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Cancellation, Elliptic Surfaces and the
Topology of Certain Four-Manifolds

IAN HAMBLETON (1) AND MATTHIAS I(RECK

This is the third in aseries of three papers about cancellation problems (referred
to as [I], [11] and [111]). In this part we use the techniques and results developed in the
preceeding papers to give some further applications to the topology of four-manifolcls.
The main results.concern smooth structures on elliptic surfaces with finite fundamental
group, and the topological classification of four-manifolds with special fun~amental

groups.

One motivation for studying the classifieation of four-manifolds up to homeomor
phism is to get information about smooth structures. S. 1(. Donaldson has proved
[5] that simply-eonneeted compaet algebraic surfaces are often indecomposable as a
smooth eonnected sumo It is however possible for such a surface to be homeomorphic
to a conneeted sum of smooth 4-manifolds (by M. Freedman's results [7] in the simply
connected case), and thus the same underlying topological manifold ean have distinet
smooth structures (see [10, §l] for a survey of such results).

More generally, we conjectured in [10] that an algebraic surface with any finite
fundamental group has at least two smooth structures, which remain distinet after
blow-up (topologieally just connected sum with CJ>2). We showed that for each 000

trivial finite group G, there exists a constant c(G) such that the conjecture holds for all
algebraie surfaces X with 7t"1(X) = G, Euler charaeteristic e(X) ~ c(G) and c~(X) ~ O.

We can now verify the eonjecture for many non-simply conneeted elliptie surfaces.
In the statement, Pg denotes the geometrie genus.

Theorem A: Let X be an elliptic surface witb finite fundamental group. H Pg > 0
then X has at least two smootb structures which remain distinct under blow-ups. H

pg = 0 tben XU t:P2
has at least two slnooth structures which remain distinct under

furtber blow-ups.

The full conjecture for elliptic surfaces with cyclic fundamental group and Pg = 0
follows from [9, Cor.5]. Note that in this case, there are homeomorphic surfaces which
are not diffeomorphic. In contrast, two elliptic surfaces with non-eydic fundamental
group whieh axe homeomorphic are also diffeomorphic [15]. To prove Theorem A,
we construct a smooth manifold M which is homeomorphic to X and whose universal
covering decomposes as a conneeted sum of manifolds with indefinite interseetion forms.
By the result of Donaldson [5] mentioned above, M and X are not diffeomorphic.

(1) Partially supported by NSERC grant A4000 and the Max Planck Institut für Mathematik
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In §2 we discuss metabolie forms over group rings Z7r. This theory is used in §3 to
prove that topological 4-manifolds with odd order fundamental group, and large Euler
characteristic are classified up to homeomorphism by explicit invariants. The precise
statement inc1udes a lower bound for the Euler characteristic in terms of an integer d( 7r)
depending on the group.

For any finite group 7r, let d(7r) denote the minimal Z-rank for the abelian group
Q3Z ®Z1r' Z. Here we minimize over all representatives of Q3Z, obtained from a free
resolution of length three [I, (0.1)] of Z Qver the ring Z7r.

Theorem B: Let M be a c10sed oriented m8Jlifold of dimension four, and let 7rl (M) =
7r be a finite group of odd order. Wllen w2(M) = 0 (resp. w2(M) f 0), assume that
e(M) - lu(M)[ > 2d(7r), (resp. > 2d(7r) + 2). Then M is c1assified up to homeomor
phism by the signature, Ewer characteristic, type, I\irby-Siebenmann invariant, and
fundamental class in H4 (7r, Z)/Out(7r).

The type is the type (even or odd) of the intersection form on M.

In §4, we obtain a classifieation theorem for manifolds with eyelie fundamental
groups generalizing [8, Thm. B], [9, Thln. 3]:

Theorem C: Let A1 be a closed, oriented 4-nlanifold with finite cyclic fundamental
group. Then M is classified up to homeomorphism by tbe fundamental group, tbe
intersection form on H2(M, Z)/Tors, the w2-type, and the I(irby-Siebenmann invariant.
Moreover, any isometry of the intersection form can be reaJized by a bomeomorphism.

Corollary D: An algebraic surface with non-trivial cyclic fundamental group has at
least two distinct smooth structures whicll are stahle under blowups.

Acknowledgement: We wish to thank P. Teichner for a number of useful eonversa
tions, and in particular for pointing out several errors in a preliminary version of this
paper.

§1: Applications to Elliptic Surfaces

In this section we will prove Theoreln A. To begin, let us reeall the eonstruction
of elliptie surfaees given in [15]. Since we are interested only in surfaees with finite
fundamental group, we eonsider those whieh adlnit a fibration over the 2-sphere, with
generie fibre a 2-torus. Let p : Vg -+ 52 denote the elliptie surfaee with geometrie
genus 9 (i.e. e(Vg ) = 12(g + 1)) and no multiple fibres. Let B 2 C 52 be a small
2-disk whieh eontains 00 singular loeus of Vg, and let Vgo = p -1 (82 - int B2 ). Then
Vg = (Tl X D2) U Vgo, and any other elliptic surfaee with the same geometrie genus is
obtained from this by performing log transforms in the T2 x D 2 part, to create multiple
fibres. In order to have finite fundRJuental group, there must be ~ 3 multiple fibres.
From this deseription, the fundamental group
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for 3 multiple fibres and multiplicities (mb m2, n13). The possible finite fundamental
groups are the finite subgroups of 50(3): cyclic Z/rn, dihedral Dm, A4 , 54 and As ,
corresponding to the multiplicities (1np, mq) with g.c.d.(p, q) = 1, (2,2, m), (2,3,3),
(2,3,4) and (2,3,5).

Proposition 1.1: H X is a minimal elliptic surEace with finite fundamental group,
then W2(X) is non·trivial iE a(X) =8 (lllOd 16) or a(X) =0 (mod 162 and one oE th.:
multiple nbres has even multiplicity. H 1Tl (X) is non-cyc1ic, then W2(X) = 0, where X
is tbe universal covering, and W2(X') =1= 0 for every intermernate covering X' -+ X with
even order fundamental group.

Proof: This follows from [1, Chap. V, 12.3] .•

This information determines the normal I-type of elliptic surfaces [11] with non
cyclic fundamental group (see [9] for the cyclic case). If W2(X) =I 0 the normal I-type

is B = K(1T, 1) x B50 ~ BO. If W2(X) = 0 let W E H 2(K('Fr, 1), Z/2) such that
c * (w) = W2(X), where c : X -+ [«(1T, 1) classifies the universal covering. This class w
determines the normal I-type and is itself determined by its restriction to the 2-Sylow
subgroup of 'Fr.

