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CR~transformations of real manifolds in €

Sergey Pinchuk

§ 1. Introduction.

The notions of CR—manifold and CR—function are now fundamental in Several
Complex Variables. The development of the theory of CR—manifolds and CR—functins
naturally requires also to introduce and to study CR—transformations.

Let M;, M, are CR-manifolds in €. A mapping f = (fl,...,fn) :M; — M, is
called CR—mapping if all components fj are CR—functions on M1 , 1.e. they satisfy
tangential Cauchy—Riemann conditions. Here the functions ; are not necessary
differentiable because weak tangential Cauchy—Riemann conditions have sense for

continuous functions and even for distributions. We restrict ourselfs by continuous

CR—mappings to make sense the expression f: M1 R M2 .

Definitipn 1 A mapping f: M1 — M2 is called CR—homeomorphism if

(i) f is homeomorphism,
(ii) f is CR—mapping,
(iii) 1 is also CR—mapping.

Definition 2 A CR—manifold M in €" is called locally k—CR—straightened near a
point p0 € M if there exist CR—manifold M, in Cn_k and CR—homeomorphism

f:(Myx €)nV—MnU



O.QO = f_l(po) respectively.

where U,V C €" are some neighborhoods of the points p

In § 2 we discuss the problem of CR—straightening. Each k—CR—straightened
manifold M is foliated by complex varieties of dimension k . We shall assume everywhere
below that these varieties are non—singular, i.e. they are complex manifolds in C" . But
the author doesn’t know if some real manifold in €™ can be foliated by singular complex
varieties.

Each point p of k—=CR—straightened manifold M belongs to unique leaf S of the
foliation. We denote by ™ the tangent plane Tp(S) C T;(M) to S at p . Therefore
k—CR—straightening of M induces the distribution Z:p— = b of complex k—planes
on M.

Let M be of class c? , T 18 real codimension of M and PpresPy € C2(U) are

defining functions of M in some neighborhood U J M, i.e.

M={z€U:pz) =... = pz) =0}

and dpy A .. A dp #0. Let

525
, _J_

L (pyuv) = E e (P)u,
ﬂ,V_l 7

(u,v € TI‘;(M)) is the Levi form of function p; at point p € M and let
= C . . = c 1= e
Np ={vE Tp(M) . Lp(pj,u,v) 0 forall u€ Tp(M) yi=1,..,v}

is the null space of Levi form of M at point p. Obviously k—CR—straightening is possible
only along null directions of Levi form, i.e. ™ CN P
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Another obvious restriction on % which is necessary for CR—straightening is
integrability of .¢. According to Frobenius theorem this means that .¢ is involutive (if
z€cl ) (see [7]). Integrability of .¢ provides foliation of M by complex manifolds of
dimension k , but it is not sufficient for holomorphic or CR—straightening.

M. Freeman [5] found other necessary conditions for holomorphic straightening of
manifold of class C® which are sufficient in real analytic case. These conditions are
expressed in terms of modules of special vector fields on M and sometimes it requires

some affort to verify these conditions. For the boundary of so called "future tube" domain

1,2 2 2
T, = {z = (252,12, € ¢t Yo > Y[tV Yo > 0}

the calculations were fulfilled by A. Sergeev [11]. He proved that the boundary 87 4 i
not 1-holomorphically straightened even locally though it is foliated by complex lines.

Another approach to the discussed problem is based on the consideration of ¢ asa
mapping from M to the Grassmannian G(k,n) of complex k—subspaces in €*. C. Rea
{10] seems was the first who noticed that for k—holomorphic straightening of real
hypersurface M C C" with constant rank of Levi form it is necessary that
Z:pEM— T € G(x,n) is CR—mapping. He also proved in some cases that the last
condition together with involutiveness of .¢ is sufficient for holomorphic straightening of
M.

In this paper we prove in rather general situation that the conditions

(i) < is integrable (involutive)

(i) .Z:M— G(x,n) is CR—mapping
are necessary and sufficient for the local k—CR—straightening of M (theorem 2.1). The
necessity of the condition (ii) was proved by S. Tsyganov [9]. For the completeness of

exposition we include the short proof of this fact.
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Theorem 2.1 illustrates a phenomenon that more general results sometimes have more
simple proofs.

