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Cancellation, Elliptic Surfaces and the
Topology of Certain Four-Manifolds

IAN HAMBLETON () AND MATTHIAS KRECK

This is the third in a series of three papers about cancellation problems (referred
to as [I], [II] and [III]). In this part we use the techniques and results developed in the
preceeding papers to give some further applications to the topology of four-manifolds.
The main results concern smooth structures on elliptic surfaces with finite fundamental
group, and the topological classification of four-manifolds with special fundamental
groups.

One motivation for studying the classification of four-manifolds up to homeomor-
phism is to get information about smooth structures. S. K. Donaldson has proved
[5] that simply-connected compact algebraic surfaces are often indecomposable as a
smooth connected sum. It is however possible for such a surface to be homeomorphic
to a connected sum of smooth 4-manifolds (by M. Freedman’s results [7] in the simply-
connected case), and thus the same underlying topological manifold can have distinct
smooth structures (see [10, §1] for a survey of such results).

More generally, we conjectured in [10] that an algebraic surface with any finite
fundamental group has at least two smooth structures, which remain distinct after
blow-up (topologically just connected sum with CP?). We showed that for each non-
trivial finite group G, there exists a constant ¢(G) such that the conjecture holds for all
algebraic surfaces X with m1(X) = G, Euler characteristic ¢(X) > ¢(G) and ¢}(X) > 0.

We can now verify the conjecture for many non-simply connected elliptic surfaces.
In the statement, p, denotes the geometric genus.

Theorem A: Let X be an elliptic surface with finite fundamental group. If p, > 0
then X has at least two smooth structures which remain distinct under blow-ups. If

pg = 0 then X{ CP” has at least two smooth structures which remain distinct under
further blow—ups.

The full conjecture for elliptic surfaces with cyclic fundamental group and p; =0
follows from [9, Cor.5]. Note that in this case, there are homeomorphic surfaces which
are not diffeomorphic. In contrast, two elliptic surfaces with non-cyclic fundamental
group which are homeomorphic are also diffeomorphic [15]. To prove Theorem A,
we construct a smooth manifold M which is homeomorphic to X and whose universal
covering decomposes as a connected sum of manifolds with indefinite intersection forms.
By the result of Donaldson [5] mentioned above, M and X are not diffeomorphic.

(1) Partially supported by NSERC grant A4000 and the Max Planck Institut far Mathematik
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In §2 we discuss metabolic forms over group rings Zw. This theory is used in §3 to
prove that topological 4-manifolds with odd order fundamental group, and large Euler
characteristic are classified up to homeomorphism by explicit invariants. The precise
statement includes a lower bound for the Euler characteristic in terms of an integer d(r)
depending on the group.

For any finite group , let d(7) denote the minimal Z-rank for the abelian group
Q*Z Rz~ Z. Here we minimize over all representatives of Q3Z, obtained from a free
resolution of length three [I, (0.1)] of Z over the ring Zx.

Theorem B: Let M be a closed oriented manifold of dimension four, and let 7, (M) =
T be a finite group of odd order. When wq(M) = 0 (resp. wo(M) # 0), assume that
e(M) — |o(M)| > 2d(7), (resp. > 2d(x) + 2). Then M is classified up to homeomor-
phism by the signature, Euler characteristic, type, Kirby-Siebenmann invariant, and
fundamental class in Hy(w,Z)/Out(x).

The type is the type (even or odd) of the intersection form on M.

In §4, we obtain a classification theorem for manifolds with cyclic fundamental
groups generalizing [8, Thm. B], {9, Thm. 3}

Theorem C: Let M be a closed, oriented 4-manifold with finite cyclic fundamental
group. Then M is classified up to homeomorphism by the fundamental group, the
intersection form on Ho(M,Z)/Tors, the we-type, and the Kirby-Siebenmann invariant.
Moreover, any isometry of the intersection form can be realized by a homeomorphism.

Corollary D: An algebraic surface with non-trivial cyclic fundamental group has at
least two distinct smooth structures which are stable under blowups.

Acknowledgement: We wish to thank P. Teichner for a number of useful conversa-
tions, and in particular for pointing out several errors in a preliminary version of this

paper.

§1: Applications to Elliptic Surfaces

In this section we will prove Theorem A. To begin, let us recall the construction
of elliptic surfaces given in [15]. Since we are interested only in surfaces with finite
fundamental group, we consider those which admit a fibration over the 2-sphere, with
generic fibre a 2-torus. Let p : V; — $? denote the elliptic surface with geometric
genus g (i.e. e(Vy) = 12(¢g + 1)) and no multiple fibres. Let B2 C S? be a small
2-disk which contains no singular locus of Vj, and let V? = p~'(S? — int B?). Then
Vy = (T* x D*) U V?, and any other elliptic surface with the same geometric genus is
obtained from this by performing log transforms in the 7% x D? part, to create multiple
fibres. In order to have finite fundamental group, there must be < 3 multiple fibres.
From this description, the fundamental group

TrlX(ml,mg,ma) = {91192,9314;”’ = q:;n? = q:;na = q1492493 = 1}
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for 3 multiple fibres and multiplicities (m;,m2,m3). The possible finite fundamental
groups are the finite subgroups of SO(3): cyclic Z/m, dihedral D,,, A4, S and A4s,
corresponding to the multiplicities (mp,mgq) with g.c.d.(p,q) = 1, (2,2,m), (2,3,3),
(2,3,4) and (2,3,5).

Proposition 1.1: If X is a minimal elliptic surface with finite fundamental group,
then wz(X) is non-trivial if (X)) = 8(mod 16) or o(X) = 0(mod 16) and one of the
multiple fibres has even multiplicity. If =1(X) is non-cyclic, then w2(X) = 0, where X
is the universal covering, and w2(X') # 0 for every intermediate covering X' — X with
even order fundamental group.

Proof: This follows from [1, Chap. V, 12.3].s

This information determines the normal 1-type of elliptic surfaces [11} with non-
cyclic fundamental group (see [9] for the cyclic case). If wy(X) # 0 the normal 1-type
is B = K(m,1) x BSO 25 BO. If wy(X) = 0 let w € H*(K(x,1),Z/2) such that
¢ * (w) = wy(X), where ¢ : X — K(m,1) classifies the universal covering. This class w
determines the normal 1-type and is itself determined by its restriction to the 2-Sylow
subgroup of .

