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1 Introduction

1.1

This paper is a continuation of [Mu]. Let ϕ be a holomorphic cusp form of weight k on SL2(Z)
which is a common eigenfunction of the Hecke operators, and Ω a Hecke character of an imaginary
quadratic field K such that Ω((α)) = (α/|α|)k for α ∈ K×. Let L(ϕ,Ω; s) be the Rankin-Selberg
L-function attached to (ϕ,Ω) with a functional equation under s 7→ 1 − s, and P (ϕ,Ω) an Ω-
averaged sum of values of ϕ at certain CM points in K (for the precise definition, see [Mu]). Due
to Shimura’s fundamental results on critical values of Rankin-Selberg L-functions ([S1],[S2]), we
have the equality L(ϕ,Ω; 1/2) = cπk+1|P (ϕ,Ω)|2 with an algebraic number c. A similar formula
for the central value of L(ϕ,Ω; s) was investigated by Waldspurger ([W]) in a great generality,
though the constant of proportionality is not explicit in his work. The main result of [Mu] is a
precise description of the constant c under the assumption that the class number of K is odd.

In this paper, we generalize the results of [Mu] for a holomorphic cusp form on Γ0(N)
with a character and an algebraic Hecke character of conductor f, assuming that N is square
free (without any assumptions on K and f). The method of the proof is similar to that of [W],
though we need a more precise knowledge of theta lifts used in the proof to determine an explicit
value of the constant of proportionality. For related works, see Remark 1.5.

1.2

We now state the main results of this paper in an adelic setting. Let K be an imaginary quadratic
field of discriminant D. Denote by ω the quadratic Hecke character of Q corresponding to K/Q.
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For z ∈ K, we put Tr(z) = z + zσ and N(z) = zzσ, where σ is the nontrivial automorphism
of K/Q. Let OK be the integer ring of K. We take and fix an element θ of OK such that
OK = Z + Zθ, Im(θ) > 0 and ordp N(θ) = 1 for any prime factor p of D. For a place v of Q, we
put Kv = K ⊗Q Qv, where Qv is the completion of Q at v. Let p be a finite place of Q and fix
a prime element πp of Qp. Let OK,p = OK ⊗Z Zp.

Let N be a positive square free integer and χ a Hecke character of Q of finite order whose
conductor M divides N . Denote by χ∗ the Dirichlet character modulo N corresponding to χ

(cf. 2.1). Let G = GL2 and GA = GL2(QA) the adelization of G. Let Sk(N,χ) be the space
of functions on GQ\GA which correspond to holomorphic cusp forms on Γ0(N) of weight k and
character χ∗ (cf. 3.1). Let f ∈ Sk(N,χ) and assume that f is a primitive form with Hecke
eigenvalues {λp (p 6 |N), λ±p (p|N)} (cf. 3.3).

Let ξ be a Hecke character of K. We denote by ξv the restriction of ξ to K×v . We assume
that ξ satisfies the following two conditions:

ξ|Q×A = χ.(1.1)

ξ∞(z∞) = (z∞/|z∞|)k (z∞ ∈ C×).(1.2)

Note that ξ is of infinite order. For a finite place p of Q, define

(1.3) αp(ξ) = Min{a ∈ Z≥0 | ξp is trivial on (1 + πapOK,p)×}

and put

(1.4) A(ξ) =
∏
p<∞

pαp(ξ).

Let L(f, ξ−1; s) be the Rankin-Selberg L-function attached to (f, ξ−1) (for the definition, see
3.4). The L-function L(f, ξ−1; s) is continued to a meromorphic function on C and satisfies a
functional equation under s 7→ 1− s.

Let ι be an embedding of K into M2(Q) given by

(1.5) ι(x+ θy) =

(
x N(θ)y
−y x+ Tr(θ)y

)
(x, y ∈ Q).

We define a period integral attached to (f, ξ) by

(1.6) P(f, ξ; g) =
∫

Q×A K×\K
×
A

ξ−1(z)f(ι(z)g)d×z (g ∈ GA),

where the measure d×z is normalized as in 2.4.
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Let g0 = (g0,v)v ∈ GA, where

g0,v =



 π
−αp(ξ)
p 0

0 1

 if v = p <∞ and p 6 |N, π
−αp(ξ)+1
p 0

0 1

 if v = p <∞ and p|N, 1 Re(θ)

0 1

 √
Im(θ) 0

0
√

Im(θ)
−1

 if v =∞.

Note that g0,∞ · i = θ.
Let S1(ξ) (respectively S2(ξ)) be the set of prime factors p of M−1N such that αp(ξ) = 0

and p is inert (respectively ramifies) in K/Q. We have S2(ξ) = S+
2 (f, ξ) ∪ S−2 (f, ξ), where

S±2 (f, ξ) = {p ∈ S2(ξ) | ξ−1
p (Πp)λ+

p = ±1}

and Πp is a prime element of Kp. We are now able to state our main results.

Theorem 1.1. Let f ∈ Sk(N,χ) be a primitive form and ξ a Hecke character of K satisfying
(1.1) and (1.2).

(i) We have P(f, ξ; g) = 0 for any g ∈ GA if S1(ξ) 6= ∅ or S+
2 (f, ξ) 6= ∅.

(ii) Suppose that S1(ξ) = S+
2 (f, ξ) = ∅. Then we have

|P(f, ξ; g0)|2 = C(f, ξ)L(f, ξ−1; 1/2),

where the constant of proportionality is given by

C(f, ξ) = (4π)1−k(k − 1)! |D|−1/2A(ξ)−12|S2(ξ)|
∏
p|A(ξ)

Lp(ω; 1)2.

Corollary 1.2. Suppose that S1(ξ) = S+
2 (f, ξ) = ∅.

(i) We have L(f, ξ−1; 1/2) ≥ 0.

(ii) The central L-value L(f, ξ−1; 1/2) vanishes if and only if the period integral P(f, ξ; g0)
vanishes.

Remark 1.3. If N = 1 or M = N , we have S1(ξ) = S2(ξ) = ∅. In particular, Theorem 1.1
in the case N = 1 implies that the main results of [Mu] hold for any imaginary quadratic field
K.

Remark 1.4. The period integral P(f, ξ; g0) can be seen as a ξ−1-average of values of f at
certain CM points in K.
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Remark 1.5. In the works of Gross and Zagier ([G] and [GZ]), the central values L(f, ξ; 1/2)
or L′(f, ξ; 1/2) are studied in the case where ξ is a ring class character of K (and hence of finite
order). For a generalization of their works, we refer to the work of Zhang [Z]. Recently, explicit
formulas for the central value of L(f, ξ; s) for a Hecke character ξ of infinite order have been
studied by a number of authors, notably Popa [P], Xue [X] and Martin and Whitehouse [MW].
They work in a representation theoretic framework and impose an assumption that D,N and
A(ξ) are coprime to each other. On the other hand, we only assume that N is square free in
this paper.

Remark 1.6. The period integrals P(f, ξ; g0) appear in explicit formulas for Fourier (or
Fourier-Jacobi) expansions of certain theta liftings (see [MS], [MN]).

1.3

The paper is organized as follows. The first two sections are of preliminary nature. In Section
2, we prepare several notation and facts used in later discussions. In Section 3, we recall several
facts on automorphic forms on G = GL2. In Section 4, we study local spherical functions
on (Gp, ι(K×p )), where ι is the embedding of K× into G defined by (1.5). In particular, we
prove the vanishing of the spherical functions under certain conditions (Proposition 4.1), which
immediately implies the first asssertion of Theorem 1.1. In Section 5, we construct a mapping
L from the space of cusp forms on GA to the space of those on GA×GA as a theta lifting with a
suitably chosen test function. One of the key in the proof of Theorem 1.1 is Theorem 6.1, which
says that, for a primitive form f ∈ Sk(N,χ), L(f) coincides with (−2i)k fN ⊗ fN , where fN is a
twist of f (cf. 3.6). This fact is proved by calculating the Fourier expansion of L(f) (Proposition
6.2). The proof of Proposition 6.2 is reduced to that of a local result (Proposition 6.8), which
is proved in Section 7 by a lengthy calculation involving local Whittaker functions. In Section
8, applying a method of Waldspurger in [W], we relate |P(f, ξ; g)|2 to a product of certain local
integrals. The proof of the second assertion of Theorem 1.1 is completed by combining the
results in Section 6 and the calculation of the local integrals carried out in Section 9.

Acknowledgement
This work has been completed during the author’s stay at Max-Planck-Institut für Mathematik
Bonn (October 2007 – March 2008). He thanks very much the institute for its hospitality.

Notation

For a place v of Q, denote by | · |v the valuation of Qv. For a = (av)v ∈ Q×A , put |a|A =
∏
v |av|v.

For a linear algebraic group X defined over Q, Xv stands for the group of Qv-rational points
of X. We denote by XA and XA,f the adelization of X and the finite part of XA, respectively.
Let ψ be the additive character of QA/Q such that ψ(x∞) = e[x∞] for x∞ ∈ R. Denote by ψv
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the restriction of ψ to Qv. A Hecke character of an algebraic number field E is a continuous
homomorphism of E×A /E

× to C×.
Throughout the paper, we fix an imaginary quadratic field K of discriminant D. Denote by

ω the quadratic Hecke character of Q corresponding to K/Q. Let p be a finite place of Q. If
Kp/Qp is ramified, we fix a prime element Πp of Kp. If p splits in K/Q, we fix an identification
between Kp and Qp ⊕ Qp, and put Π1,p = (πp, 1),Π2,p = (1, πp). We put OK,f =

∏
p<∞OK,p.

