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Abstract

We give a meromorphic continuation and a functional equation for the Koecher-Maass
series for positive definite Fourier coefficients of real analytic Siegel-Eisenstein series of degree
two.

1 Introduction

The purpose of this paper is to give a meromorphic continuation and a functional equation of
the Koecher-Maass series for positive definite Fourier coefficients of real analytic Siegel-Eisenstein
series of degree two. It is well known that Koecher-Maass series associated with any holomorphic
Siegel modular form has a meromorphic continuation and a functional equation [14], [12]. As for
non holomorphic Siegel modular froms, the Koecher-Maass series associated with real analytic
Siegel-Eisenstein series of degree n > 3 for any signature was introduced by Arakawa [1]. Their
meromorphic continuation and a vector type functional equation were shown. See also [7] in
which explicit forms of the Koecher-Maass series were given and Arakawa’s functional equation
was simplified employing results in [16]. The case degree is two has a special difficulty to study
associated Koecher-Maass series. In this paper we will consider easier half. In particular a
meromorphic continuation and a functional equation for the Koecher-Maass series for positive
definite Fourier coefficients are given.

Let k£ be an even integer and ¢ a complex number such that 2Ro 4+ k > 3. A real analytic
Siegel-Eisenstein series of degree two and weight k is defined by

Byi(Z,0)= > det(CZ+ D) *|det(CZ + D)|™>°, Z € Hy,
{c,D}

where the sum is taken over all pairs {C, D} which occur as the second matrix row of represen-

tatives of T'? \ Sp2(Z) with the standard notations and Ho = {Z =' Z € M»(C);3Z > O} is
the Siegel upper half-space of degree 2. It has a Fourier expansion

Byn(Z,0)=> C(T,0,Y)e(tr(TX)), Z=X+iY,
T

where the summation extends over all half-integral symmetric matrices of size two and e(x) =
e?™ as usual. By [19], [20], [14], [13], if det T # 0 then the Fourier coefficients can be written
as a product of the Siegel series b(T, k + 20) and a certain function (Y, T, 0 + k, o) (essentially
the confluent hypergeometric function of degree two):

C(T,0,Y)=0b(T,k+20)¢Y,T,0+k,o0),



b(T,0)= Y,  v(R) 7e(tr(TR)),
ReS2(Q)/S2(Z)

EY, T, a,) = / e(—tr(TX))det(X +iY) " “det(X — V) PdX,
S2(R)
where S9(K) is the set of all symmetric matrices of size two whose components are in K and
v(R) = | det C| when we write R =C~'D, (4 B) € Spa(Z).
Let ag (7T, 0) be an arithmetic part of C(T,0,Y) defined by

ag i (T, 0) = ya(k + 20)| det 2T [FF20=3/222h(T k + 20),

where v5(0) = €™ 7212 (¢)"'I'(6 — 1/2)~'. Note that b(T,k + 20) has a meromorphic
continuation to all o. Then following Ibukiyama and Katsurada [7], the Koecher-Maass series
for positive definite Fourier coefficients is defined by

) B az (T, 0)
L0 = Y et
TeL} /SLa(Z)

where L; is the set of all half-integral positive definite symmetric matrices of size two, the
summation extends over all T' € Li modulo the usual action T — T[U] = 'UTU of the group
SLy(Z) and €(T) = #{U € SLo(Z); T[U] = T} is the order of the unit group of 7. Put

Ly 4,(s,0) = (27)"%T()I'(s — 20 — k + 3/2)LY)(s, 7).
The main result is the following.

Theorem 1. Suppose that o ¢ 1/4+ Z/2. Then the Koecher-Maass series L3, (s, o) can be
meromorphically continued to the whole s-plane. It satisfies a functional equation

L5 (k +20 —s,0) = L3 . (s,0)
1 9pk—20+1/2 Y2(k +20)((k + 20 — 1)
C(k + 20)C(2k + 4o — 2)
sinmosinm(s —o) I'(s)I'(s—20—k+3/2)
cosmssinm(s —20) (s — 1/2)['(s — 20 — k+ 1)

C*(2s —1)("(2s — 40 — 2k + 2),
where C*(s) = n=%/2T(s/2)((s) is the completed Riemann zeta function.

As a special case we have analytic properties of a Dirichlet series defined by

0 2
E(s) = 72 T(s)T(s — 1/2)C(2s ~ 1) Y TS
d=1

where H(d) is the weighted class number given by

H(d) = > (7).