From Proposition 1.1 we know that the restriction of w is non-zero for each non-
trivial subgroup of . This implies that for m = Z/2 x Z/2, w = z? + zy + y? and for
7 = Dyr, w = y*+2z. Here we write H*(Z/2x2Z/2,7/2) = Z/2[z,y] and H*(Ds-,Z/2) =
Z/2[z,y,z]/(z* + zy) where z is the second Stiefel-Whitney class of the vector bundle
given by the standard representation

Dzr = (3,b|82r = b2 = (bs)2 = 1) — 0(2)

In the case when 7 is a 2-group, there exists an oriented vector bundle E over K(m,1)
with wy(E) = w, and the normal 1-type is the fibration B = B(F) = K(x,1)x BSpin —
BO. The map to BO is the classifying map of the of the bundle E x 5, where « is the
universal bundle over BSpin.

We need the following information about Q3(B).

Lemma 1.2: The map Q3(B) — Hj(r,Z), induced by projection on the first factor,
is injective.
Proof: It is enough to prove this for 7 a 2-group, when we may take B = B(E)
as described above. Consider the Atiyah-Hirzebruch spectral sequence with E;-term
H,(M(E x ), 25P™).  After applying the Thom isomorphism, the first differential
Hy(m, QP — Hy (7, Q5P ) is dual to H'(x,Z/2) = H?*(n,Z/2). Thus Ef ; = ker w.
Similarly, E3 | is isomorphic to the homology of the complex
w 8 ‘(S 2-|"T.l.1)

HO(m,2) 5 H(n,2/2) —— "2 H%(r,2/2).
One can easily check for 7 = Z/2", 7 = Z/2 x Z/2 or © = Dy-, that B}, = E}, = 0.
To see this we use the identification of w € H?(w,Z/2) given above and carry out the
indicated calculation. s
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The method of proof of Theorem A for a particular elliptic surface X is as follows.
We construct a smooth 4-manifold M (i) which is stably homeomorphic to X, and (ii)
such that the universal covering admits a smooth decomposition as a connected sum
M =N § N2, such that neither N} nor N; has a negative definite intersection form. By
a result of $.K.Donaldson [5] X is not diffeomorphic to M. On the other hand, if one
of our cancellation theorems applies, we can conclude that X is homeomorphic to M.

From now on we assume that 7; (X ) is non-cyclic unless stated otherwise. Suppose
that X is a minimal elliptic surface with p; = ¢g. Then e(X) = 12(¢ + 1) and o(X) =
—8(g + 1). If pg(X) = g > 2, a suitable model for X is

(1.3) M =E, ,§K§(5? x §2)

where K is the Kummer surface, and E,_2 denotes an elliptic surface with the same
fundamental group 7 (X) and e(Eg-2) = 12(g — 1).

To prove that M and X = E, are B-bordant we need the following lemma. Let 75
(resp. §) denote the non-trivial (resp. trivial) spin structure on the circle S*.

Lemma 1.4: Let V, be a I-connected elliptic surface without multiple fibres and
pg = g. Then V? is a 1-connected spin manifold and the induced spin structure on
T =9V isn® if g is even, and 8 x 5 if ¢ is odd.

Proof: The fact that V) is 1-connected follows from [15]. For g odd Vj is spin implying
that Vs‘.fJ is also spin. For ¢ even, Vgo 1s contained in the universal covering of any
elliptic surface with that geometric genus. For appropriate choice of log transforms (see
Proposition 1.1) the universal covering can be spin.

Next consider the induced spin structure on T° = 3Vg°. If g even, o(V,) = 8(mod
16) and so the Rochlin invariant of 0V is non-trivial. This implies that the spin
structure is n®. If ¢ is odd, the spin structure on T° must extend over D? x T? and
so has the form 8 X a x 8. Now introduce a multiple fibre with even multiplicity by
performing a log transform on V,. The resulting elliptic surface E is non-spin by (1.1).
Since the glueing map for the multiple fibre is

0 1 0
-1 2 0
0 0 1

(see [18, p. 637]), if a were trivial the result of the log transform would be spin.
However, the diffeomorphism type of E is independent of the parametrization chosen
for the torus T? and so 8 is non-trivial also. s

We also need another description of Eg. Start with $%/%, where # C SU(2) is a
finite subgroup, and hence acts freely on S°. Every finite subgroup = of SO(3) arises
as the quotient of such a group # by a central subgroup of order two.

Since S? /% admits a Seifert fibering over $2, with < 3 multiple fibres of multiplicity
(m1,m2,m3), we can decompose Y = 53/7 x S! = (T? x D?) Uy Yo, where ¥, has a
T? fibration over D? containing all the singular fibres of the product fibering (§%/# —
S%) x (8! — *). The fundamental group # has the presentation [13, Chap.6]

T = {QIs?I?’q3sh|q;1jh =1,q1q2q3 = hb},
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where b = —1 if 7 is non-cyclic and g3 = 1,6 = 0 if 7 is cyclic. The S§! x D? neighbour-
hood of the fibre A is glued by a homeomorphism f of T? depending on b. By comparing
this description with that of the elliptic surfaces above, we get

Lemma 1.5: Let X be a minimal elliptic surface with finite fundamental group =
and geometric genus p; = g. Then X is diffeomorphic to (Y — T? x D*)U V), where
Y =837 xS

Proof: This is clear from the discussion above, using the fact (from [15]) that one S?
factor is preserved in the log transforms used to construct X. «

Proposition 1.6: Let X be a minimal elliptic surface with non-cyclic finite fund-

amental group m and geometric genus pg = g > 2. Then X is stably homeomorphic to
Eg_g uK u (52 X 52), where Trl(Eg_g) =Tm.

Proof: Both manifolds admit normal 1-smoothings into the same normal 1-type B. It
is therefore enough to show that E, and E;_; § K f (S? x S?) are B-bordant. From (1.5)
we have the decompositions Eg = (Y — 7% x D*) UV and

Eg—2 IKH(S? x %) = (Y = T? x DY) UV, IK}§(S? x §?).

