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Introduction.

Systems of ¢-differential equations have been studied for at least a century by ruther
classical methods involving lots of computations and producing cumbersome formulas.
With the appearance of quantized enveloping algebras, g¢-differential equations and op-
erators became very popular, since they were regarded, at the beginning, as principal
characters of a future quantized D-module theory. The general expectation was that,
for any simple Lie algebra, there exist quantized versions of the flag variety and of the
principal homogenious space, otherwise called the ’base affine space’ (cf. [GK], [BB1]),
and an analog of the canonical homomorphisin of the quantized enveloping algebra into
the algebra of differential operators on the base affine space. This homomorphism should
imply the so-called ’localization construction’ [BB1], [Be] which realizes representations
of a quantized enveloping algebra as modules over (twisted) differential operators on the
flag variety. And the algebras of (twisted) differential operators on the flag varieties were
expected to be ’locally’ isomorphic to the algebras of g-differential operators.

Quantized analogs of the flag variety {TT], [LaR], [So] and a quantized version of the
base affine space [Jo] were proposed.

But, with the exception of the (quantized) sl»-case investigated by T. Hodges [H], ¢-
differential operators do not provide the local picture for any version of Bernstein-Beilinson
"localization construction’. As well as other, quite interesting, analogs of Weyl algebras
(see [Hal, [Mal]).

Thus two questions arise:,

(a) What are differential operators on 'quantized spaces’?

(b) What is a natural quantized version of the Beilinson-Bernstein localization con-
struction? ‘



Answering to these questions was the motivation to undertake this work.

In this paper, we explain what are differential operators on general associative rings.
Since the known examples of 'quantized spaces’ are (identified with) algebras of certain
type, or 'projcctive spaces’ associated with them, this seems to give an answer to the
question {a) above, at least for affine spaces. However, this is not exactly the case.

The point is that quantized ’spaces’, in particular, quantized enveloping algebras, are
algebras in certain, naturally related to them, monoidal categories. Thus, a quantized
enveloping algebra U,(g) is an algebra in the monoidal category of Z"-graded modules,
where 7 is the rank of the Lie algebra g . A choice of a quasi-symmetry g (i.e. a solution of
the Yang-Baxter equation) in any monoidal category C~ determines a differential calculus
in this monoidal category. And after a quasi-symmetry 3 is fixed, any (not necessarily)
finite set X of invertible objects of C determines a Hopf algebra Upg x in C". The quan-
tized algebras by Drinfeld and Jimbo are particular cases of this construction. Using this
setting, one can define the 'base affine space’, the flag variety, and the Beilinson-Bernstein
construction for quantized and ’classical’ enveloping algebras simultaneously. Note that
everything is going on inside of the monoidal category €~ (of graded modules) which, there-
fore, can be regarded as a natural universum of the theory. The same way as the monoidal
category of super (i.e. Z/2Z-graded) vector spaces can be viewed as a natural universum
of super-mathematics.

Below follows a more detailed account on the contents of this paper.

Section 1 is a continuation of Introduction. We remind shortly the conventional,
Grothendieck’s, differential calculus [Gr]. Then we explain how the approach should be
modified to obtain the notion of a differential operator on a noncommutative ring. Finally,
we give, for a reader’s convenience, a short outline of some of the basic notions and results
of this paper and its continuation with a more algebraic (and less geometric) ring-theoretic
flavor than in the main body of the work.

The conventional D-calculus deals with quasi-coherent sheaves of differential algebras
on a scheme. We switch to a noncommutative picture by identifying a scheme X = (X, O)
with the category A = Qcohx of quasi-coherent sheaves on X, and replacing quasi-coherent
(sheaves of) algebras R with the monads R®pe in A. Thus, abelian categories in this work
are thought as categories of quasi-coherent sheaves on a schemne. Following this dictionary,
(closed) subschemes of a ’scheme’ A are identified with a certain class of topologizing
subcategories of A. We outline this philosophy (together with preliminaries on topologizing
subcategories) in Section 2.

In Section 3, we introduce some of the first notions of formal differential geometry,
like formal neighborhood and the conormal bundle of a ’subscheme’.

In Section 4, differential endofunctors and monads appear.

In Section 5, we apply the general approach to the category R — mod of left modules
over an associative ring R. In particular, we define differential operators from one R-module
to another.

Section 6 is concerned with properties of differential bimodules and algebras with
respect to localizations. It is known that differential bimodules, in particular differential
algebras (in the sense of [BB|) over a commutative ring R behave well with respect to
localizations at finitely generated multiplicative subsets in £. This means that such a
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localization of a differential bimodule has a natural structure of a differential bimodule over
the localized ring. We establish much stronger properties in the general, noncommutative,
case. However, in order to obtain natural localization properties in noncommutative setting
we have to switch to derived categories already in the affine case.

In 'Complementary facts’ we discuss the localization of D-modules at points of the
spectrum and a suggestive analog of the D-affinity of endofunctors.

We were trying to introduce in this paper the main ideas and some facts used in the
next part of the work. In particular we make more stress on categorical and geometrical
point of view than is strictly necessary to obtain the main results of the paper.

In order to show the direction of the futher development, we will sketch here the
contents of the next two parts of this work which shall appear in the subsequent paper.

In Part 11, we extend and apply facts of the previous sections to sketch D-calculus in
monoidal categories.

After introducing general constructions and some of basic facts of module theory in
monoidal categories, we describe the algebra of differential operators on a skew polynomial
algebra. The latter is regarded as a 'commutative’ algebra in the monoidal category of Z"-
graded modules over a commutative ring K with a fixed symmetry. We call it sometimes,
by abuse of language, an affine space.

After that we define an ’affine algebra’ when instead of a symmetry in the monoidal
category of Z"-graded modules we have a quasi-symmetry, 8. In this case, the ’affine
algebra’ appeares together with the #- Weyl algebra of differential operators on it.

The third part of the work is dedicated to the construction of Hopf algebras naturally
associated with a quasi-symmetry. We define Hopf algebras in a quasi-symmetric category
and discuss some of relevant examples.

Fix a monoidal category and its symmetry o. Given a quasi-symmetry 3, we can
construct Weyl algebras (in the sense of Part IT) which are §-Hopf algebras. Our goal is to
‘extend’ them naturally to o-Hopf algebras. This is possible to do under certain natural
requirements which are satisfied in all known cases of interest.

We study Hopf actions and crossed products in monoidal categories. A special case
of this construction is the ’affine base space’ for any (quantized) enveloping algebra of a
reductive or Kac-Moody Lic algebra.

We construct, in an arbitrary monoidal category, a Weyl algebra associated with a
bilinear form and a quasi-symmetry.

Then we study relations between quasi-symmetries, the Translation group (- the group
of isomorphy classes of invertible objects), and the fundamental group of our monoidal
category.

As a result of this study, we construct Hopf algebras associated with a quasi-symmetry.
This way we obtain a family of Hopf algebras with a quasi-symmetry playing the role of a
parameter. The quantized enveloping algebras by Drinfeld and Jimbo are particular cases
of this construction.

We conclude with a short presentation of a quantized version of the Beilinson-Bernstein
localization construction.



The second author would like to thank Max-Plank Institut fiir Mathematik for hos-
pitality and for excellent working conditions.

1. Grothendieck’s differential calculus
and 1ts noncommutative version.

1.0. Differential bimodules and differential rings. First we recall shortly the differ-
ential calculus on commutative rings and schemes following [BB].

Fix a commutative ring k. If not specified otherwise, ® means ®.

Let R be a commutative k-algebra; and let M be an R-bimodule such that, for any
z€ M and any A € k, A-z = z-A. The bimodule M can be regarded as an R® R-module.

For any r € R, define the endomorphism ad, of the bimodule M (- the adjoint action
ofr) by ad,(z) =r-2—z-r forall z € M.

An increasing filtration {M; | i > —1} on M is called a D-filtration if M_; = 0 and
ade(M;) C M;_; forallr € Rand i > 0.

There is the largest (with respect to the inclusion) D-filtration M. on M defined by
M; :={z€ M |ad.(2) € M;_, forall7 € R}, i > 0. The subbimodule M :={J,5, M; is
called the differential part of M. And M is called a differential bimodule if M~ coincides
with M.

Let A be an associative ring equipped with an algebra morphism ¢ : R —A. An
increasing ring filtration A. = {A; | ¢ > —1} is called a D-ring filtration if it is a D-
filtration of the R-bimodule A such that «(R) C Ay and ¢(R) lies in the center of the
associated graded algebra. One can observe that the largest D-filtration A on A is a
D-ring filtration. And ¢ : R — A is called an R-differential algebra if A= A", i.e. when
A is a differential E-bimodule.

Note that, if we regard a bimodule M as an R® R-module, M; :={z € M |T**'z =
0}, where Z is the kernel of the multiplication m : R ® R —R. It follows from this
description that the canonical D-filtration is compatible with localizations: for any ¢ € R,
there are natural isomorphisms (M, ), ~ (M,); ~ R, ® M; ~ M; ® R,. Here M, denotes
the localization of M at ¢; i.e. My := R, @ M @ R,.

The compatibility with localizations allows to globalize the notion of a differential
bimodule. A differential bimodule on a scheme X is a quasi-coherent sheaf M on X
having the following properties:

(i) for any open U C X, M(U) is a differential Ox (U)-bimodule;

(ii) if U is affine and ¢t € Ox (U), then M(U,) ~ M(U),.

If the scheme X is locally noetherian, the direct image functor of the diagonal A :
X — X x X provides an equivalence between the category Diff(X) of differential bimod-
ules on X and the full subcategory of the category Qcohx « x of quasi-coherent sheaves on
X x X generated by sheaves supported on the diagonal. .

A differential Ox -algebra (or D-algebra on X) is a sheaf of associative algebras on
X equipped with a morphism of algebras ¢ : Ox — A which makes A a differential
O x-bimodule.

For a D-algebra A on X, an A-module is a sheaf of A-modules which is quasi-coherent
as an Ox-module.



1.0.1. Differential operators. Let X = (X, Ox) be a scheme over a commutative ring
k; and let L and N be quasi-coherent Ox-modules. A morphism f : L — N of sheaves of
abelian groups is called a differential operator if, for any open affine U C X, the morphism
fu 1 L{U) — N(U) lies in the differential part of the O(U)-bimodule Homy (L(U), N(U)).

1.0.2. The same constructions don’t work in the noncommutative case. Suppose
now that R is a noncommutative ring. We still have the adjoint action of R on any R-
bimodule M, r — ad,, r € R.

Note by passing that, for any 2 € M, the map ad : R — M, r — ad.(z) is a
derivation of the ring K in M; i.e. the Leibniz’s rule holds:

adys(z) =182 —z-1s =7 ady(z) + ads(z) - 1.

The derivations 7 — ad,(z) are called inner derivations in the bimodule M. One
can check that the map ad: R — Endi(M), r — ad,, is a Lie algebra morphism (with
respect to commutators in R and Endg(M)).

Having the adjoint action of R, one can repeat thc constructions above. Namely,
define the canonical filtration of a bimodule M by:

M_,=0,M, :={z¢€ M| ad,(2) € M,_, for all r € R}.

Again, identifying R-bimodules with 2 ® R°-modules (where R° denotes the ring
opposite to R), onc have:

M, ={zeM|T"'2=0} for all i > 0, (1)

where 7 is the kernel of the multiplication £ & R° —R.

Note that, in general, M; and M := |J,5oM; arc not R-bimodules: they have
a structure of bimodules only over the center of R. This indicates that the copying the
commutative constructions does not lead to adequate notions of a differential bimodule
and (therefore) a differential operator.

It shall become clear from what follows that the failure of a direct imitation of the
commutative setting is due to the fact that, for a noncommutative ring (this time we mean
R® R°), left idecals (in particular Z) do not define a subscheme and its formal neighborhood
in a way they do in the commutative case.

So that to find a ’right’ notion of a differential operator one needs first to have an
adequate notion of a noncommutative subscheme. Or at least to understand what is the
diagonal.

1.0.3. The diagonal. For two left ideals, m and n, of an associative unital ring A,
we write m < n if there exists a finite set x of elements of A such that the left ideal
(m:x):={be€ A| bz Cm} is contained in n. The equality ((m : z) : y) = (m : yz)
implies that < is a preorder on the set I;A of left ideals in A (cf. [R], Lemma I.1.1).

Note that if m is a two-sided ideal, m C (m : x) for any subset £ C A which means
that m < n iff m Cn. In particular, the preorder < coincides with C when the ring A is
commutative.



Fix an associative (always unital) k-algcbra R, and take A = R® R°, where R° is the
k-algebra opposite to R. Denote by K, the kernel of the multiplication 4 : R ® R° —R.
One can check that K, is a left ideal in R ® R° which is two-sided if and only if the
k-algebra R (hence R ® R°) is commutative (Lemma 5.1 and Note 5.1.2).

As we have mentioned in Introduction, a way to switch from the commutative setting
to the noncommutative one is to replace schemes by the categories of quasi-coherent sheaves
on these schemes.

Naturally, the category of quasi-coherent sheaves on the ’affine scheme’ X correspond-
ing to a k-algebra R should be R — mod.

The category of quasi-coherent sheaves on the affine scheme X x X is (equivalent to)
the category R — bi of IR-bimodules which we identify, whenever it is convenient, with
R ® R° — mod of left R @ R°-modules.

More generally, if Y is an affine scheme isomorphic to SpecS for another k-algebra,
S, then the category of quasi-coherent sheaves on the product X x Y is (equivalent to)
R®S5° —mod.

Finally, we define the (category of quasi-coherent sheaves on the) diagonal of X x X
as the full subcategory, Ag, of the category R® R° —mod generated by all R® R°-modules
M such that, for any z € M, K, <Ann(z).

Fix an R ® R°-module M. We call an increasing filtration {M; | ¢ > —1}, where all
M; are R ® R°-submodules of M, a D-filtration if M_y, = 0 and M;/M;_, € ObAR for all
¢ > 0. And we call an R® R°-module M differential if it has a D-filtration {M;} such that
Usso Mi=M.

Every R ® R°-module contains the biggest differential submodule which is called the
differential part of M. For any two left R-modules, L and N, the k-module Homy (L, N)
is naturally a R ® R°-module. In particular, it contains the biggest differential i ® R°-
submodule Dif fr,(L, N). Morphisms from Dif fy(L, N) are called differential operators
from L to N.

For readers’ convenience, we give in the next section an ’elementary’ definition of
differential operators and outline some of their main properties.

1.1. A definition and an outline of main properties of differential operators. Fix
an associative unital algebra R over a commutative ring k. If not specified otherwise, ®
means ®x.

1.1.1. Definition. An R ® IR°-module M is differential iff, for any finitely generated
submodule M’ of M, therc is an increasing finite filtration {M; | —1 < 7 < n} such that
M_, =0, M, = M’, and the R ® R°-modulc M;,,/M; is a subquotient of a finite direct
sum of copies of R.

A differential R-algebra is an algebra morphism R — S which makes S a differential
R ® R°-module.

1.1.2. Proposition. Any R ® R°-module M contains the biggest differential submodule,
Maisf, called the differential part of M. The correspondence M — Myigs is functorial:
for any R ® R°-module morphism ¢ : M — N, ¢(Myisf) C Naigy.
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In particular, for any pair of R-modules, L and N, the R ® R°-module Homg (L, N)
contains the biggest differential submodule Dif fi(L, N). Morphisms from Dif fi.(L, N)
are called (k-linear) differential operators from L to N.

1.1.3. Proposition. (a) If M and M’ are differential R ® R°-modules, then their tensor
product over R, the R ® R°-module M @ M', is differential too.

(b) For any ring morphism R — B, the differential part of the R ® R°-module B is
a subring of B; i.e. Byiss is a differential R-algebra.

In particular, for any left R-module L, the R® R°-module Dif fi.(L, L) of differential
operators from L to L is a differential R-algebra.

If L = R, we shall write Dy(R), or simply D(R), instead of Dif fr.(R, R) and call
Dy (R) the algebra of (k-linear) differential operators on R.

Probably, the most significant property of differential R® R°-modules and algebras (in
particular, algebras of differential operators) is their compatibility with localizations which
we establish in Section 6. One of the consequences (and special cases) of this compatibility
is the following assertion (which is a particular case of Proposition 6.5.1):

1.1.4. Proposition. Let R — R’ be an algebra morphism such that the functor Q =
R'®g 15 an exact localization and R’ is flat as a left R-module too. (for instance, R is the
localization of R at a right and left Ore set). Then

(a) For any differential R ® R°-module M , the functor M®p is compatible with the
localization Q = R'®pr. And Qo (M®pg) ~ M'Q®p/, where M' = R' g M ®r R'. The
canonical (R, R)-bimodule morphism R' @ p M — R' ®p M ®p R’ is an isomorphism.

(b) If M € ObAg—?), n.e. if M is a differential R @ IR°-module of n-th order, then the
R' ® R°-module M’ has the same order: M' € ObAg;).

(c) Let ¢ : R — A be a differential algebra (i.e. ¢ is a k-algebra morphism turning
A into a differential R ® R°-module. Then R' ®p A has a unique k-algebra structure such
that the canonical maps A — R' ®@r A «— R’ are k-algebra morphisms. And R' ®g A is
a differential R' @ R°-module.

