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Abstract. In this paper, an explicit classification result for certain 5-manifolds with
fundamental group Z/2 is obtained. These manifolds include total spaces of circle bundles
over simply-connected 4-manifolds.

1. Introduction

The classification of manifolds with certain properties is a central topic of topology, and
in dimensions ≥ 5 methods from handlebody theory and surgery have been successfully
applied to a number of cases. One of the first examples was the complete classification
of simply-connected 5-manifolds by Smale [16] and Barden [1] in 1960’s. This result has
been very useful for studying the existence of other geometric structures on 5-manifolds,
such as the existence of Riemannian metrics with given curvature properties. We consider
this as a model and motivation for studying the classification of non-simply connected
5-manifolds.

An orientable 5-manifold M is said to be of fibered type if π2(M) is a trivial Z[π1(M)]-
module. In this paper, we will be concerned with closed, orientable fibered type 5-
manifolds M5 with π1(M) ∼= Z/2, and torsion free H2(M ; Z). A classification of these
manifolds in the smooth (or PL) and the topological category is given in Section 3. We give
a simple set of invariants, namely the rank of H2(M ; Z) and the Pin†-bordism (TopPin†-
bordism) class of the characteristic submanifold, which determine the diffeomorphism
(homeomorphism) types. In the smooth case, the main result of the classification is:

Theorem 3.1. Two smooth, closed, orientable fibered type 5-manifolds M and M ′ with
fundamental group Z/2 and torsion free second homology group are diffeomorphic if and

only if they have the same w2-type, rankH2(M) = rankH2(M
′), and [P ] = [P ′] ∈ ΩPin†

4 /±,
where P and P ′ are characteristic submanifolds and † = c,−,+ for w2-types I, II, III
respectively.

The homeomorphism classification is given in Theorem 3.4. We also determine all the
relation among these invariants (Theorem 3.5), and give a list of standard forms for these
manifolds (Theorem 3.6, Theorem 3.10).

One motivation for this classification problem comes from the study of circle bundles
M5 over simply-connected 4-manifolds, since their total spaces are of fibered type. Duan-
Liang [5] gave an explicit geometric description of M5 for simply-connected total spaces,
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making essential use of the results of Smale and Barden. As an application of our results, in
Section 4 we give an explicit geometric description when the total spaces have fundamental
group Z/2.

Theorem 4.5 (type II). Let X be a closed, simply-connected, topological spin 4-manifold,
ξ : S1 ↪→M5 → X be a circle bundle over X with c1(ξ) = 2·primitive. Then we have

(1) if KS(X) = 0, then M is smoothable and M is diffeomorphic to

(S2 × RP3) ]S1((]k S
2 × S2)× S1);

(2) if KS(X) = 1, then M is non-smoothable and M is homeomorphic to

∗(S2 × RP3) ]S1((]k S
2 × S2)× S1).

Where k = rankH2(X)/2− 1.

In the statement, ∗(S2×RP3) denotes a non-smoothable manifold homotopy equivalent
to S2 × RP3. The corresponding results for the other w2-types are given in Theorem 4.7
and Theorem 4.8.

Classification results can also be useful in studying the existence problem for geometric
structures on fibered type 5-manifolds. For example, a closed, orientable 5-manifold with
π1 = Z/2, such that w2 vanishes on homology, admits a contact structure by the work of
Geiges and Thomas [6]. They showed that all such manifolds can be obtained by surgery
on 2-dimensional links from exactly one of ten model manifolds. The topology of such
manifolds of fibered type are described explicitly for the first time by our results, and
we note that all the manifolds in the list in Theorem 3.6 satisfy the necessary condition
W3 = 0 for the existence of contact structures. It may be possible to obtain similar
information for fibered type 5-manifolds which admit Sasakian or Einstein metrics by
using the work of Boyer and Galicki [2].

The surgery exact sequence of Wall [18] provides a way to classify manifolds within
a given (simple) homotopy type. However, in the application to concrete problems, one
often faces homotopy theoretical difficulties. In our situation, the setting of the problems
is appropriate for the application of the modified surgery methods developed by Kreck
[11]. The proofs in Section 5 and Section 6 are based on this theory.

In dimension 5, the smooth category and the PL category are equivalent. By convention,
M stands for either a smooth or a topological manifold when not specified.
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2. Preliminaries

Let M be a closed, orientable 5-manifold with π1(M) ∼= Z/2 and universal cover M̃ .
The manifold M is said to be of type II if w2(M) = 0, of type III if w2(M) 6= 0 and

w2(M̃) = 0, of type I if w2(M̃) 6= 0. By the universal coefficient theorem, there is an
exact sequence

0→ Ext(H1(M),Z/2)→ H2(M ; Z/2)→ Hom(H2(M),Z/2)→ 0.
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Lemma 2.1. M is of type II ⇔ w2(M) = 0; of type III ⇔ w2(M) 6= 0 and w2(M) ∈
Ext(H1(M),Z/2); of type I ⇔ otherwise.

Proof. There is a commutative diagram

0 // Ext(H1(M),Z/2) //

��

H2(M ; Z/2) //

��

Hom(H2(M),Z/2) //

��

0

0 // Ext(H1(M̃),Z/2) // H2(M̃ ; Z/2) // Hom(H2(M̃),Z/2) // 0.

Let p : M̃ →M be the covering map, then TM̃ = p∗TM and w2(M̃) = p∗w2(M). By the
exact sequence π2(M)→ H2(M)→ H2(Z/2)→ 0 and the fact H2(Z/2) = 0 (cf. [3]), it is

seen that the map H2(M̃) → H2(M) is surjective, therefore the last vertical map in the

diagram Hom(H2(M),Z/2)→ Hom(H2(M̃),Z/2) is a monomorphism. Thus w2(M̃) = 0
if and only if w2(M) ∈ Ext(H1(M),Z/2). �

Remark 2.2. By this lemma, the type II and type III manifolds are manifolds having
second Stiefel-Whitney class equal to zero on homology, which are studied in [6].

Recall that for a manifoldMn with fundamental group Z/2, a characteristic submanifold

P n−1 ⊂ M is defined in the following way (see [6, §5]): there is a decomposition M̃ =

A∪TA such that ∂A = ∂TA = P̃ , where T is the deck-transformation. Then P := P̃ /T is
called the characteristic submanifold of M . For example, if M = RPn, then P = RPn−1.
In general, let f : M → RPN (N large) be the classifying map of the universal cover,
transverse to RPN−1, then P can be taken as f−1(RPn−1). By equivariant surgery we
may assume that π1(P ) ∼= Z/2 and that the inclusion i : P ⊂M induces an isomorphism
on π1. The above construction also holds in the topological category by topological
transversality [9].

Recall that there are central extensions of O(n) by Z/2 (see [10, §1] and [7, §2]):

1→ Z/2→ Pin±(n)→ O(n)→ 1,

and central extension

1→ U(1)→ Pinc(n)→ O(n)→ 1.

Let † ∈ {c,+,−}. A Pin†-structure on a vector bundle ξ over a space X is the fiber
homotopy class of lifts of the classifying map cE : X → BO.

Lemma 2.3. [7, Lemma 1]

(1) A vector bundle E over X admits a Pin†-structure if and only if

β(w2(E)) = 0 for † = c,
w2(E) = 0 for † = +,
w2(E) = w1(E)2 for † = −,

where β : H2(X; Z/2) → H3(X; Z) is the Bockstein operator induced from the
exact coefficient sequence Z→ Z→ Z/2.
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(2) Pin±-structures are in bijection with H1(X; Z/2) and Pinc-structures are in bijec-
tion with H2(X; Z).

In the smooth category, the division of the manifolds under consideration into 3 types
corresponds to different Pin†-structures on their characteristic submanifold, compare [6,
Lemma 9] for † = ±.

