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" On the Geometry of ProJectlve Immerslons

by Katsum1 Nom1zu(*) and Ulrich P1nkall

In two' prec'eeding papers [5] and [6] we have glven a new general'

approach to c1assical affine differential geometry änd established the basic

results concerning the geometry of affine immersions. The purpose of the

present paper 1S to begin the study of projective immersions. We shall

.,';... concentrate our attention to the case of codimension one.

In Section 1 we reca11 the notion of projective structure on a manifo1d

and state relevant facts. In Sectlon Z we define the notion of projective and
equiprojective immersions and r.elated concepts such as totally geodesie

and umbHica1immerslons'. In Sectlon 3 we study equlproject~ve

immersions of a flat proje"ctive structure (M,P) into a flat projective

struc~ure (Ff,~) of one higher ~imensi9n and show that they are umb1l1cal j

provided dim M ~ 3 and the rank of h 1 2. We derive certaln corollaries and

determ1ne a11 conriected J compact, umbl1Ical hypersurfaces 1n Rpn+l. In .

SecHon 4 we prove the project1ve versIon of the theorem of Berwald wh1ch

characterizes quadr1cs in affine different1a1 geometry. In Sect10n 5"Y'e

study the effect of a project1ve change of the amb1ant connectlon on a

nondegenerate hypersurface M, namely, how the affine normal, the

B1aschke,1nduced connection, the affine metrlc"and the cub1c form change.

We find that the difference tensor between the' Blaschke connection and the

Levi-Civita connect10n 1s a projective inv~r1ant., We hops to find some more

applfcat10ns of these formulas ln the study of nondeg~nerate' hypersurfaces

in Rpn+l ..

(*) Partially.supported by an NSF grant. This paper was written ~hi1e he

was· at ,!ax·Pl.anck - Institut für Mathematik, Bonn'. He would also like to

thank TU,·Berl1n, for their hospitality during his visiL
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1. pro1ect1ye structure.

We ree a11 fro m [4] th e notton of proj eet lve st ructure P on a d1 ffe rent1a b1e

manlfold M. It lS deflned by an atlas of 10cal afflne connections (UC(' v C()'

where {Uex } 1s an open coverlng of M and 'Va is a tors10n- free affine

connection on Ua such that in any nonempty interseetton UC( n Up the

connections va and Vp ar~ projectively equlvalent. Here, in general, tw~

affine connections 'V and "9 are sald to be projectlvely equlvalent if there

1s a 1- form J.L such that '

(1) 9XY = Vy..Y + jJ.(>OY + p..(Y)X for any' vector f1elds X and Y.

As usual, when (M;P) 1S a projectlve structure, we consider a maximal

atlas of local affine connect10ns and write (U,'V) E (M,P) to mean that an

afflne.connection 'V on an open 5ubset U of M belongs to the maximal atlas

for the projeetive structure (M,P).

In dealing w1th projectlve equlvalence and projectlve structures we

no r ma lly ass.u me that ea ch atfi ne Connect1 on invo lved 1s 1oe a11 y equ1 atfi n~

relative 'to a eertaln vofume element; thls cond1tlon 1s equlvalent to the

property that the Rlcei te~sor is sym metric._ When two such equiaff.ine

connections are project1vely equ1valent, 1t follows that dJ.L = 0 in (1) and

that they have the same projective curvature tensor:

(2) W(X,Y)Z = R(X,Y)Z - ["6(Y,Z)X • cr(X,Z)Y],
. '.

where f denotes the normalized Rieei tensor Rict( n-1 ), where n is the

dl mens10n of th e.manifo1d. We als 0 rema rk that 1f V is an equ1 aff1.ne

connect10n and)i. ls a closed l-form and thus e~aet on a ne1ghb9rhood U,

then the project1ve, change of V by J.L g1ves r1se to an equ1aff1he conneetion

on U. lt 15 known -(cf. Proposltions 4 in [4]) that for a pr.ojective strueture

(M,P) and for any volur:ne element w on Mthere 1s a unique globally.def1ned

'V compat1bl e with P such that 'Vw = o.
. Let us also recall that 1f dirn M 2. 3, van1sh1ng of the project1ve

eurvature tensor W is a ,neeessary and suffie1ent eond1tio(l for 'V to .be '

project1vely fl at (1. e. proj eet1ve1y equ1va 1ent (0 a fl at affine eonnect1on) ..

If d1m M = 2, then

. (3) ('VX"6)(Y,Z) = (\7y"6)(X,Z)
. .

1s a necessary and suff1f1ent cond1t1on for projeet1ve flatness.
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.
We may defloe the not10n of path for a project1ve 5tructure (M,.P). By a

. .QMh we mean a curve Xt in M wh1ch, around each of 1ts points, 1s a
... ~ ~,

pregeodesic rel~t1ve to some V E (M,P), that 15, VtXt = ~(t) Xt for

so·me function p(t); in th1s case, Xt'1s a pregeodes1c relative to every v E

(M,P) .

2. projectiye immersion.

Let (M,P) and (t:1, f) be dlfferentlable man1folds each with.a project1ve

structure de.fined by means of. an atlas .0(local affine con~ectlons (Ua , 'Q a)

and (aß' vß)' respectively. We'set n =dirn M and n + p =:= dim f1 .
An 1mmers1on f: M~ M 1s called a projectjye jmmersioo f(the following

condition 18 sat1sfied: '

(A) For each poio~xO of M, there ex1st local,afffne connecUons (U,'V) E

(~, P) and Cu, v) E (R, Fr), where U and rr are ne1ghborhoods of Xo and .

f(xO), respect1vely, such that f: (U,V) ~ CD', v) 1s an afflne immersion.

This means that there 1s a f1eld of transversal subspaces x~ Nx on U..
such that for any vector flelds Xand Yon U we have

( 4) '9X( f*Cy » = f*(9 XY~ + ~(X,Y) , wh ere a (X, Y) E N•

See [6]. In the case where cod1mension p = 1, there is a transversal vector

f1eld ~ on U such that

(5) VX(f*(Y» = f*(9XY) + h(X,Y)~.

Let (M, 1;]) and. (M, '9) be manifolds with affine connect1ons ..An affine_

immersion f: (H, 9) ~ (R,9) 15 a projective immersion (H,P) ~ (R, f),

wh er.e P and f5' are the proJ ect1ve st ructures det er mlned by 'V and '9,
respective ly .

