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Abstract. We prove analogues of Cayley-Hamilton identities and Newton’s formulas for the
matrix of generators of Yangian of gln(C).

1. Introduction

In this note we prove the analogues of Cayley-Hamilton theorem and Newton’s formulas for
the matrix of generators of Yangian of gln(C). This requires a generalization of the definition
of a power of this matrix, which is done in the spirit of the q-version of power sums, introduced
in [3], and also used in [6]. They are natural generalizations of powers of matrices in case of
quantum groups, since they ”remember” the braiding in the defining relations of the quantum
group.

All of the three defined in Section 3 generalizations of powers of T (u) are the matrices
with coefficients in Y [[u−1]] (or in Y [[u−1, v−1

1 . . . v−1
m ]]). The shifted power T l(u|ρ) is the

most straightforward generalization of a power of an ordinary matrix. The permuted matrix
T [l](u|ρ) can be expressed through the shifted powers T l(u|ρ) for l ≤ m (Proposition 1). The
matrix T 〈m〉(u|ρ), does not enjoy that property, but it satisfies an analogue of Cayley-Hamilton
identity with coefficients in Bethe-subalgebra of Yangian (Corollary 1). Both permuted powers
lead to the analog of Newton’s formula (Corollary 2).

The structure of the note is the following. Section 2 reviews definition of Yangian and
notations. Section 3 defines the generalizations of powers of matrix of generators of T (u) and
describes their properties. Section 4 summarizes the properties of symmetrizer and antisym-
metrizer. Section 5 states and proves the discussed above combinatorial identities.

2. Yangian of gln(C)

Here we review definitions and some properties of Yangians that will be used later ([4], [5]).

Definition 1. The Yangian Y (n) for gln(C) is a unital associative algebra over C with count-

ably many generators {t(r)ij }, r = 1, 2, ..., 1 ≤ i, j ≤ n and the defining relations

[t
(r+1)
ij , t

(s)
kl ]− [t

(r)
ij , t

(s+1)
kl ] = t

(r)
kj t

(s)
il − t

(s)
kj t

(r)
il ,

where r, s = 0, 1, 2... and t
(0)
ij = δij.

The same set of defining relations can be combined into one equation, sometimes called
RTT-relation. Namely, denote by T (u) = (tij(u))ni,j=1 the matrix with coefficients tij(u),
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which are formal power series of generators of Y (n) :

tij(u) = δij +
∞∑
k=1

t
(k)
ij

uk
.

For P =
∑
Eij ⊗ Eji, the permutation matrix of Cn ⊗ Cn, define the Yang matrix

R(u) = 1− P

u
.

It is a rational function with values in End Cn ⊗ End Cn.
We introduce some standard notations. For any vector space V and any element S of EndV

we define an element Sk of EndV ⊗m by

Sk = 1⊗(k−1) ⊗ S ⊗ 1⊗(m−k).

In particular, we write

Tk(u) =
∑
ij

tij(u)⊗ (Eij)k ∈ Y (n)⊗ End(Cn)⊗m.

Let S be an element of EndV ⊗ EndV . Using the abbreviated notation S = S(1)⊗ S(2), we
define an element Sij of End(Cn)⊗m by

Sij = 1⊗(i−1) ⊗ S(1)⊗ 1⊗(j−i−1) ⊗ S(2)⊗ 1⊗(m−j−i).

Definition 2. The Yangian Y (n) of gln(C) is an associative unital algebra over C with the

set of generators {t(k)
ij } which satisfy the equation

R(u− v)T1(u)T2(v) = T2(v)T1(u)R(u− v).

Yangian Y (n) is an example of infinite-dimensional quantum group. It has a group-like
central element, which is called quantum determinant of Y (n).

Definition 3. Quantum determinant qdetT (u) is a formal series with coefficients in Y (n),
defined by

qdetT (u) =
∑
σ∈Sn

(−1)σt1σ(1)(u− n+ 1) . . . tnσ(n)(u).