However, the B-structure on the T® = §V;) and the T° = 8V)_, is the same, by Lemma
1.4. Hence the difference of the two manifolds is B-bordant to

~VOU VL, EKE(S? x §7),

which is a 1-connected spin manifold with signature zero. Since this manifold is B-
bordant to zero, the result follows. »

When p, = 1 we consider the following model for X. As above, Eq denotes an
elliptic surface with the same fundamental group 7 = m; X and e(Eq) = 12. Let D;
denote an Enriques surface (with fundamental group Z/2 and universal covering spin).
Choose a non-trivial homomorphism f : Z/2 — =, and note that the normal 1-type of
D is B(f*w) = (K(Z/2,1) x BSpin — BO). Now consider embeddings of S! x D?
into Eg and D; representing f(1) and the non-trivial element in 73Dz, compatible with
the B and B(f*w) structures (with opposite orientation). Then our model for X is

(1.7) M=(Eo-S'xD*)u(D; —S!' x D%).
By construction, the normal 1-type of M is again B = B(w).

Proposition 1.8: Let X be a minimal elliptic surface with non-cyclic finite fund-
amental group m and geometric genus p; = 1. Then X is stably homeomorphic to
M.

Proof: Let $3/% = £ and L3(Z/4) = £'. To shorten the notation we let (£ x §1)° =
(2 x ST~ D?xT?) and (T’ x §1)° = (L' x §' -~ D? x T?). We are again using the
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Seifert fibering structure of £ and ¥’ to remove a small neigbourhood of a regular fibre.
We have B-bordisms:

M~E0+Dz=(2XSI—D2XT2)U%0+(E'XSI—D2 XTZ)U‘/OO

by (1.5). We can write K = V# U V| where the glueing diffeomorphism is orientation-
reversing. This leads to B-bordisms:

M+(-K)~(ExSHYuW +E xSHY U+ (-2 u-¥)
~(Zx SHu(E xS
=[(E-D*xSYHU(Z' -D? x §Y)] x S

where the final S! factor has the non-trivial spin structure by Lemma 1.4 and “U”
denotes identifying along a common boundary.

On the other hand, E; 4+ (—K) is B-bordant to £ x §!, with the non-trivial spin
structure on the S'. Thus we are finished if & and (£ — D? x S')U (&' — D% x S!) are
B-bordant in Q3(B). By Lemma 1.4 this follows if both have the same fundamental
class in H3(w,Z). But, by construction, in both cases the fundamental class factors
through H3(#%,Z) = Z /|| and is non-trivial there. Since the map induced by projection
H3(Z/4,Z) — H3(Z/2,Z) is zero, we are done. s

If p; = 0 and m;(X) is non-cyclic, then we only know how to construct a suitable
decomposable model for X § CP2. This will be done in the Proof of Theorem A, after
some further preparation. For rest of the discussion up to the Proof of Theorem A, we
will assume that 7 = m(X) itself does not act freely on S*. In other words,  is not
cyclic, or dihedral of order 2k, with k odd. As above, we let # C SU(2) be the two-fold
covering group of 7.

To begin, let Y, be the result of doing two surgeries on Y = §3/% x S!, one to
kill the class represented by * x S!, and the other to kill the central element <z> of
order 2 in %. We fix a spin structure on Y as the product of any spin structure on $3/#
with the null-bordant spin structure on S'. The surgeries are done preserving this spin
structure. The result is a smooth spin 4-manifold Y, with e(Y,) = 4 and m(Y,) = 7,
where 7 is the quotient of # by the central Z/2, and hence is a finite subgroup of SO(3).

Note that Y, has another description. It is the double of a suitable thickening of a
finite 2-complex K with fundamental group r. Namely, Y, is the double of

($3/7# — D*) x I Usixp: D* x D* ~ K.

Since the Euler characteristic of Y, is four, and we assume that 7 is not periodic,
72(K) = N is a minimal representative for Q3Z. In other words,

0w N-C-Ci—=Ci—-Z -0

with C; = Ci(K) finitely generated free Zr modules, and 90 has the minimal Z-rank for
mo(K) of a two-complex with the given 7.
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Moreover, we have an isomorphism H3(Y,) = 9 @ N, and N denotes the dual
left module M* made into a right A-module in the usual way. The intersection form
Sy, = Met(M), where Met(M) denotes a metabolic (weakly) quadratic form on 91 @ N
with 0 @ M totally isotropic. The exact sequences for N, N were considered in [I,§2).
Let 3 = J(7) denote the augmentation ideal of A, and observe that the ideal (J,2) used
in [I,§2] sits in an exact sequence

(1.9). 0-(3,2) »A—-2/2-0
In particular, by [I, Lemma 2.4] there is a short exact sequence
(1.10) 0-T-N—(7,2) >0

and its dual extension

(1.11) 0—-(3,2)=N—-3T—-0
is classified by an element 8y Exth(ﬂ, (3,2)) @ H*(n,Z/2).

Now let W denote the cobordism from Y to Y, given by the trace of the surgeries
described above. We have the following diagram of exact sequences arising from the the
triple (W,Y,,Y),

0 0
) ! !
0 — JI®A - Hy(W,0W) — Z/2 - 0
I l {
(1.12) 0 — JoAdA - H(Y,) — HyW) - 0
! !
I9(3,2) = J802
! !
0 0

where the homology is taken with A = Z[n] coefficients.

- Next we need to recall some of the notation and results of [I, §2]. Our goal is to
find a quadratic submodule of Hy(Y, ) which also embeds in a non-singular quadratic
module of the form H(piA) L Met(L). Here (as in [II, §1]), H(p) A) is the hyperbolic
form on the module p1A @ 1 A. We use p1A (resp. ¢1 A to denote the free rank one
module (dual module) with basis elements p; (resp. ¢;). In [I, (2.7] we proved-the
existence of a submodule £ = &(7) C J(n) such that the extension (1.11) splits when
pulled back over R From this we get a commutative diagram

) !

0 — (J,2) — N - 3 =0
! ! l

0 — Z/2 — T - J/R - 0
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The cokernel T' has exponent two (see I, {2.7)]), and we define its dual module to be

T = Homgz(T,Q/Z). Let 20 denote the module obtained from 9 by the pushout of
(1.11) using the projection (J,2) — Z/2.