Lemma 2.4. Let M be a smooth, orientable 5-manifold with π1(M) ∼= Z/2 and H2(M ; Z)
torsion free. Let P ⊂M be the characteristic submanifold (with π1(P ) ∼= Z/2). Then TP
admits a Pin†-structure, where

† =

 c if M is of type I
− if M is of type II
+ if M is of type III

Proof. Let i : P ⊂M be the inclusion and ν be the normal bundle of this inclusion. Then
TP ⊕ ν = i∗TM , hence by the product formula of the Stiefel-Whitney classes we have
w2(P )+w1(P ) ·w1(ν) = i∗w2(M). Because P is nonorientable, ν is the nonorientable line
bundle. Now H1(P ; Z/2) ∼= Z/2, we see that w1(P ) = w1(ν), therefore w2(P ) +w1(P )2 =
i∗w2(M).

If M is of type II, w2(M) = 0, then w2(P ) + w1(P )2 = 0, and P admits a Pin−-
structure. If M is of type III, w2(M) is the nonzero element in Ext(H1(M),Z/2) ∼= Z/2.
Then i∗w2(M) = w1(P )2 because of the isomorphism

i∗ : Ext(H1(M),Z/2)→ Ext(H1(P ),Z/2)

and the fact that the nonzero element in Ext(H1(P ),Z/2) is w1(P )2.
In general, since H3(M ; Z) ∼= H2(M ; Z) is torsion free, the Bockstein homomorphism

β : H2(M ; Z/2) → H3(M ; Z) is trivial. Therefore βi∗w2(M) = i∗βw2(M) = 0. In the
classifying space, the Bockstein homomorphism β : H2(RP∞; Z/2)→ H3(RP∞; Z) is triv-
ial, since β equals to the Steenrod square Sq1, which is trivial. Now w1(P ) is the pullback
of the nonzero element in H1(RP∞; Z/2), and therefore w1(P )2 is the pullback of the
nonzero element in H2(RP∞; Z/2). Thus we have β(w1(P )2) = 0 by naturality. There-
fore βw2(P ) = 0 and P admits a Pinc-structure. �

3. Main Results

For a given M5, different characteristic submanifolds are bordant in the corresponding
Pin†-bordism group, where a bordism is obtained from a homotopy between the relevant
classifying maps. A concrete Pin†-structure is given by a Spin-structure on a stable
vector bundle related to νM , which will be explained in Section 5. The two different
Pin†-structures on the characteristic submanifold correspond to a pair of elements inverse
to each other in ΩPin†

4 .

Theorem 3.1. Two smooth, closed, orientable fibered type 5-manifolds M and M ′ with
fundamental group Z/2 and torsion free second homology group are diffeomorphic if and

only if they have the same w2-type, rankH2(M) = rankH2(M
′), and [P ] = [P ′] ∈ ΩPin†

4 /±,
where P and P ′ are the characteristic submanifolds and † = c,−,+ for types I, II, III
respectively.
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Remark 3.2. We will see in a moment that ΩPin−

4 = 0. Therefore for the type II manifolds
rankH2(M) is the only diffeomorphism invariant.

There are topological versions of the central extensions mentioned above and we have
groups TopPin†(n), † ∈ {c,+,−}. Lemma 2 holds in the topological case. For the
preliminaries on TopPin†(n) we refer to [10] and [7]. Therefore we have corresponding
results in the topological category.

Lemma 3.3. Let M be a topological, orientable 5-manifold with π1(M) ∼= Z/2 and
H2(M ; Z) torsion free. Let P ⊂ M be a characteristic submanifold (with π1(P ) ∼= Z/2).
Then TP admits a TopPin†-structure, where

† =

 c if M is of type I
− if M is of type II
+ if M is of type III

Theorem 3.4. Two topological, closed, orientable fibered type 5-manifolds M and M ′

with fundamental group Z/2 and torsion free second homology group are homeomorphic
if and only if they have the same w2-type, rankH2(M) = rankH2(M

′) and [P ] = [P ′] ∈
ΩTopPin†

4 /±, where P and P ′ are characteristic submanifolds and † = c,−,+ for type I,
II, III respectively.

The groups ΩPin±

4 and ΩTopPin±

4 are computed in [10]. ΩTopPinc

4 is computed in [7, p.654].
(Note that the rôle of Pin+ and Pin− in [7] are reversed since in that paper the authors
consider normal structures whereas here we use the convention in [10], looking at the
tangential Gauss-map.) In a similar way we will compute ΩPinc

4 below. We list the values
of these groups:

† ΩPin†

4 invariants generators

c Z/8⊕ Z/2 (arf, w2
2) RP4, CP2

+ Z/16 ? RP4

− 0 – –

† ΩTopPin†

4 invariants generators

c Z/2⊕ Z/8⊕ Z/2 (KS, arf, w2
2) E8, RP4, CP2

+ Z/2⊕ Z/8 (KS, arf) E8, RP4

− Z/2 KS E8

Computation of ΩPinc

4 : the extension

1→ Pin− → Pinc → U(1)→ 1

induces Gysin-sequence (compare [7, p.654])

· · · → ΩPin−

4 → ΩPinc

4
∩c−→ ΩPin−

2 (BU(1))→ ΩPin−

3 → · · · .
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Since ΩPin−

4 = ΩPin−

3 = 0 (see [10]), we have an isomorphism

ΩPinc

4
∩c−→ ΩPin−

2 (BU(1))

and the latter group is the same as ΩTopPin−

2 (BU(1)), which is computed in [7].

The invariants in Theorem 3.1 are subject to certain relations. Denote r = rankH2(M),

q = [P ] ∈ ΩPin+

4 /± = {0, 1, . . . , 8} and (q, s) = [P ] ∈ ΩPinc

4 /± = {0, 1, . . . , 4} × {0, 1}. As
an application of the semi-characteristic class [13], we have

Theorem 3.5. Let M be a smooth, orientable 5-manifold with π1(M) ∼= Z/2 and torsion
free H2(M), having the invariants as above. Then these invariants subject to the following
relations

type relation

I q + s+ r ≡ 1 (mod 2)

II r ≡ 1 (mod 2)

III q + r ≡ 1 (mod 2)

Now we give a list of all the manifolds under consideration, realizing the possible in-
variants. We need some preliminaries.

By a computation of the surgery exact sequence, it is shown in [18] that in the smooth
(or PL) category, there are 4 distinct diffeomorphism types of manifolds which are homo-
topy equivalent to RP5, these are called fake RP5. An explicit construction using links
of singularities (Brieskorn spheres) can be found in [6]. Following the notations there, we
denote these fake RP5 by X5(q), q = 1, 3, 5, 7, with X5(1) = RP5. These manifolds fall
into the class of manifolds under consideration. They are of type III and the Pin+-bordism
class of the corresponding characteristic submanifold is q ∈ ΩPin+

4 /± = {0, 1, . . . , 8}, see
[6]. In our list of standard forms these fake projective spaces will serve as building blocks
under the operation ]S1—“connected-sum along S1”, which we explain now, compare [7].

Let Mi (i = 1, 2) be oriented 5-manifolds with fundamental group Z/2 or Z, and at
least one of the fundamental groups is Z/2. Denote the trivial oriented 4-dimensional
real disc bundle over S1 by E. Choose embeddings of E into M1 and M2, representing
a generator of π1(Mi), such that the first embedding preserves the orientation and the
second reverses it. Then we define

M1 ]S1M2 := (M1 − E) ∪∂ (M2 − E).

Note that if one of the 5-manifolds admits an orientation reversing automorphism, then
the construction doesn’t depend on the orientations, and this is the case for the building
blocks in the list below, namely, S2 × RP3, S2 × S2 × S1, X5(q) and CP2 × S1 admit
orientation reversing automorphisms. (The fact that X5(q) admits orientation reversing
automorphisms follows from that RP5 admits orientation reversing automorphisms and
that the action of Aut(RP5) on the structure set S (RP5) is trivial.)

The Seifert-van Kampen theorem implies that π1(M1 ]S1M2) ∼= Z/2. The Mayer-
Vietoris exact sequence implies that H2(M1 ]S1M2) is torsion free, and hence M1 ]S1M2 is
of fibered type. The homology rankH2(M1 ]S1M2) = rankH2(M1) + rankH2(M2) + 1 if
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both fundamental groups are Z/2, and rankH2(M1 ]S1M2) = rankH2(M1)+rankH2(M2)
if one of the fundamental groups is Z.

