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SEVEN STEPS TO HAPPINESS

ILYA KAPOVICH AND MARTIN LUSTIG

Abstract. For every atoroidal iwip automorphism ϕ of FN (i.e.
the analogue of a pseudo-Anosov mapping class) it is shown that
the algebraic lamination dual to the forward limit tree T+(ϕ) is ob-
tained as “diagonal closure” of the support of the backward limit
current µ−(ϕ). This diagonal closure is obtained through a finite
procedure in analogy to adding diagonal leaves from the comple-
mentary components to the stable lamination of a pseudo-Anosov
homeomorphism. We also give several new characterizations as
well as a structure theorem for the dual lamination of T+(ϕ), in
terms of Bestvina-Feighn-Handel’s “stable lamination” associated
to ϕ.

1. Introduction

For a closed surface Σ with Euler characteristic χ(Σ) < 0 geodesic
laminations play an important theoretical role, for many purposes. In
particular, if such a lamination L is equipped with a transverse measure
µ, it becomes a powerful tool, for example in the analysis of the map-
ping class [h] of a homeomorphism h : Σ → Σ. The set of projective
classes [L, µ] of such measured laminations carries a natural topology,
and the issuing space PML(Σ) of projective measured laminations is
homeomorphic to a high dimensional sphere: One of Thurston’s funda-
mental results shows that PML(Σ) serves naturally as boundary to the
Teichmüller space T (Σ) of Σ, and the action of the mapping class group
Mod(Σ) extends canonically to the compact union T (Σ) ∪ PML(Σ).

In this paper we are interested in the “cousin world”, where Σ (or
rather π1Σ) is replaced by a free group FN of finite rank N ≥ 2, the
mapping class group Mod(Σ) is replaced by the outer automorphism
group Out(FN), and the role of Teichmüller space T (Σ) is (usually)
taken on by Outer space CVN . These and the other terms used in this
introduction will be explained in section 2.
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2 ILYA KAPOVICH AND MARTIN LUSTIG

In the Out(FN)-setting, both, topological laminations L and mea-
sured laminations (L, µ) have natural analogues, but the situation is
quite a bit more intricate: There are two competing analogues of mea-
sured lamination, namely R-trees T with isometric FN -action, and cur-
rents µ over FN . Both, the space of such R-trees as well as the space of
such currents have projectivizations which can be used to compact-
ify CVN (in two essentially different ways, see [11]), and both are
used as important tools to analyze single automorphisms of FN . Also,
both, an R-tree T and a current µ, determine an algebraic lamina-
tion, denoted L2(T ) (the dual lamination of T ) and L2(µ) = supp(µ)
(the support of µ) respectively. Algebraic laminations L2 for a free
group FN are the natural analogues of (non-measured) geodesic lam-

inations L on a surface Σ (or rather, of their lift L̃ ⊂ Σ̃ to the

universal covering Σ̃ of Σ: the set L2 consists of FN -orbits of pairs
(X, Y ) ∈ ∂2FN := ∂FN × ∂FN r {(Z,Z) | Z ∈ ∂FN}).

The two spaces which serve (after projectivization) as analogues of
T (Σ)∪PML(Σ), namely the space cvN of very small R-tree actions of
FN , and the space Curr(FN) of currents over FN , are related naturally
by an Out(FN)-equivariant continuous intersection form 〈·, ·〉 : cvN ×
Curr(FN) → R≥0 (see [12]). In [13] it has been shown that 〈T, µ〉 = 0
if and only if supp(µ) ⊂ L2(T ). Sometimes this inclusion is actually an
equality: for example, if (L, µ) is a measured lamination of a surface Σ
with boundary, and Tµ is the R-tree transverse to the lift of (L, µ) to the
universal covering of Σ, and if L is maximal (i.e. every complementary
component has either 3 cusps, or 1 boundary component plus 1 cusp),
then the current µ̂ defined by (L, µ) satisfies supp(µ̂) = L2(Tµ).

However, in general one can not deduce from 〈T, µ〉 = 0 the equal-
ity supp(µ) = L2(T ), since the dual laminations of R-trees are by
nature always diagonally closed, i.e. the diagonal closure diag(L2(T ))
is equal to L2(T ) for all T ∈ cvN . On the other hand, the support
of a current may well be minimal and thus typically a proper sub-
set of its diagonal closure. Moreover, it is easy to find perpendicular
pairs (T, µ) (i.e. T and µ satisfy 〈T, µ〉 = 0) where even the diago-
nal closure diag(supp(µ)) is only a proper subset of L2(T ). A class of
examples with even stronger properties is described in section 7; al-
ternatively, any measured lamination (L, µ) on a surface which has a
complementary component with non-abelian π1 defines a perpendicular
pair (Tµ, µ̂) as above, with diag(supp(µ̂)) 6= L2(Tµ).

For pseudo-Anosov mapping classes [h] of Σ it is well known that the
induced action on T (Σ)∪PLM(Σ) has uniform North-South dynamics.
In particular, [h] has precisely one attracting and one repelling fixed
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point on PLM(Σ). These very statements are also true for the induced
actions of atoroidal iwip automorphisms of FN on both “cousin spaces”,
CVN and PCurr(FN), so that the (much studied) class of atoroidal iwip
automorphisms should be considered as strict analogue of the class of
pseudo-Anosov mapping classes. In [13] it has been shown that for any
atoroidal iwip ϕ ∈ Out(FN) the forward limit tree T+ = T+(ϕ) ∈ cvN ,
which defines the attracting fixed point [T+] ∈ CVN , is perpendicular
to the backward limit current µ− = µ−(ϕ) ∈ Curr(FN), which gives the
repelling fixed point [µ−] ∈ PCurr(FN):

〈T+(ϕ), µ−(ϕ)〉 = 0 for any atoroidal iwip ϕ ∈ Out(FN)

The main result of this paper can now be stated as follows:

Theorem 1.1. Let ϕ be an atoroidal iwip automorphism of FN . Let T+

be its forward limit tree, and let µ− be its backward limit current. Then
the dual lamination L2(T+) and the diagonal closure of the support
supp(µ−) satisfy:

L2(T+) = diag(supp(µ−))

This result raises the question, what the precise conditions are, which
allow one to deduce for perpendicular pairs (T, µ) ∈ cvN × Curr(FN)
the analogous conclusion, i.e. that L2(T ) = diag(supp(µ)). A nec-
essary condition for such a conclusion is that µ “fills out” enough of
the available room in FN which is “potentially dual” to T . Making
such an indication precise takes more room than available here in the
introduction. We will discuss those matters below in section 7.

A second result of this paper, which is stronger than Theorem 1.1,
concerns the structure of the lamination L2(T+). The proof of this
result is really the main purpose of this paper; we show below how to
derive Theorem 1.1 from the following:

Theorem 1.2. Let ϕ be an atoroidal iwip automorphism of FN , and
let T+ be its forward limit tree. Then there exists a sublamination
L2
BFH ⊂ L2(T+) which satisfies:

(1) L2
BFH is the “stable lamination” exhibited by Bestvina-Feighn-

Handel in [2] for ϕ−1. In particular, L2
BFH is minimal and

non-empty.
(2) L2

BFH is the only minimal and non-empty sublamination of L2(T+).
(3) L2(T+) = diag(L2

BFH)
(4) L2(T+) rL2

BFH is a finite union of FN -orbits of pairs (X, Y ) ∈
∂2FN .
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The arguments given below prove also that L2
BFH is contained in

supp(µ−). Indeed, it can be shown (by a direct argument) that the
two laminations are equal.

In the course of our proof we also give several alternative characteri-
zations of the dual lamination L2(T+), based on (absolute) train track
representatives of ϕ or of ϕ−1. The precise terminology of the terms
used is given in sections 4 and 5 below.

Proposition 1.3. Let ϕ be an atoroidal iwip automorphism of FN , and
let T+ be its forward limit tree. Let f+ : τ+ → τ+ and f− : τ− → τ− be
stable train track maps that represent ϕ and ϕ−1 respectively.

(1) The dual lamination L2(T+) consists precisely of all pairs (X, Y ) ∈
∂2FN such that for some C > 0 the whole ϕ-orbit ϕt(X, Y ) is totally
C-illegal with respect to f+.

(2) The dual lamination L2(T+) consists precisely of all pairs (X, Y ) ∈
∂2FN such that the whole ϕ-orbit is uniformly ϕ-contracting (or, equiv-
alently, uniformy ϕ−1-expanding).

(3) The dual lamination L2(T+) consists precisely of all pairs (X, Y ) ∈
∂2FN such that the whole ϕ-orbit is used legal with at most one singu-
larity, with respect to f−.

This proposition is a direct consequence of the fact that in the course
of our proof of Theorem 1.2 we show first that L2(T+) is included in
the set of pairs from ∂2FN defined by the the property stated in part
(1) of Theorem 1.2. One then shows that this set of pairs is contained
in the set defined by part (2), and that the latter is contained in the set
defined by part (3). In a final step one shows the set of (X, Y ) defined
in part (3) is contained in the diagonal closure of L2

BFH . But by part (3)
of Theorem 1.2 the lamination L2(T+) is equal to this diagonal closure,
so that all of the previous inclusions must be in fact euqualities.

Using the same type of arguments one deduces Theorem 1.1 from
Theorem 1.2: From the perpendicularity of T+ with µ− we derived
above that supp(µ−) is a subset of L2(T+), which implies (compare
Definition-Remark 2.5) diag(supp(µ−)) ⊂ diag(L2(T+)) Since L2(T+)
is diagonally closed (see Proposition 2.10), we obtain:

diag(supp(µ−)) ⊂ L2(T+)

On the other hand, from the uniqueness property given by part (2) of
Theorem 1.2 one deduces that L2

FBH is contained in supp(µ−). Hence
(again by Definition-Remark 2.5) diag(L2

FBH) must be contained in
diag(supp(µ−)), so that part (3) of Theorem 1.2 yields

L2(T+) ⊂ diag(supp(µ−)) .
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Organisation of the paper:

• In §2 we recall the basic facts and definitions about R-trees,
Outer space and iwip automorphisms. We also review some of
the basics of algebraic laminations, define the diagonal closure
of a lamination, and recall some of the known facts about the
dual lamination of an R-tree.
• In §3 we recall the basic facts and definitions of train track

maps. We purposefully employ space and care to make this
section accessible for, say, a graduate student who is only par-
tially an expert of the subject.
• In §4 we show that the dual lamination L2(T+) of the forward

limit tree T+ of an atoroidal iwip automorphism ϕ has a strong
contraction property with respect to the action of ϕ. This im-
plies that L2(T+) has a strong expansion property with respect
to the action of ϕ−1

• In §5 we will show that any lamination with a strong expansion
property with respect to ϕ−1, when realized as geodesic paths on
a train track representative f− : τ− → τ− of ϕ−1, consists only
of paths which are entirely “used legal”, or else have precisely
one “singularity” (the terms will be defined there). It will also
be shown that the sublamination of L2(T+) which is realized
by used legal geodesics on τ− is contained in Bestvina-Feighn-
Handel’s “attracting” lamination L2

BFH(f−) associated to the
train track map f−.
• In §6 we consider elements (X, Y ) ∈ L2(T+) which are realized

on τ− by used legal geodesics with precisely one singularity. We
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show that such geodesics have a rather special form: they are
(essentially) the concatenation of two eigenrays of the map f−.
As a consequence, we show that such pairs (X, Y ) must lie in
the diagonal closure of L2

BFH(f−). Also, the finiteness of such
pairs (up to the FN -action) as well as the fact that they are
non-rational is a direct consequence of this characterization.
• In section 7 we discuss some question issuing from our main

result and the surrounding facts.

2. Definition of terms and background

The purpose of this section is to properly define the terms used in
the introduction, and to give some background with references about
them.