We obtain exact sequences

(1.13) 0-Z/2-W—-3-0
and
(1.14) 0= gA—-N->W-0,

and an identification T & 20/ K.

From the diagram above, we also constructed a short exact sequence
0o N—opddR->T -0

by dualizing. This was used in [I, (2.9)] to show that 91 had an alternate description,
as an extension

(1.15) O=pA-N—>L -0,

where p1% C p1A is a (two-sided) ideal. The embedding M C py A @ R, induces an
injection of the quotient modules L C & The submodule 7 C 91 is mapped injectively
into the second factor 0 @ & It remains to see how these sequences relate to the maps
in our surgery diagram.

Lemma 1.16: There are A-module isomorphisms H3(W,8W) 23 (3,2), Hy(Y,) &
NdN and Hy(W) =20 @ (J,2), such that for the sequences in (1.12):

(i) the upper horizontal sequence is the dual of (1.9) direct sum withid: 3 —J

(ii) the middle horizontal sequence is the direct sum of (1.14) and (1.10)

(iii) the middle vertical sequence is the direct sum of (1.10) and (1.11)

(iv) the right-hand vertical sequence is the direct sum of (1.13) and the map id : (J,2) —
(3,2).

Proof: For part (i), we note that the upper sequence is part of the exact sequence of
the triple:

0 — H3(Y) = H3(W,Y,) = H3(W,0W) — Ha(Y) — 0.

The maps in this sequence are dual to the attaching maps of our handles in the surgery
givenby AQAX Ho(W)Y) - H(Y)=Z B Z/2

For part (ii), we use the embedding K — Y, to split Hy(Y,) in a natural way.
Parts (iii) and (iv) then follow. »

Let v : Hy(W) — T be defined as the composite

v H(W)=2We (0,2) » W/R=T,
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where the last map is the obvious projection.

Under the isomorphisms of (1.16), the composite v+ of v with the geometrically
induced map H3(Y,) — H3(W) is just the composite of the second factor projection
Hy(Y,) = 9@ N — N followed by the quotient map N — W — T given above. Recall
that he intersection form Sy, is the metabolic (weakly) quadratic form Met(91). We
now use the description (1.15) for M to (i) fix the pushout embedding M C p1A P L,
and (ii) identify the rational space Sy, ® Q with Met(p1A® Q) L Met(L ® Q). This
rational space also contains the form Met(p1 A) L Met(L), with basis {p1,¢:1} for the
first factor Met(p; A).

Lemma 1.17: With the identifications of Lemma 1.16, ker v = N ® (q1 4 ® K). The
second factor is ker v+ NN and ker v+ is a quadratic submodule of Met(py A) L Met(L),
where the first factor 1 C pyA @ L has the fixed embedding, and the second factor
embeds via the & C L.

Proof: Direct from the definitions and (1.16). s

The Proof of Theorem A: The procedure described above has already been carried
out to prove Theorem A for cyclic groups [9, Cor. 5). For non-cyclic fundamental
groups we first consider the cases when py > 0. In these cases, we have shown in (1.6)
or (1.8) that X is stably homeomorphic to one of the models M from (1.3) or (1.7).

When p, > 2 M contains one $? x S§? factor, and our cancellation theorem [IT,
Thm. B] applies.

When p; = 1 we need to use the fact that the Enriques surface Dy decompose
topologically. First note that for # = Z/2, there exists a rational homology 4-sphere
with 7, (¥) = m and w(Z) # 0. From surgery theory, we can also construct such rational
homology 4-spheres ' with non-trivial KS invariant. Now D is stably homeomorphic
to &' § M(Eg)}(S? x S?). Since the latter topological model splits off an $? x §? factor,
we apply [II, Thm. B] twice to finish the proof in this case.

We now consider an elliptic surface X with 7 = 7;(X) non-cyclicand py = 0. If 7 is
periodic dihedral, we compare X § CP? with £ §(S5? x §2?)§9CP?, where T is a suitable
rational homology 4-sphere. These two smooth manifolds are stably homeomorphic,

and we are done again by [II, Thm. B].

It remains to consider the case when 7{(X) is non-periodic and py = 0. For any
manifold V' cobordant to V,, a cobordism Z between X {CP? and Y, | V' CP? can
be constructed by attaching W to V, x I along T? x D? C V, x 0, and then glueing on
any 1-connected cobordism U between Vg x 1and V'. To the result we attach CP? x I
by “connected sum along I”. In the present situation, Vy = 9C P2 § CP? and we take
V' =8CP.

After the connected sum with CP? the normal 2-type is B = K(m,1) x BSO and
Z 1s a bordism between the two normal 1-smoothings. The next step is to extend the
map v : Hz2(W) — T over Z so that its restriction to Hy(X) is also surjective. Since T
has at most three generators over A (see [I, (2.7)]) this is straightforward. Note that
since the T? x D? used to attach W and V; has a simply connected complement in V,
the module H 2(1/;0) is a free A-module in the induced coefficient system. The extended
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map 7 is induced by a geometric map W — K(m, 1) x K(T,2), since the first k-invariant
of W vanishes under the induced homomorphism v, : H3(w, Ho(W)) — H3(x,T) by
Lemma 1.16. From this we conclude that Z is a bordism of two 1-smoothings into
B' = B x K(T,2), and hence X § CP? and Y, § V' § CP? are stably homeomorphic over
B

By induction, we can assume that there is a homeomorphism
h: X TP (S? x §) — Y, § V' §TP2§(S? x §2)

We will now apply the results of [II] to geometrically cancel the last (5% x S%)-factor.

By Lemma 1.17, the submodule ker v4 C (H2(Y},), Sy, ) is a quadratic submodule
of Met(p1A) L Met(L). We fix an isometry 7 : Met(p1A) = H(p1A) and use it to
identify these quadratic modules. Let H(pgA) denote the intersection form of the last
(8% x S§?)-factor, and define

N = H(poA) L ker 74 L (Kmy(V'§CP?),
where K (V' § CP?) is the kernel of w, in mo(V'§ CP?). Now let
M = H(poA) L H(pyA) L Met(L) L Kmy(V'§ TP?)

and embed N C M as a quadratic submodule using Lemma 1.17 and 7.