From Proposition 1.1 we know that the restriction of w is non-zero for each non
trivial subgroup of 1T. This implies that for 7r = Z/2 x Z/2, w = x 2 +xy + y2 and for
1T = D2f', W = y2+z. Here we write H*(Z/2x Z/2, Z/2) = Z/2[x, y] and H*(D2f', Z/2) =
Z/ 2[x, y, z] / (x 2 +xy) where z is the second Stiefel-Whi tney dass of the vector bundle
given by the standard representation

In the case when 1r is a 2-group, there exists an oriented vector bundle E over K(1r, 1)
with W2 (E) = w, and the normal 1- type is the fibration B = B(E) = ]((1r, 1) x B 5pin -+

BQ. The map to BO is the classifying nlap of the of the bundle E x 1, where 1 is the
universal bundle over B5pin.

We need the following infonnation about n3 (B).

Lemma 1.2: The map fh(B) -+ H3 (1T, Z), induced by projection on tbe first factor,
is injective.

Proof: It is enough to prove this for 1r a 2-group, when we may take B = B(E)
as described above. Consider the Atiyah-Hirzebrueh spectral sequence with E 2-term
B*(M(E x "Y), n~pin). After applying the Thom isolllorphism, the first differential

H3 ( 1r, nfpin) -+ B t (1r, n~pin) is dual to Hl (1r, Z/2) ~ H3( 1r, Z/2). Thus E: 2 'V ker w.

Similarly, E~ 1 is isomorphie to the homology of the complex I
I

One cau easily cheek for 1r = Z/2 r
, 1r = Z/2 x Z/2 01' 1r = D 2 f', that E: 2 = Ei 1 = O.

To see this we use the identification of 'W E H 2 ( 1T, Z/2) given above and I carry ~ut the
indicated calculation.•



Cancellation and Four-Manifolds 4

The method of proof of Theorem A far a particular elliptic surfaee X is as follows.
We construet a smooth 4-manifold M (i) whieh is stably homeomorphie to X, and (ii)
such that the universal eovering admits a smooth deeomposition as a connected sum
M= NI ~ N 2 , such that neither NI nor N2 has a negative definite intersection form. By
a result of S.I<'Donaldson [5] X is not diffeomorphie to M. On the other hand, if one
of our eaneellation theorems applies, we ean conclude that X is homeomorphic to M.

From now on we assurne that 1l"1 (X) is non-cyclic unless stated otherwise. Suppose
that X is a minimal elliptie surfaee with Pg = g. Then e(X) = 12(9 + 1) and a(X) =
-8(g + 1). H pg(X) = 9 ;::: 2, a suitable model for X is

(1.3) M = Eg- 2 ~ K ~ (52 X 52)

where K is the Kummer surface, and Eg- 2 denotes an elliptie surfaee with the same
fundamental group 7t"1 (X) and e(E g _ 2 ) = 12(g - 1).

To prove that M and X = Eg are B-bordant we need the following lemma. Let 7]

(resp. 8) denote the non-trivial (resp. trivial) spin structure on the circle 51.

Lemma 1.4: Let Vg be a l-eonnected elliptic surface witbout multiple !ibres and
Pg = g. Tben Vgo is a l-connected spin manifold and the induced spin structure on
T3 = avgo is 1]3 iE 9 is even, and ex 1]2 iE 9 is odd.

Proof: The fact that Vgo is 1-connected follows from [15]. For 9 odd Vg is spin implying
that Vgo is also spin. For 9 even, Vgo is contained in the universal eovering of any
elliptie surfaee with that geometrie genus. For appropriate choice of log transforrns (see
Proposition 1.1) the universal eovering can be spin.

Next eonsider the induced spin strueture on T 3 = avgo. If 9 even, 17(Vg)=8 (mod
16) and so the Rochlin invariant of avgo is non-trivial. This implies that the spin
structure is 7]3. If 9 is odd, the spin strueture on T3 must extend over D2 x T 2 and
so has the form (} X Q X ß. Now introduce a luultiple fibre with even multiplicity by
performing a log transform on Vg • The resulting elliptic surface E is non-spin by (1.1).
Since the glueing map for the multiple fibre is

1 0)2 0
o 1

(see [15, p. 637]), if Q were trivial the result of the log transform would be spin.
However, the diffeomorphism type of E is independent of the parametrization chosen
for the torus T2 and so ß is non-trivial also. •

We also need another description of Eg • Start with 53 /ir, where ir C 5U(2) is a
finite subgroup, and hence acts freely on 53. Every finite subgroup 7t" of 50(3) arises
as the quotient of such a group 1r by a central subgroup of order two.

Since 5 3 /ir admits a Seifert fibering over 52, with :::; 3 multiple fibres of multiplicity
(mt,m2,m3), we can deeompose Y = 53 /ir X 51 = (T2 X D2) Uf Yo, where Yo has a
T 2 fibration over D2 containing all the singular fibres of the product fibering (83 / ir -+

82) X (81 -+ *). The fundamental group ir has the presentation [13, Chap.6]

ir = {Ql' q2, q3, h IQji h = 1, Qlq2q3 = hb},
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where b = -1 if 1r is non-cyclic and q3 = 1, b = 0 if 1r is cyclic. The 51 x D2 neighbour
hood of the fibre h is glued by a homeomorphism f of T2 depending on b. By comparing
this description with that of the elliptic surfaces above, we get

Lemma 1.5: Let X be a minimal elliptie surfaee witb finite fundamental group 1r

and geometrie genus Pg = g. Tben X is diffeomorpbie to (Y - T2 X D 2 ) U Vg
O, wbere

Y = 53/ ir X SI.

Proof: This is deax from the discussion above, using the fact (from [15]) that one 51
factor is preserved in the log transforms used to construct X. •

Proposition 1.6: Let X be a minimal elliptie surfaee with non-eyclie finite fund
amental group 1r and geometrie genus Pg = 9 ~ 2. Then X is stably homeomorphie to
Eg - 2UKU (52 X 52), where 1rl(Eg-2) = 7r.