Throughout the paper we fix a “model” free group FN of finite rank
N ≥ 2. A finite connected graph τ is called a marked graph, if it

is equipped with a marking isomorphism θ : FN
∼=−→ π1(τ). Here

we purposefully suppress the issue of choosing a basepoint of τ , as in
this paper we are interested in automorphims of FN only up to inner
automorphisms.

2.1. Outer space.

We give here only a brief overview of basic facts related to Outer
space. We refer the reader to [9] for more detailed background infor-
mation.

The unprojectivized Outer space cvN consists of all minimal free and
discrete isometric actions on FN on R-trees (where two such actions are
considered equal if there exists an FN -equivariant isometry between the
corresponding trees). There are several different topologies on cvN that
are known to coincide, in particular the equivariant Gromov-Hausdorff
convergence topology and the so-called length function topology. Every
T ∈ cvN is uniquely determined by its translation length function ||.||T :
FN → R, where ||g||T := min{d(gx, x) | x ∈ T} is the translation length
of g on T . Two trees T1, T2 ∈ cvN are close if the functions ||.||T1 and
||.||T1 are close pointwise on a large ball in FN . The closure cvN of
cvN in either of these two topologies is well-understood and known
to consists precisely of all the so-called very small minimal isometric
actions of FN on R-trees, see [1] and [4].

The outer automorphism group Out(FN) has a natural continuous
right action on cvN (that leaves cvN invariant) given at the level of
length functions as follows: for T ∈ cvN and ϕ ∈ Out(FN) we have
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||g||Tϕ = ||Φ(g)||T , with g ∈ FN and Φ ∈ Aut(FN) representing ϕ ∈
Out(Fn).

The projectivized Outer space CVN = PcvN is defined as the quotient
cvN/ ∼ where for T1 ∼ T2 whenever T2 = cT1 for some c > 0. One
similarly defines the projectivization CVN = PcvN of cvN as cvN/ ∼
where ∼ is the same as above. The space CVN is compact and contains
CVN as a dense Out(FN)-invariant subset. The compactification CVN

of CVN is a free group analogue of the Thurston compactification of
the Teichmüller space. For T ∈ cvN its ∼-equivalence class is denoted
by [T ], so that [T ] is the image of T in CVN .

2.2. Laminations and the diagonal closure.

For the free group FN we define the double boundary

∂2FN := {(X, Y ) ∈ ∂FN × ∂FN | X 6= Y }.

The set ∂2FN comes equipped with a natural topology, inherited from
and ∂FN×∂FN , and with a natural translation action of FN by homeo-
morphisms. There is also a natural flip map ∂2FN → ∂2FN , (X, Y ) 7→
(Y,X), interchanging the two coordinates on ∂2FN .

The following definition has been introduced and systematically stud-
ied in [6], where also further background material concerning this sub-
section can be found.

Definition 2.1. An algebraic lamination on FN is a non-empty subset
L2 ⊆ ∂2FN which is (i) closed, (ii) FN -invariant, and (iii) flip-invariant.

In analogy to laminations on surfaces, the elements (X, Y ) ∈ L2 are
sometimes also referred to as the leaves of the algebraic lamination L2.

In some circumstances it is useful to admit the empty set as algebraic
lamination. We will formally stick to the classical non-empty notion,
but occasionally informally include the empty set in our discussions
about algebraic lamination.

Example 2.2. Let Ω be a set of conjugacy classes [w] with w ∈ FN .
Denote by w∞ and w−∞ the attracting and the repelling fixed points
respectively of the action of w on ∂FN . Then

L2(Ω) := {(vw∞, vw−∞) | v ∈ FN , [w] ∈ Ω ∪ Ω−1}

is an algebraic lamination.

Remark 2.3. (a) Note that, in the above Example 2.2, for finite Ω
taking the closure on the right hand side of the displayed equality can
be omitted without changing the set L2(Ω).



8 ILYA KAPOVICH AND MARTIN LUSTIG

(b) Thus for finite Ω one obtains a lamination L2(Ω) which consists
only of finitely many FN -orbits of leaves. Indeed, it is an easy exercise
to show that any such finite lamination occurs precisely in this way.
(For the less experienced reader we recommend for this exercise the
transition to symbolic laminations, as described in detail in [6].)

Definition 2.4. An algebraic lamination L2 6= ∅ is called minimal if
it doesn’t contain any proper sublamination (other than ∅). This is
equivalent to requiring that for any (X, Y ) ∈ L2 the set FN · (X, Y ) ∪
FN · (Y,X) is dense in L2.

The following terminology is inspired by geodesic laminations on
surfaces, and isolated leaves which cross diagonally through one of the
complementary components.

Definition-Remark 2.5. Let S be a subset of ∂2FN .

(a) The diagonal extension diag(S) of S is the set of all (X, Y ) ∈
∂2FN such that for some integer m ≥ 1 there exist elements
X = Z0, Z1, . . . , Zm = Y in ∂FN such that (Zi−1, Zi) ∈ S for
i = 1, . . . ,m.

(b) It is easy to see that S ⊆ diag(S) and that diag(diag(S)) =
diag(S).

(c) A subset S ⊆ ∂2FN is said to be diagonally closed if S =
diag(S).

(d) If S ′ ⊆ S ⊆ ∂2FN then diag(S ′) ⊆ diag(S).

(e) If S is FN -invariant, then so is diag(L). Similarly, if S is flip-
invariant then so is diag(S). However, if S is a closed subset of
∂2S, then we can deduce that diag(S) is closed only of diag(S)r
S is finite.

(f) We denote by diag(S) the closure of diag(S) in ∂2FN . For
any algebraic lamination L2 the diagonal closure diag(L2) is
again an algebraic lamination. If diag(L2) r L2 is finite, then
diag(L2) = diag(L2).

Remark 2.6. Examples of laminations where the diagonal extension
is not closed are easy to come by. For example, if L2 is given by a
geodesic lamination on a surface, then diag(L2) is closed if and only if
all complementary components are simply connected.

If one picks a basis A for FN , one can associate naturally to any pair
(X, Y ) ∈ FN a biinfinite reduced word Z = X−1 · Y in A ∪ A−1, and
to Z the set L of all finite subwords. In this way one can associate to
every algebraic lamination L2 a symbolic lamination LA and a laminary
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language LA, and both of these translations are inversible. For details
see [6].

Interpreting words in A±1 as paths in the the associated rose ρA,
or in its universal covering, the Cayley graph Γ(FN ,A), one can easily
generalize the concepts of a “symbolic lamination” or a “laminary lan-
guage” to more general graphs τ with an identification FN = π(τ), or
to their universal coverings. For the purposes of this paper, however,
the following suffices:

Definition 2.7. Let τ be a graph with a marking θ : FN
∼=−→ π1τ , and

let ∂θ : ∂FN → ∂τ be the induced homeomorphisms on the Gromov
boundaries.

Let (X, Y ) ∈ ∂2FN , and let γ̃ be the biinfinite reduced path (the
“geodesic”) in the universal covering τ̃ of τ which joins the boundary
point ∂θ(X) to the boundary point ∂θ(Y ).

The reduced biinfinite path γ in τ which is the image of γ̃, under the
universal covering map τ̃ → τ , is called the geodesic realization (in τ)
of the pair (X, Y ), and is denoted by γτ (X, Y ).

Assume now that the marked graph τ comes with a homotopy equiv-
alence f : τ → τ which represents ϕ ∈ Aut(FN), i.e. ϕ ◦ θ = f∗ ◦ϕ (up
to inner automorphisms of π1(τ)). In this case it follows directly from
the above definition that, for any integer t ≥ 0 and any (X, Y ) ∈ ∂2FN ,
the geodesic realizations satisfy the equality

[f t(γτ (X, Y ))] = γτ (∂ϕ
t(X), ∂ϕt(Y )) ,

where for any (possibly non-reduced) path η we denote by [η] the re-
duced path obtained from η by reduction.

We say that a lamination L2 is generated by an infinite set of edge
paths γi in a marked graph τ , if a pair (X, Y ) ∈ ∂2FN belongs to L2 if
and only if any finite subpath of the geometric realization γτ (X, Y ) is
also a subpath of some γi or γi.

It is easy to see (compare [6]) that any infinite set of edge paths in
τ generates an algebraic lamination.

2.3. The algebraic lamination dual to an R-tree.

To any tree T ∈ cvN in [7] there has been naturally associated a dual
algebraic lamination (also called the zero lamination) L2(T ) of T :

Definition 2.8. Let T be an R-tree from cvN .

(1) For any ε > 0 let Ωε(T ) be the set of elements w ∈ FN with
translation length ||w||T ≤ ε, and let L2

ε(T ) =: L2(Ωε(T )).
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(2) Define L2(T ) :=
⋂
ε>0

L2
ε(T ).

In [7] it has been shown that set L2(T ) is an algebraic lamination
on FN , if T ∈ ∂cvN , and L2(T ) = ∅ otherwise (i.e. T ∈ cvN). It has
also been shown in [7], for any basis A of FN , that L2(T ) is precisely
the set of all (X, Y ) ∈ ∂2FN such that the associated reduced biinfinite
word Z in A±1 has the property that for every finite subword w of Z
and any ε > 0 there is a cyclically reduced word v which contains w as
subword and satisfies ||v||T ≤ ε.

As a slight extension of the latter, we can formulate the criterion
which alternatively could serve as definition for this paper:

Remark 2.9. For any marked graph τ the following characterization of
L2(T ) holds:

A finite geodesic path γ′ is a subpath of the geodesic realization
γτ (X, Y ) for some (X, Y ) ∈ L2(T ) if and only if for any ε > 0 there is
an element w ∈ FN with translation length on T of seize ||w||T ≤ ε,
such that the conjugacy class of w in FN is represented by a geodesic
loop γ̂ which contains γ′ as subpath.

It is well known that every T ∈ ∂cvN either contains points x ∈ T
with non-trivial stabilizer stab(x) ⊂ FN , or else T has dense orbits:
This means that every orbit FNx of a point x ∈ T is a dense subset
of T . Note that this means that in particular the set of branch points
(i.e. points with 3 or more complementary components) is dense in T .
Of course, there are also trees T ∈ ∂cvN which have both, non-trivial
point stabilizers, and dense orbits.

For T ∈ cvN with dense FN -orbits one can give an equivalent charac-
terization of L2(T ) to that given in Definition 2.8 above. For such a tree

T there is a canconical FN -equivariant map Q : ∂FN → T̂ = T ∪ ∂T ,
constructed in [7], where ∂T is the metric completion of T . The precise
nature of how the map Q is defined is not relevant for the present paper.
However, it is proved in [7] that in this case for (X, Y ) ∈ ∂2FN we have
(X, Y ) ∈ L2(T ) if and only if Q(X) = Q(Y ). This fact immediately
implies:

Proposition 2.10. Let T ∈ cvN have dense FN -orbits. Then L2(T ) is
diagonally closed, that is diag(L2(T )) = L2(T ).

2.4. Iwip automorphisms.
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Definition 2.11. (a) An outer automorphism ϕ ∈ Out(FN) is called
irreducible with irreducible powers (iwip) if no positive power of ϕ pre-
serves the conjugacy class of a proper free factor of FN .

(b) An outer automorphism ϕ ∈ Out(FN) is called atoroidal if it has
no non-trivial periodic conjugacy classes, i.e. if there do not exist t ≥ 1
and w ∈ FN − {1} such that ϕt fixes the conjugacy class [w] of w in
FN .

It was proved in [3] that for N ≥ 2 an iwip automorphisms ϕ ∈
Out(FN) is non-atoroidal if and only if ϕ is induced, via an identifica-
tion of FN with the fundamental group of a compact surface S with
a single boundary component, by a pseudo-Anosov homeomorphisms
h : S → S.