TeL} /SLa(Z), det2T=d

Then as a corollary to Theorem 1 we have the following result. In fact £(s) is the Koecher-
Maass series for the non-holomorphic Siegel-Eisenstein series of degree two and weight two
(k=2,0 =0). It should be compaired with [21, p.42, Theorem 2 (i)], [23, p.229, Theorem 3],
17, [10],



Corollary 1. The Dirichlet series £(s) can be meromorphically continued to the whole s-plane.
It satisfies a functional equation

I'(s)

—5) = -3.-3/2_ )
€@ —s) =) +270m 2(:os7rslﬂ(s—1)

C*(2s —1)(*(2s — 2).

We want to define a Koecher-Maass series not only for positive definite Fourier coefficients,
but also for indefinite Fourier coefficients. We can expect to replace ¢(T)~! by a certain volume
w(T) introduced by Siegel. See [21], [7], [8, p.1100] for its definition. However it is known that
if —detT is a square of a rational number then u(7') is not finite. The same difficulty comes
up when we treat the prehomogeneous zeta function associated with the space of two by two
symmetric matrices. This case was solved by Shintani [21]. There are different approaches due
to Sato [17] and Ibukiyama and Saito [10]. Ibukiyama and Saito [10] proved all of the Shintani’s
results by using certain real analytic Eisenstein series of half-integral weight. See also [23]. Our
treatment of the Koecher-Maass series is a “convolution version” of their method. In the future
we will use results in this paper to get a reasonable definition of Koecher-Maass series for the
indefinite case by following the approach developed in [9], [10].

2 Koecher-Maass series and certain convolution product

In this section an explicit formula for the Koecher-Maass series will be given as a convolution
product. Then we summarize analytic properties of this convolution product. Throughout this
paper, the branch of z® is taken so that —7 < argz < 7.

Proposition 1. One has

LY)(s,0) = 2% 25 (k + 20)
((2s—k—20+1)
X
C(k + 20)C(2k + 4o — 2)

> H(d)L_q(k + 20 — 1)d*T2773/27,
d>0

Here

¢(2s — 1), D=0

Li(s) = L(s,xK) ZM(Q)XK(a)afsal_gs(f/a), D#0,D=0,1 (mod4)
al
! 0, D =2,3 (mod4),

where the natural number f is defined by D = dg f? with the discriminant dg of K = Q(v/D),
XK 18 the Kronecker symbol, p is the Mobius function and os(n) = Zd‘n ds.

Proof. For non-degenerate T', the explicit formula due to Kaufthold [13] implies

1
T,0) = ———— d> 7L _aeor (0 —
(T,0) C(0)¢(20 —2) d%;) T(J 1),

where e(T') = (n,r,m) is the greatest common divisor of n,r,m for T' = (TT;Q rr/nz). Hence by

Bocherer [2, p.20, Satz 3 (d)], we get



Z b(T, o) _ o2 28+G—2 Z (o —1)d

e(T)det T (20 —2)
TeL} /SLa(Z) d
and thus complete the proof.

For a complex number o, odd k and an integer d, put

_ k+1
c(d, o, k) = 2k+3/272oe<f1><k+”/2%L<*1>“““”2d(" > )
(20 —k—1)

This is an arithmetic part of the d-th Fourier coefficient of a real analytic Eisenstein series of
half-integral weight —k/2 with a parameter o on I'g(4) called Cohen’s Eisenstein series ([10],
[16]). We fix even k and a complex number o. Then for complex numbers 7 and s such that Rs
sufficiently large, a kind of convolution product R (s,n) is defined by

Roo(sv ’f]) = Z C(d? n, _3)C(d7 20 + 27 —2k + 5)Id(5a m, 20 + 2, _37 —2k + 5)a
d#0

where 14(s, 01, 09, k1, k2) is the Mellin transform of a product of two Whittaker functions W, s(y),

Was(y) =y ¥ Pw(y; 1/2+ a + 5,1/2 — a + B),

w(y; , B) = y°T(B)" /00(1 + u) Ll eV dy,

0

As for detail expositions on these special functions, see [18] and [15, section 7.2]. By definition
1; has the form

155 k+k ki1 —k —_ ki+k o143
Lis, 01,02, k1, k) = [d) 727 7 T e (T (2m) T ()
O kytky
></ gt W osgam o k1 ()W stk ka1 (Y)dy
0 4 72 4 2 4 ’ 2 4 2
L TEFH IR ford >0
I( 1r(02) L ford<0.

%)
By [16, Theorem 2], the function Q, ,(s,n) defined by
Qko(s,m) =2%7175T (s — 3/2) (25 — k + 1) Roo (s, 7)
can be meromorphically continued to the whole s-plane and satisfies a functional equation
Qo (5,17) = Qo — 5,1).