In § 3 we discuss another problem which is connected with the definition 1 of
CR-homeomorphism. The analogy with biholomorphic mappings makes natural the

following

Conjecture 1 Let M, M, be CR-manifoldsin C" and f: M; — M, is

CR-mapping and homeomorphism. Then the inverse mapping { 1 i also CR.

Unfortunatély this conjecture is not true without soe additional assumptions. The
simplest counterexample is the following. Let L = {z = (z,2,) € ¢ zo =0} and
R? C €2 is a real subspace in €2 . The mapping f: R —— L defined by
(x%x9) — (x1+ix2,0) is homeomorphism and even real analytic diffeomorphism. It is
also CR because R? is totally real submanifold of C2 and each continuous function on
such manifold is CR—function. But the inverse mapping { 1 s not CR because L is
complex submanifold of 622 and CR—{unctions on L are holomorphic.

Therefore the natural additional assumption is that CRdim M1 = CRdim M,, . In

2
this case conjecture is obviously true if f is diffeomorphism. But in continuous situation
we can’t use the formulas for the derivatives of the inverse mapping { 1 and some new
difficulties also arise. One of them was noticed by S. Bell [2].

Let M = {(s,5) € €*:y, =0} and f:M——M is defined by
(21,29) — (zl,zg) . Then f i8 CR—mapping and homeomorphism. The inverse mapping
1 is also CR because a continuous function on Levi flat hypersurface is CR if and only if
it is holomorphic along the leaves of Levi—foliation. The new phenomenon which we
observe in this example is that the holomorphic extension of { to one—side neighborhood

of M is not biholomorphic mapping onto one—side neighborhood of M .

In § 3 we prove the conjecture 1 for rather general class of real hypersurfaces in .
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This class includes all Levi—flat hypersurfaces and real hypersurfaces which contain only
isolated complex hypersurfaces. Hence the conjecture is true for all real analytic
hypersurfaces and for hypersurfaces of finite type. We cannot prove the conjecture 1 only
for those real hypersurfaces M which have strange pathological structure of complex
hypersurface inside. _

The author believes that the conjecture 1 is true for arbitrary real hypersurfaces of
class C2 in €" .1t is a consequence of another natural conjecture about CR—functions

which is formulated in § 3.

I am thankful to E. Brieskorn, E.M. Chirka, K. Diederich, F. Forstneri¢ and C. Rea
for stimulating discussions and useful comments during the preparation of this work. I am

also oblidged to Max—Planck—Institut fiir Mathematik for the support.

§ 2 CR-straightening.

Theorem 2.1 a) Let CR—manifold M C €* of class C! is locally
k—CR—straightened near a point p0 € M . Then the induced distribution
& :MnNU— G(k,n) is CR—mapping.

b) Conversely, if M is CR—manifold of class C™(m > 1) in € and .£€ C™ is
involutive CR—distribution of complex k—planes 7, C T;(M) , pEM . Then M is
locally k—CR—straightened near arbitrary point p0 € M . The straightening f is
C™_diffeomorphism and .# is induced by f.Moreoverif M and .Z are real analytic

then f is holomorphic near p0 .

Proof of part a) Let f:(€xMy) N V— M U is a local k-CRstraightening.
We shall denote the points in Ck x M0 by (z,w), z= (zl,...,zx) € Ck , wE€ M0 and the
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pointsin M by w=(w',w"), w’ = (WyaWy ), W' = (wk+1,...,wn) . Corresponding
coordinates in T_C" will be t = (t/,t").

0

Without loss of generality we may assume that p =0, f(0) =0 and

z'0={tECn:t"=0}.

of.
By Weierstrass theorem the partial derivatives 'ﬂz_l (z,w) are continuous on
J

(CkxMO) NV . Therefore x_ continuously depends on w € M and there exists a
neighborhood U 3 0 such that for wEMUU

r,={t=("t"):t"=A(w)t'} ,
where A(w) = (a.ij(w)) (i=k+1,...,n, j=1,.k) is (n—k)xk matrix. The elements

aij(w) may be considered as local coordinates of 7 in G(k,n) and we have to show that

aij(w) are CR—functions on M . We have the explicit formula

A =42 ) [8 e 1)

where f/ = (£},...£) , ' = (f, .1,

Due to Baouendi—Tréves theorem [1] a continuous function on CR-manifold is

A and (z,60) = (w).

