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1. We shall survey a recent progress in the L2 theory for the J-operator on complete
Kahler manifolds with emphasis on the extensions of Hodge theory to noncompact mani-

folds.

2. Let X be a (connected) complex manifold of dimension n, and let H'(X) and
HP>3(X) be respectively the r—th de Rham cohomology group /€ and the Dolbeault coho-
mology group of type (p,q) of X. First of all we recall two fundamental facts:

Theorem 1 (Hodge—de Rham) If X is compact, H'(X) and HP'3(X) are finite dimen-

sional vector spaces /C.

Theorem 2 (Hodge) If X is compact and admits a Kéhler metric, then there exist canoni-

cal Clinear isomorphisms i': ® HP*9(X)— H'(X) such that
p+g=rt

(B8P Y(X)) = {(EIP(X)).

In case X is noncompact, although neither H(X) nor HP*3(X) are finite dimensional in
general, there exist some significant cases where the finite dimenality is observed. For

instance let V be a complex analytic space of dimension n, and let x € V be an isolated
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singular point such that the germ of V at x is irreducible. By erona}qa theorem there
exist a Stein neighbourhood U 3 p, a locally closed complex submanifold Bc IPN for
some N €N, and a proper holomorphic map x: ¥ — U such that 1r|U \ w_l(x) is a
biholomorphism. Let X = 1. Then we have

Propositign 3. Under the above situation,
dimch’q(X) <o if q>1.

Moreover HP'9(X) (q> 1) depend only on the germ (X,u'_l(x)) in the sense that the

restriction maps

HPY(X)—  lim HEPYW)
wirl(x)

are isomorphisms for q 2 1, where W runs through the neighbourhoods of r_l(x).

In fact, Proposition 3 is a special case of the finiteness theorem of Andreotti~Grauert [1],
which we shall recall briefly below. A complex manifold, denoted by X again, is said to be
k—convex (resp. k—concave) if there exists a C? exhaustion function ¢: X —[0,0)
(resp. — (a,0] for some a € [-®,0)) such that the complex Hessian &#8p has at least
n—k+1 positive eigenvalues outside a compact subset of X. The function ¢ is called then

a k—convex (resp. k—concave) exhaustion function of X, by an abuse of language.
Theorem 4 Let X be a k—convex (resp. k—concave) manifold. Then

dimcHPYX) <o if q2 k.
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Remark It is well known that every noncompact X is n—convex. In fact it is, even the
better, n—complete in the sense that X admits an exhaustion function which is everywhere
n—convex (cf. [8], {15], [26]). In the situation of Proposition 3, X is 1—convex since the
pull-back of any strongly plurisubharmonic exhaustion function of U by = satisfies the

requirement of ¢ for k = 1.

Therefore one may naturally look for an analogue of Theorem 2 on k—convex (resp. k—con-
cave) Kihler manifolds, hoping there would exist a relevant generalization of the theory of
harmonic forms to noncompact manifolds. In [23,24] we have established a method of com-

paring L2 harmonic forms with ordinary cohomology classes, and deduced the following.

Theorem 5 Let X be an n—dimensional Kahler manifold which admits a plurisubharmonic

k—convex exhaustion function. Then

(1) ® HPYX)vHY(X) if r>n+k
p+q=r

and

(2) BP9(X) v HYP(X) if p+q D n+k

canonically. Moreover, exterior multiplication by the Kahler form w induces isomorphisms

H’S‘“(X)“’s—“-»nn“(X) for s> k.

Here HS_B(X) denotes the (n—8)—th de Rham cohomology group with compact support.
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Corollary Under the above situation, the natural restriction homomorphisms

H(X) — 1im HY(X\K
(X) Kiee (X\K)

and

HP9(X) — 1im HPY(X\K)
x) KCCX \

are bijective for r > n—k —1 (resp. p+q < n—k—1) and surjective for r = n—k—1 (resp.
p+q = n—k-1).

Note That the isomorphisms (1) and (2) do not depend on the metric was not mentioned in
our article. The author thanks S. Kosarew for attracting the attention to this point in
Bucarest (June 1989).

In 1983, a new L2

technique was introduced in complex analysis by Donnelly—Fefferman
[11], which simplified the proof of Theorem 5 very much (cf. [34]). Moreover, it turned out
that one can apply their idea to k—concave cases, too. In the following paragraphs we shall
present a framework of an argument for the comparison theorems, several basic L2 esti-
mates related to it, and finally their applications to Hodge theory by showing the exten-

sions of Theorem 2 after [25], [27), [28] and [31].

