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1. We shall survey a recent progress in the L2 theory for the "8-<>perator on complete

Kähler manifolds with emphasis on the extensions of Hodge theory to noncompact mani­

folds.

2. Let X be a (connected) complex manifold of dimension n, and let Hf(X) and

HP,q(X) be respectively the r-th de Rham cohomology group /( and the Dolbeault eoho­

mology group of type (p,q) of X. First of all we recall two fundamental facts:

Theorem 1 (Hodge-de Rham) If X is compact, nr(X) and nP,q(X) are finite dimen­

sional veetor spaces /(.

Theorem 2 (Hodge) H X is compaet and admits a Kähler metrie, then there exist canoni­

cal (-linear isomorphisms ir : e HP,q(X) ---t Hr(X) such that
p+q=r

In case X is noncompact, although neither HT(X) nor HP,q(X) are finite dimensional in

general, there exist some significant cases where the finite dimenality is observed. For

instance let V be a complex analytic space of dimension n, and let x E V be an isolated
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singular point such that the germ of V at x is irreducible. By llirona"S; theorem there
r

exist aStein neighbourhood U 3 p, a locally closed complex submanifold tf C IPN for

some NEIN, and a proper holomorphic map r: t1---. U such that r 111 \ 1"-1(x) is a

biholomorphism. Let X = t1. Then we have

Proposition 3. Under the above situation,

Moreover HP,q(X) (q ~ 1) depend only on the germ (X, 1"-1(x)) in the sense that t he

restriction maps

HP,q(X) ---. lim HP,q(W)

WJr-1(x)

are isomorphisms for q ~ 1, where W runs through the neighbourhoods of ~-1(x).

In fact, Proposition 3 is a special case of the finiteness theorem of Andreotti-Grauert [1],

which we shall recall briefly below. A complex manifold, denoted by X again, is said to be

k-<:onvex (resp. k-<:oncave) if there exists a C2 exhaustion function f{J : X ---. [O,lD)

(resp. ---. (a,O] for some a E [--aJ,O)) such that the complex Hessian EflJrp has at least

n-k+1 positive eigenvalues outside a compact subset of X. The function f{J is called then

a k--eonvex (resp. k--concave) exhaustion function oI X, by an abuse of language.

Theorem 4 Let X be a k--convex (resp. k-eoncave) manifold. Then



-3-

Remark It is weIl known that every noncompact X is n~onvex. In fact it is, even the

better, n=:eomplete in the sense that X admits an exhaustion function which is everywhere

n=:eonvex (cf. [8], [15], [26]). In the situation of Proposition'3, X is l=:eonvex since the

pull-back of any strongly plurisubharmonic exhaustion funetion of U by 'X' satisfies the

requirement of rp for k = 1.

Therefore one may naturally look for an analogue of Theorem 2 on k-eonvex (resp. k=:eon­

cave) Kähler manifolds, hoping there would exist a relevant generalization of the theory of

harmonie forms to noneompaet manifolds. In [23,24] we have established a method of com­

paring L2 harmonie forms with ordinary cohomology classes, and deduced the following.

Theorem 5 Let X be an n-dimensional Kähler manifold whieh admits a plurisubharmonic

k~onvex exhaustion function. Then

(1)

and

(2)

EB HP1~X) ~ Hr(X) if r ~ n + k
p+q=r

canonieally. Moreover, exterior multiplieation by the Kähler form w induces isomorphisIDB

u (X) JA I Un+s(X) for s ~ k.

Here H~--S(X) denotes the (n-s)-th de Rham cohomology group with compaet support.
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Corollary Under the above situation, the natural restrietion homoIDorphisIDS

and

are bijective for r > n - k -1 (resp. p+q < n-k-1) and surjective for r = n-k-1 (reap.

p+q = n-k-1).

Note That the isomorphisms (1) and (2) do not depend on the metric was not mentioned in

our article. The author thanks S. Kosarew for attracting the attention to this point in

Bucarest (June 1989).

In 1983, a new L2 technique was introduced in complex analysis by Donnelly-Fefferman

[11], which simplified the proof of Theorem 5 very much (cl. [34]). Moreover, it turned out

that one can apply their idea to k-eoncave caseB, too. In the following paragraphs we shall

present a framework of an argument for the comparison theorems, several basic L2 esti­

mates related to it, and finally their applications to Hodge theory by showing the exten­

sions of Theorem 2 after [25], [27], [28] and [31].

3. L2 cohomology groups of X shall be defined with respect to an arbitrary Hermitian

metric ds2 on X. Let Lr(X) (resp. LP,q(X)) be the Hilbert space of L2 r-forms (reap.