Since π1SO(4) ∼= Z/2, there are actually two possibilities to form M1 ]S1M2. However,
from the classification result, it turns out that this ambiguity happens only when we con-
struct X5(q) ]S1X5(q′). This does depend on the framings, and therefore X5(q) ]S1X5(q′)
represents two manifolds. Note that the characteristic submanifold ofM1 ]S1M2 is P1 ]S1P2

(see [7, p.651] for the definition of ]S1 for nonorientable 4-manifolds with fundamental
group Z/2). Therefore if we fix Pin+-structures on each of the characteristic submanifolds,
then X5(q) ]S1X5(q′) is well-defined.

This construction allows us to construct manifolds with a given bordism class of char-
acteristic submanifold. Note that P1 ]S1P2 corresponds to the addition in the bordism
group ΩPin†

4 . Now for q = 0, 2, 4, 6, 8, choose l, l′ ∈ {1, 3, 5, 7} and appropriate Pin+-
structures on the characteristic submanifolds of X5(l) and X5(l′), we can form a manifold

X5(l) ]S1X5(l′) such that the characteristic submanifold [P ] = q ∈ ΩPin+

4 /±. We denote
this manifold also by X5(q). For example, we can form X5(0) = X5(1) ]S1X5(1) and
X5(2) = X5(1) ]S1X5(1) with different glueing maps.

With these notations, the list of standard forms of the manifolds under consideration
is given as follows:

Theorem 3.6. Every closed smooth orientable fibered type 5-manifold with fundamental
group Z/2 and second homology group Zr is diffeomorphic to exactly one of the following
standard forms:

type I : X5(q) ]S1(S2×RP3) ]S1((]k S
2×S2)×S1), r = 2k+(5+(−1)q)/2, q ∈ {0, . . . , 4};

X5(q) ]S1(CP2×S1) ]S1((]k S
2×S2)×S1), r = 2k+(3+(−1)q)/2, q ∈ {0, . . . , 4};

type II : (S2 × RP3) ]S1((]k S
2 × S2)× S1), r = 2k + 1;

type III : X5(q) ]S1((]k S
2 × S2)× S1), r = 2k + (1 + (−1)q)/2, q ∈ {0, . . . , 8}.

Where ]k S
2 × S2 is the connected sum of k copies of S2 × S2.

Remark 3.7. There can be other descriptions of the manifolds in the list. For example,
we have a (more symmetric) description of the type II standard forms

(S2 × RP3) ]S1 · · · ]S1(S2 × RP3)︸ ︷︷ ︸
k times

.

Remark 3.8. Note that the universal covers of the manifolds under consideration have
torsion free second homology, therefore, according to the results of Smale and Barden,
are diffeomorphic to ]r(S

2 × S3) or B]r−1(S
2 × S3), where B is the nontrivial S3-bundle

over S2. From this point of view, Theorem 3.6 gives the classification of orientation
preserving free involutions on ]r(S

2 × S3) and B]r−1(S
2 × S3), which act trivially on

H2. For example, consider the orientation preserving free involution on S2 × S3 given by
(x, y) 7→ (r(x),−y), where r : S2 → S2 is the reflection along a line and − : S3 → S3 is the
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antipodal map. Then the quotient space is actually the sphere bundle of the nontrivial
orientable R3-bundle over RP3. From Theorem 3.1 it is easy to see that this is just X5(0).

Remark 3.9. The above list may be of use in the study of geometric structures on
these manifolds. Geiges and Thomas [6] show that the type II and type III manifolds
admit contact structures. On the other hand, a necessary condition for the existence
of contact structures on M2n+1 is the reduction of the structure group of TM to U(n),
hence the vanishing of integral Stiefel-Whitney classes W2i+1(M). It is easy to see that
the type I manifolds satisfy this necessary condition. These manifolds also satisfy the
necessary conditions on the cup length and Betti numbers in [2] for the existence of
Sasakian structures. Therefore it would be interesting to study these geometric structures
on these manifolds.

To give a list of standard forms of the manifolds under consideration in the topological
case, we need a topological 5-manifold which is homotopy equivalent to S2 × RP3 and

whose characteristic submanifold represents the nontrivial element in ΩTopPin−

4 = Z/2.
Note that by Theorem 3.4, if such manifolds exist, then the homeomorphism type is
unique. Following the notation in [7], we denote this manifold by ∗(S2 × RP3). We now
give the construction of ∗(S2 × RP3).

Let W = S2×RP3 ]S1E8×S1, so that π1(W ) = Z/2 and the characteristic submanifold
of W is S2×RP2 ] E8. Let h : W → S2×RP3 be a degree 1 normal map which extends the
degree 1 normal map f : S2×RP2 ] E8 → S2×RP2. Then by doing codimension 1 surgery
on h we obtain a W ′ with characteristic submanifold P = ∗(S2 × RP2) and a degree 1
normal map h′ : W ′ → S2 × RP3 extending a homotopy equivalence f ′ : ∗ (S2 × RP2)→
S2 × RP2 (cf. [7] for the construction of ∗(S2 × RP2)). The π-π theorem allows us to
do further surgeries on the complement of a tubular neighbourhood of P to obtain a
homotopy equivalence.

In the topological category there are four fake RP5’s. Two of them are smoothable.
We denote these manifolds by X5(p, q) (p ∈ {0, 1}, q ∈ {1, 3}) such that the charac-

teristic submanifold of X5(p, q) is (p, q) ∈ ΩTopPin+

4 /± = {0, 1} × {0, 1, 2, 3, 4}. Similar
to the smooth case, we can also construct X5(p, q) (p ∈ {0, 1}, q ∈ {0, 2, 4}) by circle
connected sum of fake RP5. (Note that the Kirby-Siebenmann invariant is additive under
the connected sum operation [15]).

Theorem 3.10. Every closed topological orientable fibered type 5-manifold with funda-
mental group Z/2 and second homology group Zr is homeomorphic to exactly one of the
following standard forms:

type I : X5(p, q) ]S1(S2 × RP3) ]S1((]k S2 × S2)× S1),

r = 2k + (5 + (−1)q)/2, q ∈ {0, . . . , 4}, p = 0, 1;

X5(p, q) ]S1(CP2 × S1) ]S1((]k S2 × S2)× S1),

r = 2k + (3 + (−1)q)/2, q ∈ {0, . . . , 4}, p = 0, 1;

type II : (S2 × RP3) ]S1((]k S2 × S2)× S1), r = 2k + 1;
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∗(S2 × RP3) ]S1((]k S2 × S2)× S1), r = 2k + 1;

type III : X5(p, q) ]S1((]k S2×S2)×S1), r = 2k+(1+(−1)q)/2, q ∈ {0, . . . , 4}, p = 0, 1.

From the above list, we can also give a homotopy classification.

Theorem 3.11. The homotopy type of M5 is determined by its w2-type, rankH2(M),
and in the type I case the number 〈w2(M)2 ∪ t+ t5, [M ]〉 ∈ Z/2, where t ∈ H1(M ; Z/2) is
the nonzero element.

4. Circle Bundles over 1-connected 4-manifolds

Let X4 be a simply-connected 4-manifold, smooth or topological. Let ξ be a complex
line bundle over X, with first Chern class c1(ξ) ∈ H2(X; Z). Choose a Riemannian
metric on ξ, then the total space of the corresponding circle bundle is a 5-manifold M .
The homotopy long exact sequence of the fiber bundle shows that π1(M) ∼= Z/m if c1(ξ)
is an m multiple of a primitive element.

In [5], a classification of M in terms of the topological invariants of X and c1(ξ) is
obtained for m = 1, using the classification theorem of Smale and Barden. It is also
known that H2(M) is torsion free of rankH2(X) − 1 and that M is of fibered type. In
this Section, we will apply the results in last section to the m = 2 case, give classification
of M in terms of the topological invariants of X and c1(ξ). We will also identify M in the
list of standard forms in Theorem 3.6 and Theorem 3.10.

§4A. Invariants of M . In this subsection we collect the basic algebraic-topological in-
variants of M .

Proposition 4.1. Let M5 be a circle bundle over a simply-connected 4-manifold X, with
first Chern class c1(ξ) = 2 · primitive, then

(1) π1(M) ∼= Z/2
(2) H2(M) ∼= Zr where r = rankH2(X)− 1.