The following Proposition (6.5.2 in the main body of the text) shows that, under
the conditions of Proposition 1.1.4, any differential bimodule over the localized ring is the
localization of a differential bimodule.

1.1.5. Proposition. Let R — R’ be an algebra morphism such that the functor
Q=R®p:R—mod — R'—mod

is an ezact localization and the R’ is flat as a left R-module. Let M’ be a differential
R'® R'°-module. And let M := Q" (M")aigs (i.c. M is the differential part of the R ® R°-
module M'}. Then the canonical morphism ¢ : R @ M — M’ is an isomorphism of
R ® R°-modules. Moreover, the isomorphism ¢ induces, for any n > 0, an isomorphism
R' ®pr M,, — M|, where M, (resp. M,,) denotes the AS;L,H)— (resp.Ag?H)—) torsion of
M’ (resp. of M).

The restrictions on a localization can be considerably weakened if differential bimod-
ules and operators are replaced by strongly differential ones.
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1.1.6. Strongly differential bimodules and operators. We call an R ® R°-module
M is strongly differential iff, for any finitely generated submodule M’ of M, there is an
increasing finite filtration {M; | =1 < 7 < n} such that M_; = 0, M,, = M’, and the
R ® R°-module M;,,/M; is a quotient of a finite dircct sum of copies of R.

Clearly any strongly differential bimodule is differential. If the base ring R is commu-
tative, then the converse statement is true: these two classes coincide. In the general case,
one can characterize differential biinodules in terms of strongly differential ones:

1.1.6.1. Proposition. An R® R°-module is differential iff it is a submodule of a strongly
differential R @ R°-module.

(This is a corollary of Proposition 5.11.4.3.}

The exact analogs of Propositions 1.1.2 and 1.1.3 hold for strongly differential bimod-
ules. We denote strongly differential operators on a k-algebra R by Dj(R) or simply by
D*(R)

Strongly differential R ® R°-modules which are flat as left R-modules are compatible
with any exact localizations. In particular, we have the following assertion (Proposition
6.5.4.1):

1.1.6.2. Proposition. Let R — R’ be an alyebra morphism such that the functor
R'®r: R—mod — R —mod

is an exact localization (say the ming R’ is the localization of R at o left Ore set). Then
(a) The action of D*(R) on R extends naturally to an action on R’ giving a canonical
ring homomorphism D*(R) — D*(R’) which induces a left R'-module isomorphism

R' @r D°(R) — D*(R)).

(b) For any D*(R)-module M, the R'-module R’ ® g M has a natural, in particular
compatible with D®*(R) — D*(R’), structure of a D*(R’)-module.

(c) If the ring R’ is such that the functor @ g R’ : mmod— R — mod— R’ is a localization
(e.g. R’ is the localization of R at a left and right Ore set), then we also get an induced
right R'-module isomorphism D*(R) g R' — D*(R').

Let us point out an important connection with enveloping algebras. Let £ be a com-
mutative ring. Let Ug(g) = U(g) be the enveloping k-algebra of a Lie algebra g. Recall
that U(g) is a Hopf algebra. There is a following assertion (Proposition 5.10.1):

1.1.6.3. Proposition. Let ¢ : U(g) — Endi(R) be o« Hopf action on the algebra R (i.e.
the multiplication R ®, R — R is a U(g)-module morphism). Then U(g) acts by strongly
differential operators.

1.1.6.4. Corollary. Let g be a Lie algebra over o field k of zero characteristic. And let
@ : U(g) — Endi(R) be a Hopf action on the algebra R. Let R’ be an Ore localization of
R. Then the action of U(g) extends uniquely to a Hopf action on R'.

To give a flavor of the next part of this work (which will appear in a subsequent
paper), we shall continue this sketch a little bit futher.
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1.2. Graded differential operators. Let k be a commutative ring. Fix an abelian group
I’ and a group homomorphisin (bicharacter) § : ' x ' — k*. In our main examples,
the group I' can be assumed to be free of finite rank, i.e. T' =~ Z". Note that once an
isomorphism I" ~ Z" is fixed, 8 is canonically determined by its values on the basis of ZT;
i.e. by an r X  matrix with entrees in £*.

Let R be a I'-graded associative k-algebra. Consider the category grpR — mod of
graded R-modules. We want to define differential operators in this graded setting. To do
this, we need a natural substitute for R ® R°-module R.

Note that the bicharacter 8 determines an action of I' on any graded module M.
In particular, 8 defines an action of I' on 1% by ring automorphisms. The corresponding
crossed product R#k[['] (where k{['] is the group algebra of I' with the natural I’-grading)
regarded as a graded R ® R°-module, is our substitute for the bimodule K.

1.2.1. Definitions. A graded R® R°-module M is differential (resp. strongly differential)
iff, for any finitely generated graded submodule M’ of M, there is an increasing filtration
{M; |i> —1} such that M_; =0, M,, = M’ for some n, and the R® R°-module M;.,/M;
is a subquotient (resp. a quotient) of a direct sum of copies of R#T.

A differential (resp. a strongly differential) R-algebra is a graded ring morphism
R — § such that S is a diffcrential (resp. strongly differential) R-module.

Propositions 1.1.2 — 1.1.5 and their analogs for strongly differential bimodules hold
word by word if we replace modules by graded modnles and morphisms by graded mor-
phisms. For example, when we define differential operators from a graded R-module L to
a graded R-module M, we should take the graded part, geHomg (L, M), of Homg(L, M).
In particular, we obtain the ring of I'-graded differential operators, Dg(R), and the ring
Dﬁfﬁ (R) of I'-graded strongly differential operators on . Note that D;’e (R) is a graded
subbimodule of gtHomy (L, M).

Note that when the group I is trivial, we get our previous notions of differential and
strongly differential bimodules and operators.

The correspondence R — Dg(R) depends naturally on the grading group I'. Namely,
we have the following

1.2.2. Proposition. Suppose that I is a subgroup of the group ", and B’ is the restriction
to IV x IV of the bicharacter B : I' x T' = k*. Then the subring of Dgé, (R) generated by

I'-graded endomorphisms is a subring of D;#(R).
We have the following graded analog of Proposition 1.1.6.2:

1.2.3. Proposition. Let R — R’ be a graded ring morphism such that the functor
R'®p : gtpR — mod — gep R — mod
is an ezact localization (for instance, the ring R’ is the localization of R at a left Ore set
consisting of homogeneous elements). Then
(a) The action r;-fJDZ‘jE‘"J (R) on R extends naturally to an action on R’ giving a canonical
ring homomorphism

DF*(R) — DF*(R))
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which induces an isomorphism of left R -modules
R’ ®R Dﬂﬁ(R) — Dﬂ ﬂ(R’)-

(b) For any Dgea (R)-module M, the R -module R’ ®p M has a natural, in particular

compatible with Dg” (R) — Dgﬁ (R'), structure of a DEEB (R')-module.

(c) If the ring R’ is such that the functor @ g R’ : gepmod — R — gepmod — R is a
localization (e.g. R' is the localization of R at a left and right homogeneous Ore set), then
we also get an induced right R'-module isomorphism

D¥°(R)®r R' — D}*(R)).

The above definition of differential operators is quite satisfactory in the skew commu-
tative situation as is shown in the following example.

1.2.4. Example: differential operators on a skew affine space. Let q = (g;;) be an
r X r matrix with g;; € k* such that g;;qi; = 1 for all i, ). Let I be the corresponding skew
polynomial k-algebra; i.e. R is generated by x4, ..., , subject to the following relations:

Tilj = Qi L4504 for all i, j. (1)

The algebra R is regarded as the algebra of regular functions on the skew (more
specifically, q—)affine space.

Take ' = Z", and f the bicharacter I' x I' — k* determined by the matrix q.
Assume that k is a field of characteristic zero. One can show (Proposition 8.4) that the
ring of graded differential operators, Dg(R) = Dq(R) is generated by left multiplication
by elements of R and by corresponding f-derivations. This implies that Dq(R) coincides
with the ring Dz'f‘ (R) of graded strongly differential operators.

1.3. Taking into account a canonical action of I'. Tt was one of our first conclusions
that, in the graded situation, all ’schemes’ should be considered over the group algebra
k{[']. Therefore a more natural definition of differential operators on It should include the
action k[I').

1.3.1. Definition of S-differential operators. Set for convenience Rr := R#k[[].
Note that any graded R-module L is automatically a graded Rp-module and any graded
R ® R°-module is a graded Rr ® R{-module.

We define differential and strongly differential Rp-bimodule as in 1.1.1 with 'modules’
replaced by ’graded modules’ and R replaced by Rr.

For any graded R-modules L and N, Dif fg(L, N) is the (graded) differential part of
the graded Rr ® Rf-module gtHomg (L, N). In particular, we obtain the (graded) ring of
B-differential operators, Dg(R), acting on the graded ring R.

1.3.2. Proposition. The algebra Dg(R) is the subalgebra of Endy(R) generated by Dgf (R)
and k[T,

Similarly, the algebra Dg(R) of strongly differentzal operators on It is the subalgebra
of Endy(R) generated by DZ;E (R) and k[T].
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In particular, we have a direct analog (and consequence) of Proposition 1.2.2:

1.3.2.1. Proposition. Suppose that T is a subgroup of the group T, and B is the
restriction to IV X I of the bicharacter § : I' x I' — k*. Then the subring of Dg (R)
generated by I'-graded endomorphisms is a subring of Dg(R).

1.3.3. Localization. Proposition 1.2.3 above holds literally with DE“ replaced by Dj.

1.3.4. Main example. Let (aij)1<ij<r be a Cartan matrix of finite type. Let g be the
corresponding semisimple Lie algebra, PP the weight lattice. Let @ C P be the root lattice,
and y, ..., o, a basis of simple roots. Let ¢ be an indeterminate, & a field containing Q(q)
and all roots of q. Let the set {d;}, d; € {1,2,3} for all 4, be such that the matrix (a;;d;)
is symmetric. Let {,) : P x P — Q be a nondegenerate symmetric pairing determined by
(ai, orj) = aijd;. Take I' = P, and define a bicharacter §: 'xI' — k* as (v, 0) = gro),

Let U, = Uy(g) be the quantized enveloping algebra corresponding to the Cartan
matrix (a;;). Then U, admits a triangular decomposition Uy, = U~ ®, U° @, U™, where
U° ~ k[Q] — the group algebra of Q. The algebra U, is naturally Q-graded, hence it is
[-graded. The action of k[Q] induced by the grading and the bicharacter 8 is nothing but
the adjoint action of U® on U,

Denote by Uy the subalgebra of U, generated by U~ and U *.

For any I'-graded k-algebra R, we put D¥(R) := sz(R), D¥¢(R) := D;’(R) and
Dy(R) := Dg(R), Dj(R) := Dg(R), and call these algebras respectively the ring of graded
quantum differential and strongly differential operators on R and the ring of quanium
differential and strongly differential operators on R.

1.3.4.1. Note. In practice, we usually meet graded algebras R which are defined over
Q(g) and such that the T'-action on R is defined over (¥(g¢). In this case one can take

k=Q(q). =

One of important facts of this paper is the following quantum analog of Proposition
1.1.5 above:

1.3.4.2. Proposition. Let R be a I'-graded k-algebra with a Hopf action of Uy such that
the canonical action of k[['] on R when restricted to k[Q)] coincides with the U°(~ k{Q}])-
action. Then '

(a) The algebra U, acts on R by quantum strongly differential operators; i.e. the action
is given by a homomorphism U, — D3 (R).

(b) The subalgebra U('; acts on R by graded quantum strongly differential operators; i.e.
the action is given by a homomorphism U; — Df“ (R).

1.3.4.3. Corollary. Let R be as in Proposition 1.8.4.2; and let R — R’ be a graded Ore
localization. Then the action of U, on R extends uniquely to a Hopf action on R,

1.3.4.4. Remarks. 1) Proposition 1.3.4.2 and Corollary 1.3.4.3 are essential for our
localization construction for quantized enveloping algebras.

2) It is worth to mention that the proofs of these (and a number of other) statements
do not belong to the world of rings and ideals. And even a proper formulation of the
localization assertions requires a richer envirement of abelian categories and monads. =
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1.3.5. Example: algebras of differential operators on the quantum line. To
illustrate the difference between DEE and Dg, consider the simplest possible example of a
‘noncommutative space’ — the 'quantum line’.

Let k be a field of characteristic zero. The algebra of functions on a quantum line
over k is the algebra R = k[z] of polynomials in one variable regarded as an algebra in
the category grgzVecy of Z-graded k-vector spaces — the parity of z is 1). We define the
bicharacter £ by (the necessary conditions) £(1,0) = 1 = (0, 1), and 8(1,1) = q for some
¢ € k*. We assume that ¢ is not a root of one. Then the algebra D¥ = Df is generated
by (multiplications by) R and the fB-derivation d = d, (see Example 1.2.4). In particular
it coincides with the algebra fo" of strongly differential graded operators.

Note that the S-derivation @ = d, happens to be the so called g-derivation — an
operator acting on polinomials by the formula:

0 =10y f(z) = (flaz) - f(2))/x(q - 1) (1)

— known for at least a hundred years.
Thus Df (R) is a k-algebra generated by z and 9 subject to the relation:

0z — qzd = 1. (2)

When ¢ = l,Df(R) is the first Weyl algcbra, D# = Ajp; le. it is isomorphic to
the algebra of differential operators on the one-dimensional affine space. A remarkable
property of the Weyl algebras is the Bernstein’s Theorem (cf. [B]) which in the case of A,
claims that any nonzero A;-module is of infinite dimension over k. This property does not
hold for D¥ (R) if g # 1.

Indeed, one can check that the left ideal j: of the algebra D#(R) generated by the
element 7 = dz—1/(1—q) is two-sided, and the corresponding quotient algebra, D¥(R)/p,
is (isomorphic to) the commutative algebra of functions on the hypcrbola given by the
equation 0x = 1/(1 — ¢). In other words, D¥(R)/p is isomorphic to the algebra of
Laurent polynomials kfz,z~'] in one variable. In particular, the algebra D¥(R) has a
parametrized by k* family of one-dimensional rcpresentations. Note however that if M is
a finite dimensional D# (R)-module, then it is annihilated by the ideal 1 (see [R], IL.4).

Consider now the algebra Dg(R) defined in 1.3.1. It is generated by D¥(R) and the
automorphism h sending z into gz and the inverse to h. We claim that the Bernstein’s
property — any nonzero Dg(R)-module is infinite dimensional — holds.

In fact, one can check that

zd(z™) =z"(¢" —1)/(g—1), and NL(z")=q"z™
for all n; ie. 8= (h—1)/(q—1), or
h=(q-1)zd+1€ D} (R). (3)

But, of course, h=! ¢ D#(R). Let M be a Dg(R)-module of finite k-dimension.
Then, since M is finite dimensional D;ﬁ(R)-module, it is annihilated by the element n =
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0z —1/(1 — q) (cf. [R], I1.4), hence by the left ideal generated by 7. But, it follows from
(3) that the left ideal generated by 1 coincides with the whole algebra D;’E (). So that the
module M is zero.

Note that the algebra Dg(R) is isomorphic to the (Ore) localization of the algebra
Dg (R) at the multiplicative set (1) generated by the normal element 7. One can deduce
from this fact that the algebra Dg(R) enjoys the same nice properties as the first Weyl
algebra A,: its Krull, homological, and Gelfand-Kirillov dimensions coincide and are equal
to 1.

We shall show in one of the subsequent papers that the coincidence of the three
dimensions, and the Bernstein’s property hold for the algebra of g-differential operators
Dg(R), where R is a skew polynomial algebra of any dimension.

2. Preliminaries: topologizing subcategories as subschemes.

2.1. From schemes to categories. The first natural step on the way of finding non-
commutative analogs of constructions and notions of commutative algebraic geometry is
to identify schemes with the categories of quasi-coherent sheaves on these schemes. If Y is
a closed subscheme of a scheme X, than the category Y of quasi-coherent sheaves on Y is
(identified with) a certain subcategory of the category X of quasi-coherent sheaves on X.
The subcategory Y has the following properties:

(a) It is full and closed with respect to finite direct sums (taken in X);

(b) With any object, it contains all its subquotients (taken in X};

(c) The subcategory Y is coreflective which means that the inclusion functor Y — X
has a right adjoint.

(d) The subcategory Y is reflective, i.e. the inclusion functor Y — X has a left
adjoint.

The right adjoint functor of (c) assigns to any object of X its biggest subobject from
Y. The left adjoint functor of (d) is the tensoring over Ox by Ox/Z, where T is the
defining ideal of the subscheme Y.

A subcategory Y of an abelian category X satisfying the conditions (a) and (b) is
called topologizing.

If X is an affine scheme, i.e. X=SpecR for a commutative ring R, then X is the
category IR — mod of left R-modules. And Y is generated by all R-modules annthilated by
some (’defining’} ideal Z C R. The left adjoint functor of (d) is the tensoring by R/T over
R. In other words, it sends every R-module M into M/IM.

There is the following fact ([R], Section II1.6).

2.2. Proposition. For an arbitrary associative ring R, there is one-to-one correspondence
between reflective topologizing subcategories of R — mod and two-sided ideals of the ming
R: to any two-sided ideal v , there corresponds the full subcategory [R/c] generated by all
modules annihilated by a. In particular, any reflective topologizing subcategory of R —mod
18 coreflective.