L2(p,q)-forms) on X, and let d (resp. 7J) be the maximal closed extension of the

exterior derivative (resp. that of the complex exterior derivative of type (0,1)) to

2n 2n
EB Lr(X)( = EB LP,q(X)). The L2 cohomology groups of X are defined by

r=O p+q=O
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and

To simply the notation we put

H(2)(X) = Kerd/Imd mKer 7J/Im 71.

If we want to compare L2 and orclinary cohomology groups, the shortest way seems to

look at the inductive limit lkm H(2)(X\K), where K runs through the compact subsets

of X, since there is an exact triplet:

Here we use the same conventional notation HO(X) for the cohomology with compact

support. In panicular we obtain the following

Proposition 6

(i)

(ii)

H~(X) ~ H(2)(X) if lkm H(2)(X\K) = lkm H(2)(X\K) = 0

HP,q(X) rv HP,q(X) if 1im HP,q(X\K) -I im HP,q-l(X\K) - 0o = (2) K (2) - K (2) - ,

for any r and (p,q).
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H the metric ds2 is complete the closed extensions d and 7J are also minimal, 80 that

the Hodge's star operator * induces, after composing the complex conjugation, isometrieB

on Ker(d+d*) and Ker(7J+71*). Here d* and 7J* denote the adjoints oi d and 7J, res­

pectively.

Hence, by the Poincare duality we obtain

Proposition 7 Let (X,ds2) be an n-dimensional eomplete Hermitian manifold. Then

for auy r.

H the eohomology groups are HausdorH with respect to the natural topology, one can

directly apply the Serre duality. More precisely we have

Proposition 8 Let (X,ds2) be an n-dimensional complete Hermitian manifold, and let

(p,q) be a pair of nonnegative integers. Suppose that Hn-p,n--q(X), Hn-p,n--q+l(X) and

H(2),n~X) are HausdorH. Then

(iv)

Proof Hy the Sene duality, Hb'~X) is then canonically isomorphie to the topologieal dual

space of Hn-p,n--q(X). Sinee H(2),n--q(X) is HausdorH,
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*H(2),n--<l(X) ~ Ker(11 + 11 ) nLn-p,n--<l(X) so that it is the topological dual of

Hf2Y(X). Hence (iv) follows from (ü). D

We note that there exist noncomplete algebraic varieties whose Dolbeault cohomology

group contain non-Hausdorff (p,q)-components (cf. [18], [20]). Nevertheless, there is the

following conjecture of C. Banica (oral communication in Bucarest).

Banica's conjecture: Let X be a Zariski open snbset of aStein manifold. Then HP,q(X)

are Hausdorff.

If we restrict ourselves to k--eonvex or k-roncave manifolds, the Hausdorff properly of

7J-cohomology groups is a consequence of L2 estimates for 11 aB L. Hörmander [16] has

pointed out. Here we shall only sketch the argument after [25]. Let E be a holomorphic

vector bundle over a k--eonvex (resp. k-eoncave) manifold X, and let rp be any k-eonvex

(resp. k-eoncave) exhaustion function of X. Once for all we fix c E IR so that IflJrp haB at

least n-k+1 positive eigenvalues outside

Xc/ 2 := {x EXj~x) < ~} (resp. outside Xc/ 2
:= {x E Xj ~x) > ~}).

The L2 norm of E-valued forms will be denoted by 1111, while the metrics on E and X

shall be specified separately.

Estimate I Let h be any Cm Hermitian fiber metric of E. If X is k-eonvex, there exists

a complete Hermitian metric ds~ on Xc such that, given any continuous fünction

JJ : [O,c) ---+ Dl there exists a Cm function ,\: [O,c) ---+ IR Jor which ,\ > jJ outside [O,c/2]

and with respect to the fiber metric he-,\( (0),
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for any compactly supported E-valued Cm(n,q)-form u on Xc with q ~ k. Here C is a

constant independent of JJ and ~J lIull(c/2) denotes the L2 norm of u on Xc/ 2, and

the adjoint -0* is with respect to he-~(~).

For the proof see [2] or [25]. Let TX denote the tangent bundle of X. Then (p,q)-forms

n p *
are nothing but (A TX GD A TX)-valued (O,q)-forms. Therefore, applying Estimate I to

(p,q)-fornls in this manner one gets apriori estimates for -0, and by a well known general

nonsense (cf. [2], [13], [16]) we obtain

Corollary If q ~ k,

(Serre duality)

Estimate I' Let h be any Cm Hermitian fiber metric of E. If X is k-<:oncave, there

exists a Hermitian metric ds2 on X such that, given any continuous function J':(c,O] ~ IR

one can find a Cm concave decreasing function tl:(c,O] ~ IR for which e-~> (I-tl' +tl")nJ'

outside [c/2,O] and with respect to the modified metrics ),ll(~) ()~7J~ - ),' (~)ds2 and

hetl (~) ,

for any compactly supported E-valued Cm(O,q)-form u on XC with q < n - k.

