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Abstract

We consider the Gopakumar–Ooguri–Vafa correspondence, relating U(N) Chern–Simons theory

at large N to topological strings, in the context of spherical Seifert 3-manifolds. These are quotients

SΓ = Γ\S3 of the three-sphere by the free action of a finite isometry group. Guided by string theory

dualities, we propose a large N dual description in terms of both A- and B-twisted topological

strings on (in general non-toric) local Calabi–Yau threefolds. The target space of the B-model

theory is obtained from the spectral curve of Toda-type integrable systems constructed on the

double Bruhat cells of the simply-laced group identified by the ADE label of Γ. Its mirror A-

model theory is realized as the local Gromov–Witten theory of suitable ALE fibrations on P1,

generalizing the results known for lens spaces. We propose an explicit construction of the family of

target manifolds relevant for the correspondence, which we verify through a large N analysis of the

matrix model that expresses the contribution of the trivial flat connection to the Chern–Simons

partition function. Mathematically, our results put forward an identification between the 1/N

expansion of the slN+1 LMO invariant of SΓ and a suitably restricted Gromov–Witten/Donaldson–

Thomas partition function on the A-model dual Calabi–Yau. This 1/N expansion, as well as that

of suitable generating series of perturbative quantum invariants of fiber knots in SΓ, is computed

by the Eynard–Orantin topological recursion.

1 Introduction

In a series of celebrated works [GV99, OV00], Gopakumar, Ooguri and Vafa (GOV) proposed

the existence of a duality between U(N) Chern–Simons theory at level k on S3 [Wit89] and the

topological A-model on the resolved conifold Y = Tot[O(−1) ⊕ O(−1) → P1]. From a physical

perspective, this identification provides a concrete instance, and one where exact computations

can be performed in detail, of ’t Hooft’s idea that the 1/N expansion of a gauge theory with

adjoint fields in the strong g2
YMN limit should be amenable to a dual description in terms of a first

quantized string theory. Originally restricted to the partition function and closed string observables

[GV99], the correspondence was later extended to incorporate Wilson loops along the unknot

[OV00] and topological branes; progress in open/closed mirror symmetry [HIV00, AV00, BKMP09]

has further allowed to rephrase the correspondence in terms of the topological B-model on the

1Max Planck Institut für Mathematik, Vivatsgasse 7, 53111 Bonn, Germany. E-mail: gborot@mpim-bonn.mpg.de
2UMR 5149 du CNRS, Institut Montpelliérain Alexander Grothendieck, Université de Montpellier, case courrier

51, 34095 Montpellier Cedex 5, France. E-mail: andrea.brini@univ-montp2.fr
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smoothing of the conifold singularity.

Mathematically, the main consequence of this physics-inspired duality is a striking connection

of theories of invariants from two domains of mathematics that are a priori quite separated. On the

one hand, Witten’s heuristic approach to Chern–Simons invariants can be recast in the context of

quantum groups and modular tensor categories to yield bona fide invariants of links in 3-manifolds

[RT90, RT91]; when the Chern–Simons gauge group is U(N) or SO/Sp(N), this leads respectively

to the HOMFLY and Kauffman invariants of links. Furthermore, the perturbative expansion of

the Chern–Simons functional integral around the trivial flat connection leads to the theory of finite

type invariants [BN06], via the Kontsevich integral and Lê–Murakami–Ohtsuki (LMO) invariants.

On the flip side, the topological A-model on a Calabi–Yau 3-fold X is mathematically defined in

terms of suitable theories of moduli of curves in X, either via stable maps [Kon94] or ideal sheaves

[DT98]. In particular, for the case of the unknot the Gopakumar–Ooguri–Vafa correspondence

asserts that Chern–Simons knot invariants should be identified with suitable virtual counts of

open Riemann surfaces on the dual Calabi–Yau 3-fold X. By mirror symmetry and the remodeling

formalism [BKMP09, EO15], this can be recast in the form of the topological recursion of [EO07]

on the mirror curve of X.

As a detailed instance of the gauge/string correspondence, and because of its far-reaching

implications in geometry and topology, the GOV correspondence has been the subject of intense

study both in the physics and mathematics communities. After the relation between Gromov–

Witten invariants of the resolved conifold and the slN+1 quantum invariant of the unknot in S3 had

been proved [FP03, KL02], a natural question was whether the correspondence could be extended so

as to encompass other classical gauge groups [BFM04, BFM05], knots3 [LMV00, BEM12, DSV13,

AENV14], and 3-manifolds. The generalization to manifolds beyond S3 is perhaps the least studied,

with all results to date confined to the case of lens spaces [AKMV04, HY09, BGST10].

1.1 Scope of the paper

The purpose of this paper is to propose an extension of the GOV correspondence to the case of

spherical Seifert manifolds. Our objects of study will be quotients SΓ = Γ\S3 by the free isometric

action of a cyclic or binary polyhedral group Γ ⊂ SU(2); one notable example is the Poincaré

homology sphere, corresponding to Γ = P120 being the binary icosahedral group. We offer here

a conjectural dual description of the 1/N expansion in terms of both A- and B-type topological

strings, together with a precision check for the contribution of the trivial flat connection, as follows.

On one hand, we associate to each Γ a local Calabi–Yau 3-fold Y Γ, serving as the A-model target

space; this is constructed in Section 3.1 by a natural Γ-equivariant generalization of the conifold

transition of [GV99] for T ∗S3. When Γ is non-abelian, the Γ-action has the effect of reducing the

rank of the automorphism group of Y Γ to two, so that Y Γ is non-toric. At first sight this may be

a hindrance towards finding a mirror B-model picture, as in particular there is no explicit Hori–

3In an allied context, a vast program of computation of HOMFLY invariants, exploring also possible new rela-
tions with matrix models, has recently been undertaken by the mathematical physicists at ITEP; see in particular
[AMMM14, MMM+15] and references therein.
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Vafa mirror here. However, the M-theory uplift of the Katz–Klemm–Vafa geometric engineering

to five compactified dimensions [KKV97, LN98] suggests that the planar part of the topological

string free energy should be governed by special geometry on a family of 5d Seiberg–Witten curves

(Section 3.5), with gauge group GΓ specified by the ADE label of Γ via the McKay correspondence.

Furthermore, in light of the connection of 4d pure N = 2 Yang–Mills theory with the classical

ADE Toda chain, it is natural to speculate that the 5d curves should arise as the spectral curves

of some relativistic deformation of the Toda chain, as has been known for a long time for the

case G = SU(p) [Rui90, Nek98]. We will then be compelled to propose that the B-model target

space will be given by the family of spectral curves of the Toda-type classical integrable system

recently constructed in [Wil13, FM14] on the double Bruhat cells of the loop group Ĝ, as we recall

in Section 3.6. Concretely, the Toda spectral curves take the form

PToda
G# (X,Y ;u) = det

[
Y 1− ρmin(LG

#

w )
]

= 0 , (1.1)

where LG
#

w is the Lax matrix of the Toda system on a suitable cell w of the affine co-extended

group G#, ρmin is an irreducible representation of G of minimal dimension, and X ∈ C∗ is the

spectral parameter of the Lax matrix. The right-hand side expands in the spectral invariants of the

Lax matrix, which are encoded in R = rank(G) independent parameters u = (u1, . . . , uR) – these

are the Hamiltonians for the Toda classical integrable system on G, and they correspond to the

classical Weyl-invariant order parameters of the gauge theory vacua. We also have one additional

parameter u0 associated to the affine root of G#, which plays the role of the speed of light in the

mechanical system, and is related to the exponentiated volume of the base P1 in the mirror A-model.
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Figure 1: The chain of dualities behind our proposal.

On the other hand, the slN+1 evaluation of the LMO invariant of the Seifert space SΓ =

S3/Γ is given by the partition function of a random matrix model, and observables in this matrix

model encode perturbative quantum invariants of fiber knots; to disambiguate notations, DΓ in the

following denotes a Dynkin diagram of type A, D or E, bijectively associated with the cyclic or

binary polyhedral group Γ (A-model), and also with the compact, simply connected, simply-laced

Lie group GΓ (B-model). This matrix model has a spectral curve:

PLMO
DΓ

(X,Y ; λ̂) = 0, λ , λ̂/σ = N~/σ , (1.2)
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which depends on the three-dimensional geometry only via Γ and the Seifert invariant σ defined

in (2.1). The latter only appears in the definition of the renormalized ’t Hooft parameter λ. The

all-order asymptotic expansion of the partition function and observables can be obtained from

the topological recursion of Eynard–Orantin [EO07] applied to this curve – this is a B-model

computation, in view of the remodeling proposal [BKMP09].

We propose that, for a suitable restriction u = u(λ) of parameters on the Toda side, the curves

PLMO
DΓ

and PToda
GΓ

agree up to an abelian factor (Y − 1)•. Therefore, the generating functions of

LMO invariants and perturbative quantum invariants of fiber knots in SΓ receive an interpretation

as suitably restricted Gromov–Witten/Donaldson–Thomas partition functions of Y Γ. Our proposal

passes several non-trivial tests, and automatically retrieves the known results for the case of lens

spaces L(1, p), where Γ = Z/pZ is a cyclic group, Y Γ is a toric variety, and G = SU(p). The

non-toric cases have so far remained unexplored, and they are the main focus of this paper.

1.2 Summary of results and organization of the article

We now describe more precisely our results and their mathematical status. They can be grouped

in three main strands.

Firstly, we construct the A-model geometries Y Γ by a direct generalization of the geometric

transition for the case of spherical Seifert spaces (Section 3.1). We also highlight an extension

of the holomorphic disk counting of [AV00, KL02, BC11] to the non-abelian orbifold case, and

introduce the generating functions of open/closed Gromov–Witten invariants that are relevant

for the discussion. Secondly, we propose (Section 3.5) and carry out the detailed construction of

the spectral curves (1.1) for G = A,D,E6, E7; this requires substantial work and occupies the

bulk of Section 6. For G = E8, computational complexity restricts the amount of data we can

extract, while still allowing us to make some universal predictions on the form of (1.1), as well

as a complete derivation of the spectral curve at the special point in moduli space corresponding

to the Γ-orbifold of the conifold. Thirdly, for all G 6= E8, combining these results with [BE14],

we can establish that the slN+1 LMO invariants of SΓ are computed by the Eynard–Orantin

invariants of the Toda curves, which may be regarded as a restricted, B-model version of the GOV

correspondence; for G = E8, a complete proof is out of reach of our methods, but we propose it as

a conjecture passing non-trivial checks.

The strategy we employ in our proof runs as follows: the LMO invariant on any Seifert space has

been computed in [BNL04, Mar04], and for weight system slN+1 it takes the form of the partition

function for a random N ×N hermitian matrix model. The authors of [BE14] rely on [BGK15] to

prove the existence of an asymptotic expansion when N → ∞, and on [BEO15] to show that the

latter is computed by the topological recursion applied to the spectral curve PLMO
DΓ

of the matrix

model. This material is reviewed in Section 2.4. The computation of the LMO spectral curve occu-

pies Section 5, and is completed for A, D and E6, while the result for E7 and E8 involves a number

of parameters, in principle fixed by algebraic constraints that we could not solve. We however point

out that, compared to [BE14], the complete expression of the LMO curve for E6 is new (Section 5.5).
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Our comparison statement is presented in Section 4 and implemented in Section 6. It boils down

to a general recipe to identify the function u(λ) such that the LMO spectral curve and the Toda

spectral curve specialized to u← u(λ) coincide (Conjecture 4.1). We give the expression of u(λ) for

D ∈ {A,D,E6}, thus proving the conjecture. Algebraic complexity challenges the computation for

E7 and E8, but we are however able to prove that the specialization exists for E7, and we find exact

agreement of the Toda/LMO curves at the conifold point (i.e. λ = 0 on the LMO side) for E8,

as well as a more general equality of their vertical slope polynomial. This comparison pertains to

the left vertical arrow in Figure 1, and can be formulated as follows (see Section 2 for the relevant

notation):

Proposition 1.1 Let (Ej [X;u]) be the eigenvalues of the Lax matrix of the Toda integrable system

for the affine co-extended group of type ADE, specified by fundamental character values u1, . . . , uR,

Casimir u0 = − exp(−χorbλ/2) and spectral parameter X. There exist a specialization (ui(λ))i and

an explicit vector v̂j ∈ Za such that the Taylor expansion of Ej [X;u(λ)] near X →∞ is equal to:

Yv̂j (X) =
a−1∏
`=0

[
Y(e2iπ`/aX1/a)

]v̂j(`), (1.3)

with:

Y(X) = −X1/a c exp
(χorb λ

a

∑
k≥0

X−k/a 〈Tr Uk〉(0)
)
, (1.4)

and where 〈Tr Uk〉(0) is the large N limit of the moments of the random matrix U in the Seifert ma-

trix model. Furthermore, the full 1/N asymptotic expansion of
〈
Tr Uk1 . . .Tr Ukn

〉
conn.

is computed

from (1.3)–(1.4) by the Eynard–Orantin recursion [EO07]. For ki ∈ (a/am)Z, this is identified with

the 1/N expansion of the perturbative quantum invariants (in virtual k-th power sum representa-

tion) of the knot going along the fiber of order am in the Seifert manifold.

Remark 1.1 Combining the results of [Han01] and [Mar04], one sees that the matrix model observables
described in Section 2.4 appear as one term in the expression of the slN+1 quantum invariants of fiber
knots in Seifert manifolds produced by the Witten–Reshetikhin–Turaev–Wenzl TQFT at roots of unity; in
Chern-Simons theory, localization heuristics identifies it with the contribution of the trivial flat connection
to the Chern–Simons path integral. Throughout the paper, we will use the name “perturbative quantum
invariants” to refer to these quantities. Whenever the trivial connection is isolated, i.e. for lens spaces and
the Poincaré sphere, these should coincide with the dominant contribution to the saddle-point asymptotics
of Wilson loops in Chern–Simons theory.

For the A-series, this correspondence has been known to extend to the perturbative expansion

in Chern–Simons theory around a general flat connection [HY09]. Its formal analogy with the

general simply-laced case cries out for generalization to the D- and E-series, and we speculate in

Conjecture 4.2 on extending our statements to an arbitrary flat background.

The link between the A- and the B- model geometry – i.e. the diagonal arrow in Figure 1

– will be explored in a subsequent publication [Bri15], where more details can be found on the

computations leading to the results of Section 6.
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2 Chern-Simons theory and Seifert spaces

This section reviews the main characters in our play, starting from the LMO invariants and Chern–

Simons theory of Seifert 3-manifolds (Section 2), and in particular the spherical ones. We also

discuss rigorous aspects of the matrix model approach. Then, we argue on physical grounds using

large N dualities, geometric transitions (Section 3.1) and geometric engineering (Section 3.5), how

Chern–Simons theory on SADE relates to d = 5, N = 1 pure Yang–Mills theory with ADE gauge

group, and in turn to the classical integrable systems that govern its effective action up to two

derivatives (Section 3.6). This is the necessary material to present our two main conjectures in

Section 4.

2.1 Geometry of Seifert 3-manifolds

Seifert fibered spaces are manifolds M3 that are S1-bundles over orbifold surfaces [Sei80]. When

the base surface is the sphere S2 with r orbifold points of order a1, . . . , ar, M
3 can be realized by

rational surgery on the link in S3, consisting of one main component passing through r meridians.

The surgery slopes are 1/b on the main component, and am/bm on the m-th meridian. Here,

am > 0 and 0 ≤ bm < am is coprime to am. There exist moves changing the surgery data but

giving isomorphic Seifert spaces. Nevertheless, the uple (a1, . . . , ar) and

σ , b+

r∑
m=1

bm
am

(2.1)

are invariants of Seifert fibered spaces. For r ≥ 3, (a1, . . . , ar) is a topological invariant of M3,

whereas the cases r = 1 or 2 realize lens spaces in several inequivalent ways as Seifert fibered spaces.

Two quantities are particularly important:

a , lcm(a1, . . . , ar), χorb , 2− r +

r∑
m=1

1

am
. (2.2)

A presentation of the fundamental groups of Seifert spaces was described in [Sei80] and the

fundamental groups identified in [Orl72]: we remind this in Appendix A. The key fact is that
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π1(M3) is finite iff χorb > 0 and σ 6= 0; this occurs for lens spaces or for r = 3 exceptional

fibers of order (2, 2, p), (2, 3, 3), (2, 3, 4), (2, 3, 5). Then, the orbifold fundamental groups of the

2d-base of the Seifert fibration is the spherical triangle group Γ = (a1, a2, a3). The resulting

3-manifolds SΓ , Γ\S3 are spherical Seifert spaces: these are quotients of the 3-sphere by a finite

group of isometries acting smoothly, linearly and freely. Up to central extension, as reviewed in

Appendix A-B, the list of possible groups is exhausted by Γ ⊂ SL(2,C) being a cyclic or binary

polyhedral group. By the McKay correspondence [McK80], these have an ADE classification given

in Table 1. Throughout the text, we will employ the labeling by ADE Dynkin diagrams DΓ to

refer to the corresponding Seifert geometry.

Exceptional fibers Γ DΓ

(p) Z/pZ Ap−1

(2, 2, p) Q4(p+2) Dp+2

(2, 3, 3) P24 E6

(2, 3, 4) P48 E7

(2, 3, 5) P120 E8

Table 1: ADE labeling of spherical Seifert manifolds. Q4p is the binary
dihedral group, of order 4p; P24, P48 and P120 denote the binary tetra-,
octa-, and icosa-hedral groups respectively.

As π1(SΓ) = Γ is finite, H1(SΓ,Z) is purely torsion and SΓ is always a rational homology sphere

(QHS). In our list, the only case where we obtain an integer homology sphere is the E8 case with

b1 = b2 = b3 = −b = 1: this is the Poincaré sphere.

2.2 LMO invariant

Before getting to Chern–Simons theory in Section 2.4, we first present the mathematical avatar

about which this article is mainly concerned: the LMO invariant [LMO98]. It is a graph-valued

formal series associated to any rational homology sphere. The choice of a simple Lie algebra g gives

an evaluation of the graphs, and converts this series into a formal series with rational coefficients:

lnZLMO(M3) =
∑
g∈N/2

~2g−2Fg(M3) ∈ ~−2Q[[~]] . (2.3)

Bar-Natan and Lawrence [BNL04] obtained a surgery formula allowing them to compute the LMO

invariant of Seifert manifolds which are QHS, and after picking up a simple Lie algebra, the result

takes the form:

Zg
LMO(M3) = Cg

~(M3)

ˆ
h

dφ
∏
α>0

(
sinh[(α · φ)/2]

)2−r r∏
m=1

sinh[(α · φ)/2am]
)
e−φ

2/(2σ~) . (2.4)

h is the (real) Cartan subalgebra of g, the product ranges over all positive roots, and (x, y) 7→ x · y
is the Killing bilinear form, and dφ the corresponding Riemannian volume. Cg

~(M3) is an explicit

prefactor involving am, σ and the Casson–Walker invariant of M3 [Wal92]. Apart from this
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contribution, the only dependence on bm is hidden in the parameter σ defined in (2.1).

We will be mainly interested in the weight system of the Lie algebra slN+1. In this case,

elementary combinatorics shows that the LMO invariant can be repackaged by setting λ̂ = N~ into

a well-defined formal series:

lnZsl(N+1)
LMO (M3) =

∑
g∈N

N2g−2Fg(λ̂;M3), Fg(M3; λ̂) ∈ Q[[λ̂]] . (2.5)

Fh are called the free energies. In the case of Seifert manifolds, we prefer to define:

λ , N~/σ = λ̂/σ , (2.6)

and (2.4) for Seifert spaces becomes:

ZslN+1

LMO (M3) = C
slN+1

~ (M3)

ˆ
RN

∏
1≤i<j≤N

(
sinh[(φi−φj)/2]

)2−r r∏
m=1

sinh[(φi−φj)/2am]

N∏
i=1

e−Nφ
2
i /2λdφi .

(2.7)

2.3 The matrix model approach

The right-hand side of (2.7) provides a definition for a function of an integer N and a positive

parameter λ̂, that we denote ZN (M3; λ̂). This is a convergent matrix integral, and its large N

asymptotic behavior for a fixed λ̂ > 0 can be studied rigorously with the techniques recently

developed in [BGK15]. The main result of [BGK15] relies on an assumption of strict convexity,

which is here satisfied when χorb > 0 and λ̂ > 0 is small enough. One then obtains, for any g0 ≥ 0,

an asymptotic expansion of the form:

ZN (M3;λ) ,
ˆ
RN

∏
1≤i<j≤N

(
sinh[(φi − φj)/2]

)2−r r∏
m=1

sinh[(φi − φj)/2am]

N∏
i=1

e−Nφ
2
i /2λdφi

= NN+5/12 exp
( g0∑
g=0

N2−2g Fg(λ;M3) +O(N2−2g0)
)
, (2.8)

and Fg(M
3;λ) extends as an analytic function of λ in a vicinity of 0. It was proved in [BEO15]

that the Fg are computed by the topological recursion of [EO07]. This requires only the knowledge

of the spectral curve of the matrix model, here conveniently defined as:

W0,1(x) , lim
N→∞

1

N

〈 N∑
i=1

x

x− eφi/a
〉
, (2.9)

and the knowledge of the two-point function:

W0,2(x1, x2) , lim
N→∞

{〈 N∑
i1,i2=1

x1x2

(x1 − eφi1/a)(x2 − eφi2/a)

〉
−
〈 N∑
i1=1

x1

x1 − eφi1/a

〉〈 N∑
i2=1

x2

x2 − eφi2/a

〉}
.

