COMBINATORIAL IDENTITIES FOR YANGIAN

Natalia Rozhkovskaya
Department of Mathematics
Kansas State University, USA/ MPIM, Bonn, Germany

Abstract

We prove analogues of Cayley-Hamilton identities and Newton's formulas for the matrix of generators of Yangian of $\mathfrak{g l}_{n}(\mathbb{C})$.

1. Introduction

In this note we prove the analogues of Cayley-Hamilton theorem and Newton's formulas for the matrix of generators of Yangian of $\mathfrak{g l}_{n}(\mathbb{C})$. This requires a generalization of the definition of a power of this matrix, which is done in the spirit of the q -version of power sums, introduced in [3], and also used in [6]. They are natural generalizations of powers of matrices in case of quantum groups, since they "remember" the braiding in the defining relations of the quantum group.

All of the three defined in Section 3 generalizations of powers of $T(u)$ are the matrices with coefficients in $Y\left[\left[u^{-1}\right]\right]$ (or in $Y\left[\left[u^{-1}, v_{1}^{-1} \ldots v_{m}^{-1}\right]\right]$). The shifted power $T^{l}(u \mid \rho)$ is the most straightforward generalization of a power of an ordinary matrix. The permuted matrix $T^{[l]}(u \mid \rho)$ can be expressed through the shifted powers $T^{l}(u \mid \rho)$ for $l \leq m$ (Proposition 1). The matrix $T^{\langle m\rangle}(u \mid \rho)$, does not enjoy that property, but it satisfies an analogue of Cayley-Hamilton identity with coefficients in Bethe-subalgebra of Yangian (Corollary 1). Both permuted powers lead to the analog of Newton's formula (Corollary 2).

The structure of the note is the following. Section 2 reviews definition of Yangian and notations. Section 3 defines the generalizations of powers of matrix of generators of $T(u)$ and describes their properties. Section 4 summarizes the properties of symmetrizer and antisymmetrizer. Section 5 states and proves the discussed above combinatorial identities.

2. Yangian of $\mathfrak{g l}_{n}(\mathbb{C})$

Here we review definitions and some properties of Yangians that will be used later ([4], [5]).
Definition 1. The Yangian $Y(n)$ for $\mathfrak{g l}_{n}(\mathbb{C})$ is a unital associative algebra over \mathbb{C} with countably many generators $\left\{t_{i j}^{(r)}\right\}, r=1,2, \ldots, 1 \leq i, j \leq n$ and the defining relations

$$
\left[t_{i j}^{(r+1)}, t_{k l}^{(s)}\right]-\left[t_{i j}^{(r)}, t_{k l}^{(s+1)}\right]=t_{k j}^{(r)} t_{i l}^{(s)}-t_{k j}^{(s)} t_{i l}^{(r)},
$$

where $r, s=0,1,2 \ldots$ and $t_{i j}^{(0)}=\delta_{i j}$.
The same set of defining relations can be combined into one equation, sometimes called RTT-relation. Namely, denote by $T(u)=\left(t_{i j}(u)\right)_{i, j=1}^{n}$ the matrix with coefficients $t_{i j}(u)$,
which are formal power series of generators of $Y(n)$:

$$
t_{i j}(u)=\delta_{i j}+\sum_{k=1}^{\infty} \frac{t_{i j}^{(k)}}{u^{k}} .
$$

For $P=\sum E_{i j} \otimes E_{j i}$, the permutation matrix of $\mathbb{C}^{n} \otimes \mathbb{C}^{n}$, define the Yang matrix

$$
R(u)=1-\frac{P}{u} .
$$

It is a rational function with values in End $\mathbb{C}^{n} \otimes$ End \mathbb{C}^{n}.
We introduce some standard notations. For any vector space V and any element S of End V we define an element S_{k} of $\operatorname{End} V^{\otimes m}$ by

$$
S_{k}=1^{\otimes(k-1)} \otimes S \otimes 1^{\otimes(m-k)}
$$

In particular, we write

$$
T_{k}(u)=\sum_{i j} t_{i j}(u) \otimes\left(E_{i j}\right)_{k} \in Y(n) \otimes \operatorname{End}\left(\mathbb{C}^{n}\right)^{\otimes m}
$$