. When cond1t1on (A) 1s satisf1ed, we can, 1n fact, ptck (U,I;]) or CU, v).

and find (D', Q) or (U, 'V) wh1ch saUsf1es the cond1t10o. More precise ly, we
have

Propo~jtion 1. II f : (H,P) ~ (M~ f5') iS a pco1ectjye jmmersioo, then

(B) for any point Xo E H and for any lQcal affine coooectioo (D', V') E

(11, f:r) t where aJs a oe1ahborhood Qf f( xO), there ex1s~s a local a{rlne

coonect1on (U, 1;]), where U is a neighborhQod of xo' such that J: (U, 1;]) ~

(a, v) 1S an affIne 1mmers1on ..

(C) Foe any point Xo E M and for any local affjne coonectjoo (U, 'V),

where U js a suffjcjeotly s~a1J ne1ghborhood of xo' there exjsts a local

.. I
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affine .connectton (D', Q), where a1s a nelghborhood of f( xO), such that f:

(U1, fJ) ~ (U, V-) j s ap aff ine i mme r's1Qn, wh ere U1 1s .a· ne1ghborh00 d 0 f U

such that Ul cU.a.o..d. f(Ul) c lf.
Proof.. Let (U,fJ) and (lf, Q) be as in (A). Let (Ul, V,) be any aff1ne

Connact ion be1onging to (11, fr ), wh ere 1J, 15 a nelg hborh ood of f (XC), '

"where we ~ay assume D'1 cD'. Choose a ne1ghborhood U1c U of Xo such

that f(Ul) c D'1. Then there ex1sts a l-(oroo )j: on 0'1 Wh1ch g1ves pr~ject1ve

e-qu1va1enc.e of Q and Vl. Then

9 lx.(f*~) = 9X(f*Y) + Ji'(f*X)f*Y+ )j:(f*Y)f*X

= f*(fJXY: Jl(X)Y + .u.(Y)X) + a(X,Y).

where,LI. = f*)j: ls al-form on M and cc(X, Y) belongs to the transversal

sub5 pa ce. N f 0 r f: (U 1fJ) ~ (111' Q' 1) ., ~ow we may ~1ckt he' c0nnecti 0n

(U1, fJ I ) E (M, P), wh ere fJ 1XY = fJ XY + )l ( X)Y + Jl (Y)X• Then t he equ"at10n

above shows ~hat f: (U t , fJ 1) ~ (al' v I) 15 an affine Immersion.

The pcoof fo'r (e) ,is similar: Let (U, fJ) and (U, Q) ~e as In (A). Foe

any (Ut ,fJ 1) E (M,P), where U1 cU, ther"e 15 a closed l-(oroo)J. on Ul such

that V1XY = VXY + ,1l(X)Y + Jl(X)X for" a11 vector f1elds X and Y.Now 1t 1s

easy to find a c10sed 1.,.'form ; on U s'uch that f*; = p.. If we projectively

changeQ to Q1 by using the form ~' , then f: (Ul' Q 1) ~ (a, 91) ls an

affine immersion. 0

Bemark. In stat1ng conditi0ns such as (A},(B) or {e), we shall from now

on omit expl1cit ment10n of the domains of 10cal affine connectlons. In many

" ca ses, 1t suff1 ces to" say th at ar.ound aglven,' point th ere isa 1oe a1 affine

connectlon Q E (M, P) w1th such" and such propert1es.

A proj ective imme rslon" f: (M, P) ~ (M, lY) 15 sa1d to be tota 11 y geodesie

at Xo E M 1f for any Q E (M, f5') acound f( xC), f is tota 1ly geodes1c cel atlye

tQ. Q at xC' that Is, for any vector f1elds X and Y around xC' [9X(f*('Y))]x
_ " 0

15 tangent to f(M), that is, there 1s a vector Z at Xo such that f*(2) =

[9 X(f*(Y) )]x - Now th1s condltion 15 independent of the ch01ce of V €
o

(ff, fr), as 1s easlly ver1f1ed. It is equivalent to the cond1t10n thath = 0 at

Xo in (5). We say that f is tota lly geo'desic 1f 1t 1s so 8t every p01nt of M.

It is not difflcult to see that f 1s totallY geodes1c 1f and only tf the image of
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a path Xt 1n M is a path for f1.-
From th1s point on, we shall deal w1th the case of codimens1on p = 1.

Let f: (M,P) ~ (M, fr) be a pr,ojectlve immersion of cod1mension 1. For

any p01nt xo' there ex1st 'V E (M,P) around Xo and V E CA, ~) around f(xO)

,such that f 15 an affine immersion relative to 'V and Q around xO' This

means that th~re 1s a transversal vector f1eld ~ as 1n the equat10n (5).

We s~ow that the transversal dtrect10n [~] at Xo 1s 1ndependent of the pair

('V, Q) lf f is not totally geodeslc at xo.
For th1s purpose, let (91' V1) be anoth.er pair we may choose. We can

assume that .'V1 and 'V are deflned 1n the same domain and projectlveJy

re1~ ted: 'V 1XY = 'V XY+ J.l ( X)Y + ).l ( y )X, wh ere J.l 1s ace r ta .1 n 1· f0r m, and.,

s1mllarly for Q1 and v: V1XY = VxY + -; (x)X + -; (Y)X , where -; 15 a

certaln l·form. Suppose ~ 1 15 a transversal vector f1eld for the aff1ne ..

immers10n f relatlveto ('V1,9 1) and wr1te ~1 =f*(Z) +,~! where Z1s a
vector Held tangent to Mand, i5 a non-van15hing functlon. From

9 x(f*(Y» = f*(VXY) + h(X,Y)~

an'd'

91X(f*(Y» = f*( 91 XY) +.h1(X'Y)~1

we obtain

(6) Q1xY + h1 (X, Y)Z = 'VXY ~ (f*; )(Y) X + (f*;)(X)Y.

and

(7) h(X,Y) =, h1(X,Y).

Now we want to prove that Z = 0 at xO. Assume that Z;I! 0 at Xo and take a

tangent vector Xat Xo l1nearly 1ndependent from Z. We may take a geodesfc

Xt for 'iJ wlth Inlt1a.l condltlon (xO' X). Thl's cur~e Is a pregeodes,lc for Q1
.'

and so 'V1XX f5 a multiple of X by a certa1n functlon of t, .where X 15

con51dered as the tangent vector ffeld of the curve Xt. From (6) we obta1n

h1(X, X)Z = A. X at Xo ' wher,e A.·ls a scalar. Thus h1(X ,X), = o.