We use the following notations for traces. Let X ∈ End(V )⊗m. Then tr (X) denotes the
full trace of X, and trk̂ (X) = tr1...k−1,k+1...m (X) denotes the trace over all tensor components
of X, except the k-th component.

3. Powers of T (u) and their properties

3.1. Definitions of generalized powers. Consider the matrix of generators of the Yangian

T (u) =
∑
ij

Eij ⊗ tij(u).

Let α = (α1, α2, . . . ) be an arbitrary sequence of complex numbers.

Definition 4. (Shifted power of T (u))

(1) Tm(u |α) = T (u− α1) . . . T (u− αm)
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Let ρ = (0, 1, 2, . . . ) and let us fix a sequence of complex numbers v = (v1, v2, . . . ). We use
abbreviated notations Rk = Rk,k+1(vk).

Definition 5. (Permuted powers of T (u))

(2) T [m](u|ρ) = tr1̂(T1(u)T2(u− 1) . . . Tm(u−m+ 1)Rm−1 . . . R1)

(3) T<m>(u|ρ) = trm̂( sT1(u)T2(u− 1) . . . Tm(u−m+ 1)Rm−1 . . . R1)

Remark. Occasionally T [m](u|−ρ) and T<m>(u|−ρ) will be used, which are defined similarly.

3.2. Properties of the m-th shifted power matrix. There are two possible interpretations
of the ”shifted power” Tm(u|α).

For the first one, let µ : Y (n)⊗ Y (n)→ Y (n) be the multiplication operation in Y (n) and
let ∆ be the coproduct Y (n)→ Y (n)⊗ Y (n):

∆(tij(u)) =
∑
k

tik(u)⊗ tkj(u).

For any complex number a define a shift-automomorphism of Y (n) by the formula

τaT (u) = T (u− a).

Then

(4) Tm(u|α) = µ⊗m · (τα1 ⊗ · · · ⊗ ταm) ·∆(m) T (u).

The second interpretation involves the permutation matrix P =
∑

i,j Eij ⊗ Eji. It defines

the action of the group algebra C[Sm] of the symmetric group on the tensor product (Cn)⊗m.
Namely, a transposition (k, l) acts as an operator Pk,l permuting the k-th and l-th component
of (Cn)⊗m. Then

Tm(u|α) = trm̂ (Tm(u− α1) . . . T1(u− αm)(m, . . . 1)) ,(5)

where (m, . . . , 1) = Pm−1,mPm−2,m−1 . . . P12.

Remark. Also

Tm(u|α) = trm̂ ((1, . . . ,m)T1(u− α1) . . . Tm(u− αm))

= tr1̂ (T1(u− α1) . . . Tm(u− αm) (m, . . . , 1))

= tr1̂ ((1, . . .m)Tm(u− α1) . . . T1(u− αm)) .

3.3. Propereties of [m]-th permuted power matrix. The matrix T [m](u|ρ) is a sum of
products of some shifted power traces with a shifted power matrix and with rational functions
of v̄ = (v1 . . . vm).

More precisely, let λ = (λ1, . . . λk) be a partition of m. We set

a0 = 0,

a1 = λ1,

a2 = λ1 + λ2,

. . .

ak−1 = λ1 + · · ·+ λk−1.
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Proposition 1.

T [m](u|ρ) =
∑
λ`m

V (λ)T λ1(u|ρ) tr (T λ2(u− a1|ρ) . . . T λk(u− ak−1|ρ)).(6)

Here

(7) V (λ) = (−1)(m−k)vak−1
. . . va1

vm−1 . . . v1

.

Proof. Observe that in the symmetric group Sm for any r and s such that m > r ≥ s > 1

(r, r + 1)(r − 1, r), . . . (s, s+ 1) = (r + 1, r, r − 1, . . . s).

