+p})$ that is parallel to the affine p-space \mathbb{R}^{p} of \mathbb{R}^{n+p} . We get an affine immersion f: $(M, \nabla) \rightarrow (\widetilde{M}, \widetilde{\nabla})$,

both spaces $M = \mathbb{R}^n$ and $\widetilde{M} = \mathbb{R}^{n+p}$ with the usual flat affine connections. As in Example 3 in [7], the second fundamental form α is given essentially as the Hessian of the function F with values in \mathbb{R}^p identified with each N_{x} . We have also A = 0. Thus f is umbilical but not totally geodesic.

Example 4. <u>Centro-affine immersion</u>. Suppose M is an n-dimensional submanifold immersed in $\widetilde{M} = \mathbb{R}^{n+p}$. Assume that there exists an affine (p-1)-subspace $V = \mathbb{R}^{p-1}$ in \mathbb{R}^{n+p} such that for each point x of M the affine p-subspace spanned by x and V is transversal to M. Choosing N_X to be the tangent space at x of this transversal affine p-space, we write equation (2) and define an affine connection ∇ on M. The resulting affine immersion f: $(M, \nabla) \rightarrow \mathbb{R}^{n+p}$ is a generalization of centro-affine hypersurface in [7]. We show that f is umbilical and that ∇ is projectively flat. To see this, let $x_0 \in M$ and let $\xi_0 = \lambda_0 x_0 + U_0$ be a normal vector at x_0 , where x_0 is also considered as a position vector for the point x_0 from a fixed point of \mathbb{R}^{n+p} . To compute A_{ξ} we extend ξ_0 to a normal vector field $\xi = \lambda_0 x + U_0$ and find $\widetilde{\Psi}_X \xi = \lambda_0 x$. Thus $A_{\xi} = -\lambda_0 I$. This shows that f is umbilical. Next we consider another submanifold transversal to the family of normal affine p-spaces to M. It is given by a mapping of the form

(10) $x \in M \mapsto \varphi(x) = \lambda x + F(x),$

where $\lambda: M \to \mathbb{R}^+$ and $F: M \to \mathbb{R}^{p-1}$. The connection induced by 9 on M is

$$\nabla'_X Y = \nabla_X Y + \mu(X)Y + \mu(Y)X$$
, where $\mu = d(\log \lambda)$.

By taking an affine n-space as 9(M), we can get ∇' to be a flat affine connection. This means that ∇ is projectively flat.

2. Umbilical immersions and reduction of codimension

First we prove the following result on umbilical immersions.

<u>Theorem 2. Let</u> f: $(M^n, \nabla) \rightarrow (\mathbb{R}^{n+p}, \widetilde{\nabla})$ <u>be an umbilical affine immersion.</u> where n₂ 2. <u>Then it is affinely equivalent to a graph immersion or a</u> <u>centro-affine submanifold immersion.</u>

<u>Proof.</u> Let ρ be the 1-form on the normal bundle such that $A_{\xi^{\pm}} \rho(\xi)I$. From Codazzi's equation (6a) and from $(\nabla_{\chi}A)_{\xi^{\pm}} (\nabla_{\chi}\rho)(\xi)I$, we get

 $(\nabla_{\chi} \rho)(\xi)Y = (\nabla_{Y} \rho)(\xi)X$ for any two vectors X and Y. Thus $\nabla_{\chi} \rho = 0$ for any X. Thus Ker $\rho_{\chi} = \{\xi \in N_{\chi}; \rho(\xi) = 0\}$ has constant dimension. Now we show that the distribution $x \in M^{n} \mapsto \text{Ker } \rho_{\chi} \subset T_{\chi}(\mathbb{R}^{n+p})$ along the immersion f is parallel in \mathbb{R}^{n+p} . This is obvious, however, because if ξ_{t} is parallel along a curve x_{t} in M^{n} relative to the normal connection, then $\rho(\xi_{t})$ is constant since $\nabla \rho = 0$.

i) Case where $\rho \neq 0$. Take a normal vector field $\xi \notin \text{Ker } \rho$, and consider the mapping $x \in M^n \mapsto y = x + \xi / \rho(\xi) \in \mathbb{R}^{n+p}$. Then for any tangent vector X we get

$$\widetilde{\nabla}_{X} y = X + [-X(\rho(\xi))\xi]/\rho(\xi)^{2} + (-\rho(\xi)X + \nabla_{X}^{+}\xi)/\rho(\xi)$$

$$= - [X(p(\xi))/p(\xi)^2]\xi + (\nabla^{\perp}_X \xi)/p(\xi)$$

and

$$\rho(\widetilde{\nabla}_{\chi}\gamma) = 0$$

so that $\widetilde{\nabla}_{X}(y) \in \text{Ker } \rho$. This means that all points y lie in the

(p-1)-dimensional affine subspace, say V, through one point y_0 and parallel to the parallel distribution Ker ρ . It now follows that for each $x \in M^n$ the normal space N_X coincides with the tangent space at x to the p-dimensional affine subspace generated by x and V. We conclude that M^n is a centro-affine submanifold immersed in \mathbb{R}^{n+p} .

Finally, consider the case where $\rho = 0$, thus A = 0. For any normal vector field ξ , we see that $\widetilde{\nabla}_{\chi}\xi = \nabla^{+}{}_{\chi}\xi$ belongs to N_{χ} . This means that the normal spaces $N_{\chi} \subset T_{\chi}(\mathbb{R}^{n+p})$ are parallel in \mathbb{R}^{n+p} . Since M^{n} is transversal to this family of parallel p-dimensional affine subspaces N, it is a graph.

We now prove two results concerning reduction of codimension for affine immersions.

The first is a variation of Erbacher's result in Riemannian geometry [3]. <u>Proposition 3. Let</u> f: $(M^n, \nabla) \rightarrow (\mathbb{R}^{n+p}, \widetilde{\nabla})$ <u>be an affine immersion.</u>

Suppose N₁ is a subbundle of the normal bundle N such that

i) $N_1(x)$ contains the range of α_x for every $x \in M^n$;

ii) N_1 is parallel relative to the normal connection.

<u>Then</u> $f(M^n)$ is contained in a certain (n+q)-dimensional affine subspace of \mathbb{R}^{n+p} , where $q = \dim N_1(x)$.