For any sign e = £, let RS (s,n) be the subseries of R (s,n) indexed by positive or negative
integers d:

RS (s,n) = Z c(d,n,—3)c(d, 20 + 2, =2k + 5)14(s,n,20 + 2, -3, -2k + 5), (1)
ed>0
Qija(s, n) = 228 75T (s —3/2)C(2s — k+ 1)R (s,m). (2)



Since it is easy to see that 0 »(s,7) is holomorphic at n = 0, if we put

Qk,U(S) = Qk,U(Sv 0)’ 2,0(5) = 2,0(57 0)7 (3)
then the functional equation of €, ,(s,7n) implies
Qk,a(s) = Qk,a(k - 5)' (4)

Let us relate Q+ »(8) with the Koecher-Maass series LgQZ(s, o). For d > 0, the class number

formula L_4(1) = dgl’;QH (d) implies

9—2k—47+2
C(2)¢(4T + 2k — 2)
On the other hand, the formula [6, p.816, 7.621.11] combined with W,/ ,(y) = Y/ 2qpt1/2
(the formula in [5, p.432] line 3 from the bottom) yields
e(k/4)(2m)? 7 HF T (s + T)[(s — T — k + 3)
(4m)TH T30 (@ + k — 3)T(s —k+ 3)

(d,0,—3)c(d, 20 + 2, =2k + 5) = H(d)L_4(26 + k — 1)d~ /2.

I4(5,0,20 +2,—3,—2k +5) = d°TF1=¢

These two equations combined with (1), (2) and Proposition 1 tell us that

e(—k/4)2 k—dotlp3otht2¢(20 + k) T(s— o —3/2)

Yo =) = T Ok + o~ 3/2C@alh + 20) Ts —F — o +5/2)

2x(s,0). (5)

3 A meromorphic continuation of 2, _(s)

In order to obtain a meromorphic continuation and a functional equation of Q;_(s), we first

study the function ; _(s). Because of zero of I'(n/2) ! and the holomorphy of L(n+ 1, xx) for
dg # 1, one has

O o(s) =2%77°T (s = 3/2)¢(2s =k + 1)

Xllmz —f2m,=3)e(—f2%,20 + 2,2k + 5)I_j2(s,1,20 + 2, -3, =2k + 5),
f>1

where

FrH2T k=225 e(k/4)(2m)nt2oth+1

I , 1,2 2,-3,—2k+5) = - —
f2(8 1,20 + + ) F(n/2)1‘\(0.+1)(47r)77/2+0+s

> s—kHLY_1
X /0 y( ) ng,ngi(y)W_§+%,E+§_%(y)dy' (6)
Lemma 1. One has
lim Z I'(n/2)~ 2 1, —3)e(—f2, 20 + 2, —2k + B) fIrH2 222
f>1
e(1/4)¢(20 + k —1) C(2s—20 —2k+2)((2s+25 — 1)
2P(0,-3)P(25 + 2, —2k + 5) C(2s—k+1) ’

where P(o,k) = 6%2_]”'2”_3/2((20 —k—1) fork=1 (mod 4).



Proof. A simple calculation implies

D wdyd o aa(f/d) | [ D uld)ydPor_os(f/d) | £

=1 \ar af
_ S=E@B =y = 1)CRa =y = 1)¢(2a + 26 —v - 2)
at B0
x T A@+p"=0PM @ +p7 ) — (7 + 7)1+ p' )
prime p

This yields Lemma 1.

To study the gamma like factor of above series, we define three functions

K = [ oW oW s s ™)

1
4

NI

I(s+o)(s+7—3)I(-20 —k+3)

K —
1(s) T(—)I(s+5+1)
s+o7, s+to—3%, k+o—3
X3H[2a+k—; s+7+1 ’ (8)
Is——k+3(s—a—k+1)T(20+k—3
Ko(s) = ( )L ( )I( 5)

T(k+5—3)(s—5—k+3)
s—o—k+3 s-5-k+1, -7
X3B{—4—k+; s—o—k+2 }

Here 3F5 is generalized hypergeometric series at unit argument given by

a7
3k [ .

i

b, ¢ (@)n(0)n(C)n
= e n=" I(z), =1,
e Z DO (@) = Tla 4 /@), (o
where e, f ¢ {0,—1,-2,....} and R(e+ f—a—b—c) > 0.

The integral defining K (s) converges for s > Ro +k —1 if Ro +§ > % and for fs > % —Ro
5

if Ro + % < %. The series defining Kj;(s) converges for #ts < 5. The following lemma gives

meromorphic continuations of these functions to the whole s-plane.