Denote by hK and wK the class number of K and the number of roots of unity in K, respectively.
For X ∈Mmn(K), we put X∗ = tXσ.

For a non-Archimedean local field F , we denote by OF and pF the integer ring of F and the
maximal ideal of OF , respectively. For a local field F , we define the local zeta function ζF (s) as
follows: If F is a non-Archimedean local field, we put ζF (s) = (1−q−sF )−1, where qF = |OF /pF |.
If F is an Archimedean local field, we put

ζF (s) =

π−s/2Γ(s/2) if F = R,

2(2π)−sΓ(s) if F = C,

where Γ(s) denotes the gamma function.
We write diag(a1, . . . , an) for the diagonal matrix of degree n with the (i, i)-component ai.

For z ∈ C, we put e[z] = exp(2π
√
−1z). For a finite-dimensional vector space V over a local

field, S(V ) stands for the space of Schwartz-Bruhat functions on V . We put δ(P ) = 1 if a
condition P is satisfied and δ(P ) = 0 otherwise. For a set X, charX denotes the characteristic
function of X. The cardinality of a finite set X is denoted by |X|.

2 Preliminaries

2.1

Throughout the paper, we fix a positive square free integer N and a Hecke character χ of Q of
finite order whose conductor M divides N . For a place v of Q, χv stands for the restriction of
χ to Q×v . For n ∈ Z, define

χ∗(n) =


∏
p|M

χ−1
p (n) if (n,N) = 1,

0 if (n,N) > 1.

Then χ∗ is a Dirichlet character modulo N .

2.2

Let Z = {z12 | z 6= 0} be the center of G = GL2. For x ∈ Q and y, y′ ∈ Q×, put

n(x) =

(
1 x

0 1

)
, n(x) =

(
1 0
x 1

)
, d(y, y′) =

(
y 0
0 y′

)
∈ GQ.
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Let N be the algebraic subgroup of G with NQ = {n(x) | x ∈ Q}. We put Uf =
∏
p<∞ Up and

Uf =
∏
p<∞ Up, where Up = GL2(Zp) and Up = {(uij) ∈ Up | u21 ∈ NZp} for a finite place p

of Q. Note that Up is an Iwahori subgroup of Gp if p|N and Up = Up otherwise. We have the
decomposition

Gp =


⋃
m∈Z ZpNpdmUp if p 6 |N,⋃
m∈Z ZpNpdmUp ∪

⋃
m∈Z ZpNpdmw

(p)
1 Up if p|N,

where

dm = d(πmp , 1), w(p)
m =

(
0 −1
πmp 0

)
(m ∈ Z).

The real Lie group G+
∞ = {g ∈ G∞ = G(R) | det g > 0} acts on the upper half plane H = {z ∈

C | Im(z) > 0} by

g · z = (az + b)(cz + d)−1

(
g =

(
a b

c d

)
∈ G+

∞, z ∈ H

)

as usual. We put j(g, z) = (det g)−1/2(cz + d). Let U∞ = U∞ = {g ∈ SL2(R) | g · i = i}.

2.3 Hecke operators

Let p be a finite place of Q. We define a character χ̃p of Up by

χ̃p

((
a b

c d

))
=

1 if p 6 |N,

χp(d) if p|N.

Note that χ̃p is trivial unless p|M . Let C(Gp; χ̃p) be the space of continuous function ϕ on Gp

satisfying ϕ(gu) = χ̃p(u)ϕ(g) (g ∈ Gp, u ∈ Up). Let ϕ ∈ C(Gp; χ̃p) and g ∈ Gp. If p 6 |N , we put

Tpϕ(g) = ϕ(g d(π−1
p , 1)) +

∑
a∈Zp/pZp

ϕ(g n(a)d(1, π−1
p )).

Then Tpϕ ∈ C(Gp; χ̃p). If p|N , we put

T +
p ϕ(g) = χp(πp)

∑
a∈Zp/pZp

ϕ(gn(a)d(1, π−1
p )),

T −p ϕ(g) =
∑

a∈Zp/pZp

ϕ(g n(πpa)d(π−1
p , 1)).

Then T ±p ϕ ∈ C(Gp; χ̃p). Note that the definitions of Tp and T ±p do not depend on the choice of
πp.
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2.4 Normalization of measures

Let v be a place of Q. Let dxv (respectively dzv) be the Haar measure on Qv (respectively Kv)
self-dual with respect to the pairing (xv, x′v) 7→ ψv(xvx′v) (respectively (zv, z′v) 7→ ψv(Tr(zσv z

′
v))).

Note that vol(OK,p) = |D|1/2p and dz∞ is twice the usual Lebesgue measure on K∞ = C. We
put dx =

∏
v≤∞ dxv and dz =

∏
v≤∞ dzv. We normalize the measures d×xv and d×zv on Q×v

and K×v by

d×xv = ζQv(1) |x|−1
v dxv,

d×zv = ζKv(1) |N(zv)|−1
v dzv,

respectively. Note that vol(O×K,p) = |D|1/2p and d×z∞ = 2r−1drdt (z∞ = r exp(it)). We put
d×x =

∏
v≤∞ d

×xv and d×z =
∏
v≤∞ d

×zv. With this normalization, we have∫
Q×A K×\K

×
A

d×z = 2L(ω; 1) =
4πhK

wK |D|1/2
.

Let dgv be the Haar measure on Gv given by∫
Gv

ϕ(gv)dgv =
∫

Q×v

∫
Qv

∫
Q×v

∫
Uv

|y|−1
v ϕ(zn(x)d(y, 1)u)dud×ydxd×z

for ϕ ∈ L1(Gv). Here duv is normalized by

vol(Uv) =

1 if v =∞,

[Up : Up] if v = p <∞.

We put dg =
∏
v dgv.

2.5 Gauss sum

Let p be a finite place of Q dividing N . Define the Gauss sum by

Gp(χ) = χ−1
p (πp)

∫
Z×p
ψp(π−1

p x)χp(x)dx

= p−1χ−1
p (πp)

∑
a∈(Zp−pZp)/pZp

ψp(π−1
p a)χp(a),

where dx is the Haar measure on Zp normalized by vol(Zp) = 1. Note that Gp(χ) does not
depend on the choice of πp. The following is well-known.

Lemma 2.1. (i) If p|M−1N , we have Gp(χ) = −p−1χ−1
p (πp).

(ii) If p|M , we have |Gp(χ)| = p−1/2, Gp(χ) = χ(−1)Gp(χ−1) and∫
Z×p
ψp(yx)χp(x)dx = Gp(χ)χ−1

p (y)charπ−1
p Z×p (y) (y ∈ Q×p ).
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2.6

Let ξ be a Hecke character of K satisfying (1.1) and (1.2). Note that αp(ξ) = 0 if and only if ξp
is trivial on O×K,p, and hence αp(ξ) > 0 for p|M . The following is easily verified.

Lemma 2.2. For 0 < m < αp(ξ), we have∫
πmp Zp

ξp(1 + yθ)dy = 0.

3 Automorphic forms on GL(2)

3.1 Automorphic forms

We henceforth fix a positive integer k satisfying (−1)k = χ∞(−1). Put χ̃ =
∏
p<∞ χ̃p (for the

definition of χ̃p, see 2.3). Then χ̃ is a character of Uf .
Let Sk(N,χ) be the space of smooth functions on GA satisfying the following conditions:

(i) We have f(zγgufu∞) = χ(z)χ̃(uf )j(u∞, i)−kf(g) for z ∈ ZA, γ ∈ GQ, g ∈ GA, uf ∈
Uf , u∞ ∈ U∞.

(ii) For any gf ∈ GA,f , τ 7→ fdm(τ ; gf ) := j(gτ , i)kf(gτgf ) is holomorphic on H (τ = x+ iy ∈
H, gτ = n(x)d(

√
y,
√
y−1) ∈ G+

∞).

(iii) f is bounded on GA.

Note that Tp (respectively T ±p ) defines a linear operator of Sk(N,χ) for p 6 |N (respectively p|N).
We write fdm(τ) for fdm(τ ; 1). Then we easily see that

fdm

(
aτ + b

cτ + d

)
= χ∗(d)(cτ + d)kfdm(τ)

((
a b

c d

)
∈ Γ0(N)

)
,

and that f 7→ fdm defines an isomorphism of Sk(N,χ) to the space of holomorphic cusp forms
on Γ0(N) of weight k and character χ∗.

3.2 Fourier expansion

For f ∈ Sk(N,χ), we have the Fourier expansion:

f(g) =
∑
a∈Q×

Wf (d(a, 1)g),

where
Wf (g) =

∫
Q\QA

ψ(−x)f(n(x)g)dx.

Let

fdm(τ) =
∞∑
n=1

an(fdm)e[nτ ]

be the Fourier expansion of fdm. We say that f is normalized if a1(fdm) = 1. The following fact
is well-known.
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Lemma 3.1. If f is normalized, we have Wf (d(y∞, 1)) = δ(y∞ > 0) yk/2∞ exp(−2πy∞) for
y∞ ∈ R×.

3.3 Primitive forms

We say that f ∈ Sk(N,χ) is a primitive form if fdm is a primitive form (cf. [Mi, §4.6]). If f is
a primitive form, the following hold:

(i) f is normalized.

(ii) For p 6 |N , we have Tpf = λpf with λp ∈ C, and λp = χp(πp)λp.

(iii) For p|N , we have T ±p f = λ±p f with λ+
p , λ

−
p ∈ C, and

λ+
p = λ−p , λ+

p λ
−
p =

1 if p|M−1N,

p if p|M.

If p|M−1N , we have (λ±p )2 = χp(πp)±1.