(3) the π1(M)–action on H2(M̃) is trivial.
(4) the type of M5 is given by

type I type II type III

w2(X) 6= 0

w2(X) 6≡ c1(ξ̃) (mod 2) w2(X) = 0 w2(X) ≡ c1(ξ̃) (mod 2)

Proof. First of all, the homotopy long exact sequence

π1(S
1)→ π1(M)→ π1(X)

implies that π1(M) is a cyclic group. The Gysin sequence

0→ H2(M)→ H2(X)
∩c1−→ H0(X)→ H1(M)→ 0

shows that H2(M) is torsion free of rank equal to rankH2(X)−1 and H1(M) ∼= Z/2 since

c1(ξ) = 2 · primitive. Note that the universal cover M̃ is a circle bundle over X, denoted
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by ξ̃, with first Chern class c1(ξ̃) = 1
2
c1(ξ). The π1(M)-action on M̃ is the antipodal map

on each fiber, thus the commutative diagram

H2(M̃)
T∗ //

p∗

$$JJJJJJJJJ
H2(M̃)

p∗

��
H2(X)

shows that the action on H2(M̃) is trivial. For the Stiefel-Whitney class, if X is smooth,
we have TM ⊕ R = p∗(TX ⊕ ξ) (where p is the projection map), this implies w2(M) =
p∗w2(X). In general, X − pt admits a smooth structure, then the same argument holds,
see [5, Lemma 3]. �

§4B. Smoothings of M .

Proposition 4.2. Let ξ : S1 ↪→ M5 → X be a nontrivial circle bundle over a closed,
simply-connected, topological 4-manifold. If c1(ξ) is an odd multiple of a primitive element,
then M is smoothable; if c1(ξ) is an even multiple of a primitive element, then M admits
a smooth structure if and only if KS(X) = 0.

Proof. Let M5 be a topological 5-manifold, then by [9], the obstruction for smoothing
M lies in H4(M ; π3(Top/O)) = H4(M ; π3(Top/PL)) = H4(M ; Z/2) ∼= H1(M ; Z/2). The
latter group is trivial if c1(ξ) is an odd multiple of a primitive element. On the other
hand, we have TM ⊕ R = π∗(TX ⊕ ξ), where π is the projection map. Therefore the
obstruction for smoothing M is π∗KS(X). It is seen from the Gysin sequence that
π∗ : H4(X; Z/2) → H4(M ; Z/2) is injective if c1(ξ) is an even multiple of a primitive
element. Therefore M admits a smooth structure if and only if KS(X) = 0. �

Now we give a geometric description of the characteristic submanifold of a circle bundle
over simply-connected X4.

Lemma 4.3. Let ξ : S1 ↪→M5 → X be a circle bundle, π1(M) ∼= Z/2. Let F ⊂ X be an

embedded surface dual to c1(ξ̃), N(F ) be a tubular neighborhood of F in X, S1 ↪→ B → F
be the restriction of ξ on F . Then there is a double cover map ∂N(F ) → B and the

characteristic submanifold of M is P 4 = (X − N̊(F )) ∪∂ B.

In other words, the characteristic submanifold P is obtained by removing a tubular

neighborhood of an embedded surface dual to c1(ξ̃) and then identifying antipodal points
on on each fiber.
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Proof. Since c1(ξ) = 2·primitive, the circle bundle is the pull-back of the circle bundle
over CP2 with first Chern class = 2·primitive:

S1 = //

��

S1

��
M5

f //

��

RP5

��

⊃ RP4 = RP3 ∪D4

X
g // CP2 = CP1 ∪D4

Now P = f−1(RP4) = f−1(D4 ∪S3 RP3). Let F = g−1(CP1) be the transvere preimage
of CP1, then the normal bundle ν of F in X is the pullback of the Hopf bundle, and the
restriction of ξ on F is ν ⊗ ν, therefore there is a double cover ∂N(F )→ B. It is easy to

see that P 4 = (X − N̊(F )) ∪∂ B. �

Lemma 4.4. Let P be as above. Then KS(P ) = KS(X).

Proof. We identify N(F ) with the normal 2-disk bundle, let V be the associated RP2-
bundle obtained by identifying antipodal points on ∂N(F ). Then by the construction,

P = X ∪N(F )×{0} N(F )× I ∪N(F )×{1} V.

Therefore P is bordant to XtV . It was shown by Hsu [8] and Lashof-Taylor [12] that the
Kirby-Siebenmann invariant is a bordism invariant, thus KS(P ) = KS(X) + KS(V ) =
KS(X) since V is smooth. �

§4C. Classification. Now we can give a classification of circle bundles over 1-connected
4-manifolds, identify them with the standard forms in Theorem 3.6 and Theorem 3.10, in
terms of the topology of X and ξ.

For the type II manifolds it is an immediate consequence of Theorem 3.1 and Theorem
3.4.

Theorem 4.5 (type II). Let X be a closed, simply-connected, topological spin 4-manifold,
ξ : S1 ↪→M5 → X be a circle bundle over X with c1(ξ) = 2·primitive. Then we have

(1) if KS(X) = 0, then M is smoothable and M is diffeomorphic to

(S2 × RP3) ]S1((]k S
2 × S2)× S1);

(2) if KS(X) = 1, then M is non-smoothable and M is homeomorphic to

∗(S2 × RP3) ]S1((]k S
2 × S2)× S1).

Where k = rankH2(X)/2− 1.

Remark 4.6. Note that for a spin 4-manifold X, rankH2(X) is even, and thus k is an
integer.

For smooth manifolds of type III, we do not know a good invariant detecting the
bordism group ΩPin+

4 . Therefore we could only determine the diffeomorphism type up to
an ambiguity of order 2. This is based on the following exact sequence (see [10, §5])

0→ Z/2→ ΩPin+

4

∩w2
1−→ ΩPin−

2 → 0,
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where ∩w2
1 is the operation of taking a submanifold dual to w2

1. The generators of ΩPin−

2

is ±RP2 and ∩w2
1 maps ±RP4 to ±RP2. The image of [P ] in ΩPin−

2 can be determined
from the data of the circle bundle.

In the topological case, we have an epimorphism (see [10, §9])

ΩTopPin+

4 → ΩTopPin−

2
∼= Z/8,

which is an isomorphism on the subgroup generated by RP4. By Lemma 4.4, we have
KS(P ) = KS(X). Therefore by Theorem 3.4, we have a complete topological classifica-
tion.

Theorem 4.7 (type III). Let X be a closed, simply-connected topological 4-manifold,

ξ : S1 ↪→M5 → X be a circle bundle over X with c1(ξ) = 2·primitive, and w2(X) ≡ c1(ξ̃)
(mod 2). Then we have

(1) if X is smooth, then the diffeomorphism type of M (with the induced smooth struc-

ture) is determined up to an ambiguity of order 2 by rankH2(X) and 〈c1(ξ̃)2, [X]〉 ∈
(Z/8)/± = {0, 1, 2, 3, 4}.

(2) M is homeomorphic to X5(p, q) ]S1((]k S
2 × S2) × S1), where q = 〈c1(ξ̃)2, [X]〉 ∈

(Z/8)/± = {0, 1, 2, 3, 4}, k = (rankH2(X)− (3 + (−1)q)/2)/2, p = KS(X).