CR—function if and only if it can be locally uniformly approximated by holomorphic

polynomials. Hence each component fi of mapping f can be locally approximated by

.
polynomials {P';} , ¥=12,.... By Weierstrass theorem the derivatives -az—l (z,w) are
J

1 4
approximated by {-az—l- (z,w) ] , v=12,... and therefore the elements of the matrixes
J
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af/ o af" . af/ -1
Tz (Z,U) » Bz (Z,W) ' Bz (z,w) I:F (Z,(d)]

are CR—functions on (CkxMO) NV .By (1) A(w) is the composition of l(var) and the
last matrix. Its elements are CR—functions because they can be approximated by

polynomials of the components of 1(w) . These prove the part a).

Proof of part b) Let .#: M — G(k,n) is involutive and CR. We want to show
that M is k—-CR—straightened near arbitrary point p0 € M . As before we assume p0 =0
and ¥, = {t € €": t" = 0} . But now it is more convenient to denote the coordinates of
points on M by (z,w) = (zl,...,zk, Wi W n——k) . Near the origin the distribution .7 is
defined by

1w = 1t=(t"t") 1 t" = Alzw)t’} |

where the elements aij(z,w) of (n—k)xk matrix A(z,w) are CR—functions on M of
class C™.
The involutiveness of . implies that M is foliated by complex manifolds of

dimension k . The leaves are the solutions of system

-g% = A(z,w)

(2)
o _ g
dz

We denote by M, the intersection M N {z = 0} and we shall consider M, asa
manifold in €%* . Easy to see that near the origin CRdim M, = CRdim M~k .
The system (2) is overdetermined and we can’t hope to solve it for arbitrary initial

values w(0) = . But we can do it if w € M, because % is involutiveon M . Such
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solution can be obtained by the following procedure.

Let us consider at first only those equations in (2) which contain the derivatives with
respect to z, or 21 and assume z, = 2g=..=12 =0. Integrating these equations with
initial values w(0) = w € M, we obtain the solution (more exactly the family of solutions)

wl(z,,w) (2, € U, C€) and"CR-manifold
pw) (2 €Uy
M, = {(z,,w) € ¥ w = Wl ,0), wEM,, 2 €U} .

We can do it because of integrability of .#.Infact M; =MN {zy =2, = ... =2, = 0}
and the graphs of w = wl(zl,w) for different w € M, are the intersections of the leaves
of foliation of M with the plane {z, =24 =..=1z =0}.

Now we can take only those equations in (2) which contain the derivatives with

respect to z, 52 and assume z, =z, = ... =z, = 0. Integrating we obatin the solution
w= wz(zl,zz,w) (z, €U, CC)
which satisfies the initial conditions
w2(z1,0,w) = wl(zl,u)

and CR—manifold

) E Cn—k+2 W= W2(z1,22,W), w E MO) z]_ G Ul’ 22 E U2} ’

M, = {zl,z.z,w
Repeating this procedure we obtain finally the solution w = wk(z,w) of the system (2)
which ig defined for z € U; x..x U, = U and satisfies the initial condition

wk(O,w) = w € M, . To finish the proof of part b) we need to prove the following



Proposition 2.1 The solution w = wk(z,w) is a CR—(vector)~function of class C™

on the manifold U x M, . The mapping (z,w) — (z,wk(z,w)) is a CR—diffeomorphism

from a neighborhood of the origin in U x M, onto a neighborhood of the originin M.

To prove this proposition we successively verify that

wy(zl,...,zy,w)

are CR—functions of class C™ on U1 X .. X U,, x M0 for v =1,....k . The mappings

(zl,...,zy,w) — (zl,...,zu,wu(zl,...,zy,w))

are local diffeomorphisms from U x..xU x M0 to M v because of Frobenius

theorem.

Lemma 2.1 Let A(z,(,w) is a (vector)—function of class C™ in a neighborhood of

the origin in the space c;“*; =C, x cz x C* with valuesin €' .

) ?