2.3. Subschemes. Fix an abelian category 4. We shall call topologizing coreflective
subcategories of A subschemes of A. -
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A subscheme shall be called Zariski closed (or simply closed), if it is a reflective
subcategory of A.

Proposition 2.2 shows the category R — mod could have very few Zariski closed sub-
schemes. For instance, if A = R — mod for a simple ring % (say, a Weyl algcbra), then
there are only two trivial Zariski closed subcategories: 0 and R — mod.

On the other hand, there are, usually, lots of non-closed subschemes as the following
subsection shows.

2.4. Subschemes of the category of modules. Let A be the category R — mod of
left modules over an associative ring R. And let T be any topologizing subcategory of A.
Denote by Fr the set of all left ideals m in R such that R/m ¢ ObT.

Conversely, for any set F of left ideals in R, denote by Tp the full subcategory of
R — mod generated by all modules M such that, for any z € M, Ann(z) €F.

2.4.1. Lemma. 1) For any topologizing subcategory T of R — mod, the set F = Fy has
the following properties:

(e) m,n € F implies that mNn € F;

(b) if m € F, then any left ideal n containing m belongs to F;

(c) for any m € F and any finite subset x of elements of R, (m : z) €F.

2) If F 1s a subset of the set L1 R of left idenls of R having the properties (a), (b), (c),
then the subcategory Tg s topologizing and coreflective.

Proof. 1) (a) is a consequence of the fact that the quotient module R/mNn is a
submodule of the direct sum R/m & R/n.

(b) The module R/n is a quoticnt of R/m; hence R/n € ObT together with I/m.

(c) Let u denote the image of the identity element in R/m. The left ideal (m : z)
is the annihilator of the element @,e,ru of the direct sum of | z | copies of R/m; hence
R/(m: z), being a submodule of a module from T, belongs to T.

2) For any module M the set Mp :={z € M | Ann(z) € F} is a submodule.

In fact, for any z,2’ € M and any r € R, we have:

Ann(z + 2') 2 Ann(z) N Ann(2’), and Ann(rz) = (Ann(z) : 7).
Clearly My is the largest submodule of A which belongs to Te. This means that the
subcategory Tp is coreflective.
If MM’ € ObTF, then M @& M' € ObTg, since for any two elements 2z € M and
z' € M’, the annihilator of z @ 2’ equals to the intersection of Ann(z) and Ann(z').
Clearly any subobject of an object of Ty belongs to Tr. Finally, a quotient of any object
of Tr belongs to Tp. So that the subcategory Tr is topologizing. =

The sets F of left ideals satisfying the conditions of Lemma 2.4.1 are called topologizing
filters.

2.4.2. Note. For any topologizing subcategory T, the subcategory Tg, where F' = Fy
is the set {m € IR | R/m € ObT} is the intersection of all coreflective topologizing
subcategories of R — mod containing T. =

2.4.3. Example. Fix an associative ring R. Let < denote a preorder in the set 1R of left
ideals in R defined as follows: m < n if there exists a finite subset x of elements of R such
that (m: z) = {r € R|rz C m} Cn.

14



Let m be any left ideal in R. Denote by [[t/m] the full subcategory of A generated by
all modules M such that, for any z € M, m < Ann(z). One can check that the subcategory
[R/m} is topologizing and coreflective. Morecover, [R/m] is the smallest coreflective topol-
ogizing subcategory of A containing the module B/m. Onc can see that [R/m] = Tpy,
where [m] :={n € IR |m < n}.

The topologizing subcategories Ty,,) are minimal in the following sense: for any topol-
ogizing filter F' of left ideals in R, Tr =, ,cp Tim)- ®

2.5. Subschemes of an abelian category. We shall call coreflective topologizing
subcategories of the category A subschemes of A. The subschemes which are also reflective
subcategories shall be called Zariski closed or simply closed if this does not create any
ambiguity.

Note that if the ring R is simple (like algebras of differential operators with polynomial
coefficients), there are only trivial Zariski closed subschemes of & — mod. While we have
lots of subschemes.

From now on we shall assume that the abelian categories under consideration have
the property

(sup) For any ascending chain € of subobjects of an object M, the supremum of §2
exists; and, for any subobject L of M, the natural morphism

sup{XNL|X €} — (supQ)NL

is an isomorphism.
Examples of the categories with the property (sup):
1) The category R — mod of left modules over an associative ring R.
2} The category of sheaves of R-modules on an arbitrary topological space.
3) The category of quasi-coherent sheaves on an arbitrary scheme.
4) Any noetherian abelian category.

2.5.1. Note. Recall that the property (sup) is a part of the definition of Grothendieck
categories examples of which are categories R —mod for all rings and categories of abelian
sheaves on topological spaces (Examples 1) and 2) above).

Apparently, it is not known if the category Qcobhy of quasi-coherent sheaves on an
arbitrary scheme X is a Grothendieck category (cf. the Appendix B in [ThT]). One can
easily check, however, that Qcoljx has the property (sup). m

Example 2.4.3 is extended to any abelian category A with the property (sup) as
follows.

For two objects, X and Y of A, we write X > Y if Y is a subquotient of a finite
direct sum of copies of X. One can check that the relation > is a preorder (cf. [R], IIL.1).
For any object V of A, denote by Vi the full subcategory of A generated by all objects X
such that V » X.

Note that Vi is topologizing, since it is closed under finite direct sums; and if X €
ObV, and X » Y, then Y € ObV,.. But, in general, the subcategory V. is not coreflective.
The full subcategory [V] of A generated by all X € ObA which are supremums of their
subobjects from Vi is both topologizing and coreflective.
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Note that any coreflective topologizing subcategory T of A can be represented as
Uy ex{V], where X is a class of objects of T having the property: for any ¥ € ObT, there
exists X € X such that X » Y.

Clearly V > W if and only if W, C V... In particular, the subcategories Vi. and [V]
depend only on the equivalence class (V) of the object V' with respect to > .

The following remark is independent on the main body of the text.

2.5.2. Remark: relations with the spectrum. For the notion of the spectrum of an
abelian category and related notions used below, the reader is referred to [R], Chapter III,
or to [R1]. One can see that Spec[V] = SpecV, = Supp(V). So if V € SpecA, then
SpecV.. is the set of all specializations of (V).

Assume that the category A has no nonzero objects with empty support. In this case,
if V-€ SpecA and is a closed point, then all nonzero objects of V.. are equivalent to V.

A nonzero object V of an abelian category A is called quasifinal if X > V for any
nonzero object X of 4. A category A having a quasilinal object is called local. Recall
that all simple objects (if any) of a local category are isomorphic one to another and are
quasifinal (cf. [R], Lemma II1.3.1.2). In particular, any nonzero object of A has simple
subquotients.

If A is a local category and V is a quasifinal object, then [V] is called the residue
category of A. If V is a simple object, the residue category is equivalent to the category
of vector spaces over residue skew field of K(A) = End(V) (cf. [R], II1.5.4). m

If A= R —mod and V = R/m for some left ideal m in R, the subcategory [V]
coincides with the subcategory [R/m] of Example 2.4.3.

2.6. Serre subcategories. Recall that a full subcategory T of an abelian category A is
called thick if, for any exact sequence 0 — M’ — M — M” — 0 in A, the object M
belongs to T iff M’ and M” belong to T. In other words, T is thick iff it is topologizing
and closed under extensions. ‘

For any subcategory S of A, denote by §~ the full subcategory of A generated by all
objects M such that any nonzero subquotient of M has a nonzero subobject from S.

2.6.1. Lemma. For any subcategory S of an abelian category A,
(a) the subcategory S~ is thick;
(b) (§7)~ =87,
(c) S C S~ if S is topologizing.

Proof. See Lemma 111.2.3.2.1 in [R]. w

The subcategory S of A is called a Serre subcategory if S =87.
The proof of the following observation is left as an cxercise for a reader:

2.6.2. Lemma. Suppose that A has supremums of subobjects (which is the case if, for
exzample, A has small direct sums), then a thick subcategory T is a Serre subcategory iff it
is a subscheme.

2.7. Operations on subschemes. Fix an abclian category .A. We shall assume whenever
it is required (in particular through this subsection) that A has the property (sup) (cf.
Subsection 2.5).
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2.7.1. Lemma. (a) The intersection of any set of subschemes of A is a subscheme.
(b) The intersection of any set of Zariski closed subschemes of A is a Zariski closed
subscheme.

Proof. (a) Clearly the intersection of any set of topologizing subcategories is a topolo-
gizing subcategory. Similarly, the intersection of any family X of coreflective subcategories
is a coreflective subcategory.

In fact, let Q2 be a family of subobjects of an object Y which belong to the intersec-
tion [gecxS. Since each of the subcategories S € X is coreflective, sup Q belongs to this
intersection too. This implies the coreflectivity of (g4 §.

(b) Let now § be a family of Zariski closed subschemes. And let, for any T in §, “Jy
denote a left adjoint to the inclusion Jy : T — A, and #r the adjunction arrow Id4 —>
Jro~Jr. Let K1 denote the kernel of y. Note that 7y is an epimorphism; so that Jyo™Jy =~
Cok(ny). Set K§ := sup{Kyt | T € §}. For any M € ObA, M/KF (M) is a quotient of
M/K1(M) for any T € §; hence it is an object of (g5 T. Conversely, if Y is an object of
Nrez T, then an arbitrary morphism f: M — Y factors by M — M/Ky(M). So that
Kerf ’containg’ KF(M). All together shows that the map M — M/KF(M) extends to a
left adjoint to the inclusion functor (e T — A; ie. (e T is a reflective subcategory

of A. m

2.7.2. The supremum of subschemes. The supremum, sup§, of a family § = {S; |
1 € J} of subschemes is the smallest subscheme of A containing all the subschemes of the
family §.

Let {S; |7 € J} be any family of topologizing subcategories of \A. Then the smallest
topologizing subcategory containing all the subcategories S; equals to the union of the
subcategories X, , where X runs through @;c;X; in which X; € ObS; for all 1 € J,
and only finite number of X; are nonzero. If all the subcategories S; are coreflective and
arbitrary direct sums ®;e5X;, X; € OUS;, exist, then we have an analogous description
of the smallest subscheme S containing all S;: the subcategory § is the union of the
subcategories [X], where X runs through all sums @®;¢ 5 X; with X; € ObBS;.

Note that ’all sums’ in this description can be replaced by the requirement X; € =,
where Z; is a sct of objects of S; such that §; = Jy o= [Y].

For instance, if §; = [X;] for some X; € ObA, i € J, then sup{S; |7 € J} = [@ics Xi].

2.7.2.1. Lemma. The supremum of a finite number of Zariski closed subschemes is a
Zariskr closed subscheme.

Proof. We shall use the notations of the argument of Lemma 2.7.1.

Let J be a finite family of Zariski closed subschemes of A. Denote by K5 the functor
which assigns to any M € ObA the intersection (g5 K1(M). Since J is finite, M/ Ky(M)
is a subobject of ByeyM/Kp(M) = ey Jr(M). Denote by ¥y the (uniquely defined)
extension of the map M — M/K3(M) to a functor from A to A. Since the direct sum
BreyM/Kr(M) is an object of sup J, the functor ¥y takes values in the subcategory sup J.
On the other hand, if M € Ob(supJ), then K3(M) = 0; i.e. the natural epimorphism
M — U5(M) is an isomorphism. This shows that W5 is left adjoint to the inclusion
supJ — A. =
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2.7.3. Gabriel multiplication. For any two subcategories §, T of an abelian category
A, define their product Se T as the full subcategory of A generated by all objects M of A
such that there exists an exact sequence

0—M —-M-— M —0

with M’ € ObT and M" € ObS.
2.7.3.1. Lemma. (a) IfS and T are topologizing subcategories, then such isS e T.
(b) For any topologizing subcategories S, T, U of A,
Se(TelU)=(SeT) U and 0eS=S=Se0.

Proof is left to a reader. =

It follows from the definition of e that a topologizing category T is thick iff T is
idempotent: T=T e T.

2.7.3.2. Lemma. For any topologizing subcategories S, T, and X,
(SeT)N(SeX)=8S-(TNX) and (TeS)N(XeS)=(TNX)eS.

Proof. Clearly (SeT)N(S-X) D.Se (TNX). To show the inverse inclusion, pick any
object M of (Se T) N (S eX). By definition of e, there exist exact sequences

0 2T —>M-—S—0and0— X — M — 5 —0,
where T € ObT, X € ObX, S € ObS 5 8. Since the sequence
0 —TNX —M-—DSS

is exact, and S @ S’ € 8, the quotient object M/(1" N X), being a subobject of S & 5,
belongs to §. While 77N X, being a subobject of T' and X, belongs to TN X
The second assertion coincides with the first onc in the dual category. »

Thus, topologizing subcategories form a scmiring with a commutative operation N
and a noncommutative operation e; i.e. N might be thought as an addition, and e as a
multiplication.

The following assertion shows that the Gabriel multiplication is compatible with our
notions of a subscheme and a Zariski closed subscheme.

2.7.3.3. Lemma. If topologizing subcategories S and T of A are reflective (resp. coreflec-
tive), then such is SeT. '

Proof is that of Lemma II1.6.2.1 in [R]. m

2.7.3.1. Example. Let A = R — mod for some ring R. Let S and T be subschemes of
A defined by left ideals resp. J and Z: 8 = [R/J], T = [R/Z]. If the subschemes § and

18



T are closed, i.e. the ideals J and Z are two-sided (cf. Proposition 2.2}, then Se T is a
closed subscheme with the defining ideal JZ:8-T =[R/JI) =~ R/JT — mod.

If § and|or T are not closed, S - T is not, in general, of the form [R/m] for some left
ideal m. =

2.7.4. The n-th neighborhood of a topologizing subcategory. Given a topologizing
subcategory T of A, define the n-th neighborhood of T as the n-th power of T:

T .= Te...oT (n times).

One can check that T(®) := |J ., T is a thick subcategory of A which coincides
with the intersection of all thick subcategories containing T.

2.7.4.1. Remark. If T is a subscheme (resp. a closed subscheme), then, by Lemma
2.7.3.3, all the subcategories T(®) are (resp. closed) subschemes. However, the thick
subcategory T(*) is not, in general, a subscheme.

On the other hand, the minimal subscheme T = [T{*)] containing T{>) is not, in
general, thick any more. We shall see that T* is thick (hence Serre) if the category A is
locally noetherian (Proposition 3.1.2.1). =

3. Relative differential calculus in abelian categories.
Fix an abelian category A with the property (sup) and its subscheme T.

3.1. T-filtrations and T-objects. Fix an object M of A. An increasing filtration
M ={M;|i> -1} on M is a T-filtration if M_, = 0, and M;/M;_, € ObT for any i > 0.

Thanks to the coreflectiveness of T, there is a canonical T-filtration defined by: for
any 1 > 0, M; := TC+D AL := TG+ torsion of M. We are using here the fact that if T
and S are coreflective topologizing categorics than such is T ¢ S. Clearly the canonical
T-filtration is the biggest one in an obviuos sense.

For any M € ObA, we call the subobject T (M) := sup{TH M} the T-part of M.

We call M a T-object if M = T*°M. The full subcategory of the category A generated
by T-objects shall be denoted by T.

3.1.1. Lemma. The subcategory T is a subscheme.

Proof. For any object M of A4, T®M is the largest T-subobject of M. Since any
morphism f : M — M’ induces morphisms f*) : T¢) Ar — T MY for all n, the map
M — T M extends to a functor 4 — T which is left adjoint to the inclusion functor
T — A; i.e. T is coreflective.

It follows from the property (sup) and the fact that subcategories T¢) are topologizing
that any subquotient of a T-object is a T-object. And direct sum of any number of T-
objects is a T-object. In particular, the subcategory T is topologizing. w

3.1.2. Digression: T-objects and T~ -objects. For any M € ObA, the T-part of M
is a (proper in general) subobject of the T~ -torsion of M. To sce the difference between
being a T-object and a T~ -torsion (= T~ -object), we consider, for any object M of A, the
following increasing filtration:
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Mo = 0;

M; is the preimage of the T-torsion of M/M;_;, if i is a limit ordinal;

M; =sup{M, | v < i}, if 7 is a limit ordinal.

Set M, := sup{M;}. One can see that A, belongs to T~, and M/M,, is T-torsion
frce. The latter implies that M /M, is T~ -torsion free; i.c. My, is the T~ -torsion of M.

Recall that ‘M is locally noetherian’ means that A is the supremum of its noetherian
subobjects. For example, any left module over a left noetherian ring is a locally noetherian
object of R — mod. And any quasi-coherent sheaf on a noetherian scheme X is a locally
noetherian object of the category Qcohy of quasi-coherent sheaves on X.

3.1.2.1. Proposition. Suppose that M is a locally noetherian object of A, then M €
ObT™ iff M is a T-object.

Proof. a) Suppose first that M is noetherian. Then M € ObT~ iff M € ObT™ for
some n.

b) Suppose that M is the supremum of a sct {M,} of noetherian subobjects. If M
belongs to T~, then, according to a), all M, are T-objects. It remains to observe that,
since all subcategories T are coreflective, supremum of any family of T-subobject is a
T-subobject. w

3.2, Conormal bundle and T-filtrations. FFor any topologizing subcategory S, denote
by Is the subfunctor of Id 4 assigning to any object M of A the intersection of Ker(f),
where f runs over all arrows f: M — X with X € OIS. We call Zg the defining ideal of
the subcategory S.