3. 1.2 cohomology groups of X shall be defined with respect to an arbitrary Hermitian
metric ds® on X.Let LY(X) (resp. LP*9(X)) be the Hilbert space of L2 r—forms (resp.
Lz(p,q)—forms) on X, and let d (resp. &) be the maximal closed extension of the

exterior derivative (resp. that of the complex exterior derivative of type (0,1)) to

2n 2n
® L'(X)(= ® LPYX)). The 12 cohomology groups of X are defined by
1= p+q=0
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H‘(’z)(X) .= Kerd N LY(X)/Imd N LY(X)
and

Hl(’é‘)l()() := Ker 0 LP9(X)/Im 3 N LP9(X).
To simply the notation we put
H(z)(X) = Kerd/Imd @ Ker §/Im 3.

If we want to compare L? and ordinary cohomology groups, the shortest way seems to

look at the inductive limit 1im H(Z)(X\K), where K runs through the compact subsets
K

of X, since there is an exact triplet:

Hy(X) ————— H()(X)

N\ /

1 In( m H(2)(X\K)

Here we use the same conventional notation HO(X) for the cohomology with compact

support. In particular we obtain the following

Pr ition
(i) Hy(X) 2 Hiy(X) if im Hig)(X\K) = Lim HE5§(X\K) =0
(ii) Hp (%) 2 BR9(X) 1f Li m BY33(X\K) = 11m H(2)_1(X\K) =0,

for any r and (p,q).
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If the metric ds® is complete the closed extensions d and @ are also minimal, so that
the Hodge’s star operator * induces, after composing the complex conjugation, isometrics
on Ker(d+d*) and Ker(d+&*). Here d* and &* denote the adjoints of d and &, res-
pectively.

Hence, by the Poincaré duality we obtain
Proposgition 7 Let (X,dﬂz) be an n—dimensional complete Hermitian manifold. Then

(iii) H2N(X) o H?HSI(X) if 1im Hig)(X\K) = lim HB(X\K) =0

for any r.

If the cohomology groups are Hausdorff with respect to the natural topology, one can

directly apply the Serre duality. More precisely we have

Proposition 8 Let (X,ds2) be an n—dimensional complete Hermitian manifold, and let
(p,q) be a pair of nonnegative integers. Suppose that H™ P 4(X), Hn—p,n—q+1(x) and
Hr(n;g,n—q(x) are Hausdorff. Then

(iv) B PRO0x) 3 HE) (X

(2

it 1im HR;HX\K) = 11mH1(’ 4 Lx\K).

Proof By the Serre duality, Hg’q(x) ig then canonically isomorphic to the topological dual
space  of H PP 9X).  Since Hl(lgg’n_q(}() is  Hausdorff,



.

Hl(lgg’n_q(x)gKer('8+'B*)ﬂ L P29X) g0 that it is the topological dual of
HI()é()l(X) Hence (iv) follows from (ii). O

We note that there exist noncomplete algebraic varieties whose Dolbeault cohomology
group contain non—Hausdorff (p,q)—components (cf. [18], [20]). Nevertheless, there is the

following conjecture of C. Banica (oral communication in Bucarest).

Banica’s conjecture: Let X be a Zariski open subset of a Stein manifold. Then HP'9(X)
are Hausdorff.

If we restrict ourselves to k—convex or k—concave manifolds, the Hausdorff property of
‘B—cohomology groups is a consequence of 12 estimates for ¥ as L. Hormander [16] has
pointed out. Here we shall only sketch the argument after [25]. Let E be a holomorphic
vector bundle over a k—convex (resp. k—concave) manifold X, and let ¢ be any k—convex
(resp. k—concave) exhaustion function of X. Once for all we fix ¢ € R so that #8p has at

least n—k+1 positive eigenvalues outside
Xc/2 = {x € X;p(x) < ;’-} (resp. outside x°/2 .= {x €X; p(x) > %})

The L? norm of E—valued forms will be denoted by || ||, while the metrics on E and X
shall be specified separately.

