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THE TERNARY COMMUTATOR OBSTRUCTION
FOR INTERNAL CROSSED MODULES

MANFRED HARTL AND TIM VAN DER LINDEN

Abstract. We study the notion of internal crossed module in
terms of cross-effects of the identity functor. These cross-effects
give rise to a concept of commutator which allows a description
of internal categories, (pre)crossed modules, Beck modules, and
abelian extensions in finitely cocomplete homological categories in
a way which is very close to the case of groups. We single out the
obstruction which prevents a Peiffer graph from being a groupoid—
which in a semi-abelian context is known to vanish precisely when
the Smith is Huq condition holds, so is invisible in the category of
groups—as a certain ternary commutator. Such a ternary commu-
tator also appears in the Hopf formula for the third homology with
coefficients in the abelianisation functor and in the interpretation
of the second cohomology of an object with coefficients in a module.
It is generally not decomposable into nested binary commutators:
this happens, for instance, in the category of loops, where Smith
is Huq is shown not to hold.

Introduction

Internal crossed modules in a semi-abelian category [42] may be ax-
iomatised in several equivalent ways. In all approaches the starting
point is a desired correspondence between crossed modules and in-
ternal categories, which determines the basic properties that such an
axiomatisation should satisfy.

In the article [41] Janelidze presents axioms for internal crossed mod-
ules in terms of the internal actions he introduced in his article [20] with
Bourn. His analysis is elegant and efficient and captures all appropriate
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examples. It also explains that the extension of the case of groups to
semi-abelian categories is not entirely without difficulties. The most
straightforward description of the concept of crossed module merely
gives so-called star-multiplicative graphs—in which the composition of
morphisms is only defined locally around the origin—and not the in-
ternal groupoids one would expect, in which any composable pair of
morphisms can actually be composed. Of course this defect can be
mended, as it is indeed done in [41]. Unfortunately, the resulting char-
acterisation of internal crossed modules becomes slightly less natural.

The question thus arose when the two concepts (star-multiplicative
graphs and internal groupoids) are equivalent. It turns out [53] that
the gap between the two is precisely as big as the gap between the Huq
commutator of normal subobjects and the Smith/Pedicchio commuta-
tor of internal equivalence relations. That is to say, in a semi-abelian
category they are equivalent if and only if the Smith is Huq condition
holds. This explains why the difference between the two concepts is
invisible in the category of groups, in fact in any of the categories where
internal crossed modules were ever considered: all of those are strongly
protomodular or at least action accessible, so that the Smith/Pedicchio
commutator and the Huq commutator are equivalent. One solution
would be to restrict ourselves to such a somewhat less general context,
but then we would choose to ignore the problem rather than to face it.

Alternatively, another axiomatisation might be found, one which
maybe stays closer to the case of groups, but which shows clearly what
has to be added to make the theory work in general. In the present art-
icle we try to do precisely this. We present a new approach to internal
crossed modules, one which is based on a different notion of internal ac-
tion, and which from the start takes the Smith is Huq problem explicitly
into account. The resulting characterisation is an obvious extension of
the groups case, but at the same time the ingredient missing there is
brought into focus: it appears as a ternary commutator. A byproduct
of this alternative analysis is that the context is enlarged to a non-exact
setting, as we may work in finitely cocomplete homological categories
instead of semi-abelian ones.

Cross-effects of functors. The main technical innovation which al-
lows us to consider higher-order commutators and the corresponding
actions is the general theory of cross-effects. The concept of cross-effect
of a functor between abelian categories was introduced by Eilenberg
and MacLane in the article [29], where it was used in the study of
polynomial functors. This definition does, however, not generalise to
non-additive contexts. The approach due to Baues and Pirashvili [5],
worked out in the case of groups, does extend easily to more general
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situations. It is such an extension we shall consider in the present art-
icle. Here we will not use cross-effects to study polynomial functors—
this is, for instance, done in the articles [35] and [37]. In the present
article we shall rather construct higher-order commutators, and express
the higher-order coherence conditions internal actions may satisfy in
terms of higher cross-effects. In fact, ternary cross-effects will suffice
for our present purposes.

Commutators and actions. The concept of internal action intro-
duced by Hartl and Loiseau [36] blends naturally with the theory of
cross-effects. It is based on the idea that the second cross-effect

pK|Lq � Ker
�A

x1K ,0y
x0,1Ly

E
: K � LÑ K � L

	
of the identity functor 1A of a finitely cocomplete homological category
A evaluated in the objects K, L P ObpAq behaves as a kind of “formal
commutator” of K and L. (This was also discovered independently by
Mantovani and Metere, see [50].) If now k : K Ñ X and l : LÑ X are
subobjects of an object X, their (Higgins) commutator rK,Ls ¤ X
is the image of the induced morphism

pK|Lq � ,2
ιK,L ,2 K � L

x kl y ,2 X.

