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Abstract

We study the von Neumann algebra, generated by the unitary representations of
infinite-dimensional groups nilpotent group BgI . The conditions of the irreducibility
of the regular and quasiregular representations of infinite-dimensional groups (as-
sociated with some quasi-invariant measures) are given by the so-called Ismagilov
conjecture (see [1,2,9-11]). In this case the corresponding von Neumann algebra is
type I factor. When the regular representation is reducible we find the sufficient
conditions on the measure for the von Neumann algebra to be factor (see [13,14]).
In the present article we determine the type of corresponding factors. Namely we
prove that the von Neumann algebra generated by the regular representations of
infinite-dimensional nilpotent group B(I)\I is type III; hyperfinite factor. The case of
the nilpotent group BZ of infinite in both directions matrices will be studied in [6].
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1 Regular representations

Let us consider the group G = BY of all upper-triangular real matrices of
infinite order with unities on the diagonal

é:BN:{]+x|x: Z TinFrn b

1<k<n
and its subgroup
G=B)={I+z¢cB"| xis finite},

where E},, is an infinite-dimensional matrix with 1 at the place k,n € N and
zeros elsewhere, © = (Tkp)k<n is finite means that xy, = 0 for all (k,n) except
for a finite number of indices k,n € N.

Obviously, B = lim B(n,R) is the inductive limit of the group B(n,R) of
real upper-triangular matrices with units on the principal diagonal

B(naR) = {I + Z kaEkT | Tpr € R}

1<k<r<n
with respect to the imbedding B(n,R) > z — =z + E,11,+1 € B(n+ 1, R).
We define the Gaussian measure 1, on the group BY in the following way
A (%) = D1<pan(brn /7)Y exp(—bpntt, )T = ®pcndping, (Thn), (1)

where b = (bgp )k<n 1S some set of positive numbers.



Let us denote by R and L the right and the left action of the group BY on
itself: Ry(t) =ts™!, Ly(t) = st, s,t € BN and by ®: BY s BN, &([ + ) :=
(I +2)~! the inverse mapping. It is known [9,10] that

Lemma 1 ,ubRt ~ iy Yt € BY for any set b = (bpp)p<n-

Lemma 2 pit ~ uy, ¥t € BY if and only if SE, (b) < oo, Yk < n, where

o0

bim
Stah) = 3

m=n-+1 “nm
Lemma 3 pi* Ly, ¥t € BY\{e} & SE,(b) = 0o Vk < n.
Lemma 4 [12] If E(b) = Y pcp SE,(0)(brn) ™! < 00, then ug ~ .

Lemma 5 [12] The measure p, on BY is BY ergodic with respect to the right
action.

Let a : G — Aut(X) be a measurable action of a group G on the measurable
space X. We recall that a measure p on the space X is G-ergodic if f(ay(z)) =
f(z) Vt € G implies f(z) = const p a.e. for all functions f € L'(X, p).

Remark 6 [13] If uf ~ uy then pg* ~ w, Vt € BY.

PROOF. This follows from the fact that the inversion ® replace the right and
the left action: R;o® = ®o L; Vt € BY. Indeed, if we denote /' (+) = u(f~1(+))
we have (/)9 = /9. Hence

Rio® ol — (

pp ~ gt~ () = et = p, )b

® L
LR A

If pi* ~ iy and pit ~ py Yt € BY, one can define in a natural way (see [9,10]),
an analogue of the right 7% and left T%® representation of the group By in
Hilbert space Hy = Lo(BY, duy)

TR T BY — U(Hy = Lo(BY, dw)),

(T f)(x) = (dus(t) [dpy(x)) 12 [ (at),
(TS )(2) = (dup(s™ ) /dps ()2 (s ).



2  Von Neuman algebras generated by the regular representations

Let AR = (T/*" | ¢t € BY)" (resp. AX = (TE | s € BY)”) be the von
Neumann algebras generated by the right T%% (resp. the left T1?) regular
representation of the group BY'.

Theorem 7 [12] If E(b) < oo then uy ~ . In this case the left reqular
representation is well defined and the commutation theorem holds:

(%R,b)/ — Q[L,b‘ (2)
Moreover, the operator J,, given by
(Ju F) (@) = (dpy(x™1) fedpu () /2 f (27T (3)
18 an intertwining operator:
T =, T, t € BY and J, 2%, = ALt
If it Ly YVt € BY\{e} one can’t define the left regular representation of the
group Bl. Moreover the following theorem holds

Theorem 8 The right regular representation T™® . BY — U(H,) is irre-
ducible if and only if uf* L py Vs € BY\{0}.

Corollary 9 The von Neumann algebra A is a type I factor if
prs Loy Vs € BY\{0}.

Let us assume now that ji* ~ p, Vt € BY\{e}. In this case the right regular
representation and the left regular representation of the group Bl are well
defined.

In [13] the condition were studied when the von Neumann algebra A% is
factor, i.e.