Proof. We only need to prove (1), the proof of (2) is similar. We see from the proof of
Lemma 4.3 that P = f−1(RP4), where f : P → RP4 induces an isomorphism on π1. If
the mod 2 degree of f is 1, then the submanifold dual to w1(P ) is f−1(RP3), and the
submanifold V dual to w1(P )2 is f−1(RP2). Now we have the following commutative
diagram

S1 = //

��

S1

��
∂N(F )

f //

��

RP3

��

⊃ RP2 = D2 ∪ S1

F
g // CP1 = D2 ∪ pt

Let d = deg g = 〈c1(ξ̃)2, [X]〉 and D = g−1(pt) = {p1, · · · , pd}, it is seen that V =
f−1(RP2) = (F −D)∪∂ d ·S1 (where the glueing map is of degree 2) and [V ] = d · [RP2] ∈
ΩPin−

2 . If the mod 2 degree of f is zero, then we consider the circle bundle over X ]CP2

with first Chern class (c1(ξ), 2). The corresponding map has nonzero mod 2 degree,

the image of the corresponding characteristic submanifold in ΩPin−

2 equals to that of the

original one plus 1. Finally 〈(c1(ξ̃), 1)2, [X ]CP2]〉 = 〈c1(ξ̃)2, [X]〉 + 1. This proves the
theorem. �

For the manifolds of type I, we have

Theorem 4.8 (type I). Let X be a closed, simply-connected non-spin topological 4-
manifold, ξ : S1 ↪→ M5 → X be a circle bundle over X with c1(ξ) = 2·primitive, and

w2(X) 6≡ c1(ξ̃) (mod 2). We have
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(1) if KS(X) = 0, then M is smoothable and

• if 〈w2(X)2, [X]〉 ≡ 〈c1(ξ̃)2, [X]〉 (mod 2), then M is diffeomorphic to

X5(q) ]S1(S2 × RP3) ]S1((]k S
2 × S2)× S1),

where q = 〈c1(ξ̃)2, [X]〉 ∈ (Z/8)/± = {0, 1, 2, 3, 4} and

k =
1

2
(rankH2(X)− 1

2
(7 + (−1)q));

• if 〈w2(X)2, [X]〉 6≡ 〈c1(ξ̃)2, [X]〉 (mod 2), then M is diffeomorphic to

X5(q) ]S1(CP2 × S1) ]S1((]k S
2 × S2)× S1),

where q = 〈c1(ξ̃)2, [X]〉 ∈ (Z/8)/± = {0, 1, 2, 3, 4} and

k =
1

2
(rankH2(X)− 1

2
(5 + (−1)q)).

(2) if KS(X) = 1, then M is non-smoothable and

• if 〈w2(X)2, [X]〉 ≡ 〈c1(ξ̃)2, [X]〉 (mod 2), then M is homeomorphic to

X5(1, q) ]S1(S2 × RP3) ]S1((]k S
2 × S2)× S1),

where q = 〈c1(ξ̃)2, [X]〉 ∈ (Z/8)/± = {0, 1, 2, 3, 4} and

k =
1

2
(rankH2(X)− 1

2
(7 + (−1)q));

• if 〈w2(X)2, [X]〉 6≡ 〈c1(ξ̃)2, [X]〉 (mod 2), then M is homeomorphic to

X5(1, q) ]S1(CP2 × S1) ]S1((]k S
2 × S2)× S1),

where q = 〈c1(ξ̃)2, [X]〉 ∈ (Z/8)/± = {0, 1, 2, 3, 4} and

k =
1

2
(rankH2(X)− 1

2
(5 + (−1)q)).

Remark 4.9. Note that for 4-manifold X, 〈w2(X)2, [X]〉 ≡ rankH2(X) (mod 2). This
ensures that k is an integer.

Proof. We only need to prove (1), the proof of (2) is similar. Recall that we have ΩPinc

4
∼=

Z/8⊕Z/2, with generators RP4 and CP2. Thus the q-component is determined as in the
type III case. The s-component of P is determined by the bordism number 〈w2(P )2, [P ]〉 ∈
Z/2. (Here we use the notations given before Theorem 3.5.) Since KS(X) = 0, there
exists an integer m such that X0 = X ]m(S2 × S2) is smooth. Note that if we do the
same construction on X0 we get P0 = P ]m(S2×S2), and 〈w2(P0)

2, [P0]〉 = 〈w2(P )2, [P ]〉.
Therefore, to compute the s-component, we may assume that X is smooth. Recall that
P = (X−N̊(F ))∪∂B, it is seen that the bordism class of P is determined by the bordism
class of the pair (X,F ), which can be viewed as a singular manifold (X, f) ∈ Ω4(BU(1)) ∼=
Ω4 ⊕H4(BU(1)). We have two homomorphisms

Ω4(BU(1))→ Z/2, [X,F ] 7→ 〈w2(P )2, [P ]〉
and

Ω4(BU(1))→ Z/2, [X, c1(ξ̃)] 7→ 〈w2(X)2 + c1(ξ̃)
2, [X]〉.
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By a check on the generators (CP2 ] (S2×S2), c1(ξ̃) = (1, 0, 1)) and (CP2 ] (S2×S2), c1(ξ̃) =

(0, 0, 1)), we see that s = 〈w2(P )2, [P ]〉 = 〈w2(X)2 + c1(ξ̃)
2, [X]〉 (mod 2). The two cases

correspond to the values s = 0 and s = 1. For the proof of (2), the only change is that

ΩTop
4
∼= Z⊕ Z/2 with generators CP2 and ∗CP2 ]CP2 [8]. �

5. Bordism and Surgery

The main tool used in the solution of the classification problem is the modified surgery
developed in [11]. We first recall some basic definitions and facts. Let p : B → BO be a
fibration, ν̄ : M5 → B be a lift of the normal Gauss map ν : M → BO (ν̄ is called a normal
B-structure ofM). ν̄ is called a normal 2-smoothing if it is a 3-equivalence. Manifolds with
normal B-structures form a bordism theory. Suppose (M5

i , ν̄i) (i = 1, 2) are two normal
2-smoothings in B, (W 6, ν̄) is a B-bordism between (M5

1 , ν̄1) and (M5
2 , ν̄2). Then W is

bordant rel. boundary to an s-cobordism (implying that M1 and M2 are diffeomorphic)
if and only if an obstruction θ(W, ν̄) ∈ L6(π1(B)) is zero [11, p.730].

The obstruction group L6(π1) is related to the ordinary Wall’s L-group in the following
exact sequence

0→ Ls6(π1)→ L6(π1)→Wh(π1),

where Ls6(π1) is the Wall’s L-group of π1 and Wh(π1) is the Whitehead group. If π1 = Z/2,
the map Ls6(π1) → L6(π1) is an isomorphism since Wh(Z/2) = 0 ([14]). The elements in
Ls6(Z/2) are detected by the Kervaire-Arf invariant. If θ(W, ν̄) is nonzero in Ls6(π1), then
one can do surgery on (W, ν̄) such that the result manifold (W ′, ν̄ ′) has trivial surgery
obstruction [18]. Therefore we have proved the following

Proposition 5.1. Two smooth 5-manifolds M1 and M2 with fundamental group Z/2 are
diffeomorphic if they have bordant normal 2-smoothings in some fibration B.

The fibration B is called the normal 2-type of M if p is 3-coconnected. This is an
invariant of M . Because of this proposition, the solution to the classification problem
consists of two steps: first determine the normal 2-types B for the 5-manifolds under

consideration and then determine invariants of the corresponding bordism groups Ω
(B,p)
5 .

§5A. Normal 2-types. Let M5 be a fibered type 5-maniofold. The universal coefficient

theorem implies that H2(M̃)⊗Z[π1]Z→ H2(M) is an isomorphism. Since the π1(M)-action

on H2(M̃) is trivial, we have H2(M̃) ⊗Z[π1] Z = H2(M̃), therefore H2(M̃) → H2(M)
is an isomorphism, also is the second Hurewicz map π2(M) → H2(M). Now suppose
π1(M) ∼= Z/2 and H2(M) ∼= Zr.

We start with the description of the normal 2-types for type II manifolds. It is the
simplest situation and illuminates the ideas.

Type II: consider the fibration

p : B = RP∞ × (CP∞)r ×B Spin→ BO,

where p : B → BO is trivial on the first two factors and on B Spin it is the canonical
projection from B Spin onto BO. A lift ν̄ → B is given as follows: the map to RP∞ is
the classifying map of the fundamental group; choose a basis {u1, . . . , ur} of the free part
of H2(M) ∼= Zr ⊕ Z/2, by realizing each element ui by a map to CP∞ we get a map to
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(CP∞)r; a Spin-structure on νM gives rise to a map to B Spin. It’s easy to see that (B, p)
is the normal 2-type of type II manifolds and that ν̄ induces an isomorphism on π1 and
H2. Since the second Hurewicz maps π2(M) → H2(M) and π2((CP∞)r) → H2((CP∞)r)
are isomorphisms, ν̄ is a normal 2-smoothing.