Estimate I Let h be any C® Hermitian fiber metric of E. If X is k—convex, there exists
a complete Hermitian metric dsi on xc such that, given any continuous function
p:[0,c) — R there exists a C® function A:[0,c) — R for which A > ux outside [0,c/2]
and with respect to the fiber metric he-A(‘a),

lull < clall + 113"ull + llull e/
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for any compactly supported E—valued C®(n,q)—form u on X c with q 2 k. Here C isa

constant independent of x4 and A, ||u||(c /2) denotes the L® norm of u on X, /2 and
¥ —

the adjoint & is with respect to he ,\(go).

For the proof see [2] or [25]. Let Ty denote the tangent bundle of X. Then (p,q)—forms

n P =x
are nothing but (A Ty ® A Ty )-valued (0,q)~forms. Therefore, applying Estimate I to
(p,q)—forms in this manner one gets a priori estimates for @, and by a well known general

nonsense (cf. [2], [13], [16]) we obtain

Corollary If q 2k,
; P,q
dim (X ) < o

*

(\EPYX)) 2 HTPY(x ) (Serre duality)
Estimate I’ Let h be any C® Hermitian fiber metric of E. If X is k—concave, there
exists a Hermitian metric ds® on X such that, given any continuous function u:(c,0}-R

one can find a C® concave decreasing function A:(c,0] » R for which s> (1-2"+2") "

outside [c/2,0] and with respect to the modified metrics A"(p)8p8p— A’ (9a)ds2 and
heA(‘o),

*
lull < CClBall + 13"ull + el 5
for any compactly supported E-valued C®(0,q)~form u on X% with q<n-—k.

For the proof one generalizes the argument of [25] in an obvious manner.

!
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Note The growth condition on A is imposed so that any prescribed C® form becomes
square integrable by adjusting the metrics.

As before we obtain
Corollary If q < n -k,

dim H?Y(X%) < o

Hp,n—k(xc) is Hausdorff

(BPY(X%)" & BE PR Y(XC) (Serre duality)
By a technique of changing simultaneously the fiber metric and the base metric, we can
recover the Runge type approximation theorem for the pairs (X,Xc) and (X,X9
(cf. [25]). Anyway the § method is applicable to prove the following.
Theorem 9 (i) If X is k—convex,

P 9(X) » P Y(X c) (approximation)

HP" Y (X) & HYTUX ) (Serre duality)

for q2 k.



(ii) If X is k—concave,

AP9(X) ¥ HPYX) (approximation)
H"9(X) 2 HE"TY(X6) (Serre duality)
for q <n-—k.

Note For the proof of the second isomorphism of (ii), one uses the Serre duality and the

obvious isomorphism

Hg:ﬂ"‘Q(x) — (11212 Hg,n—q(xd)

Unfortunately, Estimate I is far from available for the proof of the vanishing of the com-
ponents of lim H(z)(X\K). For the purpose we need another kind of 12 estimate which
K

1 t 1
amounts to a higher dimensional version of Hardy’s inequality J t“2(J f)2 <4 ‘[ 2 for
0. 0 0

fe L2([0,1]). To illustrate the idea we first describe it in the simplest way after Donnelly-
Fefferman [11],

Egtimate IT Let (X,dsz) be a Kahler manifold of dimension n,let ¥#:X—R be a
Cz—function, and let {,\i}lil=1 be the eigenvalues of Jd¥ counted with multiplicity.

Then, for any C® compactly supported (p,q) form u on X,

*
C Gul|+[[Ful))2 inf T
wlllZall + [77ulD2 int Py o llu]



where Cg . = 2sup{|d¥(x)|; x € supp u}

P q n
= dist(0,<{ ) Aia+ ) X -y Ml 1€0) <<ip €
a=1 f=1 k=1

and Ty pa

and 1< j;<.< jq <{n}>),
where dist(0,<A>) denotes the distance between 0 € R and the convex hull of A.

Proof (Jacobi identity technique) Let A be the adjoint of multiplication by the fundamen-
tal form of ds2. Applying the graded Jacobi identity to the operators &, A and left multi-
plication by 8% (8 := d — ), we have

*
[8,[6%,A]) + [[,A],6%] = [[3,6% ,A].
Here we identify ¥ with its left multiplication. By using the Kéhler identity we obtain

[3,00] +[8,0%] = [T §0%,A].
Hence,

([3,8% Ju,u) + ([8 ,8%]u,0) = ([y=TT9,AJuu).