(2.10)

It turns out that W0,2(x1, x2) can be analytically continued as a meromorphic function of 2

variables in the same curve, i.e. on {(x1, y1, x2, y2) ∈ C4, yi = W0,1(xi)}. The topological
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recursion then provides a universal algorithm to compute the whole 1/N asymptotic expansion of

correlation functions, and then Fg for g ≥ 2. Beyond computations which are anyway rather heavy

to perform explicitly, we learn that, to understand the singularities of the continuation of (Fg)g≥2,

∂λF1 and ∂2
λF0 as an analytic function of λ in the complex plane, it is enough to understand the

singularities of the analytic family of curves {y = W0,1(x)}λ.

Remark 2.1 One may ask what these analytic functions Fg(λ) in (2.8) have to do with the formal series
Fg(λ) in (2.5). It can be proved that the Taylor series of Fg(λ) at λ→ 0 gives Fg(M3;λ). Indeed, it is easy
to show that the formal series Fg(M3;λ) satisfy some loop equations (let us call them formal), expressing
them as generating series of a certain set of ribbon graphs with Boltzmann weights prescribed by (2.4), and
these equations have a unique solution (see e.g. [Bor14]). It is also well-known that ZN (M3;λ) satisfies a
set of loop equations, obtained for instance by integration by parts in the matrix model. Inserting the form
of the asymptotic expansion (2.8) in these equations, collecting the powers of N , and collecting order by
order in the Taylor expansion when λ→ 0, we obtain the same formal loop equations that were satisfied by
Fg(λ). We can then conclude by uniqueness of the solution of the formal loop equations.

To recap, the matrix model and the study of Fg(λ) give a method to compute and establish

convergence properties and analytic continuation of the formal series Fg(λ). The main task lies in

the computation of the spectral curve, which was mainly addressed in [BE14] by one of the authors.

It turns out that among Seifert spaces, only the ADE geometries have an algebraic spectral curve,

with a subtlety that will be explained in Section 5.1. In Section 5.3 we review the construction of

the matrix model spectral curves, which consists in describing the monodromy group of W (x), and

exhibiting the unique function that admits the singular behavior and branchcuts required by the

problem.

2.4 Chern–Simons theory

In physics, the LMO invariant captures the ~ → 0, perturbative expansion of the Chern–Simons

functional integral on M3 with compact, simply-connected gauge group G = exp(g),

Zg
CS(k,M3) =

ˆ
A /G

[DA] exp

(
ik

2π
CS[A]

)
, (2.11)

CS[A] =

ˆ
M3

(
A ∧ dA+

2

3
A3

)
, (2.12)

around the trivial flat connection, A = gdg−1; here k ∈ N∗ is the Chern–Simons level, and the

LMO variables are identified as ~ = 2iπ/(k+h∨), λ̂ = h∨ ·~ with h∨ the dual Coxeter number of g.

The full partition function Zg
CS of Chern–Simons of Seifert manifolds that are QHS can be found

in various ways, depending on the mathematical starting point one chooses for Chern–Simons

theory – which morally realize the path integral with Chern–Simons action. They all lead to the

same answer for Seifert spaces, and Zg
LMO appears as one term within Zg

CS.

In a Hamiltonian context, Mariño [Mar04] cleverly used the gluing rules of the Wess–Zumino–

Witten TQFT, the Kac–Peterson formula for the S- and T -matrices, and the surgery presentation

of Seifert spaces to derive the formula (2.4) for Zg
LMO. His work generalized to all simply-laced Lie

algebra an observation of Lawrence and Rozansky [LR99] for sl2, and can be seen as the TQFT
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analogue of the surgery approach of [BNL04]. His matrix model representation has then been

rederived via functional localization, either by exploiting the S1-action of the Seifert fibration to

reduce (2.11) to a discrete sum over flat connections over the orbifold sphere [BT06, BT13], or

by taking a choice of a contact structure on M3 and resorting to non-abelian localization [BW05,

Bea13] to single out the contribution of isolated flat connections4, or yet again [K1̈1] by employing

localization in a topological twist of a parent supersymmetric theory [KWY10]. The authors of

[Bea13, K1̈1, BT13] also show that the insertion of a Wilson line WR(Kam) along the exceptional

fiber of order am decorated with a representation R is represented in terms of φ ∈ h as an insertion

of the character chR(eφ1/am , . . . , eφN/am). For g = sl, the characters are the symmetric functions,

and the definition of WR can be extended by linearity to the whole character ring. If we restrict to

the contribution of the trivial flat connection, a good way to encode all of them at the same time

is to define the correlators of the matrix model. The latter are defined, for n ≥ 1, as:

Wn(x1, . . . , xn) ,
〈 n∏
j=1

N∑
ij=1

x

x− eφij /a
〉

conn.
(2.13)

with respect to the measure in (2.8), and they depend implicitly on λ. For our purposes, it is

helpful to work with connected observables, as they enjoy a well-defined 1/N expansion. For k an

integer, let pk be the k-th power sum character. Then, we have:

〈 n∏
j=1

Wpkj
(Kamj

)
〉

conn.
=
[ n∏
j=1

x−kj(a/amj )
]
Wn(x1, . . . , xn) . (2.14)

We can read off invariants of knots going along the various exceptional fibers Kam by looking

at the coefficients of expansion of the correlators when xi → ∞ (or xi → 0) for orders that are

multiples of a/am.

The discussion of Section 2.2 applies to the Wn as well. For the spherical Seifert geometries,

the work of [BGK15] establishes an asymptotic expansion when N →∞:

Wn(x1, . . . , xn) =
∑
g≥0

N2−2g−nWg,n(x1, . . . , xn) (2.15)

at least for λ > 0 small enough. The coefficient of x−k(a/am) in the Laurent expansion at infinity

of the function:

W (x) ,W0,1(x) (2.16)

defining the spectral curve computes the planar limit of the HOMFLY invariant of Kam colored

with the virtual character pk. The other coefficients do not seem to have an interpretation in terms

of 3d topology, but they do influence the monodromy of the spectral curve5.

4It should be stressed that the trivial flat connection is isolated only in the case of lens spaces and the E8 Seifert
geometry. Therefore, identifying Zg

LMO with the trivial connection is only legitimate in those cases.
5In the case of lens spaces, invariants of fiber knots are related to invariants of torus knots in S3. We point

out that [JKS14] defines and compute a new spectral curve that only contains the physical part of the information
(i.e. the planar limit of HOMFLY’s of the torus knots) skipping the other coefficients. They are able to find a
(very complicated) 2-point function which, after applying topological recursion, still gives the “physical part” of the
correct higher genus expansion. From a conceptual point of view, it is simpler to keep on with spectral curves that
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3 Construction of Y Γ and topological string dualities

3.1 Topological large N duality

As for any quantum gauge theory with gauge group U(N) and fields in the adjoint representation,

the formal perturbative expansion of the Chern–Simons integral can be formulated as an expansion

in ribbon graphs G, whose dual graphs are triangulations of a closed oriented topological 2-manifold

SG. Elementary combinatorics then shows that each loop in the diagram contributes a factor of

λ̂ = g2
YMN , and the overall topology contributes a factor of g

−2χ(CG)
YM [tH74]. In particular, the

perturbative free energy takes the form

F slN+1

CS (M3; gYM) =
∑
g,n≥0

Fg,n(M3)λ̂ng4g−4
YM ∈ g−4

YMQ[[λ̂, g4
YM]]. (3.1)

For the case of U(N) Chern–Simons theory on a closed oriented 3−manifold M3, Witten showed

[Wit95] that this can be reinterpreted as the target string field theory of the open topological A-

model on the cotangent bundle T ∗M3, with N Lagrangian A-branes wrapping the image of the

zero section (see [Mar05] for a review). Here, the string coupling constant should be identified

with gs = g2
YM; in particular, the ribbon graph expansion translates into a virtual count of open

holomorphic worldsheet instantons with A-type Dirichlet boundary condition on M3. A formal

resummation of the contribution of the connected contribution of the boundary – the “holes” in

the worldsheet – gives rise to a formal closed string expansion,

F slN+1

CS (M3, gYM) =
∑
g≥0

g2g−2
s · λ̂−(2g−2)Fg(M3; λ̂), (3.2)

When M3 = S3, Gopakumar and Vafa identified the closed string model as the closed topological

A-model on the resolved conifold Tot[O(−1)⊕O(−1)→ P1]: here gs is the closed string coupling

constant, and λ̂ is identified with the Kähler parameter of the base P1. Geometrically, this target

space is obtained from T ∗S3 by a complex degeneration to a normal singular variety (the singular

conifold) obtained by contracting the base S3, followed by a minimal crepant resolution of the

resulting singularity with a P1 as its exceptional locus. While there are obstructions to extend this

circle of ideas to more general 3-manifolds [BGST10], it is still natural to conjecture, in view of

the positive results of [HY09], that the same scenario could apply to the case of spherical Seifert

manifolds and Γ ⊂ SU(2) quotients of the conifold, as we now describe.

3.2 Geometric transition for S3

Let us review the conifold transition for the simplest case of S3 with unit radius. Since S3 ' SU(2)

is a Lie group, T ∗S3 is a trivial bundle; its fiber at identity is the space iH0(2,C) of traceless anti-

hermitian 2×2 matrices. Any matrix A ∈ GL(2,C) can be written uniquely by polar decomposition

M = UeH where U ∈ U(2) and H ∈ H(2,C) definite positive, and if we restrict to det(A) = 1, we

must have det(U) = 1 and tr(H) = 0. Therefore, the polar decomposition gives an isomorphism:

T ∗S3 ρ
'SL(2,C) (3.3)

may contain knot-theoretic irrelevant information, which are used to get the higher genus corrections, and only then
discard coefficients which do not have a knot-theoretic interpretation. The equivalence between the two approaches
is guaranteed by a property of commutation with “forgetting information” enjoyed by the topological recursion, see
[BEO15].
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This description can be fit into a flat family ψ : X = GL(2,C)→ C∗ given by the determinant map.

Then the fiber X[µ] at a point µ such that Imµ = 0 and Reµ > 0 is isomorphic to the cotangent

bundle T ∗S3
[µ] of a sphere with radius µ. Explicitly, writing

ρ(A) = w0 + i~w · ~σ, wj = pj + iqj (3.4)

realizes X[µ] as the real complete intersection in T ∗R4 cut out by
∑4

j=1 q
2
j −p2

j = µ,
∑4

j=1 qjpj = 0.

Let us add the locus of non-invertible matrices to form:

ψ̃ : Mat(2,C) −→ C . (3.5)

The fiber X[0] above µ = 0 is the singular quadric detA = 0. It admits a canonical minimal

resolution

π : X̂ −→ X[0], X̂ ,
{

(ρ(A), v) ∈ X[0] × P1, ρ(A)v = 0
}
, (3.6)

where π is the projection to the first factor. The point A = 0 is singular in X[0], and its fiber is a

complex projective line with [v1 : v2] as homogeneous coordinates. Using coordinate charts on P1

exhibits X̂ as the total space of O(−1)⊕O(−1)→ P1, i.e. the resolved conifold.

3.3 Geometric transition for SΓ

We now consider the action of finite groups of isometries of S3, reviewed in Appendix B. The

morphism ρ is compatible with the isometric action of left and right multiplication on S3 ' SU(2).

This means that, if we denote Φ̃4 the lift of this action to an action by symplectomorphisms on

T ∗S3, we have for any (q1, q2) ∈ SU(2)× SU(2) and any A ∈ T ∗S3,

ρ(Φ̃4(q1, q2) ·A) = q1ρ(A)q−1
2 . (3.7)

Let us focus on the left action by a finite subgroup Γ ⊂ SU(2). This is a fiberwise action on

ψ : X → C∗, which is free on each fiber X[µ]. When µ > 0, we claim that the set of equivalence

classes is just isomorphic to T ∗SΓ. Indeed, consider the local diffeomorphism on R8 given by

p̃1 = q1p1 + q2p2 + q3p3 + q4p4, p̃2 = q1p2 − q2p1 + q4p3 − q3p4,
p̃3 = q3p1 + q4p2 − q1p3 − q2p4, p̃4 = q3p2 − q4p1 − q2p3 + q1p4,

(3.8)

and

q̃i =
qi√

µ+
∑4

j=1 p
2
j

. (3.9)

It is non-singular everywhere for µ > 0, and the resulting real sixfold is just R3× S3, cut out in R8

by:

p̃1 = 0,
4∑
i=1

q̃2
i = 1. (3.10)

Using the generators of Γ given in Appendix B, it can be checked that the coordinates p̃i are

Γ-invariant so that the quotient is:

XΓ
[µ] =

SpecC[A]Γ

〈detA = µ〉
' R3 × SΓ (3.11)
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which is isomorphic to T ∗SΓ by Stiefel’s theorem.

Now, let us look at the Γ-action on the resolution X̂. It only acts on the first factor of (3.6),

and hence this is a fiberwise action on p : X̂ → P1 (the second factor in (3.6)). The fiber at a

point z ∈ P1 is isomorphic to the du Val singularity Γ\C2, and the resulting target geometry can

be studied in two distinguished chambers of the stringy Kähler moduli space. Let

R , rank(GΓ) . (3.12)

In the orbifold chamber, we are looking at the orbifold A-model on Y Γ
orb , [Γ\O⊕2

P1 (−1)]. Its degree

two orbifold quantum cohomology – i.e. the space of marginal deformations of the A-model chiral

ring – is generated by classes (δ, (ξj)
R
j=1); here δ is the class of the base of [Y Γ][0] → P1, where [][0]

denotes the untwisted sector, and ξj are twisted orbifold cohomology classes of Chen–Ruan degree

two. In the large radius chamber, we take a crepant resolution Y Γ
res of the singularities of Y Γ

orb

obtained by canonically resolving the surface singularity Γ\C2 fiberwise. The resulting Calabi–Yau

threefold Y Γ is thus an ALE fibration over P1, with fibers given by configurations of rational

curves having normal bundle (0,−2), and whose intersection matrix equates the negative of the

Cartan matrix of GΓ [Rei]. Then H2(Y Γ
res) is generated as a vector space by the base class δ above,

plus classes (γj)
R
j=1 representing the nodes in the chain of exceptional fiber P1’s. In the following

we will often write Y Γ to refer to either of the two chambers whenever the context applies to both

of them.

3.4 A-model: Gromov–Witten theory on Y Γ

In terms of the coordinates {aij = ρ(A)ij}i,j=1,2 and [v1 : v2] of (3.4) and (3.6), Y Γ supports a

natural T ' C∗-action given by

(a11, a12, a21, a22; [v1 : v2]) −→
(
µa11, a12, µa21, a22 ; [µ−1v1 : v2]

)
, (3.13)

Here T acts trivially on the canonical bundle: on the full resolution Y Γ
res, it has a compact fixed

locus Y Γ
res,T consisting of two fibers above [0 : 1] and [1 : 0], each isomorphic to a disjoint union of

a P1 with (R− 2) points; likewise, its fixed locus on Y Γ
orb is the union of two Γ-orbifold points, i.e.

Y Γ
orb,T ' BΓtBΓ. The A-model/Gromov–Witten closed free energy of Y Γ is then defined/computed

by localization [GP99]:

FGW(Y Γ) ,
∑
g≥0

g2g−2
s FGW

g (Y Γ, t), (3.14)

FGW
g (Y Γ, t) ,

∞∑
n=0

∑
β∈H2(Y Γ,Z)

〈Φ(t), . . . ,Φ(t)〉Y
Γ

g,β

n!
, (3.15)

〈ϕ1, . . . , ϕn〉 ,
ˆ

[Mg,0(Y Γ
T ,β)]virt

ev∗1ϕ1 ∪ · · · ∪ ev∗nϕn ∈ Q(µ), (3.16)

where µ = c1(OBT (1)) denotes the equivariant parameter of T and Φ is a cohomology class

specified by linear coordinates t on H•(Y Γ). In fact, as the torus action is Calabi–Yau (i.e. it

preserves the holomorphic volume form), Gromov–Witten invariants in positive degree (3.16) do
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not depend on µ [MOOP08], nor do the higher genus invariants for g ≥ 2 and all β. Equations

(3.14)-(3.16) will be our candidate for the A-model dual of the Chern–Simons free energy at large N .

A-branes

The geometry of Y Γ offers also a natural candidate for an A-model description of the large N

expansion of the Wilson loops along fiber knots, (2.15), in terms of open Gromov–Witten invariants

[KL02, BC11]. On the resolved conifold Y = Y Γ={1}, consider the anti-holomorphic involution

σ : Y → Y induced by σ(a22) = a11, σ(a21) = a12. Equivalently, this means σ(w0,3) = w0,3,

σ(w1,2) = −w1,2 in (3.4)) and vi → v3−i; its fixed locus is thus isomorphic to R2 × S1, where the

circle is given by the equator of the base P1, and it is Lagrangian with respect to the pull-back of

the canonical Kähler form ω = (2π)−1
∑4

i=1 dwi ∧ dw̄i on C4.

When Γ ⊂ SU(2) is cyclic, the Γ-action descends to a free action on the fixed locus Yσ: this

simultaneously defines Lagrangian branes on Y Γ
orb and Y Γ

res by respectively taking the orbit space

Y Γ
σ , LΓ

orb for Y Γ
orb, and the transform LΓ

res of this condition under the resolution map for Y Γ
res

6.

When Γ is non-abelian, on the other hand, the Γ action does not descend to an action on the σ-

fixed locus, as can be checked directly on the generators (B.11)–(B.13). It is however immediate to

verify that 1) the dihedral reflection ι is a Poisson action on the real codimension one submanifold

|a11| = |a12|, and 2) the images of Yσ under the degree 3 (resp. 2) generator  (resp. κ) are

Lagrangians having empty intersection with Yσ. Then, defining

Y Γ
σ =


Yσ DΓ = A,

Yσ t ι(Yσ) DΓ = D,⊔
φ=id,,2 φ(Yσ) DΓ = E6, E7,⊔

φ=id,,2,κ φ(Yσ) DΓ = E8,

(3.17)

the Γ-action descends on Y Γ
σ to give Lagrangian branes LΓ

orb and LΓ
res as before. These branes have

topology R2/(Z/qΓZ) × S1, where qΓ is tabulated in Table 2; notice that the Γ-action leaves the

base P1 unaffected (hence the S1 factor) and that Y Γ
σ is constructed from Lagrangian copies of Yσ

in the orbit of “non-cyclic” generators ι,  and κ, hence the Γ-action factors through a residual

cyclic action on Yσ, giving rise to a cyclic quotient of R2.

DΓ qΓ

Ap−1 p

Dp+2 2p+ 4

E6,8 4

E7 8

(3.18)

Table 2: Orders of the residual cyclic group action on Yσ for DΓ = An, Dn, En.

As for the usual toric case, the Calabi–Yau torus action (3.13) allows then to define a vir-

tual counting theory of stable open maps [BC11, KL02, Bri12] to Y Γ having Dirichlet boundary

6We again omit the subscript from LΓ
res and LΓ

orb whenever the statements apply to both.
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conditions on LΓ via equivariant residues on Mg,n and Mg,n(P1, β) (for Y Γ
res) or Mg,n(BΓ) (for

Y Γ
orb):

〈ϕ1, . . . , ϕn〉Y
Γ,LΓ

g,n,ζ,~d
,

ˆ
[Mg,n(Y Γ,LΓ,ζ,~d)T ]virt

ev∗1ϕ1 ∪ · · · ∪ ev∗nϕn

eT

(
Nvirt
Mg,n(Y Γ,LΓ,ζ,~d)T

) . (3.19)

Here, n is the number of connected components of the boundary of the source curve, ~d = (d1, . . . , dn)

with di ∈ H1(LΓ) describe their winding around the equator, and ζ ∈ H2(Y Γ,LΓ) is the relative

homology class representing the image of the open worldsheet in Y Γ. This can be packaged into

formal generating series:

WGW
g,n (Y Γ,LΓ; t, w) ,

∑
n,ζ,~d

〈Φ(t), . . . ,Φ(t)〉Y
Γ,LΓ

g,n,ζ,~d

n!

n∏
i=1

wdii
di!

. (3.20)

where t are again quantum cohomology parameters accounting for localized primary insertions. On

the resolution, the divisor equation puts (3.15) and (3.20) in the form of the familiar worldsheet

instanton expansion7

FGW
g (Y Γ

res, t) =
∑

β∈H2(Y Γ
res,Z)

〈1〉Y
Γ
res
g,β eβ·t (3.21)

WGW
g,n (Y Γ

res,LΓ
res; t, w) =

∑
β,~d

〈1〉Y
Γ
res,LΓ

res

g,β,~d
eβ·t

n∏
i=1

wdii
di!