Clearly Zg is a subfunctor of Z7 if T C S. In particular, Zg,r is a subfunctor of Zt. For
any topologizing subcategory T of A, we define the conormal bundle Qr of T as Ir/Itet-

Let M. = {M; | i > —1} be any T-filtration of an object M. One can see that, for any
i, Ip(M;) C M;-y and Iyer(M;) C Mi_3 (we set M; = 0 for all negative i). This implies
the existence of canonical morphisms

8 : Qr(griM) — gri_ 1M (1)

3.3. The case of the category of modules. Suppose that A4 is the category R — mod
of left modules over a ring R. And let F be any functor from A to A. Then, for any
R-bimodule M, F(M) has a natural R-bimodule structure which is the composition of
the bimodule structure R® — Endp(M, M) and the provided by the functor F' mapping
Endp(M,M) — Endp(F(M), F(M)). In particular, the R-module F(R) has a natural
R-bimodule structure.

There is a functor morphism ¢ : F(R)®r — F, where, for any X € ObA, the
morphism @(X) is defined as the image of idy under the composition

A(X, X) ~ A(X,Homp(R, X)) — A(X,Homgp(F(R), F(X))) ~ A(F(R)®r X, F(X)).

The morphism ¢ is an isomorphism iff the functor F has a right adjoint (cf. [Bass],
Proposition 1.2.2). The functor h : M — M®p from the category E-bi of R-bimodules to
the category EndA of endofunctors of the category A = R — mod is fully faithful and is a
left adjoint to the functor assigning to any endofunctor F' of A into the R-bimodule F'(R).
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Consider now the setting of Example 3.1: A = R—mod, J is a left ideal in R; T = [J]
is the minimal subscheme of A containing the module R/J. One can check that Zy(R)
coincides with the biggest two-sided ideal J; := (J : R) = {r € R | Jr C J} contained in
J. And IT.T(R) = Jtz So that QT(R) ~ Jt/Jt_z

It follows from Proposition 6.4.1 in [R1] that the canonical functor morphism

Ir(R)Qr = J1®r — It

is an isomorphism iff J is a two-sided ideal; i.c. if J = .J,. In this case Zt.r(R) = J? and,
by the same proposition, Zrer =~ Z1e1(R)®r.

In particular, if J is a two-sided ideal, the canonical functor morphism Qp(R)®pr —
(lt is an isomorphism.

4. Differential endofunctors and monads.

Let A4 be an abelian category. Let B denote the category End(A) of functors from
A to A (we assume that A is equivalent to a 'small’ category). Clearly B is an abelian
category which inherits many of properties of A. For example, B has the property (sup)
if A has it. And B has the same kind of limits as A has.

We take as T the diagonal A which is the minimal subscheme of B containing Id 4.
We shall call the A-part of any object M of B the differential part of M, and A-objects
differential objects (functors).

And we have the corresponding conormal bundle Qa : B — B.

4.1. Lemma. For any M, N € ObB and n,m > 0, the natural morphism
AMMo AN — MoN

factors through A™™ (M o N).

Proof. (a) If X € ObA and Y € ObA"™, then X oY € ObA™).

In fact, the assertion is trivially true for X = I'd. And the class of Zy of all X € ObB
such that X oY € ObA(™ is closed with respect to taking direct sums and subquotients,
since A is topologizing and coreflective. Since A is the minimal full subcategory of B
containing Id and closed with respect to these operations, the class ZEy contains ObA.

(b) Suppose that X € ObA(™ for some m > 2, and Y € ObA{™). Then there exists
an exact sequence 0 — L — X — M — 0 such that L € ObA, M € ObA(™~D,
Clearly '

00— LoY —3XoY —3MoY —0 (1)

is an exact sequence in which, according to (1), Lo Y € ObA™). And, by the induction
hypothesis, M o Y € ObA™™=™) Tt follows from (1) that X oY € ObA(™™), o

4.2. Corollary. If M and N are differential objects of B, then M o N 1is differential too.

4.3. Differential monads. Recall that a monad in a category A is a pair (F, 1), where
F is a functor from A to A and pa morphism F o F' — F such that

(a) po Fu= pouF;
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(b) there exists a morphism 7 : Id4 — F such that po Fnp =idp = ponkF.

Note that the latter equality determines i uniquely.

In fact, if 5’ : Id 4 — F is another morphism with the same properties, then we have:
W =ponFon =puoFnon=nm.

4.3.1. Examples of monads. (a) A standart example of a monad is associated with
a ring morphism R —A. The corresponding category A is I — mod; and the monad is
(A®p, 1), where p is determined by the multiplication A ® A — A (or, ruther, by the
morphism A ® A — A induced from the multiplication) in A.

(b) Similarly, a quasi-coherent sheaf of algebras A on a scheme X equipped with a
morphism ¢ : Ox — A of sheaves of rings defines a monad (A®op,, 1) on the category

A = Qcoh .
(c) Let G: A — Band G™ : B — A be adjoint functors; and let

€:GoG" —Ildg, n:ldy — G oG
be adjunction arrows. Then (G" o G, G ¢(G) is a monad in A. =

Fix a monad F = (F, ). An F-module is a pair (M, m), where M € ObA and m is
a morphism F(M) — M with the following properties: m o (M) = idpr, mo pu(M) =
mo F'm.

A module morphism from M = (M, m) to M’ = (M’,m’) is any triple (M, f, M'),
where f is a morphism from M to M’ compatible with actions: m' o Ff = fom. The
composition is defined in an obvious fashion. Thus we have the category F — mod and
the forgetting functor F : F — mod — A. The functor F is right adjoint to the functor
assigning to any M € ObA the F-module "F(M) = (F(M),u(M)) and to any arrow
f: X — X' the morphism Ff: "F(X) — “F(X') of F-modules. One can see that the
corresponding to the pair of adjoint functors ("F, F) monad coincides with F.

So the general nonsense example (¢) provides a universal way of constructing monads.

4.3.2. Proposition. Let F = (F, p) be a monad in A. Then A F is a submonad of F.

Proof. By Lemma 4.1, for any n,m > 0, the canonical morphism

AMFoAME 5 FoF (2)

factors through A F o AW EF — AM™MF o F. This implies (because the subcategory
A(™1) is topologizing) that the image of the composition of (2) with the multiplication
is a subobject of AU™™F, u

We call a monad F = (F, ) differential, or a D-monad, if F' is differential.
The full subcategory of differential objects of the category B will be denoted by D — A.

4.4. Remark. Instead of taking B equal to the entire category End.A, we might be
interested in choosing B to be a certain full subcategory of EndA closed with respect to
composition of functors and colimits (taken in End.A), and containing Id 4. Two important
for this work choices are B = End’ A — the full subcategory of EndA generated by all right
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exact functors - and B = €nd.A - the full subcategory of EndA generated by functors
having a right adjoint. m

5. Differential calculus over noncommutative rings.

5.1. Differential bimodules and rings. For any two rings A, B, we shall identify
(A, B)-bimodules with the corresponding A ® B°-modules. Here B° is the ring opposite
to B. In particular, R-bimodules will be identified with left R @ R°-modules.

To make the contents of this section more conveniently applicable, we shall consider
algebras and bimodules over a commutative ring k. This means that, instead of the
category (A, B)-bi of all (A4, B)-modules, we single out the full subcategory (A, B) —bi/k of
(A, B)-bi generated by bimodules M having the property: for any y € M and A € k, Ay =
yA. The canonical equivalence (A, B) — bi — A ® B° — mod induces an equivalence
(A, B) = bi/k — A Qi B° — mod. In particular R — bi/k is identified with the category
R @i R° — mod.

Fix a k-algebra R = (R, p).

5.1.1. Lemma. The kernel K, of the multiplication yu is a left ideal in R ®; R°.

Proof. By definition of the multiplication in R®y R?, (a®b)> 5, ®t; = as; ®t;b.
Therefore, if ¥ 5; ® t; € K, then p((a®@b) Y s, ®¢;) = a(d  siti)b=0. m

5.1.2. Note. The kernel K, of the multiplication 1 is a right (hence two-sided) ideal if
and only if the algebra R is commutative.

In fact, if R is commutative, then K, is two-sided. On the other hand, for any r € R,
the element 7®1—1®r belongs to K,,. The element (r®1-1®7)(e®1) =ra®@l-a®r
belongs to K, iff ra=ar. =

5.2. Lemma. The full subcategory Ar of R®; R°—mod generated by all RQy R°-modules
M such that, for any z € M, K, < Ann(z) is a subscheme.

The subscheme Apg is closed (i.e. the subcategory A is reflective) if and only if the
algebra R is commutative.

Proof. This is a special case of Example 3.1: for any ring A and any left ideal v in
A, the full subcategory [It/v] generated by all A-modules M such that ¥ < Ann(z) for all
z € M, is topologizing and coreflective.

If R is commutative, then such is R®; R° = R®y, R; and the subcategory Ap (which
coincides with [R ® R°/K,] in the notation above) is generated by all R ®; R-modules
M which are annihilated by K. It is reflective: a functor right adjoint to the inclusion
Ar — R®; R — mod is tensoring by R ®y R/K,, over R ®; R.

It follows from Proposition I11.6.4.1 in [R], that the topologizing subcategory Ag is
reflective if and only if K, is a two-sided ideal. And, according to Note 5.1.2, the ideal K,
is two-sided iff the algebra I? is commutative. w

For any R-bimodule M, the subbimodule ARM := sup{Ag)M | 2 > 1} of M will
be called the differential part of M. We shall call an R ®; R°-modules M differential if
M=AFM.
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Clearly the differential part of M is contained (usually properly) in the Aj-torsion
AR (M) of M.

5.3. D-filtrations. We call an increasing filtration {M; | ¢ > —1} of an R-bimodule M a
D-filtration if M_1 = 0 and M;/M;_ € Ag for any 7 > 0.
~ One can produce the canonical D-filtration of any bimodule M by taking as M; the
Agﬂ)-torsion of M. M; .= AEH)M . In other words, for any ¢ > 0, M; is the preimage
in M of {z€ M/M;_1 | K, < Ann(2)}.
This D-filtration is the biggest one with respect to the natural preordering of filtra-
tions.

5.4. Remark. Let M. = {M; |1 > —1} be a D-filtration of an R ®; R°-module. If R is
commutative, the action of K, on M sends M; into M;_;. Therefore this action induces
actions (R ®g R°-module morphisms) K, ®; griM — gr;_1M. Note that the idecal Kﬁ
acts trivially. Which means that the latter actions induce bimodule morphisms

Q'R ®pe,r g7iM — gri M (1)

where Q'R := K, /(K,)? is the bimodule of Kahler differentials.
We denote by
6; : griM — Homp(Q'R, gr; 1 M), (2)

the dual morphisms. One can check that the D-filtration M. is maximal iff M, coincides
with the An-torsion of M, and §; are monomorphims for all ¢ > 1.

If R is noncommutative, this construction does not work. And the reason is that the
topologizing subcategory Ag is not reflective (in other words, it is not Zariski closed). But
there is a natural replacement for Q'R — the conormal bundle of the subscheme Ag which
is a functor from R ®; R° — mod to R ®; R° — mod.

5.5. A reformulation. Now we shall consider the equivalence of the category R-bi/k
of R-bimodules over k£ (which is identified whenever it is convenient with the category
R ®; R° — mod) and the category of k-linear functors R — mod — R — mod having a
right adjoint. Following H. Bass [Ba], we shall call such functors continuous. Recall that
this equivalence sends any R-bimodule M into the functor M®p.

5.6. Lemma. The equivalence Fp between R®y R° —mod and the category Endg (R —mod)
of continuous k-linear endofunctors R — mod — R — mod sends the subcategory Ar into
the minimal subscheme A, of €nd,(R—mod) containing the identical functor. The induced
functor fromm AR to A, is an cquivalence of categories.

Proof. Note that It >~ R®; It°/K, as left 1 @ f2°-modules. The isomorphism is the
composition of the map

R— R®, R, r—=1r®1,7€R,
and the projection R®; R° — R®; IR°/K,, (we are using the fact that r®s—rs®1 € K,
for all r, s € R). This implies that Ap is the minimal topologizing coreflective subcategory

of R ®x R° — mod containing the R ®; R°-module R.
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Note now that the equivalence between the category I ®; R° — mod and the category
of continuous k-linear functors sends R into a functor isomorphic to the identical functor.
This implies the assertion. =

5.7. Lemma. If M and N are differential bimodules, then M ®pr N is a differential
bimodule.

Proof. The assertion follows from the following statement:

For any n,m > 0, the natural morphism Ag”)M ®r /_\.S;)N — M ®@r N factors
through the subbimodule Ag{n")(M ®r N).

This can be proved the same way as Lemrmma 4.1, first using the fact that the equivalence
between the category R®y R°~mod and Endy, (R —mod) sends M®p N into the composition
of the functors corresponding to M and N (cf. Remark 4.4). m

5.8. Proposition. Let R — A be a ring morphism. Then AR A is a subring of A.

Proof. The fact follows from Lemma 5.7 {as Proposition 4.3.2 follows from Lemma
41). m

We call R — A a differential R-algebra (or simply a D-algebra) if A = AFA.

5.9. Differential operators. For any two R-modules V and W, Homg(V,W) has a
natural structure of an R ®; R°-module. We denote by Dif fi.(V, W) the differential part
of Homy (V, W). We shall call elements of Dif f.(V, W) k-differential operators (or simply
differential operators) from V to W.

Clearly Hompg(V, W) is contained in Dz’ff,go)(V, W) = A(Endg(V,W)); i.e. R-module
morphisms are differential operators of the zero order.

We shall write Dy (R) instead of Dif fi.(R, R). Note that there is a natural ring
monomorphism from R to End,(R) assigning to cach element » € R the left multiplication
by r. The bimodule structure on End,(R) defined above coincides with the one induced
from the morphism ¢ : R — Endi(R). Thus R — Dy(R) is a D-algebra.

Note that the right multiplications by elements of R (=endomorphisms of the left

R-module R) also belong to D,(CO)(R). Therefore the image of the canonical map
R ®, R° — Endy(R)

belongs to the subbimodule cho)(R) of differential operators of zero order.

Any derivation d : R — R belongs to A® Endy(R) := DU(R).

In fact, for any r € R, dor - —r-od = d(r)-. Here r- denotes the operator of the left
multiplication by r. Therefore, for any element ¢ €Ker(y:), td € () = D,(CO) (R).

Thus D(R) contains all operators of left and right multiplication by elements of R
and all derivations. Recall that if R is commutative and regular, D(R) is generated by
Dy(R) and Der(R).

5.10. Enveloping algebras and differential operators. Fix a commutative ring
k. Let H = (6, H, ) be a Hopf k-algebra; and let R = (R, m) be any associative k-
algebra. Recall that a H-module structure 7 : H @ It — It is called a Hopf action if the
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multiplication m : R @, I — R is an H-module morphism. The latter means that the
diagram

idH@km T
H®r R® R — H@L R — R
o ®id l T m
id;QoQidg

&
HyH®y R R —b " HeorROLHS&WR —s ReR

commutes. Here ¢ denotes the standart isomorphism H @, R — R H, h@r — r® h.

Let Ur(g) = U(g) be the enveloping k-algebra of a Lie algebra g. Recall that U(g) is
a Hopf algebra.

5.10.1. Proposition. Let ¢ : U(g) ®x R — R be a Hopf action of U(g) on any k-algebra
R. Then U(g) acts by differential operators.

Proof. The coproduct § : U(g) — U(g) ® U(g) is uniquely determined by the its
values on g, and §(z) =z ® 1 + 1 ® z for all z € g. The action of U(g) on R being Hopf
and the above formula for § mean that g acts on R by derivations which are differential
operators of the first order (cf. Section 5.9). Since U(g) is generated by g, the assertion
follows from the fact that Dg(R) is a subalgebra of Endy(R) (c¢f. Proposition 5.8). m

5.11. Upper central filtration and strongly differential bimodules. Recall that
the center of an R-bimodule M is the set 3(M):= {2 € M | rz = zr for all r € R}. An
R-bimodule L is called artinian if it is generated as a left (or right) R-module by its center:
L = R3(L).

We denote the full subcategory of R — bi/k = R ®; R° — mod generated by artinian
R-bimodules by Artp. Clearly Artp is a subcategory of the ’diagonal’ Agr. And if the
ring I is commutative, they coincide: Artg = Ap.

Note that the inclusion functor Artp — R ® R® — mod has a right adjoint which
assigns to any R-bimodule M the artinian bimodule R3(M). In other words, Artp is a full
coreflective subcategory of R ®; R° — mod.

Define the upper central series {3, M | n > —1} of an R-bimodule M by

3-1M = 0; and for any n > 0, 3, M = R3,(M), where 3,(M) :={z € M | ad.(2) €
an—1(M) for all » € R}. Here ad,(z) =1z — 2r.

In particular, 3o(M) = 3(M) is the center of M; hence 30(M) = R3(M) is the
maximal artinian subbimodule of M.