Let MO be a CR—manifold in a neighborhood of the origin in ¢t and o ¢ w) is
a CR—(vector)—function of class C™ on MO with values in €' . Assume that for
arbitrary ((,w) € MO there exists the solution w(z,{,w) (z € U) of the system
8w
Tz = A(Z, (,W)
(3)
=0

3F
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which satisfies the initial condition
w(0,6,0) = ¢ ¢ow) - (4)
We also assume that
M= {(z.¢w): w=w(z,(w), ((w) €My, 2€U}

is CR~manifold of class C™ and the restriction of A(z,{,w) to M is a CR—function.
Then w(z,(,w) is a CR—functionon U x MO of class C™ .

Proof of lemma 2.1 We can extend the functions A(z,{,w), ¢({,») to the
neighborhood of M, MO respectively as functions of class C™ such that

'5A|M=0,'8<p|ﬁ0=0 ()

The solution of (3—4) satisfies the integral equation

w(z,6,0) = p{G0) + [ Al Gw(r,u))dr (6)
0

z€U, ({w)E MO . The integral doesn’t depend on the path between 0 and z because
w(z,{,w) is holomorphic in z . We shall consider (6) for ({,») from a neighborhood of
MO in €T where the integral is taken over the segment [0,z] . For ((,w) £ MO (6) is
not equivalent to (3—4) but the solution of (6) gives us the extension of w(z,{,w) from

U x MO to the neighborhood of the origin in C;"' 2.+:J Differentiating w(z,(,w) with



respect to (;(i = 1,...,8,), Ej(j = 1,..,1) and using (5), (6) we obtain for

(z,(,w) € U x ﬁo

(7,69 (7,(,0)) % (7,¢,w)dr, (7)

1

. ) z
o (6 -i

(T,C,W(T.C.w))%(nc,w)df, (8)

1

We should notice that (7), (8) are well-known vector Volterra equations with respect

da  Bw They have only zero solutions

to —, —.

it %
M (aw)=0, B iw)=0,

01 wj

under zero initial values

Eq

Ow
0:) =0:_0:: =0
_( (,w) Wj( )

B

(i=1,..,8, j=1,..,1). These completes the proofs of Lemma 2.1, Proposition 2.1 and

Theorem 2.1.

Example Let us consider the "future tube"

1. 2 2 2
T, = {z = (zo,zl,...,zn) € ¢t Y2yt ety ¥ > 0}
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where z y =X,y . The boundary of 7 + consists of singular part RO+ C ¢t and
regular part 97 _I_\IRM'1 . In regular points Levi form of 87 + is nonnegative and has

one—dimensional null space

N = {t = (tgbpit) € Tt = (v fyty, v =10}

The distribution z — N, on or 4 is integrable because ér + is foliated by complex

lines
ﬂ‘a.b= {z=a+b(, (€C, Im( >0} ,

where 2 € R"*1, b= (1,b;,.,b ) ER*F!, b2 4 . 4 b2 = 1. So k—CRstraightening
of ér + could be possible only for k = 1 and along N_ . But local coordiantes of Nz in
G(1,n+1) are yu/y0 , ¥=1,..,n and it i8 very easy to check that they are not
CR—functions on ér 4 Therefore 81 + is not CR—straightened. This strengthens

A. Sergeev’s result [11].

§ 3. CR—homeomorphisms.

In this section we discuss the conjecture 1 from the introduction for real
hypersurfaces in €™ . There are few partial cases for which the conjecture is known to be
true. These cases are the following

1) My, M, are strictly pseudoconvex hypersurfaces (S. Pinchuk, S. Tsyganov [8]).
Actually in [8] it was proved that if M,, M, are strictly pseudoconvex hypersurfaces of
class C™(m > 2) and f: M, — M, is nonconstant CR—mapping then f is local
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CR~—diffeomorphism of class c@1-0 304 even C1/2-0 (see [6]).

2) M,, M, are pseudoconvex hypersurfaces of class C® and of finite type. S. Bell
[2] proved that these imply f to be C®—diffeomorphism.

3) M, M, are Levi flat.

In the last case the statement of conjecture is almost obvious. Actually M, M, are
foliated by complex hypersurfaces (see [14]) and {f maps biholomorphically the leaves in
M, onto the leaves in M, . Therefore {* is CR—mapping because it is holomorphic
along the leaves of foliation of M2 .

The following facts will be useful in the study of CR—homeomorphisms of real

hypersurfaces.