Remark 2.12. The terminology “iwip” derives from the groundbreaking
paper [3]: Bestvina-Handel call an element ϕ ∈ Out(FN) is reducible
if there exists a free product decomposition FN = C1 ∗ . . . Ck ∗ F ′,
where k ≥ 1 and Ci 6= {1}, such that ϕ permutes the conjugacy classes
of subgroups C1, . . . , Ck in FN . An element ϕ ∈ Out(FN) is called
irreducible if it is not reducible.

It is not hard to see that an element ϕ ∈ Out(FN) is an iwip if and
only if for every n ≥ 1 the power ϕn is irreducible (sometimes such
automorphisms are also called fully irreducible).

It is known by a result of Levitt and Lustig [17] that iwips have a
simple “North-South” dynamics on the compactified Outer space CVN :

Proposition 2.13. [17] Let ϕ ∈ Out(FN) be an iwip. Then there
exist unique [T+] = [T+(ϕ)], [T−] = [T−(ϕ)] ∈ CVN with the following
properties:

(1) The elements [T+], [T−] ∈ CVN are the only fixed points of ϕ in
CVN .

(2) For any [T ] ∈ CVN , [T ] 6= [T−] we have limn→∞[Tϕn] = [T+]
and for any [T ] ∈ CVN , [T ] 6= [T+] we have limn→∞[Tϕ−n] =
[T−].

(3) We have T+ϕ = λ+T and T−ϕ
−1 = λ−T− where λ+ > 1 and

λ− > 1.
(4) Both, T+ and T− are “intrinsically non-simplicial” R-trees: Ev-

ery FN -orbit of points is dense in the tree.

In [17] it is also proved that convergence in (2) is locally uniform and
hence uniform on compact subsets. For more information see [15]. A
description of T+ in terms of train tracks is given below in section 3.7.
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3. Train track technology

This section will be a reference section, organized by subheaders as a
kind of glossary. Almost everything in this section is known, or within
ε-neighborhood of known facts. It is only for the convenience of the
reader that we assemble in this section what is needed later from basic
train track theory.

The expert reader is encouraged to completely skip this section and
only go back to it if he or she needs an additional explanation in the
course of reading the later sections.

Notation 3.1. In order to avoid confusion, in this section the automor-
phisms in question will be denoted by α, as in the later sections we will
have to consider both cases, α = ϕ and α = ϕ−1. Similarly, a train
track map will be called f : τ → τ (to be specified later to f+ : τ+ → τ+
or f− : τ− → τ−, the forward limit tree will be simply called T (rather
than T+ or T−), etc.

3.1. Graphs, paths and graph maps.

In this paper τ will always denote a graph, specified as follows:

Convention 3.2. By a graph τ we mean a non-empty topological space
which is equipped with a cell structure, consisting of vertices and edges.
Furthermore, τ satisfies the following conditions, unless explicitly oth-
erwise stated:

• τ is connected.
• τ is a finite graph, i.e. it consists of finitely many vertices and

edges.
(Of course, the universal covering τ̃ of a finite graph τ is in

general not finite, but this counts as “explicitly stated excep-
tion”.)
• There are no vertices of valence 1 in τ (but we do admit vertices

of valence 2).

We systematically denote vertices of τ by v, v′ or vi, and edges by
e, e′, ej etc. A point which can be a vertex or an interior point of an
edge is usually denoted by P or Q.

An edge e of τ is always oriented, and we denote by e the conversely
oriented edge. In an edge path . . . ekek+1ek+2 . . . we always write the
edges ei in the direction in which the path runs. We occasionally use
Edges(τ) to denote the edge set of τ . We use the convention that its
elements are, as before, oriented edges, so that the edge set Edges(τ)
contains for each pair e, e only the element e. If need be, we use the
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notation Edges(τ) := {e | e ∈ Edges(τ)}. Note that one is free, at any
convenient time, to reorient edges: this operation does not change the
graph, in our understanding, only the extra information about notation
of edges.

However: to be specific: if we say “an edge of τ”, this may well be
the edge e, for e ∈ Edges(τ).

We will denote the simplicial length of an edge path γ, i.e. the
number of edges traversed by γ, with L(γ). For the edge path γ, by
which we mean the path γ with reversed orientation, one has of course
L(γ) = L(γ). In particular, for any single edge e one has L(e) = L(e) =
1.

Convention-Definition 3.3. (a) If we use the terminology path with-
out further specification, we always mean a finite path. The reader is
free to formalize paths according to his or her own preferences; in most
cases we recommend the viewpoint where a path γ means an edge path
γ = e1 ◦ e2 ◦ . . . ◦ eq, where the ei are edges of τ such that the terminal
vertex of any ei coincides with the initial vertex of ei+1. According to
circumstances, we generalize this concept sometimes slightly by allow-
ing that e1 (or eq) is a non-degenerate terminal (or initial) segment of
an edge (or, if q = 1, any segment of a single edge).

A path γ is called trivial or degenerate if it consists of a single point.
Otherwise, γ is said to be non-trivial or non-degenerate.

We will also sometimes suppress the distinction between an edge (or
edge segment) e and a path which traverses precisely e.

(b) A path γ′ is called a backtracking path if its endpoints coincide, and
if the issuing loop is contractible in τ . If γ′ occurs as subpath of a path
γ, then γ′ is called a backtracking subpath of γ.

(c) A (possibly infinite or biinfinite) path γ is reduced if it doesn’t con-
tain any non-degenerate backtracking subpath. We denote by [γ] the
reduced path obtained from a possibly non-reduced path γ by itera-
tively contracting all non-degenerate backtracking subpaths. (It is well
known that [γ] depends only on γ and not on the sequence of iteratively
contracted backtracking subpaths).

(d) Two subpaths γ1 and γ2 of a path γ are disjoint if in the course
of traversing γ one first traverses γ1 completely without starting γ2, or
conversely. Similarly we define the overlap of the two subpaths as the
maximal subpath of γ which is also a subpath of both γi.

Recall from the beginning of section 2 that a finite connected graph τ
is called a marked graph, if it is equipped with a marking isomorphism

θ : FN
∼=−→ π1(τ). Recall also that we purposefully suppress the issue
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of choosing a basepoint of τ , as we are only interested in automorphims
of FN up to inner automorphisms.

Convention-Definition 3.4. (a) A map f : τ → τ ′ between graphs
τ and τ ′ will always map vertices to vertices and edges to edge paths,
which a priori may be non-reduced.

(b) A self-map f : τ → τ of a graph τ , provided with a marking
isomorphism θ : FN → π1(τ), represents an automorphism α of FN if
the induced automorphisms f∗ : π1(τ) → π1(τ) satisfies θ ◦ α = f∗ ◦ θ
up to inner automorphisms.

Remark 3.5. It is well known [5] that for any map f : τ → τ ′ between
graphs τ and τ ′, which induces an isomorphism on π1(τ) (or, for the
matter, a monomorphism), there is an upper bound to the length of
any backtracking path γ′ which is contained as subpath in the (non-
reduced) image f(γ) of a reduced path γ in τ .

Definition 3.6. (a) A self-map f : τ → τ is called expanding if for
every edge e of τ there is an exponent t ≥ 1 such that the edge path
f t(e) has length L(f t(e)) ≥ 2.

(b) If f : τ → τ is expanding, then there is a well defined self-map Df
on the set Edges(τ) ∪ Edges(τ) which associates to every edge e the
initial edge of the edge path f(e).

Remark 3.7. If a self-map f : τ → τ represents an iwip automorphism
of FN , then the hypothesis that f be expanding is always easy to satisfy:
It suffices to contract all edges which are not expanded by any iterate
f t to an edge path of length ≥ 2: The issuing contracted subgraph
must be a forest, as otherwise some f t will fix (up to conjugacy) a
non-trivial proper free factor of π1(τ).

Alternatively, one can reparamatrize the map f along each edge so
that it becomes a true homothety with respect to the Perron-Frobenius
metric introcuded in subsection 3.7 below.

Since in this paper we will concentrate on self-maps of graphs that
represent iwip automorphisms, we will almost exclusively consider self-
maps f : τ → τ that are expanding.

Lemma 3.8. Let the self-map f : τ → τ of the graph τ be expanding,
and assume that f represents an iwip automorphism of FN . Then we
have:

(1) Every f -invariant subgraph τ0 ⊂ τ is either a single vertex (or a
collection of vertices, if one relaxes the convention that a graph
is connected), or equal to all of τ .
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(2) For every edge e there exists an exponent t ≥ 0 such that the
(possibly non-reduced) edge path f t(e) crosses three or more
times over e or e.

Proof. (1) Assume that τ0 ⊂ τ contains at least one edge. From the
assumptions that f is expanding, and that f(τ0) ⊂ τ0, it follows that
π1(τ0) is non-trivial. From the iwip hypothesis it follows that the in-
clusion τ0 ⊂ τ induces an isomorphisms on π1. Hence our convention
on graphs (see subsection 3.1), that τ is finite and does not contain
vertices of valence 1, implies τ0 = τ .

(2) By the expansiveness of f there is at least one edge e with the prop-
erty described in statement (2). We consider a subgraph τ0 which (i)
contains at least one such edge, (ii) is f -invariant, and (iii) is minimal
with respect to the properties (i) and (ii). If τ0 contains edges which do
not satisfy statement (2), then the union of those must be a non-empty
subcomplex which is f -invariant (since any edge e, which lies outside
of this union but is contained in its image, must have all image paths
f t(e) disjoint from this union, thus contradicting the above minimality
assumption (iii)). But this contradicts the expansiveness of f . Thus τ0
consists only of edges satisfying statement (2). From statement (1) it
follows τ0 = τ . tu

3.2. Gates, turns, train tracks.

Definition 3.9. (a) For any expanding self-map of graphs f : τ → τ
and any vertex v of τ one partitions the edges with initial vertex v into
equivalence classes, called gates gi, by the following rule: Two edges e1
and e2, both with initial vertex v, belong to a common gate gi if and
only if there is an exponent t ≥ 1, such that Df t(e1) = Df t(e2). To be
specific, in case of a loop edge e at v (i.e. the initial and the terminal
vertex of e both coincide with v) the edges e and e count as distinct
edges with initial vertex v, which can or cannot belong to the same
gate at v.

(b) This definition is sometimes extended to points P in the interior
of an edge e, at which there are precisely two gates, one containing
precisely the terminal segment e′′ of e which starts at P , and the other
one containing precisely the edge segment e′, where e′ is the initial
segment of e which terminates at P .

Remark 3.10. For any vertex (or point P ) of τ the map f induces via
the map Df a map fPG from the gates at P to the gates at f(P ). It
follows directly from Definition 3.9 (a) that this map fPG is injective,
and hence, if P is a periodic point, that fPG is bijective.
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Definition 3.11. (a) A pair of edges of τ forms a turn (e, e′) at a vertex
v if and only if both, e and e′, have v as initial vertex. The turn is said
to be degenerated if e = e′. Otherwise it is called non-degenerate.

(b) A path γ crosses over a turn (e, e′) (or contains the turn (e, e′))
if γ contains the edge path e ◦ e′ as subpath (or a path e0 ◦ e′0 for
non-degenerate initial segments e0 of e and e′0 of e′).

Note that a path γ is reduced if and only of it doesn’t cross over any
degenerate turn.

Definition 3.12. Let f : τ → τ be an expanding self-map of a graph
τ .

(1) The map f induces canonically a map D2f on turns, by setting
D2((e, e′)) = (Df(e), Df(e′)).

(2) A turn (e, e′) is called legal if for all t ≥ 0 the image turn
D2f t((e, e′)) is non-degenerate. Otherwise (e, e′) is called illegal.
In particular, all degenerate turns are illegal.

A path (or loop) γ in τ is called legal if it crosses only over
legal turns. Otherwise it is called illegal.