Clearly thus defined the upper central series of M is an increasing filtration. We
denote the union (J,,5 _; 3a M by jeoM.

5.11.1. Note. The upper central filtration of a bimodule M is the T-filtration of M in

the sense of Subsection 3.1, where T = Artp: 3, M is the A'rt%‘)-torsion of M. Only this
time T is not a topologizing subcategory. u

Since artinian bimodules belong to the diagonal Ap, it follows from the definition of

the upper central series that 3, M C Ag‘)M for all n. Therefore 30, M is contained in the
differential part of M: 3o M C AR M.
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If R is commutative, 3,M = Ag;)M for all n; hence 3.0 M = AFM. In the noncom-
mutative case, 3o M is, in general, a proper subbimodule of A¥ M.

5.11.2. Example. Let V, W be left R-modules; and let M be the R ®; R°module
Homy (V, W). Then 3(M)= Homp(V, W), hence 30M = R -Homp(V,W). In other words,
30M consists of all left linear combinations with coefficients in R of R-module morphisms
from V to W. If V = W = R, where R is regarded as a left R-module, then Hompg(V, W} is
naturally isomorphic to (the right R-module) R: the isomorphism assigns to each element
r € R the right multiplication by r. So that 30M = 30Endy(R) is the image of the natural
morphism R ®; R° — Endi(R).

By definition, 3;(Endi(R)) consists of all endomorphisms d : B — R such that,
for any r € R,dr — rd € 30Endi(R), where r means the operator of left multiplication
by the element r; i.e. dr — rd is a sum of compositions of operators of left and right
multiplications (=the image of R ®; R° in Endi(R)). Note that derivations of R are
exactly k-endomorphisms & of R such that, for any » € I, the commutator dr — 73 is an

operator of the left multiplication by an element of R. In particular, any derivation of R
belongs to 31(Endg(IR)). m

5.11.3. Strongly differential bimodules and operators. We shall call objects of the
subcategory Arty strongly differential R-bimodules (or R®j It°-modules). More explicitly,
an R ®; R°-module M is strongly differential of order n if 3,1 M = M and M # 3, M if
m < n.

For any R-modules L and N, we call the elements of 3ooHomg (L, N) strongly differ-
ential operators from L to N. ’

Note that if the ring R is commutative, strongly can be droped, since in this case
(n) _ A(n)
Artp’ = Ay7.

5.11.4. The difference between the category of differential and that of strongly
differential bimodules. We begin with a couple of gencral assertions.

5.11.4.1. Proposition. (a) Let S be a full subcategory of an abelian category A closed
with respect to finite direct sums (taken in A) and containing all quotients of each of its
objects. Then the full subcategory S of A generated by all subobjects of objects of S is the
smallest topologizing subcategory of A containing S.

(b) Suppose the abelian category A has the property (sup) and direct sums of (small)
sets of objects. Let S be a full coreflective subcategory of A containing all quotients (in
A) of each of its objects. Then the full subcategory S of A gencrated by all subobjects of
objects of S is topologizing and coreflective. Therefore S is the minimal subscheme of A
containing S.

Proof. (a) The subcategory 8 is, evidently, closed with respect to taking subobjects
(in \A) of any of its objects. It is closed with respect to taking any quotients too.

In fact, let f: X — Y be an epimorphism with X € ObS. By definition of S, there
exists a monoarrow ¢ : X — W, where W € ObS. Then in the universal (push-forward)
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square
i

X — W

3 |

Y —5 W
the arrows ' and f’ are resp. a monomorphism and an epimorphism. Since the subcategory
S is closed with respect to taking quoticnts in A, the object W' belongs to S. Therefore
Y, being a subobject of W', belongs to §.
(b) Since S is a full coreflective subcategory of A, for any diagram D — &, the
existence of resp. lim.J o D and colimJ o D garantees the existence of resp. limD and
colimD, where J is the inclusion functor § — A. And

limD = J"(limJ o D), (resp. colimD = J"(colimJ o D))

whenever limJ o D (resp. colimJ o D) exist (cf. [GZ], Proposition 1.1.4). Since J has a
right adjoint, colimJ o D ~ J(colimD).

Under conditions, since A is closed with respect to small direct sums, hence with
respect to any colimits, § is closed with respect to colimits, and the last formula means
that the colimits in & are those taken in A.

Since A has the property (sup), the direct sum of any set of monomorphisms is a
monomorphism. Therefore, since S is closed with respect to direct sums, any direct sum
of a sct of objects of 8§ is an object of S. This proves that § is a coreflective topologizing
subcategory. m

5.11.4.2. Proposition. Let A be an abelian category with the property (sup). And let
S be a full coreflective subcategory of A (in pariicular, § is closed with respect to colimits
taken in A) and containing all quotients of each of its objects. Then the subcategory S
for any positive n and the subcategory S have the same properties.

Proof. {a) 1t is convenient to split the proof of this assertion into a couple of useful
lemmas.

5.11.4.2.1. Lemma. Let S and T be full subcategories of A containing with any of its
objects all its quotients in A. Then S o T enjoys the same property.

Proof. In fact, let f : X — Y be any epimorphism with X € ObS e« 7. The latter
means that there exists an exact sequence

0— X' —-X —>X"—0 (1)

with X’ € ObT and X" € ObS. We can include the sequence (1) and the morphism f into
a commutative diagram

0 — X % x =4 xr — 0
el 1 L @)

0 —— Yy — Y — Y -— 0



where Y’ is the image of f o4, and Y” is a cokernel of the monomorphism #'. Thus f’ is
an epimorphism by construction. Since € and f arc epimorphisms, f"oe =¢€'o f is an
epimorphism. Therefore f” is an epimorphism. By assumptions on the subcategories S
and 7,Y' € ObT and Y € ObS; hence Y € ObS e T . u

5.11.4.2.2. Lemma. If S and T are full coreflective subcategories of an abelian category
A, then S o T 1is coreflective.

Proof. For any X € ObA, denote by Xs (resp. X7) the S-torsion of X which is the
maximal subobject of X belonging to § (resp. to 7). Fix an object X of A. We have a
commutative diagram

0 — Xy — X — X/Xf — 0

wd ’[ ¢V T ‘[ L (1)

1

0 —— X —  XseT -—c—+ (X/X1)s —— 0

where X s,7 is the pull-back of the arrows ¢ and ¢. Clearly Xgso7 is an object of Se 7. We
claim that any monomorphism Y — X with Y € ObS o T factors through Xge7 — X.

This follows from the fact that Y7 = Y N X which implies that Y/Y7 is a subobject
of X/X7. Therefore, being an object of S, Y/Yr factors through (X/X7)s. The latter
means that Y is a subobject of Xge7. =

5.11.4.2.3. Lemma. Let {S, | n > 1} be an increasing (with respect to C) sequence of
full coreflective subcategories of an abelian category A. Suppose that A has the property
(sup). Then the full coreflective subcategory colim{S,} generated by all objects X which
are supremums of families of objects from {S,} is coreflective.

If, for any n € N, the subcategory S,, contains all quotients of any of its objects, then
colim{S,.} has the same property.

Proof. (a) Let, for any X € ObA, Xs denote the S-torsion of X. Since A has the
property (sup), sup{Xs_ | n > 1} is the lim{S,, }-torsion of X.

(b) Let X is an object of im{S,}; i.e. sup{Xs, |n > 1}~ X. Andlet f: X — Y be
an epimorphism. Denote by Y;, the image of the composition X, — X and f. It follows
from the property (sup) that the canonical morphisin sup{¥,} — Y is an isomorphism.
Since by assumption Y,, € ObS,, for any n, this implies that ¥ € colim{S,.}. =

(b) The proof of Proposition 5.11.4.2. By Lemmas 5.11.4.1 and 5.11.4.2, the Gabriel
product S e 7 of coreflective full subcategories of A containing with each object all its
quotients (in .4) enjoys the same properties. Therefore S cnjoys these properties for
any positive integer n. Now it follows from Lemma 5.11.4.3 that S® := colim{S™} is
also coreflective and contains all quotients of any of its objects. m

Now we go back to I?-bimodules.

5.11.4.3. Proposition. The diagonal Ap is the full subcategory of R ® R° — mod
generated by subbimodules of artinian bimodules. Moreover, for anyn € N, AS?) is the full
subcategory of R @i R° — mod generated by all subbimodules of bimodules of Artg?). And
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% s the full subcategory of R @i R° — mod generated by all subbimodules of bimodules
of Art®.

Proof. In fact, the subcategory Artp of artinian bimodules is coreflective and any
quotient module of an artinian bimodule is artinian too. So the assertion follows from
Propositions 5.11.4.2 and 5.11.4.1. m -

One of the big advantages of ’artinian formal neighborhoods’ Artg.?) is the following
fact.

5.11.4.4. Proposition. The functor Fg: R—bi — End(R—mod), M — M®g, sends,

for any n € N, the subcategory Art%‘) into the n-th neighborhood A™ of the diagonal A
in End(R — mod); and it sends ArtE into A®.

Proof. (a) The functor Fg is right exact. And, for any artinian bimodule M, there
exists a bimodule epimorphism L — M, where L is a free artinian bimodule; that is
L = (J)R - the direct sum of a set J of copies of R. Since L®p is isomorphic to the direct
sum of J copies of the identical functor, M®p belongs to the diagonal A.

(b) Suppose now that Fp sends Artg?) into A™. And let M € Artg;?ﬂ); i.e. there
exists an exact bimodule sequence

0o M —M-—M' —0 (1)

with M’ artinian and M" € ObArtg{,’). Since the functor Fp is right exact, to the sequence
(1) there corresponds an exact sequence of endofunctors:

M@r — M®r — M'®rp — 0. (2)

By the induction hypothesis, M”®p belongs to A*) and we have checked that M'®g
belongs to A. Therefore M®p is an object of AP+1),

(c) It remains the case n = co. But the functor Fip is compatible with any colimits.
So that if M € Art®, i.e. M = sup{M, | n > 0}, where {M,, | n > 0} is an increasing
filtration with M,, € ObArtgg) for every n € N, then M®pr = sup{M,®gr | n > 0}.
Therefore, since M,,®p belongs to A™) for each n, M®pg belongs to A, =

5.11.5. Strongly differential operators and the Weyl algebra of a noncommu-
tative algebra. The following proposition is analogous to Proposition 5.7.

5.11.5.1. Proposition. For any pair of bimodules, M € ObA'rtg‘) and L € ObArtgn), .

their tensor product, M @ N, belongs to Ar t%””)-

Proof. 1} The category Artp of artinian R-bimodules is closed with respect to ®g,
since the center, 30(M ®p N), of the tensor product of bimodules M and N contains the
image of the product, 3¢(M)®k30(NV), of centers of M and N under canonical epimorphism
M@ N — M®prN. And one can see that, for artinian M and N, the map

R3o(M) ®r 36(N) =M @t 30(N) —m M@ N
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is epimorphic.
2) Suppose that M € ObA'rtg‘),n >2,and L € ObArtp. Then L ®r M C ObArtg‘).
In fact, there is an exact sequence

0—M o> M-—oM —0 (1)

where M’ € ObArtg and M" € ObArt%'—l). The sequence

LopM — L®gM — LrM' — 0 (2)

is exact. The bimodule L ® p M’ is artinian and, by the induction hypothesis, L ®  M"
belongs to Artg‘_l) . This together with the fact that the image of an artinian bimodule
is shows that L @ g M € ObArtg‘).

3) Take M € ObArtg?),n > 2, so that there exists a exact sequence (1) with M’

artinian and M"” € ObArtS?™". And let L € ObArty™ for some m > 2. Consider the
exact scquence )

0—MRrL—MrL—M'®rL—0 (3)

According to 1), M"®gL € ObArtgn). By the induction hypothesis, M’ ®p L belongs

to Artgzmn_m). It follows from Proposition 5.11.4.2 and the fact that Arip contains all
quotients of each of its objects, that the image of M/ @p L in M ®p L is an object of
A'rtgm_m). Therefore M Qg L € ObArtg""). .

This implies that the full subcategory Art{y generated by all bimodules M such that
M = 30oM is closed with respect to ®p too. Oune of the consequences of these facts is the
following

5.11.5.2. Proposition. Let A be a k-algebra with an R-bimodule structure determined
by a k-algebra morphism R — A. Then 3o A 1s a subalgebra of A.

In particular, we have the k-algebra D} (R):=3c End;(R) of strongly differential op-
erators on K.

5.11.5.3. The Weyl algebra of an algebra. Denote by Ai(R) the subalgebra of
Endy(R) generated by the image of R®; R° in Endy R (which is the subalgebra in Endy(R)
generated by left and right multiplications by elements of R) and by the k-module Dery (R)
of k-derivations of R.

We call Ax(R) the Weyl algebra of R.

Since all derivations of a ring R belong to 31 Endi(R) (cf. Example 5.11.2), and the
image of R® R° in End; R belongs to joEndi(R), the Weyl algebra Ax(R) is a subalgebra
of the algebra 3o, Fndi(R) = Di(R) of strongly differential operators on R.

5.11.5.3.1. Proposition. Let ¢ : U(g) @x B — R be a Hopf action of U(g) on any
k-algebra R. Then the image of the algebra homomorphism U(g) — Endg(R) is contained
in the Weyl algebra of R. In particular U(g) acts by strongly differential operators.
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Proof. This follows from the fact that the Lie algebra g acts by derivations (cf. the
argument of Proposition 5.10.1 and Example 5.11.2). »

5.11.6. Upper central filtration and differential continuous endofunctors. It
is useful to extend the facts of Subsections 5.11.1-5.11.4 to a more general setting which
includes in particular sheaves of quasi-coherent bimodules on schemes.

Fix an abelian category A with the property (sup). And fix a Zariski closed sub-
scheme (i.e. reflective and coreflective topologizing subcategory) T of the category EndA
of continuous (i.e. having a right adjoint) functors from A to A. We assume also that T
is closed with respect to compositions of functors and contains the identical functor I'd 4.

We call a continuous functor F' € QbT artinian if for any nonzero morphism g : FF —»
G, there exists a morphism f : Id 4 — F such that fog # 0.

We denote the full subcategory of T generated by artinian functors by ArtT.

5.11.6.1. Example. Let R be a k-algebra and A = R — mod. Take as T the full
subcategory €ndgA of EndA generated by k-linear continuous functors. The canonical
equivalence i — bt — End A, M — M@®p, establishes an equivalence between T and the
Zariski closed subscheme R ®i R° —mod of R — i = R® R° — mod. We have already
observed (cf. the part (a) of the proof of Proposition 5.11.4.4) that the same equivalence
establishes an equivalence between the category ArtT of artinian k-linear endofunctors and
the category Artp of artinian R-bimodules. m

5.11.6.2. Proposition. The subcategory AriT of T is coreflective and contains all quo-
tients of any of its objects. It is also a monoidal subcategory of T: i.e. it contains I'd 4 and
closed with respect to the composition of functors.

Proof. (a) Let F' € ObArtT, G € ObT, and let e : ' — G be an epimorphism. If g
is a nonzero morphism G — G’, then go e : F — G’ is nonzero. Therefore, since F is
artinian, there exists f : Id4 — F such that (goe)o f = go(eo f) # 0 which shows that
G is artinian.

(b) To prove that ArtT is coreflective, we need to show that every F' € ObT has the
biggest artinian subobject. Let Arts(F) denote the class of all artinian subobjects of F.

Note that Arts(F) is filtered. In fact, for any two monoarrows G — F +— G’ in
T with G and G’ artinian, the supremum of the subobjects G and G’ is the image of the
corresponding morphism G @& G' —F. Clcarly the direct sum of artinian object is an
artinian object. Therefore sup(G,G’), being an epimorphic image of an artinian object
G @ G, is artinian too (cf. (a)).

Let now {G; | i € J} be an increasing family of artinian subobjects of F. We claim
that G := sup{G; | ¢ € J} is artinian. Note first that the category T inherits from ¢nd.A
the property (sup) which implies that the canonical morphism

colim{G; |1 € J} — sup{G; | i € J}

is an isomorphism. In particular, if g is a nonzero morphism sup{G;} — G’, there exists
j € J such that the composition, g;, of m; : G; — sup{G;} and g is nonzero. Since G; is
artinian, therc exists a morphism f : Id4 — G; such that g;o f = go(m; o f) is nonzero.
.
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Denote by Ay the diagonal in T — the minimal subscheme of T containing Id 4. Ap-
plying Propositions 5.11.4.1 and 5.11.4.2, we a obtain direct analog of Proposition 5.11.4.3:

5.11.6.3. Proposition. The diagonal Ay is the full subcategory of T generated by all
subobjects of artinian objects. Moreover, for any n € N, A.(ﬂ.") is the full subcategory of
T generated by all subobjects of objects of ArtT™ . And AP is the full subcategory of T
generated by all subobjects of objects of ArtT.

Proof. By Proposition 5.11.6.2, the subcategory ArtT of artinian objects is coreflective
and contains all quotients of any of its objects. So the assertion follows from Propositions
511.4.2 and 5.11.4.1. =

We have also an analog of Proposition 5.11.4.4:

5.11.6.4. Proposition. The inclusion functor T — EndA sends, for any n € N, the
subcategory ATtT™ into the n-th neighborhood A® of the diagonal A in EndA. And it
sends ArtT™ into the A®.

