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Abstract. We give a construction of étale Galois covers of algebraic curves

over a field of positive characteristic with a prescribed system of finite groups

of SL2-type.

1. Introduction

In this note we give a construction of étale Galois covers of algebraic curves over
a field of positive characteristic with a prescribed system of finite groups.

Consider a datum (p, `, R) as follows:

• p and ` are different rational primes;
• R is the ring of integers of a finite product L of local fields over Q`.

The question studied here is

(Q) Can one find a smooth connected projective algebraic curve X over Fp so that
for any positive integer m there is a connected étale Galois cover πm : Ym → X
with Galois group Gm = SL2(R/`

mR)? Furthermore, can one make the covers
πm : Ym → X compatible with the projective system (Gm)?

We answer the question (Q) affirmatively, namely we prove the following

Theorem 1.1. Given a datum (p.`, R) as above, then there is a smooth connected
projective curve X over Fp and a compatible system of connected étale Galois covers
πm : Ym → X with Galois group SL2(R/`

mR).

We find a totally real number field F of degree d = dimQ`
L so that (1) OF⊗Z` '

R and (2) the prime p splits completely in F . Let MF be the Hilbert modular
variety associated to the totally real field F . The curve X is constructed in the
reduction MF ⊗ Fp modulo p by vanishing d − 1 Hasse invariants. The cover Ym

arises from the monodromy group for the `m-torsion subgroup of the universal
family restricted on X .

The main tool is the `-adic monodromy of Hecke invariant subvarieties in the
moduli spaces of abelian varieties developed by Chai [1]. This technique confirms
that the curves X and Ym constructed as above are irreducible. The main theorem
for Hilbert modular varieties is stated in Section 2.

The construction above provides a solution to the question (Q) when d > 1. In
case of d = 1, one replaces R by Z` × Z` and proceeds the same construction. By
replacing the covers Ym by Ym/(1× SL2(Z/`

mZ)), one yields a desired compatible
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system of étale Galois covers. Alternatively, one replaces the Hilbert modular
variety MF by the Shimura curve MB associated to an indefinite quaternion algebra
B over Q in which both p and ` split, and takes X := MB ⊗ Fp.

Theorem 1.1 is a special case of the following stronger result, which is commu-
nicated to the author by Akio Tamagawa.

Theorem 1.2. Let G is a pro-finite group that is topologically generated by g
elements and that is almost pro-prime-to-p, i.e. G admits a finite quotient G0

whose kernel is pro-prime-to-p. Then there exists a proper smooth connected curve
X0 of genus g over Fp so that π1(X0) admits a surjective map onto G. .

2. Hecke invariant subvarieties

In this section we describe a theorem of Chai on Hecke invariant subvarieties in
a Hilbert modular variety.

Let F be a totally real number field of degree g and OF be the ring of integers
in F . Let V be a 2-dimensional vector space over F and ψ : V × V → Q be a
Q-bilinear non-degenerate alternating form such that ψ(ax, y) = ψ(x, ay) for all
x, y ∈ V and a ∈ F . We choose and fix a self-dual OF -lattice VZ ⊂ V . Let p be
a fixed rational prime, not necessarily unramified in F . We choose a projective
system of primitive prime-to-p-th roots of unity ζ = (ζm)(m,p)=1 ⊂ Q ⊂ C. We also

fix an embedding Q ↪→ Qp. For any prime-to-p integer m ≥ 1 and any connected

Z(p)[ζm]-scheme S, we obtain an isomorphism ζm : Z/mZ
∼
→ µm(S).

Let n ≥ 3 be a prime-to-p positive integer and ` is a prime with (`, pn) =
1. Let m ≥ 0 be a non-negative integer. Denote by MF,n`m the moduli space
over Z(p)[ζn`m ] that parametrizes equivalence classes of objects (A, λ, ι, η)S over a
connected locally Noetherian Z(p)[ζn`m ]-scheme S, where

• (A, λ) is a principally polarized abelian scheme over S of relative dimension
g,

• ι : OF → EndS(A) is a ring monomorphism such that λ ◦ ι(a) = ι(a)t ◦ λ
for all a ∈ OF , and

• η : VZ/n`
mVZ

∼
→ A[n`m](S) is an OF -linear isomorphism such that

(2.1) eλ(η(x), η(y)) = ζn`m(ψ(x, y)), ∀x, y ∈ VZ/n`
mVZ,

where eλ is the Weil pairing induced by the polarization λ.