Integration by parts and application of Cauchy—Schwartz inequality and Kahler identity

give the desired estimate. o

Estimate II has already applications to some special cases (cf. [27]).

However, in order to get more general results we need to modify it as follows (cf. [28]).
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Estimate ITI Let (X,dsz) be a Hermitian manifold of dimension n and let ¢ (i =1,2)
be two real valued C® functions on X. Then there exist a numerical constant ﬂn such

that

2 * 12
I3, + 13"l

>[ul2 - iaf (r

2 2
-8 |dw|“—-3|dp,|°)
1 suppu ¢1+¢’2:P:q nl l | 2|

for any compactly supported C®(p,q) form u. Here » denotes the fundamental form of

ds?.

Proof is an obvious combination of the Bochner trick and Jacobi—identity technique.

Remark 1. In case dw = 0, we recover the classical 12 estimate of Kodaira—Nakano by

letting ¢, = 0 (generalization to the bundle—valued case is straightforward).
9 g

Remark 2. The Jacobi identity technique is a generalization of the Bochner trick, since
Kodaira—Nakano identity is nothing but a modification of the Jacobi identity for the opera-
tors J,A and the holomorphic connection by the Kahler identities (cf. [7]). We note that
there exist real analogue of the above estimates, although they appear only partially in the
literature (cf. [12], [30]).

Remark 3. Suitable modifications of Kodaira—Nakano identity of different kind sometimes
yield the sharpest control of the growth of holomorphic differential forms and harmonic
maps (cf. [9], [10], [29], [33], [38]).
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4. In what follows we suppose that X is embedded a8 a Zariski open subset of a compact
complex space X. First we shall describe the extension of Theorem 2 to the k—concave

cases. The notion of k—concavity is related to the embedding X & X in the following way.

Proposition 10 If dim(X\X) =k, then X is (k+1)—concave.

For the proof see [1] or [28]. In particular, we note that Theorem 9 can be directly applied
to X. To extend Theorem 2, we need a proper generalization of Kihlerianity to complex

spaces.

Definition A Hermitian (resp. Kahler) metric on a (reduced) complex space X is a
Hermitian (resp. Kahler) metric ds® on Xreg = {x €X;X is smooth at x} such that,
for any x € X there exist a neighbourhood U 3 x anda C® function ¢: U— R with

ds? < d8p< 2ds? (resp. ds? = ddyp) on UN Xreg'

The following was first discovered by H. Grauert [13]. Our harmonic theory will be based

on it.

Proposition 11 Let X be a compact complex space with a Hermitian (resp. Kahler) metric
dsz, and let X C Xreg be any Zariski open subset. Then, for a=—o and a =0, there
exists a C® exhaustion function ¢: X — (a,1] such that ds? + 88y is a complete

metric on X.

One can find such p immediately if X\X is discrete. In fact, for each x € X\X there
exist a8 neighbourhood U 3 x and a holomorphic embedding (U,x) & (BN,O), where BN
denotes the complex unit ball of dimension N centered at the origin 0. Letting z be the

coordinate around 0, we have



58(—log(~log]|2||)) = FBeellzll .. 0logIIZI|310§|IZ|l.
—logllzl|  (1og]|z])

Therefore we obtain our p: X — (—m,1] by patching the restrictions of —log(—log||z||)
to U\{x} for all x and multiplying a small positive number if necessary. For a = 0, one
may use the function (-}-log(—-log”z”))_1 instead of —log(~log||z||), and obtain also a
complete metric. In order to generalize this construction to the case dim(X\X) > 0, we
need to use the property of d:&;2 that it is locally equivalent to the restriction of a metric
on some nonsingular ambient space. This property of ds? is also crucial in the proof of the

following refinement of Proposition 11.

Proposition 12 (cf. Proposition 1.1 in [28])
Let the notations be as above, and suppose that X admits a Kahler metric. Then, for any
€ > 0, there exist a complete Kihler metric dsf( on X,a C® exhaustion function ¥:

X — (—m,0] and a neighbourhood W J X\X such that

*) EJRE:
(**) | 95¥| < 2n
(***) The eigenvalues A,2..2 A of FF¥ with respect to dsi satisfy

1—e<,\j<1+e for 1<j<codim(X\X) on WNX
—6<Aj for j>codim(X\X) on X.

Here | | denotes the length with respect to dsi.
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Note The property (**) is eventually stupid, since € can be arbitrarily small.