Proof is a simplified version of the argument proving Proposition 5.11.4.4. Details are
left to the reader. m

Mimiking 5.11.4.5, we shall call objects of ArtT(") strongly differential objects of T of
order < n.

5.12. D~ -bimodules and D~ -rings. We call an R-bimodule M a D~ -bimodule if it
belongs to the minimal Serre subcategory A containing Agr. Clearly any D-bimodule
is a D~ -bimodule. The opposite is not true in general. However, we have the following
assertion:

5.12.1. Proposition. Let R be a left noetherian ring. Then any R @i R°-module which
s a. D™ -torsion s differential.

Proof. This is a corollary of Proposition 3.1.2.1. m

5.12.2. Lemma. The minimal Serre subcategory A~ of the category Endg(R—mod) con-
taining the identical functor Idp_meq s closed with respect to the composition of functors.
Moreover, A= o T C T for any Serre subcategory T of Endg(R — mod).

Proof. Note first that any topologizing subcategory T of &nd, (2 — mod) is closed
with respect to composition from the left with functors from some family =, then it is
closed with respect to composition from the left with functors of the minimal topologizing
subcategory [Z] containing Z.

This follows from the fact that [Z] is obtained from Z by taking subquotients and
direct sums.

Similarly, if a family of functors Z stabilizes a thick (resp. Serre) subcategory T of
Endk (R — mod), then so does the minimal thick (resp. Serre) subcategory containing Z.

Now take = = {Id}. Clearly, any subcategory T of Endg(R — mod) is stable with
respect to the composition with I'd. Therefore, if T is a Serre subcategory, it is stable with
respect to the composition with any functor from A~. =
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5.12.3. Corollary. Let R — A be an algebra morphism. Then A~ -torsion of A is a
subring of A.

We call an algebra morphism R — A (or, by abuse of language, the algebra A itself)
a D~-algebra if the R-bimodule A belongs to A~.

6. Differential operators and localizations.

6.1. Differential functors and formal neighborhoods of subschemes. Fix an
abelian category A with the property (sup) (cf. 2.7). :

6.1.1. Lemma. (a) Let F : A — A belong to A™) | for a positive integer n (resp.
F € ObA®). Then, for any subscheme T of A, F(T) C T¢™ (resp. F(T) C T*).

(b) If F: A — A belongs to A~ then every Serre subcategory, S, of A is stable with
respect to F; i.e. F(S)CS.

Proof. (a) Fix a subscheme T of A.

1) Note that if F € ObA, then F(T) C T.

In fact, let S5 denote the full subcategory of EndA generated by all endofunctors
F such that F(T) C T. If F € Ob=r, than every subquotient F' of F belongs to =r,
since, for any X € ObT, the object F'(X), being a subquotient of F(X), is contained
in ObT. Similarly, =g is closed with respect to direct sums and the taking supremums
of subobjects. In other words, Zt is a subscheme of EndA. Clearly Et contains Id 4.
Therefore, it contains the minimal subscheme, A, generated by Id 4.

2) Let 7 be a positive integer. Suppose it is established that G(T) € T for any
G € ObA™ . And let F € ObA{1), The latter means that there exists an exact sequence

0—G—F—G —0 (1)

with G € ObA™ and G' € ObA. The exactness of (1) means exactly that, for any
X € ObA, the sequence

0 — G(X)— F(X) = G(X)—0

is exact. If X € ObT, then G(X) € ObA™ by assumption, and G'(X) € ObA by 1).
Therefore F(X) € ObAM+1).

3) Suppose now that F' € ObA®. This means that F' is the supremum of an increasing
family {F, | n > 1} of its subfunctors such that, for any n, F,, € ObA®™). Therefore, for
any X € ObT, F(X) = sup{F,.(X) | n > 1}; and, for any n, F,,(X) € ObT(™} (cf. 2)); i.e.
F(X) € ObT*.

(b) Suppose now that 8 is a thick subcategory of A. Then Zg is also closed with respect
to extensions, hence thick (cf. the argument in 1)). Thus, if § is a Serre subcategory of
A, then Zg is a thick subscheme of EndA. By Lemma 2.6.2, Zg is a Serre subcategory of
EndA. Therefore, since Id4 € Zg, AT CZg. =

6.2. Differential endofunctors and localizations. Here we shall show that exact
differential endofunctors and monads are compatible with localizations at Serre subcate-
gories.
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Fix a thick category T of an abelian category A and a localization @ : A — A/T
at T. Denote by Tt the class of all morphisms s of A such that Ker(s) and Cok(s) are
objects of T. Or, equivalently, £y = {s € HomA | Qs is invertible}.

6.2.1. Lemma. Let F be a functor A — A.

(a) The following conditions on F' are equivalent:

(i) F(Z1) € Zr

(1i) There ezists a unique functor Fy such that () o F' = FyoQ.

(b) If F(£y) C Xy, then F(T) CT.

(¢) Suppose that F(T) C T and F is ezact. Then F(Er) C Tx, and the functor Fy
defined by the equality QQ o F = Fy o Q is exact too.

Proof. (a) The inclusion F(Xy) C Y7 means exactly that ()} o F/(X1) consists of only
invertible morphisms. The latter implies, by the universal property of localizations, that
there exists a unique functor Fr: A/T — A/T such that @ o F' = FroQ.

Conversely, the equality Qo F' = Fro() implies that the morphism Qo F'(s) is invertible
for any s € Zr.

(b) The subcategory T is the kernel of the localization @, i.e. ObT = {X € ObA |
Q(X) = 0}. It follows from the equality @ o F = Fy o @ that Q o F(X) = 0 for any
X € ObT; i.e. F(X) € ObT.

(c) Suppose that the conditions of (¢c) hold; i.e. F is exact and F(T) C T. Let
s: L —s M be any morphism of A such that Qs is invertible; i.e. Ker(s) and Cok(s) are
objects of T. Since the functor F' is exact, it sends the exact scquence

0 — Ker(s) — L — M — Cok(s) — 0

into the exact sequence
0 — F(Ker(s)) — F(L) =% F(M) — F(Cok(s)) — 0 (2)

By assumption, F(Ker(s)) ~ Ker(Fs) and F(Cok(s)) ~ Cok({F's) are objects of the
subcategory T which means that F's € ¥7.

According to (a), Qo F = Fro @ for a uniquely determined Fy. The functor Fr is
exact by Proposition 1.34 in [GZ]. =

We shall say that a functor F': A — A is compatible with localizations at T if F
satisfles the equivalent conditions (%), (7} of Lemma 6.2.1.

6.2.2. Proposition. Let T be any thick subcategory of A and @ : A — A/T a localization
at T. Let F be a functor from A to A compatzble with Q; 1.e. Qo F = Fyro(Q for a (unique)
functor Fy : A/T — A/T.

(a) If the localization Q and the functor F have right adjoints, then Fy has a right
adjoint.

(b) Let p : Fo F — F be a structure of a monad in A. Then F = (F, 1) defines
uniquely a monad Fy = (Fr, pr) in A/T such that the localization Q : A — A/T induces
an exact and faithful functor

U :F - mod/F(T) — Fr — mod.
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Here § is the forgetting functor F — mod — A.
(b1) If the localization QQ has a right adjoint, then the functor ¥ is an equivalence of
categories.

Proof. (a) Let Q" and F~ be right adjoints of resp. @ and F. Denote by G the
composition Qo F" o Q" : A/T — A/T. We have canonical morphisms:

FT0G=FT0QOF‘OQ=Q0F0F“0Q“—)QoQ‘—)IdA/T (1)

the right arrow being the adjunction isomorphism. Denote the composition of these mor-
phisms (1) by €.
On the other hand, there are arrows

Q—QoF oF —Qol 0Q oQoF =(QoF 0oQ oFfjoQ=GoFroqQ

By the universal property of localizations, the composition of arrows (2) is equal to
nQ for a uniquely defined morphism 7 : I'd 41 — G o Fy. It follows from the definition
of € and 7 that these morphisms are adjunction arrows (details of the checking are left to
a reader); hence G is a left adjoint to Fr.

(b) Suppose now that F = (F, ) is a monad with an exact functor F' such that
F(T) C T. Then the multiplication p determines a multiplication p’ : Fy o Fp — Fr.

Thanks to the equality (1), we can define a functor, ® : F — mod — Fr — mod,
by ®(M,m) = (Q(M),Qm), ®f = Qf for any F-module (M,m) and for any F-module
morphism f. '

Since the localization @ is exact, the functor ® is exact, and Ker® = F~1(T). There-
fore ® = W o ', where Q' is a localization F — mod — F — mod/F~'(T) at F~HT), ¥ a
uniquely defined exact and faithful functor from F — mod/F~(T) to Fy — mod.

(b1) Suppose now that the localization @ has a right adjoint, Q. Let 7, € denote
the adjunction morphisms respectively Idg — Q" 0o Q and Q 0 Q" — Id 4. For any
Fr-module (M, m), set ®(M,m) := (Q (M), m’), where m’ is the composition of

nFQ (M) : FQ™ (M) — Q" QFQ™ (M),

Q" Fre(M) : Q"QFQ™ (M) = Q" FrQQ" (M) — Q" Fr(M),

and Q 'm:Q Fr(M) — Q" (M).

One can check that the map (M, m) — (Q"M,m/), f — Q" f for any Fr-module
(M, m) and any Fr-module morphism f defines a functor ®” from the category Fy — mod
to F — mod which is right adjoint to the functor ® defined above. The adjunction arrows
7w :Id — ® o® and ¢ : ® o P" — Id are induced from the adjunction arrows
respectively 1 and €. In particular, € is an isomorphism which means that the functor
®" is fully faithful. Therefore ® is a localization (cf. [GZ], Proposition I.1.3). Since ® is
exact, the induced functor

¥ : F ~ mod/F~HT) — Fr — mod
is an equivalence of categories. m
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Let @ : A — A/T be an exact localization having a right adjoint. For any functor
F: A — A, one has an endofunctor F' = Qo Fo()": A/T — A/T. So that we have a
canonical functor morphism:

" =QoFn:QoF — FoQ=QoFoQ o(Q, (1)

where 7 : Id4 — Q" o Q is an adjunction arrow.

6.2.3. Lemma. The following conditions are equivaelent:
(i) The morphismn' == QoFn:QoF — F'o@Q = QoFoQ"oQ is an isomorphism.
(it) There is a functor G : A/T — A/T such that Qo F ~ G o Q.
(iii) There exists a functor Fy : A/T — A/T uniquely determined by the equality
FT o} Q bt QOF.

Proof. (i)& (i1) is trivial.

(i) (iii). The isomorphism Qo F ~ Go(@ shows that the functor Qo F makes invert-
ible all arrows the localization ¢ makes invertible. Therefore, by the universal property of
localizations, there exists a unique functor Fy: A/T — A/T such that Qo F = Fro Q.

(iii)< (7). The equality Qo F' = FyoQ implies that ' := Qo Fp = FroQn. But Q7
is an isomorphism (because @~ is fully faithful). Therefore 7’ is an isomorphism. »

6.2.3.1. Note. Let @ : A — B be a functor having a fully faithful right adjoint, @".
Then, for any functor G : B — B, the functor G" := @ o GoQ: A — A has the desired
property: QoG" = Qo Q oG oQ ~ Go Q. This follows from the fact that the adjunction
morphism ¢ : Qo Q" — Idg is, thanks to the full faithfulness of @~, an isomorphism (cf.
[GZ], Proposition 1.1.3). m

6.2.3.2. Remark. Let Q : A — B be a functor having a fully faithful right adjoint,
@". And let F: A — A be any endofunctor. Consider the full subcategory C = Cr of A
generated by all objects X of A such that the canonical morphism

Qo Fn(X): QéF(X)—-—) Qo FoQ o Q(X)

is an isomorphism. Note that, thanks to the full faithfulness of Q°, the functor @" takes
values in C. In particular, the restriction, Qp, of the functor @ to C has a fully faithful
right adjoint, Q" = Q" {® (- the corestriction of @" to C); i.e. Qp is a localization of C
with the same quotient category B.

The restriction of the functor F' to C is compatible with the functor (localization)
Q. Which means that there exists a functor F' : B — B (F' = Qo F 0 Q") such that
FloQle~QoF |c. m

6.2.4. Proposition. (a} Let F : A — A be an cxact A~ -functor. Then, for any
localization QQ ©+ A — AJT at a Serre subcategory T of A, there exists a unique ezact
functor Fy : AT — A/T such that Q o F = FyoQ.

(b) Suppose that the subcategory T is 'localizable’; i.e. the localization Q : A — A/T
has a right adjoint. Then Fy € ObA~. Moreover, if F € ObA™ | where n is any positive
integer, then Fr € ObA™ . If F € ObA™, then Fy € ObA®
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(¢c) Let F = (F, 1) be a D™ -monad such that the functor F' is exact. Then, for any
Serre subcategory T, the monad F induces a monad Fr in the quotient category A/T and a
canonical exact and faithful functor

Vg : F — mod/F~*(T) — Fr — mod.

Suppose that the subcategory T is localizable. Then the functor ¥y is an equivalence
of categories. And Fy is a D™ -monad.
IfF is a differential monad, then Fy is differential.

Proof. (a)Suppose that F € ObA(™) . Then, by Lemma 6.1.1, any Serre subcategory T
of A is F-stable. It follows now from Lemma 6.2.1 and Propositions 6.2.2 that QoF = Fro@
for a unique functor Fy. According to Proposition 1.3.4 in [GZ], the functor Fr is exact.

(b) Suppose now that T is localizable, and fix a right adjoint @~ to Q. Note that,
thanks to the exactness of @, the functor £: F— Qo Fo Q" from EndA to EndA/T is
exact. Moreover, since () respects colimits, the functor £ enjoys the same property.

For any family @ C EndA, denote by §(£2) the minimal Serre subcategory of End.A
contained €. Note that ObS(Q) is obtained from € by taking subquotients, direct sums,
and supremums. Since the functor £ is compatible with these operations, the image
L{5()) of S() is contained in S(L()) and the embedding L{S(})) C S(L()) is an
equivalence. Applying this observation to = {Id 4}, we see that £ assigns to any functor
from A~ a functor from A~.

This shows also that, for all n € Z, £ sends A®™) into A(®), Therefore £ sends A®
into A®.

It follows from Lemma 6.2.3 that L(F') is canonically isomorphic to Fr whenever Fr
exists. This implies the assertions of (b).

(¢) The functor ¥t being an equivalence of categories follows from Proposition 6.2.2.
The rest follows from (b). w

6.2.5. Remarks and observations. Proposition 6.2.3 is a fundamental fact having one
annoying condition — that of the differential functor F being exact. The following two
lemmas provide a partial remedy.

6.2.5.1. Lemma. Let F' be a functor from A to A; and let T be a thick subcategory
of A stable with resp. to the functor F. Any of the following conditions garantees the
compatibility of F' with the localization at T:

(a) For any monomorphism (resp. epimorphism) f : X — Y, the object Ker(F f)
(resp. Cok(F f)) belongs to the subcategory T.

(b) The functor F is might ezact and S1F(T) CT. Here S1F is the left satellite of F.

(c) The functor F is left exact and, for any object X of T, there exists an injective
embedding X — M in A such that M € ObT (for instance, an injective hull of any object
of T belongs to T).

(d) Both S\ F and S'F exist, and the subcategory T is stable with respect to S1.F and
SF.

Proof. (a) The condition (a) implies that the functor ¢ o F' sends epimorphisms
into epimorphisms and monomorphisms into monomorphisms. Thus ¢ o F is an exact
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functor annihilating the subcategory T which implies that @ o F(s) is invertible for any
s € ¥r:={s € HomA| Ker(s), Cok(s) € ObT}. Therefore, by the universal property of
localizations, @ o F' = Fy o @ for a unique functor Fy.

(b) Let s : X — Y be an epimorphism in A such that K = Ker(s) is an object of T.
Since the functor F is right exact, the sequence

F(K) —m F(X) — F(Y)—0 (1)

is exact. Applying to (1) the localization @ = @, and using that @ is exact and, by
assumption, F(K) € ObT, hence Q o F(K) = 0, we get an exact sequence

0 — QF(X) X QF(Y) — 0

i.e. QFs is an isomorphism. Note that 51 F is not used in this argument.
Suppose now that t : X — V is a monomorphisin such that W := Cok(t) € ObT.
Then we have an exact sequence

S\F(W) — F(X) LY F(V) — F(W). (2)

Applying to (2) the functor Q and using the fact that S{F(W) and F(W) belong to
T, hence QS1F(W) = 0= QF (W), we obtain that QF () is an isomorphism.

It remains to notice that any morphism u of A such that Ker(u) and Cok{u) are objects
of T, has a decomposition u =t o s, where s is an epimorphism and ¢ is 2 monomorphism
such that Ker(s) and Cok(t) belong to T.

(c) The condition of (¢} implies that S*F(T) C T. The asscrtion follows from (b) by
switching to the opposite category.

(d) The argument is similar to that of (b). We leave detailes to a reader. m

6.2.5.2. Lemma. Let Qg be the class of all functors I' : A — A satisfying the equivalent
conditions of Lemma 6.2.8. Suppose that F — G — H — K — L is an ezact sequence
of functors A — A such that F,G,K,L € Qq. Then H € Qq.