ALY A (ALY = [A)\ € C'Y.
Since T;" € (AR) Vit € BY, we have AP ¢ (ARPY hence

Q[R,b N (QlR,b)/ C (QlL’b)/ N (Q[R,b)/ — (mR,b U QLL’b),. (4)
The last relation shows that A®? is factor if the representation
B x BY > (t, s) — T/*"TH € U(H,)

is irreducible.



Let us denote by A% the the von Neumann algebras generated by the right
TR and the left T™? regular representations of the group BY)':

ALY = (TR TH | 1,5 € BY)" = (AP uabty”.

Let us denote

[e’e) bk:
S (b) = ok <n.
: m:Zn:—i—l ST[le(b)

Theorem 10 [13] The representation
BY x BY 5 (t, s) — T/*"TH € U(H,)
is irreducible if Spo"(b) = oo, Yk < n.

Corollary 11 The von Neumann algebra AR is factor if SH(b) =00 Yk <n.

3 Type III; factor

Let us denote as before M = A0 = (T | s € BY)”, AR = (TtR’b |t € By)".

Theorem 12 If S;-"(b) = oo, Yk < n then the von Neumann algebra AN
(and hence ARL) is 111, factor.

PROOQOF. The proof is based on Lemma 13 and 14, we shall prove them later.

Using (3) we conclude that the modular operator A is defined as follows

(Af)(x) = (dps(x) /dp(x™1)) f (). (5)
Lemma 13 We have

SpA = [0, 00).

We have SpA¢ = SpA = [0, 00), where ¢(a) = (al, 1)g,, a € M = AL’ The
centralizer My of ¢ is defined by the equality

My ={ac M|of(a) Vt € R}
where of(a) = A"aA~". For every projection e # 0, e € M,, a faithful

semifinite normal weight ¢. on the reduced von Neumann algebra eMe =
{a € M; ea = ae = a} is defined by the equality

de(a) = ¢(a) Ya € eMe,a > 0.



One has the formula

S(M) = ] SpAs.. (6)
e#0
where e varies over the nonzero projection of My (see[d] p.472).

Lemma 14 The von Neumann algebra My is trivial.

In this case
S(M) = SpA = [0, 00),

so the von Neumann algebra A* (and hence algebra 2A%?) is type III; fac-
tor. O

Proof of Lemma 14. We show that
My = (A" TR |t € R, s € BYY. (7)
So My is trivial means that the set of operators
(A" TRY |t € R, s € BY) (8)
is irreducible. To prove (7) we get
My = (a € A" | Afa = aA™, Vt € R) = (A" |t e R) N ALP

= (A" [teR) N A™) = (A" [t e R) N (TF | s € BY) =
(A" TR |t e R, s € BY)

Definition. Recall (c.f. e.g. [5]) that a non necessarily bounded self-adjoint
operator A in a Hilbert space H is said to be affiliated with a von Neumann
algebra M of operators in this Hilbert space H, if exp(itA) € M for all t € R.
One then writes A n M.

To prove the irreducibility of (A%, T®® | t € R, s € BY) it is sufficient to
prove (see [10] p.258) that operators f(x) +— k, f(x) of multiplication in the
space Hy by the independent variables zy,, are affiliated to the von Neumann
algebra
(My) = (A", T |t R, s € BY)".

In this case the operator A commuting with A® and T2? is operator of mul-
tiplication by some function a(z). If we use commutation relation [A, T] =
0, s € BY we obtain a(z) = a(xs) modu. Using the ergodocity of the mea-
sure p with respect of the right action of the group BY we conclude that
a(x) = const mody i.e. A is scalar operator.

If we denote
AR, = (/)T s



we have (see for example [9-11])

k—1
AR =" 23D+ Dy, 1<k <n. (9)

r=1

The direct calculation shows that

(AT, [AZy, In A]] = 2015215, (10)
[AT,, [AZy, In A]] = 2b13213. (11)

Idea: to obtain in a similar way all variables x,.

Let us denote by X! the inverse matrix to the upper triangular matrix X =
I+x=1+ Zk<nxknEk:n € BN

X'={I+2)'=1+> a2, E, € B".

k<n

We have by definition X 'X = XX ! = I hence

(XX’l)kn = Zn:xm:cr’nl = Ogn = ix,;,lxm = (X’IX)k ., k<n, (12)
r=k r=k

n

hence
n—1
xkn+ Z xk?’!‘ rm +xkn_0_xk:n+ Z xk?" rn +xk,‘n7 k<n7
r=k+1 r=k+1
and
_ -1
Tt = —Tpy — Z TppTyrk = —Tpn — Z Ty Ty (13)
r=k+1 r=k+1
We can write also
n n—1
-1 _ -1 _ -1
Ln = — Z LhrLpy = — Z Ly Lrn.- (14>
r=k+1 r=k
. .. -1 1
There is also the explicit formula for x,, (see [8] formula (4.4)) ¥, 1 = —Tkr41

n—k—1

k-
Tjp = —Tpn + »_ (1) > ThiyTiyig--Tiyn, Kk <n—1. (15)

r=1 k<i1<ia<...<ir<n

Remark 15 Using (15) we see that x,,} depends only on x,, with k < r <
s <n.