Proof. We can easily check that the distribution $x \to \Delta(x) = T_X(M) + N_1(x)$ along the mapping f is parallel in \mathbb{R}^{n+p} . Thus we have a parallel distribution Δ of dimension n + q on \mathbb{R}^{n+p} . If x_t is a geodesic in (M^n, ∇) , we see that $f(x_t)$ lies in the affine (n+q)-space \mathbb{R}^{n+q} through $x_0 \in M^n$ and tangent to Δ . It follows that $f(M^n) \subset \mathbb{R}^{n+q}$.

The next result is known in the Riemannian case (for example, [10],

Lemma 28, p. 362; see [2] for its further generalization).

<u>Proposition 4.</u> Let $f: (M^n, \nabla) \rightarrow (\mathbb{R}^{n+p}, \widetilde{\nabla})$ be an affine immersion. <u>Suppose there exists a nonzero normal vector field ξ and a bilinear</u> <u>symmetric function h on M^n such that</u> $\alpha(X,Y) = h(X,Y)\xi$ for all tangent <u>vectors X and Y.</u> Assume furthermore that rank $h \ge 2$ at every point. Then $f(M^n)$ is contained in an (n+1)-dimensional affine space \mathbb{R}^{n+1} of \mathbb{R}^{n+p} .

Proof. Let $\{X_1, \ldots, X_r, X_{r+1}, \ldots, X_n\}$ be a basis in $T_X(M^n)$ such that $\{X_{r+1}, \ldots, X_n\}$ is a basis of Ker h_X and $h(X_i, X_j) = \pm \delta_{ij}$ for $1 \le i, j \le r$, where by assumption $r \ge 2$. For any $X = X_{i, j}$, $1 \le i \le n$, there is $Y \neq X$ among X_1, \ldots, X_r so that h(X, Y) = 0 and $h(Y, Y) \neq 0$. Now from Codazzi's equation (5) we get

 $(\nabla_{X}h)(Y,Z)\xi + h(Y,Z) \nabla_{X}^{\dagger}\xi = (\nabla_{Y}h)(X,Z)\xi + h(X,Z) \nabla_{Y}^{\dagger}\xi.$

Set Z = Y and consider this equation modulo span {\$}. We obtain h(Y,Y) ∇¹_X ξ = 0 mod span {\$} and hence ∇¹_X ξ ∈ span{\$}.
This being true for every X₁, 1 ≤i ≤n, and thus for every X ∈ T_X(Mⁿ), it follows that N₁ = span {\$} is parallel relative to the normal connection. We may now apply Proposition 3 to N₁.

Suppose an affine immersion $f: (M^n, \nabla) \rightarrow (\mathbb{R}^{n+p}, \widetilde{\nabla})$ has the second osculating dimension n+1. Then around each point we may choose a normal vector field ξ such that $\alpha(X,Y) = h(X,Y)\xi$. The rank of h is independent of the choice of such ξ , and we define it as the <u>rank</u> of α .

<u>Corollary</u>. Suppose that the second osculating dimension of an affine immersion f: $(M^n, \nabla) \rightarrow (R^{n+p}, \widetilde{\nabla})$ is n+1 and that the rank of α is 2 2 at every point. Then $f(M^n)$ is contained in an (n+1)-dimensional affine subspace R^{n+1} of R^{n+p} .

3. Cubic form

For an affine immersion f: $(M, \nabla) \rightarrow (\widetilde{M}, \widetilde{\nabla})$, where $\widetilde{\nabla}$ is projectively flat, we define the cubic form to be

(11) $\nabla \alpha$: T(M) × T(M) × T(M) $\rightarrow N$ that is,

(11a) $(\nabla \alpha)(X,Y,Z) = (\nabla_X \alpha)(Y,Z).$

By (5) / $\nabla \alpha$ is symmetric in X,Y, and Z.

We explain briefly our motivation and goal. For an isometric immersion of a Riemannian manifold M into a Riemannian manifold \widetilde{M} of constant curvature, the condition that $\nabla \alpha = 0$ has a significant geometric meaning [4]. For the geometry of affine immersions, we might first consider the weaker condition that $\nabla \alpha$ is divisible by α . (Actually, this is a projective notion as we we shall further study in a subsequent paper.) In the present paper we deal with the case where the osculating dimension for f: $(M^n, \nabla) \rightarrow (\mathbb{R}^{n+p}, \widetilde{\nabla})$ is n+1. In this case, it turns out that the condition $\alpha | \nabla \alpha$ depends only on the image $f(M^n)$ and not on the connection ∇ (induced from $\widetilde{\nabla}$ by choosing a normal vector field ξ along $f(M^n)$). Furthermore this condition characterizes a quadric when the rank of α is ≥ 2 . Now the detail follows.

We say that $\nabla \alpha$ is divisible by α (denoted by $\alpha \mid \nabla \alpha$) if there is a 1-form ρ on M such that

(12) $\alpha(X,Y,Z) = \rho(X) \alpha(Y,Z) + \rho(Y) \alpha(Z,X) + \rho(Z) \alpha(X,Y)$

for all tangent vectors X, Y and Z; or equivalently

(12a) $\alpha(X, X, X) = 3 \rho(X) \alpha(X, X)$

for all tangent vectors X.

When the codimension p is 1, choose a normal vector field ξ and write $\alpha(Y,Z) = h(Y,Z) \xi$. We have

$$(\nabla_{\chi}\alpha)(\Upsilon,Z) = (\nabla_{\chi}h)(\Upsilon,Z) \xi + h(\Upsilon,Z) (\nabla_{\chi}\xi)$$

=[$(\nabla_{\chi}h)(\Upsilon,Z) + \tau(X) h(\Upsilon,Z)] \xi = C(X,Y,Z)\xi$,

where τ is the transversal (normal) connection form and C is the cubic form as already defined in [7]. Thus $\alpha \mid \nabla \alpha$ if and only if (13) $C(X,Y,Z) = \rho(X)h(Y,Z) + \rho(Y)h(Z,X) + \rho(Z)h(X,Y)$ for all tangent vectors X,Y and Z. We may write (13) as h | C. In the special case where ξ is equiaffine so that f is an affine immersion in the sense of relative geometry (i.e. $\tau = 0$), (13) may be expressed by writing h | ∇h .