Proposition 3.1 Let M be a real hypersurface in €* of class C2 and SCM is
(n—1)—dimensional complex variety. Then S is complex manifold.

The proof of this proposition for real analytic hypersurfaces in €2 is contained in the
proof of theorem 2 of paper by K. Diederich and J.E. Fornaess [4]. Actually their proof is
valid for general situation. Nevertheless for the completeness of exposition we give the

proof of proposition 3.1.

Take an arbitrary point p € S and choose the coordinates in C" such that p=0
and TH(M) = {z, = 0} . We have C'distribution

r:2EM—s x_=TM)
z z
of complex hyperplanes on M and we can extend it as a Cl—distribution toa

neighborhood of the origin in €™ . In this neighborhood S is defined by some
pseudopolynomial
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k
Z
n

k-1
+ay(z’)e) 4. +ay(z')=0 (9)
with holomorphic coefficients a.j(z’ ), where 2z’ = (245-+2p_1) » k2 1. Generally for
each admissible z’ there are k solutions of (9) and we need to show that k = 1. Let

€’/ 30’ is an arbitrary real line in the space €% 1 of variables z’ = (21y--12,_;) and
L={z=(z",2) €C":2" €L'} .

In a neighborhood of the origin in £ we have cl—distribution of real lines

Tiz— LN 7, and each component of SN ¢ is obviously integral curve for 7. The
differentiability of 7 implies that there is only one integral curve through the origin. This
means that S is a graph of a singlevalued analytic function z = h(z’) near the origin

and hence p = 0 is a regular point of S . -

Proposition 3.2 Let M be a real hypersurface of class C1 in €%, SCM is a real
submanifold of dimension € 2n—2 and h € C(M) N CR(M\S) . Then h € CR(M) .

Proof Without loss of generality we shall assume dimR S = 2n—2 . The statement is

local and it is enough to show that h is CR—function in a neighborhood of arbitrary point
p € S . The surface S locally devides M into two parts M7 and M™ . We have to show

J;h‘&,«::o :

for any smooth (n,n—2) form ¢ with compact support. Let q € M\S is an arbitrary

that
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point. Let us assume q € M and UC M7 is a small neighborhood of q with

piece—wise smooth boundary. Then we have

LEM:JAW' (10)
au

Indeed, h can be uniformly approximated on U by polynomials h ” and using the Stokes

formula we obtain

£h3¢=um£hyv¢=um‘[?(hu¢)=

=lim£d(hu<p) =limJ hy(p:J he .
U U

The equality (10) obviously extends for arbitrary open subsets U C MT with piece—wise

smooth boundaries. Therefore taking suitable exaustion of Mt by open sets U p we

&+ﬂb=lh¢

obtain

and analogously

PL_h‘ﬂqp = l hp .

But in the last integral S has the opposite orientation. So we conclude
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Proposition 3.3 Let M, M, are real hypersurfaces of class c? in € and
f: M1 —_ M2 is homeomorphism and CR—mapping. Suppose that f holomorphically
extends to some neighborhood U of a point p € M, . Then ! is CR-mapping near the
point f(p) € M, .

JF.
Proof Let F denotes the holomorphic extension of f, Jp(z) = det [—az—l (z)] is the
J

complex Jacobian of F and
E={zEU:JF(z)=0} .

The inverse mapping l sCRon M,\f(E) because it can be locally extended from
Mz\f(E) as a holomorphic mapping. We only must prove that { ! is CR near

M, n{(E) . Since E is analytic setin U the image f(E) can be represented near the
point f(p) as a countable union of complex manifolds (see § 3.8 of [3]). Moreover taking
U small enough and repeating the arguments of [3] we obtain f(E) as a finite union of
complex manifolds. Therefore f(E) can be stratified near f(p) . Take a strata N of
maximal dimension and a point q E NN M2 . There exists a holomorphic function h near
q such that dh #0 and NC {h =0} . Thesets I', = {Reh =0}, I', = {Im h = 0}
are real manifolds near q and at least one of them is transversal to M, at q. Let it be
T, andlet S, =T, NM,.Then NAM,CS, and { is CRon M,\S, near q.By
proposition 3.2 1 isCRon Nn M, . Repeating this procedure we conclude that f s
CR in a neighborhood of the point {(p). -

Let M be a real hypersurface of class c?in (n > 1) . In the problem under
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consideration the complex hypersurfaces in M are of particular importance. Following
A. Tumanov [16] we call the point p € M to be minimal if M doesn’t contain germs of
complex hypersurfaces through p .

