
AREA OF SMALL DISKS

CHRISTOPHER B. CROKE+

Abstract. We consider Riemannian metrics on two dimensional disks where
all geodesics are minimizing. We prove a sharp reverse isoperimetric inequality

which yields near optimal bounds for the area of disks as well as near optimal
upper bounds on the first nonzero Newmann eigenvalue of the Laplacian in

terms only of the radius.

1. Introduction

In this paper we are considering “small” Riemannian disks. These are Riemann-
ian manifolds M2 diffeomorphic to the two dimensional disk that are “small” in
the sense that all geodesics in M hit ∂M at both ends and minimize the distance
between the endpoints. The use of the term small comes from the fact that this
will hold for any such M that is a subdomain of a complete manifold N as long
as it lies inside a ball of radius half the injectivity radius of N . In fact our main
interest will be in small metric balls B(x,R).

There is a long standing conjecture, in all dimensions n, that hemispheres have
the smallest volume among small balls of a fixed dimension and radius. By a
hemisphere we will mean a ball B(x,R) of radius R and with constant curvature
( π

2R )2. For example, when R = π
2 this is isometric to a hemisphere of the unit

sphere.

Conjecture 1.1. If B(x,R) is a small metric ball then

V ol(B(x,R)) ≥ α(n)
2

(
2R
π

)n

where α(n) represents the volume of the unit n-sphere. Further equality holds if
and only if B(x,R) is isometric to a hemisphere of (intrinsic) radius R.

Although in all dimensions there are known (nonsharp) constants C(n) such that
V ol(B(x,R)) ≥ C(n)( 2R

π )n (see [Be] for n = 2, 3 and [Cr] for all n) even the two
dimensional case of the conjecture is open:

Conjecture 1.2. If B(x,R) is a 2-dimensional small metric ball of area A then

A ≥ 8
π
R2.

Further equality holds if and only if B(x,R) is isometric to a hemisphere of (in-
trinsic) radius R.

One of the goals of this paper is to give a good constant C0 (though still C0 6= 8
π )

for the inequality A ≥ C0R
2.We shall get at this estimate by proving a sharp reverse

isoperimetric inequality for small balls:
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Theorem 1.3. If B(x,R) is a 2-dimensional small metric ball of area A and bound-
ary length L then

πA ≥ −1
2
L2 + 4RL.

Further equality holds if and only if B(x,R) is isometric to a hemisphere of (in-
trinsic) radius R.

In fact we will prove this result (see Theorem 3.1) in the more general setting
of a small Riemannian disk M2 where the radius R is replaced by the “antipodal
radius” Ra. For a given map a : ∂M → ∂M , a continuous fixed-point-free map with
a2 = Id, (i.e. an antipodal map on the boundary) we define Ra as the minimum
of 1

2d(x, a(x)) over boundary points x. For small metric balls when a is the usual
antipodal map Ra is just the radius R.

In the case of small balls we will use this to show:

Corollary 1.4. If B(x,R) is a 2-dimensional small metric ball of area A then

A ≥ 8− π
2

R2.

Although this is not sharp it is pretty good since the conjectured sharp constant,
8
π , is approximately 2.5465 while 8−π

2 is approximately 2.4292. We point out in
section 3 that there is no corresponding general lower bound for the area of small
disks in terms of Ra.

For a small ball B(x,R) let 0 < λ1 ≤ λ2 ≤ λ3, ... be the spectrum of the Laplace
operator with Dirichlet boundary conditions and 0 = µ1 < µ2 ≤ µ3 ≤ ... be the
spectrum for Newmann boundary conditions. The unit hemisphere (i.e. a ball
of intrinsic radius π

2 in the unit sphere) has λ1 = µ2 = µ3 = 2. Thus a hemi-
sphere of intrinsic radius R has λ1 = µ2 = µ3 = 2( π

2R )2 where the corresponding
eigenfunctions are the coordinate functions (from the embedding in R3).

Theorem 16 of [Cr] shows that for small surfaces of diameter D, λ1 ≥ 2( πD )2,
with equality holding only for hemispheres. This (see section 4), combined with a
result of Hersch [He] gives the sharp

Corollary 1.5. If M2 is a small disk of area A and diameter D then

µ2 ≤
8π2

3πA− 2D2
.