(iv) For p|M−1N , we have
f(gw(p)

1 ) = εpf(g) (g ∈ GA),

where εp = −λ+
p (for the definition of w(p)

1 , see 2.2).

Remark 3.2. When p|N , we have λ+
p = p1−k/2ap(fdm).

We say that f is a primitive form with Hecke eigenvalues {λp (p 6 |N), λ±p (p|N)}.

3.4 L-functions

Let f ∈ Sk(N,χ) be a primitive form with Hecke eigenvalues {λp (p 6 |N), λ±p (p|N)}. When
p 6 |N , let t1,p, t2,p ∈ C be the roots of an equation X2 − p−1χp(πp)λpX + p−1χp(πp) = 0. Let ξ
be a Hecke character of K. The Rankin-Selberg L-function L(f, ξ; s) is defined by

L(f, ξ; s) =
∏
p<∞

Lp(f, ξ; s).

Here the local factor Lp(f, ξ; s) is given as follows: If ξp is nontrivial on O×K,p, we set Lp(f, ξ; s) =
1. Suppose that ξp is trivial on O×K,p. Then p 6 |M .

(i) If p is inert in K/Q, we set

Lp(f, ξ; s) = Rp(ξp(πp)p−2s)−1,

where

Rp(X) =


∏2
i=1(1− pt2i,pX) if p 6 |N,

1− p−1(λ+
p )2X if p|M−1N.
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(ii) If p ramifies in K/Q, we set

Lp(f, ξ; s) = Rp(ξp(Πp)p−s)−1,

where

Rp(X) =


∏2
i=1(1− p1/2ti,pX) if p 6 |N,

1− p−1/2λ+
p X if p|M−1N.

(iii) If p splits in K/Q, we set

Lp(f, ξ; s) =
2∏
j=1

Rp(ξp(Πj,p)p−s)−1,

where

Rp(X) =


∏2
i=1(1− p1/2ti,pX) if p 6 |N,

1− p−1/2λ+
p X if p|M−1N.

3.5 Local Whittaker functions

Let p be a finite place of Q. Let Wp(χp) be the space of functions W on Gp such that
W (zn(x)gu) = χp(z)ψp(x)χ̃p(u)W (g) for z ∈ Zp, x ∈ Qp, g ∈ Gp, u ∈ Up.

First suppose that p 6 |N . For λ ∈ C, let Wp(χp;λ) = {W ∈ Wp(χp) | TpW = λW}. The
following fact is well-known.

Lemma 3.3. Assume that p 6 |N and let W ∈ Wp(χp;λ).

(i) If W (12) = 0, W is identically equal to zero.

(ii) We have dimCWp(χp;λ) ≤ 1.

(iii) The support of W is contained in
⋃
n≥0

ZpNpdnUp and we have

W (dn) =
tn+1
1 − tn+1

2

t1 − t2
W (12) (n ≥ 0),

where t1, t2 ∈ C are the roots of an equation X2 − p−1χp(πp)λX + p−1χp(πp) = 0.

(iv) If λ = χp(πp)λ, then W (g) = χ−1
p (det g)W (g) (g ∈ Gp).

Next suppose that p|N . For (λ+, λ−) ∈ C2, let Wp(χp;λ+, λ−) = {W ∈ Wp(χp) | T ±p W =
λ±W}. We can easily verify the following results.

Lemma 3.4. Assume that p|N and let W ∈ Wp(χp;λ+, λ−).

(i) If W (12) = 0, W is identically equal to zero.

(ii) We have dimCWp(χp;λ+, λ−) ≤ 1.
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(iii) The support of W is contained in
⋃
n≥0

ZpNpdnUp ∪
⋃
n≥0

ZpNpdnw(p)
1 Up. For n ≥ 0, we have

W (dn) = (p−1λ+)nW (12),

W (dnw
(p)
1 ) = p−1Gp(χp)−1λ−

(
p−1χp(πp)λ−

)n
W (12).

3.6 Global Whittaker functions

For f ∈ Sk(N,χ), set

(3.1) fN (g) = χ−1(det g)f(gwN ),

where

wN =
∏
p|N

w
(p)
1

(
w

(p)
1 =

(
0 −1
πp 0

)
∈ Gp

)
.

It is easy to see that fN ∈ Sk(N,χ−1). Lemmas 3.3 and 3.4 implies the following result.

Proposition 3.5. Assume that f ∈ Sk(N,χ) is a primitive form with Hecke eigenvalues
{λp (p 6 |N), λ±p (p|N)}.

(i) For g = (gv)v ∈ GA, we have
Wf (g) =

∏
v≤∞

Wv(gv).

Here Wp is the element of Wp(χp;λp) (respectively Wp(χp;λ+
p , λ

−
p )) with Wp(12) = 1 if

p 6 |N (respectively p|N), and

W∞(zn(x)d(y, 1)u) = δ(y > 0)χ∞(z)yk/2e[x+ iy]j(u, i)−k

for x ∈ R, y, z ∈ R×, u ∈ U∞.

(ii) We have
WfN (g) =

∏
v≤∞

W ′v(gv),

where

W ′v(gv) = χ−1
v (det gv)×

Wv(gv) if v = p 6 |N or v =∞,

Wp(gpw
(p)
1 ) if v = p|N.

(iii) We have W ′∞ = W∞. If p 6 |N , we have W ′p ∈ Wp(χ−1
p ;χp(π)λp) and W ′p(12) = 1. If p|N ,

we have W ′p ∈ Wp(χ−1
p ;λ−p , λ

+
p ) and W ′p(12) = p−1Gp(χp)−1λ−p .
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4 Local spherical functions

4.1

In this section, we study local spherical functions on (Gp, ι(K×p )) and prove Theorem 1.1 (i).
Throughout this section, we fix a finite place p of Q such that Kp is a field, and often suppress the
subscript p. We write K and F for Kp and Qp respectively. Let OK and OF be the integer rings
of K and F , respectively. Let B = {(uij) ∈ GL2(OF ) | u21 ∈ pF } be an Iwahori subgroup of G.
Let ξ be a unitary character trivial onO×K and write χ for the restriction of ξ to F×. Denote by Fξ
the space of functions ϕ on G satisfying ϕ(ι(z)gu) = ξ(z)ϕ(g) for z ∈ K×, g ∈ G and u ∈ B. For
(λ+, λ−, ε) ∈ C×C×C×, define Fξ(λ+, λ−; ε) = {ϕ ∈ Fξ | T ±ϕ = λ±ϕ,ϕ(gw1) = εϕ(g) (g ∈ G)}
(for the definition of T ±, see 2.3). In this section, we prove

Proposition 4.1. Suppose that |λ±| = 1 and λ+λ− = 1.

(i) If K/F is inert, we have Fξ(λ+, λ−; ε) = {0}.

(ii) If K/F is ramified and ξ−1(Π)λ+ = 1, we have Fξ(λ+, λ−; ε) = {0}.

Remark 4.2. Let f ∈ Sk(N,χ) be a primitive form with Hecke eigenvalues {λp (p 6 |N), λ±p (p|N)}
satisfying f(gw(p)

1 ) = εpf(g) for p|M−1N . Note that |λ±p | = 1 and λ+
p λ
−
p = 1 for p|M−1N (cf.

3.3). Then, for p ∈ S1(ξ)∪S2(ξ), P(f, ξ; ∗)|Gp belongs to Fξp(λ+
p , λ

−
p ; εp). Thus Theorem 1.1 (i)

directly follows from the above proposition.

4.2

To show Proposition 4.1, we need the following elementary facts (for the proofs, see [MN]).

Lemma 4.3. We have

G =


⊔
m≥0 TgmB t

⊔
m≥0 Tgmw1B if K/F is inert,⊔

m≥−1 TgmB t
⊔
m≥0 Tgmw1B if K/F is ramified,

where T = ι(K×) and gm = d(1, πm).

Lemma 4.4. (i) Let m ≥ 0 and a ∈ OF . If za = a−πmθ ∈ O×K , we have gmn(a)d(1, π−1) ∈
ι(π−1za)gmw1B.

(ii) Let m ≥ −1 and a ∈ OF . Then gmn(πa)d(π−1, 1) ∈ ι(π−1z′a)gm+1B, where z′a = 1 −
πm+1aθ ∈ O×K .

(iii) Suppose that K/F is ramified. Then g−1w1 ∈ ι(θ)g−1B.

12



4.3 Proof of Proposition 4.1

Assume that there exists a nonzero element ϕ of Fξ(λ+, λ−; ε). Since ϕ(gw2
1) = χ(π)ϕ(g), we

have ε2 = χ(π) and hence |ε| = 1.
First suppose that K/F is inert. By Lemma 4.4 (ii), we obtain

λ−ϕ(gm) =
∑

a∈OF /pF

ξ(π−1(1− πm+1aθ))ϕ(gm+1) = pχ−1(π)ϕ(gm+1) (m ≥ 0).

We thus have ϕ(gm) =
(
p−1χ(π)λ−

)m
ϕ(g0) and ϕ(gmw1) = ε

(
p−1χ(π)λ−

)m
ϕ(g0) for m ≥ 0.