Using (14) we have

-1 _ -1 -1 _ -1
Tpn + Tppy = — Z ey Ty — Ly = 2Ty, — Z Ty - (16)
r=k+1 r=k+1



Let us denote
Wi 2= Wi () 1= (Tpn, + x,;,i)(x;m — :1:,;%) (17)

Using (1) we get

Ax) = () _ =exp |— Y bin (:c,m (z30) )] = exp {— > b;mwkn(a:)] :

dﬂb(x_ ) k<n

k<n
(18)
k<n k<n
k<n k<n

To study the action of the operators AlY = fo;ll Lyt Dy + Dy, on the function
In A(z) we need to know the action of D,, on zj,..

Lemma 16 We have

—xidal ifk<p<q<n,
[quvxlml]— kp w P (19)

0, otherwise.

PROOF. We prove (19) by induction in p: k < p < ¢ < n. For p = k using
(16) we have

n—1

[Dig: Ten] = —[Digs Trn + Y Taripy) = —[Digs ThqTg) = —Tgy = —Tip Tyt
r=k+1

o (19) holds for p = k.

Let us suppose that (19) holds for all (p,q) with k <p<s<n, k<p<q<
n. We prove that than (19) holds also for (s,q) : s < ¢ < n. Indeed we have

171 __ _
[DSQ’ka] - SQ’xkn + Z LrT 'rn - Z xkr sq> rn]
r=k+1 r=k+1
1 13) 1 -1
Z LT = xksx m
r=k+1

Using (19) we get

_xkp q_n7 1fk<p<q<n (p7Q>7é (k7n)

0, otherwise..

[qu’ Tgn + x/;r}] = (20)



Using (20) we have

2ajlelal, k< p<q<n, (pag) £ (k)

[qu7 (SCknJrfUEnl)(fEkn—l’Eﬁ)] = Q(xkn + 5'71;7})7 if <p7 Q) = (k7n>
0, otherwise .
(21)
Indeed, if £ < p < q<mn, (p,q) # (k,n) we have
[Dygs (@rn + o) (@hn — 0)] = [Dpgs (Thn + 5o ) 20 — (24 + 2505))]

= [qu’ (Trn + xl;r})]@xkn — (Thn + x;T:II:)) — (Tpn + xl;r})[quv (Trn + 371;3)] =

() —1,—1,—1

_z‘rl;'r%[Dpr (xk” + xl;'n})} zxkp qn Lkn -

Lemma 17 We have

0, if k<n<m
2CkmTkmer f n=m+1, 1<k<m-—1
[AF 1y W] = < 0, f1<k<m-1,m+1l<n (22)

20 Lt if k=m, n>m+2

mn m—i—ln?

0, if m+1<k<n.
hence
m—1
[Afmﬂ, InA] =2 Z brm 1 TrmTrme1 + 2 Z bmn:pmn m1+1n (23)
r=1 n=m+2
PROOF. Since
m—1
Af@m—‘,—l Z xrm rm—+1 + Dmm+1
r=1

and wg,, £k <n < m do not depend on x,pmi1, 1 <7 < m+ 1 we conclude
that [AZ ., wi,) =0fork<n<mand m+1<k<n.

Let n =m+ 1, since [Dymi1, Weme1] = 0 for 1 <r < k we get

[AanH’ Wrmt1] = Z Trm|Drmt1; Wemt1] + [Dimm1, Wema1] =

m—1

71 — o

2 (ka(ka+l + :Ckarl + Z xrmxkr ka+1 + mkml'karl) -
r=k+1

10



m—1

—1 -1 -1 (13)

2 (kakaH + (ka + Z Tpp Ty, + ka) :Uka) = 2T kmThm1-
r=k+1

Similarly, for 1 <k <m —1, m+ 1 <n we get

m—1

[ArIfLerla wkn] = Z xrm[Drm+17 wkn] + [Dmerla wkn] =
r=k

m—1

-1 —1,.—1 -1,.—-1

2 ($km$m+1n + Z TrmTpr Ty in + zkmxm+1n)
r=k+1

m—1

-1 —1 -1 (13)

2 (ka + Z LrmT gy +ka> 'rm—l—ln =" 0.
r=k+1

Finally if £ = m and n > m + 2 we have as before

[Aﬁm+17 wmn] = [Dmerla Wmn mn*m+1n-

We consider the action of A%

oma1 o In AL

Let m = 2. Since
[Afio,, w13] = 2b13712713, [Agy wln] =0, n >4, [A%, wkn] =0, 3<k <n,

we have

—[AZ, I A] = 2bygz19213 + 2 Y bans, 3,
n=4
hence
_[Afza [A§37 In AH = 2013113,

—[A%, [A%, ln AH = 2b13I12.