Therefore, the product Rm−1Rm−2 . . . R1 acts on (Cn)⊗m as the following element of the group
algebra C[Sm]: ∑

λ`m

V (λ)σλ,

where σλ is the product of cycles:

σλ = (m, . . . ak−1 + 1) . . . (a2, . . . , a1 + 1)(a1, . . . , 1).

and V (λ) is as in (7). Now

tr1̂ (T1T2 . . . Tm σλ) =

= tr1̂

∑
i,j

Ei1jσλ(1)
⊗ · · · ⊗ Eimjσλ(m)

ti1j1(u) . . . timjm(u−m+ 1)

=
∑
i1,j̄

Ei1ja1
(
ti1j1(u) . . . tja1−1ja1

(u− a1 + 1)
)
. . . ((tjmjak−1+1(u− ak−1) . . . tjm−1jm(u−m+ 1))

= T λ1(u|ρ) trT λ2(u− a1|ρ) . . . trT λk(u− ak−1|ρ)).

By taking the sum over all partitions λ we complete the proof. �

4. Symmetric and Antisymmetric power traces

4.1. Definition and properties. Consider the antisymmetirzer and symmetrizer of (Cn)⊗m,
given by

Am =
1

m!

∑
σ∈Sm

(−1)σσ, Sm =
1

m!

∑
σ∈Sm

σ.

These operators enjoy the following properties.

Proposition 2. (a)

A2
m = Am and S2

m = Sm.

(b) With abbreviated notations Rij = Rij(vi − vj), write

R(v1, . . . vm) = (Rm−1,m)(Rm−2,mRm−2,m−1)...(R1,m . . . R1,2).

Then Am = 1
m!
R(u, u− 1, . . . u−m+ 1), and Sm = 1

m!
R(u, u+ 1, . . . u+m− 1).

(c)

AmT1(u) . . . Tm(u−m+ 1) = Tm(u−m+ 1) . . . T1(u)Am,

SmT1(u) . . . Tm(u+m− 1) = Tm(u+m− 1) . . . T1(u)Sm.
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(d)

Am+1 =
1

m+ 1
Am ( (1−mu) +muRm,m+1(u) )Am,

Sm+1 =
1

m+ 1
Sm( (1 +mu)−muRm,m+1(u) )Sm.

(e)

tr(AnT1(u) . . . Tn(u− n+ 1)) = qdetT (u).

Definition 6. Put

τk(u) = tr(AkT1(u) . . . Tk(u− k + 1)),

hk(u) = tr(SkT1(u) . . . Tk(u+ k − 1)).

4.2. Relation to Bethe subalgebra. In [1],[2] a commutative subalgebra B(gln(C, Z)) of
the Yangian Y is studied. It is called Bethe subalgebra and its generators are the coefficients
of all the series

Bk(u, Z) = tr (AnT1 . . . TkZk+1 . . . Zn),

where Z is a matrix of size n by n with complex coefficients. Our elements τk(u) are propor-
tional to Bk(u, 1) with Z being the identity.

Indeed, by Proposition(2) (d) and (a) we obtain that

tr1...m+1(Am+1T1 . . . Tk ⊗ 1⊗
m+1−k

)

=
1

m+ 1
tr1...m+1(Am ((1−m(m,m+ 1))AmT1 . . . Tk ⊗ 1⊗

m+1−k
)

=
n

m+ 1
tr(1...m)(AmT1 . . . Tk ⊗ 1⊗

m−k
)− 1

m+ 1
tr(1...m+1)(Am(m,m+ 1)Am T1 . . . Tk ⊗ 1⊗

m+1−k
)).

But by the cyclic property of the trace,

tr(1...m+1)(Am(m,m+ 1)Am T1 . . . Tk ⊗ 1⊗
m+1−k

)

= tr(1...m+1)((Am T1 . . . Tk ⊗ 1⊗
m−k+1

Am)(m,m+ 1))

= tr(1...m)((Am T1 . . . Tk ⊗ 1⊗
m−k

Am)

= tr(1...m)((Am T1 . . . Tk ⊗ 1⊗
m−k

).

Therefore,

tr(1...m+1)(Am+1T1 . . . Tk ⊗ 1⊗
m+1−k

) =
(n− 1)

m+ 1
tr(1...m)((Am T1 . . . Tk ⊗ 1⊗

m−k
).(8)

¿From (8) one can show by induction that

Bk(u, 1) = tr(1...n)(AnT1 . . . Tk ⊗ 1⊗
n−k

) =
(n− 1)n−kk!

n!
τk(u).
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5. Combinatorial identities.