We will now check that N and © = Ann(M/N) satisfy the assumptions of [II,
Theorem 1.19]. The ideal © = 2 from (1.15), by construction. To find a subgroup
Go C U(H(P)) which is (N, H(P), ¢)-transitive, we apply [I, (2.9)] and [II, (1.17)].
The form Met(L) has (A, B)-hyperbolic rank > 1 by construction.

We may now conclude that algebraic cancellation is possible, and geometric can-
cellation follows if we can realize the necessary self-automorphisms of N by homeomor-
phisms of Y, V' CP?§(S? x §?). These are listed in [II, (1.18), (1.11)]. For the
elements of Gy, we use the fact established in [I, Lemma 2.11] that the linear automor-
phisms of [I, (2.9)] are all realized by simple homotopy equivalences of the two-complex
K used to construct Y,. The argument was to check that the k-invariant of K is p-
reserved by such linear automorphisms, and then use SK;(Zn) = 0 (valid for finite
subgroups of SO(3) by [12, 14.1, 14.5]) to show that the induced homotopy equiva-
lence is simple. Since Y, is the boundary of a 5-dimensional thickening of K C RS,
the s-cobordism theorem [7] implies that simple homotopy equivalences of K induce
self-homomeomorphisms of Y, . The effect on m5(Y,) is to apply the hyperbolic functor
to the original linear automorphism of 7,(X).

To realize the elementary automorphisms in
EU(H(P),Q; Met(L) L Kmo(V'§ CP?)),

we can apply [I1, 2.3] with Vp = Ho(Y;). It follows that X § CP? and Y, § V' { CP? are
homeomorphic.
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§2: Metabolic Forms

In this section we return to our original algebraic setting. Let R be a Dedekind
domain and F' its field of quotients. and recall that a lattice over an R-order A is an
A-module which is projective as an R-module. Let A be an order in a separable algebras
over F [4, 71.1, 75.1]. In [I] we introduced the following definition: a finitely generated
A-module L has (A, B)-free rank > 1 at a prime p € R, if there exists an integer r such
that (B" @ L), has free rank > 1 over A;. Here A, denotes the localized order A ® Ryy).

Similarly, we will say that a quadratic module V has (A4, B)-hyperbolic rank > 1 at
a prime p € R if there exists an integer r such that (H(B") @ V), has free hyperbolic
rank > 1 over A,. Our general reference for quadratic and hermitian forms is [2, pp.
80, 87].

One way to obtain quadratic modules V' with (A, B)-hyperbolic rank > 1 at all
but finitely many primes is to assume that V has a submodule Met(L) where L has
(A, B)-free rank > 1. A generalization of this would be to assume that V contains a
“metabolic form” on a non-split extension of L and L. In this section we define a notion
of metabolic forms general enough for our applications to topological 4-manifolds in §3.
The notation and conventions of [II,§1]will be used.

If N is an A-lattice and ¢ : N x N — A is an R-bilinear form, let
9] = {g-lg-(¢,¢') = 9(¢,¢')+ < 4, 7(¢') >, 7 € Homp(N, N)}.
Any 6 € Ext}(N, N) defines an extension
(2.1) 0oNSEL oo
of A-lattices which splits over R. We say that [g] is 6-sesquilinear if there is a cocycle
leeaHeor;'R(N®R A, N) representing 8, and A-maps a, 8 € Hom 4(N, N) such that for

(2.2) 9(¢a, ¢") ag($,¢') — Ma* (9, 7(¢,a))
9, ¢'a) = g(¢,¢")a—(B(4),7(¢',a)).

Note that any cocycle v satisfies the relation:

i

(¢, a1a2) = v(, a1)az + v(da1,az)

and serves as a way to specify the A-module structure E on the R-module N @ N given
by 8. For (z,¢) € N @ N define

(2.3) (2,8) - a = (va +7(4,a), 4a).
If we vary the choice of representative g, € [g], then the new v is 4, = v + 67, where

(67)(¢,a) = 7(¢)a — 7(¢a),
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for some 7 € Homgp(N, N), and all a € A. Then ¢.(¢,¢') = 9(¢,8 )+ < ¢, 7(¢') >
satisfies (2.2). Given an extension (N, 6) and a 6-sesquilinear form [g] with a + 8 =1,
we define the metabolic (A, A)-quadratic form Met(N, 6, [¢]) = (E, [g]) as follows: pick
a compatible 7, g satisfying (2.2) and set

(2.4) q((z,¢),(z",4")) = (B*(¢),2") + Ma*(¢'), 2) + g(4, ).

It is easy to check that ¢ is sesquilinear in the usual sense if [g] is -sesquilinear. Since
a + f =1 the associated hermitian form ¢ + A¢* is non-singular. We remark that the
special case a = 0,8 = 1 gives the usual definition of a quadratic metabolic form on the
split extension.

An arbitrary extension need not admit any such form and we wish to determine the
obstructions. Suppose that IV is reflexive and let 7 denote the involution on Ext (N, N)
given by dualizing exact sequences (N, 8) — (N,68)*. An extension (N, ) is A-self-dual
(t.e. (N,6)* = A(N,0))if N is reflexive and there is a commutative diagram

0 - N — E 5 N = 0
(2.5) I La 1

 * P _

0—»N’—»E—~»N—»0

If h* = Ah then h is the adjoint of a metabolic hermitian form on E. We will define a
homomorphism

p: {(N,8)" = A(N,8)} CExty(N, N) = H'(Z/2; Homa(N, N))

where Hom (N, N) has the involution @ — Xa*. We will show that p(N,8) is the
obstruction for finding a A-self-dual map k. Choose an R-section s : N — E inducing
a cocycle v and identify E = N @ N as above. Then the lower sequence is split over R
by s* leading to an identification of E = N ¢ N. In these coordinates, for any A-map
h making the diagram (2.5) commute,

h(z,¢) = (z + s"hs($), 24)

and similarly

h*(z,) = (A + s"h"s(9), §).