The last two equations gives us x1o, z131m 2.
Let m = 3. Since
[AS wia) = 0, [AL, wi4] = 2213214, [AL), wes] = 2293704,

[A:];Ala 'l,Uln] = [A;?[)Ela wln] = 07 [A3R47 wi’m] = b3nx§73xz;nl; n Z 5;
(AR win] =0, 4 < k < n,

we have

—[AZ, In A] = 2014213814 + 2b2Za3Tos + 2 bsny, T4,

n=>5

11



hence
—[AR (A In A]] = 2b14719714 + 2bosT04

_[Aﬁ[Ag?n [A3R47 ln AH] = 2[)141‘147
—[Ai, [A;ﬁ, In A]] = 2[$12D14+D24, 514$13$14+524$23$24] = 2b14712713+2b24 703,

Since x19, r13n 2 from the latter equation we conclude that x93 n%2l. The pre-
vious equation gives us x4 72 and the equation before gives zo4 n . Finally
we conclude that x14, To4, xo3n .

Let us suppose that we have obtained the variables z,,,,1 < r < m — 2 and
Tm—2m—1. We prove that we can obtain the following variables 11,1 <r <

m—1and Z,—1m.

Indeed we calculate the action of the following sequence of operators on the

result: A% | AR, ete. till Af,. We obtain
m—2
_[AnR@_17m7 [Aﬁmﬂu 111 A]] =2 <Z br,m+1$r—1,mxr,m+1 + bm—l,m—&—lxm—l,m—f—l) y
r=1
_[AnR”L—Zm—h [A'r]z-l,m: [Afzm—&-l? In AH]
m—3
=2 (Z br,m+1xr72,mxr,m+1 + bm2,m+1xm2,m+1> )
r=1
_[Aﬁ—s,m—s-l—l? [Arlz—s—&-l,m—s-‘rQ? "'[Arlfz—l,m [ATF:Lm—i-l? In AHH
m—s—1
=2 ( Z br,m—l—lxr,m—sxr,m—i—l + bm—s,m—l—lxm—s,m—i—l) ) 1<s< m,
r=1
—[A:)i "'[Aim+17 In A]] = 2(bl,m+1I13$1,m+1+bz,m+1$231‘2,m+1+bs,m+11‘3,m+1)7
_[Aé%& [Ai]ila "'[Afzm—&-l? In A]H = 2(bl,m-i-l3712371,”1-"-1 + b2,m+1$27m+1)7

_[Aﬁv [Ag:b [A?Iilv "'[Arlierla In A]m = 2bl,m+1x1,m+1-
From the latter equation we conclude that zy ,,,1 7 2. The last but one equa-
tion gives us To i1 N A (since z19, Ty mi1 N A) ete. ie : T n A, 1< <
m — 1.

m—2 m—1

_[A'r]i—lm-Fla [AnR1m+17 In AH - [Z xrm—lDrm+1+Dm—lm+1a 2 Z brm—l—lxrmxrm-l—l =

r=1 r=1

m—2
2 Z brerlxrmflxrm + bmfl,erlxmfl,ma
r=1

since Tppm—1, Trm N A for 1 <r <m — 2 hence 1, n A O

To be sure that all this argument works we should prove that all involved
operators are affiliated to the von Neumann algebra M} defined by (7). For
example if A% and A (and hence InA) are affiliated to the von Neumann

12



algebra M, why the operator [Agy, In A] is also affiliated. In general, why the
operators [Al, [AN [AE .. [AR In A]...]]] are affiliated?

mm+1»

Remark 18 In general we do not know whether the commutator [A, B] of two
operators A and B affiliated to the von Neumann algebra is also affiliated.

This is the reason, why we use another approach to prove that the algebra M,
is trivial.

4 The von Neumann algebra M, is trivial

Since My = (A", TRV | t € R, s € BY')' (see (7)) it is sufficient to prove that
the set of operators

(A, T/* | s e R, t € BY) C M},
is irreducible.

Idea of the proof. We show that the von Neumann subalgebra in the algebra
Mg, generated by the following operators
(T AT

tn—17

ATE A#} 3} | SER, ty, .. t, € BY), (24)

where {a,b} := aba~'b~! is the maximal abelian subalgebra. More pre-
cisely we prove that this subalgebra contains all functions exp(isxy,), k <
n, s € R.

To prove the irreducibility of the algebra M (see proof of the Lemma
14) we observe that if an bounded operator commute with all exp(iszy,), k <
n, s € R then this operator itself is an operator of multiplication by some
essentially bounded function A = a(z). Commutation relation [T/*’, A] = 0
for all t € Bl gives us a(zt) = a(x) moduy, for all ¢. Since the measure yy is
Bl —right ergodic we conclude that A is trivial i.e. A = a(x) = CI.

We note that expressions in (24) are the "right” analog of the left hand side
of the expressions (10) and (11)

[A%, [A%, 111 A]] = 2b13$12,

[A%, [A%, In AH = 2b131’13,
involving generators A . In general, if we have two subgroups of unitary op-
erators U(t) and V' (s) with the generators A and B, to obtain the commutator
[iA,iB] it is sufficient to differentiate the following expression U (¢)V (s)U(—t):

0 0

515U OV (U (1) [iao= [i4,iB].

