CONSTRUCTION OF GALOIS COVERS OF CURVES WITH
GROUPS OF SL;-TYPE

CHIA-FU YU

ABSTRACT. We give a construction of étale Galois covers of algebraic curves
over a field of positive characteristic with a prescribed system of finite groups
of SLa-type.

1. INTRODUCTION

In this note we give a construction of étale Galois covers of algebraic curves over
a field of positive characteristic with a prescribed system of finite groups.
Consider a datum (p, ¢, R) as follows:
e p and ¢ are different rational primes;
e R is the ring of integers of a finite product L of local fields over Q.

The question studied here is

(Q) Can one find a smooth connected projective algebraic curve X over Fp so that
for any positive integer m there is a connected étale Galois cover 7, : Y,, — X
with Galois group G,, = SLy(R/¢™R)? Furthermore, can one make the covers
Tm ¢ Ym — X compatible with the projective system (G,,)?

We answer the question (Q) affirmatively, namely we prove the following

Theorem 1.1. Given a datum (p.l, R) as above, then there is a smooth connected

projective curve X over F, and a compatible system of connected étale Galois covers
Tm : Yo — X with Galois group SLo(R/{™R).

We find a totally real number field F' of degree d = dimg, L so that (1) Op®Z, ~
R and (2) the prime p splits completely in F. Let Mg be the Hilbert modular
variety associated to the totally real field F. The curve X is constructed in the
reduction Mp ® Fp modulo p by vanishing d — 1 Hasse invariants. The cover Y,
arises from the monodromy group for the ¢™-torsion subgroup of the universal
family restricted on X.

The main tool is the ¢-adic monodromy of Hecke invariant subvarieties in the
moduli spaces of abelian varieties developed by Chai [1]. This technique confirms
that the curves X and Y,,, constructed as above are irreducible. The main theorem
for Hilbert modular varieties is stated in Section 2.

The construction above provides a solution to the question (Q) when d > 1. In
case of d = 1, one replaces R by Zy x Zy and proceeds the same construction. By
replacing the covers Y;, by Y;,/(1 x SLo(Z/¢™Z)), one yields a desired compatible
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system of étale Galois covers. Alternatively, one replaces the Hilbert modular
variety M ¢ by the Shimura curve M g associated to an indefinite quaternion algebra
B over Q in which both p and ¢ split, and takes X := Mp ® F,,.

Theorem 1.1 is a special case of the following stronger result, which is commu-
nicated to the author by Akio Tamagawa.

Theorem 1.2. Let G is a pro-finite group that is topologically generated by g
elements and that is almost pro-prime-to-p, i.e. G admits a finite quotient Gg
whose kernel is pro-prime-to-p. Then there exists a proper smooth connected curve
Xy of genus g over E, so that m(Xo) admits a surjective map onto G. .

2. HECKE INVARIANT SUBVARIETIES

In this section we describe a theorem of Chai on Hecke invariant subvarieties in
a Hilbert modular variety.

Let F be a totally real number field of degree g and O be the ring of integers
in F. Let V be a 2-dimensional vector space over F' and ¢ : V. x V — Q be a
Q-bilinear non-degenerate alternating form such that ¥ (az,y) = ¥(x,ay) for all
z,y € V and a € F. We choose and fix a self-dual Op-lattice Vz C V. Let p be
a fixed rational prime, not necessarily unramified in F'. We choose a projective
system of primitive prime-to-p-th roots of unity ¢ = ((m)(m,p)=1 C Q@ C C. We also
fix an embedding Q — @. For any prime-to-p integer m > 1 and any connected
Z(p)[Cm]-scheme S, we obtain an isomorphism Cp, : Z/mZ = p,(S).

Let n > 3 be a prime-to-p positive integer and ¢ is a prime with (¢,pn) =
1. Let m > 0 be a non-negative integer. Denote by Mp ,¢» the moduli space
over Zy)[Cnem] that parametrizes equivalence classes of objects (A, A, ¢,7)s over a
connected locally Noetherian Z ;) [Cnem]-scheme S, where

e (A, \) is a principally polarized abelian scheme over S of relative dimension

9,

e . : Op — Endg(A) is a ring monomorphism such that A o t(a) = t(a)’ o A
for all @ € Op, and

o 1 : Vz/nlmVy = A[nl™](S) is an Op-linear isomorphism such that

(2.1) ex(n(@),n(y)) = Cuem (P(,y)), Y,y € Vz/nl"Vy,

where e) is the Weil pairing induced by the polarization A.

The object (A, A,¢) above is called a (principally) polarized abelian O p-variety,
and 7 is called an Op-linear symplectic level-nf™ structure with respect to the
trivialization (pem.

Let G be the automorphism group scheme over Z associated to the pair (Vz, 9);
for any commutative ring R, the group of R-valued points is

G(R) :={g € GLo,(Vz ®z R); ¥(9(x),9(y)) = ¥(z,y), Yo,y € Vz®z R}.
Let T'(nf™) be the kernel of the reduction map G(Z) — G(Z/nt™Z). Tt is well-
known that one has the complex uniformization

Mp pem (C) > T (nl™)\G(R)/SO(2,R)9.