In view of Lemma 4.3, this implies that ϕ(g0) 6= 0. On the other hand, we have

λ+ϕ(g0) = χ(π)
∑

a∈OF /pF

ξ(π−1(a− θ))ϕ(g0w1) = pεϕ(g0)

by Lemma 4.4 (i) and hence λ+ = pε. This contradicts to the assumption |λ+| = 1.
Next suppose that K/F is ramified and ξ−1(Π)λ+ = 1. By an argument similar to the above,

we obtain

ϕ(gm) =
(
p−1χ(π)λ−

)m+1
ϕ(g−1) (m ≥ −1),

ϕ(gmw1) = ε
(
p−1χ(π)λ−

)m+1
ϕ(g−1) (m ≥ 0),

which implies ϕ(g−1) 6= 0. By Lemma 4.4 (iii), we have εϕ(g−1) = ϕ(g−1w1) = ξ(θ)ϕ(g−1) =
ξ(Π)ϕ(g−1) and hence ε = ξ(Π). On the other hand, we have

λ+ϕ(g0) = χ(π)ϕ(g−1) + (p− 1)ϕ(g0w1)

= {χ(π) + (p− 1)εp−1χ(π)λ−}ϕ(g−1).

This implies λ+ · p−1χ(π)λ− = χ(π) + (p − 1)εp−1χ(π)λ−. Since λ−λ+ = 1, we have ε = −λ+

and hence ξ−1(Π)λ+ = −1, which contradicts to the assumption.

5 Theta lift

5.1 Metaplectic representations

Let V = M2(Q). For X =

(
a b

c d

)
∈ V , put X =

(
d −b
−c a

)
. For a place v of Q, let

Vv = M2(Qv).
For p < ∞, S ′(Vp × Q×p ) denotes the space of locally constant and compactly supported

functions on Vp×Q×p . We denote by S ′(V∞×Q×∞) the space of smooth functions Φ on V∞×Q×∞
such that, for any t ∈ Q×∞, X 7→ Φ(X, t) is in S(V∞).

Lemma 5.1 ([W]). Let v be a place of Q. There exists a smooth representation Rv of Gv ×
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Gv ×Gv on S ′(Vv ×Q×v ) such that the following holds:

Rv(1, g1, g2)Φ(X, t) = Φ(g−1
2 Xg1, det(g−1

1 g2)t) (g1, g2 ∈ Gv),

Rv(n(b), 1, 1)Φ(X, t) = ψv(btdetX)Φ(X, t) (b ∈ Qv),

Rv(d(a, d), 1, 1)Φ(X, t) =
∣∣∣a
d

∣∣∣
v

Φ(d−1X, adt) (a, d ∈ Q×v ),

Rv

((
0 −1
1 0

)
, 1, 1

)
Φ(X, t) = |t|2v

∫
Vv

ψv(−t Tr(Y X))Φ(Y, t)dY.

Here dY is the Haar measure on Vv self-dual with respect to the pairing (X,Y ) 7→ ψv(Tr(Y X)).

Remark 5.2. For z ∈ Q×v , we have

Rv(z, 1, 1)Φ(X, t) = Rv(1, z−1, 1)Φ(X, t) = Rv(1, 1, z)Φ(X, t) = Φ(z−1X, z2t).

5.2 Intertwining operators

We put

IvΦ

((
x y

z w

)
, t

)
= |t|v

∫
Q2
v

ψv(t(xy′ − yx′))Φ

((
x′ y′

z w

)
, t

)
dx′dy′

for Φ ∈ S ′(Vv ×Q×v ). A straightforward calculation shows the following:

Lemma 5.3. We have

Iv ◦Rv(g, g1, 1)Φ(X, t) = IvΦ(g−1Xg1,det(gg−1
1 ) t) (g, g1 ∈ Gv),

Iv ◦Rv(1, 1,n(b))Φ(X, t) = ψv(btdetX)IvΦ(X, t) (b ∈ Qv),

Iv ◦Rv(1, 1,d(a, d))Φ(X, t) =
∣∣∣a
d

∣∣∣
v
IvΦ(d−1X, adt) (a, d ∈ Q×v )

for Φ ∈ S ′(Vv ×Q×v ).

5.3 Test functions

For a place v of Q, we define a test function Φ0,v ∈ S ′(Vv ×Q×v ) as follows. When v = p < ∞,
we put

Φ0,p(X, t) =



char0B@ Zp Zp

NZp Zp

1CA
(X) · charZ×p (t) if p 6 |M,

χ−1
p (X22)char0B@ Zp Zp

pZp Z×p

1CA
(X) · charZ×p (t) if p|M,

where X22 is the (2, 2)-component of X. When v =∞, put

Φ0,∞(X, t) =


(i 1)X

 1

i

k

exp(−πtTr(tXX)) if t > 0,

0 if t < 0.
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Lemma 5.4. (i) We have IpΦ0,p = Φ0,p.

(ii) We have I∞Φ0,∞(X, t) = Φ0,∞(d(−1, 1)X, t).

Proof. This is proved by a direct calculation.

Lemma 5.5. (i) For u, u1, u2 ∈ Up, we have Rp(u, u1, u2)Φ0,p = χ̃p(uu−1
1 u2)Φ0,p.

(ii) For u, u1, u2 ∈ U∞, we have R∞(u, u1, u2)Φ0,∞ = j(u, i)−kj(u1, i)−kj(u2, i)kΦ0,∞.

(iii) For z ∈ Z∞, we have R∞(z, 1, 1)Φ0,∞ = z−kΦ0,∞.

Proof. This follows from the definition of Rv and Lemmas 5.3 and 5.4.

5.4 Theta kernel

Let S ′(VA×Q×A ) be the restricted tensor product of S ′(Vv×Q×v ) over v with respect to {Φ0,p}p<∞.
Then R =

⊗
v≤∞Rv defines a smooth representation of GA × GA × GA on S ′(VA × Q×A ). We

put I =
⊗

v Iv. We define a theta kernel by

(5.1) θ(g, g1, g2) =
∣∣det(gg−1

1 g2)
∣∣k/2
A

∑
(X,t)∈V×Q×

R(g, g1, g2)Φ0(X, t),

where Φ0 = ⊗vΦ0,v ∈ S ′(VA × Q×A ). By Poisson summation formula and Lemma 5.5, we have
the following:

Lemma 5.6. (i) For γ, γ1, γ2 ∈ GQ, g, g1, g2 ∈ GA, uf , u1,f , u2,f ∈ Uf and u∞, u1,∞, u2,∞ ∈
U∞, we have

θ(γgufu∞, γ1g1u1,fu1,∞, γ2g2u2,fu2,∞)

= χ̃(ufu−1
1,fu2,f )j(u∞, i)−kj(u1,∞, i)−kj(u2,∞, i)kθ(g, g1, g2).

(ii) For z∞ ∈ Z∞, we have θ(z∞g, g1, g2) = θ(g, g1, g2).

(iii) For z ∈ ZA, we have θ(zg, g1, g2) = θ(g, z−1g1, g2) = θ(g, g1, zg2).

5.5 Theta lift

For f ∈ Sk(N,χ), we define

(5.2) Lf(g1, g2) =
∫
Z+
∞GQ\GA

f(g)θ(g, g1, g2)dg.

Since g 7→ θ(g, g1, g2) is of moderate growth on Z+
∞GQ\GA for (g1, g2) in any compact subset of

GA ×GA, the integral (5.2) converges absolutely. By Lemma 5.6, we have the following:

Lemma 5.7. For zi ∈ ZA, γi ∈ GQ, gi ∈ GA, ui,f ∈ Uf , ui,∞ ∈ U∞ (i = 1, 2), we have

Lf(z1γ1g1u1,fu1,∞, z2γ2g2u2,fu2,∞)

= χ(z1z
−1
2 )χ̃(u1,fu

−1
2,f )j(u1,∞, i)kj(u2,∞, i)−kLf(g1, g2).
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6 The image of the theta lift

6.1

The object of this section is to show the following key result of the paper.

Theorem 6.1. Let f ∈ Sk(N,χ) be a primitive form. Then we have

Lf(g1, g2) = (−2i)kfN (g1)fN (g2) (g1, g2 ∈ GA).

Recall that we have defined fN (g) = χ−1(det g)f(gwN ) (cf. 3.6). For (m,n) ∈ Q2, set

(6.1) Lf (m,n)(g1, g2) =
∫

(Q\QA)2
ψ(mx1 − nx2)Lf(n(x1)g1,n(x2)g2)dx1dx2.

Since Lf (m,n)(g1, g2) = L(1,1)(d(m, 1)g1,d(n, 1)g2) for (m,n) ∈ (Q×)2, the proof of Theorem
6.1 is reduced to that of the following fact:

Proposition 6.2. Let f ∈ Sk(N,χ) be a primitive form.

(i) If mn = 0, we have Lf (m,n)(g1, g2) = 0.

(ii) We have Lf (1,1)(g1, g2) = (−2i)kWfN (g1)WfN (g2).

6.2 Intertwining operators

In this section, we recall a definition of a certain intertwining operator introduced in [W]. Let v
be a place of Q. Define a linear operator Iv : S ′(Vv ×Q×v )→ S ′(Vv ×Q×v ) by

(6.2) IvΦ

((
x y

z w

)
, t

)
= |t|1/2v

∫
Qv
ψv(tyy′)Φ

((
x y′

z w

)
, t

)
dy′

for Φ ∈ S ′(Vv ×Q×v ). A straightforward calculation shows the following:

Lemma 6.3 ([W]). Let Φ ∈ S ′(Vv ×Q×v ).

(i) For b, b′ ∈ Qv, we have

Iv ◦Rv(1,n(b),n(b′))Φ

((
x y

z w

)
, t

)

= ψv(ty(−bx+ b′w + bb′z)) IvΦ

((
x− b′z y

z w + bz

)
, t

)
.