Using higher cross-effects it is easy to extend this definition to higher-
order commutators: for instance, given a third subobject m : M Ñ X
of X, the ternary commutator rK,L,M s ¤ X is the image of the
composite

pK|L|Mq � ,2
ιK,L,M ,2 K � L�M

B
k
l
m

F
,2 X,

where ιK,L,M is the kernel of

K � L�M

CC
iK
iL
0

G
,

C
iK
0
iM

G
,

C
0
iL
iM

GG
,2 pK � Lq � pK �Mq � pL�Mq.

The basic properties of the (binary) Higgins commutator are explored
in the articles [36] and [50]. In the former it is also explained how this
commutator gives rise to a concept of internal action. We shall recall
some of this in sections 2 and 3; for now it suffices to mention that
an action of an object G on an object A is a morphism ψ : pA|Gq Ñ A
satisfying a certain condition, and that such an action contains just
enough information for reconstructing the semi-direct product A�ψ G.

The ternary commutator obstruction. The Smith is Huq condi-
tion for homological categories may be expressed in terms of cross-
effects as the vanishing of a ternary commutator. Thus a condition
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which is about locally defined internal categorical structures admitting
a global extension is characterised as a computational obstruction.

Indeed, we prove that for equivalence relations R and S on X with
respective normalisations K, L�X, the relations R and S commute in
the sense of Smith and Pedicchio if and only if rK,Ls and rK,L,Xs are
trivial. As rK,Ls � 0 precisely when K and L commute in the Huq-
sense, the object rK,L,Xs is the ternary commutator obstruction
which should vanish for the Smith/Pedicchio commutator and the Huq
commutator to be equivalent in the given situation.

In the category of groups, this condition on ternary commutators is
invisible, as all ternary commutators are expressible in terms of bin-
ary ones. This explains why crossed modules of groups, which cor-
respond to internal categories in the category Gp, may be character-
ised using just a binary commutator as is done in the final section of
MacLane [48]. In general, though, ternary commutators cannot be
written in terms of repeated binary ones.

This new viewpoint on the Smith is Huq condition gives new ex-
amples of categories which satisfy it. A nilpotent category of class 2
is a semi-abelian category whose identity functor is quadratic, i.e., it
has a trivial triple cross-effect [35]. Hence, almost by definition, any
such category satisfies (SH). In particular, the Smith is Huq condition
holds for modules over a square ring, and specifically for algebras over
a nilpotent operad of class two [3].

On the other hand, the category of loops (quasigroups with an iden-
tity) does not satisfy (SH): we give an example of a loop X with an
abelian subloop A and elements a P A, x P X such that the associator
element va, a, xw is non-trivial. (In fact, one of the first examples of
a non-associative structure ever considered will do, see Example 4.9).
This proves that the triple commutator rA,A,Xs need not vanish even
when the binary commutator rA,As does. As a consequence, Loop
is not action accessible or strongly protomodular—though it is well
known to be semi-abelian [8].

Definition of internal crossed modules. Consider a quadruple
pG,A, µ, Bq in which G and A are objects, µ : pA|Gq Ñ A is an action
of G on A, and B : AÑ G is a morphism. This quadruple is a crossed
module when the following three squares commute.

pA|Gq
µ ,2

pB|1Gq
��

A

B
��

pG|Gq
cG,G

,2 G

pA|Aq
cA,A ,2

p1A|Bq
��

A

pA|Gq µ
,2 A

pA|A|Gq
µ2,1 ,2

p1A|B|1Gq
��

A

pA|G|Gq µ1,2
,2 A

The first square expresses the precrossed module condition which says
that the morphism B is G-equivariant with respect to µ and the con-
jugation action cG,G of G on itself. Quadruples which satisfy this first



4 MANFRED HARTL AND TIM VAN DER LINDEN

condition correspond to internal reflexive graphs. Commutativity of the
middle square is the Peiffer condition: the conjugation action cA,A of
A on itself coincides with the pullback B�pµq of µ along B. Quadruples
which satisfy the first two conditions correspond to so-called Peiffer
graphs, which admit some kind of composition locally around the ori-
gin, and which are equivalent to star-multiplicative graphs ([49], see
also [53]). The square on the right commutes when the local composi-
tion of the Peiffer graph extends to a globally defined internal groupoid
structure.

Internal categories in a homological category. Our analysis of
internal crossed modules depends on a new characterisation of internal
categories in terms of internal actions, valid in any finitely cocomplete
homological category. Let us just mention here that an internal reflex-
ive graph

R
d ,2

c
,2 Gelr d�e � c�e � 1G

is an internal category when either one of the following equivalent con-
ditions holds (Theorem 5.2):

� rKerpdq,Kerpcqs � 0 � rKerpdq,Kerpcq, Rs;
� rKerpdq,Kerpcqs � 0 � rKerpdq,Kerpcq, Impeqs;
� the conjugation action cA,R : pA|Rq Ñ A of R on A � Kerpdq
factors through the morphism p1A|cq : pA|Rq Ñ pA|Gq;

� cA,R � pe�cq�pcA,Rq.