We prove

Lemma 1. Let f: $(M^{n}, \nabla) \rightarrow (\mathbb{R}^{n+1}, \widetilde{\nabla})$ be an affine immersion with a normal vector field ξ . If we change ξ to (14) $\hat{\xi} = (\xi + U)/\lambda$ where U is a vector field on M^{n} and $\lambda : M^{n} \rightarrow \mathbb{R} - \{0\}$, then writing $\widetilde{\nabla}_{\chi} f_{*}(Y) = f_{*}(\widehat{\nabla}_{\chi} Y) + \widehat{h}(X, Y) \hat{\xi}$ we have an affine immersion f: $(M^{n}, \widehat{\nabla}) \rightarrow (\mathbb{R}^{n+1}, \widetilde{\nabla})$ and (15) $\widehat{\nabla}_{\chi} Y = \nabla_{\chi} Y - h(X, Y) U$ (16) $\widehat{h} = \lambda h$ (17) $\widehat{\tau} = \tau + \eta - d(\log \lambda)$ (18) $\widehat{C}(X, Y, Z)/\lambda = C(X, Y, Z) + \eta(X)h(Y, Z) + \eta(Y)h(Z, X) + \eta(Z)h(X, Y),$ where η is the 1-form such that $\eta(X) = h(X, U)$ for all X. Proof. The verification is straightforward if we note $(\widehat{\nabla}_{\chi} \widehat{h})(Y, Z) = \chi \widehat{h}(Y, Z) - \widehat{h}(\widehat{\nabla}_{\chi} Y, Z) - \widehat{h}(Y, \widehat{\nabla}_{\chi}, Z)$

$$\widetilde{\nabla}_{\mathbf{X}} \widehat{\xi} = -f_{\mathbf{x}}(\widehat{S}X) + \widehat{\tau}(X) \widehat{\xi}$$

and

$$\widehat{C}(X,Y,Z) = (\widehat{\nabla}_{Y}\widehat{h}) + \widehat{\tau}(X)\widehat{h}(Y,Z).$$

۵

Now observe that if $f: M^n \to \mathbb{R}^{n+1}$ is an immersion which admits a transversal vector field ξ , then we may induce an affine connection ∇ in such a way that $f: (M^n, \nabla) \to (\mathbb{R}^{n+1}, \widetilde{\nabla})$ is an affine immersion. As a consequence of Lemma 1 we have

<u>Proposition</u> 5. If an immersion $f: M^n \to \mathbb{R}^{n+1}$ has the property that $h \mid C$ for some choice of normal vector field ξ , then it has the same property for any choice of normal vector field. Also the rank of h does not depend on the choice of ξ .

In particular, the property that h is nondegenerate does not depend on the choice of ξ ; we say that f is nondegenerate if h is.

In the case where the second fundamental form h of an affine immersion f: $(M^n, \nabla) \rightarrow (\mathbb{R}^{n+1}, \widetilde{\nabla})$ is indefinite, we can give the following geometric interpretation of the condition h | C.

Proposition 6. If h is indefinite, the following statements are equivalent: 1) h | C;

2) a geodesic in (M^n, ∇) whose initial tangent vector is null is a null curve (relative to h);

3) all geodesics in (M^n, ∇) with null initial tangent vectors are geodesics in \mathbb{R}^{n+1} .

Proof.

1) \rightarrow 2): Assume C(X,X,X) = 3 $\rho(X)h(X,X)$ for all X \in TM, where ρ is a certain l-form. Then

$$(\nabla_{\mathbf{Y}}\mathbf{h})(\mathbf{X},\mathbf{X}) = (\mathbf{3}\boldsymbol{\rho} - \boldsymbol{\tau})(\mathbf{X}) \mathbf{h}(\mathbf{X},\mathbf{X}).$$

Suppose x_t is a geodesic in (M^n, ∇) such that $h(\vec{x}_0, \vec{x}_0) = 0$. The above equation implies $(d/dt)h(\vec{x}_t, \vec{x}_t) = (3p - \tau)(\vec{x}_t)h(\vec{x}_t, \vec{x}_t)$. Thus the function $\varphi(t) = h(\vec{x}_t, \vec{x}_t)$ satisfies the differential equation

 $d \varphi/dt = \psi(t) \varphi(t)$, where $\psi(t) = (3\varphi - \tau)(\vec{x}_t)$. We know that a solution $\varphi(t)$ of this equation with $\varphi(0) = 0$ must be identically 0. Thus x_t is a null curve.

2) \rightarrow 3): This is obvious from $\widetilde{\nabla}_t \vec{x}_t = \nabla_t \vec{x}_t + h(\vec{x}_t, \vec{x}_t)$.

3) \rightarrow 1): Let X $\in T_X(M)$ be null, i.e. h(X,X) = 0. If x_t is a geodesic in (M^n, ∇) with initial tangent vector X, then by assumption 3) we have

$$0 = \widetilde{\nabla}_t \vec{x}_t = \nabla_t \vec{x}_t + h(\vec{x}_t, \vec{x}_t) \xi = h(\vec{x}_t, \vec{x}_t) \xi$$

so that h(\vec{x}_t, \vec{x}_t) = 0. Hence

$$(\nabla_t h)(\vec{x}_t, \vec{x}_t) = (d/dt) h(\vec{x}_t, \vec{x}_t) - 2 h(\nabla_t \vec{x}_t, \vec{x}_t) = 0.$$

At t = 0 we have

 $(\nabla_{\mathbf{X}}\mathbf{h})(\mathbf{X},\mathbf{X})=0$

and hence $C(X,X,X) = (\nabla_X h)(X,X) + \tau(X)h(X,X) = 0$. What we have shown is that h(X,X) = 0 for $X \in TM$ implies C(X,X,X) = 0. It follows that $h \mid C$. \Box

We now state a number of generalizations of the classical result. The proofs will be given in subsequent sections.

<u>Theorem</u> 7. Let $f: (M^n, \nabla) \rightarrow (\mathbb{R}^{n+1}, \widetilde{\nabla})$ be an affine immersion with a <u>normal vector field</u> ξ for which $\tau = 0$. If rank $h \ge 2$ and $\nabla h = 0$ at every <u>point</u>, then $f(M^n)$ lies in a quadric.

<u>Remark</u> 1. More precisely, $f(M^n)$ lies in a cylinder $Q^r \times \mathbb{R}^{n-r}$, where Q^r is a nondegenerate quadric in an affine subspace \mathbb{R}^{r+1} and \mathbb{R}^{n-r} is an affine subspace transversal to \mathbb{R}^{r+1} .