Proof. Consider the commutative diagram with the canonical vertical arrows:

QoF — QoG — QoH — QoK — (ol

l ! 0

FloQ — FoQ — FoQ — FoQ — L'oQ

where F/ = Qo Fo@", etc. (cf. Lemma 6.2.1.2.1). By assumption, all vertical arrows
except possibly the central one are isomorphisms. By the five-lemma, the central vertical
arrow is an isomorphism too. m

6.3. Localization of differential bimodules. Fix a commutative ring k. Let I be
an associative k-algebra. Set R¢ := R ®; R° (- enveloping k-algebra of R). Denote by
A the category R — mod of left R-modules. We shall regard I — mod as the category
of quasi-coherent sheaves on the square of SpecR over Speck. The diagonal, Apg, is the
minimal subscheme of R® — mod containing the Rf-inodule R.
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6.3.1. Proposition. (a) Let M be a strongly differential R*-module. If M is flat as a
right R-module, then, for any Serre subcateqory T of R — mod, the functor M®p induces
a functor Mt : R — mod/T — R — mod/T.

(b) Let R — A be an algebra morphism such that A is a strongly differential R®-
module flat as a right R-module. Then, for any Serre subcategory T of the category R—mod,
the algebra A induces a monad, Ay, on R — mod/T.

Proof. The fact follows from Proposition 6.2.2 and Proposition 5.11.4.3. =

6.3.2. Proposition. Let R — R' be an algebra morphisin such that the functor Q =
R'®p is an ezact localization. Then

(a) Any strongly differential R*-module M which is flat as a right R-module determines
a strongly differential R'¢-module M' = R'Qpr M Qg /. And M’ is isomorphic to R'@p M
as (R', R)-bimodules.

(b) If M € ObA'rtg’;), i.e. if M 1s a strongly differential Rf-module of n-th order, then

the R'*-module M’ has the same order: M' € ObArt(,;).

(c) Let R — A be an algebra morphism such that A is a strongly differential R®-
module flat as a right R-module. Then R' ®p A has o unique k-algebra structure such that
the canonical maps A — R' ®p A «— R’ are k-algebra morphistns. And R' ®p A is a
strongly differential R'*-module.

Proof. 1) Let M be an Rf-module. By Lemma 6.2.3, the functor M®p is compatible
with the localization ) : R — mod — R — mod/8 iff the canonical morphism

Qo(M®r) — Qo (M®r)oQ 0@ (1)

is an isomorphism. In the case when R — mod/S = ' — mod for some k-algebra R,
hence @ can be taken equal to R'®p, the isomorphness of (1) means that the canonical
R’ @i R°-module morphism

ROrM —R Qs Mop R (2)

is an isomorphism.

(a) Let M be a strongly differential R*-module. By Proposition 6.3.1, the functor
M®p induces a functor My, where T is the kernel of the localization Q. Since Q@ = R'Qr
for some k-algebra morphism R — R', the canonical morphisin (2) is an isomorphism.
This proves the assertion (a).

(b) The assertion (b) follows from the fact that the functor R'®p, being a localization,
is exact and, for any It’-module L, the natural R'-module morphism R' @ L — L is an
isomorphism. In particular, we have: R'®@g R’ ~ R' ~ R'®pR. Therefore if M € ObArtg,
i.e. M is a quotient of a direct sum of a set of copies of R, then R’ ®p M is a quotient of a
direct sum of a set of copies of R’. The rest of the proof is a standart induction argument
which goes through thanks to the exactness of of the localization R'®p. Details are left
to a reader.

(c) The fact follows from (a) and the assertion (b) of Proposition 6.3.1. w

6.3.3. Enveloping algebras and differential operators. Let U(g) be the enveloping
algebra of a Lie algebra g over a field k of zero characteristic.
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6.3.3.1. Proposition. Let 7 : U(g) ®x R — R be a Hopf action on a k-algebra R. Let
R — R’ be a k-algebra morphism such that R'®p is a localization functor (e.g. R’ is a
localization of R at a left Ore set). Then the action of U(g) extends uniquely to a Hopf
action on R'.

Proof. By Proposition 5.10.1, if ¢ : U(g) ® R — R is a Hopf action of U(g) on
a k-algebra R, then U(g) acts by strongly differential operators. Therefore the crossed
product R#U(g) acts on R by strongly differential operators. Note that R#U(g) is a flat
right (and left) R-module. By Proposition 6.3.2, R’ ® g R#U(g) has a uniquely defined
structure of a k-algebra such that R’ — R’ ® g R#U(g) is an algebra morphism turning
R’ ®r R#U(g) into a strongly differential R’*-bimodule.

For any R#U (g)-module M, the algebra R'®@p R#U(g) acts on R'®gM. In particular,
we have a uniquely defined action 7/ of U(g) on R’ by strongly differential operators. We
claim that 7’ is a Hopf action.

Denote for convenience U(g) by U and R#U(g) by 4.

1) Let (M,p:UQ® M — M) be an U-module. Then the composition

Ue(ReM) -HUeUe(ReM S UeR)eUeM "X RrReM (1)

defines an action of R’ ® p 4 on R’ ® M (- the ’tensor action’) which we denote by 7/ © p.
Clearly the diagram

! ! T’@[) ) ”1, /
Reru®ReM) — RQM —s R®rM

[ [ [ 9
U (ReM) —2% ReM -y M

commutes. Applying the localization functor R'®pg : & —mod — R —mod to the diagram
(2), we obtain the diagram

Lo m'
Repd@ROM) —5 ROM —— RepM

T [ [ ®

TQ m
Repl®ReM) —5 ReM — M)

with all vertical arrows isomorphisms. Here we are using the fact that the functor R'®pg
is idempotent: R' ®p R’ ~ R’. This shows that the localization of the natural (‘tensor’)
action of Y := R#U is the natural action of R’ ® 4. Now the commutativity of the
diagram
TOp
U (R®M) —— ROM
dUem l l m (4)

YoM  — M
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implies the commutativity of the corresponding localized diagram

e
Reopie(ROM) —% ReM
Rreopriuem l l m (5)

!

Ropi® (R @rM) — R OzM
This shows in particular (for M = R’ and p induced by 7) that 7’ is a Hopf action. =

6.3.4. The commutative case. Propositions 6.3.1 and 6.3.2 provide the following
assertion.

6.3.4.1. Proposition. Let R be a commutative k-algebra. And let M be a differential
Rt -module which s flat as a right R-module. Then

(a) For any Serre subcategory T of A, the functor M®p induces a (unique up to
isomorphism) differential functor My : A/T — A/T.

If M e ObASY | then My € ObA™,

(b) If the quotient category A/T is equivalent to R/ —mod for some R-algebra R', then
My is isomorphic to the functor R @ g M®p.

Proof. The fact follows from Propositions 6.3.1 and 6.3.2 and the coincedence, for a
commutative ring R, of the subcategory Artg of artinian Rf-modules and the diagonal
Ar. =

6.3.4.2. Remark. One can show (using Lemma 6.2.5.1) that if A — A/T is a localiza-
tion at a principal open set (i.e. a localization at any finitely generated multiplicative set),
then one can drop the right flatness condition in Proposition 6.3.4.1. Since the principal
open sets form a base of the Zariski topology of schemes, they provide satisfactory ’local
properties’ of differential bimodules and, in particular, of differential operators. Thus, in
the commutative case, the necessity to switch to derived categories is first manifested in
the non-affine situation. In the noncommutative case the principal open sets do not make
much sense in general. Therefore we have to work in the derived categories already in
the affine case. Considering that the diagonal Ap is not Zariski closed if the ring R is
noncommutative, this is not very surprizing. =

6.4. Localization of differential actions in derived categories of categories of
modules. Let & be a commutative ring, 12 a k-algebra. Let A = R — mod — the category
of left B-modules; and let B = R* — mod, where Rf := R ®j R°. The natural action

BxA— A, (M,N)— M®rN

(we identify B with the corresponding full subcategory of the category R-bi of R-bimodules)
is an action of the monoidal category Rf-modules, B = (B,&pg, R), on A. This action
induces an action

O D~ (B) x D™ (A) — D™ (A)

of the monoidal derived category ®~(B) of the bounded from above complexes over B on

D= (A).
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Fix a Serre subcategory S of A. And let By denote the full subcategory of B generated
by all Rf-modules M such that the functor M®p preserves §. Denote by DS the full
subcategory of D~ (.A) generated by all complexes X of R-modules such that H*(X) € ObS
for all n. Recall that ©~S is a thick subcategory of D~ (A). By a standart argument
(using spectral sequence) one can show that the action of the subcategory D~ Bs of D~ (B)
preserves D~S; i.e. the restriction to D~ Bs x D~8 of the functor ®% : D~ (B)x D~ (A) —
D~ (A) takes values in D~S.

One of consequences of this fact 1s the following

6.4.1. Proposition. For any Serre subcategory S of A = R — mod, the action of D~ Bg
on D7 (A) induces an action of D~ Bg on the quotient triangulated category

D~ Bs x D™ (A)/D™S — D~ (A)/D"S.

In particular, it induces an action of the category Art% of strongly differential R*-
modules on D~ (A)/D~S.

6.4.2. Proposition. Let F = (F, ) be an algebra in D~ Bg (i.e. F is an algebra in
the monoidal category D~ (B) such that F € ObD~Bs). Then F determines a monad
Fs = (Fs, ,u,s) o 'D_(.A)/Q_S.
A localization @ : D~ (A) — D (A)/D~S induces an equivalence of triangulated
categories
VU :F ~mod/F Y (D T) — Fs — mod,

where § s a forgetting functor F — mod — D~ (A).

Proof. The assertion can be proved by the argument used for a similar statement in
Proposition 6.2.2. m

Denote by *D~(B) the full subcategory of D~ (B) generated by all complexes X of
Rt-modules such that H™(X) is a strongly differential bimodule for all n.

6.4.3. Corollary. Let F = (F, p) be an algebra in B = R —mod such that F is a strongly
differential Rt -module. Then, for any Serre subcategory T of A = R — mod, F induces a
unique up to isomorphism monad Fy = (Fr, ut) on the triangulated category D~ (A)/D~T.
A localization @ : D~ (A) — D~ (A)/D~T induces an equivalence of triangulated
categories
U :F - mod/F (T) — Fr — maod,
where § is a forgetting functor F — mod — D~ (A).

Note by passing that the triangulated category D~ (A)/D T is naturally equivalent
to the derived category ©~(A/T). And this is true in the gencral case, when A is an
arbitrary abelian category, 8 is a thick subcategory in A, and T is the corresponding thick
subcategory in D~ (A4) (cf. [BO)).

6.5. Localization of differential operators. The (not necessarily strongly) differential
bimodules are compatible with localizations given by R'®pg for an algebra morphism R —
R’ such that R’ is a flat left R-module as well. For instance, R’ is the localization of R at
a left and right Ore set.

43



6.5.1. Proposition. Let R — R’ be an algebra morphism such that the functor Q =
R'®p is an exact localization and R’ is flat as a left R-nodule too. Then
(a) For any R*-module M which belongs to Ay , the functor M®pg is compatible with
the localization Q = R'®p. And Qo (M®Rr) ~ M'®pg/, where M' = R' @ M @r R'. The
canonical (R, R)-bimodule morphism R' Qg M — R' @r M @ R’ is an isomorphism.
(b) If M € ObAS?), t.e. if M is a differential R*-module of n-th order, then the

R'*-module M' has the same order: M’ & ObAg‘,).

(c) Let ¢ : R —> A be a differential algebra (i.e. ¢ is a k-algebra morphism turning
A into a differential Rt -module. Then R' @ A has a unique k-algebra structure such that
the canonical maps A — R' ®p A «— R’ are k-algebra morphisms. And R’ @p A is a
differential R'-module.

Proof. (a) Consider the full subcategory Z of R* — mod generated by all modules M
such that the canonical (R', R)-bimodule morphism

ROrM — RO Mg R (1)

is an isomorphism. It follows from the exactness of the functors R'®p and @ R R’ that Zis a
Serre subcategory of the category R —mod. Since = contains the R*-module R, it contains
the Serrc subcategory Ap. According to the part 1) of the proof of Proposition 6.3.2, the
functor M®p is compatible with the localization R'®p if and only if the morphism (1) is
an isomorphism. This proves the assertion (a).

The assertions (b) and (c¢) are proved by the same argument as the corresponding
assertions of Proposition 6.3.2. m

6.5.2. Proposition. Let R — R’ be an algebra morphism such that the functor
Q=R®r:R—-mod — R —mod

is an eract localization and the I is flat as a left R-module. Let M’ be a differential
R'*-module. And let M := Q" (M')uiss (t.e. M is the differential part of the R®-module
M'"). Then the canonical morphism ¢ : R @r M — M’ is an isomorphism of R -modules.
Moreover, the isomorphism ¢ induces, for any n > 0, an isomorphisin R' @ g M,, — M!

where M), (resp. M,,) denotes the AS;H)— (resp.AE,gH)—) torsion of M' (resp. of M).

Proof. (i) First we shall prove the fact for artinian R¢-modules.

Let M’ be any artinian R’*-module; i.e. there exists an R’*-module epimorphism
(v)R' — M’ for some ordinal v (as usual, (¢¥)R' denotes the direct sum of v copies of
R’). We can include this epimorphism into a commutative diagram with exact rows:

0 — K' — (VR — M — 0

| T | e

0 — K — (WR — M — 0

Here the upper row is regarded as a sequence of Rf-module morphisms; K is the
pull-back of the corresponding morphisms. Thus M is an artinian 2°*-module, and in the
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corresponding commutative diagram

0 — K’ — (V)RR —- M’ — 0

(2)
0 — RrK — RRWR — R@gM — 0

the central vertical arrow is, obviously, an isomorphism. Since R'®p is an exact localiza-
tion, for any R’-module L, the canonical epimorphism R’ ® p L — L is an isomorphism,
and R'®pr sends universal squares into universal squares. Therefore the left vertical arrow
is an isomorphism too. This implies, since both rows of (2) are exact, that the right vertical
arrow is an isomorphism.

(ii) Let now K’ be any R'*-module from the diagonal Ags. According to Proposition
5.11.4.1, K is a submodule of an artinian R'*-module M’. By (i), there exists an artinian
Rt*-module M and an R*-module monomorphism M — M’ such that the canonical R'¢-
module morphism R’ ®p M — M’ is an isomorphism. Let K be a pull-back of the
Rt-module morphisms K/ — M’ +— M. Then K is an R¢-submodule of M, hence K €
ObApg; and the canonical (R', R)-bimodule morphism R’ ® z K — K’ is an isomorphism
(cf. the argument in (i}).

(i) Assume now that the fact is true for all L’ € OI)AE?,). Let M’ belong to ObAES'H);
i.e. there exists an exact sequence of R'*-modules

0—K — M —L —0 (3)

with L' € ObAS;) and K’ € ObAp:. Consider the diagram with exact rows

0 — K — M — [ — 0

(4)

0 — K — M — L — 0

where K is the AU”-torsion of the Rt-module K’, and L is the Ap-torsion of the R*-
module L'. Finally, M is the pull-back of the morphisms M'/K — L' «— K’. We have
the commutative diagram with exact rows

0 — K’ — M’ — ! — 0
| (5)
0 —m R@rK — R@rM — R gL — 0

Since the right and the left vertical arrows are isomorphisms, the central vertical arrow
is an isomorphism too.

(iv) Let M’ € ObAS,. Set M = sup{M, | n > 0}, where M,, is the Agl“)—torsion of
the R¢-module M’; and let M/, is the Ag‘,“)-torsion of M’. Then, by (iii), the canonical
morphism R’ @ g M,, — M, is an isomorphism for all n. This implies that the canonical
morphism

R ®r M = colim{R ®@r M,, | n > 0} — colim{M] | n >0} = M’
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is an isomorphism. =

The following version of Proposition 6.5.2 for strongly differential bimodules does not
require R’ to be a flat left R-module..

6.5.2.1. Proposition. Let R — R’ be an algebra morphism such that the functor
Q=RQ®p:R—mod — R —mod

is an ezact localization. Let M' be a strongly differential R'*-module. And let M :=
ArtF(Q~(M")). Then the canonical morphism ¢ : R' ® g M — M’ is an isomorphism
of R-modules. Moreover, the isomorphism ¢ induces, for any n > 0, an isomorphism
R ®p M, — M, where M, is the Art\s*") -torsion of M’ and, similarly, M, is the
Artgl-"l)-torsion of M.

Proof. The assertion follows from the part (i) and a simplified version of the parts
(iii) and (iv) of the argument of Proposition 6.5.2. m

6.5.2.2. Note. If f : R — R’ is any morphism of commutative algebras, then, for
any differential R’¢-module M’, the R®-module M = fuM' obtained by restriction of
scalars is differential too. More generally, for any R’*-inodule M’ and for any nonnegative

n, f (AW M) € A (f4M) and, therefore, fu (M, ;) C f#(M)aizs. This follows from

the observation that, as a set, AE;)M ={z e M| K}, - z =0}, where Kp is the kernel of
the multiplication R'* — R/, and f ®; f(Kr) C Kp.
Clearly Proposition 6.5.2 (for a commutative R) is a consequence of this fact. m

6.5.3. Proposition. Let R — R’ be an algebra morphism such that the functor
Q=RQr:R—-mod — R —mod

is an ezact localization and R’ is flat as a left IR-module.
Let M be an Rt -module, M' :== R @r M ®p R'. If the natural morphism M — M’ is

ingective, then, for any n > 0, the morphism R' ®p A%‘)M — L\.ES)M " is an isomorphism.
In particular, R' ®p Maiss — Mt,ﬁff is an R -module isomorphism.