In particular, the geometric generic fiber Mg pom ® Q is connected. It follows from
the arithmetic compactification constructed in Rapoport [7] that the geometric
special fiber Mg pem ® ), is also connected. Write My¢m := Mp pem ® F), for the
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reduction modulo p of the moduli scheme Mg ,¢m». We have a natural morphism
Tm,m? * M, gmr — Mpgm, for m < m’, which is induced from the map (4, A, ¢,n) —
(A, )\, L7€m/’m77). Let Mn = (Mpgm )m>0 be the tower of this projective system.

Let (X, A, ¢,n) — M, be the universal family. The cover M, represents the
étale sheaf

(2.2) P = Lsomyy, ((Vz /0" Va, ), (X[07], €x) 5 Com)

of Op-linear symplectic level-£™ structures with respect to {gm. Thisis a G(Z/{™Z)-
torsor. Let Z be a geometric point in M,,. Choose an Op-linear isomorphism
y : V®Zy ~ Te(Xz) which is compatible with the polarizations with respect to
(. This amounts to choose a geometric point in Mn over the point . The action
of the geometric fundamental group m1 (M, Z) on the system of fibers (Xz[™])pm
gives rise to the monodromy representation

(2.3) P - T1( My, T) — Auto, (Te(Xz), en)

and to the monodromy representation (using the same notation), through the choice
of y,

(2.4) PM, 0" Wl(Mn,f) — G(Z@).

The connectedness of Mn affirms that the monodromy map py, ¢ is surjective.

For any non-negative integer m > 0, let Hy ,,, be the moduli space over E, that
parametrizes equivalence classes of objects (A; = (Ai, Aiyti,7i),% = 1,2,3;01, p2)
as the diagram

Al P1 AS P2 AQ,

where
e cach A, is a g-dimensional polarized abelian Op-variety with a symplectic
level-n structure, and both A; and A, are in M,;
e 1 and 9 are Op-linear isogenies of degree ¢ that preserve the polariza-
tions and level structures.

Let He := Upm>0He,m. An ¢-adic Hecke correspondence is an irreducible compo-
nent H of Hy together with natural projections pr; and pry. A subset Z of M, is
called ¢-adic Hecke invariant if pry(pr;*(Z)) C Z for any f-adic Hecke correspon-
dence (H,pry,pry). If Z is an f-adic Hecke invariant, locally closed subvariety of
M,,, then the Hecke correspondences induce correspondences on the set I1o(Z) of
geometrically irreducible components. We say I1o(Z) is ¢-adic Hecke transitive if
the ¢-adic Hecke correspondences operate transitively on IIp(Z), that is, for any
two maximal points 71,72 of Z there is an ¢(-Hecke correspondence (H, pry, pry) so

that 7o € pry(pry ' (m))-

Theorem 2.1 (Chai). Let Z be an (-adic Hecke invariant, smooth locally closed
subvariety of M,. Let 7 be a geometric generic point of an irreducible component
Z9 of Z. Suppose that the abelian variety Ay corresponding to the point 7 is not su-

persingular, and that the set Iy(Z) is L-adic Hecke transitive. Then the monodromy
representation

(2.5) pzoe: m(Z°,17) — G(Zs)

is surjective and Z is irreducible.
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The proof of this theorem is given by Chai [1] for Siegel modular varieties, which
uses the semi-simplicity of the geometric monodromy group of a pure Qg-sheaf on a
variety over a finite field due to Grothendieck and Deligne ([2, Corollary 1.3.9 and
Theorem 3.4.1]). Chai’s proof also works for Hilbert modular varieties as stated
in Theorem 2.1; see the expository account in [11]. Let Z,, := Mpm Xy, Z.
Theorem 2.1 also implies that Z,, is irreducible provided the conditions for Z are
satisfied.

3. THE CONSTRUCTION

Lemma 3.1 (Krasner’s Lemma). Let k be a local field of characteristic zero and
f(X) be a monic separable polynomial of degree n. If g(X) is a monic polynomial
of degree n whose coefficients are sufficiently close to those of f(X). Then g(X) is
separable and there is an isomorphism of k-algebras k[X]/(g(X)) ~ k[X]/(f(X)).

PROOF. See a proof of this version of Krasner’s lemma in [6, p. 317]. B

Lemma 3.2. Let S be a finite set of places of a number field k. Let L,, for each
v €S, be a product of local fields over k, of same degree [L, : k,| = n, where k, is
the completion of k at v. Then there is a number field F' over k of degree n such
that F ® k, ~ L, for allv e S.

PROOF. Write L, as k,[X]/(P,(X)) for some monic separable polynomial P,(X)
of degree n. By an effective version of Hilbert’s irreducibility theorem [3, The-
orem 1.3], there is an irreducible monic polynomial P(X) € k[X] of degree n
whose coefficients are sufficiently close to those of P,(X) for each v € S. Set
F = k[X]/(P(X)). By Krasner’s lemma (Lemma 3.1), one has F ® k, =~
ko[ X]/(P(X)) ~ ko [X]/(Py(X)) for all v € S. This completes the proof. N

Corollary 3.3. Given a datum (p,{, R) as before, there is a totally real number
field F of degree d = dimg, L so that (1) Op ® Zy ~ R and (2) the prime p splits
completely in F.