Proof: Both manifolds admit normal1-smoothings ioto the same normal1-type B. It
is therefore enough to show that Eg and Eg - 2 ~ KU (52 X 52) are B-bordant. From (1.5)
we have the decompositions Eg = (Y - T 2 X D 2 ) U Vg

O and

However, the B-structure on the T3 = avg
O and the T3 = aVgo_2 is the same, by Lemma

1.4. Hence the difference of the two manifolds is B-bordant to

which is a l-connected spin manifold with signature zero. Since this manifold is B
bordant to zero, the result follows.•

When pg = 1 we consider tbe following model for X. As above, Eo denotes an
elliptic surface with the same fundamental group 1r = 1r) X and e(Eo) = 12. Let O2

d~note an Enriques surface (with fundalnental group Z/2 and universal covering spin).
Choose a non-trivial homomorphism f : Z/2 -+ 1r, and note that the normal1-type of
O2 is B(f*w) = (K(Z/2, 1) x BSpin -+ BO). Now consider enlbeddings of 51 x D3

into Eo and O2 representing J(I) and the non-trivial element in 1r) O2 , compatible with
the Band B(f*w) structures (with opposite orientation). Then our model for X is

(1. 7)

By construction, the normal I-type of ],,1 is again B = B(w).

Proposition 1.8: Let X be a minimal elliptie surfaee with non-eyclie finite fund
amental group 7r and geometrie genus pg = 1. Tben X is stably homeomorphie to
M.

Proof: Let S3/ir = E and L3(Z/4) = E'. To shorten the notation we let (E x SI)O =
(E X SI - D 2 X T2) and (E' x S))O = (E' X S) - D2 X T2). We are again using the
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Seifert fibering structure of E and E' to remove a small neigbourhood of a regular fibre.
We have B-bordisms:

by (1.5). We can write K = Voo U Voo where the glueing diffeomorphism is orientation
reversing. This leads to B-bordisms:

M +(-K) "J (E x SI)O U Vo
o+(E' X SI)O U Vo

o+(-VO
OU -VO

O)

"J (E X SI)O U (~I X SI)O

= [(E - D 2 x SI) U (E' - D 2 x SI)] X sI

where the final SI factor has the non-trivial spin structure by Lemma 1.4 and "u"
denotes identifying along a comnlon boundary.

On the other hand, EI + (-K) is B-bordant to E x SI, with the non-trivial spin
structure on the SI. Thus we are finished if E and (E - D2 x SI) U (E' - D2 x SI) are
B-bordant in !l3(B). By Lemma 1.4 this follows if both have the same fundamental
dass in H 3 ( 7r, Z). But, by construetion, in both cases the fundamental dass factors
through H3 ( ir , Z) = Z/ 17rIand is non-trivial there. Sinee the map il1duced by projection
H3 (Z/4, Z) -+ H3 (Z/2, Z) is zero, we are done.•

If pg = 0 and 7rl (X) is non-eyclie, thcn we only know how to construct a suitable
decomposable model for X ~ CP2. This will be done in the Proof of Theorem A, after
same further preparation. For rest of the diseussion up to the Proof of Theorem A, we
will assume that 7r = 7rl (X) itself does not act freely on 53. In other words, 7r is not
eyelic, or dihedral of order 2k, with k odd. As above, we let 1r C SU(2) be the two-fold
covering group of 7r.

To begin, let Y+ be the result of doing two surgeries on Y = 53 /ir X SI, oue to
kill the dass represented by * X SI, and the other to kill the central element <Z> of
order 2 in 1r. We fix a spin structure on Y as the product of any spin structure on S3/if
with the null-bordant spin structure on SI. The surgeries are done preserving this spin
structure. The result is a smooth spin 4-manifold Y+ with e(Y+) = 4 and 7rl(Y+) = 7r,

where 7r is the quotient of *' by the central Z/2, and hence is a finite subgroup of SO(3).

Note that Y+ has another description. It is the double of a suitable thickening of a
finite 2-complex K with fundamental group 7r. Namely, Y+ is the double of

Since the Euler charaeteristic of Y+ is four, and we assume that 7r is not periodic,
7r2(K) = 'Jl is a minimal representative for n3 z. In other words,

o --+ 'Jl --+ C2 --+ Cl --+ Co --+ Z -+ 0

with Ci = Ci(j{) finitely generated free Z7r modules, aod 'Jl has the minimal Z-rank for
7r2(K) of a two-complex with the given 7rl.
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Moreover, we have an isomorphism H 2(Y+) '" 91 EB m, and mdenotes the dual
left module m* made into a right A-module in the usual way. The intersection form
Sy+ = Met(m), where Met(m) denotes a metabolie (weakly) quadratie form on 91 EB 91
with 0 EB mtotally isotropie. The exaet sequenees for 91, mwere considered in (I,§2J.
Let J = J(7r) denote the augmentation ideal of A, and observe that the ideal (J,2) used
in (I,§2] sits in an exaet sequenee

(1.9). 0-+ (J,2) -+ A -+ Z/2 -+ 0

In particular, by [I, Lemma 2.4J there is a short exact sequence

(1.10)

and its dual extension

(1.11)

o-+ J -+ 91 --+ (J, 2) -+ 0

o --+ (J,2) -+ 91-+ J -+ 0

is classified by an element B91 E Ext~(J, (J, 2)) '" H 2 (7r, Z/2).

Now let W denotc the cobordism from Y to Y+ given by the trace of the surgeries
described above. We have thc following diagram of exaet sequences arising from the the
tripie (W, Y+, Y),

0 0

1 1
0 -+ JEBA -+ H 3 (vV,81V) -+ Z/2 -+ 0

11 1 1
(1.12) 0 -+ JEBA -+ H2 (Y+) -+ H2 (W) -+ 0

1 1
JEB(J,2) - JEB(J,2)

1 1
0 0

where the homol~gy is taken with A = Z(7r] coefficients.

Next we need to recall some of the notation and results of [I, §2]. Dur goal is to
find a quadratic submodule of H2(Y+) which also embeds in a non-singular quadratic
module of the form H(pIA) .1.. Met(L). Here (as in [11, §1]), H(PIA) is the hyperbolic
form on the module PIA EB q1Ä. We use PIA (resp. q1Ä to denote the free rank one
module (dual module) with basis elements PI (resp. Ql)' In [I, (2.7] we proved ·the
existence of a submodule Jt = j\(7r) C J(7r) such that the extension (1.11) splits when
pulled back over j{. From trus we get a eommutative diagram

0 -+ Q1Ä -+ Ql A EB J\ -+ .t'i -+ 0
1 ! !

0 -+ (J,2) --+ 91 --+ J --+ 0

1 1 1
0 -+ Z/2 -+ T --+ J/Jt -+ 0
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The cokernel T has exponent two (see [I, (2.7)]), and we define its dual module to be
T = Homz(T, Q/Z). Let 2I.1 denote the module obtained from 91 by the pushout of
(1.11) using the projection (J,2) -+ Z/2.