Further equality holds if and only if M2 is isometric to a hemisphere of (intrinsic)
diameter D.

For metric balls D = 2R. Hence a lower bound for A would give an upper bound
for µ2. In particular, Conjecture 1.2 would (along with Theorem 16 of [Cr]) imply.

Conjecture 1.6. On a 2-dimensional small metric ball B(x,R)

µ2 ≤ 2(
π

2R
)2 ≤ λ1.

Further equality holds in either (and hence both) inequality if and only if B(x,R)
is isometric to a hemisphere of (intrinsic) radius R.

On the other hand, Corollary 1.4 gives a good, but not sharp, upper bound
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Corollary 1.7. On a 2-dimensional small metric ball B(x,R)

µ2 < 2.1485(
π

2R
)2.

Acknowledgement: This paper was written while the author was visiting the
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2. The Space of Geodesics

We will assume throughout this section that M is a small disk of area A and
boundary length L. The unit tangent bundle, UM , of M has a natural measure,
du, that is locally a product measure. In particular V ol(UM) = 2πA. Let τ be a
curve in M with arclength s and unit normal ν. We can let {(θ, s)} parameterize
the set of geodesics γ that intersect τ , by γ(0) = τ(s) and the unit tangent γ′(0)
makes angle θ with ν. For all t such that γ(t) is defined we let {(θ, s, t)} correspond
to the unit vector u = γ′(t). Then Santaló’s formula [Sa1], [Sa2, Chap. 19] tells us
that du = |cos(θ)|dθdsdt.

It is easy to describe the (standard) measure space, Γ, of complete unit speed
oriented geodesics by using the boundary ∂M as our τ above. The measure is
dγ = |cos(θ)|dθds. Note that the parametrization (θ, s, t) of UM is one-to-one and
onto if −π2 ≤ θ ≤ π

2 , s is an arc length parametrization of ∂M and 0 ≤ t ≤ L(γ)
(where γ is the geodesic determined by (θ, s)). In particular,

2πA = V ol(UM) =
∫

Γ

L(γ)dγ. (2.1)

Now consider a curve τ . We claim that
∫

Γ
i(τ, γ)d(γ) = 4L(τ) where i(τ, γ)

represents the number of times the geodesic γ intersects τ . (This is known as
Crofton’s formula.) It follows directly from Santaló’s formula when we note that
the parametrization (θ, s) of the unit vectors along τ counts each γ ∈ Γ exactly as
often as i(τ, γ) and hence (since

∫ 2π

0
|cos(θ)|dθ = 4)

4L(τ) =
∫ ∫

|cos(θ)|dθds =
∫

Γ

i(τ, γ)dγ. (2.2)

In particular (since each geodesic hits ∂M twice) we see that

V ol(Γ) = 2L. (2.3)

Let a : ∂M → ∂M be a fixed antipodal map. For a given geodesic γ from
p ∈ ∂M to q ∈ ∂M we want to choose S(γ) ⊂ ∂M (the shadow of γ) an interval
of ∂M between p and q. (There are two choices since ∂M is homeomorphic to S1.)
When q 6= a(p) one of the intervals will contain both a(p) and a(q) (since a is an
antipodal map). We take S(γ) to be the closed interval without a(p) and a(q).
Note that a(S(γ)) is disjoint from S(γ). When q = a(p), S(γ) will not be defined,
however we will interpret

∫
S(γ)

f(s)ds to be 1
2

∫
∂M

f(s)ds.
For a small ball B(x,R) we define S(γ) for any γ that does not run through the

center x by setting S(γ) to be the set of p ∈ ∂M such that the geodesic from x to
p intersects γ. This agrees with the previous definition when the endpoints are not
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antipodal (with the usual antipodal map). In this case S(γ) is defined for all but
a set of measure 0 of Γ (which is not necessarily the case for small disks because
the set of geodesics between antipodal points could have positive measure). The
reader should note that for small balls B(x,R) and geodesics whose endpoints are
antipodal but that don’t pass through the center x,

∫
S(γ)

f(s)ds means something
different if we think of B(x,R) as a small ball or as a small disk with an antipodal
map.