Now (h*)~'oAh(z,¢) = (z+p(h)(¢), ¢) where p(h) = s*hs—As*h*s. Since (h*)~'oAhis
an A-map, we can check using (2.3) that p(h) is also an A-map. Similarly, by computing
h* o (Ah~') and comparing with the formula for the dual, we see that p(k)* = —Ap(h).
Moreover the cohomology class

[e(h)] € H'(Z/2; Hom4(N, N))

is independent of the choice of k and the choice of the section s. Define p(N, 8) = [p(h)]
for any h making the diagram (2.5) commute.
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Proposition 2.6: If N is a reflexive A-module and (N, 8) is a A-self-dual extension,
then (N, 6) admits a metabolic A-hermitian form if and only if p(N, §) =0 € H'(Z/2;
Hom4(N, N)). '

Remark 2.7: A non-singular metabolic A-hermitian form is unique up to isometry
if it admits a quadratic refinement. This is easy if the maps «a are the same for the
two refinements, since the difference between the two quadratic maps is an A-module
homomorphism which can be used to define the isometry.

We want to identify the obstruction to obtaining a quadratic refinement, given a
metabolic A-hermitian form h on the extension. Let

Hom%(E,E)= {¢: E - E|i*gi = 0,9 an A—homomorphism }
Then define
7 : ker p — coker{ H%(Z/2; Homa(N,N)) —» H°(Z/2; Hom%(E, E))}.

as the homomorphism 7(N,8) = [k]. The map of Tate cohomology groups is induced
by the homomorphism a — j*aj, for any o € Hom (N, N).

Proposition 2.8: Suppose that (N,§) admits a metabolic A-hermitian form. Then
(N, 8) admits a metabolic (A, A)-quadratic form with respect to the minimal form pa-
rameter if and only if n(N,8) = 0.

Proof: If the obstruction is zero, we can write h = g 4 Ag¢*, for some A-map ¢ such
that :*¢q: = 0. Now ¢ fits into a commutative diagram

la La Las:

T

0—>N——»E;—>N—>O

for some A-maps a and §. It is easy to check that ¢ is the adjoint of a 8- sesquilinear
form as in (2.4). «

For our geometric applications it is useful to identify the obstruction to the existence
of a (A, A)-Quadratic refinement of a metabolic hermitian form. Let

~ : ker p — coker{H°(Z/2; Homa(N,N)) — H°(Z/2;Hompg(N,N))}.

be the homomorphism defined by y(N,8) = [s*hs], where k is a metabolic A-hermitian
form on the extension.
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Proposition 2.9: Suppose that (N, 8) admits a metabolic A-hermitian form and that
H'(Z/2,A) = 0, where the Z/2 action on A is given by a — Aa. Then (N, ) admits
a metabolic (A, A)-Quadratic form with respect to the minimal form parameter if and
only if y(N,8) = 0.

Proof: Under the assumption H!(Z/2, A) = 0, an element a € A such that a = b+ b
determines b uniquely modulo the minimal form parameter A = {¢ — AZ|c € A}. Now
the condition that y(V,6) = 0 is equivalent to the existence of a metabolic form such
that for each e € E there exists an b € A with h(e)(e) = b+ Ab. We can define
g:E— A/Abyg(e)=1[b].»

Remark 2.10:  Without the assumption that H'(Z/2,4) = 0, we get a quadratic
refinement with respect to the maximal form-parameter if and only if v(N,8) = 0.
Suppose that R = Z and A = Zr where 7 is a finite group. If A has the involution
induced by g — ¢!, for ¢ € 7 and A = +1, then H'(Z/2, A) = 0. Note that this is not
always true for involutions on the group ring. For the standard involutions g + w(g)g™?
arising from and orientation character w : # — Z/2, the maximal form-parameter is
generated by {a — Ad@|a € A}U{g € n|g® =1,uw(g) = —-A}.

Remark 2.11: Notice that from (2.4), a metabolic quadratic form has associated
quadratic function [¢](z, ¢) = (¢, z)+9(¢, ¢), ( mod {a — Aa}). Thisis exactly the usual
formula for the split extension.

For the rest of this section we assume that R = Z and A = Zn where 7 is a finite
group. Then each lattice L over A is reflexive. Let N = Q*Z, the kernel of a projective
resolution F, of Z of length k (see [I, (0.1)] for the case k = 3). We will show that every
element of ExtL (N, N) is (—=1)**+1-self-dual.

Lemma 2.12: Let N = Q*Z. The involution T given by dualizing exact sequences
induces multiplication by (—1)¥*1 on Ext4 (N, N).

Proof: Let X be a projective resolution of N and X the dual co-resolution of N. We
have two isomorphisms a, 8 : Ext'(N, N) 2 H'(Homs(X, X)) comparing an extension
with X or X respectively. Note that over A = Z7 we can use X instead of an injective
co-resolution for computing Ext’(N, N). It is not difficult to see that « = —B. Let t be
the involution on H!(Hom4(X, X)) induced by dualization. By construction, at = t8
implying ara™! = —t.

Note that Hom (X, X) & Homz(X, X)®4 Z, and that Homz(X, X) is a co-resolution
of Homz(N, N). Thus

H'(Hom 4(X, X)) = H'(Homz(X, X)®4 Z) = H'(r; N ®z N)

and under these identifications ¢ corresponds to the involution induced by the flip map
s:z@y — y®z on N®N. Hence atra™ = —s and we finish by applying the following
more general remark.
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Sublemma 2.13: The fipmaps:z®y +— y®z on N ® N induces multiplication
by (=1)* on Tate cohomology H'(m; N ®z N) for each i > 0.

Proof of the Sublemma: We follow an argument suggested by R. Swan (compare
[3]). Extend the projective resolution F' defining N to a projective resolution Fof Z.
Let f be the chain map on F ®z F mapping z @ y — (—1)de9(2)des(¥)y @ . Since f
induces the identity on Z it induces the identity on all the derived functors. We have
the similar chain map on F @z F which on Fop = N @ N is (—1)*s. Now we consider
F ®z F as part of a co-resolution of N @ N ending in Z. Similarly we consider F@zF
a part of a complete co-resolution of Z. Then X X
H‘(vr; N@®zN)= H‘(HomA(Z, FzF)) = H‘(HomA(Z, F Qz F))
where the last isomorphism is induced by the obvious chain map F' — F. Thus s =

(=1)Ff* = (=1)*.

Example 2.14: Now we restrict to groups m of odd order. Since Exty,.(N,N) then
has odd order p(N, 8) and n(N, 8) vanish for each A-self-dual extension. In particular for
N = Q*Z and A = (~1)*+1, each extension (N, ) admits a metabolic (A, A)-quadratic
form whose A-symmetrization is unique up to isometry.