We have shown tha~ for ,any X € TxO(M) I1hearly lndependent from·Z '# 0, .'

we have h1(X, X) ~ ,0. Let Z·= Xl' XZ' ... ,Xn be a basis of TXc (~). From

what we proved, we, have for each k,' Zi~in, h1(Xk' Xk) = 0 and h1(Xj' Xk) =0
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f or a11 j, k '12. Weh ave als 6,

h1(Xl + Xk' Xl + Xk ) =hl(X l ,Xl) + 2 hl(Xl ,Xk) =Q

as well as

hl(Xl + 2Xk , Xl + 2Xk ) =-hl(X l ,Xl) + 4 hl(X l ,Xk) = 0,

whleh together 1mplythat hl(XI,Xl) =hl(Xl,Xk) = 0, where k.2.2 .. We

have show~ that hl = °at xO. Ihis contradlets the assumptlon that f 15 not

totally geode51e at xQ'

We may state thls result as fo llows.

propos1tlon 2. Ui f: (M, P) -4 (t1, fr) be a prol ectlve 1mroe rslon fo'r

eod1menslon 1. Thera ls a unlauely determ1ned transversal dlreet100 f1eld

[~] exeept 10 the 10ter1or V of the set of po1nts where f 18 tQtally geodeslc.

We shall call (~] 00 M-V the transversal d1reet10n fteld for the·

projective immers10n f. The symmetrie bl1lnear form h 1s dete.rm1ned up to

a seal ar taetor on M and ~s 0 at the polnt~ where f 1s total1y geodesie. We

call the· eonformal class [h] the fundamental form for the projeet1ve

immersion f. The rank, unlquely determ1ned at each p01nt, 1s the rank of f

at the po1nt. In partleular, 1f the rank 1s n, f 1s sa1d to be nondegenerate at

the pOlnt. We say that f 1s n90degeoerate It 1t ls so at every po1nt of. M•.

Suppose that f lS not tota lly geodes1c at Xo and thus not in a nelghborhood

ofxO' For any cholee of rJ e (M,P), Q e (t1,fr) and a transversal field ~_

relative to whlch f 1S an afflne immersion, we wr1te

(8) Qx~ = - f*(SX) + T(X)~,

wher.e S 1s the shape'operator for ~ on M and 'Z' 1s the transversal

connection form for~. If we change ~ to ,~, where 'lS a funetion, th-an S

changes to ,S and T 10to T + d ,. Thus the cond1t10n that S 1s a scalar

mult1ple o(the ldeot1ty: S = >... I does not change. Nor does the 2-form dT.

We may aJso change '9 to a proJect1vely equ1valent Ql e'(t1, ~): '9 1xy =

Vxy + )' (X)Y + )' (Y.)X , where )' 1s a certa1n exact l-form: The~ S, :'

changes lnto S1 = S - JA. (~) land T 1nto Tl = T + f* )'. Thus the condlt10n S =

>...1 does not change. Nor does the form qT.
In v1ew of th1s·observation, we can make the folJowing defInition. A

project1ve Jmmerston f , which ls not total,lY 'geodes1c at a poInt xC' 1s sa1d'

,.to be umb1l1cal at Xo 1f, for some cho1ce of 'V, Q and ~ relative to which f. .
. ~s an aff1ne 1mmers10n, S 1s a scalar mult1ple of the 1dent1ty at xo. If f 1s

. . '
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umb111cal at every point', we say that f 1s umbil1cal.

We now lntroduce t.he not10n of eQuiprojective ·immers10n. Let (M,P) and

(M, fr)- be two manifo1ds with projective structures and dirn f1 = dim M+ 1.

An immersion f: M~ 11 is sald to be egu1pr01ect1ye 1f

(Al) for each point Xo of M, th~re exlst 10cal eQuiaffine'connections 'V E

(M, P) and '9 E (M,)r) such that 'f is an affine immersion.

Note that ooe. of 9 and '9 can be .always chosen, to be 'equiaffine. Just l1ke

the case cf mutually equ1valent conditions (A),(6),(C) for protect1ve .

immersions, we may state th'e foll owlng.

proposition 4 .. ]1 f: (M;P) ~ (M, fr) -js an eguiprojectj\ie im mersioo,' then

(6) Foe aQY poiot Xo E M end for any local egu1aff10e.coonect1on'?/ E

(f1, fr) acouod f(xo).'there eX1sts a loca1 eaU1affjoe coooect100 'V E (M,P)

around Xo such that f is an affine immersioO .

(C) For any polot Xo E M end f9r aoy 10ca1 egujaffjoe Coooection 'V E (M, P)

around xo' there exists a 1ocal eguiaffine connect1oo Q E (f1, p') around

f(xO) ~uch that f is an afqne ,immersiOo.

When f 1s an equiprojectlve immersion, then locally w.e maY'choose a

transversal vector fteld ~ to be.equiafflne relative to 'V and '9 (cf.

Propos1tion 3 in [5]. ,For such a choiee of ~, we have ,T =O. Thus for an

equ1project1ve immersion, we have d1' = O. We now state

.proposjtion 5. A project1ye immersion f: (M, P) ~ (ff, ~) ~
egulprolect1ye 1f and only if dT = O.

- .
Proof. We prove that dT = 0 implies that f is .equip~ojectfve. Let Xo E M

and choose an equiaffine V E (~, fr) wlth a 10ca1 parallel volume element w
around f(xO) and an arbltrary 'V,E (M,P) around xo so that f ts an aff1ne

immersion (with a transversal vector field ~). Slnce d'l" == 0, there exists a

funct1on, around Xo such that l' = - d ,. Then for -r =, ~ we get the same

connectlon 'V lnduced, namely,

Vx(f*Y) = f*('VXY)-+ h(X,Y)~,

and, on the other hand, ~ = O. This means that the 10ca1 volume element w

defined by

w (Xl' • . . ,Xn) = W(Xl' . . • ,Xn' ~), wh'ereX 1' • · · ,Xn E Tx(M)

is parallel relaUve to r:J (cf. [3]). Thus 9 1s equ1aff1ne, and f has been

shown to be equlprojective. 0
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Reroark.' lf d-r = 0, then there 15 a ch01ce of ~ for the aff1ne 1romer~lon f

50 t hat t he eQuat10n h( SX, Y) = h(X, SY) hol ds.( see [5]). I n ~ he te r ro 1no Iog y ".