Abelian extensions, Beck modules. The concepts of abelian exten-
sion and Beck module allow a similar analysis in terms of internal ac-
tions and ternary commutators. Both are certain internal Mal’tsev op-
erations in a slice category, known to exist if and only if a Smith/Pedicchio
commutator vanishes. We shall see that a short exact sequence

0 ,2 A � ,2 a ,2 X
p � ,2 G ,2 0 (A)

is an abelian extension if and only if A is abelian and rA,A,Xs is zero.
Likewise, an internal G-action ψ : pA|Gq Ñ A on an abelian object A is
a G-module structure on A if and only if a certain induced morphism
ψ2,1 : pA|A|Gq Ñ A is trivial. Alternatively, one could ask that the
induced diagram

pA� A|Gq
xpπ1|1Gq,pπ2|1Gqy ,2

p�|1Gq
��

pA|Gq � pA|Gq
ψ�ψ ,2 A� A

�

��
pA|Gq

ψ
,2 A

commutes, to mention two of several equivalent conditions.
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Applications in homology and cohomology. We give two concrete
applications of these results in semi-abelian (co)homology. First we
characterise double central extensions [31, 40, 60] in terms of binary
and ternary commutators, and obtain a Hopf formula for the third
homology of an object Z with coefficients in the abelianisation functor:

H3pZ, abq �
K ^ L^ rX,Xs

rK,L,Xs _ rK,Ls _ rK ^ L,Xs
,

where K, L � X are the kernels induced by a double presentation of
Z. This formula is valid in any semi-abelian category with enough
projectives, whether the Smith is Huq condition holds or not.

Then we focus on cohomology in semi-abelian categories, and explain
how to connect the main result of [34] with the torsor theories from [21,
27]. The central idea here is that for any abelian extension such as (A),
the conjugation action of X on A factors through p to yield an action of
G on A. This action, called the direction of (A), is always a module,
and thus we obtain the direction functor

dG : AbExtGpAq Ñ ModGpAq.
We give an interpretation of the second cohomology group H2pG, pA,ψqq
of G with coefficients in a module pA,ψq as the group of connected
components of the fibre d�1

G pA,ψq of the direction functor dG over the
module pA,ψq. When, in particular, the action ψ is trivial, we recover
the interpretation worked out in [34] of the second cohomology group
of G with coefficients in an abelian object A as equivalence classes of
central extensions of G by A. On the other hand, the fibre d�1

G pA,ψq
consists of torsors of G by pA,ψq, as in [21] and [27].

Structure of the text. In Section 1 we recall the basic categorical
notions we need further on and introduce some conventions and nota-
tions. Section 2 is devoted to the definition and first properties of
cross-effects and the induced (higher-order) commutators. We recall
some properties from [36, 50] and then prove right exactness results for
cross-effect functors: preservation of coequalisers of reflexive graphs
(Theorem 2.26 and Corollary 2.27) and cokernels inducing certain ex-
act sequences (Proposition 2.31, Corollary 2.32 and Proposition 2.33).
These are used in Section 3 where we explain how to deal with in-
ternal actions and semi-direct products starting from cross-effects. In
Section 4 we give a characterisation of the Smith is Huq condition
(Theorem 4.6) in terms of ternary commutators, and a formula for the
Smith/Pedicchio commutator of equivalence relations in terms of a bin-
ary and a ternary commutator of normal subobjects (Theorem 4.14).
We also find a characterisation of double central extensions (Propo-
sition 4.16) and a Hopf formula for the third homology of an object
(Theorem 4.17). This leads to Section 5 where we give new character-
isations of internal categories (Theorem 5.2), which gives an elementary
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description of the concept of internal crossed module. We use this de-
scription to prove some of its most classical properties: Theorem 5.7
and Proposition 5.12. In Section 6 we turn to abelian extensions; we
obtain some equivalent characterisations (Theorem 6.4) and an explicit
description of the reflection of extensions to abelian extensions (Corol-
lary 6.5). Next, in Section 7, we consider Beck modules; we give several
characterisations (Theorems 7.3, 7.9 and 7.13) and study the relation
with internal crossed modules (Proposition 7.18). In the final Section 8
these results are used in the study of semi-abelian cohomology (The-
orem 8.7).
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1. Preliminaries

As a rule we shall work in a finitely cocomplete homological category
A unless where explicitly mentioned. Some proofs need a semi-abelian
environment; we always explain where and why.

We start with an overview of those basic categorical notions and
results needed throughout the text.

1.1. Pointed categories. A pointed category has a zero object, an
initial object that is also terminal. In a pointed category with finite
sums, we denote the coproduct inclusion Xk Ñ X1 � � � � �Xn by iXk
or by ik, and its canonical retractionC 0

...
1Xk
...
0

G
: X1 � � � � �Xn Ñ Xk

by rXk or by rk. We further write prk : X1�� � ��Xn Ñ X1�� � ��xXk�
� � � � Xn for the morphism whose restriction to Xj is iXj when j � k
and is the zero morphism when j � k.
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Dually, when working in a pointed category with finite products, we
denote the product projection X1 � � � � �Xn Ñ Xk by πXk or πk and
its canonical section

x0, . . . , 1Xk , . . . , 0y : Xk Ñ X1 � � � � �Xn

by σXk or σk.