(ii) For a, d ∈ Q×v , we have

Iv ◦Rv(1,d(a, d), 1)Φ

((
x y

z w

)
, t

)
=
∣∣∣a
d

∣∣∣1/2
v

IvΦ

((
ax ay

az dw

)
, (ad)−1t

)
.
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(iii) For a′, d′ ∈ Q×v , we have

Iv ◦Rv(1, 1,d(a′, d′))Φ

((
x y

z w

)
, t

)
=
∣∣∣∣a′d′
∣∣∣∣1/2
v

IvΦ

((
x/a′ y/d′

z/d′ w/d′

)
, a′d′t

)
.

(iv) For b ∈ Qv, we have

Iv ◦Rv(n(b), 1, 1)Φ

((
x y

z w

)
, t

)
= ψv(btxw)IvΦ

((
x y − bz
z w

)
, t

)
.

(v) For a, d ∈ Q×v , we have

Iv ◦Rv(d(a, d), 1, 1)Φ

((
x y

z w

)
, t

)
=
∣∣∣a
d

∣∣∣1/2
v

IvΦ

((
x/d y/a

z/d w/d

)
, adt

)
.

(vi) We have

Iv ◦Rv (w0, 1, 1) Φ

((
x y

z w

)
, t

)

= |t|v
∫

Q2
v

ψv(−t(wx1 + xw1))IvΦ

((
x1 z

−y w1

)
, t

)
dx1dw1.

6.3 Fourier coefficients of Lf

Put I =
⊗

v Iv. By Poisson summation formula, we obtain

θ(g, g1, g2) = θ0(g, g1, g2) + θ1(g, g1, g2),

where

θ0(g, g1, g2) =
∣∣det(gg−1

1 g2)
∣∣k/2
A

∑
x,w∈Q,t∈Q×

I ◦R(g, g1, g2)Φ0

((
x 0
0 w

)
, t

)
,

θ1(g, g1, g2) =
∣∣det(gg−1

1 g2)
∣∣k/2
A

∑
x,w∈Q,t∈Q×

∑
(y,z)∈Q2−{(0,0)}

I ◦R(g, g1, g2)Φ0

((
x y

z w

)
, t

)
.

Lemma 6.4. (i) We have

θ0(g, g1, g2) =
∣∣det(gg−1

1 g2)
∣∣k/2
A

∑
γ∈NQ\GQ

I ◦R(γg, g1, g2)Φ0

((
0 1
0 0

)
, 1

)
,

θ1(g, g1, g2) =
∣∣det(gg−1

1 g2)
∣∣k/2
A

∑
x,w∈Q

∑
γ∈NQ\GQ

I ◦R(γg, g1, g2)Φ0

((
x −1
0 w

)
, 1

)
.

(ii) For i = 0, 1, g 7→ θi(g, g1, g2) is left Z+
∞GQ-invariant.
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Proof. By Poisson summation formula,
∣∣det(gg−1

1 g2)
∣∣−k/2
A θ0(g, g1, g2) is equal to

∑
x,w∈Q,t∈Q×

I ◦R(g, g1, g2)Φ0

((
0 x

0 w

)
, t

)
.

By Lemma 5.3, this is equal to

∑
t∈Q×

I ◦R(1, 1, g2)Φ0

((
0 0
0 0

)
, det(gg−1

1 )t

)
+

∑
γ∈NQ\GQ

I ◦R(γg, g1, g2)Φ0

((
0 1
0 0

)
, 1

)
.

The first term vanishes, since

I∞ ◦R∞(1, 1, g∞)Φ∞

((
0 0
0 0

)
, t

)
= 0

holds for any g∞ ∈ G∞ and t ∈ R× in view of Lemmas 5.3, 5.4 and 5.5. Thus the first formula
of (i) has been verified. Next observe that

∑
x,w∈Q

∑
γ∈NQ\GQ

I ◦R(γg, g1, g2)Φ0

((
x −1
0 w

)
, 1

)
= J1 + J2.

where

J1 =
∑
x,w∈Q

∑
a,d∈Q×

I ◦R(d(a, d)g, g1, g2)Φ0

((
x −1
0 w

)
, 1

)
,

J2 =
∑
x,w∈Q

∑
a,d∈Q×,b∈Q

I ◦R(w0d(a, d)n(b)g, g1, g2)Φ0

((
x −1
0 w

)
, 1

)
.

By Lemma 6.3 and Poisson summation formula, we have

J2 =
∑
x,w∈Q

∑
a,d∈Q×,b∈Q

I ◦R(d(a, d)n(b)g, g1, g2)Φ0

((
x 0
1 w

)
, 1

)

=
∑
x,w∈Q

∑
a,d∈Q×,b∈Q

I ◦R(g, g1, g2)Φ0

((
d−1x −d−1b

d−1 d−1w

)
, ad

)

=
∑

x,w∈Q,t∈Q×

∑
(y,z)∈Q×Q×

I ◦R(g, g1, g2)Φ0

((
x y

z w

)
, t

)
.

On the other hand, we have

J1 =
∑

x,w∈Q,t∈Q×

∑
y∈Q×

I ◦R(g, g1, g2)Φ0

((
x y

0 w

)
, t

)
,

which completes the proof the second formula of (i). The left GQ-invariance of g 7→ θi(g, g1, g2)
follows from (i). The left Z+

∞-invariance is derived from Lemma 5.5 (iii).
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Lemma 6.5. For f ∈ Sk(N,χ), we have∫
Z+
∞GQ\GA

f(g)θ0(g, g1, g2)dg = 0 (g1, g2 ∈ GA)

and hence
Lf(g1, g2) =

∫
Z+
∞GQ\GA

f(g)θ1(g, g1, g2)dg.

Proof. This follows from Lemma 6.4, the cuspidality of f and the fact that

I ◦R(n(x), 1, 1)Φ

((
0 1
0 0

)
, 1

)
= IΦ

((
0 1
0 0

)
, 1

)

for any Φ ∈ S ′(VA ×Q×A ) and x ∈ QA.

For m ∈ Q, we put

Wm
f (g) =

∫
Q\QA

ψ(−mx)f(n(x)g)dx.

Note that W 0
f (g) = 0 and Wm

f (g) = Wf (d(m, 1)g) for m ∈ Q×.

Proposition 6.6. For (m,n) ∈ Q2, we have

Lf (m,n)(g1, g2)

= |det g−1
1 g2|k/2A

∫
Z+
∞NA\GA

|det g|k/2A Wmn
f (g) I ◦R(g, g1, g2)Φ0

((
m −1
0 n

)
, 1

)
dg.

Proof. By Lemmas 6.4 and 6.5, Lf (m,n)(g1, g2) is equal to

|det(g−1
1 g2)|k/2A

∫
(Q\QA)2

∫
Z+
∞GQ\GA

ψ(mx1 − nx2)|det g|k/2A f(g)

∑
x,w∈Q

∑
γ∈NQ\GQ

I ◦R(γg,n(x1)g1,n(x2)g2)Φ0

((
x −1
0 w

)
, 1

)
dgdx1dx2.

Since

I ◦R(γg,n(x1)g1,n(x2)g2)Φ0

((
x −1
0 w

)
, 1

)

= ψ(xx1 − wx2) I ◦R(γg, g1, g2)Φ0

((
x −1
0 w

)
, 1

)
,
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we obtain

Lf (m,n)(g1, g2)

= | det(g−1
1 g2)|k/2A

∫
Z+
∞GQ\GA

|det g|k/2A f(g)
∑

γ∈NQ\GQ

I ◦R(γg, g1, g2)Φ0

((
m −1
0 n

)
, 1

)
dg

= | det(g−1
1 g2)|k/2A

∫
Z+
∞NA\GA

∫
Q\QA

| det g|k/2A f(n(x)g)

ψ(mnx)I ◦R(g, g1, g2)Φ0

((
m −1
0 n

)
, 1

)
dxdg

= | det(g−1
1 g2)|k/2A

∫
Z+
∞NA\GA

|det g|k/2A Wmn
f (g) I ◦R(g, g1, g2)Φ0

((
m −1
0 n

)
, 1

)
dg.

The first assertion of Proposition 6.2 immediately follows from this proposition.

6.4

Let {λp (p 6 |N), λ±p (p|N)} be the Hecke eigenvalues of f . Recall that λ±p = λ∓p if p|N , and

λ+
p λ
−
p =

1 if p|M−1N,

p if p|M.

For a place v of Q, let Wv and W ′v be as in Proposition 3.5. Set

Jv(g1, g2)

=
∫
N ′v\Gv

| det g|k/2v Wv(g) Iv ◦Rv(g, g1, g2)Φ0,v

((
1 −1
0 1

)
, 1

)
dg (g1, g2 ∈ Gv),

where

N ′v =

Np if v = p <∞,

Z+
∞N∞ if v =∞.

The following is easily verified.

Lemma 6.7. For zi ∈ Q×v , xi ∈ Qv, gi ∈ Gv, ui ∈ Uv (i = 1, 2), we have

Jv(z1n(x1)g1u1, z2n(x2)g2u2)

= Jv(g1, g2) · χv(z1z
−1
2 )|z1z

−1
2 |

k
v ψv(−x1 + x2)×

χ̃v(u−1
1 u2) if v <∞,

j(u1, i)kj(u2, i)−k if v =∞.

In view of Propositions 3.5 and 6.6, we have

Lf (1,1)(g1, g2) = |det g−1
1 g2|k/2A

∏
v≤∞

Jv(g1,v, g2,v) (gi = (gi,v)v ∈ GA, i = 1, 2).

In order to show Proposition 6.2 (ii), it now suffices to show the following.
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Proposition 6.8. Let v be a place of Q. Then, for g1, g2 ∈ Gv, we have

Jv(g1, g2) = | det g1g
−1
2 |

k/2
v W ′v(g1)W ′v(g2)×

1 if v <∞,

(−2i)k if v =∞.