For the proof one generalizes the argument of [25] in an obvious manner.
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~ The growth condition on ~ is imposed 80 that any prescribed Cm form becomes '

square integrable by adjusting the metrics.

AB before we obtain

Corollary H q < n - k,

Hy a technique of changing simultaneously the fiber metric and the base metric, we can

recover the Runge type approximation theorem for the pairs (X,Xc) and (X,Xc)

(cf. [25]). Anyway the 7J method ia app.licable to prove the following.

Theorem 9 (i) If X ia k-eonvex,

(approximation)

(Serre duality)

for q ~ k.
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(ü) If X is k-eoncave,

(apptoximation)

(Serre duality)

fOt q < n - k.

~ For the proof of the second isomorphism of (ii), one uses the Serre duality and the

obvioUB isomorphism

Unfortunately, Estimate I is far !rom available for the proof of the vanishing of the com­

ponents of 1~m H(2)(X\K). For the purpose we need another kind of L
2

estimate which

1 t 1
amounts to a higher dimensional version of Hardy's inequality Jt-2(J f)2 ~ 4 Jfl for

0, 0 0

f E L2([0,1]). To illUBtrate the idea we first descri1>e it in the simplest way after Donnelly-

Fefferman [11],

Estimate 11 Let (X,ds2) be a Kähler manifold of dimension n, let t: X -+IR be a

C
2
-function, and let { '\i }~= 1 be the eigenvalues of lf8t counted wi th multiplicity.

Then, for any C(I) compactly supported (p,q) form u on X,

*c. u(II7Ju 11 + 1I"l1 ull) ~ inf r t Ilull
, supp u ,p,q
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where C, u = 2 sup{ Idt(x) I; xE supp u},

p q n

and r t,p,q = dist(O,<{ L ~iQ + L ~j - L Akl i 1 ~ i1 <...< ip ~ n

a=1 13=1 13 k=1

where dist(O,<A» denotes the distance between 0 E IR and the convex hull of A.

Proof (Jacobi identity technique) Let A be the adjoint of multiplication by the fundamen­

tal form of ds2. Applying the graded Jacobi identity to the operators 7J, A and left multi­

plication by lJt (lJ := d - 71), we have

*[(9,[Dt,A]] + [[1J,A],Dt] = [[(9,Ot ,A].

Here we identify lJt with itsleft multiplication. Hy using the Kähler identity we obtain

* *[71,Bt ] + [8 ,Ot] = [y=I Hln,A).

Hence,

* *([1J,8t ]u,u) + ([8 ,Dt)u,u) = ([y=I8t9t,A]u,u).

Integration by parts and application of Cauchy-Schwartz inequality and Kähler identity

give the desired estimate. D

Estimate 11 has already applications to some special cases (cf. [27]).

However, in order to get more general resultB we need to modify it as followB (cf. [28]).
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Estimate Irr Let (X,ds2) be a Hermitian manifold of dimension n and let ~i (i = 1,2)

be two real valued CCD functions on X. Then there exist a numerical constant ß suchn

that

for any compacdy supported CCD(p,q) form u. Here w denotes the fundamental form of

ds2.

Proof is an obvious combination of the Bochner trick and Jacobi-identity technique.

Remark 1. In case dw = 0, we recover the classical L2 estimate of Kodaira-Nakano by

letting ~2 = 0 (generaliz&tion to the bundle-valued case ia ·straightforward).

Remark 2. The Jacobi identity technique is a generalization of the Bochner trick, since

Kodaira-Nakano identity is nothing but a modification of the Jacobi identity for the opera­

tors 1J,A and the holomorphic connection by the Kähler identities (cf. [7]). We note that

there exist real analogue of the above estimates, although they appear only partially in the

literature (cf. [12], [30]).

Remark 3. Suitable modificationa of Kodaira-Nakano identity of different kind sometimes

yield the sharpest control of the growth of holomorphic differential forms and harmonie

maps (cf. [9], [10], [29], [33], [38]).
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4. In what follows we suppose that X is embedded as a Zariski open subset of a eompact

complex space X. First we shall describe the extension of Theorem 2 to the k-roneave

cases. The notion of k-<:oneavity ia related to the embedding X c..... X in the following way.

Proposition 10 H dim(X\X) = k, then X is (k+l}-coneave.