(From Definition 3.9 it follows directly that the turn (e, e′) is
legal if and only if e and e′ belong to distinct gates at their
common initial vertex.)

(3) The map f is called a train track map if for every edge e of τ
the edge path f(e) is legal. (It is easy to see that this condition
is equivalent to the requirement that f maps any legal path γ
to a legal path f(γ).)

Remark 3.13. (a) It follows directly from the Definition 3.12 (2) that
D2f maps legal turns to legal turns, and illegal turns to illegal turns.

(b) If f : τ → τ is not expanding, then one can use the following
definition of legal paths, which in the expanding case is equivalent to
the one given in Definition 3.12 (2):

A path γ in τ is said to be legal if the maps f t are locally injective
along γ, for all t ≥ 1.

(c) In some circumstances it can be useful to consider more general
“train track maps”, i.e. self-maps of graphs which have the train track
property that legal maps are mapped to legal paths (where “legal paths”
are defined as in part (b) above). However, in this paper we insist on
the assumption that a train track map f : τ → τ is always expanding !

We now state a crucial property of train track maps, which follows
directly from the Definition 3.12:
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Remark 3.14. For any train track map f : τ → τ and any path γ in
τ the number of illegal turns which are crossed over by γ, denoted by
ILT(γ), satisfies:

ILT([f(γ)]) ≤ ILT(f(γ)) = ILT(γ)

Of course, a path γ is legal if and only if ILT(γ) = 0.

Lemma 3.15. If f : τ → τ is a train track map which represents an
iwip automorphism of FN , then at every vertex of τ there are at least
2 gates.

Proof. Let v be any vertex of τ , and let e be an edge with initial vertex
v. Since f is a train track map, the path f t(e) must be legal, for any
t ≥ 0. By Lemma 3.8 (2) for some value of t the path f t(e) contains e
(or e) as interior edge. Let e′ be the edge adjacent to this occurrence of
e (or e) on f t(e), so that e′e or e e′ is a subpath of f t(e). By Definition
3.12 (2) the edges e′ and e belong to distinct gates (at the vertex v). tu

The following is one of the fundamental results for automorphisms of
free groups (slightly adapted to the language specified in this section):

Theorem 3.16 ([3]). For every iwip automorphism α of FN there ex-
ists a train track map f : τ → τ that represents α.

3.3. Eigenrays.

Throughout this subsection we assume that f : τ → τ is a train
track map.

Definition 3.17. (a) A ray ρ is an infinite path in τ which doesn’t
necessarily start at a vertex. The path ρ can alternatively be thought
of as locally injective map R≥0 → τ which crosses infinitely often over
vertices, or as reduced infinite edge path e′1e2e3 . . ., where the ei with
i ≥ 2 are edges of τ , and e′1 is a non-degenerate terminal segment
of some edge e1 of τ (which includes the possibility e′1 = e1). The
point P ∈ τ (not necessarily a vertex !) which is the inital point of e′1
(from the second viewpoint) or the image of 0 ∈ R≥0 (from the first
viewpoint) is called the starting point of ρ. If P is a vertex, then we
also call it the initial vertex of ρ.

(b) A ray ρ is called an eigenray if one has f t(ρ) = ρ for some integer
t ≥ 1. (Note that the condition f t(ρ) = ρ is stronger than requiring
just [f t(ρ)] = ρ !) In particular, it follows that the starting point P of
ρ is f -periodic, and that ρ is a legal path.
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Lemma 3.18. Let γ be a non-trivial finite path in τ , and assume that
for some t ≥ 1 the map f t maps γ to a path f t(γ) which contains γ as
initial subpath. Then there is precisely one eigenray ρ in τ which has
γ as initial subpath.

Proof. It is easy to see that the union of the fkt(γ) for all k ≥ 1 form
an eigenray. Conversely, any eigenray ρ which contains γ as initial
subpath must also contain any fkt(γ) as initial subpath. tu

We see from Lemma 3.18 that an eigenray can never bifurcate in
the forward direction to give rise two eigenrays with same initial point.
However, we will see later that, in the negative direction, an eigenray
may well bifurcate, giving rise to an INP (compare Lemma 3.26).

Proposition 3.19. Let f : τ → τ be a train track map, and let P be
a periodic vertex (or interior point) of τ . Then every gate gi at P is
mapped by f periodically. A gate gi contains precisely one edge ei on
which Df acts periodically (an “eigen edge”), and there is precisely one
eigenray ρ which starts “from gi”, i.e. which starts with an edge (or
edge segment) that belongs to g. This edge is precisely the eigen edge
ei.

Proof. By Definition 3.9 for every gate g there is an exponent t ≥ 0
such that Df t maps every edge of g to a single edge. Recall from
Remark 3.10 that for each periodic point P of τ the map f induces a
periodic map fPG on the gates at P . Hence each gate gi at P contains
precisely one edge ei (the “eigen edge”) which is periodic under the
induced map Df , say with period k(i) ∈ N.

Thus fk(i)(ei) is an edge path with initial subpath ei. Hence Lemma
3.18 gives us a well defined eigenray which starts from the gate gi, with
initial edge ei.

Since the initial edge (or edge segment) of an eigenray is necessarily
periodic under the map Df , and two eigenrays with same initial edge
(or edge segment) must agree (see Lemma 3.18), it follows that from
every gate only one eigenray can start. tu

From Proposition 3.19 we obtain directly the following:

Corollary 3.20. For every periodic point P of τ there is a canonical
bijection between (i) the gates at P , (ii) the eigen edges with initial
vertex P , and (iii) the eigenrays with starting point P . tu

We also need later on the following property:

Lemma 3.21. Let f : τ → τ be a train track map which represents an
automorphism of FN , and let ρ be an eigenray in τ . Then ρ can not be
an eventually periodic path, i.e. a path of the form γ0 ◦ γ1 ◦ γ1 ◦ γ1 ◦ . . .
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Proof. By our convention from Definition 3.12 (3) the map f is ex-
panding, which contradicts the fact that the loop γ1 would have to be
mapped to itself, given that by hypothesis f represents an automor-
phisms of FN . tu

3.4. INPs.

As before, assume that throughout this subsection f : τ → τ is a
train track map. In addition, we assume in this section that f induces
an automorphism on π1(τ).

Definition 3.22. A path η in τ which crosses over precisely one illegal
turn is called a periodic indivisible Nielsen path (or INP, for short), if
for some exponent t ≥ 1 one has [f t(η)] = η, (where [γ] denotes as
before the path obtained via reduction from a possibly unreduced path
γ).

The illegal turn on η = γ′ ◦ γ is called the tip of η, while the two
maximal initial legal subpaths γ′ and γ, of η and η respectively, are
called the branches of η.

Remark 3.23. Let η = γ′◦γ be an INP of the train track map f : τ → τ .

(1) The two endpoints of η are fixed points (but not necessarily
vertices !) of f t for some t ≥ 1. The branches γ and γ′ of
η are initial segments of eigenrays ρ and ρ′ respectively, de-
fined as unions of the nested sequences of paths (fkt(γ))k∈N
and (fkt(γ′))k∈N (compare Lemma 3.18). The rays ρ and ρ′ co-
incide up to the initial segments γ and γ′ respectively: indeed
the common terminal segment of ρ and ρ′ is precisely the union
of all the paths crossed back and forth by the backtracking
subpaths (see Convention-Definition 3.3 (b)) of the unreduced
paths fkt(η), at the tip of the illegal turn of η, for all k ≥ 1.

(2) Two eigenrays ρ and ρ′, which coincide up to initial segments
γ and γ′ respectively, define always an INP η = γ′ ◦ γ as above
in (1). This follows directly from the definitions.

Remark 3.24. For every train track map f : τ → τ there are only
finitely many INPs in τ , if one assumes (as done throughout this sec-
tion) that (i) f is expanding, (ii) τ is finite, and (iii) f induces an
automorphism on π1(τ).

This is a consequence of the fact that f induces a quasi-isometry
on the universal covering space (with respect to the simplicial metric
L), so that for any geodesic path in τ the length of any backtracking
subpath in the image path is bounded above by a constant depending
only on f . Since f is expanding, this gives a bound to the maximal
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length of the legal branches γ and γ′ of any INP η = γ′ ◦ γ in τ , since
the only backtracking subpath in f(η) is the subpath cancelled at the
tip when f(η) is reduced to [f(η)].

(If the reader wants to fill in the details, we recommend restricting to
the case where f induces an iwip automorphism on π1(τ) and working
with the PF-metric LPF introduced in subsection 3.7 rather than with
the simplicial metric L; by Remark 3.39 the two metrics define a quasi-
isometry for τ̃ .)

Convention 3.25. As pointed out in Remark 3.23 (1) the endpoints
of an INP may a priori well lie in the interior of an edge. However,
since these points are f -periodic, and since by Remark 3.24 there are
only finitely many INPs in τ , we can assume from now on that the
edges of τ have been subdivided accordingly, so that all endpoints of
INPs are vertices.

(Of course, such a subdivision must be followed potentially by the
procedure lined out in Remark 3.7, in order to make sure that after
subdivision the train track map f is still expanding.)

Lemma 3.26. There exists an exponent r1 ≥ 1 with the following
property: Let γ be a path in τ , and assume that it contains precisely
two illegal turns, each being the tip of an INP-subpath η1 and η2 of
γ. Assume that η1 and η2 overlap in a non-degenerate subpath. Then
f r1(γ) reduces to a path [f r1(γ)] which is legal.

Proof. By hypothesis, η1 = γ′1 ◦ γ1 and η2 = γ′2 ◦ γ2 intersect in a non-
degenerate path, which by Convention 3.25 must be an edge path γ′

with vertices as initial and terminal point.
Each INP contains only one illegal turn, and by assumption γ con-

tains two. Hence the path γ′ cannot contain either, so that it must
be a legal subpath of both, the branch γ′2 of η2, and the inverse of the
branch γ1 of η1.

Since by assumption γ′ is non-degenerate, it is expanded under iter-
ation of f to a legal edge path of arbitrary big length.

Assume that an exponent r ≥ 0 is chosen such that L(f r(γ′)) is
strictly bigger than the sum L(γ1) + L(γ′2). In this case it follows
directly that, in reducing f r(γ), both illegal turns disappear into the
backtracking subpaths, so that the resulting path [f r(γ)] is legal.

Since f is expanding and since (see Remark 3.24) there are only
finitely many INPs in τ , it is easy to find a bound r1 as required in the
claim. tu
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The following is one of the crucial properties of train track maps of
graphs. It goes back to the first paper [3] on the subject. An alternative
proof is given in [18].

Proposition 3.27. For every train track map f : τ → τ there exists a
constant r2 = r2(τ) ≥ 0 such that every path γ with precisely 1 illegal
turn satisfies:

Either γ contains an INP as subpath, or else [f r2(γ)] is legal. tu

Recall from Remark 3.14 that ILT(γ) denotes the number of illegal
turns in a path γ.

Proposition 3.28. There exists an exponent r = r(f) ≥ 0 such that
every finite path γ in τ with ILT(γ) ≥ 2 satisfies

ILT([f r(γ)]) < ILT(γ) ,

unless every illegal turn on γ is the tip of an INP-subpath ηi of γ,
where any two ηi are either disjoint subpaths on γ, or they overlap pre-
cisely in a common endpoint (for this terminology compare Convention-
Definition 3.3 (d)).

Proof. It suffices to take r to be the maximum of r1 from Lemma 3.26
and r2 from Proposition 3.27. We then apply the latter to any maximal
subpath with precisely one illegal turn. If each such subpath contains
an INP-subpath, we apply Lemma 3.26. tu

Bestvina-Handel [3] proved the following result which is very useful
in many contexts:

Proposition 3.29. Every iwip automorphism ϕ is represented by a
train track map f : τ → τ such that τ contains at most one INP η.
The path η is closed if and only if ϕ is induced by a homeomorphism
of some surface with at least one boundary component or puncture.