1.2. Regular and exact categories. Recall that a regular epi-
morphism is the coequaliser of some pair of morphisms. A regular
category is finitely complete and endowed with a pullback-stable (reg-
ular epi, mono)-factorisation system. Given a morphism f : X Ñ Y ,
we write impfq : Impfq Ñ Y for the mono-part in this image factor-
isation of f . If M ¤ X is a subobject of X, we write fpMq for the
direct image of M along f : the image of f �m, where m : M Ñ X is
a monomorphism that represents the subobject.

Regular categories provide a natural context for working with rela-
tions. We denote the kernel relation (= kernel pair) of a morphism f ,
the pullback of f along itself, by pRrf s, f1, f2q. A regular category is
said to be Barr exact when every equivalence relation is effective,
which means that it is the kernel pair of some morphism [1].

1.3. Homological and semi-abelian categories. A pointed cat-
egory with pullbacks is protomodular [11] when the Split Short Five
Lemma holds. When, moreover, the pointed category is regular, then
protomodularity is equivalent to the (Regular) Short Five Lemma:
given a commutative diagram (B) with regular epimorphisms p, p1 and
their kernels, if a and g are isomorphisms then also x is an isomorphism.
We usually denote the kernel of a morphism f by pKerpfq, kerpfqq, and
say that a morphism is proper when its image is a kernel. A proper
monomorphism is said to be normal, and when M ¤ X is a normal
subobject we write M �X.

A pointed, regular and protomodular category is called homolo-
gical [7]. This is a context where many of the basic diagram lemmas
of homological algebra hold. In particular, here the notion of (short)
exact sequence has its full meaning: a regular (= normal) epimorph-
ism with its kernel such as (A) above. A short exact sequence (A) is
split when there exists a section (or splitting) s : G Ñ X of p, i.e.,
a morphism s in A such that p�s � 1G.

Note that a split epimorphism p : X Ñ G may have many splittings.
When just one splitting s is chosen, the couple pp, sq is called a point
(over G). The category of points PtpAq has points in A (considered
as diagrams p�s � 1G) as objects and natural transformations between
points as morphisms. The points over a given object G form the full
subcategory PtGpAq � p1Gq{pA{Gq of PtpAq.

Unless where explicitly mentioned in the text, we shall always work
in a finitely cocomplete homological category which we write A.
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A Mal’tsev category [24] is finitely complete and such that every
reflexive relation is necessarily an equivalence relation. It is well known
that any finitely complete protomodular category is Mal’tsev [12]. Fur-
thermore, the Mal’tsev property is preserved by slicing. This is a con-
text in which many of the basic constructions in commutator theory
make sense. In a Mal’tsev category, internal categories are automatic-
ally internal groupoids.
Semi-abelian categories are homological and exact with binary

sums [42]. In a semi-abelian category, the direct image of a kernel
along a regular epimorphism is still a kernel. In this context, the exist-
ence of binary sums entails finite cocompleteness, and any comparison
morphism xrX , rY y : X � Y Ñ X � Y is a regular epimorphism.

1.4. Extensions and double extensions. An extension in a homo-
logical category is a regular epimorphism. The extensions in A form a
full subcategory ExtpAq of the category of arrows ArrpAq � Funp2op,Aq:
morphisms are commutative squares between extensions. Since regular
epimorphisms are normal, an extension p : X Ñ G may equally well be
considered as a short exact sequence (A). Then we call p an extension
of G by A.

A double extension in A is a commutative square

X
c ,2

d
��

C

g

��
D

f
,2 Z

X
c


 !*� �(

d

� �%

D �Z C
� ,2

_��

C

g
_��

D
f

� ,2 Z

such that all arrows in the induced right hand side diagram are exten-
sions [31]. In a semi-abelian category this happens when the square is a
pushout of regular epimorphisms. Double extensions form a full subcat-
egory Ext2pAq of the category Arr2pAq � ArrpArrpAqq � Funpp22qop,Aq
of double arrows in A. By Lemma 1.5 below, double extensions
correspond to short exact sequences in the category ExtpAq. In other
words, the double extensions in A are the normal epimorphisms in
ExtpAq, and in ExtpAq kernels of normal epimorphisms are computed
degree-wise.

Higher extensions were introduced in [31] following [40] in order to
capture the concept of higher centrality which is useful in the study
of semi-abelian (co)homology: see, for instance, Subsection 4.15 below
and the articles [30, 31, 60]. We shall also need double extensions for
the proof of Theorem 2.26.



THE TERNARY COMMUTATOR OBSTRUCTION FOR INTERNAL CROSSED MODULES9

Lemma 1.5. [14, 18, 20, 31] Consider, in a homological category, a
commutative diagram with exact rows

0 ,2 A1 � ,2 ,2

a

��

X 1 p1 � ,2

x

��

G1

g

��

,2 0

0 ,2 A � ,2 ,2 X p
� ,2 G ,2 0.

(B)

(i) The right hand square p�x � g�p1 is a pullback if and only if a
is an isomorphism.