For the proof see [1] or [28]. In particular, we note that Theorem 9 can be directly applied

to X. To extend Theorem 2, we need a proper generalization of Kählerianity to complex

spaces.

Definition A Hermitian (resp. Kähler) metrie on a (reduced) complex spaee X is a

Hermitian (resp. Kähler) metnc ds2 on Xreg := {x E X;X is smooth at x} such that,

for any x E X there exist a neighbourhood U 3 x and a CCD function tp: U --+ IR with

ds2 ~ IflJrp ~ 2ds2 (resp. ds2 = IflJrp) on U nXreg.

The following was first diseovered by H. Grauert [13]. Our harmonie theory will be based

on it.

Proposition 11 Let X be a eompaet eomplex spaee with a Hermitian (resp. Kähler) metrie

ds2, and let X (Xreg be any Zariski open subset. ThenJ for a = --Q) and a = 0, there

OOst8 a CCD exhaustion funetion tp: X -+ (a,l] such that ds2 + IflJtp is a complete

metrie on X.

One can find such f{) immediately if X\X is discrete. In fact, for each x EX\X there

exist a neighbourhood U 3 x and a holomorphic embedding (U,x) c.... (~,O), where BN

denotes the eomplex unit ball of dimension N centered at the origin O. Letting z be the

coordinate around 0, we have
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07J(-log(-logllzll)) =~ +~.
-logllzll (1 ogll z 11)

Therefore we obtain our '{J: X ----t (-(1),1] by patching the restrietions of -log(-logllzll)

to U\{x} for all x and multiplyjng a small positive number if necessary. For a = 0, one

may use the function (+log(-logllzll))-l instead of -log(-logllzll), and obtain also a

complete metric. In order to generalize this conatruction to the case dim(X\X) > 0, we

need to use the property of ds2 that it is locally equivalent to the restriction of a metric

on some nonsingular ambient space. This property of ds2 is also crucial in the proof of the

following refinement of Proposition 11.

Proposition 12 (cf. Proposition 1.1 in [28])

Let the notations be as above, and suppose that X admits a Kähler metric. Then, for any

€ > 0, there exist a complete Kähler metric dBi on X, a C(D exhaustion function t:

X ----t (-(1),0] and a neighbourhood W J X\X such that

(*) Jot 1
2 < E

(**) IIflJt I < 2n

(***) The eigenvalues ~1~ ...~ ~n of fflJt with reapect to da; satisfy

l-€<Aj<l+€ for l~j~codim(X\X) on wnx

-€< ~. for j>codim(X\X) on X.
J

Here I I denotes the length with respect to da;.
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Note The property (**) is eventually stupid, since E can be arbitrarily small.

We fix an exhaustion function t as above for some small E, say E = 1/100 n, and choose

c E IR 80 that W) X(c) := {x;t(x) < cl. Then we are in a good position to apply Estima­

te m. In fact, we apply it to X(c) with respect to the metric

ds2 = (A(c-t)-2+1)ds2 + 2A(c-t)-3 8t7Jtx

for BOme A > 0, letting ~1 = A(c-t)-1 and ~2 = t. By a direct computation we have

for p+q> n + dim (X\X) as long aa A is sufficiently large (say A > 216~n4) so that

for any CCD compa.ctly supported (p,q) form u on X(c) if p+q> n + dim(X\X).

Since ds2 is a complete metric, we have then the vanishing of the (p,q) components of

the L2 cohomology with respect to the weighted" norm 1111 . But obviously one has
~1

lIull ~ const IInll for any u, and that two norms 1111 and 1111 are equivalent near
~1 ~1

X\X since I i VI ~1 (x) = O. Moreover, by the property (*) of t the norms with res­
x-+X\X

pect to dsi and ds2 are also equivalent near X\X. Thua we obtain the following
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Theorem 13 Let X be a nonsingular n-dimensional Zariski open subset of a compact

Kähler space X. Then there exists a complete Kähler metric on X such that

and

Here the isomorphism is induced by the natural indusion homomorphism.

Corollary. Under the above situation, there exist canonical isomorphisms

[

Hr(X) ~ e HP,'l(X)
p+q=r

HP,q(X) ~ Hq,P(X)

for p+q < n-dim(X\X)-1, and

[

H~(X) ~ e Hb,q(X)
p+q=r

Hb,q(X) ~ H6'P(X)

for p+q > n+dim (X\X)+1.

OPen auestion Is Theorem 13 also valid for non-Kähler X?