The object (A, λ, ι) above is called a (principally) polarized abelian OF -variety,
and η is called an OF -linear symplectic level-n`m structure with respect to the
trivialization ζn`m .

Let G be the automorphism group scheme over Z associated to the pair (VZ, ψ);
for any commutative ring R, the group of R-valued points is

G(R) := {g ∈ GLOF
(VZ ⊗Z R) ; ψ(g(x), g(y)) = ψ(x, y), ∀x, y ∈ VZ ⊗Z R }.

Let Γ(n`m) be the kernel of the reduction map G(Z) → G(Z/n`mZ). It is well-
known that one has the complex uniformization

MF,n`m(C) ' Γ(n`m)\G(R)/SO(2,R)g .

In particular, the geometric generic fiber MF,n`m ⊗Q is connected. It follows from
the arithmetic compactification constructed in Rapoport [7] that the geometric
special fiber MF,n`m ⊗ Fp is also connected. Write Mn`m := MF,n`m ⊗ Fp for the
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reduction modulo p of the moduli scheme MF,n`m . We have a natural morphism
πm,m′ : Mn`m′ →Mn`m , for m < m′, which is induced from the map (A, λ, ι, η) 7→

(A, λ, ι, `m
′−mη). Let M̃n := (Mn`m)m≥0 be the tower of this projective system.

Let (X , λ, ι, η) → Mn be the universal family. The cover Mn`m represents the
étale sheaf

(2.2) Pm := IsomMn
((VZ/`

mVZ, ψ), (X [`m], eλ) ; ζ`m)

ofOF -linear symplectic level-`m structures with respect to ζ`m . This is aG(Z/`mZ)-
torsor. Let x̄ be a geometric point in Mn. Choose an OF -linear isomorphism
y : V ⊗ Z` ' T`(Xx̄) which is compatible with the polarizations with respect to

ζ. This amounts to choose a geometric point in M̃n over the point x̄. The action
of the geometric fundamental group π1(Mn, x̄) on the system of fibers (Xx̄[`m])m

gives rise to the monodromy representation

(2.3) ρMn,` : π1(Mn, x̄)→ AutOF
(T`(Xx̄), eλ)

and to the monodromy representation (using the same notation), through the choice
of y,

(2.4) ρMn,` : π1(Mn, x̄)→ G(Z`).

The connectedness of M̃n affirms that the monodromy map ρMn,` is surjective.

For any non-negative integer m ≥ 0, let H`,m be the moduli space over Fp that
parametrizes equivalence classes of objects (Ai = (Ai, λi, ιi, ηi), i = 1, 2, 3;ϕ1, ϕ2)
as the diagram

A1
ϕ1

←−−−− A3
ϕ2

−−−−→ A2,

where

• each Ai is a g-dimensional polarized abelian OF -variety with a symplectic
level-n structure, and both A1 and A2 are in Mn;

• ϕ1 and ϕ2 are OF -linear isogenies of degree `m that preserve the polariza-
tions and level structures.

Let H` := ∪m≥0H`,m. An `-adic Hecke correspondence is an irreducible compo-
nent H of H` together with natural projections pr1 and pr2. A subset Z of Mn is
called `-adic Hecke invariant if pr2(pr−1

1 (Z)) ⊂ Z for any `-adic Hecke correspon-
dence (H, pr1, pr2). If Z is an `-adic Hecke invariant, locally closed subvariety of
Mn, then the Hecke correspondences induce correspondences on the set Π0(Z) of
geometrically irreducible components. We say Π0(Z) is `-adic Hecke transitive if
the `-adic Hecke correspondences operate transitively on Π0(Z), that is, for any
two maximal points η1, η2 of Z there is an `-Hecke correspondence (H, pr1, pr2) so
that η2 ∈ pr2(pr−1

1 (η1)).