§3: Four-manifolds with odd order fundamental group

We now apply the results of §2 to prove Theorem B. The method of proof is to
construct a model for M and then apply our cancellation theorem. First, let X denote a
closed, oriented 4-manifold with 7, (X)) = 7 and ¢(X) = 0, representing the fundamental
class of a spin 4-manifold M in Hy(7,Z). Note that since = has odd order, any class in
Hy(7,Z) can be realized in this way. We may assume (by forming the connected sum
with enough copies of % x S? that there is a short exact sequence [8, 2.4(i)]:

0= N —m(X)—>N-0,

where 91 is some representative of Q*Z. Then X = K U, D*, where K is a finite
3-complex. The attaching map a € w3(K) which sits in an exact sequence (see [8,

§1])
(3.1) 0 = D(m(X)) — m3(K) - Hs(K,Z) - 0.

The module H3(K,Z) = J(n)* as an A-module and a maps to a generator (it is a cyclic
module).

Lemma 3.2: If 7 has odd order, then the Tate cohomology groups Hi(x,T(L)) = 0
for L any representative of 3Z or S3Z.

Proof: We apply Lemma 2.13 following the method of [3] to conclude that these Tate
cohomology groups have exponent four for m any finite group. Since = here has odd
order, they must vanish.
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We can now study H'(x,[(my(X)) using the exact sequences
0 — I(Q’Z) — D(my(X)) = D — 0,
0-NPZQSZ— D-T(52) -0,
0 — K — I(m(X)) = I(S*Z) — 0.
These sequences can be combined into a commutative diagram. We use the short
notation H*(L) = H*'(n, L) for the Tate cohomology groups of = with coefficients in an

A-module L. In particular, the group H%(n,L) = L™/ZL, where T denotes the norm
map (multiplication by the group ring element £ = 3 _{g]g € 7}).

AT T
HO(T(Q*Z HO(T(my HY(I(5%2)) 0
(I( ))\ s (T( ))\ P ( L
HY(K) H(D) H'(K)
-~ > SN, -~
0 HO(Z @ $32) AHY(D(9°2))
— ~—_ T

Since Ho(m, Q32 ® S*Z) = Z/|«|, we get (for any group of odd order)

(3.3) HO(x, (7o (X)) = Z/|7].

Let Sx denote the equivariant intersection form on m3(X). We can construct other
complexes by varying the attaching map a. More precisely, we can attach the top cell
by any element a + f, where f € I'(m3(X)). The equivariant intersection form on
for the new complex Xy is Sx + E(f). Since f € I'(w2(X)), our new attaching map
a + f has the same image in H3(K,Z) as «. Hence to obtain a new Poincaré complex
it remains to arrange that the new intersection form is non-singular.

Lemma 3.4: Suppose that 7,(X) has odd order. There exists a closed topological
4-manifold Y with m(Y) = =, o(Y') = 0 and the same ws-type as X, such that when
wy(X) = 0 (resp. we(X) # 0), e(Y) = 2d(r), (resp. = 2d(x) + 2)). Furthermore, Y
represents the same class in Hy(w,Z) as X.

Proof: We will give the proof when X is spin; in the non-spin case we form the
connected sum with CP?§ CP? to finish. Our construction of Y will consist of attaching
suitable cells of dimension > 3 to X and hence a reference map ¢ : ¥ — K(x,1)
is preserved. It follows that the image of the fundamental class c.[X] € Hy(n,Z) is
not changed by attaching cells using element of I'(my(X)). This uses the fibration
B — B — K(r,1), and the fact that Hy(B,Z) & I(m(X)).

We need the following result [3]: when 7;(X) has odd order, the sequence

0225 T(m(X)) o m(X)—>0
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is split exact as a sequence of A-modules. The generator of Z maps to the element L(a).
It follows that L(«) represents a generator of the group Z/|m under the isomorphism
(3.3).

We begin by noting that the image of [Sx] under the natural map HO(x, [\(r;)) —
Ho(x,T(S%Z)) is just the restriction of the form to the submodule 9 = Q*Z of m3(X).
Since the group H°(w,I(S%Z)) = 0, we can re-attach the top cell to get a complex
X, with a metabolic intersection form (possibly singular). Let 1 = L & A*, where L
has no projective direct summands. Then m(X) = E @ A°* @ A®, where E is a well-
defined.extension of L by L given by pulling-back the extension (3.1). Let Sy denote
the form Sx, restricted to the direct summand E C 7o(X). Since the class of [S X].] €
HO(m,T(m2)) is unchanged, it follows that Sy, is non-degenerate, with determinant prime
to |7|, after possibly varying by an element of Im . This can be verified by considering
the class in

H(n,*Z ® $°Z) = H(x,Homu(L, L)) = Z/|r|

represented by an off-diagonal block of Sy, using a splitting over Z to write the matrices.

Now we complete at a prime dividing |7| and we find that our class is represented by a
unit in Hom (L, L)} modulo Im Z.

The next step is purely algebraic. Any non-degenerate metabolic form on the
extension E @ A’ @ A® with N = L @ A*® totally isotropic is the restriction of a non-
singular metabolic form on E & A2(rt9) with L@ A7t totally isotropic. To see this,
note that since X was spin the form Sx, admits a quadratic refinement (see Proposition
2.8). Now the form Sy, is the pull-back of forms over Zx and Qn, glued together over
Qr. This reduces our problem to forms over fields where it is trivial. The pull-back
gives a stabilized form hon E @ P & P for some projective module P. By forming the
sum with H(Q), where P ® @ = AU+ we are done.

Next, observe that the difference h — Sx, = E(f) for some f € I'(E @ A%r). It
follows that we can stabilize X; by copies of S? x $? and then re-attach the top cell
to get a finite Poincaré 4-complex X, with metabolic intersection form Sx, = h. Since
(r2(X2), ) contains the totally isotropic submodule N @ A™ = L @ A™?, we can write
h=h' L H(A™*). Théfinal step is to attach cells to X» to kill the hyperbolic summand
H(AT™?*). The resulting Poincaré complex is called X'.