We obtain exact sequences

(1.13)

and

(1.14)

o-+ Z/2 -+ 211 -+ J -+ 0

and an identification T ~ 211/Si.
From the diagram above, we also constructed a short exact sequence

by dualizing. This was used in [I, (2.9)] to show that 91 had an alternate description,
as an extension

(1.15) o-+ P12l -+ 91 -+ L -+ 0,

where p l 2t C P1A is a (two-sided) ideal. The embedding i)1 C P1A EB ~ induces an
injection of the quotient modules L C Jt The submodule J C i)1 is mapped injectively
iuto the second factor 0 EB Jt It remaills to see how these sequences relate to the maps
in our surgery diagrarn.

Lemma 1.16: There are A-module isornorphislns H 3 (lV, aW) rv J ffi (J, 2), H 2 (Y+) rv

91 EB ~ and H 2(W) ~ 2U EB (J, 2), SUel1 that for the sequences in (1.12):
(i) the upper horizontal sequence is the dual of (1.9) direct surn with id : j -+ j
(ii) the middle horizontal sequence is thc direct surn of (1.14) and (1.10)
(iii) tbe middle vertical sequence is the direct surn of (1.10) and (1.11)
(iv) tbe right-hand vertical sequence is tlle direct surn of(1.13) and the map id : (J,2) -+

(J,2).

Proof: For part (i), we note that the upper sequence is part of the exact sequence of
the tripie:

The maps in this sequente are dual to the attaching maps of our handles in the surgery
given by A EB A rv H 2 (W, Y) -+ H 1 (Y) rv Z EB Z/2.

For part (ii), we use the embedding J( I-t Y+ to split H 2 (Y+) in a natural way.
Parts (iii) and (iv) then follow.•

Let I : H2 (W) -+ T be defined as the composite

I : H2 (W) rv 211 ffi (J, 2) -+ 2I.1/J\ = T,
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where the last map is the obvious projection.

Under the isomorphisms of (1.16), the composite 1+ of , with the geometrically
induced map H 2 (Y+) --Jo H 2 (W) is just the eomposite of the second factor projection
H 2 (Y+) = 'J1 ffi 'J1--Jo ~ followed by the quotient map 91 --Jo W --Jo T given above. Recall
that he intersection form 5y+ is the metabolie (weakly) quadratic form Met(91). We
now use the description (1.15) for 'J1 to (i) fix the pushout embedding 91 C PI A EI1 L,
and (ii) identify the rational spaee 5y+ 0 Q with Met (PI A ® Q) 1.. M et(L 0 Q). This
rational space also contains the fonn A1et (PI A) 1.. Met (L), wi th basis {PI, ql} for the
first factor M et(pl A).

Lemma 1.17: With the identifications 01 Lemma 1.16, ker 1+ =~ ffi (ql A ffi .i\). Tbe
second lactor is ker ,+n~ and ker 1+ is a quadratic submodule olM et(pIA) 1.. M et(L),
where tbe first lactor 'J1 C PI A EB L bas tbe fixed embedding, and the second lactor
embeds via the .i\ C L.

Proof: Direct from the definitions and (1.16) .•

The ProoC of TheorelTI A: The proccdure described above has already been carried
out to prove Theorem A for cyclic groups [9, Cor. 5]. For non-cyclic fundamental
groups we first consider the eases when Pg > O. In these cases, we have shown in (1.6)
01' (1.8) that X is stably homeomorphic to one of the models M from (1.3) 01' (1.7).

When pg ~ 2 M eontains one 52 x 52 factor, and our cancellation theorem [11,
Thm. B] applies.

When pg = 1 we need to use the fact that the Enriques surface O2 deeompose
topologieally. First note that for 1r = Z/2, there exists a rational homology 4-sphere E
with 1r I (E) = 1f' and W2 (E) f:. O. From surgery theory, we can also construct such rational
homology 4-spheres E' with non-trivial I{S invariant. Now O2 is stably homeomorphic
to E' UAl(Es ) ~ (52 x 52). Since the latter topological model splits off an 52 x 52 factor,
we apply [11, Thm. B] twice to finish the proof in this case.

We now consider an elliptic surface )( with tr = trI (X) non-cyclic and pg = O. If 1r is
periodie dihedral, we compare X ~ Cp2 with E Ü(82 X 52) ~ 9Cp2, where E is a suitable
rational homology 4-sphere. These two smooth manifolds are stably homeomorphie,
and we are done again by [11, Thm. B].

It remains to consider the case when trI (X) is non-periodic and pg = O. For any
manifold V' cobordant to Vg , a cobordism Z between X Üt:P2 and Y+ ~ V' UCp2 can
be constructed by attaching W to Vg x I along T2 X D 2 C Vg X 0, and then glueing on
any l-connected cobordism U between Vg x 1 and V'. Ta the result, we attach cp2 x I
by "connected sum along [". In the present situation, Vg = 90 p2 ÜCp2 and we take
V' = 8CP2.

After the connected sum wi th Cp2 thc normal 2- type is B = K (1r, 1) x B 50 and
Z is a bordism between the two nonnal 1-smoothings. The next step is to extend the
map, : H 2 (W) --Jo T over Z so that its restriction to H 2(X) is also surjective. Since T
has at most three generators over A (see [I, (2.7)]) this is straightforward. Note that
since the 1"2 x D2 used to attach Wand Vg has a simply connected complement in Vg ,

the module H2(VgO) is a free A-module in the induced caefficient system. The extended
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map fis induced by a geometrie map W -t ]((1r, 1) x ]((T, 2), since the first k-invariant
of W vanishes under the indueed homomorphism f" : H3(1r, H2 (W)) ~ H 3 ('Ir, T) by
Lemma 1.16. From this we conclude that Z is a bordism of two 1-smoothings into
B' = B x K(T, 2), and hence X UlJP2 and Y+ UV' U(JP2 are stably homeomorphie over
B'.

By induetion, we can assume that there is a homeomorphism

We will now apply the results of [11] to geometrically cancel the last (S2 x S2)-factor.

By Lemma 1.17, the submodule ker f+ C (H2 (Y+), Sy+) is a quadratie submodule
of Met(P1A) 1. Met(L). We fix an isometry T : Met(P1A) f'V H(P1A) and use it to
identify these quadratic modules. Let H(poA) denote the interseetion form of the last
(52 x 5 2)-factor, and define

N = H(poA) 1. ker f+ 1. (](7r2(V' UCP2),

where K 7r2(V' UCP2) is the kerne! of W2 in 7r2(V' UCP2). Now let

and embed N C M as a quadratic sublnodule using Lelnma 1.17 and T.