Theorem 2.1 (Chai). Let Z be an `-adic Hecke invariant, smooth locally closed
subvariety of Mn. Let η̄ be a geometric generic point of an irreducible component
Z0 of Z. Suppose that the abelian variety Aη̄ corresponding to the point η̄ is not su-
persingular, and that the set Π0(Z) is `-adic Hecke transitive. Then the monodromy
representation

(2.5) ρZ0,` : π1(Z
0, η̄)→ G(Z`)

is surjective and Z is irreducible.
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The proof of this theorem is given by Chai [1] for Siegel modular varieties, which
uses the semi-simplicity of the geometric monodromy group of a pure Q`-sheaf on a
variety over a finite field due to Grothendieck and Deligne ([2, Corollary 1.3.9 and
Theorem 3.4.1]). Chai’s proof also works for Hilbert modular varieties as stated
in Theorem 2.1; see the expository account in [11]. Let Zm := Mn`m ×Mn

Z.
Theorem 2.1 also implies that Zm is irreducible provided the conditions for Z are
satisfied.

3. The construction

Lemma 3.1 (Krasner’s Lemma). Let k be a local field of characteristic zero and
f(X) be a monic separable polynomial of degree n. If g(X) is a monic polynomial
of degree n whose coefficients are sufficiently close to those of f(X). Then g(X) is
separable and there is an isomorphism of k-algebras k[X ]/(g(X)) ' k[X ]/(f(X)).

Proof. See a proof of this version of Krasner’s lemma in [6, p. 317].

Lemma 3.2. Let S be a finite set of places of a number field k. Let Lv, for each
v ∈ S, be a product of local fields over kv of same degree [Lv : kv] = n, where kv is
the completion of k at v. Then there is a number field F over k of degree n such
that F ⊗k kv ' Lv for all v ∈ S.

Proof. Write Lv as kv [X ]/(Pv(X)) for some monic separable polynomial Pv(X)
of degree n. By an effective version of Hilbert’s irreducibility theorem [3, The-
orem 1.3], there is an irreducible monic polynomial P (X) ∈ k[X ] of degree n
whose coefficients are sufficiently close to those of Pv(X) for each v ∈ S. Set
F := k[X ]/(P (X)). By Krasner’s lemma (Lemma 3.1), one has F ⊗k kv '
kv[X ]/(P (X)) ' kv [X ]/(Pv(X)) for all v ∈ S. This completes the proof.

Corollary 3.3. Given a datum (p, `, R) as before, there is a totally real number
field F of degree d = dimQ`

L so that (1) OF ⊗ Z` ' R and (2) the prime p splits
completely in F .

Proof. Take S = {∞, p, `} and

L∞ = Rd, Lp = Qd
p, L` = L,

and apply Lemma 3.2.

.
Assume that d > 1. Let F be a totally real number field as in Corollary 3.3. Write

the set of ring homomorphisms from OF to Fp as {σ1, . . . , σd}. Define modular

varieties Mn and Mn`m over Fp as in Section 2 (with a choice of a system of roots
of unity ζ). Let a : (X , λ, ι, η) →Mn be the universal family. Let H1

DR(X/Mn) be
the algebraic de Rham cohomology; it has a decomposition

(3.1) H1
DR(X/Mn) = ⊕d

i=1H
1
DR(X/Mn)i

with respect to the OF -action, where H1
DR(X/Mn)i is the σi-isotypic component.

Each component H1
DR(X/Mn)i is a locally free OMn

-module of rank 2. The Hodge
filtration

(3.2) 0→ ωX/Mn
→ H1

DR(X/Mn)→ R1a∗OX → 0
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also has the same decomposition

(3.3) 0→ ωi
X/Mn

→ H1
DR(X/Mn)i → R1a∗O

i
X → 0,

for all 1 ≤ i ≤ d. Let FX/Mn
: X → X (p) be the relative Frobenius morphism,

where X (p) is base change of X by the absolute Frobenius morphism FMn
: Mn →

Mn. The morphism FX/Mn
, by functoriality, induces an OMn

-linear map Fi :

R1a∗O
i
X (p) → R1a∗O

i
X . By duality, one has hi := F∨

i : ωi
X/Mn

→ ωi
X (p)/Mn

. Since

ωi
X (p)/Mn

' (ωi
X/Mn

)⊗p, the homomorphism hi is an element in H0(Mn,L
i), where

Li := (ωi
X/Mn

)⊗(p−1).