Let S be an element of $\operatorname{End} V \otimes \operatorname{End} V$. Using the abbreviated notation $S=S(1) \otimes S(2)$, we define an element $S_{i j}$ of $\operatorname{End}\left(\mathbb{C}^{n}\right)^{\otimes m}$ by

$$
S_{i j}=1^{\otimes(i-1)} \otimes S(1) \otimes 1^{\otimes(j-i-1)} \otimes S(2) \otimes 1^{\otimes(m-j-i)}
$$

Definition 2. The Yangian $Y(n)$ of $\mathfrak{g l}_{n}(\mathbb{C})$ is an associative unital algebra over \mathbb{C} with the set of generators $\left\{t_{i j}^{(k)}\right\}$ which satisfy the equation

$$
R(u-v) T_{1}(u) T_{2}(v)=T_{2}(v) T_{1}(u) R(u-v) .
$$

Yangian $Y(n)$ is an example of infinite-dimensional quantum group. It has a group-like central element, which is called quantum determinant of $Y(n)$.

Definition 3. Quantum determinant qdet $T(u)$ is a formal series with coefficients in $Y(n)$, defined by

$$
\operatorname{qdet} T(u)=\sum_{\sigma \in S_{n}}(-1)^{\sigma} t_{1 \sigma(1)}(u-n+1) \ldots t_{n \sigma(n)}(u) .
$$

We use the following notations for traces. Let $X \in \operatorname{End}(V)^{\otimes m}$. Then $\operatorname{tr}(X)$ denotes the full trace of X, and $\operatorname{tr}_{\hat{k}}(X)=\operatorname{tr}_{1 \ldots k-1, k+1 \ldots m}(X)$ denotes the trace over all tensor components of X, except the k-th component.

3. Powers of $T(u)$ AND their properties

3.1. Definitions of generalized powers. Consider the matrix of generators of the Yangian

$$
T(u)=\sum_{i j} E_{i j} \otimes t_{i j}(u) .
$$

Let $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots\right)$ be an arbitrary sequence of complex numbers.
Definition 4. (Shifted power of $T(u)$)

$$
\begin{equation*}
T^{m}(u \mid \alpha)=T\left(u-\alpha_{1}\right) \ldots T\left(u-\alpha_{m}\right) \tag{1}
\end{equation*}
$$

Let $\rho=(0,1,2, \ldots)$ and let us fix a sequence of complex numbers $v=\left(v_{1}, v_{2}, \ldots\right)$. We use abbreviated notations $R_{k}=R_{k, k+1}\left(v_{k}\right)$.
Definition 5. (Permuted powers of $T(u)$)

$$
\begin{equation*}
T^{[m]}(u \mid \rho)=\operatorname{tr}_{\hat{1}}\left(T_{1}(u) T_{2}(u-1) \ldots T_{m}(u-m+1) R_{m-1} \ldots R_{1}\right) \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
T^{<m>}(u \mid \rho)=\operatorname{tr}_{\hat{m}}\left(s T_{1}(u) T_{2}(u-1) \ldots T_{m}(u-m+1) R_{m-1} \ldots R_{1}\right) \tag{3}
\end{equation*}
$$

Remark. Occasionally $T^{[m]}(u \mid-\rho)$ and $T^{<m>}(u \mid-\rho)$ will be used, which are defined similarly.
3.2. Properties of the m-th shifted power matrix. There are two possible interpretations of the "shifted power" $T^{m}(u \mid \alpha)$.