<u>Remark</u> 2. This theorem extends the classical Pick-Berwald theorem (see [1] as well as the result in relative geometry (see [8]), which are for nondegenerate hypersurfaces. See also [9].

The formulations of the following Theorems 8 and 10 are based on the observations in Proposition 5.

<u>Theorem</u> 8. Let $f: M^n \rightarrow \mathbb{R}^{n+1}$ be a nondegenerate immersion. Then $f(M^n)$ lies in a quadric if and only if $h \mid C$.

We examine the following question: given (M^n, ∇) , under what conditions can we find an affine immersion f: $(M^n, \nabla) \rightarrow (\mathbb{R}^{n+1}, \widetilde{\nabla})$ such that $f(M^n)$ lies in a nondegenerate quadric in \mathbb{R}^{n+1} ?

We proceed as follows. If there is an affine immersion $f: (M^{n}, \nabla) \rightarrow (\mathbb{R}^{n+1}, \widetilde{\nabla})$ such that $f(M^{n})$ lies in a nondegenerate quadric \mathbb{Q}^{n} in \mathbb{R}^{n+1} , then we can choose a normal vector field ξ^{0} and obtain the second fundamental form h^{0} and the induced affine connection ∇^{0} on M^{n} from

 $\widetilde{\nabla}_X Y = \nabla^0_X Y + h^0(X,Y) \xi^0$

such that h^0 is a pseudo-Riemannian metric and ∇^0 is the Levi-Civita connection of h^0 . We may write, as in Lemma 1, $\xi = (\xi^0 + U)/\lambda$, where U is a certain vector field on M^n and λ a nonzero function. We find (19) $\nabla_X Y = \nabla^0_X Y - h^0(X, Y) U$.

In the case where Q^n is not locally convex, h^0 is indefinite. A geometric interpretation of (19) is the following. <u>A null geodesic of</u> ∇^0 is a <u>geodesic of</u> ∇ . Conversely, an affine connection ∇ with this property relative to (h^0, ∇^0) must be of the form (19) for a certain vector field U.

In order to prove this, let K be the difference tensor: $K(X,Y) = \nabla_X Y - \nabla_X^0 Y$. Take any $X \in T_X(M)$ with $h^0(X,X) = 0$. If x_t is a geodesic for ∇^0 with initial tangent vector X, then it is a null geodesic and, by assumption, it is a geodesic for ∇ . Thus $\nabla_t \vec{x}_t = 0$, which implies $K(\vec{x}_t, \vec{x}_t) = 0$, in particular, K(X,X) = 0. We have shown that K(X,X) = 0 whenever $h^0(X,X) = 0$. By taking a basis $\{X_1, \ldots, X_n\}$ in $T_X(M^n)$, write $K(X,Y) = \Sigma^n_{i=1}K^i(X,X)x_i$. Since

 $h^{0}(X,X) = 0$ implies $K^{i}(X,X) = 0$, we have $K^{i}(X,Y) = a^{1}h^{0}(X,Y)$, $1 \le i \le n$. Then $K(X,Y) = (\Sigma^{n}_{i=1}a^{i}X_{i})h^{0}(X,Y)$. Thus we have (19) with $Z = -\Sigma^{n}_{i=1}a^{i}X_{i}$.

We can now state

<u>Proposition</u> 9. A differentiable manifold with an affine connection (M^n, ∇^n) admits an affine immersion into a (not locally convex) <u>nondegenerate quadric</u> Q^n in \mathbb{R}^{n+1} if and only if M^n admits a <u>pseudo-Riemannian (not positive-definite) metric of constant sectional</u> <u>curvature whose null geodesics are geodesics of</u> ∇ .

<u>Theorem</u> 10. Let $f: M^n \rightarrow \mathbb{R}^{n+1}$ be an immersion with rank $h \ge 2$ everywhere. Then $f(M^n)$ lies in a quadric if and only if $h \mid C$.

<u>Remark</u> 3. If $h \mid C$ and if the affine connection ∇ induced by f relative to some choice of a transversal vector field is complete, then $f(M^n)$ is a cylinder as in Remark 1 above. Even for the standard $S^2 \subset \mathbb{R}^3$, ∇ is incomplete for most choices of ξ .

<u>Incorem 11. Let</u> f: $(M^n, \nabla) \rightarrow (\mathbb{R}^{n+p}, \widetilde{\nabla})$ be an affine immersion, n≥2. <u>Then</u> f (M^n) is contained in a quadric Q^n of an affine subspace \mathbb{R}^{n+1} of \mathbb{R}^{n+p} if and only if the osculating dimension is n+1, rank $\alpha \ge 2$, and $\alpha \mid \nabla \alpha$.

4. Proofs of Theorems 7 and 8

We start with a few lemmas.

Lemma 2. Let $f: (M^n, \nabla) \rightarrow (\mathbb{R}^{n+1}, \widetilde{\nabla})$ be an affine immersion and assume that $\tau = 0$, $\nabla h = 0$ and rank $h \ge 2$ everywhere. Then

1) Kerh <u>is a parallel distribution on</u> (M^{n}, ∇) ;

2) $x \in M^n \rightarrow f_*(Ker h_x)$ is a distribution along f which is parallel in \mathbb{R}^{n+1} .

3) <u>There is a constant p such that</u> $SX = pX \mod Ker h$ for <u>every</u> $X \in TM$. Proof. 1) Let Y_t and Z_t be parallel vector fields along a curve x_t in M^n . Then $\nabla h = 0$ implies that

 $dh(Y,Z)/dt = h(\nabla_{t}Y,Z) + h(Y, \nabla_{t}Z) = 0.$

Thus $h(Y_t, Z_t)$ is constant. If $Y_0 \in \ker h$ at x_0 , then it follows that $Y_t \in \ker h$ along the curve x_t . This shows that dim Ker h is constant and the distribution $x \to \operatorname{Ker} h_x$ is parallel on M^n .

2) Let Y_t be a parallel vector field belonging to Ker h along a curve x_t . Then

$$\widetilde{\nabla}_{t}f_{*}(Y_{t}) = f_{*}(\nabla_{t}Y_{t}) + h(\overrightarrow{x}_{t},Y_{t}) = 0,$$

which shows that $f_*(Y_t)$ is parallel in \mathbb{R}^{n+1} . This proves that $x \mapsto f_*(\text{Ker } h_x) \subset T_{f(x)}(\mathbb{R}^{n+1})$ is parallel in \mathbb{R}^{n+1} .