. (3.22)

3.5 Geometric engineering and mirror symmetry

When Γ is a cyclic group, Y Γ is a toric variety and it admits a family of mirror spectral curves

(CΓ,ΩΓ) described by Hori–Iqbal–Vafa [HIV00, BGST10]. When Γ is non-abelian, Y Γ is not toric

anymore as the fibers in the ALE fibration only possess the one-dimensional torus action (3.13),

which is the the lift of the scalar action on Γ\C2; as a result the standard toric methods used

to deduce an explicit picture in terms of mirror Calabi–Yau 3-folds (let alone mirror curves)

do not apply here. However, at least in some special limits it has been argued in the physics

literature that the genus zero A-topological string on Y Γ should be governed by special geometry

on a family of curves. Denoting by tB and tj the Kähler parameters of δ, γj ∈ H2(Y Γ
res,Z), it

was proposed in a series of papers [KKL+96, KLM+96, KKV97] that the g = 0 free energy of

the type A–topological string on Y Γ
res should coincide with the prepotential of N = 2, d = 4

pure super Yang–Mills with gauge group GΓ upon identifying the quantum Coulomb moduli

as aj = tj/ε, the holomorphic scale as Λ = e−tB/4/ε, and taking the limit ε → 0. This limit

corresponds to a type IIA compactification on a K3 where we “zoom” around an ADE singularity

by sending the Planck mass to infinity. The overall effect is to decouple the gravitational modes

and give rise at the same time to enhanced ADE gauge symmetry. Further fibering that over a

7The class β ∈ H2(Y Γ) here is retrieved as the image of ζ under the connecting morphism in the relative homology
exact sequence for (Y Γ,LΓ). As the constraint ∂ζ =

∑
i di for the moduli space to be non-empty singles out a unique

pre-image ζ for β, we slightly abuse notation and switch ζ ↔ β to emphasize the dependence of WGW
g,n on the

bulk/boundary moduli.
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P1 yields a pure gauge field theory in d = 4 with eight supercharges and no hypermultiplets as

the effective four-dimensional theory. As a result, in this degenerate situation we do expect a

spectral curve mirror: this is the Seiberg–Witten curve of the geometrically engineered gauge theory.

What about the case of finite ε? When Γ = Z/pZ, i.e. GΓ = Ap−1, it was argued in [LN98] that

uplifting the reasoning above to M-theory compactified on a circle gives rise to exactly the same

type of identification, where now the UV scale 1/ε is identified with the inverse of the radius of the

eleventh dimensional circle. This gives an exact identification of the gauge theory prepotential of

the resulting N = 1, d = 5 field theory with the topological string free energy: the “field theory

limit” of [KKL+96, KLM+96, KKV97] becomes here just the limit from five to four dimensions.

The upshot is that the sought-for mirror of Y Z/pZ should take the form of a d = 5 Seiberg–Witten

curve for the pure gauge theory with group GΓ. When GΓ = Ap−1, this was obtained by Nekrasov

in [Nek98], and the resulting geometry is the spectral curve CSW
Ap−1

of the periodic relativistic Toda

chain with p-particles [Rui90]:

CSW
Ap−1

=
{

(X,Y ) ∈ C∗ × C∗, e−tB/2
(
X +X−1Y p

)
= Y p +

p−1∑
k=1

up−k(−Y )k + 1
}
, (3.23)

equipped with the 1-form:

ΩSW
Ap−1

= log Y
dX

X
. (3.24)

Unsurprisingly, this coincides with the Hori–Iqbal–Vafa mirror of Y Z/pZ. Using brane constructions,

Nekrasov’s result has been generalized to arbitrary classical groups, and in particular G = Dp+2 in

[BIS+97]:

CSW
Dp+2

=
{

(X,Y ) ∈ C∗ ×C∗, e−tB/2
(
X +X−1

)
(Y 2 − 1)2Y p = (−1)p2−2p

p+2∏
j=1

(Y − rj)(Y − r−1
j )
}
,

(3.25)

again with the canonical Seiberg–Witten differential ΩSW
Dp+2

= log Y dX/X.

No results are available in the literature for the exceptional cases away from the 4d limit (see

however [LW98, EWY01] for the E6 and E7 cases when ε→ 0). However, Nekrasov’s original insight

[Nek98] naturally suggests that the resulting geometry should be in all cases the spectral curve of

a relativistic-type deformation of the Lie-algebraic Toda systems relevant for the four-dimensional

limit [MW96]. Fortunately, the relevant technology for the construction of the spectral curves has

recently become available since the work of Williams [Wil13] and Fock–Marshakov [FM97, FM14],

as we now turn to review.

3.6 B-model: the classical affine co-extended ADE Toda chain

A simple, simply-laced Lie group G of rank R, with maximal torus T , can be endowed with a

canonical Drinfeld–Jimbo Poisson structure{
g ⊗, g

}
= −1

2
[r, g ⊗ g], (3.26)
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where

r =
∑
α∈∆+

eα ⊗ eα +
1

2

R∑
i=1

hi ⊗ hi (3.27)

is the canonical solution of the classical Yang–Baxter equation on G [KS97]; here ∆+ is the set of

positive roots, and (hi, eα, eα) is a Chevalley basis of generators of Lie(G). We choose a labeling

of the nodes of the Dynkin diagram of G by i = 1, . . . , R, which leads in turn to a labeling of the

Cartan generators. G has a cell-decomposition

G =
∐

w∈WG×WG

Gw, (3.28)

where WG is the Weyl group of G and the double Bruhat cells Gw are themselves Poisson manifolds.

As T ⊂ G is a trivial Poisson subgroup of G, the Poisson structure (3.26) descends to Poisson

structures on G/T and Gw/T , where the quotient is taken by the adjoint action of the torus. Given

a standard decomposition of a word w ∈ WG ×WG of length l into reflections w = ψi1 ◦ · · · ◦ ψil
with respect to the simple roots αij labeled by the nodes ij of the Dynkin diagram, the map

LGw : (C∗)l −→ Gw/T
{κm}lm=1 −→

∏l
m=1Him(κm)Eim

(3.29)

is a Poisson morphism with respect to the logarithmically constant Poisson structure on (C∗)l

determined by the exchange matrix ε on the corresponding Poisson quiver (see [KM15]):

{κi,κj} = εijκiκj . (3.30)

In (3.29), Hi(κ) = exp(κhi) and Ei = exp(ei) are elements of G obtained by exponentiating the

Chevalley generators. The operator LGw is the Lax matrix of a classical integrable system on Gw/T :

the coefficients of its characteristic polynomial give then a set of independent Ad-invariant (hence

Poisson commuting) functions on Gw/T .

When G = SL(p + 1), the resulting mechanical system is the open relativistic Toda chain

with p sites [Rui90]. As was the case for the Lie-algebraic version of the non-relativistic Toda

system, generalizing this picture to the periodic case relevant for the discussion of the previous

section amounts to extending the construction above to the case of affine Lie groups. It was

proposed in [FM14] that the relevant Poisson submanifolds in this case should be constructed on

the co-extended loop group G# ' Loop(G) o C∗, upon projecting onto elements having trivial

co-extension. In particular, we focus on the double Bruhat cell labeled by the cyclically irreducible

word:

w , 11̄ . . . RR . (3.31)

The corresponding Lax matrix LG
#

w is obtained from LGw by adjoining a spectral parameter-

dependent contribution by the affine root of Loop(G) [KM15], as

LG
#

w (κ1,κ1, . . . ,κR,κR ; X) ,
R∏
i=1

Hi(κi)EiHi(κi)EiE0(X/κ0)E0(X−1) , (3.32)
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with κ0, X ∈ C∗ and the product is done starting from i = 1 on the left and ending at i = R on the

right. Denote by (χωi)
R
i=1 the characters of the fundamental representation with highest weight ωi,

where ωi(αj) = δij . We have a map

u : (C∗)2R × C∗κ0
× C∗X −→ CRu
LG

#

w 7−→ χωi(L
G#,[0]
w ) (3.33)

obtained by taking the constant term L
G#,[0]
w in the Laurent expansion of LG

#

w ∈ G[X,X−1] and

then evaluating its fundamental characters. This is a submersion of (C∗)2R+2 onto a Zariski open

subset UG of CR with the linear coordinates:

ui = χωi(L
G#,[0]
w ) (3.34)

giving a complete set of hamiltonians in involution. Furthermore, let li ∈ N be the coefficients of

the highest positive root in the α-basis for G. Then, upon projecting to trivial co-extension,

u0 , κ1/2
0

R∏
i=1

κlii = κ−1/2
0

R∏
i=1

κ−li
i

(3.35)

gives a Casimir for the Poisson bracket on G#
w . Fix now an arbitrary irreducible representation ρ ∈

Rep(G). The characteristic polynomial of ρ(LG
#

w ) then gives a family of plane curves CToda
G# ⊂ (C∗)2

over ÛG , C∗u0
× UG . The curve above a point u = (u0, . . . , uR) given by

CToda
G#,ρ =

{
(X,Y ) ∈ C∗ × C∗, det

[
Y 1− ρ(LGw(κ;X))

]
= 0
}
. (3.36)

We further equip CToda
G#,ρ

with the 1-form:

ΩToda
G#,ρ = log Y

dX

X
. (3.37)

When G = A1 = SL(2) and ρ = � is the fundamental representation, this is just the holomorphic

Poincaré 1-form on the phase space of the relativistic Toda particle.

4 The two main conjectures

It can easily be shown that, upon specializing (3.36) to (G = Ap, ρ = �) and (G = Dp+2, ρ =

2(p + 2)v), we obtain [Nek98, KM15] that:

CToda
Ap,� = CSW

Ap , and CToda
Dp+2,2(p+2)v

= CSW
Dp+2

(4.1)

after suitably identifying the action variables u = (u0, . . . , uR) in (3.36) with the classical Coulomb

vacuum expectation values in (3.23)-(3.25). This compels us to formulate the two following

conjectures.

Let Γ ⊂ SL(2,C) be an isometry group of S3 isomorphic to a cyclic or binary polyhedral group Γ.

Let DΓ its Dynkin diagram determined by McKay correspondence (Table 1), and GΓ the associated

simply connected, simply-laced Lie group. We specialize ρmin to be an irreducible GΓ-module of
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GΓ ρmin

Ap−1 �, �

D4 8v, 8s,8c

Dp+2 2(p + 2)v, p > 2

E6 27, 27

E7 56

E8 248

Table 3: Minimal irreducible modules for the ADE Lie groups.

minimal dimension, as in the following table (we will comment on non-minimal representation

at the end of this Section). We can thus abbreviate CToda
G#,ρmin

, CToda
G# , and denote the family

ψ : CToda
G# → UG .

The first conjecture states that, upon suitable restriction of the action variables in UGΓ
and

quantum cohomology parameters of Y Γ, the (affine co-extended) Toda spectral curves are a sub-

family of mirror curves of Y Γ that coincides with the LMO spectral curves of SΓ. Here, the only

place where the Seifert invariant σ appears is in the rescaling λ = λ̂/σ of the string coupling

constant. Recall that c = exp(χorbλ/2a).

Conjecture 4.1 (a) There exists a family of curves φ : C̃LMO
DΓ

→ TLMO
DΓ

over a 1-dimensional

base, and a finite surjective map κ : TLMO
DΓ

→ C∗c , such that the germs at c = 1 of the LMO

spectral curve and of κ ◦ φ are canonically isomorphic.

(b) The base TLMO
DΓ

is isomorphic to A1.

(c) We have a commutative diagram:

C̃LMO
DΓ

CToda
G#

Γ

TLMO
DΓ

UGΓ

ϑ
//

φ

��

ψ

��

θ
//

where θ is a finite immersion and ϑ restricted to any fiber is an isomorphism.

(d) There exists a choice t ← t(λ) of quantum cohomology parameters such that the generat-

ing series Fg (resp. Wg,n) computed by the topological recursion to the restricted subfamily

CToda
G#

Γ

|Im θ coincide with the genus-g closed (resp. n-holes, open) Gromov–Witten potential of

the 3-fold geometry (Y Γ,LΓ) described in (3.14), (3.20). Up to symplectic transformations of

(X,Y ) and overall multiplication by a constant, the 1-form to use as input of the recursion is

ΩToda
G# = lnY dX/X restricted to Im θ.

We formulate a second conjecture, extending the previous one to generic action variables/generic

vacua in Chern–Simons theory. Since π1(SΓ) = Γ, the set of critical points of the Chern–Simons
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action is:

VΓ,N ,
{

flat U(N) connections on SΓ modulo gauge
}
' Hom(Γ,U(N))/U(N) . (4.2)

and we let VΓ = limN→∞VΓ,N be its direct limit with respect to the composition of morphisms

given by the embedding U(N) ↪→ U(N + 1). By the McKay correspondence [McK80], irreducible

representations of Γ are labeled by the nodes of the extended Dynkin diagram D̃Γ. The affine node

labels the trivial representation, and for i ≥ 1, these dimensions coincide with the components of

the highest root of GΓ in the basis of simple roots. We can then describe:

VΓ = NR+1, VΓ,N =

{
(N0, . . . , NR) ∈ NR+1, N0 +

r∑
i=1

DiNi = N

}
. (4.3)

When N → ∞, we consider a background [A]t parametrized by ti , Ni~ for i ∈ J0, RK, and

in particular the rank is encoded in λ̂ = t0 = N~. We also define ci = exp(χorbti/2a). Let

now Fg(SΓ, t) and Wg,n(SΓ, t; ~x) be the perturbative free energies and correlators of U(N) Chern–

Simons theory expanded around the background [A]t, which is defined at least formally as a

series in t by the ribbon graph expansion of Section 3.1. While it is not clear to us if this can

be given a matrix model-like expression beyond the A-series, e.g. by collecting certain terms

in the exact Chern–Simons partition functions derived in [Mar04, BT13], the spectral curve in

the background [A]t can nevertheless be defined as in (2.9) from W0,1, and it yields a family of

curves φ0 : CCS
DΓ
−→ (CR+1

t )formal where the notation for the base means that it is a priori a

formal neighborhood of 0 in CR+1. In light of the previous remark, we are unable to propose an

independent computation for this Chern–Simons spectral curve in a general background, but we

speculate:

Conjecture 4.2 (a) There exists a family of curves φ : C̃CS
DΓ
→ T over an (R + 1)-dimensional

base, and a finite surjective map κ : TDΓ
→
∏r
i=0 C∗ci, such that φ0 and the germ at c = 1 (i.e.

t = 0) of κ ◦ φ are canonically isomorphic.

(b) We have a commutative diagram:

C̃CS
DΓ

CToda
G#

Γ

TDΓ
UGΓ

ϑ
//

φ

��

ψ

��

θ
//

where θ is a finite map and ϑ is a fiberwise isomorphism.

(c) There exists a section t̃ (the orbifold mirror map) of θ such that the topological recursion applied

to CToda
G#

Γ

and the 1-form lnY dX/X (maybe up to rescaling by a constant) computes, above the

point u, the free energy Fg(SΓ, t̃(u)) and the correlators Wg,n(SΓ, t̃(u); ~x), with x = X1/a.

(d) There exists an affine automorphism `Γ ∈ CrGΓ o End(CrGΓ ) such that

FCS
g (SΓ, t) = FGW

g (Y Γ
orb, `Γ(t)), WCS

g,h(SΓ, t, ~x) = WGW
g,n (Y Γ

orb,LΓ
orb, `Γ(t); ~x). (4.4)
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Furthermore, there exists a unique change of normalization of the periods of WCS
0,2 (call it W̃CS

0,2 )

such that the ensuing topological recursion on C̃CS
DΓ

gives generating functions F̃CS
g , W̃CS

g,n with

F̃CS
g (SΓ, t) = FGW

g (Y Γ
res, `Γ(t)), W̃CS

g,n(SΓ, t, ~x) = WGW
g,n (Y Γ

res,LΓ
res, `Γ(t); ~x). (4.5)

Remark 4.1 (On minimal orbits and minimal irreps). The construction of the Toda spectral curve involves
the choice of a minimal-dimensional representation ρmin of GΓ; picking up a different representation leads
to a curve, which cannot be simply reconstructed from the minimal one, but that should however lead to
the same free energies [MW96]. On the other hand, we will see in Section 5.1 that the construction of the
LMO spectral curve likewise depends on the choice of a vector v ∈ Za with finite orbit under a monodromy
group W′ = Weyl(D′Γ) for a certain D′Γ ⊆ DΓ: different choices of v contain equivalent information which is
just repackaged differently, though in a non-trivial way, since the degree of the curves is related to the size
of the orbit of v. One may wonder if there is a set-theoretic injection of the set of finite monodromy orbits
into the Rep(GΓ), and whether the higher degree curves on the LMO side should be obtained from (suitable
restrictions of) non-minimal Toda spectral curves.

Remark 4.2 (Central extensions of Γ). A finite isometry subgroup Γ̃ ⊂ SO(4) of S3 is generically a non-
trivial central extension of one of the finite groups Γ of Table 1 (see Appendix A for more details). The
reasoning of Section 3.4 would lead us to consider now ALE fibrations over the weighted projective line, as
in this case the Γ̃-action on the resolved conifold acts effectively on the base P1. It was shown by one of the
authors in [BGST10] for the A-series that the geometric transition argument cannot be applied verbatim in
this setting. We leave this question to future investigations.

Remark 4.3 (Γ-action and orientifolds). In our brane construction of Section 3.4, if we instead chose
σ(a11) = a22, σ(a12) = −a21 as our anti-holomorphic involution, we would have that Yσ = ∅: this would
correspond to the orientifold of the resolved conifold considered by Sinha and Vafa in [SV00], and in turn
to Chern–Simons theory on S3 with SO/Sp gauge group at large N . In contrast with the discussion of
Section 3.4, it is straightforward to check that in this case the Γ-action commutes with the real involution
for all finite Γ ⊂ SU(2). In particular, open and closed real versions of the Gromov–Witten potentials (3.21)
and (3.22) can be defined by unoriented localization, as in [BFM05, DFM03]. On the other hand, SO/Sp
Chern-Simons invariants of SΓ can also be computed from a matrix model analysis and the topological
recursion [BE14, Section 8]: the spectral curve and two-point function is the same as for SU up to a
renormalization λ → λ/2, but the initial data is enriched by an (explicit) 1-point genus 1/2 function. It is
possible to formulate the analogue of Conjectures 4.1-4.2 in this context, but we will not venture in collecting
supporting evidence here.

5 Computations I: the LMO curves

5.1 LMO spectral curves

The LMO spectral curve is characterized as a solution of a maximization problem, which can be

presented in several ways. In terms of the large N spectral density %(φ) for the φi’s, we have the

saddle point equation:

 
%(φ′)

{
(2− r) ln sinh[(φ− φ′)/2] +

r∑
m=1

ln sinh[(φ− φ′)/2am]
}
≤ φ2

2λ
, (5.1)

with equality on the support of %, and % ≥ 0 with total mass
´
%(φ)dφ = 1. When χorb > 0, one

can show that the solution of this problem is unique, the support is a segment S, and %(φ) is of

the form 1S(φ)
√
Q(φ) with Q a positive, real-analytic function vanishing at the endpoints of S.

Given the symmetry {φi → −φi, 1 ≤ i ≤ N} of the model (2.8), S must be symmetric around 0.
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Its determination is part of the problem. The usual method is to solve the linear equation (5.1) for

a fixed arbitrary segment, then list the possible segments compatible with the other constraints

(total mass 1, vanishing of the % at the edges). This list is usually finite, and if there is not already

a unique solution, the correct one is singled out by the positivity constraint % ≥ 0. However, it is

by no means easy to solve explicitly singular integral equations of the form (5.1) on a segment.

The linear equation (5.1) can be rewritten in several equivalent forms. In terms of the resolvent:

W (x) ,
ˆ
x %(φ)dφ

x− eφ/a
, %(φ) ,

W (eφ/a − i0)−W (eφ/a + i0)

2iπ eφ/a
, (5.2)

it becomes, for all x ∈ S:

W (x+i0)+W (x− i0)+(2−r)
a−1∑
`=1

W (ζ`ax)+
r∑

m=1

a/am−1∑
`m=1

W (ζ`ma/amx) = (a2/λ) lnx+(a/2)χorb (5.3)

where ζk is a primitive k-th root of unity. The symmetry {φi → −φi 1 ≤ i ≤ N} implies:

W (x) +W (1/x) = 1 . (5.4)

We can get rid of the right-hand side and of log-singularities by defining:

Y(x) , −cx exp
[
(χorbλ/a)W (x)

]
, c , exp(χorbλ/2a) . (5.5)

By construction, Y(x) is a holomorphic function on C \ S, with behavior

Y(x) ∼
x→0
−cx, Y(x) ∼

x→∞
−c−1x (5.6)

and satisfying:

∀x ∈ S, Y(x+ i0)Y(x− i0)
[ a−1∏
`=1

Y(ζ`ax)
]2−r

·
r∏

m=1

[ a/am−1∏
`m=1

Y(ζ`ma/am)
]

= 1 . (5.7)

The symmetry (5.4) becomes:

Y(x)Y(1/x) = 1 . (5.8)

Equation (5.6) can be seen as a description of generators for the monodromy group G of the analytic

function Y(x), and (5.6) are constraints imposed on the singularities of the solution away from the

branchcuts (here meromorphic singularities at 0 and ∞). [BE14] presented a general strategy to

solve a class of monodromy equations including (5.7). It leads at least to a partially explicit solution

when certain finite subgroups of G are identified, as one can then express the solution in terms

of an algebraic function. Among the Seifert matrix model, the ADE cases turned out to be very

special, because they are the ones that can be obtained from algebraic curves.