The principle result of this section is the following

Theorem 3.1 Let Ml' M2 are real hypersurfaces of class c?in C° ,
f: M, — M2 is minimal point. Then 1 CR in a neighborhood of the point
q=1(p) .

Proof We shall assume below that pr Py BTE defining functions of M,, M2
respectively, i.e. there exist two open sets f1;, fl, in €" and two real functions
py €C%(A), p, € CH(N,) such that

. n . W -
M_] {z € s pJ(z) 0}
and dpj#O in Qj (j=1,2). Let

nj={zenj:=tpj(z)>o}, j=12 .

By a result of Trepeau [15] { extends holomorphically to oneside neighborhood of p .

The problem is local and we may assume that f extends to a mapping

FE 0 (M) nc(ny).
Lemma 3.1 F(f) ¢ M, .

Proof Take a sequence z° —p, z” € QI and consider the sets
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E, ={z€0]:F(z)= F(z")} .

If F() CM, then rank F <n everywhere and E  are analytic sets in (1] of
dimension 2 1. Each E_, has not more than one limit point on M, because f is
homeomorphic on M, . By Shiffman’s theorem [13] E ,, are analytic setsin 1, . We

have d(p,E ) — 0 and since {: M; — M, is homeomorphism

lim .~
g 4(P.E,) >0

for any other point p#p in M, (here we denote by d(p,EV) the distance between p
and Ey )- By continuity principle [12] F holomorphically extends through point p . We

obtain the contradiction because the restriction of F to M, can’t be one—to—one. g
Let E={z €0 :F(z)=q} .

Lemma 3.2 If there exists irreducible component E’ of E of dimension > 1 such

that p€E’ then 1 is CR near the point q = 1(p).

Proof As in the proof of the previous lemma we easily conclude that F

holomoprhically extends to a neighborhood of p . Now by proposition 3.3 1 is CR near

q. [
So we may assume further that E is discrete and the distance

d(q,F(H\M;)) >0 .
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We may choose such neighborhood V of the point q in €* that
d(V,F( mI\Ml)) >0 . (11)

Hypersurface M, divides V into two parts vt V™. Due to lemma 3.1 we may assume
Fa)nVv" .

Lemma 3.3 F properly maps F_I(V_) onto V.

Proof Let KCV  be a compact. If F_l(K) is not compact in F_I(V_) then
0 on the boundary of F-I(V-) such that F(zO) € K . We obviously

have z° ¢ M, . Therefore there exists a neighborhood U 3 20 such that F(U)CV and
0

there exists a point z

hence z~ is not a boundary point for F_l(V_) : -
Let m be the mulitplicity of the restriction of F to F—l(V_) .Forany we V"~
the set F_l(w) consists of not more than m elements. We want to show that
E= F“l(q) is finite. If it is not so, then there exists a sequence z° ——p, z° € ﬂ; such
that F(z) = q foreach v =1.2,...Since E is discrete then F is open near each point
14

2z~ and there exist such mutually disjoint neighborhoods U, of z” that all F(U ) are
neighborhoods of point q . The set

is also the neighborhood of q and any point w € ¥~ has at least m+1 preimages. These
prove that E is finite. Taking ), small enough we may assume that E = ¢ and (11)



—920 —

preserves. These imply that for any sequence w’ — q, w’ €V al preimages

F_l(w") tendto p a8 ¥ —i 0.
Lemma 3.4 The point q = f(p) is minimal for M, .