3) From $\nabla h = 0$ we get h(R(X,Y)Y,Y) = 0 for all $X,Y \in T_X(M^n)$. Using the equation of Gauss: R(X,Y)Y = h(Y,Y)SX - h(X,Y)SY, we get (20) h(Y,Y)h(SX,Y) = h(X,Y)h(SY,Y).

In $T_X(M)$ choose a basis $\{X_1, \ldots, X_r, X_{r+1}, \ldots, X_n\}$ such that $\{X_{r+1}, \ldots, X_n\}$ is a basis of Ker h_X and $h(X_i, X_j) = \pm \delta_{ij}$ for $1 \le i, j \le r$. By assumption, $r \ge 2$.

For each X_i , $1 \le i \le r$, choose X_j , $1 \le j \le r$, $j \ne i$; we get $h(SX_i, X_j) = 0$ from (20). Thus $SX_i = \rho_i X_i \mod \ker h_X$. We want to show that $\rho_1 = \cdots = \rho_r$. If $i \ne j$ among 1,...,r, then $Z = X_i + X_j$ or $X_i + 2X_j$ has the property that $h(Z,Z) \ne 0$ and may be chosen as part of an orthonormal basis (after normalization) of a supplementary subspace to Ker h. Thus by what we have seen above we get

$$S(X_{i} + X_{j}) = \rho(X_{i} + X_{j})$$
 or $S(X_{i} + 2X_{j}) = \rho(X_{i} + 2X_{j}),$

with a certain constant ρ . Then we get

 $\rho_1 X_i + \rho_j X_j = \rho X_1 + \rho X_j$ or $\rho_j X_i + 2 \rho_j X_j = \rho X_i + 2 \rho X_j$. It follows that $\rho_i = \rho_j = \rho$. We have thus shown that all ρ_i 's are equal. Call this number ρ . We have shown $SX = \rho X$ mod Ker h for every $X = X_1, \dots, X_r$.

Now let $1 \le j \le r$ and $r+1 \le i \le n$. (20) implies $h(SX_i, X_j) = 0$. This shows that $SX_i \in Ker h$. So $S(Ker h) \subset Ker h$. We can write $SX = \rho X$ mod Ker h for every $X = X_{r+1}, \dots, X_n$. Hence $SX = \rho X$ mod Ker h for all $X \in T_X(M)$.

It now remains to show that ρ is a constant. Since $\tau = 0$, we have Codazzi's equation $(\nabla_X S)(Y) = (\nabla_Y S)(X)$ (see [7]). We extend a basis $\{X_1, \ldots, X_r, X_{r+1}, \ldots, X_n\}$ as before to vector fields in a neighborhood with the property that they still form a basis and $\{X_{r+1}, \ldots, X_n\}$ form a basis of Ker h at each point. Then

$$(\nabla_{\chi} S)(X_{j}) = \nabla_{\chi} (SX_{j}) - S(\nabla_{\chi} X_{j}) = \nabla_{\chi} (\rho X_{j} + Z) - S(\nabla_{\chi} X_{j})$$
$$= (X_{i} \rho)X_{j} + \rho (\nabla_{\chi} X_{j}) + \nabla_{\chi} Z - S(\nabla_{\chi} X_{j})$$
$$= (X_{i} \rho)X_{i} \mod \text{Ker h},$$

where $Z \in Ker h$ and $\nabla_X Z \in Ker h$, since Ker h is parallel. Thus by Codazzi's equation, we have

(21)
$$(X_i \rho)X_j = (X_j \rho)X_j \mod \text{Kerh.}$$

This holds for all i and j. If $1 \le i \le r$, then, using $r \ge 2$, take $j \ne i$, $1 \le j \le r$. Then (21) implies that $X_i \rho = 0$. If $r+1 \le i \le n$, then take j, $1 \le j \le r$. Then (21) implies $X_i \rho = 0$. We have thus shown that $X \rho = 0$ for every $X \in T_x(M)$.

<u>Remark</u>. In case rank h = 1 and $\{X_1, \ldots, X_n\}$ is a basis in $T_x(M)$,

where $\{X_2, \ldots, X_n\}$ is a basis of Ker h, we cannot conclude $X_1 \rho = 0$ (there is an example showing that ρ is not a constant).

Lemma 3. Under the assumptions of Lemma 2 define for each $x \in M^n$ a blinear symmetric function g in $T_{f(x)}(\mathbb{R}^{n+1})$ as follows:

 $g(f_*X, f_*Y) = h(X,Y)$ for $X, Y \in T_X(M^n)$

(22) $g(f_*X, \xi) = 0$ for $X \in T_x(M^n)$

 $g(\xi,\xi) = \rho.$

Then g is parallel relative to the connection $\tilde{\nabla}$ in \mathbb{R}^{n+1} .

Proof. We want to show that

 $\mathsf{X}\, \mathfrak{g}(\mathsf{U},\mathsf{V}) = \mathfrak{g}(\,\widetilde{\mathsf{V}}_{\mathsf{X}}\mathsf{U},\mathsf{V}) \,+\, \mathfrak{g}(\mathsf{U},\,\widetilde{\mathsf{V}}_{\mathsf{X}}\,\mathsf{V})$

for all vector fields U and V along f and for all $X \in T_x(M^n)$.

1) If $U = f_*(Y)$, $V = f_*(Z)$ for vector fields Y and Z on Mⁿ, then the

above identity follows from $\nabla_{\chi}h = 0$ and $g(\xi, U) = g(\xi, V) = 0$.

2) If $U = f_*(Y)$, and $V = \xi$, then

$$X g(U,\xi) = 0, g(\tilde{\nabla}_X U,\xi) = g(f_*(\nabla_X Y) + h(X,Y)\xi,\xi) = h(X,Y)\rho$$

and

$$g(U, \widetilde{\nabla}_{X} \xi) = g(U, -f_{*}(SX)) = g(U, -\rho f_{*}(X) + f_{*}(Z)) \quad (\text{where } Z \in \text{Ker } h)$$
$$= -\rho h(Y, X) + h(Y, Z) = -\rho h(Y, X).$$

So the above identity holds.

3) If $U = V = \xi$, then we have $X g(\xi, \xi) = X \rho = 0$ as well as $g(\tilde{\nabla}_X \xi, \xi) =$

 $g(-f_{*}(SX)), \xi) = 0.$

<u>Remark</u>. At each $x \in M^n$,

Ker $g = f_{\pm}(Ker h)$ if $\rho \neq 0$ and Ker $g = f_{\pm}(Ker h) + span(\xi)$ if $\rho = 0$.