of project1ve differentia1geometry, this property 1s expressed by say1ng

that the. norma1 cong ruence ~ 1s conjugate (for 1nstance,. see [1], p. 31 ). ' ,

3. Egulpr01ect1ye Immersions betweeo flat prolectlye structuces ,

Now we recall (see [4]) that a pcojectfve structure (M,P) js said to be

1lat. if each 10ca1 affine connection 'V E (M,P) 1s pcojective1y flat; 1n other

'words, H the atlas (M,P) conta1n5 a flat affine connection around each

polnt. We now prove

Th eo rem 4. !Jll. f:' (M ,P) -+ ( M, 'jr )' be an egu1pco1ectjye 1mme rS1Qo.

where dirn M = n 2. 3, dirn M= 0+1. Assu"rne that (M~ fr) 1$ flat. Then (M,P) ,

15 flat 1fand only jf at each po1nt Xo E M we haye

e1thar 1) S=pI,
.Q.C. . 2) rank h = 1 .allit S = P I .QD. Kar h,

.QL 3) h=O.

Pro0f. Assurne t hat (M, P) Is f1at. F0r Xo E Mfeh 0 0seeQulaff1ne

connec't1ons 'V E (M, P) and Q E (A, P' ) such that f 1$ ao aff1ne 1mmersl0n

.with an eQu1affine transversal vector field ~.

S1nce Q ls projective1y flat, we h.ave

(9) f(X,Y)z= ~(Y,z)X ~ ~(X,Z)Y,

where 'i 15 the norma llzed R1cc1 ten~or. Thus the GaU5$ eQuat10n (see [5])

says

( 10 ) R(X, Y)Z = 1 (Y , Z)X - 1(X, Z)~ + h(Y ,Z)SX ~ h(X, Z)SY •

From this we find that the normalized ~1cc1 tensor'&" of 'V 1s g1ven by

( 11) ~ (Y , Z) = ~(y , Z) + [h (Y , z) t rS - h(SY , Z) ]I ( n- 1) .

Slnce we assume that 'V 1s also projectlvely f1at, we have an equation

siml1ar to '(9):.

(12) R(X,Y)Z = ~(Y,Z)X • ~(X,Z)Y.

USlng (11) ln (12) and compar1ng 1t with (lO) we,flnd

( 13) (n - 1) [h (Y , Z) SX - h(X, Z)SY ]

~ [( t r S) h(Y , Z) - h(SY , Z)]X - [( t r S) h(X, Z) - h(SX , Z) Y] •

It 1S easy to se~ that, conver5ely, this equation imp1ies that V 15

project1ve1y flat.

Now assume that rank hx 2. 2, and we' 11 show that S == pI. Let

{Xl"'. ,X r ,xr+l':" ,xn} (5 a basls such that the 1a5fn-r vectors form a
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basis of Ker hx and the first'r vectors are orthonormal: h(Xi,Xj ) = ± b1j'

for 1 11,j 1 r ..

'. Let Yoz: Z be trom {X 1, ••• ,X r }. If r= n (2.3), chooseX;ttY, Z trom

{X 1, ••. ,X r }. If.r<n, cho~~eXfrom {X r+1,:".,Xn}. From(13)weget

h( SY, Z)X = h(SX, Z)Y.' Since X ana Y are llnea rly independent, we get

h(SY,Z) = h(SX,Z) =, O. Thl'S means that t~ere eXlst constants Pf,·· 'Pr'

such that ~Xj = PjXj mod Ker hx for 1 1 j i r. By a si~i1ar argument to [6,

Lemma 2] we see that a11 Pj's are equal, say, to p.

Now take X~ Y fro'm {Xl"" ,X r }, and set Z= X. (13,) 1mpl1es

( 14 ) -( n· 1)h(X, X) Sy = - h( SY ,X) X - (t r S) h(X, X)Y+ h( SX, X) Y. .

Wr1te

. (15) SY =pY + W, SX = pX + VJ where. W,VE Ker hx'
. ,

Since h(SY ,X) = 0, h(SX,X) = ph(X,X), we get

"(16) ,(n-l)(pY+W)~(trS)Y-pY.

Th1s1mpliesthatW'=O, aswell as, trS=np, and SY=pY.

Since Y 1s arb1trary from {Xl"" ,X r }, we have S Xj =pXj, 1 i j i r.

_'Now take X trom {X r+l"" ,Xn) and y.e Z from {Xl"" ,X r }. (13)

1mp11es h(SY,Z) X = h(SX,Z)Y. But h(SY,Z) =ph(Y,Z) = 0 and thus

h(SX,Z) = O. Since Z 15 arbitrary 1n {Xl"" ,X r }, we see that SX E Ker hx'

Since X 15 arb1trary in Ker hx' we·have S(~er hx' c Ker hx'

Fina11 y, ta ke X fr 0 m {X r+ 1' : •• ,Xn} and Y= Z fr 0 m {X ; ' .••.', Xr }. (1 3)

1mp11es

( n- 1) h(Y , Y) SX = (t r S) h(Y ,Y)X - h(SY , y)X .

Fro m h(SY ,Y) = ph (Y , Y), h(Y , Y) ~ 0, we see SX = pX for X e{x r+ 1' .•. ,X n].

We have thus proved that S = pI, under the assumption that rank hx 2. Z.
. .

We now conslder the case where rank hx = 1. Let {Xl ,XZ"" ,Xn} be a .

bas1s of Tx(M) such that h(X"X 1) =' ± 1 and {X2"'" Xn} 1s a bas1s for

Ker hX• Taking X~ Y from {X2"" ,Xn} and Z =Xl', we get trom.( 13)

h(SY ,Xf)X = h(SX,Xl)Y' S1nce X and Y are l1nearly independent, we have

h(SX,Xl) = 0, wh1ch 1mpl1es that SX E Ker hx ' Thus S(Ker hx ) c Kar hx '

Now take X = Z = Xl and Y E Ker hx (so that SY E Ker hx )' (13) ImplIes

SY = PY, where p = [l/(n-l )][(tr S) - h(SXl ,Xl )ih(Xl.,Xl)]. Hence we

have seen that S =PI on Ker hx '

The converse pa rt of Theorem 4 ts easy, because 'e1ther S = pI, or S= p I

on Ker hx ' or h = 0 lmplies (13). D .
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In order to take care of the ease wher'e the rank of h is oS. 1, we make use

of a result by Ferus [2, Theorem 1]. Let f:.Mo ~ 50+-1 be an isometrie
~ ~ ~ . ..

immersioo.of a complete Riema'ooiao mao1fold Mn, 0 2. 2, 10to the untt

sphere So+l. Let to be·the maximum type number and as?ume' to .i 0-1.