7 Proof of Proposition 6.8

7.1

In the subsections 7.1–7.4, we consider the case where v = p < ∞, and often suppress the
subscript p. We write F,OF and pF for Qp,Zp and pZp, respectively. Recall that dm =
d(πm, 1) (m ∈ Z) and

w1 =

(
0 −1
π 0

)
.

For m ∈ Z, we write τm and τ ′m for the characteristic functions of πmOF and πmO×F , respectively.
Observe that we have the following integral formula: For ϕ ∈ L1(N\G/U),

∫
N\G

ϕ(g)dg =


∑

i,j∈Z p
jϕ(π−idj) if p 6 |N,∑

i,j∈Z p
jϕ(π−idj) +

∑
i,j∈Z p

jϕ(π−idjw1) if p|N.
(7.1)

Recall that

W ′(g) = χ−1(det g)×

W (g) if p 6 |N,

W (gw1) if p|N.

7.2

In this subsection, we suppose p 6 |N . Note that W ′(g) = χ(det g)W (g) = W (g) by Lemma 3.3.
To prove Proposition 6.8 in this case, it suffices to show

(7.2) J(dm,dn) = pk(−m+n)/2χ(π)−nW (dm)W (dn) (m,n ∈ Z)

in view of Lemma 6.7. We may (and do) assume that m,n ≥ 0, since both sides of (7.2) vanish
unless m,n ≥ 0. Recall that IΦ0(X, t) = Φ0(X, t) and W (dm) = (tm+1

1 − tm+1
2 )/(t1− t2), where

t1, t2 ∈ C satisfy t1 + t2 = p−1χ(π)λ, t1t2 = p−1χ(π). By (7.1), J(dm,dn) is equal to

∑
i∈Z

∞∑
j=0

pj−k(−2i+j)/2W (π−idj) I ◦R(π−idj ,dm,dn)Φ0

((
1 −1
0 1

)
, 1

)

= p−(m+n)/2
∑
i∈Z

∞∑
j=0

pki+(1−k)j/2χ(π)−iW (dj)Φ0

((
πm−n+i −πm+i−j

0 πi

)
, π−2i+j−m+n

)
= p−n+k(−m+n)/2

∑
0≤i≤n, i≥n−m, 2i+m−n≥0

piχ(π)−iW (d2i+m−n+1).
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If m ≥ n,

J(dm,dn) = p−n+(−m+n)k/2
∑

0≤i≤n
piχ(π)−i

t2i+m−n+1
1 − t2i+m−n+1

2

t1 − t2

= pk(−m+n)/2χ(π)−n
(tm+1

1 − tm+1
2 )(tn+1

1 − tn+1
2 )

(t1 − t2)2
,

which proves (7.2) in this case. We can verify (7.2) similarly in the case m < n.

7.3

In this subsection, we suppose p|M−1N . We then have

(7.3) W (gw1) = εW (g) (g ∈ G)

with ε = −λ+. Recall that Φ0 is the characteristic function of

(
OF OF
pF OF

)
× O×F . Let Φ′0

denote the characteristic function of

(
pF OF
pF pF

)
× π−1O×F . A straightforward calculation

shows the following:

Lemma 7.1.
R(w1, 1, 1)Φ0 = R(1, w−1

1 , 1)Φ0 = R(1, 1, w1)Φ0 = Φ′0.

Lemma 7.2. We have

J(g1w1, g2) = p−k/2εJ(g1, g2), J(g1, g2w1) = pk/2χ−1(π)εJ(g1, g2) (g1, g2 ∈ G).

Proof. By using the fact w1 = −πw−1
1 and Lemma 7.1, we have

J(g1w1, g2) = χ(π)p−kJ(g1w
−1
1 , g2)

= χ(π)p−k
∫
N\G
|det g|k/2W (g)I ◦R(gw1, g1, g2)Φ0

((
1 −1
0 1

)
, 1

)
dg.

Changing the variable g into gw−1
1 in the integral and using (7.3), we get J(g1w1, g2) =

p−k/2εJ(g1, g2) as required. The second formula is proved in a similar manner.

In view of Lemma 7.2, to prove Proposition 6.8 in this case, it is sufficient to show the
following:

Lemma 7.3. For m,n ≥ 0, we have

(7.4) J(dm,dn) = p(−m+n)k/2W ′(dm)W ′(dn).
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Proof. By (7.1), we have

J(dm,dn)

=
∑
i,j∈Z

pki+(1−k)j/2−(m+n)/2χ(π)−iW (dj)IΦ0

((
πi+m−n −πi−j+m

0 πi

)
, π−2i+j−m+n

)

+
∑
i,j∈Z

pki+(1−k)j/2−(m+n)/2−k/2εχ(π)−iW (dj)IΦ′0

((
πi+m−n −πi−j+m

0 πi

)
, π−2i+j−m+n

)
.

Since IΦ0 = Φ0 and IΦ′0 = p1/2charπM2(OF )×π−1O×F
, J(dm,dn) is equal to

p(−m+n)k/2−n ×

 ∑
0≤i≤n, i+m−n≥0

piχ(π)−i(p−1λ+)2i+m−n

+
∑

1≤i≤n, i+m−n≥1

piεχ(π)−i(p−1λ+)2i+m−n−1

 .

Using ε = −λ+ and (λ+)2 = χ(π), we have

J(dm,dn)

= p(−m+n)k/2−n

 ∑
0≤i≤n, i+m−n≥0

p−i−m+n −
∑

1≤i≤n, i+m−n≥1

p−i−m+n+1

 (λ+)m−n

= pk(−m+n)/2−m−n(λ+)m−n.

On the other hand, by Lemma 3.4, the right-hand side of (7.4) is equal to

p(−m+n)k/2−m−nχ(π)m−n(λ+)m(λ+)n = pk(−m+n)/2−m−n(λ+)m−n,

which completes the proof of Lemma 7.3.

7.4

In this subsection, we suppose that p|M . Recall that

Φ0

((
x y

z w

)
, t

)
= χ−1(w)τ0(x)τ0(y)τ1(z)τ ′0(w)τ ′0(t).

The following is proved by a straightforward calculation.

23



Lemma 7.4. For X =

(
x y

z w

)
∈ V and t ∈ F×, we have

IΦ0(X, t) = Φ0(X, t),

I ◦R(w1, 1, 1)Φ0(X, t) = p1/2G(χ)χ(tx) τ ′0(x)τ1(y)τ1(z)τ1(w)τ ′−1(t),

I ◦R(1, w1, 1)Φ0(X, t) = p1/2χ−1(−z) τ0(x)τ0(y)τ ′0(z)τ0(w)τ ′1(t),

I ◦R(w1, w1, 1)Φ0(X, t) = χ−1(y) τ0(x)τ ′0(y)τ1(z)τ0(w)τ ′0(t),

I ◦R(1, 1, w1)Φ0(X, t) = p1/2G(χ)χ(ty) τ1(x)τ ′0(y)τ1(z)τ1(w)τ ′−1(t),

I ◦R(w1, 1, w1)Φ0(X, t) = G(χ)χ(tz) τ1(x)τ1(y)τ ′1(z)τ1(w)τ ′−2(t),

I ◦R(1, w1, w1)Φ0(X, t) = χ−1(x) τ ′0(x)τ0(y)τ1(z)τ0(w)τ ′0(t),

I ◦R(w1, w1, w1)Φ0(X, t) = p1/2G(χ)χ(tw) τ1(x)τ1(y)τ1(z)τ ′0(w)τ ′−1(t).

Lemma 7.5. For m,n ≥ 0, we have

J(dm,dn) = p(−m+n)k/2(p−1λ+)m(p−1λ−)n,

J(dmw1,dn) = p(−m+n−1)k/2χ(−1)G(χ)−1χ(π)m(p−1λ−)m+n+1,

J(dm,dnw1) = p(−m+n+1)k/2+1χ(−1)G(χ)χ(π)−n(p−1λ+)m+n+1,

J(dmw1,dnw1) = p(−m+n)k/2χ(π)m−n(p−1λ−)m(p−1λ+)n.

Proof. In view of (7.1), we have

J(g1, g2) =
∑
i∈Z

∑
j≥0

pki+(−1−k)j/2χ(π)−i(λ+)j

× I ◦R(1, g1, g2)Φ0

((
πi −πi−j

0 πi

)
, π−2i+j

)
+
∑
i∈Z

∑
j≥0

pki+(−1−k)j/2−k/2−1χ(π)−i+jG(χ)−1(λ−)j+1

× I ◦R(w0, g1, g2)Φ0

((
πi −πi−j

0 πi

)
, π−2i+j

)
.
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Then, by Lemma 7.1 and using the fact that λ+λ− = p and λ+ = λ−, we obtain

J(dm,dn) =
∑
i∈Z

∑
j≥0

pki+(−1−k)j/2−(m+n)/2χ(π)−i(λ+)j

× IΦ0

((
πi+m−n −πi−j+m

0 πi

)
, π−2i+j−m+n

)
+
∑
i∈Z

∑
j≥0

pki+(−1−k)j/2−k/2−1−(m+n)/2χ(π)−i+jG(χ)−1(λ−)j+1

× I ◦R(w1, 1, 1)Φ0

((
πi+m−n −πi−j+m

0 πi

)
, π−2i+j−m+n

)
= δ(m ≥ n)p(−k−2)m/2+kn/2(λ+)m−n + δ(m < n)p−km/2+(k−2)n/2(λ−)−m+n

= p(−m+n)k/2(p−1λ+)m(p−1λ−)n,

which proves the first formula of the lemma. The other ones are proved in a similar manner.