Type III: let η be the canonical real line bundle over RP∞, 2η = η ⊕ η. Consider the
fibration

p : B = RP∞ × (CP∞)r ×B Spin
p1×p2−→ BO ×BO ⊕−→ BO,

where p1 : RP∞ × (CP∞)r → BO is the classifying map of π∗(2η), (where π : RP∞ ×
(CP∞)r → RP∞ is the projection map,) p2 : B Spin → BO is the canonical projection
and ⊕ : BO × BO → BO is the H-space structure on BO induced by the Whitney sum
of vector bundles. A lift ν̄ → B is given as follows: the map to RP∞ × (CP∞)r is the
same as in type II. Since w2(2η) = w1(η)2 is the nonzero element in Ext(H1(RP∞),Z/2)
and w2(M) is the nonzero element in Ext(H1(M),Z/2), we have w2(ν̄

∗2η) = w2(νM).
This implies that νM − ν̄∗2η admits a Spin-structure. Such a structure induces a map to
B Spin. Then ν̄ is a lift of ν. It is easy to see that (B, p) is the normal 2-type of type III
manifolds and ν̄ is a normal 2-smoothing.

Type I: let γ be the canonical complex line bundle over CP∞. Consider the fibration

p : B = RP∞ × (CP∞)r ×B Spin
p1×p2−→ BO ×BO ⊕−→ BO,

where p1 : RP∞×(CP∞)r → BO is the classifying map of π∗γ, π : RP∞×(CP∞)r → CP∞

is the projection map to the first CP∞. A lift ν̄ → B is given as follows: since the Bockstein
homomorphism β : H2(M ; Z/2) → H3(M ; Z) is trivial, w2(M) is the mod 2 reduction of
an integral cohomology class. Since w2(M) is not contained in Ext(H1(M),Z/2), this
integral cohomology class can be taken as a primitive one, say, u1 and we extend it to a
basis {u1, . . . , ur}. Then the map to RP∞× (CP∞)r is the same as above. Now νM − ν̄∗γ
admits a Spin-structure, this gives rise to a map M → B Spin. Then ν̄ is a lift of ν.
It is easy to see that (B, p) is the normal 2-type of type I manifolds and ν̄ is a normal
2-smoothing.

§5B. Computation of the bordism groups. As in the last subsection, we start with
the type II manifolds, which is the simplest case.

Type II: recall that the normal 2-type is

p : B = RP∞ × (CP∞)r ×B Spin→ BO,

where p : B → BO is trivial on the first two factors and is the canonical projection

from B Spin onto BO. Therefore the bordism group Ω
(B,p)
5 is the Spin-bordism group

ΩSpin
5 (RP∞ × (CP∞)r). To compute this bordism group, we apply the Atiyah-Hirzebruch

spectral sequence. The E2-terms are E2
p,q = Hp(RP∞ × (CP∞)r; ΩSpin

q ).

To illuminate the situation, we first consider the group ΩSpin
5 (RP∞×CP∞). The relevant

terms and differentials in the spectral sequence are depicted as follows:
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The E2-terms are:

• E2
1,4 = H1(RP∞ × CP∞) ∼= Z/2,

• E2
2,2 = H2(RP∞ × CP∞; Z/2) ∼= Z/2⊕ Z/2,

• E2
3,1 = E2

3,2 = H3(RP∞ × CP∞; Z/2) ∼= Z/2⊕ Z/2,

• E2
4,1 = E2

4,2 = H4(RP∞ × CP∞; Z/2) ∼= (Z/2)3,

• E2
5,0 = H5(RP∞ × CP∞) ∼= (Z/2)3,

• E2
5,1 = H5(RP∞ × CP∞; Z/2) ∼= (Z/2)3,

• E2
6,0 = H6(RP∞ × CP∞) ∼= Z/2.

The differentials d2 are dual to the Steenrod square Sq2. On the E3-page, by comparison
with the Atiyah-Hirzebruch spectral sequence of ΩSpin

5 (RP∞), the differential d3 : E3
4,2 →

E3
1,4 is nontrivial: it is computed in [10] that ΩSpin

5 (RP∞) is zero (see Remark 5.5 below),

therefore the E3
1,4-term must be killed. Therefore on the E∞-page, on the line p+ q = 5,

the nontrivial terms are E∞5,0 = H3(RP∞)⊗H2(CP∞) ∼= Z/2 and E∞4,1 = H2(RP∞; Z/2)⊗
H2(CP∞; Z/2) ∼= Z/2.

To state the result of our calculation, let α ∈ H1(RP∞; Z/2), β ∈ H2(CP∞; Z/2) denote
the nonzero elements, and let τ : CP∞ → CP∞ be the involution on CP∞ with τ∗ = −1
on H2(CP∞).

Lemma 5.2. The short exact sequence

0→ Z/2→ ΩSpin
5 (RP∞ × CP∞)→ Z/2→ 0

is nonsplit, and ΩSpin
5 (RP∞×CP∞) ∼= Z/4. A generating bordism class [X5, f ] is detected

by the invariant 〈α3∪β, f∗[X]〉 ∈ Z/2. Furthermore, we have the relation 〈α∪β2, f∗[X]〉 =
0, and [X, (idRP∞ × τ) ◦ f ] = −[X, f ].

Proof. There is a product map

ϕ : ΩSpin
3 (RP∞)⊗ ΩSpin

2 (CP∞)→ ΩSpin
5 (RP∞ × CP∞),
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induced by the product of manifolds. There is a corresponding product map on the
Atiyah-Hirzebruch spectral sequences

Φ: Er
p,q(1)⊗ Er

s,t(2)→ Er
p+s,q+t(3),

where on the E∞-page Φ is compatible with the filtrations on the bordism groups and on
the E2-page it is just the cross product map (see [17, p. 352]). It is easy to see that the

Atiyah-Hirzebruch spectral sequence of ΩSpin
3 (RP∞) collapses on the line p + q = 3, the

Atiyah-Hirzebruch spectral sequence of ΩSpin
2 (CP∞) collapses on the line p + q = 2, and

Φ is surjective on E∞5,0(3) and E∞4,1(3). Therefore ϕ is surjective. Now

ΩSpin
3 (RP∞) ∼= ΩPin−

2
∼= Z/8,

generated by [RP3, inclusion] (see [10]) and ΩSpin
2 (CP∞) ∼= ΩSpin

2 ⊕H2(CP∞). The group

ΩSpin
2 is generated by T 2 with the Lie group spin structure. The product ϕ(RP3, T 2) = 0,

since the map RP3 × T 2 → RP∞ × CP∞ factors through RP∞ and ΩSpin
5 (RP∞) = 0.

Therefore we have a surjection

Z/8⊗ Z→ ΩSpin
5 (RP∞ × CP∞).

This shows that ΩSpin
5 (RP∞ × CP∞) ∼= Z/4 and [X, (idRP∞ × τ) ◦ f ] = −[X, f ]. The

relation comes from the fact that the dual of d2 maps αβ to αβ2. �

In general, in the Atiyah-Hirzebruch spectral sequence for ΩSpin
5 (RP∞ × (CP∞)r), the

nontrivial terms for the line p+ q = 5 on the E∞-page are

E∞5,0 = ⊕iH3(RP∞)⊗H2(CP∞i )⊕⊕i 6=jH1(RP∞)⊗H2(CP∞i )⊗H2(CP∞j ) ∼= (Z/2)r+r(r−1)/2

and
E∞4,1 = ⊕iH2(RP∞; Z/2)⊗H2(CP∞i ; Z/2) ∼= (Z/2)r.

Using the same argument as in Lemma 5.2, we have the following

Proposition 5.3 (type II). The bordism group ΩSpin
5 (RP∞ × (CP∞)r) is isomorphic to

(Z/4)r ⊕ (Z/2)r(r−1)/2. Let α ∈ H1(RP∞; Z/2), βi ∈ H2(CP∞i ; Z/2) be the nonzero ele-
ments, then

(1) the Z/2-factors are determined by the invariants 〈α ∪ βi ∪ βj, f∗[X]〉 ∈ Z/2, with
i, j = 1, · · · r, and i > j,

(2) the bordism classes {±1}⊂ Z/4 are detected by the invariants 〈α3 ∪ βi, f∗[X]〉 ∈
Z/2, with i = 1, · · · r, and

(3) the bordism classes {±1} ⊂ Z/4 are interchanged if we compose f with the invo-
lution τi on CP∞i .