Then to 1s an even oumber and to >0 implies that· to 1. n/2.
'. .

Rephras1ng this result, we get the follow1ng. Penote by r(o) 1M.
small est even jnteqer l. 0/2. Then jf the rank of t~e sec end funda menta1

f.Qrm. h U. <r ( n), 1Mil f 1s tot a11 y aeQdes1c .

We oow 6bserve that we have the pcoject1ve version of this result. To·

state 1t, let Mn be a conoected compact d1fferent1able man1fold, n 2. 2, and

let f: Mn -? Rpn+1 be an 1mmersioo'..The not10n of the rank o,f t at each point"
. '

is we 11 def1 ned a.s fo 11 ows. For Xo E M, .1 et Q be any 1oca 1 affine c~n~ect len .

belong1ng t6 the canon.leal projective strueture Of,Rpn+1 around f(xO~,.:and

let ~ be a transversal vecto.f f1e1d around xo. Weite the transversal .

. compon'ent of rJxY as, h(X, Y)~. The form h 15 def;ned up to a scalac

mult1ple. and itsrank 1s independent of the choiee of ~. We ca111t the ilnk
, .

'of the 1mm.ers1on f. When the rank i5 0 I f 1s tota lly goedes1c.

Rema rk. Th e def1r'l1ti ons of th e ra nk of hand th e ca nk of the 1m me rs1 on, f

at each point are val1d when Rpn+l is replaced by any man1fo1d w1th a

projective strueture (f1, ~).
We have now

propes1t10o 5. lli f: MO -? Rpn+l be an imme'es1eo 'of a coooected •

. eompaet d1fferent1 abJ e maoito) dI whe re 0 2. 2. lf th e Ca ok of f J..a < r( n) .at
eyery Qojnt, then f. is total-ly geodesic.

Proof. Let go be the R1em.anotao metr1e of Rpn+ 1 as well as that of the

uoit sphere 50+1• Deoote by g = f* 'gO be the Riemanoiao metr1'c ioduced 00

MO, aod let A0 be the un1versal cover1ng man1fo1d of MO w1th the natural

complete metr1c g , We can then find an 1sometric lm.meesioo r : Mn-?

80+1 such that 11 • r = f • ~ 1, where ~: 80+1 -7 Rpn+1 and 111: 11 -? Mare

the oatura 1 project1oos. Sioce the ,rank of r at xe f1 n+ 1 ,eo1ncldes w1th the

rank of f at 11 (x) E M, we may now appl'y the res.ult of Ferus to conclude

th at r 15 tota 11 y geodesic, It fo llows th at f is tota lly geodesie. 0
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Combfn1ng Theorem 4 and Proposition 5 we obta1n

Theorem 6 .~ f: (M,P) --t Rpn+l be areal analvtlc arid eoulprolect'lye

immers1Qn with codimension 1 of a flat orojectlye structure (M,P) , where

dl m M 2 3. lf M15 coooected aod compact. then f 15 totally geode51c or

umb111cal.

Proof. If the rank of h ls i 1 everywhera. then Propos1tlon 5 applles. If

the rank. cf h 1S .l 2 somewhere (and so on some open subset W), then S = pI

on W by Theorem 4. By analyt1clty this holds on the whole M. 0

Pcoposjtloo 7. ill f: (M, P) --t Rpn+ 1 be an eoujp rolectlye 1mmersj on.

f 1s umbiJ1cal 1f and only 1f ths pco1ect1ye }jaes in the transversal d1rections

{~]!JO throu!Jh apolot 1n Rpo+ 1,

Proof. Assume S = A. I, where A. is a functlon. For each point x of M,

t hereis a0 o·pen ne19hborh00 dUof x such that f (U)" 11 es i0 An: 1 = RP0+ 1 -

H, where H i5 a certain projective hyperplane. The flat affine connectlon QO

1n the affine space An+l belongs to the atlas of local ~fflne connecUons for

Rpn+ 1. Re1at1ve to Vo and fJ E (M, P) and for ~ cholce ~f an equ1affine

transversal vect,?r field ~, f ls an affine immersion whlc.h is umb111cal S = ,)

AI, wlth constant A. If A ;e 0, then for the mapp1ng x E M ~. Y = X -+ ~/A, we

have Dx.y = 0, show.ing'that the 11ne5 1n the d1rectioo of ~ meet at one single -, . .

point. If >.. = 0, then the lines in the directlon of ~ are parallel. In either

case, these l1nes, when considered in Rpn+l, meet at 'a single point. We'

have shown that all l1ne5 1n the transversal d1rect10n through the points of

U (neighborhood of x) maat at a single polnt.

We now show that all project1ve Hnes [~] in the transversal direction
. . n+1

through the points of M meet at a single point. For each point p in RP

let Wp be the set of polnts xE M su~h that ln a naighborhood of x, all [~] go'

through p.' Each Wp ls an open subset (poss1bly empty). If p ~ q, then Wp

and Wq are d1sjoint. Suppose x E WPn Wq' If they are onone l1ne, thao wa

can take a p01nt y E M nea r x such that the 1ines' y U P and y Uq are

dl~t1nct, and this contrad1cts the fact that [~]y must co1nc1de w1th the ]irie

yUp as well as with the line yUq, since y E WpnW q' Since M 1S the ul')ion of

a11 Wp' 1t follows that"M = Wp for one point p. Thus a11 [~] go through p. 0

We now g1ve an analytic descrlpt10n of a connected, compact hypersur~,

face in Rpn+l with transversal dfr'ect10ns [~] that go through a single point.

'"
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Coos1der Rpo+ 1 as the guotieot of the volt sphere SO+ 1 by Identif1cat1oo of

aotlpodal pojots. Let eo+2 = (0, ... ,0, 1) be the oorth pole of Sn+ 1.1.M. Sn

= {x = (~1"" ,X'O+l 0); L: x'1 2 = 1} be the unjt sphere jn the tangent space
. ,

Te (50+1). Let r = rex) be a positIve differentjable fuoction on Sn. Pefjne
n+2

( 17) f ( x) = (c 0S r ( x» en+2 + (s in r ( x) )X E Sn+ 1, xE sn

( 18) 'g ( x) = 1T 0 f ( x) E RP n+ 1•

Iheo th? hypersurfaee g: Sn ~ Rpn+l has the des1red pro~erty.