We now prove Prop 6.8 in the case p|M . It suffices to show

(7.5) J(dmwε1,dnw
ε′
1 ) = p(−m−ε+n+ε′)k/2W ′(dmwε1)W ′(dnwε

′
1 )

for m,n ≥ 0 and ε, ε′ ∈ {0, 1}. We prove (7.5) only in the case ε = ε′ = 0, since the proofs are
similar in the other cases. In this case, the right-hand side of (7.5) is equal to

p(−m+n)k/2χ(π)m−nW (dmw1)W (dnw1)

= p(−m+n)k/2χ(π)m−np−2|G(χ)|−2|λ−|2(p−1χ(π)λ+)m(p−1χ(π)λ+)n

= p(−m+n)k/2(p−1λ−)m(p−1λ+)n,

which implies (7.5) by Lemma 7.5.

7.5

To prove Proposition 6.8 in the case v =∞, it is sufficient to show the following result in view
of Lemma 3.1, Proposition 3.5 (iii) and Lemma 6.7:

Lemma 7.6. For a1, a2 ∈ R×, we have

J∞(d(a1, 1),d(a2, 1)) =

(−2i)k ak1 e[i(a1 + a2)] if a1, a2 > 0,

0 otherwise.

Proof. We write J (a1, a2) for J∞(d(a1, 1),d(a2, 1)). Then

J (a1, a2) =
∫ ∞

0
yk−1/2 exp(−2πy)

√
|a1a2| IΦ0

((
a1a
−1
2 −a1y

−1

0 1

)
, a−1

1 a2y

)
d×y.
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Since IΦ0(X, t) = 0 if t < 0, we see that J (a1, a2) = 0 if a1a2 < 0. Assume that a1a2 > 0. Since

IΦ0

((
a1a
−1
2 −a1y

−1

0 1

)
, a−1

1 a2y

)

=
√
a−1

1 a2y

∫
R

e
[
−a2x+

i

2
a−1

1 a2y
(
a2

1a
−2
2 + x2 + 1

)](
−x+ i

a1 + a2

a2

)k
dx,

we obtain

J (a1, a2)

= |a2|
∫

R
e[a2x]

(
−x− ia1 + a2

a2

)k ∫ ∞
0

yk exp(−πy(2 + a1a
−1
2 + a−1

1 a2 + a−1
1 a2x

2))d×y dx

= |a2|Γ(k)π−k
(
a1

a2

)k ∫
R

e[a2x]
(
−x− ia1 + a2

a2

)k(
x2 +

(
a1 + a2

a2

)2
)−k

dx

= (k − 1)!π−k|a2|
(
a1

a2

)k ∫
R

e[a2x]
(
−x+ i

a1 + a2

a2

)−k
dx.

By the residue theorem, the last integral vanishes if a2 < 0. Suppose that a1, a2 > 0. Then the
last integral is equal to

2πi(−1)k Resx=a−1
2 (a1+a2)ie[a2x]

(
x− ia1 + a2

a2

)−k
= 2πi(−1)ke[i(a1 + a2)]

1
(k − 1)!

(2πia2)k−1,

which implies J (a1, a2) = (−2i)kak1e[(a1 + a2)i].

8 Periods of automorphic forms

8.1

The object of this section is to show that, if f is a primitive form, |P(f, ξ; g)|2 is expressed as
an integral involving the Whittaker function attached to f .

8.2 Waldspurger’s formula

We first recall several results due to Waldspurger ([W]) on the period integral of L(f) defined
by

Q(f, ξ; g1, g2) =
∫

(Q×A K×\K
×
A )2

ξσ(z−1
1 z2)L(f)(ι(z1)g1, ι(z2)g2)d×z1d

×z2 (g1, g2 ∈ GA),

where ξσ(z) = ξ(zσ) for z ∈ K×A . For g = n(x)d(y1, y2)u ∈ GA (x ∈ QA, y1, y2 ∈ Q×A , u ∈
UfU∞), we put a(g) = |y1y

−1
2 |A. For g ∈ GA, z ∈ K×A ,Φ ∈ S ′(VA ×Q×A ) and s ∈ C, set

I(g, z; Φ; s) =
∑

γ∈BQ\GQ

a(γg)s−1/2
∑

x∈K,t∈Q×
R(γg, 1, ι(z))Φ(ι(x), t),(8.1)
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where B is the group of upper triangular matrices in G. It is easily seen that (g, z) 7→ I(g, z; Φ; s)
is left GQ ×K×-invariant, and that I(g, αz; Φ; s) = I(αg, z; Φ; s) for α ∈ Q×A . Set

Q(f, ξ; g1, g2; s) =
∣∣det(g−1

1 g2)
∣∣k/2
A

∫
Q×A K×\K

×
A

∫
Z+
∞GQ\GA

f(g)|N(z) det g|k/2A

ξσ(z)I(g, z; s;R(1, g1, g2)Φ0)dgd×z.

Choose η ∈ V such that V = ι(K) + ι(K)η and ι(x)η = ηι(xσ) for x ∈ K.

Proposition 8.1 ([W], pages 197–198). (i) The series (8.1) is absolutely convergent if
Re(s) is sufficiently large. For (g, z) ∈ GA ×K×A and Φ ∈ S ′(VA × Q×A ), s 7→ I(g, z; Φ; s)
is continued to a meromorphic function of s on C, and holomorphic at s = 1/2.

(ii) We have

L(ω; 1)I(g, z; Φ; 1/2) =
∫

Q×A K×\K
×
A

∑
x,y∈K, t∈Q×

(R(g, 1, ι(z))Φ)
(
ι(x) + ι(zσ1 z

−1
1 y

)
η, t)d×z1.

(iii) For fixed g1, g2 ∈ GA, s 7→ Q(f, ξ; g1, g2; s) is continued to a meromorphic function of s on
C, and holomorphic at s = 1/2. We have

Q(f, ξ; g1, g2) = L(ω; 1)Q(f, ξ; g1, g2; 1/2).

(iv) We have

Q(f, ξ; g1, g2; s) =
∣∣det(g−1

1 g2)
∣∣k/2
A

∫
R×+\K

×
A

∫
ZANA\GA

Wf (g)|N(z)−1 det g|k/2A

ξσ(z−1)a(g)s−1/2 R(g, g1, g2)Φ0(ι(z), N(z)−1) dgd×z.

8.3

We henceforth assume that f ∈ Sk(N,χ) is a primitive form. By Theorem 6.1, we have

Lf(g1, g2) = (−2i)kfN (g1)fN (g2) (g1, g2 ∈ GA),

where fN (g) = χ−1(det g)f(gwN ) and wN =
∏
p|N w

(p)
1 . It follows that

(8.2) |P(f, ξ; g)|2 = (−2i)−kQ(f, ξ; gw−1
N , gw−1

N )

for g ∈ GA. By Proposition 8.1 (iii), we obtain the following.

Proposition 8.2. For a primitive form f ∈ Sk(N,χ), we have

|P(f, ξ; g)|2 = (−2i)−kL(ω; 1)Q(f, ξ; gw−1
N , gw−1

N ; 1/2).
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8.4

Let Wv (v ≤ ∞) be as in Proposition 3.5. By Proposition 8.1 (iv), we obtain

Q(f, ξ; g, g; s) =
∏
v

Qv(Wv, ξv; gv, gv; s) (g = (gv)v ∈ GA),

where

Qv(Wv, ξv; gv, gv; s) =
∫
Cv\K×v

∫
ZvNv\Gv

Wv(g′)a(g′)s−1/2|N(z)−1 det g′|k/2v ξσv (z−1)

R(g′, gv, gv)Φ0,v(ι(z), N(z)−1)dg′d×z,

where Cv = {1} if v <∞ and C∞ = R×+.

9 Proof of Theorem 1.1 (ii)

9.1

In this section, we assume that S1(ξ) = S+
2 (f, ξ) = ∅. Note that ξ−1

p (Πp)λ+
p = −1 if p|M−1N, p|D

and αp(ξ) = 0. For each place v of Q, we write Qv(s) for Qv(Wv, ξv; g1,v, g1,v; s), where

g1,v = (g0w
−1
N )v =


d(π−αp(ξ), 1) if v = p <∞, p 6 |N,

d(π−αp(ξ)+1, 1)w(p)
1 if v = p <∞, p|N,

g0,∞ if v =∞.

In this section, we prove the following results:

Proposition 9.1. Suppose that p 6 |N . Then we have

Qp(s) = Lp(f, ξ−1; s)× |D|1/2p p−αp(ξ)

Lp(ω; 2s)−1 if αp(ξ) = 0,

Lp(ω; 1) if αp(ξ) > 0.

Proposition 9.2. Suppose that p|N . Then we have

Qp(s) = Lp(f, ξ−1; s)× |D|1/2p p−αp(ξ)Lp(ω; 1)Yp(s) ,

where Yp(s) is given by

Yp(s) =


1− ξ−1(Πp)λ+

p p
s−1/2 if αp(ξ) = 0 and p ramifies in K/Q,

Lp(ω; 1)−2 if αp(ξ) = 0 and p splits in K/Q,

1 otherwise.

Proposition 9.3. We have

Q∞(s) = (−2i)k(4π)−(s+k−3/2)Γ(s+ k − 1/2).
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We first prove Theorem 1.1 (ii) assuming the above results. We have

Q(f, ξ; g0w
−1
N , g0w

−1
N ; s) =

∏
v

Qv(s)

= L(f, ξ−1; s) |D|−1/2A(ξ)−1(−2i)k(4π)−s−k+3/2Γ(s+ k − 1/2)

× L(ω; 2s)−1
∏

p 6|N, p|A(ξ)

Lp(ω; 1)2
∏
p|N

(Lp(ω; 1)Lp(ω; 2s)Yp(s)) .