A useful new tool for the study of areas of small balls is the following formula
which is just an application of Fubini’s theorem.

Lemma 2.1. Let B(x,R) be a small ball with boundary of length L. Then for any
continuous function f : ∂M → R we have∫

Γ

∫
S(γ)

f(s)dsdγ = 4R
∫
∂M

f(s)ds.

In particular, for f(s) = 1 we see∫
Γ

L(S(γ))dγ = 4RL.

Proof: We consider the space Γ × ∂M with the product measure dγds and
let F (γ, s) = 1 if s ∈ S(γ) and 0 otherwise. For any fixed boundary point s,∫

Γ
F (γ, s)dγ represents the measure of the space of geodesics γ such that s ∈ S(γ).

But this is just the measure of the space of geodesics that intersect the geodesic
from the center x to s, which by 2.2 is just 4R. Thus∫

Γ

∫
S(γ)

f(s)dsdγ =
∫

Γ

∫
∂M

F (γ, s)f(s)dsdγ =
∫
∂M

f(s)(
∫

Γ

F (γ, s)dγ)ds =

= 4R
∫
∂M

f(s)ds.

�

For γ a geodesic in a small ball B(x,R) that does not pass through x then we can
measure the angle θ(γ) that γ spans as viewed from x. To be precise let θ be the
parameterization of ∂M given by standard normal polar coordinates based at x.
Then θ(γ) is the change (≤ π) of θ over S(γ). Choosing f(s) such that dθ = f(s)ds
and applying Lemma 2.1 one gets a curious consequence for the average value of
θ(γ).

Corollary 2.2.
1

vol(Γ)

∫
Γ

θ(γ)dγ = π
4R
L
.

There is a lemma corresponding to Lemma 2.1 for small Riemannian disks with
an antipodal map a, which is only an inequality rather than a formula. This is the
version we will use to prove Theorem 3.1.

Lemma 2.3. Let M2 be a small disk with boundary of length L and a an antipo-
dal map. Then for any continuous nonnegative function f : ∂M → R such that
a∗(fds) = fds we have∫

Γ

∫
S(γ)

f(s)dsdγ ≥ 4Ra
∫
∂M

f(s)ds
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In particular choosing f such that f(s)ds = 1
2 (ds+ a∗ds) we see:

1
2

∫
Γ

L(S(γ)) + L(a(S(γ)))dγ ≥ 4RaL.

Proof: We first note that by the symmetry assumption on f for any γ∫
S(γ)

f(s)ds =
1
2

∫
S(γ)

f(s)ds+
∫
a(S(γ))

f(s)ds.

We now let F (γ, s) be 1 if either s ∈ S(γ) or a(s) ∈ S(γ), and 0 otherwise. This
is the same as saying that the endpoints of γ are separated along ∂M by s and
a(s)(or when s or a(s) is an endpoint of γ). We note that if γ is a geodesic between
antipodal points then F (γ, s) = 1 for all s ∈ ∂M .

For a given point s ∈ ∂M choose a length minimizing path τ from s to a(s) then∫
Γ
F (γ, s)dγ is precisely the measure of the space of geodesics that intersect τ (each

will intersect τ once by minimality), thus by 2.2 is precisely 4L(τ). Thus by the
definition of Ra, ∫

Γ

F (γ, s)dγ = 4L(τ) ≥ 8Ra.

The proof now follows as a variation of the previous proof∫
Γ

∫
S(γ)

f(s)dsdγ =
∫

Γ

1
2

(
∫
S(γ)

f(s)ds+
∫
a(S(γ))

f(s)ds)dγ =∫
Γ

∫
∂M

1
2
F (γ, s)f(s)dsdγ =

1
2

∫
∂M

f(s)(
∫

Γ

F (γ, s)dγ)ds ≥

≥ 4Ra
∫
∂M

f(s)ds.