(4) Furthermore we have the relation 〈α ∪ β2
i , f∗[X]〉 = 0 for all i.

Type III: the normal 2-type is

p : B = RP∞ × (CP∞)r ×B Spin→ BO,

where the map on RP∞ is the classifying map of the vector bundle 2η. Therefore the

bordism group Ω
(B,p)
5 is the twisted Spin-bordism group

ΩSpin
5 (RP∞ × (CP∞)r; π∗2η) = Ω̃Spin

7 (Th(π∗2η)).
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In the Atiyah-Hirzebruch spectral sequence, the E2-terms are

E2
p,q = Hp(Th(π∗2η); ΩSpin

q ).

Since 2η is orientable, we may apply the Thom isomorphism and after a degree shift
p 7→ p − 2 we have E2

p,q = Hp(RP∞ × (CP∞)r; ΩSpin
q ). Therefore the E2-terms are the

same as in the type II case, where the differentials d2 are dual to Sq2 + w2(2η). The
differential d3 : E3

4,2 → E3
1,4 is determined by the comparison with the Atiyah-Hirzebruch

spectral sequence of ΩSpin
5 (RP∞; 2η) as follows:

The following construction is given in [6, §5]. Let [X, f ] ∈ ΩSpin
5 (RP∞; 2η) be a singular

manifold, where by doing 1-surgeries we can assume that f is an isomorphism on π1. If P
be the characteristic submanifold of X, then P admits a Pin+-structure, which is induced
from the Spin-structure on νX ⊕ f ∗(2η). The bordism class of P depends only on the

bordism class of [X, f ], and therefore we have a homomorphism ΩSpin
5 (RP∞; 2η)→ ΩPin+

4 .

Lemma 5.4. The homomorphism ΩSpin
5 (RP∞; 2η)→ ΩPin+

4 is an isomorphism.

Proof. The injectivity is ensured by [6, Lemma 10]. The generator of ΩPin+

4 is RP4, which
is the image of (RP5, i). This proves the surjectivity. �

Remark 5.5. Similarly it can be shown that the homomorphism ΩSpin
5 (RP∞) → ΩPin−

4

is also an isomorphism, where both groups are 0.

Now we know ΩSpin
5 (RP∞; 2η) ∼= ΩPin+

4
∼= Z/16, and therefore the differential d3 : E3

4,2 →
E3

1,4 must be trivial. Therefore we have

Proposition 5.6 (type III). There is a short exact sequence

0→ G→ ΩSpin
5 (RP∞ × (CP∞)r; π∗(2η))→ ΩPin+

4 → 0,

where G ∼= (Z/4)r ⊕ (Z/2)r(r−1)/2. Then

(1) the Z/2-factors are determined by the invariants 〈α ∪ βi ∪ βj, f∗[X]〉 ∈ Z/2, with
i, j = 1, · · · r, and i > j,

(2) the bordism classes {±1} ⊂ Z/4 are detected by the invariants 〈α3 ∪ βi, f∗[X]〉 ∈
Z/2, with i = 1, · · · r, and

(3) the bordism classes {±1} ⊂ Z/4 are interchanged if we compose f with the invo-
lution τi on CP∞i .

(4) Furthermore we have 〈α ∪ β2
i , f∗[X]〉 = 〈α3 ∪ βi, f∗[X]〉 for all i.

Type I: recall that the normal 2-type is

p : B = RP∞ × (CP∞)r ×B Spin→ BO,

where the map p on the first CP∞ is the classifying map of the vector bundle γ. Therefore

the bordism group Ω
(B,p)
5 is the twisted Spin-bordism group

ΩSpin
5 (RP∞ × (CP∞)r; π∗γ) = Ω̃Spin

7 (Th(π∗γ)).

As in the type III case we apply the Thom isomorphism and the E2-terms in the Atiyah-
Hirzebruch spectral sequence are E2

p,q = Hp(RP∞×(CP∞)r; ΩSpin
q ), where the differentials

d2 are dual to Sq2 + w2(γ).
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As in the type III case, we have a homomorphism ΩSpin
5 (RP∞ × CP∞; π∗γ) → ΩPinc

4 ,
mapping [X, f ] to its characteristic submanifold.

Lemma 5.7. The homomorphism ΩSpin
5 (RP∞ × CP∞; π∗γ)→ ΩPinc

4 is an isomorphism.

Proof. The proof of the injectivity is analogous to the argument in [6, Lemma 10]: suppose

that P and P ′ are bordant in ΩPinc

4 , then P̃ and P̃ ′ are bordant in ΩSpinc

4 . Let V 5 be
such a bordism, then A ∪ eP V ∪fP ′ A′ together with the reference map is an element in

ΩSpin
5 (CP∞; γ), where the reference maps on each part to CP∞ are induced from the

Spinc-structures. An easy computation with the Atiyah-Hirzebruch spectral sequence
shows that ΩSpin

5 (CP∞; γ) = 0, and what follows are exactly the same as in the proof
of [6, Lemma 10]. The Atiyah-Hirzebruch spectral sequence shows that the order of

ΩSpin
5 (RP∞ × CP∞; π∗γ) is 16, and we have shown that ΩPinc

4
∼= Z/8 ⊕ Z/2. This proves

the surjectivity. �

Proposition 5.8 (type I). There is a short exact sequence

0→ G→ ΩSpin
5 (RP∞ × (CP∞)r; γ)→ ΩPinc

4 → 0,

where G ∼= (Z/4)r−1 ⊕ (Z/2)r(r−1)/2. Then

(1) the Z/2-factors are determined by the invariants 〈α ∪ βi ∪ βj, f∗[X]〉 ∈ Z/2, with
i, j = 1, · · · r, and i > j,

(2) the bordism classes {±1} ⊂ Z/4 are detected by the invariants 〈α3 ∪ βi, f∗[X]〉 ∈
Z/2, with i = 1, · · · r, and

(3) the bordism classes {±1} ⊂ Z/4 are interchanged if we compose f with the invo-
lution τi on CP∞i .

(4) We have 〈α5 + α3 ∪ β1, f∗[X]〉 = 0 and 〈α ∪ β2
i , f∗[X]〉 = 〈α ∪ β1 ∪ βi, f∗[X]〉 for

all i.

6. Proofs of the Main Results

Now that the bordism groups are determined, we can prove the main results of the
paper. First we need a lemma for the classification theorem.

Lemma 6.1. Let M5 be a fibered type manifold with π1(M) ∼= Z/2 and H2(M) ∼= Zr. Let
t ∈ H1(M ; Z/2) be the nonzero element, and let {t2, x1, · · · , xr} be a basis of H2(M ; Z/2).
Then {t3, tx1, · · · , txr} is a basis of H3(M ; Z/2).

Proof. Consider the Leray-Serre cohomology spectral sequence for the fibration M̃ →
M → RP∞ with Z/2-coefficient. Note that dimH2(M ; Z/2) = r+1 and dimH2(M̃ ; Z/2) =
r. This implies that the differential

d2 : E0,2
2 = H2(M̃ ; Z/2)→ E3,0

3 = H3(RP∞; Z/2)

must be trivial. Therefore, the elements t3, tx1, · · · , txr all survive to form a basis of
H3(M ; Z/2). �
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The proof of Theorem 3.1.
Type II: let ν̄ : M5 → B be a normal 2-smoothing in B. Let t = ν̄∗α, xi = ν̄∗βi. Then

{t2, x1, · · · , xr} is a basis of H2(M ; Z/2). Consider the symmetric bilinear form

λ : H2(M ; Z/2)×H2(M ; Z/2)
∪→ H4(M ; Z/2)

∪t→ H5(M ; Z/2) ∼= Z/2.