We will now check that N and D = Ann(A1/N) satisfy thc assumptions of [11,
Theorem 1.19]. The ideal D = 21 froln (1.15), by construction. To find a subgroup
Go ~ U(H(P)) which is (N, H(P), f)-transitive, we apply [I, (2.9)] and [11, (1.17)].
The form M et(L) has (A, B)-hyperbolic rank ~ 1 by construction.

We may now conclude that algebraie cancellation is possible, and geometrie can
cellation follows if we can realize the necessary self-autolllorphisms of N by homeomor
phisms of Y+ ~ V' ~ {}p2 U(52 X 52). These are listed in [11, (1.18), (1.11)]. For the
elements of Go, we use the fact established in [I, Lemma 2.11] that the linear automor
phisms of [I, (2.9)] are all realized by simple homotopy equivalences of the two-complex
]( used to construct Y+. The argument was to check that the k-invariant of K is p
reserved by such linear automorphisms, and then use S](l(Z1r) = 0 (valid for finite
subgroups of 50(3) by [12, 14.1, 14.5]) to show that the induced homotopy equiva
lence is simple. Since Y+ is the boundary of a 5-dimensional thickening of K C R5,
the s-cobordism theorem [7] implies that silnple homotopy equivalences of K induce
self-homomeomorphisms of Y+. The effect on 7r2(Y+) is to apply the hyperbolie functor
to the original linear automorphism of '1r2(]().

To realize the elementary automorphisn1s in

EU(H(P), Qj Met(L) 1. !(7r2(V' UL!P2
)),

we can apply [11, 2.3] with Vo = H 2 (Y+). It follows that X UCp2 and Y+ ~ V' ~ (;p2 are
homeomorphic. •
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In this section we return to our original algebraie setting. Let R be a Dedekind
domain and F its field of quotients. and recall that a lattice over an R-order A is an
A-module whieh is projective as an R-module. Let A be an order in a separable algebras
over F [4, 71.1, 75.1]. In [I] we introduced the following definition: a finitely generated
A-module L has (A, B)-free rank 2: 1 at a prime l' E R, if there exists an integer r such
that (Br EB L)p has free rank 2: lover Ap. Here Ap denotes the loealized order A ®R(p).

Similarly, we will say that a quadratic module V has (A, B)-hyperbolic rank ~ 1 at
a prime ~ E R if there exists an integer r such that (H(Br) ffi V)p has free hyperbolie
rank 2: lover Ap. Our general reference for quadratic and hermitian forms is [2, pp.
80,87].

One way to obtain quadratie modules V with (A, B)-hyperbolie rank 2: 1 at all
but finitely many primes is to assulne that V has a submodule M et(L) where L has
(A, B)-free rank 2: 1. A generalization of this would be to assume that V contains a
"metabolie form" on a non-split extension of L and L. In this section we define a notion
of metabolie forms general enough for our applications to topological 4-manifolds in §3.
The notation and conventions of [II,§l]will be used.

If N is an A-Iattice and 9 : N X N -Jo A is an R-bilinear form, let

Any () E Ext~ (.IV, N) defines an extension

(2.1)
i j_

O-JoN~E~N-JoO

of A-lattices whieh splits over R. We say that [g] is ()·~esquilinear if there is a coeycle
I E HOffiR(N®R A, N) representing (), and A-maps Q, ß E HOffiA(N, N) such that for
all a E A:

(2.2) g(f/Ja,4>') = äg(4), 4>') - >"(o:*(4>'),,(</>, a))
g(4),(l/a) - g(ljJ,</>')a- (ß*(ljJ),,(</>',a)).

Note that any cocycle , satisfies the relation:

and serves as a way to specify the A-moclule structure E on the R-module N EB N given
by (). For (x, 4» E N ffi N define

(2.3) (x, ljJ) . a = (xa + ,(4), a), 1>a).

If we vary the choice of representative gr E [g], then the new , is ,r = , +or, where

(or)(4>,a) = 7(4))a - 7(4)a),
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for some r E HomR(N, N), and all a E A. Then gT( </>,4>') = g( </>, 4>')+ < </>, r( </>') >
satisfies (2.2). Given an extension (N, 8) and a 8-sesquilinear form [g] with a: +ß = 1,
we define the metabolie (A,A)-quadratie form Met(N, 8, [g]) = (E, [q]) as follows: pick
a eompatible i, g satisfying (2.2) and set

(2.4) q((x,<!»,(x', (,6')) = (ß*(4», x') +A{a*((,6'),x) +g((,6,</>').

It is easy to check that q is sesquilinear in the usual sense if [g] is 8-sesquilinear. Sinee
a: +ß = 1 the associated herrnitian fonn q + Aq* is non-singular. We remark that the
special case a: = 0, ß = 1 gives the usual definition of a quadratic metabolie form on the
split extension.

An arbitrary extension need not adlnit any such fornl and we wish to determine the
obstructions. Suppose that N is reflexive and let T denote the involution on Ext~ (N, N)
given by dualizing exaet sequenees (N, 8) 1-+ (N, 8)*. An extension (N, 8) is A-Jelj-dual
(i. e. (N, 8)* = A(N, 8)) if N is refl.exive and there is a eommutative diagram

(2.5)

i j
0 --. N --+ E -4 N --. 0

11 111 1·>-
j*

E
i-

N0 --. N -4 -4 --. 0

If h* = Ah then h is the adjoint of a metabolie hermitian form on E. We will define a
homomorphism

p : {(N,8)* = A(N, 8)} ~ Ext~(N, N) --. H 1 (Z/2j HomA(N, N))

where HomA(N, N) has the involution a: 1-+ ~a:*. vVe will show that p(N,8) is the
obstruction for finding a A-self-duallnap h. Choose an R-seetion 8 : N ~ E -indueing
a eoeyc1e ; and identify E = N ffi N as above. Then the lower sequence is split over R
by s* leading to an identifieation of E = N EB N. In these coordinates, for any A-map
h making the diagram (2.5) eommute,

hex,</»~ = (x + s*hs(<!»,~4»

and similarly
h*(x,r/J) = (AX +s*h*s(4)),4>).

Now (h*)-l oAh(x, cP) = (x+p( h)(4», (,6) where p( h) = s'" hs- Äs* h*s. Sinee (h*)-lOAh is
an A-map, we ean check using (2.3) that p(h) is also an A-map. Similarly, by computing
h'" 0 (~h-l) and comparing with the formula for the dual, we see that p(h)* = -Ap(h).
Moreover the eohomology dass

is independent of the ehoiee of h and the ehoice of the section s. Define p(N, 8) = [pe h)]
for any h making the diagram (2.5) eommute.
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Proposition 2.6: H N is a reflexive A-module and (N, 8) is a ).-self-dual extension,
tben (N, 8) admits a metabolie A-bermitian form if and only if p(N, B) = 0 E Hl (Z/2;
HomA(N, N)).