(ii) Suppose that x and g are regular epimorphisms. Then the
square p�x � g�p1 is a double extension if and only if a is a
regular epimorphism. �

1.6. Abelian objects and internal abelian groups. In a Mal’tsev
category A, an object A is abelian when it carries a (necessarily
unique) internal Mal’tsev operation: a morphism g : A� A� AÑ A
such that gpx, x, zq � z and gpx, z, zq � x. As soon as A is moreover
pointed, such an internal Mal’tsev operation is the same thing as an
internal abelian group structure. However, in general, the two concepts
are different: see, for instance, sections 6 and 7 below where we con-
sider them in a slice category. To avoid confusion, we denote the full
subcategory of A determined by the abelian objects MalpAq, and we
write AbpAq for the category of internal abelian groups in A. Again,
when A is pointed, AbpAq coincides with the full subcategory MalpAq
of A.

For instance, an abelian object in the category of groups is an abelian
group, and an abelian associative algebra over a field is a vector space
(equipped with a trivial multiplication).

1.7. The Huq commutator. A coterminal pair

K
k ,2 X L

llr

of morphisms in a homological categoryHuq-commutes [19, 39] when
there is a (necessarily unique) morphism ϕ such that the diagram

K
x1K ,0y

z�
k

�$
K � L ϕ ,2 X

L
x0,1Ly

Zd

l

:D

is commutative. We shall mostly be interested in the case where k and
l are normal monomorphisms (i.e., kernels). The Huq commutator

rk, lsHuq : rK,LsHuq Ñ X
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of k and l is the smallest normal subobject ofX that should be divided
out to make k and l commute—so that they do commute if and only
if rK,LsHuq � 0. It may be obtained through the colimit Q of the outer
square above, as the kernel of the (normal epi)morphism X Ñ Q. In a
homological category, an object X is abelian when rX,XsHuq � 0.

2. Cross-effects and commutators

We explain how the cross-effects of the identity functor of a ho-
mological category give rise to (higher-order) commutators. We start
with some basic definitions and properties, give some examples and
recall how the binary commutator is a categorical version of the Hig-
gins commutator [36, 38, 50]. Then we focus on right exactness results
for cross-effect functors, mostly those valid in semi-abelian categories:
preservation of coequalisers of reflexive graphs (Theorem 2.26 and Co-
rollary 2.27) and cokernels inducing certain exact sequences (Proposi-
tion 2.31 and Corollary 2.32).

2.1. Cross-effects of functors. We recall how the definition of cross-
effects given in [5] in the case of groups extends to a general categorical
framework [36, 37].

Definition 2.2. [36] Let F : C Ñ D be a functor from a pointed cat-
egory with finite sums C to a pointed finitely complete category D. The
n-th cross-effect of F is the functor

crnpF q : Cn Ñ D,

a multi-functor C Ñ D, inductively defined by

cr1pF qpXq � Ker
�
F p0q : F pXq Ñ F p0q

�
and, for n ¡ 1,

crnpF qpX1, . . . , Xnq � Kerpprq,
where

pr : F pX1 � � � � �Xnq Ñ
n¹
k�1

F pX1 � � � � � xXk � � � � �Xnq

is such that πk�pr � F pprkq. We usually write

F pX1| � � � |Xnq � crnpF qpX1, . . . , Xnq

and

kerpprq � ιX1,...,Xn � ιFX1,...,Xn
: F pX1| � � � |Xnq Ñ F pX1 � � � � �Xnq.

The functor crnpF q acts on morphisms in the obvious way that makes ιX1,...,Xn

natural. When F is the identity functor 1A of A we write

pX1| � � � |Xnq � 1ApX1| � � � |Xnq.



THE TERNARY COMMUTATOR OBSTRUCTION FOR INTERNAL CROSSED MODULES11

Example 2.3. Let us make explicit what happens in the lowest-dimensional
cases, which are essential in the present article. When n � 2 we obtain
a short exact sequence

0 ,2 pX|Y q � ,2
ιX,Y ,2 X � Y

xrX ,rY y� ,2 X � Y ,2 0

for any X, Y in A. Note that the object pX|Y q is denoted X �Y in the
article [50]. When n � 3 and X, Y , Z are objects of A, we consider
the morphism

X � Y � Z

CC
iX
iY
0

G
,

C
iX
0
iZ

G
,

C
0
iY
iZ

GG
,2 pX � Y q � pX � Zq � pY � Zq,

which need no longer be a regular epimorphism; the cross-effect pX|Y |Zq
of 1A is its kernel.

Example 2.4. In the case of groups

pX|Y q � xxyx�1y�1 |x P X, y P Y y,

a kind of “formal commutator” of X and Y as explained in [50] and [36].
This fact will prove crucial in what follows.

Given groups X, Y and Z with respective chosen elements x, y and
z, the word

xyx�1y�1zyxy�1x�1z�1

is an example of an element of pX|Y |Zq.