-17-

Remark In the above proof we heavily use the Kählerianity to absorb the term

ß 1dw 1
2

+ 31 d"'21
2

into r + ' and the author does not know how to generalize
n "'1 "'2,P,q

our argument to the non-Kähler case. Of course the generalization is trivial if

dim(X\X) = O.

The L2 cohomology group H(2)(X) with resped to a Clll Hermitian metric on X ob­

viously does not depend on the choice of the metric, 80 that it deserves to be studied in

detail, too. The following was proved in [27] by regarding the metric on X as a limit of

complete metrics on X for which the L2 estimates are uniform.

Theorem 14 If dim(X\X) = 0, then

[

HP,q(X) ~ Hf2Y(X)

Hn-p,n--q(X) ~ H(2),n--q(X)

for p+q>n+1 and

[

H~(X) ~ H(2)(X)

Hr(X) ~ H(2)(X)
/

for r>n+l, with respect to any Hermitian metric on X.

~ In [27] the above reault is stated only for the Kähler caBe, hut the same proof applies

to the general case.
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Remark 1 LUde is known about the struetures oC Hf2~(X) and H(2)(X) outside the

above ranges, although there sooms to exist a relation between H(2)(X) and the inter­

section cohomology groups oC X (er. [6], [17], [21], [36], [37], [39]). See [22] and [35] Cor the

Hodge strueture of the intersection cohomology groups.

Remark 2. As for the eorollary to Theorem 13, a completely different proof was recently

given by Arapura [3]. In ca.se X is projective algebraic, its algebraic version exists (cf.

[4,5] .

5. Now we turn to discuss the opposite case where X is k-eonvex. Compared to the

k-eoncave case, the situation seems to be more delicate.

Example ([5], [14]) Let y C-..tIPN be a nonsingular projective Burface, and let E --i Y be a

rank two vector bundle defined as the kernel oC a surjective homomorphism

*Let X be any (algebraic) compactification of the total space of the dual bundle E and

*let X be the complement of the zero section of E in X. Obviously X is 2-eonvex, but

a computation shows (cf. [5]) that dim H6(X) = 1 and l dim HP,q(X) ~ 2. More­

p+q=6

over H4,2(X) f 0 and H2,4(X) = 0, so that the Hodge symmetry doesn't hold either.

Therefore, in order to extend Theorem 2 to k-eonvex Zariski open subsets X CX, we need

to impose an additional condition on the boundary of X. Bauer-Kosarew [4,5] has shown

the following.
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Theorem 15 Let X be a projective algebraie variety of dimension n, let Y C X be an

algebraic subset whose ideal sheaf J y is invertible, and let X = X\Y. Suppose that the

line bundle (Jyl J~)* ---+ Y is k-ample in the sense of Sommese*. Then

1: dim HP,q(X) = dim Hr(X)

p+q=r

and

for r, p+q > n+k.

Note 1t seems to be diffieult to see whether there exist canonieal isomorphisms

EB HP,q(X)~ Hr(X) B.t. HP,q(X) = HP,q(X)
p+q=r

in the above range.

The nation of k-ampleness has a differential geometrie counterpart: Let L be a holamor­

phie line bundle over a reduced complex Bpa.ce Y. L is said to be semipoaitive of rank l

if there exist a Cm fiber metrie h of L such that the eurvature of h/Yreg ia

* A holamorphie line bundle L ---+ Y is said to be k-ample if there exist positive

integers, l,N and holomorphic sections sO,sl' ... ,sN of L~l such that the ratio

(sO:S(''':SN) defines a morpisID whose fibers have dimension ~k.
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semipositive and, for any C(D funetion tp: Y --+ (R with supp tp ce Y, there exists f > 0

such that the eurvature of the modified fiber metne heEtp has at least l positive

eigenvalues on Yreg.

Theorem 16 Let X be a Zariski open suhst of a compact n-dimensional Kä.hler manifold

X.If X\X is a divisor whose normal bundle is semipositive of rank n-k-l, then

and

Ei HP,q(X) ~ H1(X)
p+q=r

if r > n+k

if p+q> n+k+l.

Proof is given in [31]. It is true that the isomorphisms are canonical in the range

r,p+q > n+k+l (cf. [32]). We do not know whether HP,q(X) ~ Hq,P(X) in case

p+q = n+k+l.

Note Suppose a holomorphic line bundle Lover an n-dimensional manifold Y is

k-ample, but not (k-l)-ample. Then L is semipositive of rank n-k if and only if

rank d(sO:...:sN) =n-k for same sO, ... ,sN E r(Le i )( l » 0 ). But clearly

{'semipositive of rank n-k'-bundles}

i {k-ample bundles}

if Y is a compact Kähler manifold with H1(y) 'f O.
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