13



Indeed we have

SUWVEU (1) = UIBV(SU(~1), S UDIBV (U (1) [ma=

(tAU (t)iBV (s)U(—t) — U(t)iBV (s)iAU(—t)) |i=s=0= [t A, iB].
We show that more convenient analog of the commutator [iA,iB] is commu-
tator (in the group sence) of two one-parameter groups

{U®),V(s)} = U@V(s)U®#)V(s)" = UBV(s)U(=t)V (=)

Lemma 19 For the operator g of multiplication on the function g : f(x) —
g(z)f(x) in the space Hy = Ly(BY, duy) we have

TEg(x)TE, = g(at), t € BY.

PROOF. We have

dp(x)
dp(at) | ? du(z) \ B
( du(z) ) 9(z1) <du(xt)> f(z) = g(zt)f(z)

Using the lemma we have
TEA™(2)TE, = A% (at).
Using (18) we have

A" (x) = exp (—is Z b (T + 21 0) 220 — (g + 3:,;,})]) =

k+1<n

exp (—is > bknwkn(x)) , (25)

k+1<n

where Wi, (2) = (Tgn + 21, 2% — (Thn + T,0)] (see (17)).

We would like to obtain the functions exp(iszg,) using the expressions (24).
To simplify the situation we consider firstly the projections of all considered
object: the measure ,u,()k), the generators A,ilb(k), operator Ay algebra M®) .=
(Mé))(k) etc. on the following subspace X*) | &k > 2 of the space BY:

1 212 13 T14 ... T1n -.-
X(Q) = (é xiz T13 e in > , X(S) — <0 1 x93 214 ... Ton > ) etc.

T23 .- T2n - 0 0 1 x34 ... T3 ..

14



Note that

1 212 13 ... T1n ... -1 _ (1 —z12 —x13+T12T23 ... —T1p+T12T2n ... (26)
0 1 x23 ... T2p ... —\0 1 —x23 —Xon )

We have for the corresponding projections on X ?):
AL, =Dy, A, =212D1, + Day, AZ;@) = T1x D1n + T2 Do, 2 < k <n,

Wi (2) = (210 + 250) (X1 — T3,)) = T12020 (2715 — T19T9,), Wan(T) = 0,

hence

Al () == exp <—is > blnwln(:c)> = exp <—is > binzi2tn (221, — xlgscgn)> .

k=3 k=3
Let us denote by
Epn(t) =1+ 1B, Tin(t) =Th @y, k<n,teR (27)

the corresponding one-parameter subgroups. We have

(712 sy e (e et )y (2B () = {0 )

so using Lemma 19 we get

{Tom(t), Al (2)} = Tom (AR () Tom (—1) Ay () = Al (2E2n (1)) Agy () =

exp (—is [ i binwin(x) + blmwlm(xEQm(t))]) exp (is i b1nw1n(ﬂv)> =

k=3 k#m k=3

exp (—i8b1m[Wim (T Eom (1)) — wim(z)]) = exp (z’sblm(thlgwlm + tzxfz)) ,

since
U)lm(l’EQm(t)) — wlm(x) = Jflg(xzm + t)[2(l‘1m + t[L’lg) — ZElg(ZL’Qm —+ t)]—

T19%2m (2T 1 —T19T2m ) = T12[tT12T2m +H(22 1 —T12T0m ) H2012] = 2811901+ 25,

Let us denote
G1.0(x) = {Tom(t), A3 (1)} = exp (isbum(2tw1071, + 122%,)) . (28)
Using Lemma 19 we get
{1 (1), ATom (8), AG) ()3} = {Thm(t1), du,s(2)} =

T (t1) P16 (2) T (—11) (1,6 (€)™ = Gp6 (€ B (t1)) (¢rs(2)) ™ =
exp [i8b1m<2tl‘12<l‘1m +11) + t227,) — ibim (2tT10T 1 + t%%z)} =
exp (isby,r122tty) .

15



Finally we get for X2
exp(iszyy) € M?) = (M(;)(Q).
Using (28) we conclude that
exp(isT19T1y) € M®.
Applying again T15(t) and T1,,(t) we get
{T12(t), exp(isz1221m) } = Tha(t) exp(iszioxim ) T2 (—t) exp(—iszia21y) =

exp(is(z12 + t)T1m — 1ST1221m) = exp(istaya),
{T1 (1), exp(isz1221m) } = Tim(t) exp(istiomim ) Tim(—t), exp(—isx1021,) =
exp(1sx12(T1m + ) — iST122 1) = exp(istxyy, ).
At last we conclude that for X we have exp(isz1s), exp(iszy,,) € M) in
particular
exp(istyy), exp(iszis) € M@, (29)
For X®) and the corresponding projections we have

1 212 T13 14 oo Tin oo\
0 1 x23 x14 ... T2p ... =

0 0 1 z314..23n ..