Example 2.5. In a pointed variety of algebras V , an element of a sum
X � Y � Z is of the shape

tpx1, . . . , xk, y1, . . . , yl, z1, . . . , zmq

where t is a term of arity k � l � m in the theory of V and x1, . . . ,
xk P X, y1, . . . , yl P Y and z1, . . . , zm P Z. It belongs to the cross-effect
pX|Y |Zq if and only if$'&'%

tpx1, . . . , xk, y1, . . . , yl, 0, . . . , 0q � 0 in X � Y ,

tpx1, . . . , xk, 0, . . . , 0, z1, . . . , zmq � 0 in X � Z,

tp0, . . . , 0, y1, . . . , yl, z1, . . . , zmq � 0 in Y � Z.

Here 0 denotes the unique constant of the theory of V .

Proposition 2.6. The multi-functors crnpF q are
(i) reduced: F pX1| � � � |Xnq � 0 if Xk � 0 for some k P t1, . . . , nu;
(ii) symmetric: for any permutation σ P Σn there is an isomorph-

ism

σF : F pX1| � � � |Xnq Ñ F pXσ�1p1q| � � � |Xσ�1pnqq,

natural in X1, . . . , Xn, and moreover σF �τF � pσ�τqF .
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Proof. Assertion (ii) is obvious. For (i), just observe that if Xk � 0,
then the morphism prk is an isomorphism, while by definition prk�ιX1,...,Xn �
0. �

2.7. Joins and the sum decomposition. For subobjects

L ,2 l ,2 X Mlr
mlr

of an object X in a homological category A we write

L_M � Im
�@

l
m

D
: L�M Ñ X

�
and L_M � L�M when L^M � 0 and L is normal in L_M . Note
that we have L_M � L�M if and only if there is a split short exact
sequence

0 ,2 L � ,2 l ,2 L_M
� ,2M ,2lr

m
lr 0,

which justifies the semi-direct product notation (see Section 3). As for
the sum, morphisms defined on L �M are completely determined by
the effect on L and M , and written in a column.

Proposition 2.8. [36] Suppose that A is finitely cocomplete homo-
logical, C is pointed with binary sums and F : C Ñ A preserves zero.
Then we have a decomposition

F pX � Y q � pF pX|Y q � F pXqq � F pY q

for any X, Y in C. �

2.9. Higher-order commutators. We need the following categorical
notion of commutator (of arbitrary length) which was introduced in [36]
and [50] and is more thoroughly studied in [35].

Definition 2.10. Let X be an object of a finitely cocomplete homo-
logical category. The n-fold commutator morphism of X is the
composite morphism

cXn : pX| � � � |Xq � ,2
ιX,...,X ,2X � � � � �X

B 1X
...

1X

F
,2X.

When xi : Xi Ñ X for 1 ¤ i ¤ n are subobjects of X, their commu-
tator is the subobject

rX1, . . . , Xns � Im
�
pX1| � � � |Xnq

px1|���|xnq,2pX| � � � |Xq
cXn ,2X

�

� Im
�
pX1| � � � |Xnq

ιX1,...,Xn ,2X1 � � � � �Xn

B x1
...
xn

F
,2X
�

of X.
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Example 2.11. In [35] it is shown that in the category of groups
rX1, . . . , Xns is indeed essentially generated by all n-fold commuta-
tors of elements of X1, . . . , Xn. In particular, the n-fold commutator
rX, . . . , Xs � ImpcXn q coincides with the n-th term of the lower central
series of X, i.e., with the (normal) subgroup generated by the commu-
tators of weight n in X.

Remark 2.12. The binary commutator rK,Ls is also studied in [50],
where it is called the Higgins commutator. It is an conceptual gen-
eralisation of the commutator constructed in a varietal context in [38].

In contrast with the Huq commutator, the Higgins commutator rK,Ls
need not be normal in X, even when both K and L are normal sub-
objects of X. In fact, the Huq commutator rK,LsHuq of K, L � X is
the normal closure of rK,Ls, so that rrK,Ls, Xs _ rK,Ls � rK,LsHuq

by Proposition 2.15 below.

Remark 2.13. Note that an object X is abelian if and only if its com-
mutator morphism cX2 is trivial: rX,Xs � 0 precisely when rX,XsHuq � 0.

Remark 2.14. The higher-order commutators are generally not built
up out of iterated binary commutators (Example 4.9). Moreover, in
general, the lower central series mentioned in Example 2.11 does not
coincide with the concept considered in [39].

Proposition 2.15. [36, 50] If K, L ¤ X in a semi-abelian category
then the normal closure of K in the join K _ L is rK,Ls _K. �

Proposition 2.16. [36] In a semi-abelian category, considerK, L ¤ X.
The subobject K is normal in K_L if and only if rK,Ls ¤ K. In par-
ticular,

(i) K �X if and only if rK,Xs ¤ K;
(ii) a morphism f : X Ñ Y in A is proper if and only if the com-

posite morphism

pX|Y q
pf |1Y q ,2 pY |Y q

cY2 ,2 Y

factors through Impfq. �

Remark 2.17. As further explained in Example 5.11, the exactness of
A is fundamental here; in fact, it is also shown in [36] that the char-
acterisation (i) of normal subobjects is valid in a finitely cocomplete
homological category if and only if this category is semi-abelian.