Remark 2.7: A non-singular metabolie )'-hermitian form is unique up to isometry
if it admits a quadratic refinement. This is easy if the maps a are the same for the
two refinements, since the differenee between the two quadratic maps is an A-module
homomorphism which can be used to define the isometry.

We want to identify the obstruetion to obtaining a quadratic refinement, given a
metabolie )'-hermitian form h on the extension. Let

Hom~(E,E) = {g : E -4 EI i'" gi = 0, 9 an A-homomorphism}

Then define

as the homomorphism 1](N, 6) = [h]. The map of Tate coholllology graups is induced
by the homoffiorphism Q' t--+ j"'Q'j, for any Q' E HOffiA(N, N).

Proposition 2.8: Suppose that (N, B) admits a metabolie )'-hermitian form. Then
(N, B) admits a metabolie (A, A)-quadratie form with respeet to the minimal form pa
rameter if and only if1](N, 6) = O.

Proof: H the obstruetion is zero, we ean write h = q + )..q"', for same A-map q such
that i"'qi = O. Naw q fits into a commutative diagrarn

i i
0 -+ N --4 E --4 N -+ 0

10 lq l,\/J·
i'"

..
E

I

N0 -4 N --4 --4 -4 0

for some A-maps a and ß. It is easy to check that q is the adjoint of a 8- sesquilinear
form as in (2.4).•

For our geometrie applications it is useful to identify the obstruetion to the existenee
of a (A, A)-Quadratic refinement of a metabolie hermitian form. Let

,: ker p -4 eoker{HO(Zj2j H001A(N,N)) -4 HO(Zj2jHoIDR(N,N))}.

be the homomorphism defined by ,(N, 8) = (.s"'hs], where h is a metabolie )"-hermitian
form on the extension.
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Proposition 2.9: Suppose that (N, B) admits a metabolie .A-hermitian form and that
H 1 (Z/2,A) = 0, where the Z/2 action on A is given bya Ho Aa. Then (N,8) admits
a metabolie (.A, A)-Quadratie form with respeet to tlle minimal form parameter if and
only iE ,(N, B) = O.

Proof: Under the assumption H1 (Z/2, A) = 0, an element a E A such that a = b+ Ab
determines b uniquely modulo the minimal form parameter A = {e - .Ac leE A}. Now
the eondition that ,(N,8) = 0 is equivalent to the existenee of a metabolie form such
that for each e E E there exists an b E A with h(e)(e) = b + Ab. We ean define
q : E ~ A/A by q(e) = [b] .•

Remark 2.10: Without the assumption that Hl(Z/2, A) = 0, we get a quadratie
refinement with respeet to the maximal form-parameter if and only if -yeN, B) = O.
Suppose that R = Z and A = Z7r where 7r is a finite group. If A has the involution
induced by 9 Ho g-1, for 9 E 7r and A= +1, then Hl (Z/2, A) = O. Note that this is not
always true for involutions on the group ring. For the standard involutions 9 Ho w(g )g-l
arising from and orientation character w : 7r ~ Z/2, the maximal form-parameter is
generated by {a - Aä la E A} U {g E 7r Ig2 = 1, weg) = -.x}.

Remark 2.11: Notice that from (2.4), a metabolie quadratic fonn has associated
quaclratic function [q] (x, <p) = (<p, x)+g( </>, rP), (mod {a - Aa}). This is exactly the usual
formula for the split extension.

For the rest of this section we assurne' that R = Z and A = Z7r where 7r is a finite
group. Then each lattice Lover A is reflexive. Let N = nkz, the kernel of a projective
resolution F. of Z of length k (see [I, (0.1)] for the case k = 3). We will show that every
element of Ext~(N, N) is (-l)k+l_self-dual.

Lemma 2.12: Let N = nkz. The involution T given by dualizing exact sequenees
induees multiplieation by (_1)10+1 on Ext~(N, N).

Proof: Let X be a projective resolution of N and X the dual co-resolution of N. We
have two isomorphisms 0', ß : Ext 1(lV, N) ~ H 1(HomA(X I X)) comparing an extension
with X or X respectively. Note that over A = Z7r we can use X instead of an injective
co-resolution for computing Exti(N, N). It is not difficult to see that 0' = -ß. Let t be
the involution on Hl(HomA(X, X)) induced by dualization. By construction, OT = tß
implying OTO-1 = -t.

Note that HomA(X, X) I'V Homz(X, X) ®A Z, and that Homz(X, X) is a co-resolution
of Homz(N, N). Thus

Hi(HomA(X, X)) = Hi(Homz(X, X) ®A Z) = H i (7r; N @z N)

and under these identifications t corresponds to the involution indueed by the flip map
8 : x@y Ho y@x on N@N. Hence O'TO'-1 = -8 and we finish by applying the following
more general remark.
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Sublemma 2.13: The flip map oS : x ® y ...... y ® x on N ® N induces multiplication
by (-l)k on Tate cohomology iIi('Trj N ®z N) for each i ~ O.

Proof of the Sublelnma: We follow an axgulnent suggested by R. Swan (compaxe
[3]). Extend the projective resolution F defining N to a projective resolution F of Z.
Let f be the chain map on F®z F mapping x 0 y ...... (_l)deg(x)deg(y)y ® x. Since f
induces the identity on Z it induces thc identity on all the derived functors. We have
the similar chain map on F ®z F which on F2k = N ® N is (-1)k S • Now we consider
F ®z F as part of a co-resolution of N ® N ending in-Z. Similarly we consider F ®z F
apart of a complete co-resolution of Z. Then

H i ( 'Trj N ®z N) = Hi(HomA(Z, F ®z F)) r-..I Hi(HoffiA(Z, F ®z F))
where the last isomorphism is induced by the obvious chain map F --+ F. Thus oS =
(_l)kf· = (_1)k .•

Example 2.14: Now we restriet to groups 'Tr oE odd order. Sinee Ext~1T(N,N) then
has odd order p(N, B) and 1J(N, B) vanish for each >..-self-dual extension. In partieular for
N = nkz and >.. = (_l)k+l, each extension (N,B) admits a metabolie (>..,A)-quadratic
form whose >..-symmetrization is unique up to isometry.