For the first one, let $\mu: Y(n) \otimes Y(n) \rightarrow Y(n)$ be the multiplication operation in $Y(n)$ and let Δ be the coproduct $Y(n) \rightarrow Y(n) \otimes Y(n)$:

$$
\Delta\left(t_{i j}(u)\right)=\sum_{k} t_{i k}(u) \otimes t_{k j}(u)
$$

For any complex number a define a shift-automomorphism of $Y(n)$ by the formula

$$
\tau_{a} T(u)=T(u-a)
$$

Then

$$
\begin{equation*}
T^{m}(u \mid \alpha)=\mu^{\otimes m} \cdot\left(\tau_{\alpha_{1}} \otimes \cdots \otimes \tau_{\alpha_{m}}\right) \cdot \Delta^{(m)} T(u) \tag{4}
\end{equation*}
$$

The second interpretation involves the permutation matrix $P=\sum_{i, j} E_{i j} \otimes E_{j i}$. It defines the action of the group algebra $\mathbb{C}\left[\mathcal{S}_{m}\right]$ of the symmetric group on the tensor product $\left(\mathbb{C}^{n}\right)^{\otimes m}$. Namely, a transposition (k, l) acts as an operator $P_{k, l}$ permuting the k-th and l-th component of $\left(\mathbb{C}^{n}\right)^{\otimes m}$. Then

$$
\begin{equation*}
T^{m}(u \mid \alpha)=\operatorname{tr}_{\hat{m}}\left(T_{m}\left(u-\alpha_{1}\right) \ldots T_{1}\left(u-\alpha_{m}\right)(m, \ldots 1)\right), \tag{5}
\end{equation*}
$$

where $(m, \ldots, 1)=P_{m-1, m} P_{m-2, m-1} \ldots P_{12}$.
Remark. Also

$$
\begin{aligned}
T^{m}(u \mid \alpha) & =\operatorname{tr}_{\hat{m}}\left((1, \ldots, m) T_{1}\left(u-\alpha_{1}\right) \ldots T_{m}\left(u-\alpha_{m}\right)\right) \\
& =\operatorname{tr}_{\hat{1}}\left(T_{1}\left(u-\alpha_{1}\right) \ldots T_{m}\left(u-\alpha_{m}\right)(m, \ldots, 1)\right) \\
& =\operatorname{tr}_{\hat{1}}\left((1, \ldots m) T_{m}\left(u-\alpha_{1}\right) \ldots T_{1}\left(u-\alpha_{m}\right)\right) .
\end{aligned}
$$

3.3. Propereties of [m]-th permuted power matrix. The matrix $T^{[m]}(u \mid \rho)$ is a sum of products of some shifted power traces with a shifted power matrix and with rational functions of $\bar{v}=\left(v_{1} \ldots v_{m}\right)$.

More precisely, let $\lambda=\left(\lambda_{1}, \ldots \lambda_{k}\right)$ be a partition of m. We set

$$
\begin{aligned}
& a_{0}=0 \\
& a_{1}=\lambda_{1} \\
& a_{2}=\lambda_{1}+\lambda_{2} \\
& \ldots \\
& a_{k-1}=\lambda_{1}+\cdots+\lambda_{k-1} .
\end{aligned}
$$

Proposition 1.

$$
\begin{equation*}
T^{[m]}(u \mid \rho)=\sum_{\lambda \vdash m} V(\lambda) T^{\lambda_{1}}(u \mid \rho) \operatorname{tr}\left(T^{\lambda_{2}}\left(u-a_{1} \mid \rho\right) \ldots T^{\lambda_{k}}\left(u-a_{k-1} \mid \rho\right)\right) . \tag{6}
\end{equation*}
$$

Here

$$
\begin{equation*}
V(\lambda)=(-1)^{(m-k)} \frac{v_{a_{k-1} \ldots v_{a_{1}}}}{v_{m-1} \ldots v_{1}} . \tag{7}
\end{equation*}
$$