Such special train track maps have been termed stable in [3].

3.5. Used turns.

As before, let f : τ → τ be a train track map which is fixed through-
out this subsection.

Definition 3.30. A turn (e, e′) in τ is called used if there is an edge
e′′ in τ with the property that for some t ≥ 1 the image path f t(e′′)
crosses over this turn. Otherwise the turn (e, e′) is called unused.

Remark 3.31. From Definition 3.30 we derive directly the following
facts:
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(1) Every used turn is legal. The converse is in general wrong.
(2) The image turn (under the map D2f) of any used turn is also

used.
(3) The image of an unused turn (e, e′) may well be used. There

is, however, a constant s ≥ 0 (which only depends on the total
number of turns in τ) such that either D2f s(e, e′) is used, or
else all forward iterates of (e, e′) under D2f are unused.

Lemma 3.32. If the train track map f : τ → τ represents an iwip
automorphism, then for every edge e of τ there is an edge e′ which has
the same initial vertex as e, such that ee′ is a used legal turn.

Proof. This is a direct consequence of Lemma 3.8 (2). tu

Lemma 3.33. Let g1 and g2 be two gates at the same periodic vertex
v of τ , and assume that some turn (e′1, e

′
2) with e′i ∈ gi is used. Then

the turn (e1, e2) is also used, where ei is the initial edge of the eigenray
ρi that starts from the gate gi, for i = 1 and i = 2. (By Proposition
3.19 this is equivalent to stating that each edge ei is the eigen edge of
the gate gi.)

Proof. From the definition of a gate it follows directly that for every
periodic gate gi there is an exponent ti ≥ 1 such that Df ti maps every
edge e′ in gi to the eigen edge ei of gi.

Now, if the turn (e′1, e
′
2) is used, then for some edge e and some t ≥ 1

the edge path f t(e) crosses over the turn (e′1, e
′
2). It follows that the

path f tt1t2(e) crosses over the turn (e1, e2). tu

3.6. BFH’s “stable” lamination.

The initials BFH in the follow definition refer to Bestvina-Feighn-
Handel, who introduced and studied the following lamination in [2]; in
particular they showed a special attraction property of this lamination,
for train track maps which represent iwip automorphisms.

Definition 3.34. For any train track map f : τ → τ we define the
BFH-attracting lamination L2

BFH(f) as the lamination which is gener-
ated by the family of paths f t(e), for any edge e of τ and any exponent
t ≥ 0.

It is easily seen that, if f represents an automorphism α of FN , that
L2
BFH is invariant under the natural map induced by α on ∂2FN .
The following is an easy consequence of the definition of “used turn”

in the previous section, and of Lemma 3.32.
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Lemma 3.35. Let f : τ → τ be a train track map which represents an
iwip automorphism. Then any leaf (X, Y ) of the lamination L2

BFH(f)
is represented by biinfinite path γ in τ which only crosses over used
turns. tu

The following proposition is due to Bestvina-Feighn-Handel. We
note here that an alternative proof of part (1) follows as direct conse-
quence of our Theorem 1.2, since L2(T+) depends only on α and not
on the particular train track representative f : τ → τ .

We would also recommend to the reader to try proving part (2) as
an exercise, as it is quite doable and will enhance the reader’s under-
standing of the main subjects treated in this paper.

Proposition 3.36 ([2]). Let f : τ → τ be a train track representative
of an iwip automorphism α of FN .

(1) The lamination L2
BFH(f) depends only on α ∈ Out(FN) and not on

the particular choice of the train track representative f .

(2) The laminationL2
BFH(f) is minimal (see Definition 2.4). tu

3.7. The limit tree and BBT.

In this subsection we freely use the terminology and notation about
R-trees introduced previously in section 2.

Let T be the forward limit tree of the iwip automorphism α (i.e.
Tα = λT for λ := λ+(α) > 1). Let f : τ → τ be any train track
representative of α.

It is well known (see [10]) that for the universal covering τ̃ of τ
there exists an FN -equivariant map i : τ̃ → T which is injective on
legal paths (where a turn in τ̃ is legal if and only if its image turn
in τ is legal). If one uses this map to pull back the metric on T to
define an edge length LPF (e) for every edge e of τ̃ (an thus, by the
FN -equivariance of i) also for the edges of τ , then one obtains a Perron-
Frobenius column eigenvector ~v = (LPF (e))e∈Edges(τ) (with eigenvalue λ)
of the non-negative primitive transition matrix M(f), see for example
[19]. One obtains:

Remark 3.37. The map i : τ̃ → T has the property that, with re-
spect to the PF-metric LPF , every finite legal path γ in τ̃ is mapped
isometrically to the geodesic segment i(γ).

The map i satisfies the bounded backtracking property (BBT): There
is a constant BBT (i) ≥ 0 such that for any two points x, y ∈ τ̃ the geo-
desic segment [x, y] ⊂ τ̃ is mapped by i into the BBT (i)-neighborhood
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of the geodesic segment [i(x), i(y)]:

i([x, y]) ⊂ NBBT (i)([i(x), i(y)])

Based on results of [2] it has been shown in [10] that:

BBT (i) ≤ volPF (τ) :=
∑

e∈Edges(τ)

LPF (e)

Lemma 3.38. Consider any element w ∈ FN , with translation length
0 ≤ ||w||T < c on T , where c is smallest PF-length of any loop in τ ,
and let γ̂ be a reduced loop in τ which represents the conjugacy class
[w] ⊂ FN . Let γ′ be a legal subpath of γ̂. The PF-length of γ′ satisfies:

LPF (γ′) ≤ ||w||T + 4BBT (i)

(Indeed, one can also show the stronger inequality LPF (γ′) ≤ ||w||T +
2 BBT(i))

Proof. We can lift γ̂ to a biinfinite geodesic γ̃ in the universal covering
τ̃ , which is mapped by i : τ̃ → T to a (possibly non-reduced) path i(γ̃)
in T that covers the axis Ax(w) in T . The action of w on τ̃ and on
T fixes γ̃ and Ax(w) and translates each of them (by the amount of
||w||T , for Ax(w)).

From the assumption ||w||T < c it follows (by Remark 3.37) that γ̂
is not a legal loop, so that in particular the legal subpath γ′ can not
wrap around all of γ̂. Let P be a point on γ̂ which is not contained

in γ′, and let P̃ be a lift of P to γ̃. Hence the point PT := i(P̃ ) lies
in the BBT(i)-neighborhood of Ax(w). In particular it follows that
d(PT , wPT ) ≤ ||w||T + 2BBT(i).

We can now lift γ′ to a legal path γ̃′ which is contained in the geodesic

segment [P̃ , wP̃ ] ⊂ γ̃. Hence the endpoints of i(γ̃′) must lie in the
BBT(i)-neighborhood of [PT , wPT ]. Thus they have distance at most
||w||T + 4BBT(i). But γ̃′ is legal and hence (Lemma 3.37) mapped
isometrically to its i-image. Thus γ̃′ and hence also γ′ have PF-length
bounded above by ||w||T + 4BBT(i). tu

Remark 3.39. (1) Note that with respect to the Perron-Frobenius length
LPF any legal path γ satisfies LPF (f(γ)) = λLPF (γ). In particular, it
follows that no edge e can have LPF (e) equal to 0, since otherwise the
subgraph τ0 ⊂ τ defined by all such edges would contradict Lemma 3.8
(1).

(2) As a consequence we observe that the simplicial edge length L
and the Perron-Frobenius edge length LPF give rise to quasi-isometric
metrics on the universal covering τ̃ .
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4. Steps 1 and 2

The material in this section is reminiscent to some of the techniques
used previously by the second author in [20].

Let T+ be the forward limit tree of the atoroidal iwip automorphism
ϕ (i.e. T+ϕ = λ+T for λ+ > 1). Let f+ : τ+ → τ+ be a train track
representative of ϕ. By Proposition 3.29 we can assume the following:

Hypothesis 4.1. There is at most one INP η in τ+, and the two
endpoints of η are distinct.

Definition 4.2. For any constant C ≥ 1 a (possibly infinite or bi-
infinite) path γ in τ+ is called totally C-illegal if every legal subpath γ′

of γ has length

L(γ′) ≤ C .

Remark 4.3. The Definition 4.2 is motivated by Lemma 4.4 below. An-
other, rather useful property of any finite totally C-illegal path γ, which
follows directly from the definition, is given by the second of following
inequalities (while the first one doesn’t require any hypotheses):

ILT(γ) + 1 ≤ L(γ) ≤ C(ILT(γ) + 1)

Lemma 4.4. There exists a constant C ≥ 0 such that for every pair
(X, Y ) in the dual lamination L2(T+) ⊂ ∂2FN the reduced biinfinite
path γ = γτ+(X, Y ) in τ+ (the “geodesic realization” of the pair (X, Y ),
see Definition 2.7) is totally C-illegal.

Proof. By Remark 2.9 a finite geodesic path γ′ is a subpath of the
geodesic realization γτ+(X, Y ) for some (X, Y ) ∈ L2(T+) if and only
if for every ε > 0 there is an element w ∈ FN with translation length
on T+ of seize ||w||T+ ≤ ε, such that the conjugacy class of w in FN is
represented by a geodesic loop γ̂ which contains γ′ as subpath. Hence
the desired inequality is a direct consequence of Lemma 3.38, where
the constant C can be calculated from the value 4BBT(i) for the map
τ̃+ → T+ explained in subsection 3.7 and the quasi-isometry constants
between the length functions L and LPF , see Remark 3.39 (2). tu

Below we use the following terminology: If γ is a (possibly infinite
or biinfinite) path in τ+, and γ1 a subpath of γ, then a boundary
subpath γ′ of [f t+(γ1)] (for some t ≥ 1) is cancelled by the reduction
of f t+(γ) to [f t+(γ)] if, for γ = γ0 ◦ γ1 ◦ γ2, when [f t+(γ0)] ◦ [f t+(γ1)] ◦
[f t+(γ2)] is reduced to give [f t+(γ)], then γ′ is entirely contained in one
of backtracking subpaths at the concatenation points of the product
path [f t+(γ0)] ◦ [f t+(γ1)] ◦ [f t+(γ2)].
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Lemma 4.5. Let C ≥ 1 be any constant, and let (X, Y ) ∈ ∂2FN be such
that, for every integer t ≥ 0, the geodesic realization in τ+ of the pair
(∂ϕt(X), ∂ϕt(Y )) by a reduced biinfinite path γt = γτ+(∂ϕt(X), ∂ϕt(Y ))
is totally C-illegal. Then there exists an integer s ≥ 0 which has the
property that for any any finite subpath γ′ of γ0 with ILT(γ′) ≥ 2 one
has either

ILT([f s+(γ′)]) < ILT(γ′) ,

or else a boundary subpath of [f s+(γ′)] which crosses over at least one
illegal turn is completely cancelled by the reduction of f s+(γ) to [f s+(γ)] =
γs.

Proof. From Proposition 3.28 we know that for any subpath γ′ of γ0

with 2 or more illegal turns one has ILT([f r+(γ′)]) < ILT(γ′) (for r as
given in Proposition 3.28), unless every illegal turn of γ′ is the tip of
an INP entirely contained as subpath in γ′, such that any two such
INP-subpaths which are adjacent on γ′ either (i) are disjoint, or (ii)
intersect precisely in a common endpoint.

The second case (ii) is ruled out by our Hypothesis 4.1, since γ′ is a
geodesic and the only INP η contained in τ+ is not closed.