1 —z12 —713+712%T23 —T14+T12T24+T13T34+T12T23T34 ... —T1n+T12T2n+T13T30+T12T23T3n ..
0 1 —T23 —T24+X23%34 —Zop+T23T3n . =
0 0 1 —x34 xT3n
-1 —1 -1 -1 —1
1 —x12 —X13—T15 T23 —T14—T75 24 —T 4 L34 .. —L1n—Lio L2n—Lq1q L3n .-
12 12 13 12 13
1 —1
0 1 —23 —L24—Tyz T34 —Z2p—Ty3 T3n ) (3())
0 0 1 —x34 —Z3n

Al =Dy, AL =219D1, + Dan, AR =13Dy, + 293Dy, + D3, 3 < 1.
We have

() (2) = exp (-is li binwin () + gb%wgn(@b —

n=3

exp (—z‘s [i bin(@1n + 27,0) 201, — (21, + xlnl)]D X

n=3

exp (—is [i bon(Ton + 5,7 ) 270, — (T2 + :E;;)D .
n=4
By the same procedure as in the case of the space X we can obtain that
exp(ist1a), exp(iszys) € MO, (31)
We show that
{Tsa(t), A5 (2)} = exp (is [bua(2tw13710 + 20s) + baa (2325704 + 223) ) .
(32)
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(compare with (28)). Indeed we have
{Tsa(1), Ay (2)} = Toa(t) A (2) Taa(—1) Ay (2) =

Al (2 B4(t)) A gy (z) =

exp (—is (b1a[wia (v E34(t)) — wia(z)] + baa[wos(w E34(t)) — waa(z)])),
which implies (32), since

wia(z) = (Tt 2e1a—(Tratary)] = — (25 Taata1y Ts0) 20144275 Tos a7y T34],

and
wis(xE34(t)) — wia(z) =
— [ (Tog +t203) + 275 (T34 +1)][2(214 + tT13) + 215 (T4 + tT03) + 275 (T34 + 1))
(75 Toa + 13 034)[2014 + Ty Toa + Tz T3] =
—t [(1’1_211724 + 273 w30) (2013 + 27y oy + 23y) + (03 0o + 233) (2014 + 2Ty wos + 171_311"34)}
—t* (a7, oz a1y ) 213+ a0y Tzt aty ) = —t[—(21atary ) Tis— T3 (Tratary )|+ r1315 =
2tr13714 + thfg.
Using (31) and (32) we get

ﬁ)(x) ‘= exp (is [b142tx139514 + boy(2tz03704 + t2x§3)D e M®),
hence
{Tis(tr), () ()} = Tua(t1) () (2)Taa(—t1) (847 () ™" = exp (isttrbra2tas)
so exp(iszyy) € MB) and explisbyy (2twosxoy + t2025)] € M), Similarly we get
{Tou(t1), explisbog(2tmo3m04 + t22355)]} = exp(isbosttTa3),
80 exp(iswa3), exp(isTaszray) € MB). At last we get
{T4(t1), exp(iswazras) } = exp(istixay).

Finally we can obtain exp(iszy,) in the following order on the first step:

exp(iszi2), exp(istis);
on the second step:

exp(isziy), exp(israg), exp(isray) € M®),

or symbolically in the following order:
1 x12 13 T14 011 21 1o
0 1 x23 x24 s 0 0 22 32 .
00 1 000
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In general we get the order

12 13 T14 T15 T16 T17

1

0 1 x23 m24 x25 T26 To7 8 101 3; éz %g ;i %g

0 0 1 x34 x35 T36 T37 0 0 0 334334 35 (33)
0.0 0 1 w5 a6 2a7 |7 00 0 0 4g5445 )"

00 0 0 1 x56 x57 0000 0 55

o0 O O 0 1

This order is right in the general case (without any projections on X*)).
To obtain exp(iszis) and exp(isx3) on the first step we get by Lemma 19

{Tos(t), A™ ()} = Tos(t) A™(x)Tos(—t) A7 () = A™(xEas(t)) A" (z) =

exp { i (3 bulin(eBalt) = ()] + 3 bl (e Bal0) = )] .

n=3 n=4

Now we shall calculate wy,(zE23(t)) — wi,(z) and wey, (xEas(t)) — wey,(z). We
have by (16)

—1 —1 —1 —1
Tin + X0, = = D Tl Ton + Ty, = — Y Tonly,

so we conclude that for n > 3 holds

Ea3(t) n—1 E3(t)
(x1n+x1n E23(t) <Z xlrxm> = — (mlgxgnl + mlgxgnl + Z xlrxr_nl> =

r=4

_ (ZL’IQ(—[L’Qn [.1723 + t I?m Z ZL’QTJ}Tn [Elg + t[L‘lz $3n Z xlTxrn) =

-1 -1 -1 -1
— (Z L1 &y, — tSL’12.§L’3n + tl’12$3n> = T1p + Xy, -
=2
For n = 3 we get x13 + xf31 = —x12x531 = I12T23 hence
Eas(t Eas(t
(w13 + 235) 20 = (w15m05) ") =

-1 -1
ZL’lg[ZL‘Qg + t] — T12X23 + tl’lg = T13 + 1713 — t[L‘lz .