�

Remark 2.4. Equality will hold in Lemma 2.3 for all nonnegative f as long as
d(s, a(s)) = 2Ra for all s ∈ ∂M .

3. Isoperimetric Inequalities

The purpose of this section is to prove Theorem 3.1 and corollary 1.4.
First let us collect some known isoperimetric inequalities. For small disks M2 of

area A, boundary length L, and diameter D, we see from [Cr] Theorem 11

L2 ≥ 2πA, (3.1)

while [Cr] Corollary 2(ii) gives
LD ≥ πA. (3.2)

Equality in either 3.1 or 3.2 holds if and only if M is isometric to a hemisphere.
The equality case in 3.2 is not proved in [Cr] however the proof shows that equality
holds if and only if all geodesics have length equal to D. This in turn implies it is
a hemisphere by the result in [Ba].

If a : ∂M → ∂M is an antipodal map and p ∈ ∂M then (from the definition of
Ra) each of the two intervals of ∂M between p and a(p) must have length ≥ 2Ra
thus

L ≥ 4Ra. (3.3)
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Since one of our goals is to get a lower bound on the area of small balls in terms
of the radius, a first question might be if you can bound A below in terms of Ra for
small disks. It turns out that one cannot do this. Consider the example MBε which
is the ε neighborhood in the flat plane R2 of a tripod (three unit length line segments
from the origin making angles 2π

3 with each other). We let aε : ∂MB → ∂MB take
a boundary point to the boundary point half way around the boundary. It is not
hard to see Raε ≥ 1

2 . On the other hand, as ε goes to 0 the area goes to 0 while
the length of the boundary goes to 6. (Note that the non convexity of MBε is not
the point here since one could use instead equilateral triangles in a more and more
negatively curved simply connected space form.)

Nevertheless, there is a sharp lower bound on A in terms of L and Ra for small
disks. The lower bound will say nothing (since we already know A ≥ 0) once
L ≥ 8Ra.

Theorem 3.1. For any small disk and any antipodal map a : ∂M → ∂M we have:

πA ≥ −1
2
L2 + 4LRa.

Rigidity: Equality holds iff the metric is isometric to a hemisphere.
Stability: If L is close to 4Ra then A is close to 8

πR
2
a. Specifically:

L2

2π
≥ A ≥ − 1

2π
L2 +

4
π
RaL.

Proof: Let γ be a geodesic in M from p ∈ ∂M to q ∈ ∂M where p 6= a(q). S(γ)
is an interval along ∂M from p to q while a(S(γ)) is an interval (disjoint from S(γ))
from a(p) to a(q). Let pa(q) and qa(p) be the other two segments of the boundary.
γ ∪ qa(p) is a curve from p to a(p) and hence

L(γ) + L(qa(p)) ≥ d(p, a(p)) ≥ 2Ra. (3.4)

Note for future reference that if γ is not tangent to the boundary at either end then
equality holds in the inequality if and only if γ goes from p to a(p) and has length
2Ra (i.e. q = a(p)). Similarly L(γ) + L(pa(q)) ≥ d(q, a(q)) ≥ 2Ra.

In the case that q = a(p) then the intervals pa(q) and qa(p) are empty inter-
vals and although S(γ) is not well defined it still makes sense to let L(S(γ)) +
L(a(S(γ))) = L, and it is still the case that L(γ) + L(qa(p)) ≥ d(p, a(p)) ≥ 2Ra
and L(γ) + L(pa(q)) ≥ d(q, a(q)) ≥ 2Ra.

We thus have for any γ

L = L(S(γ)) + L(a(S(γ))) + L(pa(q)) + L(pa(q)) + 2L(γ)− 2L(γ) ≥
≥ L(S(γ)) + L(a(S(γ)))− 2L(γ) + 4Ra.

Integrating over Γ, using lemma 2.3, equation 2.3, and equation 2.1 we see:

2L2 =
∫

Γ

L ≥ 8LRa − 4πA+ 8LRa.