§3: Four-manifolds with odd order fundamental group

We now apply the results of §2 to prove Theorem B. The method of proof is to
construct a model for M and then apply our cancellation theorem. First, let X denote a
closed, oriented 4-manifold with 'TrI (X) = 'Tr and a(X) = 0, representing the fundamental
dass of a spin 4-m anifold M in H 4 ( 'Tr , Z). Note that since 'Tr has odd order, any class in
H4 ('Tr, Z) can be realized in this way. We may assume (by forming the connected sum
with enough copies of 52 x 52 that there is a short exact sequence [8, 2.4(i)]:

where 'Jl is some representative of 0 3 Z. Then X = ]( Ua D\ where K is a finite
3-complex. The attaching map 0' E 'Tr3(]() which sits in an exact sequence (see [8,
§1])

(3.1)

The module H3 (j'(, Z) ~ :T('Tr)* as an A-module and 0' maps to a generator (it is a cyclic
module).

Lemma 3.2: H'Tr bas odd order, then the Tate eohomology groups iIi('Tr,r(L)) = 0
for L any representative of n3 z or S3Z.

Proof: We apply Lemma 2.13 following the method of [3] to conclude that these Tate
cohomology groups have exponent four for 'Tr any finite group. Since 11" here has odd
order, they must vanish.•
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We can now study Hi (7r , r (1T2 (X)) using the exact sequences

o-+ f!3Z ® S3Z -+ D -+ r(s3z) -+ 0,

o-+ K -+ r(7r2(X)) -+ r(s3z) -+ O.

16

These sequences cau be combined into a commutative diagram. We use the short
notation Hi(L) =Hi(1T, L) for the Tate cohomology groups of 1T with coefficients in an
A-rnodule L. In particular, the group H O(7r, L) = L7r /EL , where E denotes the norm
map (multiplication by the group ring element E = L:{g I9 E 1T}).

~ ~

HO(r(f2 3 Z)) HO(r(1T2)) HO(r(S3Z)) 0
"n ~ "--0 /'" ~?

fIO(l() fIO(D) fII(K)
/ ""» ./' ~ /

o fIO(03Z®S3Z) HI(r(f23Z))
'-----""'" ~

Since fIO(7r,f!3 Z ® S3Z) = Z/I7rI, we get (for any group of odd order)

(3.3)

Let Sx denote the equivariant intersection fonn on 7r2(X), We cau construct other
complexes by varying the attaching map G. More precisely, we cau attach the top cell
by any element Q' + f, where f E r( 7r2(X)), The equivariant intersection form on 7r2
for the new complex XI is Sx + E(f). Since f E r(7r2(X)), our new attaching map
Q' + f has the same image in H 3([(, Z) as G. Hence to obtain a new Poincare complex
it remains to arrange that the new intersection form is non-singular.

Lemma 3.4: Suppose tbat 7r} (X) bas odd order. There exists a c10sed topological
4-manifold Y with 7r} (Y) = 7r, a(Y) = 0 and the same w2-type as X, such that wben
W2(X) = 0 (resp. W2(X) =I 0), e(Y) = 2d(7r), (resp. = 2d(7r) +2)). Furtbermore, Y
represents the same dass in H4 (7r, Z) as X.

Proof: We will give the proof when X is spin; in the non-spin case we form the
connected surn with C p2 ~ cp2 to finish. Dur construction of Y will consist of attaching
suitable cells of dimension ~ 3 to X and heuce a reference map c : Y -+ K( 7r, 1)
is preserved. It follows that the image of the fundamental dass c. [X] E H4 ( 7r , Z) is
not changed by attaching cells using eleluent of r(7r2(X)). This uses the fibration
iJ -+ B -+ j«(tr, 1), and the fact that H 4(iJ, Z) ~ r(7r2(X)).

We need the following result [3]: when 7rl (X) has odd order, the sequence
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is split exaet as a sequenee of A-modules. The generator of Z maps to the element E(a).
It foHows that E(a) represents a generator of the group Z/l-rr under the isomorphism
(3.3).

We begin by noting that the image of [Sx] under the natural map HO (11" , r( -rr2 )) --+

HO (11", r(S3Z)) is just the restrietion of the form to the submodule m= 113Z of 1I"2(X).
Sinee the group HO (-rr, r(8 3 Z)) = 0, we ean re-attaeh the top eell to get a eomplex
Xl with a metabolie interseetion form (possibly singular). Let ~ = L EB A'" where L
has no projeetive direet summands. Then -rr2(X) = E EB A" EB Ä", where E is a weH
defined.extension of L by L given by pulling-back the extension (3.1). Let SL denote
the form SX1 restrieted to the direct summand E C -rr2(X). Sinee the dass of [5X1] E
HO (-rr , r( -rr2 )) is unehanged, it follows that SL is non-degenerate, wi th determinant prime
to l-rrl, after possibly varying by an element of Im E. This can be verified by eonsidering
the dass in

ftO(-rr,11 3 Z ® S3Z) = HO(-rr,HomA(L,L)) = Z/I-rrl

represented by an off-diagonal block of SL, using a splitting over Z to write the matriees.
Now we eomplete at a prime dividing Inl and we find that our class is represented by a
unit in HomA(L, L) modulo Im E.

The next step is purely algebraie. Any non-degenerate metabolie form on the
extension E EB A" EB A" with N = L EB A" totally isotropie is the restrietion of a non
singular metabolie form on E EB A2(r+,,) with L EB Ar+" totally isotropie. To see this,
note that sinee X was spin the fonn 5x 1 admits a quadratie refinement (see Proposition
2.8). Now the form 5xt is the pull-baek of forms over Z-rr and Q1I", glued together over
Q1I". This reduees our problem to forms over fields where it is trivial. The puH-back
gives a stabilized form h on E EB P EB P for some projeetive module P. By forming the
sum with H(Q), where P EB Q = A(r+,,), we are done.

Next, observe that the difference h - SX1 = E(f) for some f E r(E EB A2r). It
follows that we ean stabilize Xl by copies of S2 x S2 and then re-attaeh the top eell
to get a finite Poineare 4-eomplex X 2 with metabolie interseetion form 5X2 = h. Sinee
(1I"2(X2 ), h) eontains the totally isotropie submodule N EB Ar ~ L EB Ar+s, we ean write
h ~ h' 1.. H(Ar+,,). The final step is to attach cells to X 2 to kill the hyperbolie summand
H(Ar+,,). The resulting Poineare eomplex is called X'.