Proof. By Proposition 6.5.2, R' ®p Ag‘)(Q“(M’)) — Ag})M’ is an isomorphism for
any n. Let M be the image of the canonical morphism M — R' ®p M Qg R’ = M.
Clearly AY (M) = M N A (Q*(M")). Note that the functor Q : L — R' ®r L ®p R/,
being exact, respects pull-backs. In particular, it respects intersections. Note that

R @ M®r R'NR ®r AP (Q(M") = R @ AP (Q(M"))
It follows that in the commutative diagram

RorAPM)erR —— R ep AP QM)

T !

n P T
RerAmMm) —— A M
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both vertical arrows and the upper horizontal arrow are isomorphisms. Therefore, for all
n, the morphism ¢,, : R' ®g Ag')M — A%‘,) M is an isomorphism. This implies that the
canonical morphism ¢ : R' ® g Maipp — M), g 18 an isomorphism. w

A similar argument proves the following version of 6.5.5 for strongly differential parts
of bimodules.

6.5.3.1. Proposition. Let R — R’ be an algebra morphism such that the functor
Q= R'®p:R—mod — R — mod

s an ezact localization and R’ is flat as a left R-module.

Let M be an Rt-module, M' := R' ®p M ®p R'. If the natural morphism M — M’
is injective, then, for any n > 0, the morphism R’ ®p Artg‘)M — ArtS;)M’ s an
isomorphism. In particular, the map R' @p ArtR (M) — ArtF (M') is an R'*-module
isomorphism.

6.5.4. Proposition. Let R — R’ be an algebra morphism such that the functor
Q=R®p:R—mod — R —maod

is an exact localization. Let L be a coherent R-module (i.c. there exists an ezact sequence
F, — Fy — L — 0, where F; are free modules of finite type). Then, for any R-module
N, the natural R®-module morphism

Homy (L, N) — Homy(R' ®p L, R’ ®p N)
mnduces, for all n > 0, isomorphisms
R ®@pr Diff3(L,N) — Diffi(R'®p L, R’ @ N).
In particular, we have an R'*-module isomorphism
R ®@r Dif f*(L,N) — Dif f*(R ®r L,R' ®p N).

Here Dif f° (resp. Dif f2) denotes strongly differential operators (resp. strongly differen-
tial operators of order no greater than n).

Proof. Thanks to Proposition 6.5.3.1, it suffices to show that the strongly differential
part of the R*-module Homy(R'®g L, R’ ® g N) is contained in the image of the morphism

RIC®H0H1]¢(L,N) —>HOIH;;(R’ n L,R’ Qr N) (1)

(a) Let M be an artinian R*-module. And let ¢ : M — Homy(R' ®pr L, R’ ®r N) be
an R°-module morphism. We claim that the image of ¢ is contained in the image of the
canonical map (1).

In fact, since there is an R°-module epimorphisin of a direct sum of a set of copies
of R onto M, we can assume that M = K. And any Rf-module morphism from R to
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Homi(R' ®r L, R’ ®r N) is uniquely defined by the value, f, of the identity of R, and,
therefore, rf = fr for all r € R; ie. f € Homp(R' ®p L, R’ ®p N). Since R'®p, is a
localization, the canonical map

HOHIR:(RI @R L, R Or N) e HOI‘I]R(R’ Rn L, R Rr N)

is an isomorphism; and Homp/ (R’ ® g L, R’ ® N) is isomorphic to Homp(L, R’ ® N).
Since L is a finitely generated I-module, the morphism

R ®p HOHIR(L, N) — HomR(L, R ®r N)

is an epimorphism.

(b) Let 0 — M’ -5 M =5 M" — 0 be an exact sequence in R® ~— mod such
that M" is artinian and M’ € ObArtl”. Let f : M — Homg(R' ®g L, R' ®r N) be
an Rf-module morphism and the composition f o takes values in the image of (1}. This
mcans that f induces a (unique) R*-module morphism, f”, from M" to the cokernel, €, of
(1). Since M" is artinian, it is generated by its central elements. Fix any central element
z' € M". Let z € M be a preimage of z’ and set f, := f(z). The morphism f, has the
property: f.r —rfz € Im(fo.) for all » €R.

(b1) Let L be a free R-module of finite type with free generators {e; | i € J}. Let g,
denote the R'-module morphism R’ ® g L — R’ ®p N such that g.(e;) = fz(e;) for all
i €J. Then f; € g + Ia(f o). Since the image of f o+ is contained in the image of the
map (1) and g, belongs to the image of (1) (cf. (a)) , f» belongs to the image of (1).

This proves the proposition in the case when L is a free R-module of a finite rank.

(b2) The general case. Let L be an arbitrary coherent R-module; i.e. there exists an
exact sequence of R-module morphisms £y, — Fy — L — 0, where Fj are free modules
of finite type. Then we have the following commutative diagram with exact rows

0— HOﬂ‘lk(R'®RL,R'®RN) — Hmnk(R'®RF0,R'®RN) — Homk(Rr®RF1,R'®RN) —0

0— R”@Rt Homk(L,R'®RN) — R“:@Rt HOTTI;;(FD,R[®RN) — R"@lar Hmn;,(Fl,R'®RN} —0

‘ (1)

Since, according to (bl), Dif f*(IR! ®p F;, R’ ®p N) is contained in the image of

R'* @ e Homy(F;, N), ¢ = 0,1, the same is true for L; i.e. Dif f*(R'®g L,R' ®r N) is
contained in the image of R'* ® ge Homy (L, N). m

6.5.4.1. Proposition. Let R — R’ be an algebra morphism such that the functor
R'®r: R—mod — R —mod

is an ezxact localization (say the ring R’ is the localization of R at a left Ore set). Then
(a) The action of D°(R) on R extends naturally to an action on R’ giving a canonical
ring homomorphism D*(R) — D*(R') which induces « left R'-module isomorphism R’ ®%,
D(R) — D*(R').
(b) For any D®(R)-module M, the R'-module R’ @ p M has a natural, in particular
compatible with D*(R) — D®(R'), structure of a D*(R')-module.
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(¢) If the ring R’ is such that the functor g R’ : mod— R — mod— R is a localization
(e.g. R’ is the localization of R at a left and right Ore set), then we also get an induced
right R'-module isomorphism D*(R) ®p R’ — D*(R/).

Proof. The assertion («) follows from Proposition 6.5.4.
(b) The assertion (b) follows from (a).
(¢) The assertion {c) is the right hand side version of (a). »

Complementary facts.
C.1. Differential operators and Spec.

In the commutative case, the 'local nature’ of differential operators implies that the
localization of a D-module at a point of a scheme is a D-module at this point (i.e. on the
affine scheme of the local ring at this point). This fact is, of course, quite useful, since
it allows to study D-modules ’locally’, at points of underlying topological space (see, for
instance, the local criterion for holonomicity of a complex of D-modules ).

A remarkable consequence of our localization theorems is that the fact is true in
the general, noncommutative setting: localizations of {(complexes of) D-modules at points
of the spectrum are (complexes of) D-modules at the points. Note however that this
important fact cannot be even formulated in the language of rings and modules. The
reason is that the category of modules over a noncomimutative ring localized at a point of
the spectrum is not, usually, equivalent to a category of modules. As a result, we need to
switch from categories of modules to more general abelian categories and replace algebras
by monads and modules over algebras by modules over monads.

For the reader’s convenicnce, we remind first what is the spectrum of an abelian
category and mention a couple of its basic properties. After that we shall formulate the
fact.

C.1.0. Preliminaries on Spec. Recall that, for any two objects X, Y of A, we write
X > Y if Y is a subquotient of a finite direct sum of copies of X (cf. Note 2.5.1). For
any X € ObA, denote by (X) the full subcategory of A such that Ob(X) = ObA — {Y €
ObA | Y > X}. It is easy to check that X > Y iff (Y) C (X). This observation
provides a convenient realization of the quotient of (ObA, >) with respect to the equivalence
relation induced by > : X = Y if X > Y > X. Namely, (ObA, »)/ = is isomorphic to
({(X) | X € ObA}, 2).

Set SpecA = {P € ObA | P # 0, and for any nonzero subobject X of P, X > P}. The
spectrum, SpecA, of the category A is the preordered set of equivalence (with respect to
> ) classes of objects of SpecA.

C.1.0.1. Note. It follows from the definition of SpecA that any simple object (i.e. a
nonzero object without proper nonzero subobjects) belongs to the spectrum. Moreover, it
is easy to see that if M > L and M is a simple object, then either I = 0, or L is isomorphic
to a direct sum of a finite number of copies of M; in the latter case L =~ M. In particular,
if both I and M are simple objects, then M > L iff M is isomorphic to L. =

The canonical realization of (ObA, >}/ = induces a canonical realization of SpecA :
(SpecA = {(P) | P € SpecA}, D).
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C.1.0.2. Proposition. For any P € SpecA, the subcategory (P) is a Serre subcategory of
A. If A is a category with the property (sup), then the converse is true: if X is an object
of A such that (X) is a Serre subcategory of A, then X is equivalent (in the sense of > )
toa P € SpecA; i.e. (X)=(P).

Proof. See Proposition 2.3.3 and 2.4.7 in [R)]. m

A nonzero object X of a category A is called quasifinal if, for any nonzero object Y
of A, Y = X. The category A having quasifinal objects is called local.

One can check that all simple objects of a local category (if any) are isomorphic to
each other. In particular, the category of left modules over a commutative ring R is local
iff the ring R is local.

C.1.0.3. Proposition. For any P € SpecA, the quotient category A/{P) is local.
Proof. See Proposition 3.3.1 and Corollary 3.3.2 in [R]. =
For more details on the spectrum of abelian categories see [R1] or [R], Chapter I11.

C.1.1. Differential monads and the spectrum. The following proposition is a conse-
quence of Proposition 6.2.4.

C.1.1.1. Proposition. Suppose that, for any P €SpecA, the localization Qp : A —
A/P at P has a right adjoint.

(a) Let F' be an ezact D™ -functor (i.e. F'€ ObA™ ). Then, for any P €SpecA, there
exists a unique functor Fp : AJ/P — A/P such that Qp o F = Fp o Qp. The functor Fp
belongs to A% /p for all P €SpecA.

If F € ObA™ for some positive n, then Fp € OFJASL}P for all P €SpecA. Similarly,
if F € ObA®, then Fp € ObAjf/P.

(b) Let F = (F, 1) be a D™ -monad such that the functor F is ezact. Then, for any
P cSpecA, the monad F induces a D™ -monad Fp = (Fp,up) on A/P. And for oll P,

the canonical functor
Tp : F—mod/F ' (P) — Fp — mod

is an equivalence of categories.
If the monad F is differential, then the quotient monad Fp is differential for all
P €SpecA.

C.1.1.2. Note. If the functor F in Proposition C.1.1.1 is only right exact, then we should
switch to derived categories of categories of modules and use analogs of results of Section
6.4. We leave details to the reader. =

C.1.2. Remark. Proposition C.1.1.1 shows in particular that in noncommutative geom-
etry monads and modules over monads are inavoidable substitute of algebras and modules
over algebras. In fact, even if A = R — mod for some associative ring R, the quotient
category A/P is not usually equivalent to the category of modules over any ring. =



C.2. D-affinity for monads.

Working with categories of endofunctors, onc can get, using quite elementary tools,
some suggestive and useful versions of important facts. One of them we have considered
in Sections 6.1, 6.2 — the compatibility of differential actions with localizations. Here we
shall discuss an elementary prototype of D-affinity.

Let @ : A — B be a functor having a right adjoint, @" : B — A; and let n = g
and € = €g be adjunction arrows, n: Idqg — Q@ 0 Q, €: Qo Q" — Idp.

To any functor G : B — B, there corresponds a functor G” : A — A defined by the
formula: G” := Q@ 0G0 Q. The map G — G" defines a functor Zg : End(B) — End(A).

C.2.1. Lemma. The functor Iy : Fnd(B) — End(A),G — Q" oGoQ, extends naturally
to a monoidal functor (Zg, ¢) : (End(B),o,Id) — (End(A),o, Id). If the functor Q" is
fully faithful, then ¢ is an isomorphism.

Proof. For any G,G’ € ObEnd(B), the morphism
#(G,G') : To(G) 0 To(G) = (Q 0G0 Q)0 (Q 0G0 Q) — To(GoG) = Q"0 G o0 Q

equals to Q" 0 GepG' o @, where €g : Idg — Q" o @ is an adjunction arrow. One can
check that (Zg, ¢) is a monoidal functor. We leave details to a reader.

If the functor @~ is fully faithful, €g is an isomorphism; hence ¢, is an isomorphism.
]

C.2.2. Corollary. Let G = (G, ) be a monad on B. Then IoG := (Zo(Q), '), where p'
equals to Zopo ¢(G, G), is a monad on A.

C.2.3. Proposition. (a) Assume the setting of Lemma C.2.1. LetG = (G, ) be a monad
in B. Then the pair of adjoint functors (Q, Q") induces a functor, @”, from the category
IoG — mod of ToG-modules to G — mod.

(b) If the functor Q" 1s fully faithful (i.e. Q is a localization), then the functor
Q" : IoG — mod — G — mod is an equivalence of categories.

Proof. Fix adjunction arrows np: Idg — Q" o Q and ¢ : Qo Q" — Idp.

(a) The functor Q" induces a functor Q" : G — mod — TG — mod assigning to any
G-module M = (M, m : G(M) — M) the ZoG-module ZgM = (Q" (M), m’), where
m’ = Q" (m o Ge(M)), and to any G-module morphism f the morphism Q" f.

(b) Suppose now that the functor @~ is fully faithful. Recall that this means exactly
that the adjunction arrow € is an isomorphism. Therefore we can assign to any ZoG-module
N = (N, v) the G-module Q'(N) := (Q(N), '), where the action »’ is the composition of
e 1GoQ(N):GoQ(N) — Qo0 Q 0GoQ(N)=QoTgG(N) and Qu. The map Q' is
functorial. And one can check that ¢ = {¢'(N) := ¢(N) | N € ObIgG — mod} is a functor
isomorphism from Q' o Q" to I'dg_moa, and 7' = {n'(M) := n(M) | M € ObG — mod} is
a functor morphism from Idzgg —moa to @ 0 Q. It follows that ¢’ and 7’ are adjunction
arrows between functors @' and @”. Since € is an isomorphism, €’ is an isomorphism which
means that the functor @" is fully faithful. Therefore Q' is a localization which makes
invertible exactly those ZgG-module morphisms s : (N, ) — (N', /') the localization Q
makes invertible.
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We claim that @'s is invertible only if s is invertible. :

In fact, let s: (N,v) = N — N’ = (N', /) be an TgG-module morphism such that
Qs is invertible. Note that the action v : G(N) — N is a cocqualizer of the pair of
morphisms Gv, u(N) : G o G(N) — G(N). Thus we have a commutative diagram with
exact rows:

w(N)=Gv

GoG(N) —5 GIN) —» N ——0
ToGoTaG(s) l JQG(S)J’ $ l (1)
w(NYy-Gv' v’
Goa(ny "5 GN') —— N ——0

Note that the vertical arrows of (1) are invertible, since ZgGs := Q" oG o Qs and Qs
is invertible. This implies that s is invertible.

It follows from the universal property of localizations that a localization is an equiv-
alence of categories iff it rmakes invertible only invertible arrows. m

C.2.3.1. Note. Proposition C.2.3 is true without any restriction on the categories in-
volved. For instance, they might be non-additive. In the latter case, the left horizontal
arrows in the diagram (1) should be replaced by the corresponding double arrows. =

C.2.4. Interpretations. The functor @ : A — B having a right adjoint @" can be
regarded as an inverse image functor of a morphism from B to A (then Q" is a direct image
functor of this morphism; cf. [R], Ch.VII). Note that the pair @, Q" determines a pair of
adjoint functors

Q' : End(A) — End(B), F— Qo FoQ", Q" : End(B) — End(A), G+ Q" 0Go Q.
(1)

Thus the functor @~ might be viewed as a direct image functor of a morphism from
End(B) to End(A). The monad IgG = (ZpG,u') := (Q (@), ') corresponding to a
monad G = (G, ) on B (cf. Proposition C.2.3) can be regarded as the direct image
(sometimes as global sections) of the monad G. This way Proposition 6.5.3 might be
interpreted as ” G-affinnity of B over A”.

Unfortunately, we do not work usually with the whole category of endomorphisms.
Instead, we are interested in endomorphisms which have right adjoint. And, in general,
the restriction of the ’direct image functor’ @'~ (see (1)) to the full subcategory €nd(B) of
End(B) generated by functors having a right adjoint does not take values in End(A). It
does, however, if the functor @~ has a right adjoint, as one can see from (1). In this case
we call the morphism B — A affine.
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