Our final step is to go from a Poincaré complex to a topological manifold. There
exists a degree one normal map Y; — X' where Y] is a closed topological 4-manifold.
The intersection form on Y7 has signature zero and contains the intersection form of X’
as an orthogonal direct summand.

Lemma 3.5: [16] Let w be a finite group of odd order. Any element of L*(Zx) with
multisignature zero can be represented by a form H(P), where P is a projective module
over Zm.

Every projective module over Zn has the form P = P, ® A*, where P, has rank
one, by Swan's Theorem [14]. Using this result and our improvement of the Roiter
Replacement Theorem {I, (1.19)], we see that (72(¥1), Sy, ) contains a hyperbolic sum-
mand H(A**+!). Now we can surger away these hyperbolic planes in ¥; to obtain the
required 4-manifold Y.
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The Proof of Theorem B: The basic part of our model for M is provided by the
manifold Y from Lemma 3.4. To obtain the rest we form the connected sum of ¥ with

a suitable simply-connected 4-manifold, including at least one §% x §%. The proof is
now finished by [II, Thm. B]. «

84: Four-manifolds with cyclic fundamental group

The goal of this section is to prove Theorem C. We will fix the notation # = C,,
for the cyclic group of order n, and J for the augmentation ideal in A = Z=x. By (8,
Thm.B] we can assume that n is even. We showed in [9, p.57], or [11, §3] that the
stable homeomorphism types are of the form £ Z, where £ is a rational homology
sphere, and Z is a 1-connected closed 4-manifold. Recall that there are three wq-types:
(1) wa(X) # 0, (I1) we(X) = 0, and (III) wy(X) = 0, but w,y(X) # 0.

Proposition 4.1: For any n, there exist a rational homology spheres with fundamen-
tal group Cy, wy-types II or III, and hyperbolic equivariant intersection form on the
universal covering. In w,-types 1Il, there exist such rational homology spheres with
either value of the Kirby-Siebenmann invariant.

Proof: Since we may construct a rational homology sphere as the double of a suitable
4-dimensional thickening of a 2-complex with cyclic 7y, it is clear that the intersection
form can always be chosen metabolic on I& T (see [8, p.99]). Also, we have shown in [8,
4.5] that for m = C3, both w,-types can be realized with hyperbolic intersection forms
H(J). For n odd it is also true since metabolic implies hyperbolic in this case by (2.14).

'To handle the general case with n even, note that the obstruction to finding a
quadratic refinement for the intersection form lies in H°(Z/2,3 ® 4 J). The restriction
map C; C (), induces an injection on ﬁO(Z/Q,J ®4 J). But the covering of our ra-
tional homology sphere with fundamental group C; is just a rational homology sphere
connected sum with (k — 1) copies of §% x §%. This has hyperbolic equivariant intersec-
tion form. It follows that our obstruction is zero, and from [2, p.85] that the rational
homology sphere Y with m;(Y) = C,, has hyperbolic intersection form on Y. s

Proof of Theorem C : For a manifold X with cylic fundamental group =, we abbreviate
Hy(X)/Tors = H. Then as in the proof of [II, (4.2)] we consider the following three
fibrations B(I), B(II) and B(III)over BT op, for wa-type (I), (II) and (III) respectively.
If X and Y are two manifolds satisfying the given conditions, by [II, (4.2)] there is a
homeomophism

h:Xfr(S? x §%) = Y§r(S? x §%)

such that h, restricted to Hy(X)/Tors is a prescribed isometry 8 : Hy(X)/Tors —
Hy(Y)/Tors. This implies that the restriction to Hz(r(S% x $%)) = H(Z") is an isome-
try. By [7] or [I1, (3.1)], any o € U(H2(X,Z)) can be realized by a self-homeomorphism
f of r(S?% x §?), and we compose h with Idx § f to get the restriction of A, the identity
on Ho(r(S? x §%)).
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It is enough to prove the result for X = £f Z, where Z is 1-connected, and £ is a
rational homology sphere with the same w»-type as ¥ and hyperbolic intersection form
on the universal cover.

First we will carry out algebraic cancellation. As usual, we can assume that r = 1.
The intersection form on X §(S5? x S%) is just H(Py) L H(J) L V, where V is the
intersection form of Z. Since 6(e.(h4)) induces the identity on H(ZT), we need only
prove transitivity on hyperbolic elements in N = H(P)) L (pIJ® P;) L V. Thisis a
quadratic submodule of M = H(P, @ P,) L V with Ann(M/N) = O. We claim that
the assumptions of [II, Lemma 3.2] are satisfied, with A = Zn, B = Z[Z/2] and O = 7.
Indeed, take the group Go = (H(SL2(A;9))-EU(H(P); O)), using [II, Lemma 3.4] with
O = €(J) to establish the condition [II, (1.15)(ii)]. The group I' = SLy(4;ker €) has
the desired linear transitivity property by [I, Lemma 1.15]. Since ker ¢ C J, the group
G resulting from [II, Lemma 3.2] is just the Gy above. Now to finish the algebraic
transitivity, we use [II, Theorem 1.11]. This last step uses automorphisms from the
group (EU(H(P),Q; V), H(E(P; D)) - EU(H(P); D)).

For the automorphism g used in the algebraic cancellation, g @ id3(s2xs2 can all

be realized by self-homeomorphisms of X §3(5? x $?). For H(SL2(A; D)) we use the
fact that ¥ is the boundary of a thickening of a two-complex K in R®, and apply the
same argument used in §1. For the elements of EU(H(P),@; VD) or EU(H(P); D) we
are done by [II, Corollary 2.3], applied with V5 = H(J). »

The Proof of Corollary D: If X is an algebraic surface with cyclic fundamental
group and e(X) # 4, the result was already proved in [9, Cor. 5]. If e(X) = 4, we apply
Theorem C to conclude that X is homeomorphic to a smooth decomposable manifold
of the form T ($? x §?) or B§ CP?{ CP?, where ¥ is a rational homology sphere with
the correct fundamental group and appropriate w;. s

Remark 4.2: Our methods give new proofs of [6, Thm. 1, Thm. 2]. For the (4% +2)-
dimensional result, we use [II, (1.24)] and carry out geometric cancellation. For the
4k-dimensional case, we use [II, (4.2)] and Theorem C.
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