Proor. Take S = {oo,p, ¢} and
Lo=RY L,=Q% L/=1L,
and apply Lemma 3.2. 1

Assume that d > 1. Let F be a totally real number field as in Corollary 3.3. Write
the set of ring homomorphisms from Op to F, as {o1,...,04}. Define modular
varieties M,, and M,,ym over Fp as in Section 2 (with a choice of a system of roots
of unity ¢). Let a: (X, \,¢,n) — M, be the universal family. Let H} (X /M,) be
the algebraic de Rham cohomology; it has a decomposition
(3.1) Hpp(X/M,) = &, Hyp (X /M,)’

with respect to the Op-action, where HJ, (X /M,)" is the o;-isotypic component.
Each component Hp, (X /M,,)" is a locally free Oy, -module of rank 2. The Hodge
filtration

(3.2) 0 — wx/n, — Hpr(X/M,) — R'a,Ox — 0
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also has the same decomposition
(3.3) 0 — whar, — Hbr(X/My,)" — R'a.0% — 0,

forall 1 <4 < d. Let FX/Mn : X — X® be the relative Frobenius morphism,
where X(?) is base change of X by the absolute Frobenius morphism Fy, o My, —
M,,. The morphism Fly/ys,, by functoriality, induces an Oy, -linear map F; :
R'a, 0%, — R'a,O%. By duality, one has h; := FY 1wy ), — w;(p)/Mn. Since
wf,((p)/M ~ (wg{/Mn)‘@p, the homomorphism h; is an element in H°(M,,, L), where
ﬁi = (w;/Mn)(@(pil)'

Let X be the closed subscheme of M,, defined by h; =0 for 2 <1 < d. Let Y,, :=
Myem Xar, X. It is clear that X is stable under all ¢-adic Hecke correspondences.
We verify the conditions in Theorem 2.1:

Lemma 3.4.

(1) The subscheme X is a smooth projective curve over F,.

(2) Any maximal point of X is not supersingular.

(3) The set Ip(X) of irreducible components is ¢-adic Hecke transitive.

PRrROOF. Since points in X are not ordinary, it follows from the semi-stable re-
duction theorem that X is proper. By the Serre-Tate theorem, the deformations
in M, are the same as a product of deformations in an elliptic modular curve. It
is well-known that the zero locus of the Hasse invariant is reduced and ordinary
elliptic curves are dense in the mod p of an elliptic modular curve. From this the
statements (1) and (2) follows. The statement (3) follows from [4, Cor. 4.2.4] (also
see a proof in [11, Theorem 5.2]). B

By Theorem 2.1, the curves X and Y, are irreducible. One also has Aut(Y;,/X) =
G(Z/t™Z) = SLy(R/¢™R). The construction is complete. This finishes the proof
of Theorem 1.1.

The following question to which we do not know the answer. What is the genus
of X as above?

Proof of Theorem 1.2. (This proof is standrad and is known to some experts.)
First we know that for any algebraically closed field k& with positive transcendental
degree over I, and any g > 0, there is a connected smooth proper curve X over k
of genus g so that w1 (X) admits a quotient which is free pro-finite of g generators.
Choose such a curve X with trdeg]Fpk = 1 and we get a surjective map 71 (X) — G.
Let X’ — X be the étale Galois cover corresponding to the natural surjection
m1(X) — Gp. Specialize at a good point for a model X’ — X of Galois covers over
a curve over F,, and get an étale Galois cover X} — X, over F, (see [9, Proposition
2.5 and Corollary 3.5] for a detailed argument of specialization). We claim that
m1(Xo) admits a surjective map onto G.

By the Galois theory and Grothendieck’s specialization theorem, we have the
exact sequences

1l — 7T1(X/) — 7'('1(X) G() 1

1 —_— 7T1(X6) _— 7T1(X0) G() 17




6 CHIA-FU YU

where s and s’ are specilization maps, which are surjective. Let G’ be the kernel
of the map mg : G — Gy. Since G’ is prime-to-p pro-finite, the natural map
7(X') — G’ factors through its maximal prime-to-p quotient m(X’)®). We get
surjective maps

m(X') = m(XG) — m(XH)P ~m(X)P) - @

We want to show that the map f : m1(X) — G factors through 71 (Xp), or equiv-
alently kers C ker f. Let « € kers. Since its image in G is 1, there is a unique
element 2’ € m1(X’) whose image in 7m(X) is z. Now s'(2’) = 1, as its image
in m1(Xo) is 1. This shows that f(x) = 1, and hence that kers C ker f. This
completes the proof. N

Remark 3.5. Consider quaternion algebras B over a totally real number field F' so
that B splits at exactly one of real places of F' and B splits at all primes of F' over
p. Let M be the Shimura curve associated to B and take X := Mp ®F,, to be the
reduction modulo p (see [5] for a nice summary of Thara’s work on Shimura curves).
This exhibits a solution to the question (Q) for not just a prescribed system arising
from SLo over F' ® Q; but also that from its inner twist.
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