Proof If q is not minimal then there exist a germ S C M, of complex hypersurface
through point q . Shrinking V 3 q we may assume that S is closed in V and can be
uniformly approximated by complex hypersurfaces S € V™, which are also closed in
V. Since F: F_l(V_) —— V' is proper and holomorphic, we may consider G = Fl
as algebroid mapping, i.e. the components g_ of (multivalued mapping) G satisfy the

equations

g(w) + al’k(w)glil-l(w) ot ag (W) =0 (12)

for k=1,..,n, w€V . Therefore F_l(S ) are analytic sets in F_l(V_) (and closed
in F_l(V_) ) for all » . Moreover there exists a small ball U 3 p such that all sets

T, = F_I(Su) NU areclosed in U. We also have d(p,T, ) — 0 a8 v—— o . There
exist such holomorphic functions h € ¢ (U) that

T,={z€U:h (z) =0}
for all v . The functions 1 /hy are holomorphic on M1 N U, but one can’t find such
neighborhood U1 3p,thatall 1 /hy are holomorphic in UI. This contradicts to

Trepeau theorem and hence q € M2 is minimal point. -

There are two possibilities.

HFU )N, # ¢ and F(U)N ﬂ‘; # ¢ for any sufficiently small neighborhood U 3 p.
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2) F(U™) C N, for some neighborhood U 3 p.

To finish the proof of the theorem 3.1 we must study both of these possibilities. First
consider the case 1). Since q is minimal point of M2 , one of the sets V+, V™ (for
example, vt ) has the property that all holomorphic functions in vt extend
holomorphically to a neighborhood pf p . According to lemma 3.3 F(U™ ) n Q; ¥
implies that F properly maps F_I(V+) onto VT . The inverse mapping G = F1 s
algebroid in vt andits components admit in V¥ representations analogous to (12). The
coefficients of these representations extend holomorphically through q and therefore
G=F"!is algebroid in a neighborhood of q . The mapping 1 s obviously CR near
those points w € M,, which are regular for F1. Using the same arguments as in the

proof of proposition 3.3, we conclude that 1 is CR near q.

Case 2) We can choose arbitrarily small neighborhoods U 3 p, V 3 q such that F
properly maps U™ onto V. Since we assume {z € U™ : F(z) = q} = ¢, for any

0 , W~ €V all preimages F_l(wV) tend to

w0 € M, NV and any sequence w* — w
f 1(wo) a8 ¥ — o . Thus the discriminants of pseudopolynomials (12) have zero
boundary values on M, . Therefore they are identically zeroin V' and Fl.v —u
is singlevalued holomorphic mapping. The mapping { 1 is CR on M2 NV because it

extends holomorphically to V™ . This completes the proof of the theorem 3.1.

Theorem 3.2 Let Ml’ M2 are real hypersurfaces of class 02 in ¢" and
f: M; — M, is a homeomorphic CR—mapping. Then for arbitrary point Py € M, the
inverse mapping is CR near p, =1f(p,) in each of the following cases

a) M, is Levi flat near p; or M, is Levi flat near p,;

b) at least for one j=1,2 hypersurface M ! doesn't contain germs of complex
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hypersurfaces through p‘i ;
c) at least for one j= 1,2 hypersurface M j contains only finite number of different

complex hypersurfaces.

Proof a) If M1 is Levi flat near | then f is holomorphic along each leaf of
foliation and M2 is Levi flat near Py due to proposition 3.1. Hence 1 is CR near P, -

If M2 is Levi flat, then it immediately follows from lemma 3.4 and proposition 3.1
that M, is also Levi flat and {~ ! jscr.

b) The case P; i6 minimal for M, is covered by theorem 3.1. The property that
P, € M, is minimal immediately implies Py € M, is minimal too.

The statement c) easily follows from the theorem 3.1, lemma 3.4 and proposition

3.2. ]

Summarizing we can conclude that 1 is CR near any minimal point w € M, . If
wE M2 is not minimal thern there exist a unique complex hypersurface S C M, through
w and £ is holomorphic along S . Therefore the conjecture 1 for real hypersurfaces of
class C2 would be proved if the following conjecture is true.

Conjecture 2 Let M be a real hypersurface of class c? in , {S a} , a€ A, is

a family of complex hypersurfacesin M and S=US o - Suppose that a function
a

f € C(M) is CR near each point p € M\S and that the restriction of { to any S, i
holomorphic. Then f € CR(M) .

The conjecture 2 can be easily proved if the structure of hypersurfaces S a CM isnot
very complicated, for example if A is finite or M is real analytic, etc. It can also be
proved if {S a} is a convergent sequence of complex hypersurfaces or if all § o 2re closed

in M . But in general case the structure of {S_} can be very complicated and the
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problem requires more delicate consideration.
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