Let X be the closed subscheme of Mn defined by hi = 0 for 2 ≤ i ≤ d. Let Ym :=
Mn`m ×Mn

X . It is clear that X is stable under all `-adic Hecke correspondences.
We verify the conditions in Theorem 2.1:

Lemma 3.4.
(1) The subscheme X is a smooth projective curve over Fp.
(2) Any maximal point of X is not supersingular.
(3) The set Π0(X) of irreducible components is `-adic Hecke transitive.

Proof. Since points in X are not ordinary, it follows from the semi-stable re-
duction theorem that X is proper. By the Serre-Tate theorem, the deformations
in Mn are the same as a product of deformations in an elliptic modular curve. It
is well-known that the zero locus of the Hasse invariant is reduced and ordinary
elliptic curves are dense in the mod p of an elliptic modular curve. From this the
statements (1) and (2) follows. The statement (3) follows from [4, Cor. 4.2.4] (also
see a proof in [11, Theorem 5.2]).

By Theorem 2.1, the curvesX and Ym are irreducible. One also has Aut(Ym/X) =
G(Z/`mZ) = SL2(R/`

mR). The construction is complete. This finishes the proof
of Theorem 1.1.

The following question to which we do not know the answer. What is the genus
of X as above?

Proof of Theorem 1.2. (This proof is standrad and is known to some experts.)
First we know that for any algebraically closed field k with positive transcendental
degree over Fp and any g > 0, there is a connected smooth proper curve X over k
of genus g so that π1(X) admits a quotient which is free pro-finite of g generators.
Choose such a curve X with trdegFp

k = 1 and we get a surjective map π1(X)→ G.

Let X ′ → X be the étale Galois cover corresponding to the natural surjection
π1(X)→ G0. Specialize at a good point for a model X ′ → X of Galois covers over
a curve over Fp and get an étale Galois cover X ′

0 → X0 over Fp (see [9, Proposition
2.5 and Corollary 3.5] for a detailed argument of specialization). We claim that
π1(X0) admits a surjective map onto G.

By the Galois theory and Grothendieck’s specialization theorem, we have the
exact sequences

1 −−−−→ π1(X
′) −−−−→ π1(X) −−−−→ G0 −−−−→ 1

ys′

ys

y=

1 −−−−→ π1(X
′
0) −−−−→ π1(X0) −−−−→ G0 −−−−→ 1,
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where s and s′ are specilization maps, which are surjective. Let G′ be the kernel
of the map π0 : G → G0. Since G′ is prime-to-p pro-finite, the natural map
π(X ′) → G′ factors through its maximal prime-to-p quotient π(X ′)(p). We get
surjective maps

π1(X
′)→ π1(X

′
0)→ π1(X

′
0)

(p) ' π(X ′)(p) → G′.

We want to show that the map f : π1(X) → G factors through π1(X0), or equiv-
alently ker s ⊂ ker f . Let x ∈ ker s. Since its image in G0 is 1, there is a unique
element x′ ∈ π1(X

′) whose image in π1(X) is x. Now s′(x′) = 1, as its image
in π1(X0) is 1. This shows that f(x) = 1, and hence that ker s ⊂ ker f . This
completes the proof.

Remark 3.5. Consider quaternion algebras B over a totally real number field F so
that B splits at exactly one of real places of F and B splits at all primes of F over
p. Let MB be the Shimura curve associated to B and take X := MB⊗Fp to be the
reduction modulo p (see [5] for a nice summary of Ihara’s work on Shimura curves).
This exhibits a solution to the question (Q) for not just a prescribed system arising
from SL2 over F ⊗Q` but also that from its inner twist.
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