Theorem 5.1 [BE14] Consider the equation (5.7) with (a1, . . . , ar) arbitrary positive integers and

χorb 6= 0. G is infinite, except in the case (2, 2, 2p′) where G is the symmetric group in 2p′ + 1

elements. Besides, the two following points are equivalent:
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(i) χorb > 0.

(ii) There exists a non-zero v ∈ Za such that

Yv(x) ,
a−1∏
j=0

[Y(ζjax)]vj (5.9)

has a finite monodromy group. So, there is a polynomial Pv in two variables, depending on

λ, such that Pv(x,Yv(x)) = 0.

While Y(x) has a cut on S only, Yv(x) has a branchcut on Sj = ζ−ja S whenever vj 6= 0. Knowing

Yv(x) is enough to retrieve W (x) since:

vj (W (ζjax)− 1) =
a

χorbλ

˛
Sj

dξ

2iπ

ln
(
Yv(ξ)/(−cξ)

)
x− ξ

. (5.10)

A simple computation from (5.7) shows that there exists linear involutions Tj ∈ GL(a,Z) describing

the monodromy of these new functions:

∀v ∈ Za, ∀x ∈ Sj , Yv(x+ i0) = YTj(v)(x− i0) . (5.11)

The monodromy group G is isomorphic to the linear subgroup generated by the Tj for

j = 0, . . . , (a− 1). Lemma 5.1 is then an answer to the question: does there exist a non-zero vector

v with finite G-orbit? The answer is positive only for the ADE cases, and we can actually be more

precise: there exists a decomposition in two lattices Za = E0 ⊕E, where E is stable under G, and

the group generated by Tj |E for j = 0, . . . , (a − 1) is conjugate to the Weyl group W′ of a finite

root system. The latter are also classified by Dynkin diagrams D′ of ADE type, and it turns out

that D′ is always a sub-diagram of the Dynkin diagram D attached to the Seifert geometry (see

Table 2), with equality only in the E8 case and certain lens spaces. Then, one can show that

v has finite G-orbit iff v ∈ E. In that case, describing the monodromy of Yv(x) reduces to the

well-known classification of the orbits of the Weyl group W′ [GP00], which are in correspondence

with the parabolic subgroups of W′, themselves described as the reflection groups attached to the

(possibly disconnected) sub-diagrams D′′ strictly included in D′.

5.2 Definition of PLMO
D

For computational purposes, it is natural to choose v in an orbit of minimal size. If v lies in a

minimal orbit, all the other minimal orbits are obtained – up to rescaling – by shifting with

ε : (vj)j 7→ (vj+1 (mod a))j . (5.12)

This shift amounts to replacing x with ζ−1
a x. Minimal orbits are given in Section 5.4 for D cases,

in Section 5.5 for E6 and in Appendices E.1 and F.1 for E7 and E8. They happen to be stable

under some power of the shift εa/a
′
, i.e. Pv(x, y) is a polynomial in xa

′
, for some a′ dividing a.

• In the Seifert geometry D = D2p′+2, v and ε[v] generated two disjoint minimal orbits, and

Pv(x, y) is a actually a polynomial in xp
′
. Then:

PLMO
D2p′+2

(X,Y ) , Pv(x, Y )Pv(−x, Y ), X = x2p′ . (5.13)
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• For D = D2p′+3, there is a unique minimal orbit (all the shifts are in the same orbit), so

Pv(x, Y ) is a polynomial in X = x4p′ that we denote PLMO
D2p′+3

(X,Y ).

• For D = E6, the triality of D′ = D4 is responsible for the existence of 3 minimal orbits,

generated by v, ε[v] and ε2[v], and Pv(x, y) is a polynomial in x2. Then, we introduce the

polynomial:

PLMO
E6

(X,Y ) , Pv(x, Y )Pv(ζ3x, Y )Pv(ζ−1
3 x, Y ), X = x6. (5.14)

• Similarly, for D = E7, the duality of D′ = E6 results in the existence of 2 minimal or-

bits generated by v and ε[v], and Pv(x, Y ) is a polynomial in x6. Then, we introduce the

polynomial:

PLMO
E7

(X,Y ) , Pv(−x, Y )Pv(x, Y ), X = x12. (5.15)

• For D = E8, there is a unique minimal orbit, so Pv(x, Y ) is a polynomial in X = xa = x30,

that we denote PLMO
E8

(X,Y ).

In all cases, we have set X = xa, and our definition for the LMO spectral curve is:

CLMO
D =

{
(X,Y ) ∈ C∗ × C∗, PLMO

D (X,Y ) = 0
}
. (5.16)

Equivalently, the ideal PLMO
D (X,Y ) = 0 is obtained by elimination of x in the equations

{Pv(x, Y ) = 0, X = xa}. Considering PLMO rather than Pv is necessary for comparison with the

Toda spectral curves, but of course it does not contain more information than Pv.

The symmetry (5.8) implies the palindromic symmetry:

PLMO
D (X,Y ) = C X•Y • PLMO

D (1/X, 1/Y ) , (5.17)

where • are the degrees of PLMO
D in the variables X and Y , given in Table 2. CLMO

D is a family of

spectral curve with parameter λ, equipped with the 1-form:

Ω̃ =
a

χorbλ
ln(−Y/cX)

dX

X
=

a

χorbλ
lnY

dX

X
+ df(X) . (5.18)

Adding the differential of a rational function of X does not change the free energies and correlators

computed by the topological recursion, so we can equally choose the 1-form:

Ω =
a

χorbλ
lnY

dX

X

Besides, the only effect of the rescaling by a/χorbλ is that Wg,n are multiplied by (χorbλ/a)2g−2+n.

5.3 The computation in practice

Since the details of the orbit analysis were presented in [BE14], we focus here on the next step, i.e.

the identification of the polynomial equation for the spectral curve. Denote by (w[i])i∈I the list of

vectors in a chosen minimal orbit generated by v, and write

Pv(x,Yv(x)) = C
∏
i∈I

(y − Yw[i](x)) = 0 (5.19)
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fiber orders a χorb D D′ degX PLMO
D degY PLMO

D

(p) p 1 + 1/p Ap Ap 1 p

(2, 2, 2p′) 2p′ 1/2p′ D2p′+2 A2p′ 2 2 · (2p′ + 1)

(2, 2, 2p′ + 1) 2(2p′ + 1) 1/(2p′ + 1) D2p′+3 D2p′+2 2 4(p′ + 1)

(2, 3, 3) 6 1/6 E6 D4 4 3 · 8

(2, 3, 4) 12 1/12 E7 E6 6 2 · 27

(2, 3, 5) 30 1/30 E8 E8 18 240

Figure 2: D = Seifert geometry; D′ = monodromy group of the spectral curve. k · d in the last
column means that the reduced polynomial Pv has degree d in y, and PLMO

D contains k factors of
Pv differing by some rotations of x.

for the equation of the spectral curve; the constant C will be fixed later on. Let Cv be the compact

Riemann surface which is a smooth model for
{

(x, y) ∈ C∗ × C∗ : Pv(x, y) = 0
}

. It comes with a

branched covering x : Cv → P1, and y defines a meromorphic function on Cv whose value in the

i-th sheet is y(i)(x) = Yw[i](x).

Step A

From (5.6), the functions y(i)(x)

x→ 0 , y(i)(x) ∼ (−cx)n0(w[i]) ζn1(w[i])
a , (5.20)

x→∞ , y(i)(x) ∼ (−x/c)n0(w[i]) ζn1(w[i])
a , (5.21)

with:

n0(w) =
a−1∑
j=0

wj , n1(v) =
a−1∑
j=0

jwj . (5.22)

This fixes the coefficients on the boundary of the Newton polygon of Pv up to the overall multi-

plicative constant C. (5.20)-(5.21) tell us that the slopes are (±1, n0(w[i])), therefore there exists a

single monomial of degree 0 in y. We can fix C by setting this coefficient to 1. As we explained in

the last paragraph, the symmetries observed by explicitly computing the orbits imply that Pv(x, y)

is actually a polynomial in xa
′

with a′ given in Figure 4.

In the D geometries, at this stage there is a shortcut to the final solution, reviewed in Section 5.4.

In the exceptional cases, we continue and proceed by necessary conditions.

Step B

In the solution we look for, y(i)(x) derives from a single function W (x) such that y(i)(x) = Yw[i](x)

given by formula (5.9). If we write the Taylor expansion:

x→ 0,
χorbλ

a
W (x) =

∑
k≥1

µk x
k+1 , (5.23)
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we deduce that:

x→ 0, y(i)(x) = (−cx)n0(w[i])ζn1(w[i])
a exp

(∑
k≥1

µk−1 ŵ[i]k mod a x
k
)
, (5.24)

where we introduced the discrete Fourier transform:

ŵk ,
a−1∑
j=0

ζjka wj . (5.25)

It turns out that many Fourier modes k ∈ Za are zero for all vectors in the orbit of v. The set of

non-zero Fourier modes KD =
⋃
i∈I{k ∈ J0, a− 1K, w[i]k 6= 0

}
is:

• KE6 = {1, 2, 3, 5}.

• KE7 = {3, 4, 6, 8, 9, 11}.

• KE8 = {1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 14, 16, 17, 19, 21, 22, 23, 25, 26, 27, 28, 29}.

Only the µk−1’s with k ∈ K will appear in the Puiseux expansion of y. Then, the sought-for

polynomial takes the form:

Pv(x, y) = B(x)
∏
i∈I

(y − y(i)(x)) (5.26)

where the monomial prefactor B(x) is fixed by matching with the coefficient 1 of the monomial

x•y0 in Pv. By expanding the right-hand side of (5.26) when x → 0 using (5.24), we can express

the coefficients of Pv in terms of a relatively small number of µk with k ∈ KD. Since we already

know the Newton polygon and the symmetries of Pv, we can impose those relations at the level of

their expression in terms of µk’s, which gives relations between the µk’s and we can eliminate some

of them. Doing so, we can express all coefficients of Pv only in terms of c and:

• for E6, µ1 and µ2.

• for E7, µ2, µ3, µ5 and µ7.

For E8, we could not complete this computation: it requires expanding a product of 240 factors to

order o(x540), and even if this would be achieved, it is still a formidable task to eliminate µk’s.

Step C

The ramification properties of the spectral curve we seek are easily described a priori. Call d =

degy Pv the size of the orbits, i.e. the degree of x : Cv → P1, and d′ = degx Pv be the degree of

y : Cv → P1. By construction, the number of branchcuts of the function y(i)(x) in the i-th sheet is

the number of non-zero components in w[i], let us call it b[i]. The ramification points of x : Cv → P1

are simple and correspond to the endpoint of the branchcuts, and since each branchcut is shared

by two sheets, the total number of ramification points is
∑

i∈I b[i]. Riemann-Hurwitz formula then

gives the genus of Σ:

genus(Cv) = 1− d+
1

2

(∑
i∈I

b[i]
)
. (5.27)
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For E6, we find that Cv has genus 5; for E7, it has genus 46, and for E8, it has genus 1471. We

remark that the genus is much lower than the genus of a generic curve with same Newton polygon

– which is the number of interior points in the Newton polygon – even if we take into account the

symmetries. This means that the plane curve Pv(x, y) = 0 must be singular. This puts a number

of algebraic constraints on the coefficients inside the Newton polygon of Pv. Taking into account

symmetries, we can put an upper bound on the number of independent such constraints. From

our experience with the D and E6 case, we expect that implementing these constraints gives only

finitely many solutions for the sequence of µk. The definition in (5.23) implies that µk = O(λ) for

all k ≥ 1 when λ → 0 (i.e. c → 1), and the µk’s must have a power series expansion in λ with

rational coefficients. We expect that this extra piece of information singles out a unique solution

(among the finitely many) to the algebraic constraints.

For E6 this program is completed in Section 5.5. For E7, performing elimination in these

algebraic constraints already seem computationally hopeless, and we could not even solve them

perturbatively in λ → 0. Therefore, our best result is the expression of Pv in terms of the µ2, µ3,

µ5 and µ7, which should be considered as unknown (algebraic) functions of c. This expression is

given in Appendix E.2. For E8, as we have seen, our best result is the Newton polygon and its

boundary coefficients, given in Appendix F.2. Nonetheless, we will be able to compute the exact

spectral curves at c = 1 in all cases (see Section 6.7).

D (geometry) D2p′+2 D2p′+3 E6 E7 E8

d = degy Pv 2p′ + 1 4(p′ + 1) 8 27 240

d′ = degx Pv 4p′ 4(2p′ + 1) 8 36 540

a′ p′ 2p′ + 1 2 6 30

Table 4: Properties of Pv(x, y).

Let us turn to the complete and explicit results that can be obtained for D and E6.

5.4 Dp+2 geometries

In that case, it is possible to guess a rational parametrization that has all the required properties,

and thus gives the correct solution bypassing Steps A-B.

p even

v = e0 , w[0] is a minimal vector, and the other vectors in the orbit are w[`] = (−1)`e` for

` ∈ J1, p− 1K, and w[p] =
∑p−1

l=0 (−1)l+1el. We thus get:

∼ y(`) y(p)

x→ 0 ζ`p(cx)(−1)` −1

x→∞ ζ`p(x/c)
(−1)` −1

(5.28)
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The symmetries of the problem suggest to look for a parametrization of Pv(x, Y ) = 0 of the form:
x(z) = z

( zp − κ2

κ2zp − 1

)
Y (z) = −(zp/2 − κ)(κzp/2 + 1)

(κzp/2 − 1)(zp/2 + κ)

(5.29)

where we impose that z → 0 correspond to x→ 0 in the sheet of w[p], and z → ζ`aκ
2/p in the sheet

of w[`] for ` ∈ J0, p− 1K. Requiring (5.28), we must have:

2κ1+1/p

1 + κ2
= 1/c2 = e−λ/4p

2
(5.30)

It can be checked that this satisfies all the desired properties of the spectral curve (including the

positivity constraints), and by uniqueness, this is the solution we looked for. We can also write

this parametrization with ζ = zp/2 and X = xa = xp:
X(ζ) = ζ2

( ζ2 − κ2

κ2ζ2 − 1

)p
Y (ζ) = −(ζ − κ)(κζ + 1)

(κζ − 1)(ζ + κ)

(5.31)

which is now a parametrization of CLMO
Dp+2

, for p even.

p odd

The minimal vector is v , w[0] = e0 + ep, and it generates the orbit consisting in w[`] = e` + ep+`
and w[p+ `] = −w[`] for 1 ≤ ` ≤ p− 1, and w[2p] =

∑2p−1
`=0 (−1)`e` and w[2p+ 1] = −w[2p].

∼ y(`) y(p+`) y(2p) y(2p+1)

x→ 0 −ζ`2p(cx)2 −ζ−`2p (cx)−2 −1 −1

x→∞ −ζ`2p(x/c)2 −ζ−`2p (x/c)2 −1 −1

(5.32)

A similar guess leads to identification of the solution of Pv(x, Y ) = 0 in parametric form:
x2(z) = z−2 z

2pκ2 − 1

z2p − κ2

Y (z) = −(zp − κ)(κzp + 1)

(zpκ− 1)(zp + κ)

(5.33)

Matching with the required behavior for x→ 0 or ∞ imposes:

2κ1+1/p

1 + κ2
= 1/c = e−λ/4p

2
, (5.34)

which defines κ as a function of λ identically to (5.30). The branch has to be chosen so that:

λ ∈ [0,+∞) ←→ κ ∈ [1, 0). (5.35)
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We can also write in terms of ζ = zp and X = xa = x2p:
X(ζ) = ζ−2

(ζ2κ2 − 1

ζ2 − κ2

)p
Y (ζ) = −(ζ − κ)(κζ + 1)

(ζκ− 1)(ζ + κ)

(5.36)

which is now a parametrization of CLMO
Dp+2

, for p odd.

Polynomial equation

If we eliminate the variable ζ and keep only X = xa (which is equal to xp is p is even and x2p if p

is odd) we obtain the polynomial equation PLMO
Dp+2

(X,Y ) = 0 for the spectral curve. We can factor

a monomial in PLMO
Dp+2

(X,Y ) to put it in the form:

(−1)p+1 e−λ/2p(X2 + 1)(Y 2 + 1) +XY (κ2 + 1)−(2p+2)Qp
[
(Y + 1/Y )(κ2 + 1)2

]
= 0, (5.37)

where:
2κ1+1/p

κ2 + 1
= e−λ/4p

2
. (5.38)

and Qp(η) = ηp+1 + · · · is a polynomial in η and κ2, which does not have a uniform expression for

all p’s. It is given for p ≤ 5 in Appendix C. These results were obtained in [BE14], where A. Weiße

also checked that the solutions (5.29) and (5.33) match the results of Monte-Carlo simulations of

the matrix integral (2.8) [BE14, Appendix].

5.5 E6 geometry

After Step A, we arrive at a curve Pv(x, y) =
∑4

j=0

∑8
k=0 Πj,k x

2j yk depending on the yet unknown

parameters µ1 and µ2, with c = exp(λ/72).

Πj,k j = 0 1 2 3 4

k = 8 ∗

7 ∗ ∗ ∗

6 ∗ ∗ ∗

5 ∗ ∗ ∗ ∗ ∗

4 −c−4 −2c−2 − 4c−4µ1 4(−1 + c−4 + 4c−2µ1 + 8c−4µ2
1 + 3c−3µ2) ∗ ∗

3 −c−4 2c−4µ1 −2 + c−4 − 6c−2µ1 − 4c−4µ2
1 ∗ ∗

2 0 2 + 12c−2µ1 − 6c−3µ2 ∗

1 c−2 1 + 2c−2µ1 ∗

0 1
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and the * are the coefficients obtained by central symmetry, i.e Πj,k = Πj,8−k = Π4−j,k. These

expressions have been found in [BE14], and now we present a new computation.

Given the symmetry, let us define ξ = x2 + 1/x2 and η = y + 1/y, and eliminate x and y from

the equation Pv(x, y) = 0. We obtain an equation Q(ξ, η) = 0 defining a curve of genus 2. A

birational transformation (ξ, η) 7→ (s, t) brings in in Weierstraß form s2 = R(t) with a polynomial

of degree 5:

R(t) = 12(1− c4 − 4c2µ1 − 4µ2
1 + 8cµ2)t5 + 3(−4 + c4 + 4c2µ1 + 4µ2

1 − 40cµ2)t4

+24(c3 + 2cµ1 + µ2)t3 − 2c2(11c2 + µ2)t2 + 8c4t− c4 . (5.39)

Since we are looking for a singular curve, µk’s should be such that the discriminant of R vanishes.

This discriminant is a product of two factors ∆1 and ∆2 given in Appendix D.1, so that gives us

two equations for the two unknowns µ1 and µ2, that can be solved explicitly. Among the finitely

many solutions for (µ1, µ2), there is a unique branch in which µ1 → 0 when c → 1: that must be

our solution. Then, µ2 is an explicit rational function of µ1 that we do not reproduce here, and µ1

itself is the branch of the solution of the degree 8 equation:

256µ8
1 + 4864c2µ7

1 + (−1024 + 35776c4)µ6
1 + (62112c2 + 125568c6)µ5

1

+(1536− 81600c4 + 206064c8)µ4
1 + (4544c2 − 162576c6 + 128304c10)µ3

1

+(−1024 + 55116c4 − 78192c8 + 26244c12)µ2
1 + (−5984c2 + 10332c6 − 4374c10)µ1

+256− 499c4 + 243c8 = 0 ,

which behaves like µ1 = −2(c − 1) + O(c − 1)2 when c → 1. As a matter of fact, the solution of

(5.40) has a rational uniformization. We choose the uniformizing parameter κ such that κ → 0

corresponds to c→ 1, and our final result reads:

exp(λ/36) = c2 = − (κ− 6)4(κ− 2)4

16(κ− 3)(κ2 − 6κ+ 12)(κ2 − 6κ+ 6)2
, (5.40)

µ1 =
κ(κ− 4)(κ2 − 6κ+ 12)(κ2 − 12)

32(κ− 3)(κ2 − 6κ+ 6)
,

c · µ2 = −κ(κ− 2)2(κ− 3)(κ− 4)(κ− 6)2(κ4 − 11κ3 + 49κ2 − 108κ+ 108)

(κ2 − 6κ+ 6)4(κ2 − 6κ+ 12)2
.

With these values, the spectral curve match perfectly the one computed numerically from Monte-

Carlo simulations of the matrix model (2.8) by A. Weisse (Figure 3).