Observe that

Yp(1/2) =


2 if αp(ξ) = 0 and p ramifies in K/Q,

Lp(ω; 1)−2 if αp(ξ) = 0 and p splits in K/Q,

1 otherwise.

Then, by Proposition 8.2, we obtain

|P(f, ξ; g0)|2 = (−2i)−kL(ω; 1)Q(f, ξ; g0w
−1
N , g0w

−1
N ; 1/2)

= (4π)1−k(k − 1)! |D|−1/2A(ξ)−12|S2(ξ)|
∏
p|A(ξ)

Lp(ω; 1)2 × L(f, ξ−1; 1/2),

which completes the proof of Theorem 1.1 (ii).

9.2 Proof of Proposition 9.1

In this and the next subsections, we often suppress the subscript p from the notation. We write F
and K for Qp and Kp respectively. Let OF and OK be the integer rings of F and K, respectively.
We denote by τn and τ ′n the characteristic functions of πnOF and πnO×F , respectively. We write
simply α for α(ξ) if there is no fear of confusion.

We suppose that p 6 |N . Recall that g0 = d(π−α, 1) and W (d(πn, 1)) = (tn+1
1 −tn+1

2 )/(t1−t2),
where t1, t2 ∈ C satisfy t1 + t2 = p−1χ(π)λ and t1t2 = p−1χ(π). We also recall that Φ0 is the
characteristic function of M2(OF )×O×F . Then we have

Q(s)

=
∫
K×

∫
F×

W (d(a, 1))|N(z)−1a|k/2|a|s−1/2ξσ(z−1)

R(d(a, 1), g0, g0)Φ0(ι(z),N(z)−1)) |a|−1d×a d×z

=
∫
K×

∫
F×

W (d(a, 1))|N(z)−1a|k/2|a|s−1/2ξσ(z−1)Φ0(g−1
0 ι(z)g0,N(z)−1a))d×a d×z

=
∫
K×

W (d(N(z), 1))ξσ(z−1)|N(z)|s−1/2ϕ0(ι0(z))d×z,

where ϕ0 is the characteristic function of M2(OF ) and

ι0(z) = g−1
0 ι(z)g0 =

(
x πα N(θ)y

−π−αy x+ Tr(θ)y

)
(z = x+ θy).
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Suppose that K/F is inert. Note that vol(O×K) = |D|1/2 = 1. Then

Q(s) =
∞∑
n=0

W (d2n)ξ(π)−np−2n(s−1/2)Jn(ξ),

where
Jn(ξ) =

∫
O×K

ξσ(z−1)ϕ0(πnι0(z))d×z.

If α = 0, we have Jn(ξ) = 1 for n ≥ 0 and hence

Q(s) =
∞∑
n=0

(ξ−1(π)p−2s+1)n
t2n+1
1 − t2n+1

2

t1 − t2

= (1 + χ(π)ξ−1(π)p−2s)
2∏
i=1

(1− ξ−1(π)t2i p
−2s+1)−1

= Lp(ω; 2s)−1Lp(f, ξ−1; s).

Suppose that α > 0. Since O×K = (O×F + θOF ) ∪ (pF + θO×F ), Jn(ξ) is equal to

1
1− p−2

{∫
O×F

∫
OF

ξ(x+ θy)τα−n(y)dydx+
∫

pF

∫
O×F

ξ(x+ θy)τα−n(y)dydx

}
,

where dx and dy are normalized such that vol(OF ) = 1. We have

J0(ξ) =
1

1− p−2

∫
O×F

∫
παOF

ξ(x+ θy)dydx =
1

1 + p−1

∫
παOF

ξ(1 + θy)dy

=
p−α

1 + p−1
= Lp(ω; 1)p−α.

For n ≥ α, we have

Jn(ξ) =
∫
O×K

ξ(z)d×z = 0,

since ξ is nontrivial on O×K . For 0 < n < α, we have

Jn(ξ) =
1

1− p−2

∫
O×F

∫
πα−nOF

ξ(x+ θy)dydx =
1

1 + p−1

∫
πα−nOF

ξ(1 + θy)dy = 0

by Lemma 2.2. It follows that Qp(s) = p−αLp(ω; 1), which completes the proof of Proposition
9.1 in the inert case. The proofs in the other cases are similar (though more complicated) and
omitted.

9.3 Proof of Proposition 9.2

In this subsection, we suppose that p|N . Recall that g1 = d(π−α+1, 1)w1 and

Φ0(

(
x y

z w

)
, t) =

τ0(x)τ0(y)τ1(z)τ0(w)τ ′0(t) if p|M−1N,

χ−1(w)τ0(x)τ0(y)τ1(z)τ ′0(w)τ ′0(t) if p|M.
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Put Φ′0 = R(w1, 1, 1)Φ0. A straightforward calculation shows

Φ′0

((
x y

z w

)
, t

)
=

τ1(x)τ0(y)τ1(z)τ1(w)τ ′−1(t) if p|M−1N,

G(χ)χ(tx)τ ′0(x)τ0(y)τ1(z)τ1(w)τ ′−1(t) if p|M.

By (7.1), we have

Q(s) =
∞∑
n=0

W (dn)p−n(s−1/2)Jn(ξ) +
∞∑
n=0

W (dnw1)p−(n−1)(s−1/2)J ′n(ξ),

where

Jn(ξ) =
∫
K×
|πn N(z)−1|k/2ξσ(z−1)Φ0(ι1(z), πn N(z)−1)d×z,

J ′n(ξ) =
∫
K×
|πn+1 N(z)−1|k/2ξσ(z−1)Φ′0(ι1(z), πn N(z)−1)d×z

and

ι1(z) = g−1
1 ι(z)g1 =

(
x+ Tr(θ)y π−αy

−πα N(θ)y x

)
(z = x+ θy).

Assume that p|M−1N and K/F is ramified. Put

ϕ0(X) = τ0(x)τ0(y)τ1(z)τ0(w), ϕ′0(X) = τ1(x)τ0(y)τ1(z)τ1(w)

(
X =

(
x y

z w

))
.

Then we have

Jn(ξ) =
∫

ΠnO×K
ξσ(z−1)ϕ0(ι1(z))d×z, J ′n(ξ) =

∫
Πn+1O×K

ξσ(z−1)ϕ′0(ι1(z))d×z.

First suppose that α = 0. We see that ϕ0(ι1(z)) = 1 for z ∈ OK = OF + θOF and ϕ′0(ι1(z)) = 1
for z ∈ ΠOK = pF + θOF , since Tr(θ),N(θ) ∈ pF . This implies that

Jn(ξ) = |D|1/2ξ(Π)−n, J ′n(ξ) = |D|1/2ξ(Π)−n−1 (n ≥ 0).

We thus have

Q(s) = |D|1/2
{ ∞∑
n=0

(p−1λ+)np−n(s−1/2)ξ(Π)−n +
∞∑
n=0

(−λ+)(p−1λ+)np−(n−1)(s−1/2)ξ(Π)−n−1

}
= |D|1/2(1− ξ(Π)−1λ+ps−1/2)(1− ξ(Π)−1λ+p−s−1/2)−1

= |D|1/2Lp(f, ξ−1; s)Yp(s).

Next suppose that α > 0. Then we have

J0(ξ) =
|D|1/2

1− p−1

∫
O×F

∫
pαF

ξσ(x+ θy)−1dydx = |D|1/2
∫

pαF

ξσ(1 + θy)−1dy

= |D|1/2p−α.
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Suppose that 1 ≤ m < α. Then we have

J2m(ξ) =
|D|1/2ξ(π−m)

1− p−1

∫
O×F

∫
pα−mF

ξσ(x+ θy)−1dydx

= |D|1/2ξ(π−m)
∫

pα−mF

ξσ(1 + θy)−1dy

= 0

by Lemma 2.2. We also have J2m+1(ξ) = 0, since ϕ0(ι1(z)) = 0 for z ∈ Π2m+1O×K = pm+1
F +

θπmO×F . If m ≥ α, we have

J2m(ξ) =
∫

Π2mO×K
ξσ(z)−1d×z = 0, J2m+1(ξ) =

∫
Π2m+1O×K

ξσ(z)−1d×z = 0.

A similar argument shows that J ′n(ξ) = 0 for n ≥ 0. We thus have

Q(s) = J0(ξ) = |D|1/2p−α,

which completes the proof of Proposition 9.2 in the case where p|M−1N and K/F is ramified.
The proofs in the other cases are similar and omitted.

9.4 Proof of Proposition 9.3

We have

Q∞(s) =
∫ ∞

0

∫
C1

W∞(d(y, 1))ys+k/2−3/2zk R(d(y, 1), g0, g0)Φ0,∞(ι(z), 1)d×zd×y,

where C1 = {z ∈ C× | zz = 1}. Observe that, for y > 0 and z = u+ iv ∈ C1,

R(d(y, 1), g0, g0)Φ0,∞(ι(z), 1) = yΦ0,∞
(
g−1

0 ι(z)g0, y
)

= yΦ0,∞

((
u v

−v u

)
, y

)
= (2i)kyzk exp(−2πy).

We thus have

Q∞(s) = (−2i)kvol(C1)
∫ ∞

0
ys+k−1/2 exp(−4πy)d×y

= (−2i)k(4π)−(s−3/2+k)Γ(s+ k − 1/2),

which completes the proof of the proposition.
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