The following basic properties commutators have will be useful through-
out the text.

Proposition 2.18. [35] Let X1, . . . , Xn be subobjects of an object X
and let f : X Ñ Y be a morphism.

(o) Commutators are reduced: if Xi � 0 for some i then rX1, . . . , Xns �
0.
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(i) Commutators are symmetric: for any permutation σ P Σn,

rX1, . . . , Xns � rXσ�1p1q, . . . , Xσ�1pnqs.

(ii) Commutators are preserved by direct images:

f rX1, . . . , Xi, . . . , Xns � rfpX1q, . . . , fpXiq, . . . , fpXnqs.

(iii) Commutators are monotone: if M ¤ Xi then

rX1, . . . , Xi�1,M,Xi�1, . . . , Xns ¤ rX1, . . . , Xi�1, Xi, Xi�1, . . . , Xns.

(iv) Removing brackets enlarges the object:

rrX1, . . . , Xis, Xi�1, . . . , Xns ¤ rX1, . . . , Xi, Xi�1, . . . , Xns.

(v) Removing duplicates enlarges the object:

rX1, . . . , Xi, Xi�1, Xi�2, . . . , Xns ¤ rX1, . . . , Xi, Xi�2 . . . , Xns

when Xi � Xi�1.
(vi) Commutators satisfy a distribution rule with respect to joins:

rX1, . . . , Xn, A1 _ � � � _ Ams �
ª

1¤k¤m
1¤i1 ... ik¤m

rX1, . . . , Xn, Ai1 , . . . , Aims.

(vii) When A is semi-abelian, if X1_. . ._Xn � X then rX1, . . . , Xns
is normal in X. �

2.19. Inductive nature of cross-effects. We give an alternative in-
ductive description of the higher-order cross-effects.

Lemma 2.20. For objects X1, . . . , Xn in C and 1 ¤ k ¤ n there ex-
ist factorisations ιk, ι1k, ι2k as indicated in the following commutative
diagram, where ι � ιFX1,...,Xk�1,Xk�Xk�1,Xk�2,...,Xn

.

F pX1| � � � |Xk�1| � |Xk�2| � � � |XnqpXk|Xk�1q_��

ιXk,Xk�1

��

ιk
,2 F pX1| � � � |Xnq

ι2klr
_��

ιFX1,...,Xn

��

+ry

ι1k

ry
F pX1| � � � |Xk�1|Xk �Xk�1|Xk�2| � � � |Xnq

� ,2
ι
,2 F pX1 � � � � �Xnq
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Thus ιk and ι2k are mutually inverse isomorphisms, which yields an
exact sequence

0

��
F pX1| � � � |Xnq_��

ι1k��
F pX1| � � � |Xk�1|Xk �Xk�1|Xk�2| � � � |Xnq

xr1Xk
,r1Xk�1

y_��
F pX1| � � � |Xk�1|Xk|Xk�2| � � � |Xnq � F pX1| � � � |Xk�1|Xk�1|Xk�2| � � � |Xnq

��
0

where r1Xj � p1X1 | � � � |1Xj�1
|rXj |1Xj�1

| � � � |1Xnq for j P tk, k � 1u.

Proof. The factorisations ιk, ι1k, ι2k are obtained successively by checking
that the post-compositions with the morphisms prj are trivial. �

Notation 2.21. If F : Cm Ñ D is a multi-functor then for 1 ¤ k ¤ m
we define a multi-functor BkF : Cm�1 Ñ D by

BkF pX1, . . . , Xm�1q � F pX1, . . . , Xk�1,�, Xk�2, . . . , Xm�1qpXk|Xk�1q.

Lemma 2.22. For any sequence of integers k1, . . . , kn�1 such that
1 ¤ kj ¤ j there is a natural isomorphism crnpF q � Bkn�1 � � � Bk1F . �

This follows immediately from Lemma 2.20 and provides an induct-
ive description of cross-effects which allows for inductive proofs. The
subsequent result provides an example of this principle.

Proposition 2.23. Suppose in addition that D is homological and that
F preserves regular epimorphisms. Then for all objects X1, . . . , Xn in
C the functor F pX1| � � � |Xk�1| � |Xk| � � � |Xnq : C Ñ D also preserves
regular epimorphisms.

Proof. This was proved for n � 1 in [36] and then follows for all n by
an induction based on Lemma 2.22. �

We now refine this preservation of regular epimorphisms to a more
precise right exactness property: preservation of coequalisers of reflex-
ive graphs.

2.24. Right exactness of cross-effects. We prove that the cross-
effects of a functor which preserves coequalisers of reflexive graphs still
preserve coequalisers of reflexive graphs. Our proof shall be based on
the following basic principle concerning those coequalisers, valid in
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semi-abelian categories. (But not in merely homological ones!) Let

R
d ,2

c
,2

r�xd,cy

�"

Gelr

|�

q ,2 Q

Rrqs

q1

<G

q2

<G

(C)

be a reflexive graph with its coequaliser, the induced kernel pair pRrqs, q1, q2q
and the comparison morphism r. Certainly both q and r are regular
epimorphisms. But in fact, the converse also holds: any regular epi-
morphism q which coequalises d and c is their coequaliser if and only
if r is a regular epimorphism.