Remarkably, the smooth model of the curve Pv(x, y) = 0 seen in variables (x2, y) has genus 1,

i.e. it defines an elliptic fibration over the base parameter κ ∈ P1, with discriminant:

∆(κ) = 280 ·34 ·κ(κ−2)(κ−3)16(κ−4)(κ−6)(κ2−8κ+18)(κ2−4κ+6)(κ2−6κ+6)14(κ2−6κ+12)38.

Singular fibers occur at the critical values c2 ∈ {0,±1, 7ε1/16 + iε2
√

2/4,∞} with εi = ±1 inde-

pendently. We have not found any striking feature in their Kodaira types, with are either I1, I2 or

I16.

5.6 The λ→ 0 limit

This regime corresponds to c → 1, where the monodromy along the fibers of the flat connection

tends to be deterministically equal to identity under the Chern–Simons measure. This implies that
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Figure 3: (a1, a2, a3) = (2, 3, 3). The dots display the Monte-Carlo simulation of the eigenvalue
distribution for N = 200 in the model (2.8), with various choices of λ given in the legend. The plain
curves display the theoretical computation ensuing from the expression of Pv(x, y) = 0 together
with (5.40).

W (x) ∈ O(1), and hence µk → 0 since it carries a prefactor of λ. As a result the spectral curve

becomes easy to compute:

Pv(x, y)|c=1 = C(x)
∏
i∈I

(
y − (−x)n0(w[i])ζn1(w[i])

a

)
, (5.41)

i.e. Pv(x, y)|c=1 is directly determined by the slope polynomials of Pv, with no extra data. The

description of the orbits leads to the following results.

Dp+2, p even

Pv(x, y)|c=1 = (−1)p/2+1(y + 1) · ((−x)p/2yp/2 + 1)(yp/2 − (−x)p/2) . (5.42)

Dp+2, p odd

Pv(x, y)|c=1 = (y + 1)2
p−1∏
`=0

(y + ζ`2px
2)(yx2 + ζ−`2p )

= (y + 1)2 · (y + x2)(yx2 + 1) ·
( p−1∑
k=0

(−1)k yp−1−kxk
)( p−1∑

k=0

(−1)k(xy)k
)
.(5.43)
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E6 geometry

Pv(x, y)|c=1 = (1 + y + y2) · (x+ y)(1 + xy) · (y2 − x)(y2x− 1) . (5.44)

E7 geometry

Pv(x, y)|c=1 = −(1+y)(1+y2)2 ·(y2−x6)(y2x6 +1) ·(x6 +y3)(x6y3−1) ·(y6 +x6)(x6y6−1) . (5.45)

Notice that the symmetry of the orbits implies P(x, y) = 0 ⇔ P(ζ12x, 1/y) = 0, explaining how

the factors come in pairs.

E8 geometry

Pv(x, y)|c=1 = (y + 1)2(y3 − 1)3(y5 − 1)5 · (y30 − x30)(y30x30 − 1) · (y15 + x30)2(y15x30 + 1)2

·(y10 − x30)2(y10x30 − 1)2 · (y15 − x60)(y15x60 − 1) · (y6 − x30)(y6x30 − 1)
·(y5 + x30)(y5x30 + 1) .

(5.46)

6 Computations II: the Toda curves

6.1 The computation in practice

Let us now construct explicitly the B-model geometries CToda
GΓ

that are relevant for Conjectures 4.1

and 4.2. Recall that we take ρmin a minimal representation given in Table 3, and we denote

dmin = dim ρmin. The characteristic polynomial of the Lax operator (3.29) for the simple Lie group

G,

PG(Y ) , det
[
Y 1− ρmin(LGw)

]
=

dmin∑
k=0

(−1)k Y dmin−k χΛkρ(L
G
w), (6.1)

can be regarded as a map

PG : Gw −→ C[u, Y ] (6.2)

that factors through a map Gw −→ UG upon evaluation of the antisymmetric characters χΛkρmin
∈

Z[χω1 , . . . , χωR ] in the representation ring Rep(G). Lifting this to the co-extended affine situation

amounts to turning on a spectral parameter as in (3.32). Concretely, we are now looking at the

loop space with a map:

ũ : Loop(UG) −→ C[X±1], ui(X) , χωi(L
G#

w ) , (6.3)

whose constant term is given by [X0] ũi(X) = ui. The (affine co-extended) Toda spectral curve

(3.36) can then be computed in two steps, for each (G, ρmin):

Step A1′ compute the decomposition of the exterior characters χΛkρmin
as polynomials in the

fundamental characters χωi ;

Step A2′ compute from (3.32) the Casimir function u0 in (3.35) and the dependence of

ũ(u0, . . . , uR ;X) = χωi [ρmin(LG
#

w )] on the Hamiltonians ui and the spectral parameter X.
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Evaluating the result of Step A1′ on a generic group element g ∈ G expresses the characteristic

polynomial of ρmin(g) as

det
[
Y 1− ρmin(g)

]
=

dmin∑
k=0

(−1)k Y dmin−k χΛkρmin
(g),

=

dmin∑
k=0

Y kpGk (g ; u1, . . . , uR) , (6.4)

for some universal8 polynomials pGk ∈ Z[u1, . . . , uR], while Step A2′ amounts to plugging in the

expression (3.32) of the Lax matrix and then expand the above in the spectral parameter,

PToda
G# (X,Y ;u0, . . . , uR) , det

[
Y 1− ρ(LG

#

w )
]

=

dmin∑
k=0

Y kpGk
[
ũ1(X), . . . , ũR(X)

]
=

dmin∑
k=0

d′min∑
j=−d′min

Y kXjpGk,j
[
u0, u1, . . . , uR

]
. (6.5)

Here pGk,j denotes the result of the expansion in the spectral parameter X and

d′min , maxk,σ=± degXσ pGk . (6.6)

The vanishing locus of PToda
G# ∈ C[u1, . . . , uR;X±1, Y ] in C∗X × C∗Y then returns (3.36).

Once this is done, the naive expectation would be that, in light of the discussion of the previous

section, all is left to do to prove Point (a) in Conjecture 4.1 is just to find a suitable restriction

ui ← ui(λ) of the Toda action variables such that

Xd′minPToda
G# (X,Y ;u(λ)) = PG,v(X,Y ;λ), (6.7)

where PG,v(X,Y ;λ) = 0 is the spectral curve found in Theorem 5.1, that we call here the “naive

LMO spectral curve”. However, this is in general too much to ask.

First off, a rapid inspection of Tables 3 and 4 reveals that the Y -degrees in (6.7) will disagree in

general. But more importantly, the qualitative analysis of the naive LMO spectral curve Cv given

in Section 5.1 reveals that (a) its Galois group W′ = Weyl(D′) = Weyl(G′) is a subgroup of the

Galois group W = Weyl(G) = Weyl(D) of the Toda spectral curve (6.5) with generic parameters u,

and (b) the branchcuts of x = X1/a : Cv → P1 on the irreducible components of the LMO spectral

curve must necessarily be segments obtained from x ∈ [1/γ, γ] by rotations of angle multiple to

2π/a, and the branching data of this curve is completely determined by the analysis of orbits of

W′ in Section 5.3.

This actually suggests a way out of the conundrum: the sought-for subfamily of Toda curves

should arise in the sub-locus of the parameter space UG where the monodromy breaking D → D′ in

8These polynomials depend implicitly on ρmin, but we dropped the subscript ρmin for the sake of readability.
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Table 2 is enforced. The simplest way to achieve this is to consider an embedding of the subgroup

ι : G′ ↪→ G, and the induced embedding ι : T ′ ↪→ T of the maximal torus of G′ into that of G.

The restriction to ι(T ′) is cut out by homogeneous linear constraints on the Cartan subalgebra of

Lie(G), and its image under the character map χω yields an affine complete intersection Ũ(G,G′) in

UG . Under the action of ι(G′), the G-module ρmin decomposes into G′-modules:

ρmin =
⊕
j∈J

ρ[j]. (6.8)

For u ∈ UG , the endomorphism ρmin(LG
#

w ) leaves stable the direct sum in (6.8), and thus the

characteristic polynomial factors. Requiring that the latter are Laurent polynomials in X yields

an additional constraint, i.e. u must belong to a subvariety of higher codimension in Ũ(G,G′), that

we denote U(G,G′). In both cases (G,G′) = (E6, D4) and (E7, E6) we will examine, U(G,G′) will turn

out to be a subvariety of Ũ(G,G′) ruled along a distinguished direction urul. Summing up:

Step B′ Consider the Lie group G′ associated to D′ as in Table 2, and the decomposition (6.8) as

above. Restrict to u ∈ U(G,G′) so that

PToda
G# (X,Y ) =

∏
j∈J

det
[
Y 1− ρ[j](LG

#

w )
]
,
∏
j∈J
P [j]

(G′,G)(X,Y ) (6.9)

for Laurent polynomials P [j]
(G,G′)(X,Y ) ∈ C[X±1, Y ].

This is the analogue of Step B on the LMO side (Section 5.3), which consists in computing PD,v(x, y)

and thus PLMO
D (X,Y ) in terms of unknowns M = (µk)k∈K0 for a small set K0. Let us denote

PLMO
D (X,Y ;M, λ) this answer. In the following, we will check for D = E6 (resp. D = E7) that

with K0 = {1, 2} (resp. K0 = {2, 3, 5, 7}) the equality of polynomials9 in (X,Y ):

(Y − 1)•PLMO
D (X,Y ;M, λ) = Xd′minPToda

G (X,Y ;u) (6.10)

gives an explicit isomorphism

Υ : C|K0|
M

∼−→ UG,G′ . (6.11)

This Υ is given in (6.37) for E6 and (6.55) for E7. We expect the same property to hold for G = E8

(here, G′ = E8 and U(G,G′) is just equal to UG) but this case was computationally out of reach.

Step C′ Determine the sublocus of u ∈ U(G,G′) such that the Toda spectral curve has the ramifi-

cation properties that were required for the LMO spectral curve (see Step C, Section 5.3).

This should fix u to live in a 1-dimension variety ULMO
G parametrized by λ.

In all cases, just by matching the coefficients on the boundary of the Newton polygon, we find

that u0 = −1/ca, where we remind that c = exp(χorbλ/2a). Therefore, ULMO
G is equivalently

parametrized by (ui(u0))Ri=1.

By the previous remark, Step C′ is strictly equivalent to the determination of (µk)k∈K0 as func-

tions of λ on the LMO side in Step C. Step A1′-A2′-B′ and C′ together give a complete derivation

of the suitable restriction of the Toda spectral curve, if we assume and verify the qualitative prop-

erties used in Step B′ and C′ that were dictated by the analysis of the matrix model.

9In (6.10), the (Y − 1)• stands for • copies of the trivial representation appearing in (6.8) and thus factoring out
in the Toda spectral curve..
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6.2 Ap−1 geometries

This is the case of lens spaces SZ/pZ = L(p, 1) already well-known in the literature, so we will only

make a couple of passing remarks here to see how it fits with the discussion above. Steps A1′

and A2′ were performed in [Nek98, Mar13] and return10 (3.23), which is in exact agreement with

the matrix model curve computed by Halmagyi–Yasnov [HY09] in a general flat background. This

proves Point (a) of Conjecture 4.2 for the sphere and disk potential; the rest of Point (a) follows

from the solution by the topological recursion method of generalized loop equations [BEO15], which

combined with the proof of the remodeling conjecture [EO15] establishes Point (b) as well. The

restriction relevant for Step B′ and Conjecture 4.1 is simply u0 = e−tB/2 = c1/2, ui = 0 for i ∈ J1, pK:
toric mirror symmetry shows that this amounts to setting to zero the insertion of twisted classes in

Horb(Y Z/pZ), so that the resulting restricted A-model theory is just the untwisted Gromov–Witten

theory of the stack [OP1(−1)⊕2/(Z/pZ)].

6.3 Dp+2 geometries

For p + 2 = 4, Steps A1′-A2′ in this case can be extracted from [KM15] and found to be in

agreement with (3.25).

Step A1′

Explicitly, the Dynkin diagram of Dp+2 is represented in Figure 4.

. . .

ωp+1

ω1 ω2 ωp−1

ωp+2

ωp

Figure 4: The Dynkin diagram of G = Dp+2. Nodes in the diagram are labeled by the respective

fundamental weights; we have ρmin , ρω1 = (2p + 4)v, ρωi = Λiρω1 for i ≤ p, ρωp+1 = 2p+1
c ,

ρωp+2 = 2p+1
s .

We write ρmin , 2(p + 2)v for the defining module of Spin(2(p + 2)). In this specific case, we

can slightly bypass Step A1′ by parametrizing UG using the exteriors characters εi = [X0] ε̃i with:

ε̃i , χΛiρω1
(L

D#
p+2

w ), for i ∈ J1, p+ 2K . (6.12)

10Choosing the minimal representation ρmin to be the anti-fundamental has the sole effect of redefining uk →
(−1)pup−k.
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We have ε̃i = ũi for i ≤ p, and

ε̃p+1 = ũp+1ũp+2 −

{ ∑p/2−1
k=0 ũ2k+1 p even,∑p/2
k=0 ũ2k p odd.

(6.13)

ε̃p+2 = ũ2
p+1 + ũ2

p+2 − 2

{ ∑p/2
k=0 ũ2k p even,∑p/2
k=0 ũ2k+1 p odd.

(6.14)

as a consequence of the decomposition rules of the tensor products S±⊗S± of the chirality ± spin

representations associated to the fundamental weights ωp+1 and ωp+2.

Step A2′

The Casimir function u0 here reads

u−1
0 = κ1/2

0 κ1κp+1κp+2

∏
1<i<p+1

κ2
i , (6.15)

and the Laurent polynomials ε̃i(X) can be computed straightforwardly from (3.32) using Newton

identities. We have

ε̃i(X) = εi, i 6= p, p+ 2, p+ 4,
ε̃i(X) = εi + u0(X + 1/X), i = p, p+ 4,

ε̃p+2(X) = εp+2 − 2u0(X + 1/X).
(6.16)

The Newton polygon of the resulting plane curve is shown in Figure 5. In terms of exponentiated

linear coordinates (rj)
p+2
j=1 on the maximal torus TDp+2 , the resulting curve takes the form

X PToda
D#
p+2

(X,Y ) = u0(X2 + 1)(Y − 1)2(Y + 1)2Y p +

2(p+2)∑
i=0

(−1)iεiXY
i,

= u0(X2 + 1)(Y − 1)2(Y + 1)2Y p +X

p+2∏
j=1

(Y − rj)(Y − r−1
j ),

(6.17)

which is just (3.25) with u0 = e−tB/2(−1)p+122p.

Steps B′ and C′

Comparing this Toda curve with the LMO curve (5.37), we find agreement provided r1 = 1 and:

r±1
j =

r̃j
2(κ2 + 1)2

±

√
r̃2
j

4(κ2 + 1)4
− 1 (6.18)

where r̃j are the (p+ 1) roots of the polynomial Qp given in Appendix C, and:

u0 = (−1)p+1 e−λ/2p. (6.19)
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Figure 5: The Newton polygon of the Toda curve for G = Dp+2, minimal representation ρω1 =
2(p + 2)v for p+ 2 = 9.

ω6

ω2 ω4ω1 ω5ω3

Figure 6: The Dynkin diagram of G = E6. Nodes in the diagram are labeled by the corresponding
fundamental weights; we have ρmin , ρω1 = 27 = ρω5 , ρω2 = Λ2ρω1 = 351 = ρω4 , ρω3 = Λ3ρω1 =
2925, ρω6 = Adj = 78.

6.4 E6 geometry

The Dynkin diagram of G = E6 is represented in Figure 6. We write ρmin , 27 = ρω1 for the

minimal irreducible representation attached to the highest weight ω1; there is another minimal

G-module ρmin , 27 = ρω5 , which is complex-conjugate to ρmin.

Step A1′

The fundamental representations of E6 are antisymmetric powers of ρmin and ρmin with the ex-

ception of ρω6 , which is the 78-dimensional adjoint representation. The antisymmetric characters

χΛkρω1
(g) : TE6 → C of an element g = eh, which include the fundamental characters (χωi(g))5

i=1,

can be computed using the explicit representation of the Chevalley generators in the representa-

tions ρmin and ρmin [KM15, HRT01]. On the other hand, the regular character χω6(g) is a trace in

the adjoint, which is computed straightforwardly from the root system of E6. We must have

χΛkρω1
(g) = pE6

k [χω1(g), . . . , χω6(g)] (6.20)
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identically as functions on the Cartan torus. One possible brute-force way to compute pE6
k is to

generate a finite-dimensional vector space of monomials {χnjωi (g)}i,j satisfying a suitable dimensional

upper bound on χ
nj
ωi (1), then evaluate (6.20) at a number of points g ∈ T equal to the dimension

of this vector space, and then solve the linear system ensuing from (6.20). The resulting relations

in Rep(G) read:

pE6
4 = −u2

5 − u2u5 + u1 + u4 + u4u6,

pE6
5 = u2

1 − 2u2
5u1 + 2u4u1 + u2

4 + u5u
2
6 + u2 − 2u3u5 + u5 − u2u6 − u5u6,

pE6
6 = −u3

5 − u2u
2
5 + u1u5 + 2u4u5 − 2u1u6u5 + u4u6u5 + u3

6 + 2u1u2 − 2u3 + u2u4 − 3u3u6,

pE6
7 = 2u2

2 + u5u2 − 2u5u6u2 + u3u
2
5 + u1u

2
6 + u4u

2
6 − 3u1u3 − 2u3u4 + u4 − u2

5u6 − u1u6 + u4u6,

pE6
8 = u2u

3
5 − u1u6u

2
5 + u2

6u5 + u1u2u5 − 2u3u5 − 3u2u4u5 + u3u6u5 − 2u6u5 + u5 − u2
1 − u2u

2
6

+ u2u3 + u1u4 + u2
1u6 − u2u6 + 2u1u4u6,

pE6
9 = u1u

4
5 − u6u

3
5 + u2u

2
5 − 4u1u4u

2
5 + u2u6u

2
5 − u2

2u5 − u1u
2
6u5 − 4u1u5 + 4u1u3u5 + u4u5

+ 3u4u6u5 + u3
6 + u2

3 + 2u1u
2
4 + u1u2 − 6u3 + 4u2

1u4 − 4u2u4 − 3u3u6 − 2u2u4u6 + 3,

pE6
10 = u5

5 − 5u4u
3
5 + u1u6u

3
5 − u2

6u
2
5 − u1u2u

2
5 + 5u3u

2
5 − u2

5 − 2u2
1u5 + 5u2

4u5 + u2u5 + u2u3u5

+ 4u1u4u5 + u2
1u6u5 − 2u2u6u5 − 3u1u4u6u5 + u1u

2
6 + 2u4u

2
6 + 2u1 + u2

1u2 − 5u1u3

+ 2u1u2u4 − 5u3u4 − u2
2u6 − 2u1u6 + u1u3u6 − u4u6,

pE6
11 = u6u

4
5 − u2u

3
5 + u1u3u

2
5 − u4u

2
5 + 2u1u6u

2
5 − 4u4u6u

2
5 − 2u2

6u5 − u1u2u5 + 3u3u5 + 3u2u4u5

− 2u1u2u6u5 + 3u3u6u5 − u6u5 + u1u
2
2 + 2u2

4 + 2u2
1u

2
6 − 2u2u

2
6 + 2u2 − 3u2

1u3 + u2u3

+ u2
2u4 + u1u4 − 2u1u3u4 − 2u2

1u6 + 2u2
4u6 + u2u6,

pE6
12 = 2u6u

3
1 − u3

1 + u2
5u

2
1 − u4u

2
1 − 2u2u5u

2
1 − u2

5u6u
2
1 + u4u6u

2
1 + 3u5u

2
6u1 + 2u2u1 − 3u2u3u1

+ u2u4u5u1 + u5u1 − 5u2u6u1 − 2u5u6u1 + u3
2 + u3u

3
5 − u3

5 − 2u3
6 + 3u2

3 − u3 + u2u4

+ 3u2
2u5 − 3u3u4u5 + 2u4u5 + u3

5u6 − u2u
2
5u6 + 6u3u6 − 3u4u5u6,

pE6
13 = u4

1 − 2u2
5u

3
1 + 2u4u

3
1 + u2

4u
2
1 − 3u2u

2
1 − 2u3u5u

2
1 − u5u

2
1 − u2u6u

2
1 + 4u5u6u

2
1 + 2u3

5u1

+ 2u2u
2
5u1 − 2u2

6u1 + u3u1 − 4u2u4u1 + u2
2u5u1 − 4u4u5u1 − u3

5u6u1 + 3u3u6u1 + u4u5u6u1

− u6u1 + 2u1 + u2
2 − 2u2u

2
4 + u3u

2
5 + u2u4u

2
5 + u2

5u
2
6 − 3u3u4 + 2u4 + u2u5 − u2u3u5

+ u2
2u6 − 2u2

5u6 − 2u2u5u6,
(6.21)

and pE6
27−k(u1, u2, u3, u4, u5, u6) = pE6

k (u5, u4, u3, u2, u1, u6). This completes Step A1′.