We fix an exhaustion function ¥ as above for some small ¢, say ¢ = 1/100 n, and choose
c ER sothat WD X( 0= {x;¥(x) < c}. Then we are in a good position to apply Estima-
te ITI. In fact, we apply it to X( ¢) with respect to the metric

ds? = (A(c-9) 2+ 1)ds? + 2A(c-¥) 2 owTW
for some A > 0, letting ¢, = A(c——'ll)_1 and g, = 9. By a direct computation we have

2 2.1
r — B _|dw|“—3|d
pi+oppa” Paldel”=3ldep| "> 7

for p+q > n + dim (X\X) aslong as A is sufficiently large (say A > 216/33n4) so that

2 *2 s 1012
I3 + I3l > Jlal

for any C® compactly supported (p,q) form u on X( ¢) if p+q>n+ d.im(X\X).
Since d32 is a complete metric, we have then the vanishing of the (p,q) components of
the L? cohomology with respect to the weighted norm || || o But obviously one has
|[uf] € const ||u||‘a1 for any u, and that two norms || || and || ||¢,l are equivalent near
X\X since 1i #;(x) = 0. Moreover, by the property (*) of ¥ the norms with res-

—-X\X

pect to ds)% and ds? are also equivalent near X\X. Thus we obtain the following
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Theorem 13 Let X be a nonsingular n—dimensional Zariski open subset of a compact
Kahler space X. Then there exists a complete Kihler metric on X such that

1 Il( m HI(’é‘)l(x\K) =0 for p+q>n+dim(X\X)

and

HY'3(X) o Hl(’é‘)l()() for p+q >n+dim(X\X)+1.
Here the isomorphism is induced by the natural inclusion homomorphism.

Corollary. Under the above situation, there exist canonical isomorphisms

HX)r & BPYX)
p+q=t

HP:Q(x) n HQ:P(x)
for p+q < n—dim(X\X)—l, and

I 1
Hy(X)2 ® HP'Y(X)
p+q=r

Hp:9(X) 2 HPP(X)
for p+q > n+dim (X\X)+1.

Qpen question Is Theorem 13 also valid for non—KZ&hler X ?
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Remark In the above proof we heavily use the Kahlerianity to absorb the term

2 2 . .
B, ldw|” +3|dp,|” into l"‘o1 +0pp,0 and the author does not know how to generalize

our argument to the non—Kahler case. Of course the generalization is trivial if

dim(X\X) = 0.

The L2 cohomology group H(2)(X) with respect to a C® Hermitian metric on X ob-
viously does not depend on the choice of the metric, 8o that it deserves to be studied in
detail, too. The following was proved in [27] by regarding the metric on X as a limit of

complete metrics on X for which the L2 estimates are uniform.
Theorem 14 If dim(X\X) = 0, then

BP9(X) > Bp33(X)

Hn_P;n—Q(x) N H?;S’:“‘Q(x)
for p+q>n+1 and

Hy(X) & Hfz)(X)

4

H'(X) & H}.\(X
(X) & By (X)
for r>n+1, with respect to any Hermitian metric on X.

Note In [27] the above result is stated only for the Kahler case, but the same proof applies

to the general case.
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Remark 1 Little is known about the structures of Hl(’é‘)l(x) and HE2)(X) outside the
above ranges, although there seems to exist a relation between H(z)(x) and the inter-
section cohomology groups of X (cf. [6], [17], [21], [36], [37], [39]). See [22] and [35] for the

Hodge structure of the intersection cohomology groups.

Remark 2. As for the corollary to Theorem 13, a completely different proof was recently
given by Arapura [3]. In case X is projective algebraic, its algebraic version exists (cf.
[4,5].

5. Now we turn to discuss the opposite case where X is k—convex. Compared to the

k—concave case, the situation seems to be more delicate.

Example ([5], [14]) Let Y & PN bea nonsingular projective surface, andlet E— Y bea
rank two vector bundle defined as the kernel of a surjective homomorphism

*
Let X be any (algebraic) compactification of the total space of the dual bundle E and
*
let X be the complement of the zero section of E in X. Obviously X is 2—convex, but

a computation shows (cf. [5]) that dim HB(X) =1 and 2 dim HP9(X) > 2. More-
p+q=6
over H4’2(X) #0 and H2'4(X) = 0, so that the Hodge symmetry doesn’t hold either.