Proof. Observe that in the symmetric group \mathcal{S}_{m} for any r and s such that $m>r \geq s>1$

$$
(r, r+1)(r-1, r), \ldots(s, s+1)=(r+1, r, r-1, \ldots s) .
$$

Therefore, the product $R_{m-1} R_{m-2} \ldots R_{1}$ acts on $\left(\mathbb{C}^{n}\right)^{\otimes m}$ as the following element of the group algebra $\mathbb{C}\left[\mathcal{S}_{m}\right]$:

$$
\sum_{\lambda \vdash m} V(\lambda) \sigma_{\lambda},
$$

where σ_{λ} is the product of cycles:

$$
\sigma_{\lambda}=\left(m, \ldots a_{k-1}+1\right) \ldots\left(a_{2}, \ldots, a_{1}+1\right)\left(a_{1}, \ldots, 1\right) .
$$

and $V(\lambda)$ is as in (7). Now

$$
\begin{aligned}
& \operatorname{tr}_{\hat{1}}\left(T_{1} T_{2} \ldots T_{m} \sigma_{\lambda}\right)= \\
& =\operatorname{tr}_{\hat{1}} \sum_{i, j} E_{i_{1} j_{\sigma_{\lambda}(1)}} \otimes \cdots \otimes E_{i_{m} j_{\sigma_{\lambda}(m)}} t_{i_{1} j_{1}}(u) \ldots t_{i_{m} j_{m}}(u-m+1) \\
& =\sum_{i_{1}, \bar{j}} E_{i_{1} j_{a_{1}}}\left(t_{i_{1} j_{1}}(u) \ldots t_{j_{a_{1}-1} j_{a_{1}}}\left(u-a_{1}+1\right)\right) \ldots\left(\left(t_{j_{m j_{a_{k-1}+1}}}\left(u-a_{k-1}\right) \ldots t_{j_{m-1} j_{m}}(u-m+1)\right)\right. \\
& \left.=T^{\lambda_{1}}(u \mid \rho) \operatorname{tr} T^{\lambda_{2}}\left(u-a_{1} \mid \rho\right) \ldots \operatorname{tr} T^{\lambda_{k}}\left(u-a_{k-1} \mid \rho\right)\right) .
\end{aligned}
$$

By taking the sum over all partitions λ we complete the proof.

4. Symmetric and Antisymmetric power traces

4.1. Definition and properties. Consider the antisymmetirzer and symmetrizer of $\left(\mathbb{C}^{n}\right)^{\otimes m}$, given by

$$
A_{m}=\frac{1}{m!} \sum_{\sigma \in \mathcal{S}_{m}}(-1)^{\sigma} \sigma, \quad S_{m}=\frac{1}{m!} \sum_{\sigma \in \mathcal{S}_{m}} \sigma
$$

These operators enjoy the following properties.
Proposition 2. (a)

$$
A_{m}^{2}=A_{m} \quad \text { and } \quad S_{m}^{2}=S_{m}
$$

(b) With abbreviated notations $R_{i j}=R_{i j}\left(v_{i}-v_{j}\right)$, write

$$
R\left(v_{1}, \ldots v_{m}\right)=\left(R_{m-1, m}\right)\left(R_{m-2, m} R_{m-2, m-1}\right) \ldots\left(R_{1, m} \ldots R_{1,2}\right) .
$$

Then $A_{m}=\frac{1}{m!} R(u, u-1, \ldots u-m+1)$, and $S_{m}=\frac{1}{m!} R(u, u+1, \ldots u+m-1)$.

$$
\begin{align*}
A_{m} T_{1}(u) \ldots T_{m}(u-m+1) & =T_{m}(u-m+1) \ldots T_{1}(u) A_{m}, \tag{c}\\
S_{m} T_{1}(u) \ldots T_{m}(u+m-1) & =T_{m}(u+m-1) \ldots T_{1}(u) S_{m} .
\end{align*}
$$