5.1. Cayley-Hamilton theorem. The classical Cayley-Hamilton theorem states that any
matrix with coefficients over C is annihilated by some polynomial. Here we prove the analogue
of this statement for the matrix T (u). The identity involves permuted powers of T (u) instead of
ordinary ones, and the coefficients of this identity are commuting elements of Bethe subalgebra
B(gln(C, 1)).

Recall the notations Rk = Rk,k+1(vk) and

T<m>(u|ρ) = trm̂(T1(u)T2(u− 1) . . . Tm(u−m+ 1)Rm−1 . . . R1).

Proposition 3. The matrix T (u) satisfies the following two identities.

(9)
m−1∑
k=0

ak τk(u)T 〈m−k〉(u− k|ρ) = mtrm̂(AmT1 . . . Tm)

and

(10)
m−1∑
k=0

bk hk(u)T 〈m−k〉(u+ k| − ρ) = mtrm̂(SmT1 . . . Tm),

where
ak = vm−1 . . . vk+1(1− kvk),

bk = (−1)m−k+1vm−1 . . . vk+1(1 + kvk).

Proof. By Proposition 2 (d),

(1− kvk)Ak = (k + 1)Ak+1 − kvk AkRkAk.

In the following we abbreviate Tl := Tl(u− l + 1).
Then

(1− kvk)τk(u)T 〈m−k〉(u− k|ρ) = (1− kvk)trm̂(Ak T1 . . . TmRm−1 . . . Rk+1)

= (k + 1) trm̂ (Ak+1T1 . . . TmRm−1 . . . Rk+1)− k vktrm̂ (AkRkAk T1 . . . TmRm−1 . . . Rk+1).

But the operator Ak commutes with Tk+1 . . . TmRm−1 . . . Rk+1, so by the cyclic property of
trace and by Proposition 2 (a),

trm̂(AkRkAk T1 . . . TmRm−1 . . . Rk+1) = trm̂(Ak T1 . . . TmRm−1 . . . Rk+1Rk).

Thus,

(1− kvk)τk(u)T<m−k>(u− k|ρ) = (k + 1)Ik+1 − k vk Ik
with

Ik = trm̂(Ak T1 . . . TmRm−1 . . . Rk+1Rk).

Put τ0(u) = 1. Since I1 = T<m>(u|ρ), and Im = trm̂(AmT1 . . . Tm), we get (9). The second
formula is proved similarly. �

Corollary 1. (Cayley-Hamilton theorem)
n∑
k=0

ak τk(u)T<n−k>(u− k|ρ) = 0

Remark. Observe that the last term in the sum is τn(u) = qdet(T (u)).
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5.2. Newton’s formulas. ¿From the Proposition 3 we deduce Newton’s formulas as well.

Definition 7. For α = (α1, α2, . . . ) the permuted m-th power sum is the full trace of the
permuted power matrix:

pm(u|α) = tr(1...m)(T1(u− α1)T2(u− α2) . . . Tm(u− αm)Rm−1 . . . R1).

Of course, pm(u|ρ) = trT<m> = trT [m](u|ρ).
¿From Proposition 1, the permuted power trace pm(u|ρ) is a linear combination of ”ordi-

nary” (but shifted) power traces:

pm(u|ρ) =
∑
λ`m

V (λ) trT λ1(u|ρ) tr (T λ2(u− a1|ρ)) . . . tr(T λk(u− ak−1|ρ)),(11)

with V (λ) as in (7). From Proposition 3 we get the following corollary:

Corollary 2. (Newton’s formulas)
n∑
k=0

ak τk(u) pn−k(u− k|ρ) = 0

And recursive formulae:

τm(u) =
m−1∑
k=0

a(k) τk(u) pm−k(u− k|ρ),

hm(u) =
m−1∑
k=0

a(k)hk(u) pm−k(u+ k| − ρ).
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