Lemma 2. Let k be an even integer and o ¢ 1/4 4+ Z/2 a complex number. Suppose k < 5
Then K;(s) can be meromorphically continued to all s. Suppose k < 5, Ro+k < & zf Ro+E 5 = 4

and suppose k < 5, —2 < Ro if Ko + % < %. Then K (s) can be meromorphically contmued to
the whole s-plane by the relation

K(s) = Ki(s) + Ka(s). (10)
Proof. If we put

A(s) = 3y Boik-1 stoil ; (11)



then

Ks(s) = B(s). (14)

It follows from the formula [22, (4.3.1.3)] (see also [11, p.312, (3.4.2)]) that

L3 —s)I(s+o+1)

Als) = T(s—k+3)T(k—s+o+1)

A(k - 8)7

I(S—s)(s—k—7+3)

B(S):r(s—k+g)r(g—s—5)

B(k — s).

These equations hold for k—3 < Rs < 5 and give a meromorphic continuation of A(s) and B(s)
to the whole s-plane. Hence K (s) and Ka(s) can be meromorphically continued to the whole
s-plane if we define their values on the domain s > k — % by

[(-26—k+3)T(s+)I(s+7— 33 —s)
I'(—0) I(s—k+3)I(k—s+a+1)

Ki(s) = Ak — ), (15)

Kola) F2+k—3)T(s—k—o+ 35 —s)(s—k—7+1)
2(s) = T(k+o—2) T(s—k+3(3E -s—7)

The equation (10) follows from the formula [6, p.814, 7.611.7] (or [5, p.410, (42)]) for Ro +k —
1 < Rs < % if?RU—i—% > % and for%—?Ra < Rs < % if?]%a—i—% < %. By the meromorphic
continuation of Kj(s) and K»(s) by means of (8), (15), (9), (16), we get that of K(s) by the
relation (10). (Note that there is a misprint in the formula [6, p.814, 7.611.7]. In the first 3Fb,

the third parameter £ — X\ — v should be 1 — A + v.)

Bk — s). (16)

It follows from (6), (7) and Lemma 2 that

0 MO (0 k)T (s — 3)K (s)
kal®) = I(s+o—3)(s—o—k+1)

C*(2s+20 — 1)(*(2s — 20 — 2k + 2), (17)

where

Clo.k) e((k+1)/4)(2n) 2 Hh+1¢(25 + k — 1)
o, k)= — :
") 905 + 1)(4n)7 P(0, —3)P(25 + 2, —2k + 5)
This equation combined with the meromorphic continuations of (*(s) and K(s) obtained in

Lemma 2 implies a meromorphic continuation of €2, _(s) to the whole s-plane under the as-
sumptions in Lemma 2.



4 TFunctional equation of Q (s): proof of Theorem 1

Theorem 1 follows from the next proposition.

Proposition 2. Let k < 5 be an even integer and o ¢ 1/4 + Z/2 a complex number. Suppose
Ro+k < % if Ro + % > % and suppose —2 < Ro if Ro + % < %. Then Q;‘(T(s) defined by (2)
can be meromorphically continued to the whole s-plane. It satisfies a functional equation

Q:U(k —s) = Q;’U(s)
(k/4) 9—k+2—4o E+5/2C(2E+ k— 1)
D(3T(k+7 —3/2)¢(2)¢(4o + 2k — 2)
" sin 7o sin s F(s—3)(s+)(s—o—k+3)
cosm(s+0)sinm(s =) (s —k+ 3)(s—o —k+1)(s+7— 1)

C*(2s+ 20 — 1)(*(2s — 20 — 2k + 2)

Proof. A meromorphic continuation of 1 (s) = Q4 ,(s) — Q; ,(s) to the whole s-plane
follows from section 2 and 3. By the functional equation (4), we have

Q;a(s) + Q,;U(s) = Qza(k: —s)+ Q,;g(k —3). (18)

We want to simplify Q (s) — €, (k —s). Applying the functional equation of ¢*(s) to (17)
implies

Qoo (5) = Qo (k = 5) = 7 HH2C (0, k)¢ (25 + 20 — 1)C*(25 — 20 — 2k + 2)
(s—ﬁ (s) . T(k-s-3K((k—5s) 1)
T(s+o—)(s—a—k+1) T(h-s+o—-H(1-s—2a) |

Suppose Rs < % By (15) and (16), we get

(26— k+3)T(k—s+a)(k—s+o—H(s—k+3)
I'(-7) I(—s+3)(s+7+1)

Ki(k - s) = As),

F20+k—3)T(-s—o+3)(-k+s+ ) (-s—7+1)
Nk+o—32) D(—s+3)(s—7—k+2)
These equations combined with (10) imply that (19) can be written as