(d)

$$
\begin{aligned}
A_{m+1} & =\frac{1}{m+1} A_{m}\left((1-m u)+m u R_{m, m+1}(u)\right) A_{m} \\
S_{m+1} & =\frac{1}{m+1} S_{m}\left((1+m u)-m u R_{m, m+1}(u)\right) S_{m}
\end{aligned}
$$

(e)

$$
\operatorname{tr}\left(A_{n} T_{1}(u) \ldots T_{n}(u-n+1)\right)=q \operatorname{det} T(u) .
$$

Definition 6. Put

$$
\begin{aligned}
& \tau_{k}(u)=\operatorname{tr}\left(A_{k} T_{1}(u) \ldots T_{k}(u-k+1)\right), \\
& h_{k}(u)=\operatorname{tr}\left(S_{k} T_{1}(u) \ldots T_{k}(u+k-1)\right) .
\end{aligned}
$$

4.2. Relation to Bethe subalgebra. In [1],[2] a commutative subalgebra $B\left(\mathfrak{g l}_{n}(\mathbb{C}, Z)\right)$ of the Yangian Y is studied. It is called Bethe subalgebra and its generators are the coefficients of all the series

$$
B_{k}(u, Z)=\operatorname{tr}\left(A_{n} T_{1} \ldots T_{k} Z_{k+1} \ldots Z_{n}\right),
$$

where Z is a matrix of size n by n with complex coefficients. Our elements $\tau_{k}(u)$ are proportional to $B_{k}(u, 1)$ with Z being the identity.

Indeed, by Proposition(2) (d) and (a) we obtain that

$$
\begin{aligned}
& \operatorname{tr}_{1 \ldots m+1}\left(A_{m+1} T_{1} \ldots T_{k} \otimes 1^{\otimes^{m+1-k}}\right) \\
= & \frac{1}{m+1} \operatorname{tr}_{1 \ldots m+1}\left(A_{m}\left((1-m(m, m+1)) A_{m} T_{1} \ldots T_{k} \otimes 1^{\otimes^{m+1-k}}\right)\right. \\
= & \left.\frac{n}{m+1} \operatorname{tr}_{(1 \ldots m)}\left(A_{m} T_{1} \ldots T_{k} \otimes 1^{\otimes^{m-k}}\right)-\frac{1}{m+1} \operatorname{tr}_{(1 \ldots m+1)}\left(A_{m}(m, m+1) A_{m} T_{1} \ldots T_{k} \otimes 1^{\otimes^{m+1-k}}\right)\right) .
\end{aligned}
$$

But by the cyclic property of the trace,

$$
\begin{aligned}
& \operatorname{tr}_{(1 \ldots m+1)}\left(A_{m}(m, m+1) A_{m} T_{1} \ldots T_{k} \otimes 1^{\otimes^{m+1-k}}\right) \\
& =\operatorname{tr}_{(1 \ldots m+1)}\left(\left(A_{m} T_{1} \ldots T_{k} \otimes 1^{\otimes^{m-k+1}} A_{m}\right)(m, m+1)\right) \\
& =\operatorname{tr}_{(1 \ldots m)}\left(\left(A_{m} T_{1} \ldots T_{k} \otimes 1^{\otimes^{m-k}} A_{m}\right)\right. \\
& =\operatorname{tr}_{(1 \ldots m)}\left(\left(A_{m} T_{1} \ldots T_{k} \otimes 1^{\otimes^{m-k}}\right) .\right.
\end{aligned}
$$

Therefore,

$$
\begin{equation*}
\operatorname{tr}_{(1 \ldots m+1)}\left(A_{m+1} T_{1} \ldots T_{k} \otimes 1^{\otimes^{m+1-k}}\right)=\frac{(n-1)}{m+1} \operatorname{tr}_{(1 \ldots m)}\left(\left(A_{m} T_{1} \ldots T_{k} \otimes 1^{\otimes^{m-k}}\right)\right. \tag{8}
\end{equation*}
$$