Step A2′

As for the Dp+2 case above, the spectral parameter dependence of (ũi(X))5
i=1 can be computed

directly from (3.32) using Newton identities. In particular, we obtain

ũi(X) = ui, i 6= 3,
ũ3(X) = u3 + u0(X + 1/X),

(6.22)

in terms of the Casimir function u−1
0 = κ1/2

0 κ1κ2
2κ3

3κ2
4κ5κ2

6 . The spectral parameter dependence

of ũ6 can be computed from the first line of (6.21): the result is

ũ6(X) = u6. (6.23)

In other words, the E6-Toda curve is computed as

0 = PToda
E#

6

(X,Y ) =

27∑
k=0

pE6
k

[
u1, u2, u3 + u0(X + 1/X), u4, u5, u6

]
Y k. (6.24)

The resulting Newton polygon is depicted in Figure 7.
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Figure 7: The Newton polygon of the Toda spectral curve for G# = E#
6 and ρmin = 27.

Step B′

In this case, we have D′ = D4 while we started with D = E6. There is an obvious embedding

ι : TD4 −→ TE6

(Q1, Q2, Q3, Q4) 7−→ (1, Q1, Q2, Q3, 1, Q4)

of the maximal tori, induced by the projection of the weight system of E6 onto the sublattice of

Z6 spanned by the unit lattice vectors ω2, ω3, ω4 and ω6. Under this projection, the fundamental

highest weight modules of E6 decompose as D4-modules in the following way:

ρω1 = ρω5 = 3(1)⊕ 8s ⊕ 8v ⊕ 8c, (6.25)

ρω2 = ρω4 = 3(1)⊕ 4(8s)⊕ 4(8v)⊕ 4(8c)⊕ 3(28)⊕ 56s ⊕ 56v ⊕ 56c, (6.26)

ρω3 = 2(1)⊕ 8(8s)⊕ 8(8v)⊕ 8(8c)⊕ 11(28)⊕ 35v ⊕ 35c ⊕ 35s

⊕6(56s)⊕ 6(56v)⊕ 6(56c)⊕ 2(160s)⊕ 2(160v)⊕ 2(160c)⊕ 350, (6.27)

ρω6 = 2(1)⊕ 2(8s)⊕ 2(8v)⊕ 2(8c)⊕ 28. (6.28)

In particular, with (6.25):

PToda
E#

6

(X,Y )
∣∣
u∈Ũ(E6,D4)

= (Y − 1)3
∏
•=c,v,s

det
[
Y 1− ρ8•(L

E#
6

w )
]
. (6.29)

The resulting variety Ũ(E6,D4) = (u ◦ ι)(T ′) is a connected codimension zero submanifold of the

intersection of hyperplanes u1 = u5, u2 = u4, hence it is locally ruled with respect to the X-

dependent Casimir urul = u3. The degree of the factors in Y , leaving aside the trivial abelian

component (Y −1)3, now reproduces the structure of PLMO
E6

(X,Y ) as a product over the polynomials

associated to the 3 minimal orbits generated by v, ε[v] and ε2[v] as in (5.14). In PLMO
E6

(X,Y ), the

3 factors are polynomials in X1/3 that differ by order 3 rotations x 7→ ζj3x. However, this Z/3Z
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rotational symmetry is absent in (6.29) for generic values of u ∈ ŨG,G′ ; more importantly, the

individual factors appearing in (6.29) are not guaranteed11 to be polynomials.

This puts two constraints that are solved simultaneously as follows. Denote

U• , χ8•

[
L
E#

6
w

]
, Uadj , χ28

[
L
E#

6
w

]
. (6.31)

the evaluation of the D4-fundamental characters on the reduced L
E#

6
w seen for u ∈ Ũ(E6,D4) as a D4

group element. The following character relations in Rep(D4) are easily deduced from simple tensor

multiplication rules:

χ35• = χ2
8• − χ28 − 1,

χ56• = χ8�χ8? − χ8• ,

χ160• = χ28χ8• − χ8�χ8? ,

χ350 = χ8cχ8vχ8s − χ2
8c
− χ2

8v
− χ2

8s
+ χ28 + 2, (6.32)

where the formulas above should be intended as having the set equality {•, ?, �} = {c,v, s}. Also,

Λ28• = 28, Λ38• = 56•, Λ48• = 35? ⊕ 35�. Then,

det
8•

[
Y 1−R8•(L

E#
6

w )
]

= Y 8 − U•Y 7 + UadjY
6 + (U• − U?U�)Y 5 +

(
U2
� + U2

?

− 2Uadj − 2
)
Y 4 + (U• − U?U�)Y 3 + UadjY

2 − U•Y + 1, (6.33)

and it is immediate to see that restricting to

Uc = Ũ [2](ζ2
3x) + Ũ [1], Us = Ũ [2](ζ3x) + Ũ [1], Uv = Ũ [2](x) + Ũ [1] , (6.34)

with:

Ũ [2](x) = x+ U0/x, X = x3, u0 = U3
0 (6.35)

is necessary and sufficient to attain the required cyclic symmetry with the spectral dependence

dictated by (6.22)-(6.23).

Comparison with the LMO spectral curve

At this stage, we find by direct computation of the left-hand side of (6.10) with (5.14) and the

table of coefficients at the beginning of Section 5.5 that the equality:

PToda
E#

6

(X,Y, u)
∣∣
u∈U(E6,D4)

= (Y − 1)3PLMO
E6

(X,Y ;M, λ), c = eλ/72 , (6.36)

11This is an instance of the following, general problem: given a family of polynomials P ∈ C[x, y] depending on
parameters u = (ui)

R
i=1, and given an integer n ≥ 2, determine the locus of parameters for which there exists a

factorization

P (xn, y;u) =

n−1∏
j=0

Q(ζjnx, y;u) (6.30)

where Q is also a polynomial in x and y. It was communicated to us by Don Zagier that there is no obvious
strategy to solve this problem in general, but one can always try the naive approach consisting in writing down
arbitrary coefficients for Q, expanding (6.30) and solving for the parameters (ui)

R
i=1. For the example (E6, D4) that

we provided, the palindromic symmetry of the factors can be exploited to simplify a bit the derivation.
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is realized if and only if:
Ũ [1] = −1− 2c−2µ1

Uadj = 2 + 12c−2µ1 − 6c−1µ2
(6.37)

Eliminating µ1 and µ2 from these equations, we retrieve exactly the constraints defining U(E6,D4) ⊂
UE6 . This is the equivalence between Step B′ on the Toda side and Step B on the LMO side

highlighted in Section 6.1. We can then insert in this parametrization the determination of µk’s in

terms of λ (or c) performed at the end of Section 5.5. We obtain u0 = −1/c6 and the (ui)
6
i=1 as

functions of the parameter κ related to c by (5.40):

u1 = u5 =
3κ(κ− 4)(κ2 − 12)(κ2 − 6κ+ 12)2

(κ− 6)4(κ− 2)4
,

u2 = u4 =
3κ(κ− 4)(κ2 − 6κ+ 12)2 f2(κ)

(κ− 6)8(κ− 2)8
,

u3 =
f3(κ)

(κ− 6)12(κ− 2)12
,

u6 =
2f6(κ)

(κ− 6)6(κ− 2)6
, (6.38)

where fi(κ) are polynomials given in Appendix D.2.

6.5 E7 geometry

The Dynkin diagram of G = E7 is represented in Figure 8. We write ρmin , 56 = ρω6 for the

minimal irreducible representation attached to the highest weight ω6, which is self-dual.

ω7

ω2 ω4ω1 ω5ω3 ω6

Figure 8: The Dynkin diagram of G = E7. Nodes in the diagram are labeled here by the respective
fundamental weights; we have that ρω1 = Adj = 133, ρω2 = 8645, ρω3 = 365750, ρω4 = 27664,
ρω5 = 1539, ρω6 = ρmin = 56, ρω7 = 912.

Step A1′

The computation of pE7
k can be performed exactly as for the E6 case. The anti-symmetric characters

χΛkρω6
(g) can be computed e.g. from the explicit matrix representation of the exponentiated

Cartan matrices of ρ [HRT01] via Newton identities. Also, as before, the fundamental characters

(χωk(g))6
k=1 are expressed via the characters of suitable tensor powers of ρmin = ρω6 and the
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character of the adjoint representation 133 = Adj:

χω2 = χΛ2Adj − χAdj,

χω3 = χΛ4ω6
− χΛ2ω6

,

χω4 = χΛ3ω6
− χω6 ,

χω5 = χΛ2ω6
− 1. (6.39)

The remaining fundamental character χω7 can be computed from the following relation in Rep(E7)

χω7χω2 = −(χω5 + 1)χω6 − χω4 + χω4χω1 + χω6χSym2ω6
, (6.40)

where the right-hand side can be computed again using Newton identities. Once this is done, the

relations pE7
k = pE7

56−k for k ∈ J5, 28K in Rep(E7) can be read off by specializing the identity

χΛkρω6
(g) = pE7

k [u1(g), . . . , u7(g)] (6.41)

to a suitably large number of sample points g, and then solving for the coefficients of pE7
k . We

obtain for example that

pE7
5 = − (u1 − 1)u4 +

(
−u2

1 + u1 + u2 + u5 + 1
)
u6 + u2u7,

pE7
6 = −2u3

1 + (1− 2u5)u2
1 +

(
u2

6 − u7u6 + u2
7 + 4u2 − 2u3 + 2u5 + 2

)
u1 + u2

2 + u2
5 − u3 + 2u5

+ 2u2 (u5 + 1) + u4u6 − u4u7 − u6u7 + 1,

pE7
7 = u4

(
−u2

1 + u1 + u2 + 2u5 + 2
)

+
(
−u3

1 + (2u2 + u5 + 3)u1 + 2u2 − 2u3 + u5 + 1
)
u6

+ u7

(
−2u2

1 + (u2 − 2u5 + 1)u1 + u2
7 + 3u2 − 3u3

)
,

pE7
8 = (u3 − 2u5 − u6u7 + 2)u2

1 +
(
2u2

6 + u4u6 − 2u7u6 + u2
7 + 4u2 − 4u3 + 2u5 − 2u4u7

)
u1

+ u2
2 + 2u2

4 + u2
6 + u5u

2
7 + u2

7 − 2u3 − 3u3u5 + 3u4u6 + u4u7 − u5u6u7 + u6u7

+ u2

(
u2

6 + u7u6 + u2
7 − 2u3 + 2u5

)
− 2u3

1,
. . .

(6.42)

The expressions up to k = 28 are lengthy and are omitted here, but they are available upon request.

This completes Step A1′.

Step A2′

As before, the spectral parameter dependence of (ũi(X))6
i=3 can be computed from (3.32) using

Newton identities applied to its explicit representation in terms of 56 × 56 matrices. The same

holds true for (ũi(X))i=1,2 and explicit 133-dimensional adjoint matrices. Finally, ũ7(X) can be

computed from (6.40). We obtain

ũi(X) = ui, i 6= 3,
ũ3(X) = u3 + u0(X + 1/X),

(6.43)

in terms of the Casimir function u−1
0 = κ1/2

0 κ2
1κ2

2κ3
3κ4

4κ3
5κ2

6κ7. The E#
7 -Toda curve is then com-

puted as:

0 = PToda
E#

7

(X,Y ) =
56∑
k=0

pE7
k

[
u1, u2, u3 + u0(X + 1/X), u4, u5, u6, u7

]
Y k. (6.44)

The resulting Newton polygon is depicted in Figure 9.
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Step B′

Here we have D′ = E6 while we started with D = E7. The embedding of the maximal tori

ι : TE6 −→ TE7

(Q1, Q2, Q3, Q4, Q5, Q6) 7−→ (Q1, Q2, Q3, Q4, Q5, 1, Q6)

obtained upon projection onto the rank 6 weight sublattice generated by ωi, i 6= 7 gives rise to the

following decomposition of the fundamental weight modules:

ρω1 = (1)⊕ (27)⊕ (27)⊕ (78), (6.45)

ρω2 = (27)⊕ (27)⊕ 2(78)⊕ 2(351)⊕ 2(351)⊕ ( 650)⊕ (1728)⊕ (1728)⊕ (2925), (6.46)

ρω3 = (78)⊕ 3(351)⊕ 3(351)⊕ 2(650)⊕ 3(1728)⊕ (2430)⊕ 5(2925)⊕ (5824)⊕ (5824)

⊕ 3(7371)⊕ 3(7371)⊕ 2(17550)⊕ 2(17550)⊕ (34749)⊕ 2(51975)⊕ (70070), (6.47)

ρω4 = (27)⊕ (27)⊕ 2(78)⊕ 3(351)⊕ 3(351)⊕ 2(650)⊕ (1728)⊕ (1728)

⊕ 2(2925)⊕ (7371)⊕ (7371), (6.48)

ρω5 = (1)⊕ 2(27)⊕ 2(27)⊕ (78)⊕ (351)⊕ (351)⊕ (650), (6.49)

ρω6 = 2(1)⊕ (27)⊕ (27), (6.50)

ρω7 = (27)⊕ (27)⊕ 2(78)⊕ (351)⊕ (351). (6.51)

In particular, with (6.50):

PToda
E#

7

(X,Y )
∣∣
u∈Ũ(E7,E6)

= (Y − 1)2 det
[
Y 1− ρ27(L

E#
7

w )
]

det
[
Y 1− ρ27(L

E#
7

w )
]
. (6.52)

The variety Ũ(E7,E6) = (u ◦ ι)(T ′), by (6.45)-(6.51), can be parametrized as the image of the

morphism u : C6
U → UE7 given by

u1 = U1 + U5 + U6 + 1,

u2 = U2 + U3 + U4 + U1U5 + U1U6 + U5U6 + U6 − 1,

u3 = −U2
1 + U3U1 + U4U1 − U1 − U2

5 + U2 + 4U3 + U2U4

+ U4 + U2U5 + U3U5 − U5 + U2U6 + U4U6 − 1,

u4 = U5U2 + 2U2 + 2U3 + U1U4 + 2U4 + 2U1U5 − 2,

u5 = U5U1 + 2U1 + U2 + U4 + 2U5,

u6 = U1 + U5 + 2,

u7 = U1 + U2 + U4 + U5 + 2U6. (6.53)

This is not ruled however with respect to urul = u3, nor can it be expected that the factorization

(6.52) give polynomial factors with respect to the spectral parameter X, let alone have the Z/2Z
symmetry of (5.15). The first problem is solved as follows: introduce coordinates (Ũi)

6
i=1 and Urul

to parametrize the maximal ruled subvariety Ũ(E7,E6)×CUrul
of C6

U w.r.t. to urul; we are assuming

at this stage the latter to be of dimension higher than zero, with Urul a curvilinear coordinate in

the distinguished ruling direction. Imposing now that the factorization of (Y − 1)2 is preserved by

shifts along urul has the effect of restricting (6.53) to U5 = U1 = Ũ1. Furthermore, the requirement

that the functions ui : Ũ(E7,E6) → C in (6.53) have vanishing derivative along the distinguished
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Figure 9: The Newton polygon of the periodic relativistic Toda curve for G# = E#
7 and ρmin = 56.

direction Urul is satisfied upon setting, without loss of generality, U2 = Ũ2 + Urul, U4 = Ũ2 − Urul,

U3 = Ũ3, U6 = Ũ4. Equating now the third line of (6.53) to the shifted Casimir u3 +X+u0/X as it

appears in (6.44) sets Urul = ±i
√
X + u0/X with no additional constraints on UE7,E6 , which thus

turns out to have dimension equal to four. Restricting to UE7,E6 therefore attains the factorization

(6.52), which is a fortiori polynomial in (X, X−1). The question of the Z/2Z symmetry in X is

automatically solved by the fact that replacing 27 with 27 is tantamount to switching U1 ↔ U5,

U2 ↔ U4; on U(E7,E6) this reads U2
rul ↔ −U2

rul, which is just X ↔ −X. Restricting to U(E7,E6)

is thus necessary and sufficient to have the factorization in polynomials of X with the desired

(Z/2Z)-symmetry.

Comparison with the LMO spectral curve

By direct computation of the left-hand side of (6.10) with (5.15) and the table of coefficients given

in Appendix E.2, we find that the equality:

PToda
E#

7

(X,Y, u)
∣∣
u∈U(E6,D4)

= (Y − 1)2PLMO
E7

(X,Y ;M, λ), c = eλ/72 , (6.54)

is realized by u0 = −1/c12 and the morphism

Ũ1 = −6µ2

c3
− 1,

Ũ2 =
6µ5

c6
− 12µ3

c4
+

6µ2

c3
+ 2,

Ũ3 =
−2c8 − 24c5µ2 + 24c4µ3 + 36c2

(
µ2

2 − µ5

)
+ 144cµ2µ3 + 12

(
2µ2

3 + µ7

)
c8

,

Ũ4 =
12µ3

c4
+

12µ2

c3
− 1. (6.55)
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6.6 E8

The Dynkin diagram of G = E8 is represented in Figure 8. We write ρmin , Adj = 248 = ρω7

for the minimal irreducible representation attached to the highest weight ω7: this is the adjoint

representation.

ω8

ω2 ω4ω1 ω5ω3 ω6 ω7

Figure 10: The Dynkin diagram of G = E8. We have ρω1 = 3875, ρω2 = 6696000, ρω3 =
6899079264, ρω4 = 146325270, ρω5 = 2450240, ρω6 = 30380, ρω7 = 248 = Adj, ρω8 = 147250.

Step A1′

Step A1′ is the hardest bit here, and the one we could not complete entirely as the size of

the linear systems appearing in the calculation of pE8
k grows uncontrollably all the way up to

k = 124. As a result, we do not have a closed-form expression for pE8
k but for the first few

orders, and in turn we could not find an explicit expression for P
E#

8
for arbitrary values of

u0, . . . , u8. However, if we are interested in any given specific point u ∈ UE8 , and in particular

those with integer values for ū1, . . . , ū8, the value of pE8
k at that point can be easily computed

in finite time, as follows. Let (Qi)
8
i=1 be exponential coordinates on the maximal torus coming

from linear coordinates on Lie(E8). Then for a given group element g, ui = χωi(g) are Laurent

polynomials in the variables Qi, and so is χΛk(Adj)(g) for any k: the latter in particular can be

computed explicitly via Newton identities. For a given u, let Q be any root of the system of

algebraic equations χωi(g) = u. Plugging Q into the expression of χΛk(Adj)(g) then returns pE8
k

∣∣
u=u

.

For generic u, it is hopeless to find a manageable expression of Q above that could yield a

closed analytic expression for pE8
k

∣∣
u=u

. However, if u ∈ Z8, a sensible thing to do is to find Q

numerically to a good accuracy, and then plug the result into the expression of χΛk(Adj)(g) as a

Laurent polynomial in {Qi}8i=1: since the latter is on general grounds a polynomial in (ui)
8
i=1 with

integer coefficients, it follows that χΛk(Adj)(g)|Q=Q ∈ Z. A reliable integer rounding of the numerics

gives then a prediction for the exact expression of pE8
k

∣∣
u=u

. We will provide an example of this

procedure shortly.

Step A2′

The spectral parameter dependence of (ũi(X))7
i=3 can be computed from (3.32) using Newton

identities applied to its explicit representation in terms of 248× 248 matrices. We obtain

ũi(X) = ui, i ∈ J4, 7K
ũ3(X) = u3 + u0(X + 1/X).

(6.56)
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Figure 11: The Newton polygon of the Toda spectral curve for G# = E#
8 and ρ = 248.

in terms of the Casimir function u−1
0 = κ1/2

0 κ2
1κ4

2κ6
3κ5

4κ4
5κ3

6κ2
7κ3

8 . Furthermore, a quick computa-

tion of the character relations pE8
k for k = 6, 7, 8 reveals that ũi(X) = ui for i = 1, 2, 8 as well. The

E#
8 -Toda curve is then computed as

0 = PToda
E#

8

(X,Y ;u) =
248∑
k=0

pE8
k

[
u1, u2, u3 + u0(X + 1/X), u4, u5, u6, u7, u8

]
Y k. (6.57)

The polynomials pE8
k

[
u1, u2, u3 + u0(X + 1/X), u4, u5, u6, u7, u8

]
at ui = ui, i ∈ J1, 8K can be

computed by interpolation of pE8
k

[
u1, u2, u3 +n, u4, u5, u6, u7, u8

]
for n ∈ J0, T K with T big enough.

It turns out that the interpolation stabilizes at T = 9. The resulting Newton polygon is depicted

in Figure 11.

Step B′

The computational strategy of Step A1′ above only allows us to compute PToda
E#

8

at a fixed moduli

point u = u, leaving only u0 unrestricted. This nevertheless leaves some limited space for universal

predictions, that are in particular relevant for comparison with PLMO
E8

.