Therefore, in order to extend Theorem 2 to k—convex Zariski open subsets X C X, we need
to impose an additional condition on the boundary of X. Bauer—Kosarew [4,5] has shown
the following.
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Theorem 15 Let X be a projective algebraic variety of dimension n,let YCX be an
algebraic subset whose ideal sheaf JY is invertible, and let X = X\Y. Suppose that the
* *

line bundle (JY/ .73,) — Y is k—ample in the sense of Sommese . Then

Y dim BPY(X) = dim H'(X)
p+q=r

and
dim HPY(X) = dim HP9(X)
for r, p+q > n+k.

Note It seems to be difficult to see whether there exist canonical isomorphisms

e HPIX) L HY(X) st. HPYX) = HPY(X)
p+q=r

in the above range.

The notion of k—ampleness has a differential geometric counterpart: Let L be a holomor-
phic line bundle over a reduced complex space Y. L is said to be semipositive of rank ¢

if there exist a C® fiber metric h of L such that the curvature of h/Y g i8

¥ A holomorphic line bundle L —Y is said to be k—ample if there exist positive

integers, {,N and holomorphic sections B8 +8N of Lal such that the ratio
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semipositive and, for any C® function ¢:Y — R with supp ¢ CC Y, there exists ¢ > 0
such that the curvature of the modified fiber metric he®¥ has at least £ positive

eigenvalues on Y reg’

Theorem 16 Let X be a Zariski open subst of a compact n—dimensional Kahler manifold

X If X\X is a divisor whose normal bundle is semipositive of rank n—k—1, then

@ HPYX)a~ H(X) if r>n+k
p+aq=r
and

HP9(X) v HYP(X) if  p+q> nt+k+l.

Proof is given in [31]. It is true that the isomorphisms are canonical in the range

r,p+q > n+k+1 (cf. [32]). We do not know whether HP'(X) ~ HYP(X) in case
p+q = n+k+1.

Note Suppose a holomorphic line bundle L over an n—dimensional manifold Y is
k—ample, but not (k—1)—ample. Then L is semipositive of rank n—k if and only if

rank d(8:....8\) = n—k for some 8y,....8; € F(L@l)(t >> 0 ). But clearly

{’semipositive of rank n—k’—bundles}
¢ {k—ample bundles}

if Y is a compact Kahler manifold with HI(Y) # 0.



[1]
[2]
[3]
[4]
[5]

[6]

[7]

g
g

[10]
1]
[12]
13

[14]

[15]

-921 -

REFERENCES

Andreotti, A. and Grauert, H., Théoréme de finitude pour la cohomologie des
espaces complexes, Bull. Soc. Math. France 90, 193—259 (1962).

Andreotti, A. and Vesentini, E., Carleman estimates for the Laplace—Beltrami.
equation on complex manifolds, Publ. Math. IHES 25, 81-130 (1965).

Arapura, D., Local cohomology of sheaves of differential forms and Hodge
theory, preprint, Purdue University 1989.

Bauer, 1. and Kosarew, S., On the Hodﬁe gpectral sequence for some classes of
non—complete algebraic manifolds, Math. Ann. 284, 577593 (1989).

Bauer, I., and Kosarew, S., Some aspects of Hodge theory on non—complete
algebraic manifolds, preprint, Mathematica Go6ttingensis 1989.

Cheeger, J., Goreski, M. and MacPherson, R., L2—cohomology and inter-
section homology of singular varieties, Seminar on Differential Geometry,
Annales of Math. Studies 102, 303—340 (1982).

Demailly, J.—P., Une preuve simple de la conjecture de Grauert-
Riemenschneider, in Séminaire d’Analyse P. Lelong — P. Dolbeault —
H. Skoda, L.N. in Math. 1295, p. 2447, 1987.

Demailly, J.—P., Cohomology of g—convex spaces in top degrees, to appear in
Math. Z.

Diederich, K., Herbort, G. and Ohsawa, T., The Bergman kernel on uniformly
extendable pseudoconvex domains, Math. Ann. 273, 471478 (1986).

Diederich, K. and Herbort, G., Extension of holomorphic functions with
growth conditions, preprint 1989.

Donnelly, H. and Fefferman, C., L2—cohomology and index theorem for the
Bergman metric, Ann. Math. 118, 593619 (198%

Donnelly, H. and Xavier, F., On the differential form spectrum of negatively
curved Riemannian manifolds, Amer. J. Math. 106, 169—185 (1984).