By Poincaré duality and Lemma 6.1, λ is nondegenerate. Since λ(t2, t2) = t5 = 0 and
λ(xi, xi) = tx2

i = 0 (the relation in Proposition 5.3), we can find a symplectic basis of
λ, {t2, u1, · · · , ur}, such that λ(t2, u1) = t3u1 = 1, λ(t2, ui) = t3ui = 0 for i > 1, and
λ(ui, uj) = tuiuj = 0 or 1. Make a basis change by letting u′i = ui + u1 for i > 1, then
t3u′i = 1 for all i and tu′iu

′
j = tuiuj. {u′1, · · · , u′r} lift to a basis of the free part of H2(M),

which gives a normal 2-smoothing. By Proposition 5.3, the bordism class of this normal
2-smoothing is independent on M . Therefore all these manifolds are B-bordant under
appropriate normal 2-smoothings. Proposition 5.1 implies that they are diffeomorphic.

Type III: first note that by the relation in Proposition 5.6, for all v ∈ H2(M ; Z/2),

λ(t2, v) = λ(v, v). There are two different cases:

(1) λ(t2, t2) = 0: then there exists a u1 such that λ(t2, u1) = t3u1 = 1. On the
orthogonal complement of span(t2, u1), λ(v, v) = 0, thus there exists a symplectic
basis {u2, · · · , ur}. Then the argument is the same as in the previous case.

(2) λ(t2, t2) = 1: if λ(t2, xi) = 1, then let x′i = xi + t2 and otherwise let x′i = xi. Then
λ(t2, x′i) = λ(x′i, x

′
i) = 0. {x′1, · · · , x′r} is a basis of the orthogonal complement of

span(t2). There exists a symplectic basis on the complement, {u1, · · · , ur}, such
that t2ui = 0 and tuiuj = 0 or 1. Let u′i = ui + t2, then t3u′i = 1 for all i and
tu′iu

′
i = tuiuj + 1. The remaining argument is the same as in the previous case.

Therefore all the manifolds with the same [P ] ∈ ΩPin+

4 /± are B-bordant under appropriate
normal 2-smoothings. Proposition 5.1 implies that they are diffeomorphic.

Type I: by the relation in Proposition 5.8, λ(x1, xi) = λ(xi, xi) and λ(t2, t2) = λ(t2, x1).
We have four cases:

(1) λ(t2, t2) = 1 and λ(x1, x1) = 0: then λ is nondegenerate on span(t2, x1), and for all
v /∈ span(t2, x1), λ(v, v) = λ(v, x1) = 0. Especially on the orthogonal complement
of span(t2, x1) there exists a symplectic basis {u2, · · · , ur}.

(2) λ(t2, t2) = 0 and λ(x1, x1) = 0: then exists a u2 such that λ(x1, u2) = 1 and
λ(t2, u2) = 0. λ is nondegenerate on span(x,u2). On the orthogonal complement we
have λ(v, v) = λ(v, x1) = 0. Therefore there is a symplectic basis {t2, u3, · · · , ur}
such that λ(t2, u3) = 1, λ(t2, ui) = 0 for i > 3 and λ(ui, uj) = 0 or 1.

(3) λ(t2, t2) = 1 and λ(x1, x1) = 1: let e0 = t2 +x1, then λ(e0, x1) = 0. On the orthog-
onal complement of span(x1), there exists a symplectic basis {e0, u2, · · · , ur} such
that λ(e0, u2) = λ(t2, u2) = 1, λ(e0, ui) = λ(t2, ui) = 0 for i > 2 and λ(ui, uj) = 0
or 1.

(4) λ(t2, t2) = 0 and λ(x1, x1) = 1: then on the orthogonal complement of span(x1)
there is a symplectic basis {t2, u2, · · · , ur} such that λ(t2, u2) = 1, λ(t2, ui) = 0 for
i > 2 and λ(ui, uj) = 0 or 1.
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In all these situations we may find appropriate normal 2-smoothings such that the
manifolds having equal [P ] ∈ ΩPinc

4 /± are B-bordant. Proposition 5.1 implies that they
are diffeomorphic. �

Although the relations among the invariants are essentially seen in the previous proof,
we would like to give a more conceptual one here.

The proof of Theorem 3.5. We will use the semi-characteristic class defined by R. Lee in
[13]. We work with Q-coefficient, in this case, the semi-characteristic class of an odd
dimensional manifold with a free Z/2-action is a homomorphism

χ1/2 : Ω5(Z/2)→ L5(Q[Z/2]) ∼= Z/2,
where Ω5(Z/2) is the bordism group of closed smooth oriented manifolds with an orientation-
preserving free Z/2-action, and L5(Q[Z/2]) is the symmetric L-group of the rational group
ring Q[Z/2]). We refer to [13] and [4] for details.

Let M5 be an oriented smooth 5-manifold with fundamental group Z/2, then the semi-

characteristic class χ1/2(M̃ ; Q) ∈ Z/2 is defined. There is a characteristic class formula
[4, Theorem C]

χ1/2(M̃ ; Q) = 〈w4(M) ∪ f ∗(α), [M ]〉,
where f : M → RP∞ is the classifying map of the covering and α ∈ H1(RP∞; Z/2) is the

nonzero element. On the other hand, χ1/2(M̃ ; Q) is identified with (see [4, p.57])

χ̂1/2(M̃ ; Q) := dimQH0(M̃ ; Q) + dimQH1(M̃ ; Q) + dimQH2(M̃ ; Q) (mod 2)
≡ 1 + r (mod 2).

Type II: the Wu classes of M are v1 = 0 and v2 = 0 since w1(M) = w2(M) = 0.

Therefore w4(M) = Sq2v2 = 0. This means r is odd.

Type III: the Wu classes of M are v1 = 0 and v2 = w2(M) = t2. Therefore w4(M) =

Sq2v2 = t4 and 〈w4(M) ∪ f ∗(α), [M ]〉 = 〈α5, ν̄∗[M ]〉. By the Atiyah-Hirzebruch spectral
sequence, there is a nonsplit exact sequence

0→ Z/8→ ΩSpin
5 (RP∞; 2η)→ H5(RP∞)→ 0,

and therefore ν̄∗[M ] ≡ q (mod 2). This implies r + q is odd.

Type I: the Wu classes of M are v1 = 0 and v2 = w2(M) = ν̄∗w2(γ). Therefore

w4(M) = Sq2v2 = ν̄∗w2(γ)2 and 〈w4(M) ∪ f ∗(α), [M ]〉 = 〈α ∪ β2, ν̄∗[M ]〉. Check on

the generators of ΩSpin
5 (RP∞ × CP∞; γ), RP5 ]S1(S2 × RP3) with (q = 1, s = 0) and

RP5 ]S1(CP2 × S1) with (q = 1, s = 1), it is seen that 〈α ∪ β2, ν̄∗[M ]〉 ≡ q + s (mod 2).
This implies the relation q + s+ r ≡ 1 (mod 2). �

The proof of Theorem 3.6. By the Van-Kampen theorem and the Mayer-Vietoris sequence
it is easy to see that all the manifolds in the list are orientable, with fundamental group
Z/2 and torsion free H2, and the π1-action on H2 is trivial. We only need to show that
these manifolds have different invariants and realize all the possible invariants.

Type II: rankH2((S
2 × RP3) ]S1((]k S

2 × S2)× S1)) = 2k + 1.

Type III: the characteristic submanifold of X5(q) ]S1((]k S
2 × S2)× S1) is just that of

X5(q), which corresponds to q ∈ ΩPin+

4 /± = {0, · · · , 8}.
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Type I: similarly, the manifold X5(q) ]S1(CP2 × S1) ]S1((]k S
2 × S2)× S1) has charac-

teristic submanifold invariant (q, 1) ∈ ΩPinc

4 /±. �

The proof of Theorem 3.11. Note that X5(q) and X5(p, q) are homotopy equivalent to
RP5 and the operation ]S1 preserves homotopy equivalence. This proves the theorem
for the type II and III cases. For type I manifolds, the s-component of the charac-
teristic submanifold P is determined by 〈w2(P )2, [P ]〉. Since w2(P ) = i∗(w2(M) + t2),
〈w2(P )2, [P ]〉 = 〈w2(M)2 ∪ t+ t5, [M ]〉, and this is a homotopy invariant. �
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