Our final step is to go from a Poincare eomplex to a topological manifold. There
exists a degree one normal map Yt --+ X' where Yt is a closed topological 4-manifold.
The interseetion form on YI has signature zero and eontains the interseetion form of X'
as an orthogonal direet summand.

Lemma 3.5: [16] Let 11" be a finite group of odd order. Any element of L:(Z7r) with
multisignature zero can be represented bya form H(P), where P is a projective module
over Z-rr.

Every projeetive module over Z7r has the form P = Pt EB Ak, where Pt has rank
one, by Swan's Theorem [14]. Using this result and our improvement of the Roiter
Replacement Theorem [I, (1.19)], we see that (-rr2(YI ), SYt ) contains a hyperbolie sum
mand H(Ak+t). Now we ean Burger away these hyperbolie planes in Yi to obtain the
required 4-manifold Y. •
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The Proof of Theorem B: The basie part of our model for M is provided by the
manifold Y from Lemma 3.4. To obtain the rest we form the eonneeted sum of Y with
a suitable simply-eonneeted 4-manifold, including at least one 52 x 52. The proof is
now finished by [11, Thm. B]...

§4: Four..manifolds with cyclic fundamental group

The goal of this section is to prove Theorem C. vVe will fix the notation 1f = Cn

for the eyelic group of order n, and 'J for the augmentation ideal in A = Z1f. By [8,
Thm.B] we ean assurne that n is even. We showed in [9, p.57], 01' [11, §3] that the
stable homeomorphism types are of the form r: ~ Z, where r: is a rational homology
sphere, and Z is a 1-conneeted closed 4-manifold. Recall that there are three w2-types:
(I) W2(X) =I 0, (11) W2(X) = 0, and (111) W2(X) = 0, but W2(X) =I 0.

Proposition 4.1: For any n, tbere exist a rational homology spheres with fundamen
tal group Cn, w2-types II or III, and hyperbolic equivariant intersection fonn on tbe
universal covering. In w2-types 111, tllere exist such rational homology spberes with
either value oE the Kirby-Siebenmann invariant.

Proof: Sinee we may eonstruct a rational homology sphere as the double of a suitable
4-dimensional thiekening of a 2-eomplex with eyclic 1ft, it is clear that the intersection
fonn ean always be ehosen metabolie on 'J El1 j (see [8, p.99]). Also, we have shown in [8,
4.5] that for 1f = C2 , both w2-types ean be realized with hyperbolie interseetion forms
H(J). For n odd it is also true sinee metabolie implies hyperbolic in this case by (2.14).

To handle the general case with n even, note that the obstruction to finding a
quadratic refinement for the intersection form lies in HO(Z/2, 'J ®A 'J). The restrietion
map C2 ~ Cn induces an injection on iJO(Z/2, 'J ®A 'J). But the covering of our ra
tional homology sphere with fundamental group C2 is just a rational homology sphere
connected sum with (k - 1) copies of 52 x 52. This has hyperbolic equivaxiant intersec
tion form. It follows that our obstruction is zero, and from [2, p.S5] that the rational
homology sphere Y with 1fl(Y) = Cn has hyperbolic intersection form on Y.•

Proof of Theorelll C : For a manifold X with cylic fundamental group 1f, we abbreviate
H2 (X)/Tors = H. Then as in the proof of [11, (4.2)] we consider the following three
fibrations B(I), B( I I) and B(I I I) over BTop, for w2-type (I), (11) and (111) respectively.
If X and Y axe two manifolds satisfying the given conditions, by [11, (4.2)] there is a
homeomophism

h : X Ür( 52 x 52) -+ y ~ r(52 x 52)

such that h. restricted to H2 {X)/Tors is a prescribed isometry () : H2(X)/Tors --..
H2(Y)/Tors. This implies that the restrietion to H2(r(5 2 x 52)) = H(zr) is an isome
try. By [7] 01' [II, (3.1)]' any er E U(H2 (X, Z)) can be realized by a self-homeomorphism
f of r( 52 x 52), and we compose h with I dx ~ f to get the restrietion of h. the identity
on H2 (r(52 x 52)).
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It is enough to prove the result for X = "E ~ Z, where Z is 1-connected, and "E is a
rational homology sphere with the same w2-type as Y and hyperbolic intersection form
on the universal cover.

First we will carry out algebraic cancellation. As usual, we can assume that r = 1.
The interseetion form on X ~ (52 X 8 2 ) is just H(Po) ..1 H(J) ..1 V, where V is the
intersection form of Z. Since B(€.(h.)) indllces the identity on H(zr), we need only
prove transitivity on hyperbolic elements in N = H(Po) ..1 (PI] EB PI) 1.. V. Trus is a
quadratic submodule of M = H(Po EB PI) ..1 V with Ann(M/N) =.0. We claim that
the assumptions of [11, Lemma 3.2] are satisfied, with A = Z7I", B = Z[Z/2] and .0 = J.
Indeed, take the group Go = (H(5L2 (Aj .0)) ·EU(H(P); .0)), using [11, Lemma 3.4] with
.0 = €.(J) to establish the condition [11, (1.15)(ii)]. The group r = SL2(Ajker €) has
the desired linear transitivity property by [I, Lemma 1.15]. Since ker € C J, the group
G resulting from [11, Lemma 3.2] is jllst the Go above. Now to finish the algebraic
transitivity, we use [11, Theorem 1.11]. This last step uses automorphisms from the
group (EU(H (P), Qj V.o), H (E(Pj D)) . EU(H (P)j D)) .

For the automorphism 9 used in the algebraic cancellation, 9 ffi id3(S2 xS2 can all

be realized by self-homeomorphisIIlS of X ~ 3(82 X 82). For H(8L2 (Aj D)) we use the
fact that "E is the boundary of a thickening of a two-complex !( in R 5 , and apply the
same argument used in §l. For the elements of EU(H(P), Qj VD) or EU(H(P)j.o) we
are done by [II, Corollary 2.3], applied with Va = H(J) .•

The Proof of Corollary D: If X is an algebraic surface with cyclic fundamental
group and e(X) f:- 4, the result was already proved in [9, Cor. 5]. If e(X) = 4, we apply
Theorem C to conclude that X is homeomorprnc to a smooth decomposable manifold
of the form "E ~ (82 X 8 2) or "E ~ C p 2 ij C p2, where r: is a rational homology sphere with
the correct fundamental group and appropriate W2 .•

Renlark 4.2: Our methods give new proofs of [6, Thm. 1, Thm. 2]. For the (4k +2)
dimensional result, we use [11, (1.24)] and earry out geometrie cancellation. For the
4k-dimensional case, we use [II, (4.2)] and Theorem C.
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