Finally we conclude that

T1p + 27,0, if 3 < n,
(210 + 220 = £ 7T (35)
{L'13+ZE1_31+tl'12, if n=3
and
T, + 2L if 3 < n,
(w10 £ )00 = ST (36)

13 + SL’I31 + tl’lg, if n=3
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since

(ZL‘13 — 5(]1_31)E23(t) — (21‘13 — (ZElg +171_31)>E23(t) = 2[1713 ‘|—tl’12] — (ZE13 +l’1_31 +tf)312)

= T13 — 1'1_31 + t.ﬁlﬁlg.
We have wy,(xEs3(t)) — wi,(xz) = 0 for n > 3. For n = 3 holds

w13<£L‘E23(t)>—U)13($) = ($13+$;31+tx12)(.Ilg—x;3l+t$12>—($13+l’;31)(x13—$fgl)

= tl‘lz(l‘lg + ZE1_31 + T3 — 1‘13 ) + t2ZL'12 = 2tl‘121‘13 + t2l’%2.

Finally

0, if 3<n
Win (T E23(t)) — win(z) = (37)

2tl’121‘13 + tQZL‘%Q, if n=23.

For (9, + 5, )7#® we have
E23(t) EQS(t)
($2n + :E E%(t) == <Z x2r$rn> = <$23$3n Z szri'rn) =

n—1
— ([xza +tlag, + ) xzrw;}) = Lo + T3, — a3,
r=4
Since
(wan — 2) 720 = 229, — (w2, + 257" = [229,, — (220 + 3, — ta3,))]

= Ty — T3, +ta3,
we conclude that
(zon £ 25,1 ) P20 = 20, + 251 F tay ). (38)
Finally we have
Won (1 B3 (t))—wan (x) = (Ton+u5, —t2s, ) (Ton—oy, +tas, ) —(Ton+as, ) (Ton—1s,) =
tw3, (Tan + T + Ton — 73,) — 1 (23,)? = 2wy, a5, — (23,)%
Won (2 B3 (1)) — won () = 2tay, x5, — t*(23,)°. (39)
Using (37) and (39) we get
2tx19m13 + t203,, if n=3, k=1
wkn(iﬂEgg(t)) - wkn(l‘) = 2tx5711$5711 - tQ(xgnl)z, if k= 2, n >4 (40)

0, otherwise.
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At last using (34) and (40) we have

{To3(1), Ais(x)} = exp (—zs [1)13(2%12%13 + 2 x12 + Z bay, 2tx2n1x§n1 — tQ(xgn)2)1> .

n=4

Further we get

{Tlg(tg){T23<t1), AZS((L’)}} = exp <—i8b132t1t2$12) . (41)

Indeed
{Trs(t2){Tos(tr), A (z)}} =
exp (—z’sblg [(ztlﬂflg[ﬂflg +to) — Bix]y) — (2t 212713 — t%ﬁQ)D
= exp (—isbi32t1tar12) ,
compare with (10): —[Af}, [A%, In A]] = 2b1321,! We have exp(itzyz) € M),

and hence exp(itz},) € M}. Using expression for {Ths(t), A™(z)} we conclude
that

M(;) =) {T23(t1) AZS((L’)} exp(isblgt%ﬂ) =

exp (—ZS lb13(2t51712$13 + Z bon (2t3, T3, — t2($3n)2)D ,
n=4
S0

M¢/> = {T12 (tg), {T23<t1), AZS(SL’)} exp(isb13t2xf2)} = exXp <—i8b132t1t2$13) .

Compare with the expression —[Af [AlL, In A]] = 2bj3713. Finally we con-
clude that
exp(itryz), exp(itris) € M, (42)

In general (without any projections) the following lemma holds

Lemma 20 We have

2L Trmy1 + 222,41, ifn=m+1, 1<k<m-1
Wen (T E 1 (t)) —win (z) = 2tx, ! men t?(x m+1n) cifk=m, n>m+2
0, otherwise,
(43)

hence

{Toma(8), A™(2)} =

m—1
exp (—zs [Z i1 (2T Trms1 + a2, 1) + Z by (2t 1 — (2 10)7)
r=1 n=m+2
(44)

PROOF. The proof is similar to the proof of the Lemma 17. O
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To obtain another functions exp(itzy,) in the general case we should
make all the steps as it was indicated before. For example to obtain
exp(isxiy), exp(iswas), exp(iswes) we should do the second step i.e. con-

sider the operators '
{T5(t), A®(z)}

and all necessary combinations.

To obtain exp(isxis), exp(iswas), exp(isrss), exp(isrss) we should consider
the following operators

{Tus(t), A™(x)},

and so on. Finally we shall obtain all functions exp(iszi,), k < n.