Firstly, as PToda
E#

8

is a characteristic polynomial in the adjoint representation, we automatically

have a factor of (Y − 1)8 pulling out. Factoring out this component leaves us with a degree-240

polynomial P̃Toda
E#

8

in Y , as expected from Table 4. Secondly, notice that T = 9 computed in Step A2′

matches with the fact that degX PLMO
E8

= 18 in the same table. Thirdly, the palindromic symmetry

(5.17) is automatically enforced by (6.57) and the reality of ρmin, so that pE8
k = pE8

248−k. Fourthly,

in view of all preceding examples, it is natural to assume that the coefficients of the monomials
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corresponding to the vertical boundaries should depend on u0 only. Setting u0 = −1/c30, we get:

[X9] P̃Toda
E#

8

= [X−9] P̃Toda
E#

8

= −c240Y 106(Y + 1)2
(
Y 2 + Y + 1

)3 (
Y 4 + Y 3 + Y 2 + Y + 1

)5
. (6.58)

This is precisely the vertical slope polynomial of the LMO curve given in Appendix F.2.

6.7 The LMO slice and the conifold point

The spirit of our calculations so far has been the following: we employed the orbit analysis on the

LMO side to enforce the Galois group reduction G → G′ on PToda
G# , as well as its compatibility

with the affine deformation by the spectral parameter X – i.e. we imposed that the factors of

PToda
G# when this reduction are polynomials in X. It is quite remarkable that such limited piece of

data, without any detailed input from the matrix model, allowed us to establish Points (a)-(c) of

Conjecture 4.1 – with the sole exception so far of G = E8. However, it would have been desirable

to predict the restriction ui(λ) of the Toda action variables relevant for Conjecture 4.1, based on

considerations purely within the dual A- and B-model, instead of deriving them a posteriori from

the comparison with the matrix model curve.

6.7.1 Toric case

For G = Ap−1, a complete interpretation of the LMO restriction can be obtained from the Halmagyi–

Yasnov solution of the Chern–Simons matrix model in a generic Chern–Simons vacuum. Let

[X̂Z/pZ] = [OP1(−1)⊕2/(Z/pZ)] be the Z/pZ fiberwise orbifold of the resolved conifold: its coarse

moduli space is the GIT quotient arising from the stability conditions in the maximally singular

chamber of the secondary fan of Y Z/pZ → X̂Z/pZ, which contains [AKMV04] the t = 0 point of

Chern–Simons theory (see Section 4). The space of marginal deformations of the A-model chiral

ring – i.e. the degree-two Chen–Ruan cohomology of [X̂Z/pZ] – is parametrized by linear coordi-

nates t = {tB, (τi/p)
p−1
i=1 )}: here tB is dual to the Kähler class c1(OP1(1)), and τi/p are dual to degree

zero classes in orbifold cohomology with fermionic age-shift [Zas93] equal to one. A local analysis

of the GKZ system around t = 0 then shows that the mirror map in the twisted sector behaves

asymptotically as

τi/p = O
(
u
i/(kp)
k

)
, (6.59)

for all k such that ik = p. Therefore, the LMO restriction ui = 0, u0 = e−tB/2 amounts

to switching off the insertion of twisted classes, retaining only the geometric modulus

tB = −2 log(c) = −λ/p(p + 1). This cuts out a 1-dimensional slice of the orbifold chamber

of the Kähler moduli space of [X̂Z/pZ], containing two distinguished boundary points: c = 0

(Re(tB) = +∞), corresponding geometrically to the large radius limit point in this orbifold phase

(that is, the decompactification (Z/pZ)\C2 × C ↪→ [X̂Z/pZ]), and the point c = 1 (tB = 0) to

X
Z/pZ
[0] , the Z/pZ-orbifold of the conifold singularity.

6.7.2 Non-toric cases

A similar identification does not hold for G = D,E, and we are unable to offer a poignant stringy

interpretation of the LMO slice here. In this case ∂cui(c) 6= 0 (Figure 12), and as a consequence
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Figure 12: The LMO slice ui(λ) as a function of c = eλ/72 for G = E6. Continuous lines depict the
prediction for the Toda Hamiltonians upon restriction to the LMO slice. Dashed lines represent
their value on the untwisted slice, where all orbifold moduli have been turned off. It is seen that
the two disagree away from the conifold point c = 1.

the LMO slice does not correspond to the slice where the twisted orbifold moduli are set to zero;

it can also readily be seen that the limit c → 0 is a different limit point from the (orbifold) large

radius point corresponding to Γ\C2×C. However, there is at least one special moduli point where

we must be able to offer a stringy prediction of the LMO curve with no input from the matrix

model: this is the weak ’t Hooft limit c→ 1, which should correspond to the point in the extended

Kähler moduli space corresponding to the Γ-orbifold of the singular conifold, XΓ
[0], where we have

contracted the exceptional curves on each Γ̂\C2 → P1 fiber and we further blow-down the base P1.

For this point we do have a stringy prediction for the value of ui: the Bryan–Graber form of the

Crepant Resolution Conjecture [BG09] indeed predicts that the condition of contracting the fibers

takes the form, in exponentiated linear coordinates Q on the Cartan torus T ,

Qi = exp

(
2πili
|Γ|

)
, (6.60)

where li is the ith-component of the highest root of G in the ω-basis (equivalently, the dimension

of the corresponding irreducible Γ-module). This sets the Toda actions ui to the values shown in

Table 5. As far as the Kähler modulus of the base P1 is concerned, this is related to the Casimir

as u0 = −e−tB/2, hence u0 = −1 is the conifold limit. The conifold B-model curves can then

be computed for G = Ap−1, Dp+2, E6, E7 simply by restriction of the results of Section 6.2-6.5 to

u0 = −1. Furthermore, since we are sitting at a specific point in the moduli space as per Table 5,

we can fully compute the conifold Toda spectral curve for G = E8 upon employing the methods of

Section 6.6. The results are given in the third column of Table 5 below.

As far as the LMO matrix model is concerned, the small ’t Hooft limit is the λ → 0 limit, for

which the large N spectral curve can be fully determined as we have seen in Section 5.6. Using
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G character values PToda
G# = 0

Ap−1 u = ε = (0, . . . , 0) X + Y pX−1 = Y p + 1

D4 ε = (0,−2, 0, 2) X +X−1 = (Y 2 + Y −2)

Dp+2 ε = (0, (−1)p+12, 0, (−1)p, 0, . . . , 0) X +X−1 = (Y p + Y −p)

E6 u = (0, 0, 3, 0, 0,−2)
(
Y 3 − 1

)3 (
X − Y 3

) (
XY 3 − 1

) (
X + Y 6

) (
XY 6 + 1

)
= 0

E7 u = (−2, 3,−3, 0, 1, 0, 0)
(X + 1)2(X2 + 1)4(X4 + Y )(X6 + Y )(X12 + Y )

(X4Y + 1)(X6Y + 1)(X12Y + 1) = 0

E8 u = (1, 3, 0, 3,−3, 3,−2,−2)

(Y + 1)2
(
Y 2 + Y + 1

)3 (
Y 4 + Y 3 + Y 2 + Y + 1

)5(
X + Y 5

) (
XY 5 + 1

) (
X − Y 6

) (
XY 6 − 1

) (
X − Y 10

)2(
XY 10 − 1

)2 (
X2 − Y 15

) (
X + Y 15

)2 (
XY 15 + 1

)2(
X2Y 15 − 1

) (
X − Y 30

) (
XY 30 − 1

)
(Y − 1)8 = 0

Table 5: The values of the B-model moduli at the Γ-orbifold of the conifold point and the cor-
responding spectral curves. It corresponds to u0 = 1. Here, (ui)

R
i=1 are the regular fundamental

characters (for G = A,E), and (εi)
R
i=1 are the antisymmetric characters of the defining representa-

tion (for G = A,D).

the definition of PLMO
D in terms of Pv given in Section 5.3, we find exact agreement between

(5.42)-(5.46) and the Toda spectral curves in Table 5.

7 Outlook

We would like to point out a few directions that our findings suggest to explore in relation with

existing works.

The full GOV correspondence

Perhaps the most immediate question is how to extend the LMO/topological strings corre-

spondence of this paper to the full Chern–Simons partition function, so as to give a proof of

at least the B-side of the general Conjecture 4.2. For the string side, the relevant family of

spectral curves was constructed in Section 6; the only missing ingredient is the full E8-curve,

whose computation is currently under way [Bri15]. Most of the burden of the comparison is

borne by the matrix model side; a good starting point here should be given by the large N

analysis of the matrix integral expression of [Mar04, BT13]. Establishing an explicit solution of

the loop equations for this matrix model in terms of the topological recursion applied on the

corresponding Toda spectral curve would give a full proof of the B-side of the GOV correspondence.

Implications for GW theory

The A-side of the correspondence requires substantially more work. While it should be feasible to

derive explicit all-genus results e.g. by degeneration techniques [BG08], one should probably work

harder to see the Toda spectral setup and the topological recursion emerge. Perhaps the best route

to follow here will hinge on deriving the S- and R-calibrations of the quantum cohomology of Y Γ

49



emerge from the steepest descent asymptotics of the Toda spectral data, as in [BCR13], and then

retrieve the topological recursion from Givental’s R-action on the associated cohomological field

theory [DBOSS14]. This would lead to a proof of the remodeling conjecture beyond the toric case.

Along the way it would be interesting to prove a gluing property of ADE invariants analogous to

the one enjoyed by the topological vertex. A thorough study of mirror symmetry for the case at

hand in the limit u0 →∞ will appear in [Bri15], where the implications for the Crepant Resolution

Conjecture will be explored in detail.

Implications for gauge theory

The topological recursion method applied to the Toda curves gives us a glimpse of one slice of

the Ω-background for the associated gauge theory – namely, the one with ε1 = −ε2. It would be

very interesting to investigate how the study of the stationary states of their quantized version –

which is itself an open problem beyond the A- case – is related to the twisted superpotential of the

gauge theory in the Nekrasov–Shatashvili limit, ε2 = 0. Our construction of Section 6 should also

embody the solution to the associated K-theoretic instanton counting problem [GNY09] for the A-

and D-series; it is natural to imagine, for example, that the extrapolation of the blow-up equation of

[GNY09] to exceptional root systems will be solved by the Eynard–Orantin/Nekrasov–Shatashvili

free energies of our B-model setup in the respective limits.

Seifert matrix model and DAHA?

Our results suggests that there should exist observables in the finite N Seifert matrix model –

expressible, moreover, in terms of fiber knot invariants in a spherical Seifert manifold – providing

a basis of solutions for the matrix q-difference equation Ψ(qX) = ρmin(LG
#

w (X))Ψ(X). Then,

Proposition 1.1 would be the manifestation of this equation in the ~ = ln q → 0 limit. However, a

point of caution must be raised, as here we are considering only the contribution of the trivial flat

connection. Therefore, we rather expect q-difference equations related to affine Toda to be found

for observables in the Seifert matrix model with discrete eigenvalues – as opposed to the matrix

integral considered here, where the eigenvalues are integrated over the real Cartan subalgebra of

SU(N). It is likely that the difference between the continuous and the discrete model has no impact

on the large N limit.

Etingof, Gorsky and Losev established in [ELG15, Corollary 1.5] an expression for the colored

HOMFLY polynomial of (p, q) torus knots in S3 in terms of characters of the rational double affine

Hecke algebra (DAHA) of type Ap−1, which are also related to characters of equivariant D-modules

on the nilpotent cone of SL(p). A similar relation for the categorification of the HOMFLY of torus

knots was also conjectured in [GORS14], and proved in the uncategorified case. From the present

work, we are tempted to think that D and E version (instead of Ap−1) of these results should be

expressed in terms of fiber knot invariants in the D and E Seifert geometries. Even independently

of the knot theory interpretation, establishing that certain observables in Seifert matrix model

satisfy exact (for finite N) and explicit q-difference equations produced by DAHA of type D and

E would be extremely interesting.
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3d-3d correspondence

From the point of view of the 3d− 3d correspondence [DGG14], Chern–Simons theory on M3 with

simply-laced gauge group exp(g) is dual to a 3d gauge theory Tg[M
3] on X3: they simultaneously

appear in compactification of the (2, 0) 6d SCFT with Lie algebra g on M3 × X3. The moduli

space of classical vacua for Tsu[L(p, 1)] on Y 2 × S1 is related to the Bethe states in the N particle

sector of the XXZ integrable spin chain on p sites [GP15]. One can wonder if a direct and thorough

relation can be found between the theories Tsl(SΓ) for Γ of type D and E, and the G#
Γ classical

Toda integrable system, e.g. via spectral dualities in integrable systems.

A π1 and H1 of Seifert spaces

The fundamental group is [Sei80]:

π1(M3) =

〈
h, c0, . . . , cr

∣∣∣∣∣∣
c0h

b = 1 ,
camm hbm = [cm, h] = 1 , m ∈ J1, rK
c0 · · · cr = 1 .

〉
, (A.1)

where h is the generator of a regular fiber, and c1, . . . , cr project to loops around the orbifold points

in the base S2. Denoting Σ this orbifold S2, its orbifold fundamental group:

πorb
1 (Σ) =

〈
c1, . . . , cr

∣∣ ca1
1 = · · · = carr =

r∏
m=1

cm = 1
〉

(A.2)

fits in the exact sequence:

Z ι−→π1(M3) −→ πorb
1 (Σ) −→ 1 , (A.3)

where ι(Z) is the central subgroup generated by h. One can show that π1(M3) is finite iff χorb > 0

and σ 6= 0, which we now assume. Combining the relations in π1(M3), one can show that ha|σ| = 1,

but it can happen that the order of h is smaller than a|σ|. The complete description of the

finite fundamental groups appearing here was derived in [Mil57, Orl72] (see also [TZ08] where

three misprints of the final list of [Orl72] were corrected), and is summarized below. By Hurewicz

theorem, the abelianization of π1(M3) gives H1(M3;Z).

The conditions χorb > 0 and σ 6= 0 are satisfied only for r = 1, 2 (lens spaces), and for r = 3

with the orders of exceptional fibers among (2, 2, p), (2, 3, 3), (2, 3, 4) or (2, 3, 5). We introduce the

binary polyhedral groups:

• Q4p the binary dihedral group of order 4p (abelianization Z/4Z if p is odd, (Z/2Z)2 if p is

even)

• P24 for the symmetry group of the tetrahedron (abelianization Z/3Z)

• P48 for that of the octahedron (abelianization Z/2Z)

• P120 that of the icosahedron (trivial abelianization).
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Introduce also the groups:

B2k·(2k′+1) =
〈
x, y

∣∣ x2k = y2k′+1 = xyx−1y = 1
〉

' (Z/(2k′ + 1)Z) o (Z/2kZ) ,

P′3k·8 =
〈
x, y, z

∣∣ x2 = (xy)2 = y2 = zxz−1y−1 = zyz−1x−1y−1 = z3k = 1
〉

' Q8 o (Z/3kZ) ,

and for the latter we have P′3·8 ' P24. Their abelianizations are:

[B2k·(2k′+1)]ab = Z/2kZ, [P′3k·8]ab = Z/3kZ . (A.4)

(2,2,p)− πorb
1 (Σ) = Q4p. Denote s = p|σ|. If s is odd, then π1(M3) is the direct product

(Z/sZ)×Q4p. If s is even, then p is odd and 4 divides s; decompose s = 2k+1s′ with s′ odd; then

π1(M3) is a non-trivial central extension of Q4p, namely (Z/s′Z)× B2k+3·p.

(2,3,3)− πorb
1 (Σ) = P24. Denote s = a|σ|, and decompose s = 3k−1s′ with s′ coprime to 3. If

k = 1, then b2 = b3 = 1, s is coprime with 6 and π1(M3) is the direct product (Z/sZ) × P24. If

k ≥ 2, then (b2, b3) = (1, 2), s′ is coprime to 6, and π1(M3) is rather a non-trivial central extension

of P24, namely (Z/s′Z)× P′
8·3k .

(2,3,4)− πorb
1 (Σ) = P48, a = 12, and π1(M3) is the direct product (Z/12|σ|Z)× P48.

(2,3,5)− πorb
1 (Σ) = P120, a = 30, and π1(M3) is the direct product (Z/30|σ|Z) × P120. In

particular, for b = −1, b1 = b2 = b3 = 1, we obtain 30σ = 1, thus π1(M3) = P120 and H1(M,Z) = 0.

This is the Poincaré sphere, i.e the unique integer homology sphere with finite fundamental group.

In all cases, the order of H1(M3,Z) is (
∏r
m=1 am)|σ|.

B Group actions on S3

It is known that all groups acting smoothly and freely on S3 act (up to diffeomorphism) as subgroups

of SO(4,R), see e.g. the account in [Zim11]. We now review elementary facts to explain the

classification of finite subgroups of SO(4,R). Consider S3 as the unit sphere of the quaternions.

Thus it forms a Lie group:

S3 ' Sp(1,H) ' SU(2,C) ' Spin(3,R). (B.1)

We have a degree 2 covering of Lie groups:

Φ : SU(2,C) −→ SO(3,R) (B.2)

q 7−→ (x 7→ qxq−1)

where in the right-hand side, we consider the linear map restricted to the set of purely imaginary

quaternions (it is stable by conjugation since it is the subset of H orthogonal to 1). The squared

norm of a quaternion is det(q), so the conjugation by q is an isometry of the 3-space. Since SU(2,C)

is connected, this isometry always preserve orientation. Since elements of SO(3,R) are a fortiori
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angle-preserving isomorphism of the sphere, they determine elements of the automorphism group

of the Riemann sphere S2, i.e. we have a group homomorphism:

ψ : SO(3,R) −→ PSL(2,C). (B.3)

This is more easily understood starting directly from SU(2,C), since we have the canonical degree

2 covering of Lie groups:

Ψ : SU(2,C)→ PSU(2,C) ⊆ PSL(2,C), (B.4)

which factors Ψ = ψ ◦ Φ. It is not difficult to see that any finite subgroup of PSL(2,C) must

be conjugated to a finite subgroup of PSU(2,C). There are 3 ways to describe elements in those

groups. First, as rotations in R3 of angle θ around the unit vector ~x:

R(~v) = cos θ ~v + (1− cos θ)(~x · ~v)~x+ sin θ ~x ∧ ~v (B.5)

Second, as 2× 2 unitary matrices up to a sign:

A = e
iπ
2
~x·~σ = cos(θ/2)1 + i sin(θ/2)~x · ~σ =

(
a −b
b a

)
. (B.6)

where ~σ is the vector of Pauli matrices:

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (B.7)

Third, as Möbius transformations:

z 7→ az − b
bz + a

. (B.8)

These 3 descriptions complement each other.

Then, SU(2,C) acts by right and left multiplications on S3 (which are isometries on S3). As a

matter of fact, we have a degree 2 covering of Lie groups:

Φ4 : SU(2,C)× SU(2,C) −→ SO(4)

(q1, q2) 7−→ (x 7→ q1xq
−1
2 ) (B.9)

which shows that Spin(4,R) ' S3 × S3. Therefore, the (finite) subgroups of SO(4) are of the form

Φ4(G1 ×G2) where G1, G2 are (finite) subgroups of SU(2,C).

By the spin covering (B.2), the finite subgroups of SU(2,C) are either cyclic or obtained by

adding the matrix −1 to a finite subgroup of PSL(2,C). The finite subgroups of PSL(2,C) are the

polyhedral groups. Their extension in SU(2,C) are the binary polyhedral groups. Let us give the

3 descriptions of generators for those groups.

• Element rp, order p:

rp =

(
e2iπ/p 0

0 e−2iπ/p

)
. (B.10)

Φ(rp) is the rotation of angle 4π/p around ~e3 (beware of the factor 2), and Ψ(rp) is the Möbius

transformation z 7→ e4iπ/p.
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• Element ι, order 2:

ι =

(
0 i
i 0

)
. (B.11)

Φ(ι) is the symmetry of axis ê1, and Ψ(ι) is the inversion z 7→ 1/z.

• Element  of order 3:

 =
1

2

(
1 + i 1− i
−1− i 1− i

)
. (B.12)

Φ() is the rotation of angle 2π/3 around the vector 1√
3
(−~e1 +~e2 +~e3), and Ψ() is the Möbius

transformation z 7→ i z−1
z+1 .

• Element κ, order 2:

κ =
i√

1 + c2

(
1 k
k −1

)
, k = 2 cos(2π/5). (B.13)

Φ(κ) is the symmetry of axis 1√
1+k2

(k~e1 + ~e3), and Φ(κ) is the Möbius transformation z 7→
z+k
kz−1 .

Coming back to the list of binary polyhedral groups: Z/pZ is generated by rp; Q4p is generated by

r2p and ι; P24 is generated by r4 and ; P48 is generated by r8 and ; P120 is generated by r4,  and

κ.

Classifying the Seifert spaces that are finite quotients of the 3-sphere amounts to classifying the

pairs of binary polyhedral groups (G1, G2) such that Φ4(G1 × G2) acts freely on S3 in (B.9). Up

to isomorphism, this is the list given in Appendix A.