In order to rule out the first case (i), we observe that the subpath γ′′

of γ′, which connects the two endpoints of the adjacent INP-subpaths of
γ′, has to run over at least one edge, and that γ′′ is legal. Hence, by the
expansiveness of f+, for some t ≥ 1 the path [f t+(γ′)] contains a legal
subpath f t+(γ′′) of length bigger than the constant C. This contradicts
the hypothesis that [f t+(γ)] = γt is totally C-illegal, unless one of the
two INP-subpaths of [f t+(γ′)] which are adjacent to the subpath f t+(γ′′)
is completely contained in a boundary subpath of [f t+(γ′)] which is
cancelled by the reduction of f t+(γ) to [f t+(γ)] = γt.

Hence it suffices to take s ≥ r big enough so that L(f s(e)) > C for
any edge e of τ+. tu

Corollary 4.6. Let C ≥ 0, (X, Y ) ∈ ∂2FN , γ
′ and s ≥ 1 be as in

Lemma 4.5. Let us furthermore assume that ILT(γ′) ≥ 5. Then one
has

ILT([f s+(γ′)]) ≤ 1

4
ILT(γ′)

Proof. By the assumption ILT(γ′) ≥ 5 we can subdivide γ′ = γ1◦. . .◦γq
as concatenation of subpaths γi, where each γi satisfies 2 ≤ ILT(γi) ≤ 3,
and where at each concatenation vertex the path γ′ crosses over an
illegal turn. We now apply Lemma 4.5 to each of the subpaths γi and
obtain, for s ≥ 1 as specified there, that either ILT([f s+(γi)] < ILT(γi),
or else one of the illegal turns in [f s+(γi)] is cancelled when f s+(γ′) is
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reduced to [f s+(γ′)]. Thus one obtains, for

[f s+(γ′)] = γ′1 ◦ . . . ◦ γ′q ,
where each γ′i is the (possibly trivial) subpath of [f s+(γi)] which is left-
over when the concatenation [f s+(γ1)]◦ . . .◦ [f s+(γq] is reduced, that each
of the paths γ′i satisfies ILT(γ′i) ≤ ILT(γi)−1. This gives ILT([f s+(γ′)] <
1
4
ILT(γ′), as claimed. tu

Proposition 4.7. For any λ > 1 there is a constant c > 0 and an
exponent t ≥ 0 with the following property:

Consider (X, Y ) ∈ L2(T+) ⊂ ∂2FN , and let γ = γτ+(X, Y ) be a
geodesic realization as reduced biinfinite path in τ+. Let γ′ be a finite
subpath of γ of simplicial length L(γ′) ≥ c. Then the reduced image
path [f t+(γ′)] satisfies:

L([f t+(γ′)]) ≤ 1

λ
L(γ′)

Proof. By Lemma 4.4 there exists a constant C ≥ 0 such that for
any t ∈ Z the geodesic realization in τ+ of the pair (∂ϕt(X), ∂ϕt(Y )) ∈
L2(T+) by a reduced path γt = γτ+(∂ϕt(X), ∂ϕt(Y )) is totally C-illegal.
Hence any finite subpath γ′ of γ0 with sufficiently large ILT(γ′) satisfies
by Corollary 4.6 the inequality

ILT([fks+ (γ′)]) ≤ 1

4k
ILT(γ′)

for some large k ≥ 1.
Now, one can decompose [fks+ (γ′)] as concatenation [fks+ (γ′)] = δ0 ◦

[fks+ (γ′)]γks
◦ δ1, where [fks+ (γ′)]γks

is the maximal subpath of [fks+ (γ′)]
which is also subpath of γks, while δ0 and δ1 are boundary subpaths that
are cancelled when fks+ (γ0) is reduced to [fks+ (γ0)] = γks. In particular,
it follows that for each δi there is a backtracking subpath δ′i of fks+ (γ0),
such that δi is obtained from a subpath of δ′i by canceling (in the process
of reducing the subpath fks+ (γ′) of fks+ (γ0) to [fks+ (γ′)]) certain further
backtracking subpaths. Hence (compare Remark 3.5) L(δ′i) and thus
L(δi) is bounded above by a constant K ≥ 0 which depends only on
fks+ .

As subpath of the totally C-illegal path γks the path [fks+ (γ′)]γks
must

be itself totally C-illegal. Hence we deduce, using Remark 4.3, that

L([fks+ (γ′)]) ≤ L([fks+ (γ′)]γks
) + 2K

≤ C(ILT([fks+ (γ′)]γks
) + 1) + 2K

≤ C(ILT([fks+ (γ′)]) + 1) + 2K
≤ C( 1

4k ILT(γ′)) + 1) + 2K
≤ C( 1

4kL(γ)) + 1) + 2K



28 ILYA KAPOVICH AND MARTIN LUSTIG

It is now easy to determine first k and thus t large enough (in depen-
dence of the given value of λ) and then (using again the inequality
L(γ) ≤ C(ILT(γ) + 1) from Lemma 4.3) a sufficiently large constant c
which give the desired inequality. tu
Remark 4.8. It follows easily from standard arguments of geometric
group theory that the strong uniform contraction property of the auto-
morphism ϕ along the leaves of the dual lamination L2(T+) of its for-
ward limit tree T+, which is stated in Proposition 4.7 above in terms of
the train track representative f+ of ϕ, is in fact an intrinsic property,
which can be similarly expressed with respect to any representative
of ϕ as a self-map of some marked graph, or, more algebraically, di-
rectly for the automorphisms ϕ expressed as traditionally by means
of a basis A of FN and the image words of the generators ai ∈ A.
Any ϕ-invariant subset of ∂2FN which satisfies this property is called
uniformly expanding.

It is easy to see that, passing over to ϕ−1, there is a similar way
to define the same sets by an analogous property as uniformly ϕ−1-
expanding subsets of ∂2FN .

5. steps 3 and 4

Throughout this section we assume that f− : τ− → τ− is a train track
map that represents the automorphism ϕ−1 of FN . Since ϕ is assumed
to be iwip, it follows (as immediate consequence of Definition 2.11)
that ϕ−1 is also iwip. Just as in the previous section for f+ : τ+ → τ+,
we can assume here:

Hypothesis 5.1. There is at most one INP η in τ−, and the two
endpoints of η are distinct.

We consider the lamination L2(T+) from the previous section, and
we shorten here the notation to L2

− := L2(T+). From the previous
section (see Remark 4.8) we deduce:

Lemma 5.2. For any λ > 1 there is a constant c > 0 and an exponent
t ≥ 1 such that for any pair (X, Y ) ∈ L2

− and any subpath γ′ of the
geodesic realization γ = γτ−(X, Y ) of (X, Y ) in τ−, with simplicial
length L(γ′) ≥ c, one has:

L(f t−(γ′)) ≥ λL(γ′)

tu

For any K ≥ 0 we define the set LK = LK(L2
−, τ−) to be the set of

subpaths γ of length L(γ) = K of any biinfinite path γτ−(X, Y ) in τ−
which is a geodesic realization any pair (X, Y ) ∈ L2

−.
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For any constant C ≥ 0 and any path γ in τ− we denote by γ†C the
(possibly trivial) subpath of γ which is left after erasing from γ the two
boundary subpaths of length C.

Recall from Remark 3.5 that there is a constant C(f−) ≥ 0 which
bounds the length of any backtracking subpath in the (unreduced)
image f−(γ) of any reduced path γ in τ−.

Remark 5.3. It follows that for any reduced path γ in τ− and any
subpath γ′ of γ the path [f−(γ′)]†C(f−) is a subpath of the reduced path
[f−(γ)]. Note that this statement is not necessarily true if [f−(γ′)]†C(f−)

is replaced by the path [f−(γ′)].

Lemma 5.4. There exists a constant C0 > 0 such that, for any C ≥ C0

and for t ≥ 1 as in Lemma 5.2, the following holds:
For any path γ ∈ LC there exists a path γ′ ∈ LC with the property

that γ is a subpath of [f t−(γ′)]†C(f−).

Proof. This is a direct consequence of the above Lemma 5.2. tu

Recall from Convention 3.25 that we can assume without loss of
generality that every endpoint of an INP in τ− is a vertex of τ−.

Lemma 5.5. (a) For C as in Lemma 5.4 there is at most one illegal
turn on any path γ ∈ LC. This illegal turn must be the tip of some
INP which is contained as subpath in γ.

(b) Furthermore, if γ is legal, then there is at most one unused turn on
any path γ ∈ LC. If γ contains an INP, then all turns outside the INP
are used turns. (To be specific: At the initial and terminal point of the
INP the path γ may well cross over an unused (but legal) turn.)

Proof. (a) For any path γ =: γ0 ∈ LC we can assume by Lemma 5.4
that (after possibly replacing f by a positive power f t) there is an
infinite family of paths γn ∈ LC , for any integer n ≤ 0, such that each
γn is a subpath of [f−(γn−1)]†C(ϕ). We note (compare Remark 3.14)
that ILT(γn) ≥ ILT(γm), for any n ≤ m ≤ 0.

Since all γn have length bounded by C, it follows from Remark 3.14
that for sufficiently negative n ≤ m one has ILT(γn) = ILT(γm). Thus
it follows from Proposition 3.28, for −m sufficiently large, that every
illegal turn in γm−r is the tip of some INP which is entirely contained as
subpath in γm−r, and adjacent such INP-subpaths can only overlap in
a common endpoint. The same statement must be true for all f s(γm−r)
and hence for all γk with k ≥ m− r, and thus also for γ = γ0.

But the same argument applies to any of the γn. It follows that any
maximal legal subpath γ′ of γn, between two adjacent INP-subpaths,
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is the f−-image of the maximal legal subpath between adjacent INP-
subpaths in γn−1. Since the endpoints of INPs are vertices, so that
such non-degenerate maximal legal subpaths can not become arbitrary
small. It follows from the assumption that f− is expanding that each
of the legal paths γ′ between two adjacent INP-subpaths of any γn
must has length 0. But by Hypotheses 5.1 there is only one INP in
τ−, and its endpoints are distinct. Thus no reduced path γ in τ− can
contain two subsequent INPs which have a common endpoint. This
shows statement (a).

(b) Recall from Remark 3.31 (2) that used turns are mapped by D2f−
to used turns. However, by Remark 3.31 (3), any unused legal turn
must be mapped similarly to an unused legal turn, as one can take its
(necessarily unused legal) preimage arbitrarily far back.

We first assume that γ (and hence any of the γn as in part (a))
is legal. From the last paragraph it follows that any maximal legal
subpath γ′ of γn, between two adjacent unused turns, is the f ′-image
of the maximal legal subpath between adjacent unused turns in γn−1.
But the unused turns do only occur at vertices, so that such non-
degenerate maximal legal subpaths can not become arbitrary small. It
follows from the assumption that f ′ is expanding that each of the legal
paths γ′ between two adjacent unused turns of any γn must have length
0; in other words: there is only one such unused turn on any of the γn.

The same argument applies to the maximal legal subpath between an
unused turn and the boundary point of an INP, in case some γn would
contain both. It follows again that this maximal legal subpath must
have length 0, so that the only unused turns, on any γn which contains
an INP, can occur at the two endpoints of the INP. This proves claim
(b). tu

As a direct consequence of Lemma 5.5 we obtain:

Proposition 5.6. (a) For any (X, Y ) ∈ L2
− there is on any of the

geodesic realizations γ := γτ−(X, Y ) in τ− at most one “singularity”:
This can either be an unused legal turn, or an illegal turn at the tip of
an INP, or an INP with one or two unused legal turns at its boundary
points. The remainder of γ is legal and crosses only over used turns.

(b) If γ = γτ−(X, Y ) contains a non-used legal turn, then so does every
γt = γτ−(∂ϕt(X), ∂ϕt(Y )) ∈ L2

−, for any t ∈ Z. The analogous state-
ment holds if γ crosses over an INP with k unused legal turns at its
boundary points, for k ∈ {0, 1, 2}.
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Proof. (a) It suffices to choose C in Lemma 5.5 large enough, so that
the two singularities would be both contained in a path of LC , in con-
tradiction to this lemma.