¿From (8) one can show by induction that

$$
B_{k}(u, 1)=\operatorname{tr}_{(1 \ldots n)}\left(A_{n} T_{1} \ldots T_{k} \otimes 1^{\otimes^{n-k}}\right)=\frac{(n-1)^{n-k} k!}{n!} \tau_{k}(u) .
$$

5. Combinatorial identities.

5.1. Cayley-Hamilton theorem. The classical Cayley-Hamilton theorem states that any matrix with coefficients over \mathbb{C} is annihilated by some polynomial. Here we prove the analogue of this statement for the matrix $T(u)$. The identity involves permuted powers of $T(u)$ instead of ordinary ones, and the coefficients of this identity are commuting elements of Bethe subalgebra $B\left(\mathfrak{g l}_{n}(\mathbb{C}, 1)\right)$.

Recall the notations $R_{k}=R_{k, k+1}\left(v_{k}\right)$ and

$$
T^{<m>}(u \mid \rho)=\operatorname{tr}_{\hat{m}}\left(T_{1}(u) T_{2}(u-1) \ldots T_{m}(u-m+1) R_{m-1} \ldots R_{1}\right) .
$$

Proposition 3. The matrix $T(u)$ satisfies the following two identities.

$$
\begin{equation*}
\sum_{k=0}^{m-1} a_{k} \tau_{k}(u) T^{\langle m-k\rangle}(u-k \mid \rho)=m \operatorname{tr}_{\hat{m}}\left(A_{m} T_{1} \ldots T_{m}\right) \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{k=0}^{m-1} b_{k} h_{k}(u) T^{\langle m-k\rangle}(u+k \mid-\rho)=m \operatorname{tr}_{\hat{m}}\left(S_{m} T_{1} \ldots T_{m}\right) \tag{10}
\end{equation*}
$$

where

$$
\begin{gathered}
a_{k}=v_{m-1} \ldots v_{k+1}\left(1-k v_{k}\right), \\
b_{k}=(-1)^{m-k+1} v_{m-1} \ldots v_{k+1}\left(1+k v_{k}\right) .
\end{gathered}
$$

Proof. By Proposition 2 (d),

$$
\left(1-k v_{k}\right) A_{k}=(k+1) A_{k+1}-k v_{k} A_{k} R_{k} A_{k} .
$$

In the following we abbreviate $T_{l}:=T_{l}(u-l+1)$.
Then

$$
\begin{array}{r}
\left(1-k v_{k}\right) \tau_{k}(u) T^{\langle m-k\rangle}(u-k \mid \rho)=\left(1-k v_{k}\right) \operatorname{tr}_{\hat{m}}\left(A_{k} T_{1} \ldots T_{m} R_{m-1} \ldots R_{k+1}\right) \\
=(k+1) \operatorname{tr}_{\hat{m}}\left(A_{k+1} T_{1} \ldots T_{m} R_{m-1} \ldots R_{k+1}\right)-k v_{k} \operatorname{tr}_{\hat{m}}\left(A_{k} R_{k} A_{k} T_{1} \ldots T_{m} R_{m-1} \ldots R_{k+1}\right) .
\end{array}
$$

But the operator A_{k} commutes with $T_{k+1} \ldots T_{m} R_{m-1} \ldots R_{k+1}$, so by the cyclic property of trace and by Proposition 2 (a),

$$
\operatorname{tr}_{\hat{m}}\left(A_{k} R_{k} A_{k} T_{1} \ldots T_{m} R_{m-1} \ldots R_{k+1}\right)=\operatorname{tr}_{\hat{m}}\left(A_{k} T_{1} \ldots T_{m} R_{m-1} \ldots R_{k+1} R_{k}\right) .
$$