C Dp+2 geometry: LMO spectral curve

For all p ≥ 2, it takes the form (5.37):

(−1)p+1 e−λ/2p(X2 + 1)(Y + 1)2 +XY (κ2 + 1)−(2p+2)Qp
[
(Y + 1/Y )(κ2 + 1)2

]
= 0, (C.1)

with
2κ1+1/p

κ2 + 1
= e−λ/4p

2
. (C.2)

Qp is a monic polynomial of degree p+ 1. For p ≤ 5, it reads:

Q2(η) = η3 + 2(κ4 + 6κ2 − 3)η2 − 4(κ8 − 4κ6 + 2κ4 + 12κ2 − 3)η
−8(κ2 + 1)2(κ8 + 14κ4 − 8κ2 + 1) ,

Q3(η) = η4 + 8(2κ2 − 1)η3 − 8(κ8 − 4κ4 + 12κ2 − 3)η2 − 32(2κ10 + 3κ8 + 8κ6 + 4κ4 − 6κ2 + 1)η
+16(κ2 + 1)2(κ2 − 1)(κ4 − 4κ2 + 1)(κ6 + 3κ4 + 5κ2 − 1) ,

Q4(η) = η5 − 2(κ4 − 10κ2 + 5)η4 − 8(κ8 + 4κ6 − 12κ4 + 20κ2 − 5)η3

+16(κ12 − 6κ10 − 11κ8 − 8κ6 − 33κ4 + 30κ2 − 5)η2

+16(κ16 + 8κ14 − 8κ12 − 24κ10 + 64κ4 − 30κ8 + 56κ6 − 40κ2 + 5)η
−32(κ2 + 1)2(κ16 − 4κ14 − 4κ12 − 4κ10 − 10κ8 − 44κ6 + 44κ4 − 12κ2 + 1) ,

Q5(η) = η6 − 4(κ4 − 6κ2 + 3)η5 − 4(κ8 + 20κ6 − 46κ4 + 60κ2 − 15)η4

+32(κ12 − 2κ10 − 15κ8 + 12κ6 − 41κ4 + 30κ2 − 5)η3

−16(κ16 − 24κ14 + 4κ12 + 40κ10 + 6κ8 + 24κ6 − 236κ4 + 120κ2 − 15)η2

−64(κ20 + 2κ18 − 17κ16 − 24κ14 − 30κ12 − 52κ10 − 98κ8 + 8κ6 + 77κ4 − 30κ2 + 3)η
+64(κ2 + 1)2(κ2 − 1)(κ8 − 2κ6 + 2κ4 − 6κ2 + 1)(κ10 − 3κ8 − 12κ6 − 8κ4 + 7κ2 − 1) .
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At c = 0, i.e. κ = 0, we always have Qp(η)|κ=0 = (η − 2)p+1. At c = 1, i.e. κ = 1, the roots of

those polynomials are:

p = 2 −2,±
√

2

p = 3 0, 2,±
√

3

p = 4 −2, ε1

√
2 + ε2

√
2

p = 5 0,−2,
ε1
2

√
10 + 2ε2

√
2

where εi = ±1.

D E6 geometry

D.1 LMO side: discriminant of R in (5.39)

The discriminant has two factors:

∆1 = −32 + 27c2 + 68c4 + 160µ2
1 + 32µ1 − 32µ3

1 − 144µ2
2 − 256µ4

1 − 128µ5
1

+31c10 − 36c8 − 58c6 + 408c2µ1 − 408cµ2 − 864cµ3
2 − 144µ2

2µ
2
1 − 288µ2

2µ1

−1296c2µ2
2 − 432c4µ1 + 372c3µ2 − 648c2µ2

1 − 396c7µ2 + 1832c6µ2
1

+432c8µ1 + 3104c4µ3
1 + 1404c4µ2

2 + 1776c2µ4
1 − 1440c2µ3

1 + 648cµ1µ2

−3240c5µ1µ2 − 5136c3µ2µ
2
1 + 3888c2µ2

2µ1 + 576cµ2
1µ2 + 2688c3µ1µ2

−480cµ3
1µ2 + 432c5µ2 − 440c6µ1 − 1392c4µ2

1 ,
∆2 = 32 + 27c2 − 68c4 − 160µ2

1 + 32µ1 − 32µ3
1 − 144µ2

2 + 256µ4
1 − 128µ5

1 + 31c10

+36c8 − 58c6 − 408c2µ1 + 408cµ2 − 864cµ3
2 − 144µ2

2µ
2
1 + 288µ2

2µ1

+1296c2µ2
2 − 432c4µ1 + 372c3µ2 − 648c2µ2

1 − 396c7µ2 + 1832c6µ2
1 + 432c8µ1

+3104c4µ3
1 + 1404c4µ2

2 + 1776c2µ4
1 + 1440c2µ3

1 + 648cµ1µ2 − 3240c5µ1µ2

−5136c3µ2µ
2
1 + 3888c2µ2

2µ1 − 576cµ2
1µ2 − 2688c3µ1µ2 − 480cµ3

1µ2

−432c5µ2 + 440c6µ1 + 1392c4µ2
1 .

D.2 Toda side: the polynomials fi(κ) in (6.38)

f2(κ) = 248832− 912384κ+ 1119744κ2 − 617472κ3 + 115584κ4 + 43776κ5 − 32096κ6 + 8704κ7

−1260κ8 + 96κ9 − 3κ10 ,
f3(κ) = 26748301344768− 231818611654656κ+ 922816396394496κ2 − 2265845304655872κ3

+3881228059017216κ4 − 4961293921419264κ5 + 4932729950699520κ6

−3918448994549760κ7 + 2531494971703296κ8 − 1345368215715840κ9

+592090245808128κ10 − 216319699795968κ11 + 65493454344192κ12

−16315792478208κ13 + 3293224915968κ14 − 521639046144κ15 + 60092669952κ16

−3803240448κ17 − 196007424κ18 + 88858368κ19 − 12725856κ20 + 1122176κ21

−64176κ22 + 2208κ23 − 35κ24 .
f6(κ) = −2985984 + 13436928κ− 24758784κ2 + 26085888κ3 − 17843328κ4 + 8404992κ5

−2802048κ6 + 667008κ7 − 112752κ8 + 13248κ9 − 1032κ10 + 48κ11 − κ12 .

E E7 geometry

E.1 LMO side: minimal orbit

The orbit consists of 27 12-dimensional vectors with entries −1, 0, 1. If w is in the orbit, so does

−ε(w) = (−wj+1 mod a)j . Below we give an element of {±w,−ε(w), ε2(w), . . .} that has n0(w) =
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∑11
k=0wk ≥ 0, and indicate the size l of this sub-orbit. We encode the vectors in w(t) =

∑11
k=0wkt

k.

n0 l w(t)

±3 4 1 + t4 + t8

±2 6 t− t2 + t3 + t7 − t8 + t9

±1 12 1 + t6 − t7 + t9 − t11

0 4 −1 + t3 − t4 + t7 − t8 + t11

0 1
∑11

k=0(−1)ktk

E.2 LMO spectral curve in terms of µk’s

We find Pv(x, y) =
∑6

j=0

∑27
k=0 Πj,k x

6j yk with the symmetries Πj,k = (−1)j+1Π6−j,k =

(−1)jΠj,27−k. All non-zero coefficients are deduced by symmetry from the following list, and

depend on the 4 parameters µ2, µ3, µ5 and µ7 which are unknown functions of c:
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Π0,11 = Π0,12 = −c−18

Π0,13 = −2c−18

Π1,5 = Π1,6 = −c−12

Π1,7 = −2c−12

Π1,8 = −3c−15(c3 + 6µ2)
Π1,9 = −c−16(c4 + 18cµ2 + 24µ3)

Π1,10 = −2c−16(c4 + 15cµ2 + 6µ3)
Π1,11 = −6c−18(5c3µ2 + 6c2µ3 − µ5)
Π1,12 = c−18(c6 − 12c3µ2 − 36µ2

2 − 36c2µ3 + 18µ5)
Π1,13 = −c−18(c6 + 12c3µ2 + 36µ2

2 − 12c2µ3 + 12µ5)
Π2,2 = −c−6

Π2,3 = 0
Π2,4 = c−10(−c4 + 6cµ2 + 12µ3)
Π2,5 = −12c−12(c3µ2 − c2µ3 + µ5)
Π2,6 = 2c−13(c3 + 6µ2)(c4 − 3cµ2 − 6µ3)
Π2,7 = −6c−14

(
c5µ2 − 6c4µ3 − 24cµ2µ3 + 16µ2

3 + c2(−12µ2
2 + 8µ5)− 4µ7

)
Π2,8 = 3c−15

(
c9 + 72µ3

2 − 20c5µ3 + 12c3(µ2
2 + µ5) + c(40µ2

3 − 4µ7)
)

Π2,9 = c−16(c3 + 6µ2)
(
c7 + 12c4µ2 − 24c3µ3 + 72µ2µ3 + 36c(−2µ2

2 + µ5)
)

Π2,10 = −6c−17
(
3c8µ2 + 4c7µ3 − 24c4µ2µ3 + 12c5(2µ2

2 − µ5) + 24cµ3(3µ2
2 − µ5)

+36c2(µ3
2 + 2µ2µ5) + 8c3(2µ2

3 + µ7)− 12µ2(2µ2
3 + µ7)

)
Π2,11 = c−18

(
3 + c12 + 24c9µ2 − 60c8µ3 − 432c5µ2µ3 + 36µ2

5 − 432c2µ3(2µ2
2 + µ5)

+c6(−36µ2
2 + 48µ5) + 72c3(9µ3

2 + 2µ2µ5) + 12c4(34µ2
3 − µ7)

)
−144cµ2(2µ2

3 + µ7)
)

Π2,12 = −3c−18
(
− 1 + c12 + 8c9µ2 − 144c3µ3

2 − 24c8µ3 − 48c5µ2µ3 + 144c4µ2
3

+36µ2
5 + 12c6(2µ2

2 + µ5)− 144c2µ3(2µ2
2 + µ5)

)
Π2,13 = 2c−18

(
3− c12 + 3c9µ2 + 24c8µ3 + 72c5µ2µ3 + 6c6(15µ2

2 − 8µ5)
−72c2µ3µ5 + 36µ2

5 − 36c3(9µ3
2 − µ2µ5) + 24c4(2µ2

3 + µ7)
+36cµ2(2µ2

3 + µ7)
)

Π3,0 = 1
Π3,1 = 1 + 6c−3µ2

Π3,2 = 2 + 6c−3µ2 − 12c−4µ3 + 6c−6µ5

Π3,3 = 2c−8
(
c8 + 12c5µ2 − 12c4µ3 − 72cµ2µ3 − 18c2(µ2

2 − µ5)− 6(2µ2
3 + µ7)

)
Π3,4 = 6c−10

(
4c7µ2 + 2c6µ3 − 24c3µ2µ3 − 24c2µ2

3 + 18cµ2µ5 + 12µ3µ5

+c4(12µ2
2 + µ5)

)
Π3,5 = 2c−12

(
1 + 15c9µ2 − 6c8µ3 − 288c5µ2µ3 + 24c6µ5 + 252c3µ2µ5

+108c2µ3µ5 − 18µ2
5 + 72cµ2(4µ2

3 − µ7)− 12c4(8µ2
3 + µ7)

)
Π3,6 = c−13

(
− 3c13 + 30c10µ2 + 84c9µ3 − 864c6µ2µ3 − 216c3µ3(6µ2

2 − 5µ5)
−432µ2µ3µ5 − 36c7(µ2

2 + µ5)− 36c4(24µ3
2 − 31µ2µ5)

−432c2µ2µ7 + 12c5(−82µ2
3 + µ7)

+c(2 + 864µ3
3 − 648µ2

2µ5 + 36µ2
5 − 432µ3µ7)

)
Π3,7 = −c−14

(
3c14 + 12c11µ2 − 72c10µ3 + 360c7µ2µ3 + 864c6µ2

3

+72c4µ3(18µ2
2 − 19µ5) + 864cµ2µ3(6µ2

2 + µ5) + 12c8(6µ2
2 + 5µ5)

+36c5(6µ3
2 − 7µ2µ5)− 216c3µ2(6µ2

3 − µ7)
+4c2(−1 + 324µ4

2 − 288µ3
3 + 126µ2

5 + 72µ3µ7)
+144

(
µ5(4µ2

3 − µ7) + 3µ2
2(2µ2

3 + µ7)
))
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Π3,8 = −3c−15
(
c15 + 4c12µ2 − 288c6µ3

2 − 20c11µ3 − 168c5µ3µ5

+288c2µ2µ3(9µ2
2 + 2µ5) + c9(−36µ2

2 + 38µ5) + 4c7(26µ2
3 − 5µ7)

−48c4µ2(8µ2
3 + µ7) + 12µ2(−1 + 48µ3

3 + 36µ2
2µ5 − 18µ2

5 + 24µ3µ7)
+c3(−2 + 432µ4

2 − 384µ3
3 − 648µ2

2µ5 + 36µ2
5 + 96µ3µ7)

+24c
(
µ5(10µ2

3 − µ7) + 12µ2
2(14µ2

3 + µ7)
))

Π3,9 = c−16
(
− 3c16 − 78c13µ2 + 36c12µ3 + 1296c9µ2µ3 − 432c3µ2µ3(24µ2

2 − 19µ5)
+18c10(2µ2

2 − 5µ5)− 144c6µ3(3µ2
2 − 5µ5) + 108c7(4µ3

2 − 9µ2µ5)
−432c5µ2(10µ2

3 − µ7) + 36c8(−2µ2
3 + µ7)

+36cµ2(1 + 216µ4
2 − 192µ3

3 − 216µ2
2µ5 + 30µ2

5 − 96µ3µ7)
−2c4(−1 + 2592µ4

2 − 720µ3
3 − 3456µ2

2µ5 + 594µ2
5 + 72µ3µ7)

−48(12µ4
3 + µ3(−1 + 54µ2

2µ5 − 18µ2
5) + 12µ2

3µ7 + 3µ2
7)

−864c2
(
µ5(2µ2

3 − µ7) + 3µ2
2(6µ2

3 + µ7)
))

Π3,10 = −2c−17
(
39c14µ2 + 72c13µ3 − 648c10µ2µ3 − 72c7µ3(9µ2

2 − 20µ5)
−1296c4µ2µ3µ5 − 6c11(3µ2

2 + 4µ5)− 54c8(4µ3
2 − 13µ2µ5)

−6c2µ2(5 + 648µ4
2 − 108µ2

2µ5 − 54µ2
5)− 12cµ3(1 + 648µ4

2

−540µ2
2µ5 − 18µ2

5) + 216c6µ2(2µ2
3 − µ7) + 6c9(−190µ2

3 + µ7)
+216µ2µ5(2µ2

3 + µ7) + 2c5(−1 + 648µ4
2 + 936µ3

3 + 324µ2
2µ5

−270µ2
5 − 180µ3µ7)− 216c3

(
µ5(6µ2

3 − µ7) + 2µ2
2(14µ2

3 + µ7)
))

Π3,11 = −6c−18
(
14c15µ2 + 26c14µ3 − 288c11µ2µ3 − 108c8µ3(8µ2

2 − 5µ5)−
1296c5µ2µ3(4µ2

2 − µ5)− 19c12µ5 + c9(−72µ3
2 + 264µ2µ5)

−12c2µ3(1 + 216µ4
2 + 72µ2

2µ5 + 6µ2
5) + 2(µ5 + 18µ3

5)
−144cµ2(3µ2

2 − µ5)(2µ2
3 + µ7)− 48c7µ2(µ2

3 + 2µ7)
+c10(−400µ2

3 + 4µ7) + 2c3µ2(−5 + 648µ4
2 − 720µ3

3 − 324µ2
2µ5

−162µ2
5 − 360µ3µ7)− 12c6(108µ4

2 − 48µ3
3 − 99µ2

2µ5 + 8µ2
5

+12µ3µ7)− 36c4
(
µ5(10µ2

3 − µ7) + 4µ2
2(22µ2

3 + 5µ7)
))

Π3,12 = c−18
(
c18 − 84c15µ2 − 180c14µ3 + 1368c11µ2µ3 + 144c8µ3(21µ2

2 − 31µ5)
+864c5µ2µ3(33µ2

2 − 4µ5) + c12(−288µ2
2 + 198µ5)− 72c9(9µ3

2 + 20µ2µ5)
+36(µ5(−1 + 6µ2

5) + µ2
2(2 + 36µ2

5)) + 96c10(25µ2
3 − µ7)

+216c7µ2(2µ2
3 + µ7)− 2592cµ2(µ2

2 − µ5)(2µ2
3 + µ7)

−24c3µ2(−1 + 972µ4
2 − 432µ3

3 − 864µ2
2µ5 + 306µ2

5 − 216µ3µ7)
+2c6(−1 + 8424µ4

2 − 864µ3
3 − 4968µ2

2µ5 + 1386µ2
5 + 864µ3µ7)

+72c2(24µ4
3 + µ3(1− 648µ4

2 + 360µ2
2µ5 − 18µ2

5) + 24µ2
3µ7 + 6µ2

7)
+432c4

(
− µ5(4µ2

3 + 5µ7) + µ2
2(66µ2

3 + 9µ7)
))

Π3,13 = c−18
(
c18 − 96c14µ3 − 288c11µ2µ3 + 864c5µ2µ3(6µ2

2 − 7µ5)
−1296c8µ3(3µ2

2 + µ5) + c12(−36µ2
2 + 60µ5)− 36c9(24µ3

2 − 5µ2µ5)
−24c2µ3(1 + 1944µ4

2 − 432µ2
2µ5 + 126µ2

5) + 24(µ5 + 18µ3
5

+µ2
2(3− 162µ2

5)) + 288c7µ2(10µ2
3 − µ7) + 12c10(118µ2

3 − µ7)
−432cµ2(12µ2

2 + µ5)(2µ2
3 + µ7)− 24c3µ2(−1 + 648µ4

2 − 288µ3
3

−486µ2
2µ5 − 144µ3µ7) + 2c6(1 + 3240µ4

2 − 2448µ3
3 + 324µ2

2µ5

−126µ2
5 + 72µ3µ7) + 144c4

(
6µ2

2(22µ2
3 − µ7) + µ5(50µ2

3 + µ7)
))

F E8 geometry

F.1 LMO side: minimal orbit

The orbit consists of 240 30-dimensional vectors with entries −2,−1, 0, 1, 2. If w is in the orbit, so

does −w and its shift ε(w) = (wj+1 mod a)j . Below we give an element of {±w,±ε(w), . . .} that has
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w0 6= 0 and n0(w) ≥ 0, and indicate the size l of this sub-orbit. The vectors are compactly encoded

in w(t) =
∑29

k=0wkt
k.

n0 l w(t)

±6 2 · 5 1 + t5 + t10 + t15 + t20 + t25

±5 2 · 6 −1 + t+ t5 − t6 + t7 + t11 − t12 + t13 + t17 − t18 + t19 + t23 − t24 + t25 + t29

±4 2 · 15 −1 + t+ t4 − t5 + t7 + t13 − t15 + t16 + t19 − t20 + t22 + t28

±3 2 · 10 −1 + t+ t3 − t4 + t7 − t10 + t11 + t13 − t14 + t17 − t20 + t21 + t23 − t24 + t27

±3 2 · 10 1− t+ t2 − t3 + t4 + t10 − t11 + t12 − t13 + t14 + t20 − t21 + t22 − t23 + t24

±2 2 · 15 −1 + t+ t2 − t3 + t7 − t9 + t11 − t15 + t16 + t17 − t18 + t22 − t24 + t26

±2 2 · 15 1− t+ t3 − t4 + t5 − t6 + t8 + t15 − t16 + t18 − t19 + t20 − t22 + t23

±1 2 · 30 2− t+ t6 − t7 + t10 − t11 + t12 − t13 + t15 − t17 + t18 − t19 + t20 − t23 + t24 − t29

0 2 · 5 −1 + t4 − t5 + t9 − t10 + t14 − t15 + t19 − t20 + t24 − t25 + t29

0 2 · 5 1− t2 + t5 − t7 + t10 − t12 + t15 − t17 + t20 − t22 + t25 − t27

0 2 · 3 1− t+ t3 − t4 + t6 − t7 + t9 − t10 + t12 − t13 + t15 − t16 + t18 − t19 + t21

−t22 + t24 − t25 + t26 − t28

0 2
∑29

j=0(−1)jtj

F.2 LMO side: Newton polygon

The boundary (and coefficients therein) of the Newton polygon of the full curve PLMO
E8

(X,Y ) is the

same as the one of the polynomial computed in terms of the minimal orbit data:

C
240∏
i=1

(
Y − (−cx)n0(w[i])ζ

n1(w[i])
30

)
, X = x30, c = eλ/1800. (F.1)

where the constant C is fixed so that the monomial X9Y 0 appears with coefficient 1. The result is:

PLMO
E8

(X,Y ) = −c−240(1 +X18)Y 106(Y + 1)2(Y 2 + Y + 1)3(Y 4 + Y 3 + Y 2 + Y + 1)

+c210(X +X17)(Y 76 + · · ·+ Y 164) + 2c180(X2 +X16)(Y 61 + · · ·+ Y 179)
+c150(X3 +X15)(Y 46 + · · ·+ Y 194)− 2c120(X4 +X14)(Y 36 + · · ·+ Y 204)
+c90(X5 +X13)(Y 26 + · · ·+ Y 214)− c60(X7 +X11)(Y 11 + · · ·+ Y 229)
+c30(X8 +X10)(Y 5 + · · ·+ Y 235) +X9(1 + Y 240) ,

where the · · · lie in the interior of the polygon.
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