(b) This is a direct consequence of part (a), of the fact that the image
of an INP is (after reduction) again an INP, and of the fact (explained
in the first paragraph of the proof of part (b) of Lemma 5.5) that under
the map D2f− used turns are mapped to used turns, and any unused
legal turn on γt is mapped to an unused legal turn on γt+1. tu

In the following we call a (possibly infinite or biinfinite) path γ used
legal if it is legal and if it only crosses over used turns.

Corollary 5.7. (a) For any (X, Y ) ∈ L2
− every finite used legal sub-

path γ′ of the geodesic realization γτ−(X, Y ) in τ− is also contained as
subpath in f t−(e), for some t ≥ 0 and some edge e of τ−.

(b) Assume that for (X, Y ) ∈ L2
− the geodesic realization γτ−(X, Y ) is a

used legal path. Then (X, Y ) belongs to the BFH-attracting lamination
L2
BFH(f−) of f− : τ− → τ− (see Definition 3.34).

Proof. (a) From the expansiveness of f− and the legality of γ′ we can
use Proposition 5.6 (b) to “iterate” f− backwards until we find a path
γ′′ which runs over at most two adjacent edges e, e′ in τ− such that
f t−(γ′′) contains γ′ as subpath, for some t ≥ 0. But since all turns of
γ′ are used, the same must be true for all of its preimages, so that the
turn between e and e′ must be used. From Definition 3.30 it follows
directly that this proves the claim (a).

(b) This is a direct consequence of part (a), by the definition of L2
BFH(f−)

in Definition 3.34. tu

6. steps 5 - 7

Throughout this section we use the same conventions as in section
5, in particular Hypothesis 5.1 and the notation from the paragraph
preceding it.

Lemma 6.1. Let (ρt)t∈Z be a family of infinite geodesics rays in τ−,
and assume that [f−(ρt)] = ρt+1 for all t ∈ Z. Assume furthermore
that each ρt is legal, and that each ρt starts at a vertex vt of τ−. Then
each ρt is an eigenray for the train track map f− : τ− → τ−.

Proof. Since each ρt is legal, one has always [f−(ρ)] = f−(ρ) = ρt+1. It
follows that f− maps the starting point vt of ρt to the starting point
vt+1 of ρt+1. Since the starting point of each ρt is (by hypothesis) a
vertex, it follows from the finiteness of the vertex set of τ− that each
vt is a periodic vertex of τ−.
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Similarly, since all ρt are legal, the initial edge et+1 of ρt+1 must
always be equal to the initial edge of the (legal) edge path f−(et),
where et denotes the initial edge of ρt. Again by the finiteness of the
graph τ−, we see that for any t ∈ Z the initial edge et of ρt lies on a
periodic orbit, with respect to the map Df− (see Definition 3.6 (b)).
In other words: each et is the eigen edge of the gate to which it belongs
(compare subsection 3.3).

We now argue by induction: Suppose that all ρkt for some fixed
integer k 6= 0 start with the same initial subpath γn of simplicial length
n ≥ 1. Then it follows from the expansiveness of f− (and from the
fact that all paths are legal) that their images have a common initial
subpath of simplicial length ≥ n + 1. Thus the assumption fk−(ρt) =
ρt+k implies that the maximal common initial subpath of the ρt must
have infinite length, so that we obtain ρt = ρt+k for all t ∈ Z. But this
is the defining equality for eigenrays. tu

Lemma 6.2. (a) For each eigenray ρ which starts at a vertex of τ−
there is an eigenray ρ′, with same initial vertex, such that ρ ◦ ρ′ is a
biinfinite used legal path.

(b) Any path of type ρ ◦ ρ′, with used legal turn at the concatena-
tion point, realizes a pair (X, Y ) ∈ ∂2FN which belongs to the BFH-
attracting lamination L2

BFH(f−).

Proof. (a) We first derive from Lemma 3.32 that there is an edge e with
same initial vertex v as ρ such that e ◦ ρ is used legal. In particular e
doesn’t lie in the gate from which ρ starts. By Proposition 3.19 there
is an eigenray ρ′ which starts from the gate that contains e, and by
Lemma 3.33 the turn from ρ′ to ρ is used. Furthermore, every eigenray
is used legal, since every finite subpath if contained in some f−-iterate
of its initial edge (compare Proposition 3.19 and its proof). This proves
the claim.

(b) By part (a) the turn at the concatenation point between ρ and ρ′

is used: There is an edge e of τ− and an exponent t ≥ 1 such that
the edge path f t−(e) contains a subpath which consists of non-trivial
initial segments of both, ρ and ρ′. It follows from the expansiveness of
f− and the definition of an eigenray that every path which consists of
non-trivial initial segments of both, ρ and ρ′, is a a subpath of fnt− (e)
for some integer n ≥ 0. By Definiton 3.34 it follows that (X, Y ) is an
element L2

BFH(f−). tu

Recall from subsection 2.2 that for any (X, Y ) ∈ ∂2FN the geodesic
realization in τ− satisfies [f−(γτ−(X, Y ))] = γ−(∂ϕ−1(X), ∂ϕ−1(Y )).
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As in section 5 we use the for the lamination dual to the forward limit
tree T+ the abbreviation L2

− = L2(T+).

Proposition 6.3. Let (X, Y ) ∈ ∂2FN , and let (γt)t∈Z be a family
of biinfinite geodesics γt = γτ−(∂ϕ−t(X), ∂ϕ−t(Y )) which realize the
pair (∂ϕ−t(X), ∂ϕ−t(Y )) ∈ ∂2FN in τ−. In particular we assume that
[f−(γt)] = γt+1 for all t ∈ Z.

(a) Assume that each γt is legal, and that on each γt there is precisely
one unused legal turn. Then there are eigenrays ρ and ρ′, such that
γt = ρ ◦ ρ′, where the unused turn is situated at the concatenation
point.

(b) Assume that on each γt there is precisely one INP subpath ηt, and
that every turn of γt is legal except for the turn at the tip of ηt. Then
there are eigenrays ρ and ρ′, such that γt = ρ ◦ η ◦ ρ′.

Proof. Note that in case (a) each unused turn in γt takes place at a
vertex vt0 of τ−. Similarly, in case (b) the endpoints vt1 and vt2 of any
INP in γt are vertices, by Convention 3.25. Notice also that in case
(a) one has [f−(γt)] = f−(γt), and in case (b) the only backtracking
subpath of f−(γt) is situated at the tip of ηt+1. Hence f− maps the
“singular” vertices vti in γt to the singular vertices vt+1

i in γt+1. Thus
we obtain the statements of (a) and (b) is a direct consequence of
Lemma 6.1. tu

Definition 6.4. Let v be a periodic vertex v of τ−. For any two
eigenrays ρ, ρ′ with initial vertex v we write

ρ ∼ ρ′

if in the biinfinite path ρ ◦ ρ′ the turn at the concatenation point is
used. We consider the equivalence relation which is generated by this
relation, which we also denote by ∼.

It follows directly from the definitions that the equivalence relation
∼ is modeled precisely after the definition of the diagonal closure, so
that one observes:

Remark 6.5. Let v be a periodic vertex of τ−, and assume that the BFH-
attracting lamination L2

BFH(f−) contains pairs (X1, Y1) and (X2, Y2).
Assume that the geodesic realizations γ1 = γτ−(X1, Y1) and γ2 =
γτ−(X2, Y2) are both concatenations of eigenrays, γ1 = ρ1 ◦ ρ′1 and
γ2 = ρ2 ◦ ρ′2, with concatenation vertex equal to v. Then ρ1 ∼ ρ2

implies that (X1, X2) is contained in the diagonal closure of L2
BFH(f−).

Note that the converse implication is also true, but it is a little bit
less immediate: one needs to employ Lemma 6.1 and Lemma 6.2 (b).
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We will now use the equivalence relation ∼ to derive from τ− and f−
a new graph τ ∗− and a new self-map f ∗−. This will be defined in several
steps as follows:

We assume that at some periodic vertex v of τ− there is more than
one ∼-equivalence class of eigenrays. We first assume that v is fixed
by f−.

We then split the vertex into several new vertices, called subvertices
of v, precisely one for each equivalence class, such that all eigenrays
starting at the same subvertex are equivalent, and conversely.

We now attach any other edge e of τ− with initial vertex v to one
of the new subvertices, according to which eigenray started in τ− from
the same gate as e. Recall from Proposition 3.19 that for each gate gi
at a periodic vertex there is precisely one eigenray starting from gi.

We connect the k ≥ 2 subvertices of v by a k-pod P to obtain a new
graph which transforms back to τ−, if P is contracted to a single point.

We now consider any vertex v′ of τ− which is mapped eventually
by f− to v, and we do the analogous construction there, where the
subdivision of v′ into subvertices is simply lifted from v to v′. (Indeed,
since v′ is not periodic, we can not use again the relation ∼ for the
subdivision of v′.) The graph obtained by this blow-up of vertices is
denoted by τ ∗−.

We observe that the train track map f− induces naturally a map
f ∗− : τ ∗− → τ ∗− which maps P homeomorphically onto itself and leaves

also τ ∗− r
◦
P invariant. Since f− is expanding, it follows that τ ∗− r

◦
P

has non-trivial fundamental group. Hence π1(τ
∗
− r

◦
P) is a non-trivial

proper ϕ-invariant free factor of FN , contradicting the assumption that
f− represents an iwip automorphisms.

Now, if v is not fixed by f−, one has to do the same blow-up proce-
dure at the whole f−-orbit of v, but the argument remains in this case
precisely the same as in the simpler case just considered.

This shows:

Lemma 6.6. At every periodic vertex v of τ− there is only one ∼-
equivalence class of eigenrays. tu

Proposition 6.7. Let (X, Y ) ∈ L2
− be such that its geodesic realization

γτ−(X, Y ) in τ− is not used legal. Then (X, Y ) belongs to the diago-
nal closure of the BFH-attracting sublamination L2

BFH(f−) of the train
track map f−.

Proof. By Proposition 5.6 we know that γ := γτ−(X, Y ) (and hence
any γt which realizes (∂ϕt(X), ∂ϕt(Y )), for arbitrary t ∈ Z) contains
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either precisely one non-used legal turn, or else it runs precisely once
over an INP-subpath η of τ−. Thus one deduces from Proposition 6.3
that γ = ρ ◦ ρ′ or γ = ρ ◦ η ◦ ρ′, for eigenrays ρ and ρ′.