5 Example of the measure

We show that the set b = (bgy)g<n for which
SE(b) <00, E(b) <oco, and SF'(b) =00, 1<k<n,

where

o [e.e]

Spb)y = > zkm? E(b) =Y Skn(b)7 SRL(p) = Z bm

m=n-+1 Ynm k<n bkn

is not empty. Indeed let us take by, = (ax)". We have

oo a m a n+1 o0 a m a n+1 1
sn= 3 (@) =) 2@) -G =<

m=n+1 m=0 an

iff a, < apy1, k €N, for example a; = s with s > 1. Further we get

= Smb) S & (%)”*1 1 1 _

1 >n+1 1 00 ar 00 ( 1 )n+1
a — o <27 a —
z—: knzk;i-l (CL 1_i lfz:ll_akil n—zk;s—l n

0o 00 1 n+1 00 1 k+2 1
Z: Z ( ) a Z: <Gk+1> 1- L B
= = ak+1 Ak+1

ak+1 n=k+1 (41
00 ag k k
St (L) e (2)
— 1= \app ) g1 — as/) az—1
k=1 ap+1 ak+1

If for example a;, = s* with s > 1 we have

X 11
_1

E(b) < -1 /; Gh(k+1) gh+1 _ |

< Q.
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At last

L o 1 an
Sm0)= 3 gy = 2 (gn)mﬁ)

am

ad aram \™ [ Qm an e aRQm, G,
m:Zn:H ( p ) (an) ( am> m:Zn:H ( ap, ) (an ) o

if lim,,, a,, = oo. For a;, = s* with s > 1 we have

S&L(b) = Z s(m+k_")m(5m_" — 1) = 0.

m=n+1

6 Modular operator

We recall how to find the modular operator and the operator of canonical
conjugation for the von Neumann algebra 2A7,, generated by the right regular
representation p of a locally compact Lie group G. Let h be a right invariant
Haar measure on G and

p.A: G U(LX(G,h))
be the right and the left regular representations of the group G defined by
(pef)(@) = flat), (A S)(@) = (dh(t 2)/dh(x) "2 f(t ).

To define the right Hilbert algebra on G we can proceed as follows. Let M(G)
be algebra of all probability measures on G with convolution

(15 v)(s) =

We define the homomorphism
M(G) 3 p g = [ pedult) € BLX(G, h).

We have ptp” = p**¥, indeed

p'p” —/ptdu /psdv //ptsdu /pt (nxv)(t) = p".

Let us consider a subalgebra M (G) := (v € M(G) | v ~ h) of the algebra
My (G) In the case when p € M,(G) we can associate with the measure
its Rodon-Nikodim derivative dv(t)/dh(t) = f(t). When f € C§°(G) or [ €

L'(G) we can write

o = [ F@)pun(o)
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hence we can replace the algebra M, (G) by its subalgebra identified with
algebra of functions C§°(G) or L'(G, h) with convolutions. If we replace the
Haar measure h with some measure u € M;,(G) we obtain the isomorphic
image T™* of the right regular representation p in the space L*(G, p): T/ =

UpU~" where U : LX(G, h) — L¥(G, p) defined by (Uf)(x) = (26))""* f(a).

we have )
0\ 2
1 o) = (B ),

and
rf = [ SO dce)
G
We have (see [4], p.462) (we shall write T, instead of T} )

S(7) = (1) = [ FTdutt) = [ O o st ™)
dp(t™) w5
[ S T Tt
Hence d(i1
(sh)(0) = H )55,

dp(t)
To calculate S* we use the fact that S is antilinear so (Sf,g) = (S*g, f). We
have

d -1 —
(S5.9) = [, U TE a@iante) = [ FE a0t -
| 9T 0du() = (5°g. ).
hence (S*g)(t) = g(t~!). Finally the modular operator A defined by A = S*S
has the following form (Af)(t) = 29 f(¢). Indeed we have

du(t=1)

s du(t™)
f(t) = dpu(t)

Finally , since J = SA™Y2 (see [4] p.462) we get

fo A (du(fl) )“2 Foy o ) ( du(t))>1/2 T

50 _dp(t)
dp(t=1)

f) f@).

dp(t) dpu(t) \dp(t™!
(du(tN Y
- (%) T
Hence
1N 1/2
= (%) T ma @nio = 0 p



To prove that JT"*.J = TF* we get

< dp(z) ) Al ey @) =

1/2 » »
ml) e = @)

Remark 21 The representation T is the inductive limit of the represen-
tations T of the group B(m,R) where the measure j* is the projection of
the measure p, onto subgroup B(m,R). Obviously up* is equivalent with the
Haar measure h,, on B(m,R).

7 The uniqueness of the constructed factor

Let GG be a solvable separable locally compact group or a connected locally
compact group. Then any representation 7 of G in a Hilbert space generates
an approximately finite-dimensional von Neumann algebra (see [3]).

Theorem 15 from V.9 p. 504 [4] (Haagerup) There exists up to isomorphism
only one amenable factor of type I11;, the factor R, of Araki and Woods (see

[7])-
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