To see this, let X ET~(Sn). We have

( 19) f*(X) = ( -. sinr ( x) ) (Xr) en+ 1 + (e 0 s r ( x ) ) (Xr )x + (s1n (: ( x) )X•

If f*(X);: 0, 11 follows that X = 0. Thus fis an immersion, and so 1s g.

The evrve t --7 Xt ::::I(cos t)90+2 + (sio t)x 1S a great cirele an'd 1T(Xt) 1s a

pa~h 1n Rpn+1. Th~ tangent vector Xt at t = rex) 1s

(20) • (510 r(x» en+2 + (eos r(x» x',
- \

whieh is transversal to f*(TxSn), since 1t 15 linearly dependent,from (19).-

G010g to Rpn+ 1 we see that the path from.iT (en+2) to g( x) 1S tra~sversa 1to '

g(Sn). Relative to th1s ehoiee of transversal dl.rection Held, M acqu1res a . lt

projective structure. Namely, for any local'equiaffine"coonection

compat1b1e w1th .Rpn+ 1 we 'may '1nduc e a 1oca 1 equ1aff1ne connect100 on M,

whieh 1S determined up' to a projective change. ' Cl ea r'ly, Q is an equ1- ,

projective 1mmers10n .which 1s umbil1ca 1. (We might say that a hypersurface

M 1n Rpn+1 1s umb1l1ca11f 11 1s' umb1l1ea11n the manner above relaUve toa
. '

cholee of transv.ers~l direction f1eld. )

Bemark. In the model d1scussed above, suppose r is an odd function on

Sn, that is, r( :x) =. rex). Then ~(-x) = t(x). This means that f induces.

an umbll1ca1 hypersurface g: Rpo --7 Rpn+ 1•

Proposit1Qn 8. A conoected compact umb1l1cal hypersurface M in Rpn+ 1

may be obta1ned 1n the form g(50) deserjbed aboye, up to a pro1eetjye

n+1
traosformation of RP .

Proof. We may assume that the paths Jn the transversal d1rect1ons maat

at 1T (eo+2)' By taking x e M ioto the unit tangent vector at en+2 of the

ge.od·esie 1n 50+1 projecting 00 the path in the transve~sal dj,rectlon, we get
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a mapptog of M loto 50 (the uott sphere 10 Te (5 0+ I), whteh Is'a loeal
, 0+2

d1ffeomorph15 m. S1nce M-i5 conoeeted and compact, It fol10ws that the M 15

of 'the form 9(SO) 'desc r1bed above. 0

As aoother appl1eatioo of Theorem 4 we obtaio a result related to the

poss1b111t1es of isometrie 1mmers1on between r.1emann1an or pseudo

riemann1an manifolds eaeh of eoostant sectlonal eurvature. For example,

1t 1s koowo that there 1s 00 1sometr1c immersfoo of a Euelidean space'E°

10to 50+1 of eoostaot'curvature 1, whlle EO can be 1sometr1cal1y 1mbedded

(as a hor,osphere) 1oto the hyperbolic space Hn+ 1 of constaot'curvature -1.

We now eons1der a manlfoldM w1th flat aff1ne conneet1on v and show that It

cannot be "immersed as a nondegenerate Blaschke hypersurface (.lh the

class1cal sense, see [5], Example 6) io Sn+1. More prec1sely", we have

Theorem 8. UiJ1~ (0+1 )-d1mens1onal pseudo-rlemann1an manjfold

with meteic g of Gonstant sectlonal curvature'c and its Levi-Ciylta

"coonect1oo V, where 023. lf thera ex1sts a ooodegenerate hypersurface M~

whose joduced Blaschke conqection Q js flat. theo c( 0.. In Q~rticular,

Sn+ 1, nl.3, does not admjt any ooodegenerale flet affine hypersurface."

Proof. Suppose" Mn 1s a nondeg'enerate Blaschke hypersurfac-e w1th flat

1nduced connectlon. We show that'1ts aff1ne normal 15 perpend1cular to Mn

. relative to the metr1c 9' and that Mn ls umbl1ical1n the metric sense.

. The Gauss equation for the affine hypersurface Mn lS

R(X, Y)Z = ~(Y , Z) X • ~ (X, Z) Y + h(Y , Z) SX - h(X, Z) Sy ,

where 'i ls the normalized Riccl tensor of A, which 15 cg byassumption,

and hand S ~re the affine fundamental form and.the affine shape operator ..

Now since R= 0, fJ is project1vely flat 1n partlcular. From Theorem 4·

appl1edtothe afflne1mmerslonof (Mn,Q) 1nto (Ff,v), wh1ch 1s also

projectfvely flat, we know that S = r,I, where r 1s a constant. The Gauss

equat10n above now reduces to

[cg(Y , Z) + ph ci ,Z)] X + [cg(X, Z) + ph (X, Z) lY = O.

For arb1trary X and Z tangent to M, choose y to be linearly independent of.X.

Weg et cg(X, Z) = - ph. (X, Z). Thus Poe 0 and h = - ( c/ p) go, wh ere ,g0 isthe

restr1ction of Qto Mn. Since h ls nondegenerate,. so 1s 90.

lf we deoote by ~O the unit normal vector fleld for Mn, (relat1ve to g) and

by hO the second fundamental form in the metr1c sense, we know that hO =
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x.h, where x. 1s a eertain sealar funet10n. But then hO = -(x.e/p)QO' As 1s

we 11 k. nown, 1t now fo 11 ows that k = - x.e/p and th us x. are Consta nts. Hene e

Mn 1s umbiliea I in Min the met rle sense.

Reea11 now how the aff1ne normal ~ 1s determined for a nondegenerate

hypersurface (cf. [3], proof of Theorem 1). We now have 'hO ::: k gO. Let

{Xl" .• ,Xn} be an orthonormaJ bas1s relative to gO. When we take the

abs 01 ute va1ue of det[ hO ("Xi' Xj)]' we get the consta nt Ikln. Thi s mea ns th at

the affine normal ~_ls 1n the same direct10n as the unn normal vector ~o and

hence the induce,d connect10n v on Mn cofnc1des w1th th,e Levl-Civ1ta

conneetion Vo of gO' The metrie shape operator So 1s equa1 to k I, beeause

hO= kgO .By th e Ga ~s s equation 1n the met rie sensewe now s'ee th at c+ k2 =

0, which 1mp11es that c <0.' 0

Remark. For n = 2, there are many Blasehke tmmersions of a flat torus

(T2, v) lnto S3, for example, all Cl1fford tor1. In v1ew o~ Theorem,4 for n L

3,"a wll1 be an interestfng problem to study projectively flat surfaces in

"Rp3·.