In the first case the unused turn occurs at the concatenation vertex v
of the two eigenrays, and it follows directly from Lemma 6.2 that there
are eigenrays ρ1 and ρ2 at v such that the biinfinite paths γ1 = ρ ◦ ρ1

and γ2 = ρ′ ◦ ρ2 are used legal, and that they are geodesic realizations
γ1 = γτ−(X,Z1) and γ2 = γτ−(Y, Z2) of pairs (X,Z1) and (Y, Z2) that
both belong to to the BFH-attracting lamination L2

BFH(f−). Hence it
follows directly from Lemma 6.6 and Remark 6.5 that (X, Y ) belongs
to the diagonal closure of L2

BFH(f−).
In the second case, where γ = ρ ◦ η ◦ ρ′, we consider the eigenrays

ρ1 and ρ2 which have the two legal branches of η as initial subpaths
and agree along an infinite legal subray, see Remark 3.23. By the case
treated before, the biinfinite paths ρ ◦ ρ1 and ρ2 ◦ ρ′ realize elements
(X,Z) and (Z, Y ) which belong to the diagonal closure of L2

BFH . Thus
(X, Y ) also belongs to this diagonal closure. tu

We have now assembled all ingredients necessary to prove the main
result of this paper:

Proof of Theorem 1.2. In Corollary 5.7 (b) together with Proposition
6.7 it is shown that L2(T+) is contained in diag(L2

BFH(f−)). More
precisely, a pair (X, Y ) ∈ L2(T+) is contained in diag(L2

BFH(f−)) r
L2
BFH(f−) if and only if its geodesic realization in τ− is a concatenation

of eigenrays at either an unused legal turn, or else at an INP. But since
eigenrays in τ− are in 1-1 relation with periodic gates of train track
map f− : τ− → τ− (see Corollary 3.20), there exist only finitely many
distinct eigenrays. Since also the number of unused legal turns is finite,
as well as the number of INPs in τ−, it follows that L2(T+) contains
only finitely many FN -orbits of pairs (X, Y ) which are contained in
diag(L2

BFH(f−)) r L2
BFH(f−). This establishes claim (4) of Theorem

1.2.
Furthermore, eigenrays of expanding maps are never periodic or

eventually periodic (see Lemma 3.21), so that by Remark 2.3 (b) any
minimal sublamination (see Definition 2.4) of L2(T+) must intersect
L2
BFH(f−) and hence be contained in L2

BFH(f−). Note that by Lemma
4.2 of [6] every algebraic lamination contains a minimal sublamination.
But L2

BFH(f−) is itself minimal (see Proposition 3.36), so that it must
be contained in L2(T+), as unique minimal sublamination. This proves
parts (1) and (2) of Theorem 1.2.
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By Proposition 2.10 the lamination L2(T+) is diagonally closed, so
that it contains with L2

BFH(f−) also its diagonal closure. This inclusion,
together with the converse inclusion stated in the first sentence of this
proof, gives the equality claimed in part (3) of Theorem 1.2. tu

7. Discussion

Throughout this section T denotes always an R-tree from cvN , and
µ a current from Curr(FN). Recall that such a pair (T, µ) is called
perpendicular if 〈T, µ〉 = 0. Recall also that following [13] this is equiv-
alent to the statement supp(µ) ⊂ L2(T ), which in turn is equivalent to
diag(supp(µ)) ⊂ L2(T ). The purpose of this section is to give (partial)
answers to the following question:

Under which circumstances does this last inclusion actually improve
to

diag(supp(µ)) = L2(T ) ?

To shape the discussion a bit, we propose:

Definition 7.1. (a) A pair (T, µ) ∈ cvN × Curr(FN) is said to be
diagonally equal if L2(T ) = diag(supp(µ)). In this case we also say
that T is diagonally equal to µ, or µ is diagonally equal to T .

(b) A tree T is called diagonally equalizable (DE) if there exists a
current µ such that (T, µ) is diagonally equal. Similarly, a current
µ is called diagonally equalizable (DE) if there exists a tree T such that
(T, µ) is diagonally equal.

(c) A tree T is called totally diagonally equalizable (TDE) if every
perpendicular current µ is diagonally equal to T . Similarly, a current
µ is called totally diagonally equalizable (TDE) if every perpendicular
tree T is diagonally equal to µ.

(d) A tree T is called uniquely diagonally equalizable (UDE) if among
all perpendicular currents there is (up to scalar multiples) precisely one
current µ which is diagonally equal to T . Similarly, a current µ is called
uniquely diagonally equalizable (UDE) if among all perpendicular trees
there is (up to scalar multiples) precisely one tree T which is diagonally
equal to µ.

All of these definitions descend directly to the projectivized objects,
so that one can speak for example of a “uniquely diagonally equal-
izable” [T ] ∈ CVN . The result of Theorem 1.1 can be rephrased by
stating that for any atoroidal iwip ϕ ∈ Out(FN) the attracting fixed
point [T+] ∈ CVN and the repelling fixed point [µ−] ∈ PCurr(FN)
constitute a pair which is diagonally equal.
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By the above stated result of [13] we know that every diagonally
equal pair ([T ], [µ]) must be perpendicular. The set I0 of such per-
pendicular pairs contains the uniquely determined minimal set M2 ⊂
CVN×PCurr(FN) with respect to the Out(FN)-action (see [11]), which
is also contained in the cartesian productMcv×Mcurr of the (much bet-
ter understood) minimal sets Mcv ⊂ CVN and Mcurr ⊂ PCurr(FN).
However, we only know these inclusions; it is open whetherM2 is equal
to I0 ∩ (Mcv ×Mcurr).

Remark 7.2. We will give below examples of perpendicular pairs which
are not diagonally equal. The set DE of diagonally equal pairs ([T ], [µ])
is by definition Out(FN)-invariant and non-empty, but it will follow
from the results presented below that DE is not closed in CVN ×
PCurr(FN).

Remark 7.3. The set DE defines also an Out(FN)-invariant subgraph
of the intersection graph I(FN) defined in [12], and it seems worth-
while to think which kind of a subgraph this is. Since all “limit pairs”
([T+], [µ−]) for atoroidal iwips are contained in DE , it must consist of
many distinct connected components. It seems likely that even the
subgraph DE0 defined by all DE-pairs which are contained in the main
component I0(FN) of I(FN) is non-connected.

We will now turn to the question of necessary and sufficient condi-
tions for a pair (T, µ) to be diagonally equal, and for T or µ to be DE,
TDE or UDE. We first recall some facts:

Facts 7.4. (1) For every algebraic lamination L2 over FN there exist a
current µ 6= 0 with supp(µ) ⊂ L2 (see [8]). In particular, for every tree
T ∈ ∂cvN := cvN r cvN there exists a current µ ∈ Curr(FN) which is
perpendicular to T .

The “dual” statement is wrong, if we accept the subspace Curr(FN)+ ⊂
Curr(FN) of currents µ ∈ Curr(FN) with full support (i.e. supp(µ) =
∂2FN) as “dual” of cvN . (Note that cvN can be characterized also as
the subspace in cvN that consists of all R-trees T with L2(T ) = ∅).
There exist currents µ ∈ Curr(FN)rCurr(FN)+ which are not perpen-
dicular to any tree in cvN . Examples of such filling currents are given
in [14].

(2) If T, T ′ ∈ ∂cvN , and if there is a length decreasing FN -equivariant
map T → T ′, then one has L2(T ) ⊂ L2(T ′). This applies in particular
to the case where T ′ results from T by contracting an FN -invariant
forest T0: Here each connected component of T0 is mapped to a distinct
point in T ′. If T0 contains connected components with infinite diameter,
then the inclusion L2(T ) ⊂ L2(T ′) is proper: one has L2(T ) 6= L2(T ′).
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(3) Let f : τ → τ is an expanding train track map which represents
some ψ ∈ Aut(FN), but contrary to the case considered in the main
body of this paper, we assume that the non-negative transition matrix
M(f) (assumed to be in normal form for non-negative matrices) has
precisely two primitive diagonal submatrices, with eigenvalues λtop and
λbottom respectively, and that the upper right off-diagonal block is non-
zero (while, according to the normal form, the lower left off-diagonal
block must be the zero matrix). For such exponential two-strata train
track maps one has to distinguish two cases:

If λtop < λbottom, then both eigenvalues possess non-negative row
eigenvectors ~v ∗top and ~v ∗bottom respectively, and each of them determines
a Perron-Frobenius-tree Ttop ∈ ∂cvN and Tbottom ∈ ∂cvN respectively.
Both projective classes, [Ttop] ∈ ∂CVN and [Tbottom] ∈ ∂CVN are fixed
points of the induced action of the automorphism ψ ∈ Out(FN) which
is represented by this train track map f .

If λtop ≥ λbottom, then only ~v ∗top is non-negative, so that only Ttop ∈
∂cvN exists (and is projectively fixed by ψ), but no Tbottom as in the
other case.

On the other hand, if λtop > λbottom, then there are two non-negative
column eigenvectors ~vtop and ~vbottom respectively, and both determine
projectively ψ-invariant currents µtop, µbottom ∈ Curr(FN). If λtop ≤
λbottom, then there is only one non-negative column eigenvector ~vbottom
and only one projectively ψ-invariant current µbottom ∈ Curr(FN).

It turns out that it is easier to prove results about trees:

Proposition 7.5. Let T ∈ ∂cvN = cvN r cvN .

(1) Not every T ∈ ∂cvN is DE. A counterexample is given, for
any 2-strata exponential train track map (which represents some
ψ ∈ Aut(FN)) with λtop < λbottom, by the Perron-Frobenius tree
Tbottom.

(2) The tree T is TDE if and only if the dual lamination L2(T ) is
the diagonal closure of a (uniquely determined) minimal sub-
lamination L2

0(T ).
(3) Every R-tree T which is UDE must also TDE. A TDE-tree T is

UDE if and only if the minimal sublamination L2
0(T ) ⊂ L2(T )

is uniquely ergodic.

Proof. (1) The dual lamination of Tbottom consists, from the bottom up,
of a minimal sublamination L2

min which is carried by the bottom stra-
tum and has geodesic realizations by used legal paths. This lamination
can be completed (by finitely many additional leaves) to diag(L2

min),
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which is still carried by the bottom stratum. There is another (non-
minimal) lamination L2

used which is also carried by used legal paths, but
those may run through both strata of τ . The lamination L2(Tbottom) is
equal to the diagonal closure of L2

used.
The current µbottom has as support the lamination L2

min. Any other
current µ′ with support in L2(Tbottom) can be decomposed as convex lin-
ear combination of µbottom and a current µ′0 with support in L2(Tbottom)
where µ′0 is extremal (i.e. no non-zero multiple of µbottom can be sub-
tracted). The set of such extremal currents (all carried by L2(Tbottom))
is ψ-invariant, and by construction does not contain µbottom.

We consider the column vectors defined by these extremal currents
and consider the action of f , which commutes with the action of ψ
on the currents. But the vector space of these column vectors is finite
dimensional (which isn’t necessarily true for the space of currents car-
ried by L2(Tbottom), as PCurr(FN) is infinite dimensional !), so that any
invariant proper subspace would lead to a second eigenvector, which
we know does not exist. Thus there must be an extremal current which
projects to the same vector as µbottom. This contradicts our results from
[16].

(2) The “if” direction is immediate. In order to prove the “only if”
direction we consider a minimal sublamination L′2 which has strictly
smaller diagonal closure than L2(Tbottom). By Fact 7.4 (1) there is a
current µ′ with support in L′2, which hence can not be diagonally equal
to Tbottom.

(3) If T is not TDE, then by (2) in L2(Tbottom) there is a sublamination
L′2 with strictly smaller diagonal closure than L2(Tbottom), which by (1)
carries some current µ′. In particular µ′ is different from any current
µ which is diagonally equal to Tbottom. Hence with any such µ every
µ+ εµ′ is also diagonally equal to Tbottom, for any ε > 0.

The statement about unique ergodicity is really only a definitory
statement. tu

For the dual setting we get analogous, but in part weaker results:

Proposition 7.6. Let µ ∈ Curr(FN) r Curr(FN)+, and assume that µ
is not filling.

(1) Not every non-filling µ ∈ Curr(FN) r Curr(FN)+ is DE. Coun-
terexamples are given, for any 2-strata exponential train track
map with λtop > λbottom, by the Perron-Frobenius current µtop.

(2) A current µ is TDE if its support supp(µ) has diagonal closure
which is a maximal element (with respect to the inclusion) of
Λ2(FN) r {∂2FN} (diag(supp(µ)) is “maximal”).
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(3) A TDE-current µ with maximal diagonal closure of supp(µ) is
UDE if and only if diag(supp(µ)) is uniquely ergometric.

Proof. The proof is given by a dualization of the above proof of the
corresponding parts of Proposition 7.5. The proof of part (1) becomes
easier, since CVN is finite dimensional. tu
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