Lemma 4. We identify $f(x), x \in M^n$, with the position vector and simply write it as x. Define a function φ on $M^n \underline{by} \varphi(x) = g(x, x)/2$ and a 1-form λ on $T_{f(x)}(\mathbb{R}^{n+1})$ for $x \in M^n \underline{by}$

(23)
$$\lambda(f_*X) = g(X,x) \quad \underline{for} \quad X \in T_X(M^n)$$

 $\lambda(\xi) = g(x, x) + 1.$

<u>Then λ is parallel relative to $\tilde{\nabla}$ in \mathbb{R}^{n+1} .</u>

Proof. We have

$$(\widetilde{\nabla}_{\chi}\lambda)(f_{*}Y)$$

= $X(\lambda(f_{*}Y)) - \lambda(\widetilde{\nabla}_{\chi}f_{*}Y) = Xg(f_{*}(Y),x) - \lambda(f_{*}(\nabla_{\chi}Y) + h(X,Y)\xi)$
= $g(\widetilde{\nabla}_{\chi}f_{*}Y,x) + g(f_{*}Y,f_{*}X) - g(f_{*}\nabla_{\chi}Y,x) - h(X,Y)(g(\xi,x) + 1) = 0$
and

and

$$(\widetilde{\nabla}_{\chi}\lambda)(\xi) = \chi(\lambda(\xi)) - \lambda(\widetilde{\nabla}_{\chi}\xi) = \chi(g(\xi, x) + 1) - \lambda(\widetilde{\nabla}_{\chi}\xi)$$
$$= g(\widetilde{\nabla}_{\chi}\xi, x) + g(\xi, x) - \lambda(\widetilde{\nabla}_{\chi}\xi) = 0.$$

Thus λ is parallel in \mathbb{R}^{n+1} .

We are now in position to prove Theorem 7.

<u>Proof of Theorem</u> 7. First we note that the parallel 1-form λ in Lemma 4 is nothing but a covector in the dual vector space \mathbb{R}_{n+1} . Thus there is an affine function φ on \mathbb{R}^{n+1} such that $d\varphi = \lambda$. Moreover we may assume that $\varphi(x_0) = \varphi(x_0)$ for some point x_0 . Now obviously $d\varphi = d\varphi$ on \mathbb{M}^n . Hence $\varphi = \varphi$ on \mathbb{M}^n . This means that $f(\mathbb{M}^n)$ lies in a quadric.

<u>Remark</u>. For any affine coordinate system in \mathbb{R}^{n+1} we may write

$$\varphi(\mathbf{x}) = \Sigma_{i,j=1} a_{ij} \mathbf{x}^i \mathbf{x}^i$$
, $\varphi(\mathbf{x}) = 2 \Sigma_{i=1} a_i \mathbf{x}^i + b$.

Suppose rank g = r+1. Then we may retake an affine coordinate system so that $\varphi(x) = \sum_{i,j=1}^{n} a_{ij} x^{i} x^{j}$, where the matrix $[a_{ij}]$ is nondegenerate. We can further simplify the quadratic equation $\varphi(x) = \varphi(x)$ for $f(M^{n})$ into

 $\Sigma_{i=i} \varepsilon_i (x^i)^2 = \pm i$ or $x^{r+2} = \Sigma_{i=1} \varepsilon_i (x^i)^2$, where $\varepsilon_i = \pm i$

by a change of affine coordinate system.

Before we prove Theorem 9, we need two lemmas.

Lemma 5. Let f: $(M^{n}, \nabla) \rightarrow (R^{n+1}, \widetilde{\nabla})$ be a nondegenerate affine immersion with a normal vector field ξ and second fundamental form h. Then we can change ξ to $\xi = \xi/\lambda$ for some $\lambda: M^{n} \rightarrow R^{+}$ so that the volume element $\widehat{\omega}$ for the second fundamental form \widehat{h} for $\widehat{\xi}$ coincides with the volume element ω induced by ξ from the standard volume element $\widetilde{\omega}$ in R^{n+1} .

Proof. Assume that the volume element ω_h for h is equal to $\mu \omega$, where $\mu: M^n \to \mathbb{R}^+$. Choose $\lambda = \mu^{-n/2}$. Then $\widehat{h} = \lambda h$ implies that $\widehat{\omega} = \lambda^{n/2} \omega_h^{=}$ $\mu^{-1} \omega_h = \omega$.

Lemma 6. Let $f: (M^n, \nabla) \to (\mathbb{R}^{n+1}, \widetilde{\nabla})$ be a nondegenerate affine immersion such that $\omega = \omega_h$. If the cubic form C vanishes, then $\tau = 0$.

Proof. We recall from [7]

 $C(X,Y,Z) = (\nabla_X h)(Y,Z) + \tau(X) h(Y,Z)$ and $\nabla_X \omega = \tau(X)\omega$.

If $\widehat{\nabla}$ denotes the Levi-Civita connection for h and if $K_{\chi} = \nabla_{\chi} - \widehat{\nabla}_{\chi}$, then

$$(\nabla_{\mathbf{X}}\mathbf{h})(\mathbf{Y},\mathbf{Z}) = -\mathbf{h}(\mathbf{K}_{\mathbf{X}}\mathbf{Y},\mathbf{Z}) - \mathbf{h}(\mathbf{Y},\mathbf{K}_{\mathbf{X}}\mathbf{Z}),$$

because $\widehat{\nabla}_{X}h = 0$. Using C = 0, we get

(24) $\tau(X)h(Y,Z) = h(K_XY,Z) + h(Y,K_XZ).$

Take an orthonormal basis $\{X_1, \ldots, X_n\}$ for h, where $h(X_i, X_i) = \varepsilon_i = \pm 1$ and $h(X_i, X_j) = 0$ for $i \neq j$. Taking $Y = X_i$, $Z = \varepsilon_i X_i$ in (24) and summing over i, we get n = (X) = 2 trace K_X .

On the other hand, applying $\nabla_X = \widehat{\nabla}_X + K_X$ on $\omega = \omega_h$ we obtain

$$\tau(X)\omega = \nabla_X \omega = K_X \omega_h = -(\operatorname{trace} K_X)\omega_h = -(\operatorname{trace} K_X)\omega,$$

that is, $\tau(X) = - \operatorname{trace} K_X$. Comparing this with the previous relation, we conclude that $\operatorname{trace} K_X = 0$ and $\tau = 0$.