4. Extension of the theorem of Berwald

Let eM,~) be an (n+ 1) - df mensi ona 1 man1f01 d w1th a proj ective st cuctu ce.

Let f: M~ 11 be an immersion of an n-dimensional mantfold M 1nto Ft '
W1thout assumlng that M ls provided apriori .w1th a projectlve structure, we

shaJ1 define a certain property exten~lng the classical cond1tion of van1shlng
. .

euble form. For the case of an affine 1mmerslon th1s was al ready d1scussed

in [6].

For each point xEM, choose a local·afflne connection'QE (f1,~) around

f(x). Also choose any transversal fleld ~ around x. From Q and ~ 'we-may

obtain a local affine 'connectlon v around x so that

(21) 9X (f*(Y)) = f*(VxY) + h(X,-Y)~

and

(22) QX ~ = - f*(SX) '+ l' (X) ~,

where h 15 the fundamental form and T the transversal connectlon form

for the affine immersion f of a nelghborhood U into M. In [6] we deflned the

cub1c form, C(X,Y,Z) -= <,9Xh)(Y,Z) + T(X)h(Y,Z) and deflnedthe notion

that C ls divisible by h(denoted by h I C) ~ rf.lean1ng that there 1s a 1-fo'rm P
such that

, ,
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(23) C(X,Y,Z)·= p(X)h(Y,Z) + p(Y)~(Z,X) + p(Z)h(X,Y)

fo r all tangent vectors X, Y and Z to M.

proposition 9. The property that h l'c does not dopend 00 the cholce cf fj

E (f1,~) oor of a transversal f1e+ld ~'. Thus jt js a p·roperty we can speak of

for any immersion f: M~ (fl,13') of a differeotiable manlfold M Into (A, fS) .•
Proof. Suppose we have chosen QE (M, 13'). Then the property h I C fs

1ndependent of the cholce of ~, as 1s known In Proposition 5 of [6]. Now we

'change V to V' E (Fr, fr) so that

(24) V'xY'= VxY + JI,(X)Y + JI,(Y)X, where Jl,ls a certaln t:form.

From (15) and the corresponding equat10n for' fj' we obtain

(25) 9'XY = 9XY + Jl(X)Y + )l(Y)X

and

(26) h' (X:V) = h(X, Y) .

From (16) and the correspond1ng equation for V' ws obta1n

(27) ,T'(X) =T(X) + )l(X);

Thus th~ cubic form C' result10g trom fj' 1s glven by

C' (X, Y, Z) = (\7'Xh' ) (Y , Z) + 'r' ( X)h' (Y , Z)

= X h(Y , Z) - h( Q'XY, Z) -, h(Y , 9'XZ) .+ (T ( x) + )L ( X) )h(X ,-2 )

=Xh(Y,Z) - h(9XY,Z) - Jl(X)h(Y,Z) -j1.(Y)h(X,Z)

- h(Y,9XZ) - jJ.(X)h(Y,Z) - jJ.(Z)h(Y,X)

+ T(X)h(Y,Z) + Jl(X)h(Y,Z)

= (VXh)(Y,Z) + T(X~h(Y,Z)

- p'(X)h(Y,Z) - )l(Y)h(X,Z),-p.(Z)h(Y,X), <

that 15,

(28) C'(X,Y"Z) = C(X,Y,Z) - )L(X)h(Y,2) :. p.(Y)h(X,Z) -jJ.(Z)h(Y,X).

ThU5 1f (23) hol ds f0 r C, t hen a sj m11 arequa ti 0n hol ds f0 r C' w1 t h P
replaced by f· ~ )J.. Thus the property h I C 1mpl1es h'l C·., 0

RecalJ tb'e not10n cf the rank for an immersion M~ (M, 13') 1n the remark

before Proposltoo 5.

We shall now prove <

Theorem 10. Ul f pe a'n im merslon' of an n- di mensjonal c'onoected

d1fferent1abl e man1fol d toto Rpn+ 1 such that the rank of h k 2. 2, l.twl f( M)

lles ln a guadric aO in Rpn+.l 11 and only jf f hasthe property ~hat h I E.
Proof. Assume the propertyh IC. For each poiot xE M, there ,1s a

ne1g hbo rh ood U of x suc~ tha,t f( U) 1S Contalned 'ln an aff10e spa Ce A0+ 1=

'I

r
f
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Rpo+l - H, where H i5 a project1ve hyperplane, say, Xo =0., The tlat affine

connection 90 belongs to the atlas of local connections for Rpn+l ..No~ for

f: U~ (An+1, 90), the conditions h I C and rank h12 are satisf1ed by the

assumptlons of the theore,m. By The~rem 10 in [6], we see that f( U) lies in

a Quadric in An+l and hence in a Quadric 1n Rp n+1. Since f 1s locally an

1mmersion ioto a Quadric in Rpn+l, lit follows that 1t is so globally.
The converse part of the theore'm also follows from Theorem 16 of [6] and

the proof is om1tted. 0

6. Effect.of a prolectjye ~haoge on a ooodegeoerate hypersurface.

Let (ff , fr) be a maoifold of dimension n+1 w1th a projective structure

aod let f: M--7 f1 be an immersion of a manifoldof dimension n. We assume

that the ranK 01. 1. i5 n. at every point, that 15', f 1s nondegenerate. UnJ1ke the

case of a nondegeoerate immersioo toto a maoifold with an equiaffine

structure which determlnes auoique equiaff1ne structure on the

hypersurface, we cannot determine a project1ve structure on the

hypersurface. We have already 5hown that a certain property such as h I C

i5 an invariant notloo for f.

Let Xo E M. As 5000 as we pick· a 1oca 1 e~Uiaffin~ connect10n Q e- (f1, f:}")

wlth a parallel volume element wjn a nelghborhood D' 01. f(xO), ws cao

conslder a neighborhood U of Xc as a nondegeoerate hypersurface 1n

(D', Q). By the cl assica 1.procedure due to 81 aschk e, we can get an'

equiaffine structure (9 ,w) in U. Together w1th this structure' we'get the

fundamental form h, the cubic form C= 9h, the Lev1-Civ1ta connect10n h ,
the difference tensor K between Q and Q, and SO' on. The quest ton ts how

these quant1t1es change as we pick another Q , e (f1, fr) wi'th a parallel

volume element w'.
In this case, we have

(29) w· =, w, where '1') 0

(30) V'xY = 9XY + j.l(X)Y + p:(Y), where J.l = d (ln,)/(n+2) .