Kg(k‘ — S) =

B(s).

o (8) = Qp (k= 8) = 7 /200, k)¢ (25 + 25 — 1) (25 — 26 — 2k + 2)

L JTE20—k+3) (s — 3)T(s + P (s +7 — })
I'(-o) T(s+7—3)(s—a—k+1)(s+7+1)

F%—s—@F%—s+®F@—k+@>A@)

Fl1-s-a)(-s+3)I(s+7+1)
r2e+k-3)( T(s—3T(s—d—k+3)(s—a—k+1)
Fk+o—3) \I'(s+oc—3)(s——k+1)['(s—7—k+3)

I(k—s—3)(—s—5+3)(s—k+3)
_rw—s+a w@ﬁ+gﬁﬁ_a_k+®>3@%. (20)

—

olwo Nl

w\»—‘

oo



It follows from the formula [3, p.15, (2)] (or [22, p.115, (4.3.4)]) that
I'3-—s—o)0(20+k—3)T(s+o+1)I'(k—s—32)

A= Do +h—L— sl Qh+a-3)
N F3-—s—o)(20+k—(s+5+1)(s—k+3)
L@+ 1)(s—k+2)T'(k—s)I(s+7)
k+o—-3, -7, k—-s—3
xaly | g 3_§jk_; e

Bla) — M(—s+0+ k(20 —k+3)(s—a—k+3)(-s+k—3)
(s) = T(—s—7 + )T () (o)

D(—s+a+k)I(-26—k+ 3 (s—a—k+3)T(s—k+3)

+
I(——k+3)(s—k+ 5T (k—s)(s—a—k+3)
-7, 0+k—g,k—s—§]

X3F2[k:—5—%, k—s

Substituting these equations into (20), we get
Qo (8) = (k—s) =("(2s +20 — 1)¢7(25 — 20 — 2k + 2)
F—3 _F _g_3
UL BICRRCOI Y LA N 13
T2 2
where X (s) and Y (s) are defined by
(26— k+3T (20 +k-HTE-s—a)(s—k+3)

Yis) = M—5)0 @ + 1) (k= 5)
I'(s—3) T(k—s—3I'(k—s+07)
(F(s—k—l—%)F(s—a—k%—l)_F(s+a)F(1—s—0)F(—s+g)>
F20+k—3(-20—k+2)(-s+k+o)(s—k+3)
T(k+7—3)I(~o —k+3) L(k — s)
( I(s—3) _ P(k—s = Hl(=s —7+3)
(s—k+2T(s+o—3) Ds—o—k+3)(k—s+7—5I(-s+3)
X(S):r(—2a—k+g)r(2a+k—§)r(%—s—a)r(k—s—g)
L(-a)I'E)rk+7—32) rG+k—s—1)
I(s— (s +7) T(k—s—)T(k—s+a)T(~k+s+3)
X(F@—a—k+1)_ T(1—s—o)(—s+2) >
F25+k—3)(-20—k+3)T(-s+k+o)[(-s+k—3)
L(—o)L3)I(k+7—3) (- —s+1)

(ms_yr@—g—k+g)_r@—s—gwpﬁ—a+gwp%+s+2)

[(s+7—3) T(k—s+6— I (-s+3)

(21)

)



The reflection formula of the gamma function implies

¥ (s) —7? I'(s—k+ 2){cosm(s + ) cosmssinm(s —7)} !
S) =
cos2nma I'(k — s)[(s —k+ 2)[(—s+ 3)[(s—o—k+ 1)(s+o — 1)

X (cosma cosT(s +7) +sinmosinm(s + ) — cosmo cosm(s — ) + sinwosinw(s — 7))

and the additive formulas of trigonometric functions imply Y'(s) = 0. By a similar way we have

2
-
X =
()= o 27T (—) D)0 (k + o — 3)
L(s—3)I(s+o)(s—oc—k+3) cosm(s—a)sinn(s+7)
I(s—k+3)(s—o—k+1)[(s+0o—3) COS TS

1 1
X .
(sinw(s +7)cosm(s+7T) + sinm(s — ) cosm(s — 0)>
A simplification combined with (18) and (21) implies Proposition 2.

Let us prove Theorem 1. For an even integer k£ and a complex number o, we take a natural
number [ so that the assumptions in Proposition 2 are satisfied for & = k — 4l and ¢/ = o + 2l.
Then Proposition 2 combined with (5) implies Theorem 1 for &/, ¢’. Using k' + 20" = k + 20, we
complete the proof of Theorem 1.
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