Now we can prove Theorem 8.

<u>Proof of Theorem</u> 8. Choose a normal vector field ξ and consider the given immersion f as an affine immersion $(M^n, \nabla) \rightarrow (\mathbb{R}^{n+1}, \widetilde{\nabla})$. By assumption, $h \mid C$, that is, we have (13). By Lemma 4 we may change ξ to another normal vector field $\widehat{\xi}$ and the corresponding cubic form as in (18) in Lemma 1. Since h is nondegenerate, we can choose U so that $\eta = -\rho$ and achieve $\widehat{C} = 0$. Moreover, by choosing λ suitably as in Lemma 5, we can also make $\widehat{\omega}$, volume element for \widehat{h} , coincide with ω . Now we can apply Lemma 6 and conclude $\widehat{\tau} = 0$. By Theorem 7 we conclude that $f(M^n)$ is a qudric.

The converse is obvious from the following well known fact. If $f(M^n)$ is a nondegenerate quadric in \mathbb{R}^{n+1} , then with a suitable choice of affine coordinate system $f(M^n)$ is expressed either by

 $x^{n+1} = \Sigma_{i,j=1} a_{ij} x^i x^j$, where $[a_{ij}]$ is a nonsingular matrix or by

 $\Sigma_{i=1} \varepsilon_{i} x_{i}^{2} = 1$, where $\varepsilon_{i} = \pm 1$.

In the first case, $\xi = (0, ..., 0, 1)$ is a normal vector field (called the affine normal in the classical theory, see [7], Proposition 6) for which $\tau = 0$,

 $h(\partial/\partial x^i, \partial/\partial x^j) = a_{ij}$, and the induced affine connection ∇ on $M^n = \mathbb{R}^n$ (with affine coordinates x^1, \ldots, x^n) is flat. Thus $C = \nabla h = 0$. In the second case, by considering an appropriate flat pseudo-euclidean metric on \mathbb{R}^{n+1} , the affine normal ξ coincides with the metric normal. We have $\tau = 0$; h coincides with the usual second fundamental form in the metric sense and $\nabla h = 0$. Thus C = 0 again.

5. Proofs of Theorems 10 and 11

We now give a proof of Theorem 10. Let Ω be the set of points x in M^n such that Ker h has constant dimension in a neighborhood of x. Then Ω is an open subset. It is dense for the following reason. Let x_0 be an arbitrary point in M^n and let U be any neighborhood of x_0 . Let $x \in U$ be a point where dim Ker h attains the minimum on U. Then rank h_x is equal to the maximum of rank h on U and rank $h_y = \operatorname{rank} h_x$ and thus dim Ker $h_y = \dim$ Ker h_x for all points y in a neighborhood V of x. Thus $x \in \Omega$, showing that Ω is dense. For Theorem 10 it is sufficient to show that $f(M^n)$ is contained in a quadric around each point x of Ω .

Let $x_0 \in \Omega$. In a certain neighborhood of x_0 , $x \rightarrow \text{Ker h}_X$ defines a distribution of dimension, say, n - r. We show that it is totally geodesic and integrable. Let X and Y be vector fields belonging to Ker h. For any tangent vector X we have by assumption (13)

 $X h(Y,Z) - h(\nabla_X Y,Z) - h(Y,\nabla_X Z) = \rho(X)h(Y,Z) + \rho(Y)h(Z,X) + \rho(Z)h(X,Y).$ Since X,Y \in Ker h, this equation is reduced to $h(\nabla_X Y,Z) = 0$. Since Z is arbitrary, it follows that $\nabla_X Y \in$ Ker h. Thus $[X,Y] = \nabla_X Y - \nabla_Y X \in$ Ker h. Now let H an (r+1)-dimensional affine subspace in \mathbb{R}^{n+1} through $f(x_0)$ and transversal to f(L), where L is the leaf of the distribution Ker h through x_0 . Then near x_0 the foliation \mathbb{F} of \mathbb{R}^{n+1} by (r+1)-dimensional affine subspaces parallel to H gives rise to a foliation \mathbb{F} of \mathbb{M}^n by r-dimensional submanifolds.

Choose a convex neighborhood V of $f(x_0)$ such that the foliations F and Ker h are defined on the component U of $f^{-1}(V)$ that contains x_0 . Set N = $f^{-1}(H) \cap U$. Then $f_N : N \rightarrow H$ is a nondegenerate hypersurface in H.

We choose a new normal vector field ξ for f_N that lies in H and translate it parallelly along each leaf in \mathbb{R}^{n+1} , thus getting a normal vector field ξ for f: $U \to \mathbb{R}^{n+1}$. For vector fields X and Y tangent to N the equation $\tilde{\nabla}_X Y = \nabla_X Y + h(X,Y)\xi$ shows that $\nabla_X Y$ is tangent to N, because $\tilde{\nabla}_X Y$ and ξ lie on H. This means that N is totally geodesic in U (relative to the affine connection induced by f with the new normal vector field ξ). The same equation also shows that the second fundamental form h_N for f_N is simply the restriction of h for f and is nondegenerate. The affine immersion f_N also has the property that its cubic form C_N is divisible by h_N .

Now just as we have done to reduce the proof of Theorem 8 to Theorem 7, we take once more a new normal vector field to f_N such that C = 0, $\tau = 0$ and $\nabla h_N = 0$ and extend it to a normal vector field ξ for f by parallel translation in \mathbf{R}^{n+1} . Relative to this ξ , f still has the property that C is divisble by h, that is, $C(X,Y,Z) = \rho(X)h(Y,Z) + \rho(Y)h(Z,X) + \rho(Z)h(X,Y)$ for some 1-form ρ . We have $\rho(X) = 0$ for $X \in TN$.

The rest of the proof proceeds as follows. We shall show that

(i) N is umbilical in \mathbb{R}^{n+1} ;

(ii) $(\nabla_{\mathbf{X}} \rho)(\mathbf{Z}) = 0$ for every $\mathbf{X} \in \mathsf{TN}$, $\mathbf{Z} \in \mathsf{Ker} h$.