Thus,

$$
\left(1-k v_{k}\right) \tau_{k}(u) T^{<m-k>}(u-k \mid \rho)=(k+1) I_{k+1}-k v_{k} I_{k}
$$

with

$$
I_{k}=\operatorname{tr}_{\hat{m}}\left(A_{k} T_{1} \ldots T_{m} R_{m-1} \ldots R_{k+1} R_{k}\right)
$$

Put $\tau_{0}(u)=1$. Since $I_{1}=T^{<m>}(u \mid \rho)$, and $I_{m}=\operatorname{tr}_{\hat{m}}\left(A_{m} T_{1} \ldots T_{m}\right)$, we get (9). The second formula is proved similarly.

Corollary 1. (Cayley-Hamilton theorem)

$$
\sum_{k=0}^{n} a_{k} \tau_{k}(u) T^{<n-k>}(u-k \mid \rho)=0
$$

Remark. Observe that the last term in the sum is $\tau_{n}(u)=q \operatorname{det}(T(u))$.
5.2. Newton's formulas. ¿From the Proposition 3 we deduce Newton's formulas as well.

Definition 7. For $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots\right)$ the permuted m-th power sum is the full trace of the permuted power matrix:

$$
p_{m}(u \mid \alpha)=\operatorname{tr}_{(1 \ldots m)}\left(T_{1}\left(u-\alpha_{1}\right) T_{2}\left(u-\alpha_{2}\right) \ldots T_{m}\left(u-\alpha_{m}\right) R_{m-1} \ldots R_{1}\right) .
$$

Of course, $p_{m}(u \mid \rho)=\operatorname{tr} T^{<m>}=\operatorname{tr} T^{[m]}(u \mid \rho)$.
¿From Proposition 1, the permuted power trace $p_{m}(u \mid \rho)$ is a linear combination of "ordinary" (but shifted) power traces:

$$
\begin{equation*}
p_{m}(u \mid \rho)=\sum_{\lambda \vdash m} V(\lambda) \operatorname{tr} T^{\lambda_{1}}(u \mid \rho) \operatorname{tr}\left(T^{\lambda_{2}}\left(u-a_{1} \mid \rho\right)\right) \ldots \operatorname{tr}\left(T^{\lambda_{k}}\left(u-a_{k-1} \mid \rho\right)\right), \tag{11}
\end{equation*}
$$

with $V(\lambda)$ as in (7). From Proposition 3 we get the following corollary:
Corollary 2. (Newton's formulas)

$$
\sum_{k=0}^{n} a_{k} \tau_{k}(u) p_{n-k}(u-k \mid \rho)=0
$$

And recursive formulae:

$$
\begin{gathered}
\tau_{m}(u)=\sum_{k=0}^{m-1} a(k) \tau_{k}(u) p_{m-k}(u-k \mid \rho), \\
h_{m}(u)=\sum_{k=0}^{m-1} a(k) h_{k}(u) p_{m-k}(u+k \mid-\rho) .
\end{gathered}
$$

References

[1] M. Nazrov, G. Olshanski, Bethe subalgebras in twisted Yangians, Comm. Math. Phys, 178 (2) (1996), 483-506.
[2] A. ,N. Kirillov, N. Reshetikhin, Yangians, Bethe anzatz and combinatorics, Lett. Math. Phys, 12 (1986), 199-208.
[3] J.-M. Maillet, Lax equations and quantum groups, Phys. Lett. B 245 (no.3-4) (1990),480-486.
[4] A. Molev, Yangians and their applications, Handbook of algebra, 3 (2003), 907-959.
[5] A. Molev, M. Nazrov, G. Olshankii, Yangians and Classical Lie algebras, Russian Math. Surveys 51(2) (1996), 205-282.
[6] A.Isaev, O. Ogievetsky, P.Pyatov, Generalized Cayley-Hamilton-Newton identities, Czechoslovak J. Phys. 48 (11) (1998), 1369-1374.