Hence the result
πA ≥ −1

2
L2 + 4LRa. (3.5)

Assume now that equality holds in inequality 3.5. Since the set of geodesics that
are tangent to the boundary at either end is a set of measure 0 the equality condition
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in equation 3.4 (which must hold for almost every γ) says that almost every geodesic
γ would have length 2Ra. Hence, by equation 2.1, 2πA =

∫
Γ
L(γ)dγ = 4LRa. Thus,

by the equality assumption, we have πA = − 1
2L

2 + 2πA and hence L2 = 2πA. But
we know from the equality case of the isoperimetric inequality 3.1 that this implies
that M is isometric to a hemisphere.

The stability statement is simply the two inequalities 3.1 and 3.5 together. �

Remark 3.2. For small metric balls B(x,R) there is, using inequality 3.2, a slightly
better version of stability:

2LR
π
≥ A ≥ − 1

2π
L2 +

4
π
RL.

Proof of Corollary 1.4: We will show that for small metric balls A
R2 ≥ 8−π

2 .
When B(p,R) is small then B(p, r) is also small for all 0 < r ≤ R. Hence for
Area(B(x, r)) = A(r) and L(r) the length of the boundary of B(x, r) Theorem 3.1
gives

π
A(r)
r2
≥ −1

2
(
L(r)
r

)2 + 4
L(r)
r

.

Since d
drA(r) = L(r),

d

dr
(
A(r)
r2

) =
1
r

(
L(r)
r
− 2

A(r)
r2

).

Since A(r)
r2 approaches π near r = 0 the minimum value of A(r)

r2 for r ∈ (0, R],
if less than π, either occurs for r0 = R and A(R)

R2 ≥ 1
2
L(R)
R or at some r0 where

A(r0)
r20

= 1
2
L(r0)
r0

. In either case, since 2A(r0)
r20
≥ L(r0)

r0
≥ 4, and − 1

2x
2+4x is decreasing

for x > 4, we see that

π
A(r0)
r2
0

≥ −1
2

(
2A(r0)
r2
0

)2 + 4(
2A(r0)
r2
0

).

Hence
A(R)
R2

≥ A(r0)
r2
0

≥ 8− π
2

.

This proves the Corollary. �

4. Eigenvalues of the Laplacian

In this section we consider bounds on the eigenvalues for a small disk M2 whose
area is A, boundary length is L and diameter is D. As in the introduction we let
λ1 be the first Dirichlet eigenvalue and µ2 and µ3 the first two nonzero Newmann
eigenvalues M .

Then from [Cr] Theorem 16 (which is an n-dimensional theorem) we have for
small disks

λ1 ≥ 2
π2

D2

with equality only for round hemispheres.
While from [He] equation (2) (which is a two dimensional result but holds more

generally than for small disks) we have
1
λ1

+
1
µ2

+
1
µ3
≥ A 3

4π
.
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Where equality holds for the round hemisphere.

Combining these (with the sharp µ2 ≤ µ3) yields

D2

2π2
+

2
µ2
≥ A 3

4π
.

and hence Corollary 1.5:

µ2 ≤
8π2

3πA− 2D2
.

Where equality will hold only for hemispheres from the previous equality results.
So a lower bounds on A and upper bounds on D give upper bounds on µ2. Thus

we can get such bounds from Theorem 3.1. However, the results have a nicer form
in the case of small balls B(x,R) where in particular D = 2R. Thus an application
of Theorem 3.1 gives us

Corollary 4.1. If B(x,R) is a small ball of area A and boundary length L then

µ2 ≤
8π2

3πA− 8R2
,

and

µ2 ≤
8π2

− 3
2L

2 + 12RL− 8R2
.

Further equality holds in either inequality if and only if B(x,R) is isometric to a
hemisphere of (intrinsic) radius R.

An application of Corollary 1.4 gives a non-sharp result (and corollary 1.7)

Corollary 4.2. On a 2-dimensional small metric ball B(x,R)

µ2 ≤
4 · 16

−3π2 + 24π − 16
(
π

2R
)2 < 2.1485(

π

2R
)2.
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[Sa1] L. A. Santaló, Measure of sets of geodesics in a Riemannian space and applications to
integral formulas in elliptic and hyperbolic spaces, Summa Brasil. Math. 3, (1952). 1–11.
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