(iii) If $\rho \neq 0$, the images f(L) of all leaves L meet in a certain affine (n-r-1)-dimensional subspace, say K, so that f(Mⁿ) lies on the cone with vertex K and base f(N) \subset H;

(iv) If $\rho = 0$, then all f(L)'s are parallel in \mathbb{R}^{n+1} and $f(M^n)$ is a cylinder. We now prove these statements.

(i) Since N satisfies $\tau = 0$ and $\nabla h_N = 0$, we know from Lemma 2 of Section 4 that $S = A_{\xi}$ is a constant multiple of I. We show that $A_{\chi} = \rho(X)$ I for every $X \in Ker$ h (note that Ker h_{χ} and ξ_{χ} span the transversal space for N in \mathbb{R}^{n+1}). If $Y \in TN$, then extending X to a vector field in Ker h, we see that the equation (13) reduces to $h(\rho(X)Y, Z) = -h(\nabla_Y X, Z)$. Since this holds for every $Z \in TN$ at every point of N, we see that $A_{\chi} = \rho(X)$ I.

(ii) From $A_{\chi} = \rho(X)I$ on TN for every $X \in Kerh$, and from Codazzi's equation for the submanifold N in \mathbb{R}^{n+1} we get

 $(\nabla_{\chi} \rho)(Z) Y = (\nabla_{\gamma} \rho)(Z) X$ for X, Y \in TN and Z \in Ker h. Since dim N - rank h ≥ 2 , we may take X, Y to be linearly independent. Thus $(\nabla_{\chi} \rho)(Z) = 0$ for every X \in TN and Z \in Ker h.

(iii) We first show that $X \in \mathbb{N} \to f_*(\text{Ker } \rho_X \cap \text{Ker } h_X)$ is parallel in \mathbb{R}^{n+1} along N. Let $Z \in \text{Ker } \rho_X \cap \text{Ker } h_X$ be a vector field and let $X \in \text{TN}$. Then $(\nabla_X \rho)(Z) = 0$ implies that $X \rho(Z) - \rho(\nabla_X Z) = -\rho(\nabla_X Z) = 0$. Then $\widetilde{\nabla}_X Z = \nabla_X Z \in \text{Ker } \rho_X$. On the other hand, (13) implies

- h(Y, $\nabla_X Z$) = $\rho(Z)h(X, Y) = 0$ for every $Y \in TN$

so that $\nabla_X Z \in \text{Ker } h$. Thus $\widetilde{\nabla}_X Z = \nabla_X Z \in \text{Ker } h$. It follows that $\widetilde{\nabla}_X Z \in \text{Ker } \rho$ $\cap \text{Ker } h$. We have shown that $x \to f_*(\text{Ker } \rho \cap \text{Ker } h)$ is parallel in \mathbb{R}^{n+1} so that these subspaces are all parallel, say, to a subspace W.

(iii) Assume $\rho \neq 0$ on N. Let X be a vector field $\neq 0$ on N belonging to Ker h at every point and consider

 $x \in N \rightarrow y = x + X/\rho(X).$

For every $Y \in TN$, we have by a similar computation to that in Theorem 2 that $\rho(\widetilde{\nabla}_X Y) = 0$. Also we show that

$$\widetilde{\nabla}_{Y} y = - \left[(\nabla^{\perp}_{Y} X) / \rho(X)^{2} \right] X + (\nabla^{\perp}_{Y} X) / \rho(X)$$

is in Kerh. Here, of course, $\nabla^{+}\gamma X$ is the Kerh-component of $\widetilde{\nabla}_{\gamma} X$ for the submanifold N. But $\widetilde{\nabla}_{\gamma} X = \nabla_{\gamma} X$ because h(Y,X) = 0. We know from Lemma 2 applicable to N that $\nabla_{\gamma} X \in Kerh$. So $\widetilde{\nabla}_{\gamma} X \in Kerh$. Thus $\widetilde{\nabla}_{\gamma} Y \in Ker \rho$ R Kerh.

Let x_0 be the point we started with and let $y_0 = x_0 + X/\rho(X)$ for any nonzero vector field X on N in Ker h. Then all points $y = x + X/\rho(X)$ lie in the affine subspace through y_0 and parallel to W. If X is replaced by any vector field Y in Ker h, this affine subspace does not change because $X/\rho(X) - Y/\rho(Y) \in \text{Ker } \rho \cap \text{Ker } h.$

(iv) Suppose $\rho = 0$ on N. Then $x \in N \rightarrow f_*(\text{Ker }h_X)$ is parallel in \mathbb{R}^{n+1} , because if X is a vector field belonging to Ker h on N and Y \in TN, then $\widetilde{V}_Y X = \nabla_Y X$ Ker h as in Lemma 2 again. Thus there is an (n-r)-dimensional affine subspace to which all f(L)'s are parallel. Thus $f(M^n)$ is contained in the cylinder $f(N) \times W \subset \mathbb{R}^{n+1}$. We have completed the proof of Theorem 10.

Finally, Theorem 11 follows Proposition 4, its corollary and Theorem 10.

References

- [1] Blaschke, W., <u>Differentialgeometrie</u>, Band II, Springer, Berlin, 1923
- [2] Dajczer, M. and Rodriguez, L., Substantial codimension of submanifolds: global results, IMPA preprint 1986
- [3] Erbacher, J., Reduction of the codimension of an isometric immersion, J. Differential Geometry 5(1971), 338-340
- [4] Ferus, D., Symmetric submanifolds of Euclidean space, Math. Ann. 247(1980), 81-93
- [5] Klingenberg, W., Uber das Einspannungsproblem in der projektiven and affinen Differentialgeometrie, Math. Z. 55(1952), 321-345
- [6] Nomizu, K. and Pinkall, U., On a certain class of homogeneous projectively flat manifolds, SFB/MPI Preprint 85/44; to appear in Tôhoku Math J.
- [7] Nomizu, K. and Pinkall, U., On the geometry of affine immersions, MPI Preprint 86-28
- [8] Simon, U., Zur Relativgeometrie: Symmetrische Zusammenhänge auf Hyperflächen, Math. Z. 106(1968), 36-46
- [9] Simon, U., Zur Entwickelung der affinen Differentialgeometrie nach Blaschke, <u>Gesammelte Werke Blaschke</u>, Band 4, Thales Verlag, Essen, 1985
- [10] Spivak, M. <u>A Comprehensive Introduction to Differential Geoemtry</u>, Vol.
 5, Publish or Perish Inc. 1975