Relative to the ~ff1ne connect10n V, let ~, h, V and w' be the ~ffine "

normal, the affine metr1c the induced connection, and the induced volume

element (equa1 to the volume element for h) for M. In order to.obta1n the

correspond1ng objects for M· relative to the affine connect1on Q', let us take
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~ as a tentative chotce as transversal vector Held and follow the standard

procedure descr1bed in [3]. We wr1te
. .,

(31) V'XY = ~#XY + h#(X, Y)~.

Because of (30) we see that

(32) ~#XY = ~xy,+ j.L(X)Y + JL(X)X

(~3) htl(X,Y) = h(X,Y).

Also trom

Q 'X ~ =QX~ + JL ( X) ~ + JL ( ~ )X =' - SX + J.l ( X)'~ + J.I. ( ~ )X

=' - S#X + -rtt(X)

we obtain

( 34 ) T # ( Xl = JL ( X)

(35) S#=S-,u.(~)l (1:1dent1ty).

The volume element 6# g1ven by' .
. # ""'" ,

(36) 6 (Xl"~,,Xn)C:w (Xl, ... ,Xn'.~)

is equal to <pw. Let {Xl"" ,Xn} be a b~sis in Tx(M) with e#(Xl"" ,Xn) =

1. Then

w( <pl/n Xl"'" ,1/n Xn) = 1, hij = h(<p.l/n Xl" l/nXj) = <p2/n h(Xi,Xj)

so that

h# .. = htt(X- X-) = h(X- X-) = <p-n/2 h--
lJ l' ) l' J 1) •

Setting Htt = det [h#ij ] we get

, H#= (,-2/n)~ det [ hlj ] := ,-2 , .

since det [h 1j ] = 1. I~ to 11 ows that the affine metric h' ot"M re1ative to '9 ' is
.. .

given by

( 37 ) h' ~ ,21(n+2) h.. '

In order tof1nd the affine normal vector ~. of M relative to '9' we set

(38 ) ~. = Z + , -2/( n+2) ~

and choose the tangen't vector Z in such a way that V'x~' i5 tangent to M..

Such Z 15 determ1ned by the follow1ng equat10n to be sat1sf1ed for, a11 X:

(39) X (<p-Z/(n+2» + 'h(X,Z) + ,-2/(0+2) T'(X) = 0,:
The fir.st term equals -2 X ,/(n+2) <po Also using j.L = d (ln ,)/(n+2) and

(34) J' our equat10n becomes

( 40 ) h(X, Z) = ,- 21 ( n+2) ,U. (X) •
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lf we 1ntroduce a vector field U by

(41) h(X, U) = ,J.l(X) for a11 X (1. e. 'u correspoods to p.. relative to h),

theo we get

(42) Z=,-2/(o+2)u

and the affine normal ~' lS, Q1ven by

'(43) ~J=,-2/(n+.2)(u+~).

Finally, the aff1ne- connect10n 9' 1ndueedon M by ('9", w') 1s gi'ven by

(44) 9'XY = QXY + p..(X)Y + jJ..(Y)X - h(X,Y)U.. '

Th1s can be easily verif1ed by us1ng (30) and (43).

Raffia rk. (44) is exaelly the sa roe as a general formul a for the 'change

of the Levi-Civ1ta connect1on when a met.ri~ h 15 ehaoged conformaqy to'

,2h, the l~formp.. be1ng' d 1n, (see, for examp1e,[7]).

If h 1s chaogedto h' = (,1/(0+2»2 as io (37), then,J.l = (d 10,)/(0+2),

exact1y as 1n (30). From th1s fact. forms we get the fo11owtng theorem.

Theorem 11. When an eguiaffioe structure ('9' , w) in tOe ambjant

manifo] d f1 1s cha nged prci ect1vel y to arr egui aff1 oe structu re ~ Q' ,w '): 1M.
difference tensor K of the 1ndyced cooneet1oo 'V aod the Ley1-C1y1ta .

coonactioo Q for th9' affine metr"je h of a nondegenerate hypersurf'ace Min
M does not change. Ths cubjc for'rn C confocmally with tOs same factoc as'

the confocmal change of tOs afftne metrte.

Proof. For the cub1c"form C, ~ecal1 that C(X,-Y,Z) = - 2h(KXY,Z). 0

Remark. The same conformal change o'f the affine meteie aod the cubic

form foe a nondegenerate hypersurface 10 Rpn+ 1 comes up 10 ihe project1ve

theory desc ribed by us10g mov10g frames (see [8]).



19

Referenees

[1] G, Boll, Pr01ektiye D1f1erent1aJaeometr1e. TeH II, Vandenhoeck &

Rup~eeht, Göttingen, 1954.

[2] D. Ferus, Onthe type number 01 hypersurt"aces in spaces of constant

curvature, Math. anno 187(1970), 310~316.

[3] K. Nom1zu, Ob completeness 1n affine d1fferent1al geometry, Geometr1ae

Dedleata 20( 1986), 43~ 49.

[4] K. Nomlzu and U. Plnkall, On a certa1n class of homogeneous

project1velyflat man1folds, T6hoku Math. J. 39(1987),407-427 ..

[5] K. Nomlzu and U. P1nkall, On the geometry of aff1ne 1mmers10ns, Math

Z. 195( 1987), 165 - 178 .

[6] K. Nomizu and U. Pinkall, Cub1e form theorem for affine 1mmers1ons,

Results in Math.· 13( 1988),338-362 •.

[7] K. 'Nom1zu and K. Yano" Some results 1n the equ1va lenee probl em 10

Rieman01an geometry, Math. Z. 97( 1967), 29- 37 ~

[8] T. Sasaki,· On the projective geometry of hypersurfaces, MPI preprint

86-7, Max-Planck - Institut für Mathematik .

"

Ketsum1 Nom1zu'
Depertment of Methemet1cs
Brown Unlve~slty

Provldence, BI 02912
USA
end
Max-Planck -I"nstltut fUr ~athemat1k

Gottfried-Claren Strasse 26
05300 Bonn 3

.Ukich PinkelJ

Fachbereich Mathematik
Technische Un1versität Berl1n
Strasse 00s 17. Juni 135
D-1 000 Befl1n 12