Grauert, H., Characterisierung der Holomorphiegebiete durch die vollstindige
Kahlersche Metrik, Math. Ann. 131, 38—-75 (1956%.

Grauert, H. and Riemenschneider, O., Kahleroche Mannigfaltigkeiten mit
hyper—q—konvexem Rand, Problems in Analysis, Symp. in Honor of §.
Bochner, p. 61-79, Princeton University Press 1970.

Greene, R.E. and Wu, H., Embeddiné of open Riemannian manifolds by
harmonic functions, Ann. Inst. Fourier, Grenoble 25, 215235 (1975).



[16]

[17]

[18]

[19]

[20]

[21]
[22)
[23)
[24]
[25)
[26)
[27)

[28]

[29]
[30]
[31]

[32]

—22 —

Hormander, L., L2—estimates and existence theorems for the d-operator, Acta
Math. 113, 89-152 (1965).

Hsian, W.C. and Pati, V., L2—cohomology of normal algebraic surfaces,
Invent. Math. 81, 395412 (1985).

Kazama, H., d cohomology of (H,C)—groups, Publ. RIMS, Kyoto Univ. 20,
207317 (1984).

Looijenga, E., L2—cohomology of locally symmetric varieties, Comp. Math. 67,
3-20 (1988).

Malgrange, B., La cohomologie d’une variété analytique complexe & bord
pseudo—convexe n’est pas nécessairement séparée (English summary) C.R.
Acad. Sci. Paris Sér. A—B 208, A93—A95 (1975).

Nagase, M., Remarks on the L2—cohomology of singular algebraic surfaces, J.
Math. Soc. Jap. 41, 97-116 (1989).

.
Navafo—Aznar, V., Sur la théorie de Hodge des variétés algébriques A
singularités isolées, Astérisque 130, 272—-307 (1985).

Ohsawa, T., A reduction theorem for cohomology groups of very strongly
g—convex Kihler manifolds, Invent. math. 63, 335354 (1981).

Ohsawa, T., Addendum to: A reduction theorem for cohomology groups of
very strongly g—convex Kahler manifolds, Invent. math. 66, 391—393 %1982).

Ohsawa, T., Isomorphism theorems for cohomology groups of weakly
1—complete manifolds, Publ. RIMS 18, 191232 (1982).

Ohsawa, T., Completeness of noncompact analytic spaces, Publ. RIMS 20,
683—692 (1984).

Ohsawa, T., Hodge spectral sequence on compact Kahler spaces, Publ. RIMS,
Kyoto Univ. 23, 265274 (1987).

Ohsawa, T., Hodée spectral sequence and symmetry on compact Kihler
spaces, Publ. RIMS, Kyoto Univ. 23, 613—625 (1987).

Ohsawa, T., On the extension of 1.2 holomorphic functions II, Publ. RIMS,
Kyoto Univ. 24, 265—275 (1988).

Ohsawa, T., A generalization of the Weitzenbdck formula and an analytic
approach to Morse theory, RIMS—preprint.

Ohsawa, T., Hodge spectral sequence on pseudoconvex domains II, to appear
in Revue Riemanniane de Math. Pure et Appl.

maine
Ohsawa, T., in preparation



[33]
[34]

[35]

[36]

[37]

[38]

[36]

—923—
Ohsawa, T. and Takegoshi, K., On the extension of L2 holomorphic
functions, Math. Z. 195, 197—204 (1987).

Ohsawa, T. and Takegoshi, K., Hodge spectral sequence on pseudoconvex
domains, Math. Z. 197, 1-12 (1988).

Saito, Morihiko, Modules de Hodge polarizables, Publ. RIMS, Kyoto Univ. 24,
849-995 (1988).

Saper, L., L2—cohomology and intersection homology of certain algebraic
varieties with isolated singularities, Invent. Math. 82, 207—255 (1985).

Saper, L. and Stern, M., L2—cohomology of arithmetic varieties, Proc. Nat’l
Acad. Sci. USA 84, 55165519 (1987), to appear in Ann. of Math.

Takegoshi, K., Energy estimates and Liouville theorems for harmonic maps, to
appear in Ann. Ex. Norm. Sup.

Zucker, S., L2—cohomolo of warped products and arithmetic groups, Invent.
Math. 70, 169218 (1982Ey