Lemma 2.25. Suppose that A is homological, C is pointed with binary
sums and F : C Ñ A is reduced. Then for any X, Y P ObpCq the
morphism

xF prXq, F prY qy : F pX � Y q Ñ F pXq � F pY q

is a regular epimorphism. Hence also the comparison natural trans-
formation

F pX � p�qq ñ F pXq � F p�q

is regular epic.

Proof. Since the functor F is reduced, the triangle

F pXq � F pY q

@
F piXq
F piY q

D
,2

pr � �&

F pX � Y q

xF prXq,F prY qyx�
F pXq � F pY q

commutes. The result follows, as pr is a regular epimorphism. �

Theorem 2.26. Suppose that A is semi-abelian and C is pointed with
binary sums. Let F : C Ñ A a functor which is reduced and preserves
coequalisers of reflexive graphs. For any object X of C, the induced
functor F pX|�q : C Ñ A also preserves coequalisers of reflexive graphs.
Hence, by induction, so do all resulting functors

F pX1| � � � |Xk�1| � |Xk| � � � |Xnq.
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Proof. Consider in C a reflexive graph with its coequaliser (C) and the
induced diagram

0

��

0

��

0

��

0

��
F pX|Rq

r3 ,2
_��

��

RrF p1X |qqs

��

,2
,2 F pX|Gq_��

��

lr
F p1X |qq ,2 F pX|Qq

_��

��
F pX �Rq

(i)

r2 ,2

_��

RrF p1X � qqs

��

,2
,2 F pX �Gq

(ii)

_��

lr
F p1X�qq ,2 F pX �Qq

_��
F pXq � F pRq

��

r1
,2 RrF p1Xq � F pqqs

��

,2
,2 F pXq � F pGq

��

lr
F p1Xq�F pqq

,2 F pXq � F pQq

��
0 0 0 0

in A that shows how the functor F pX|�q works on this reflexive graph.
By the “basic principle” it suffices to prove that both F p1X |qq and r3
are regular epimorphisms.

In the bottom row, the morphisms r1 and F p1Xq � F pqq are regular
epic by the assumption that F preserves coequalisers of reflexive graphs
and the fact that also the product functor F pXq � p�q does. Indeed,
products preserve regular epimorphisms and kernel pairs. In particular,
F p1Xq � F pqq is the coequaliser of F p1Xq � F pdq and F p1Xq � F pcq.

In the middle row, the morphisms r2 and F p1X � qq are regular epic
because the sum functor X � p�q and the functor F preserve coequal-
isers of reflexive graphs. In particular, F p1X � qq is the coequaliser of
F p1X � dq and F p1X � cq.

The four lower vertical arrows in the diagram are regular epimorph-
isms by Lemma 2.25 and by the fact that r1 is a regular epimorphism.

In the category ExtpAq, coequalisers are computed degree-wise (see,
for instance, [31]). Hence the commutative square (ii) may be con-
sidered as a regular epimorphism in ExtpAq, so that it represents a
double extension in A.

Also the square (i) is a double extension in A. To see this, consider
the following diagram with exact rows, in which r1 � 1F pXq � r.

0 ,2 Kerpr2q � ,2 ,2

��

F pX �Rq

(i)

r2 � ,2

_��

RrF p1X � qqs ,2

_��

0

0 ,2 Kerpr1q � ,2 ,2 F pXq � F pRq
r1 � ,2

πF pRq

��

F pXq � RrF pqqs ,2

πRrF pqqs

��

0

0 ,2 Kerpr1q � ,2 ,2 F pRq
r

� ,2 RrF pqqs ,2 0
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The right and middle composed vertical arrows in it are compatibly
split epimorphisms, so that also the left hand side dotted arrows is a
split, hence a regular, epimorphism. Lemma 1.5 now implies that the
square (i) is a double extension.

Since kernels commute with kernel pairs, Lemma 1.5 implies that F p1X |qq
and r3 are regular epic, and the result follows by the “basic prin-
ciple”. �

Corollary 2.27. For any object X in a semi-abelian category A, the in-
duced functor pX|�q : A Ñ A preserves coequalisers of reflexive graphs.

�

To understand the behaviour of the functor F pX|�q with respect to
cokernels we introduce the following folding operations between cross-
effects of different order which play a fundamental role in all what
follows.

Definition 2.28. Consider X1, . . . , Xn P ObpCq and let r1, . . . , rn be
nonzero natural numbers. Let

∇ri
Xi
�

C
1Xi
...

1Xi

G
: ri �Xi Ñ Xi

denote the folding morphism, and write Xk
i � Xi for 1 ¤ k ¤ ri. Then

a folding operation SX1,...,Xn
r1,...,rn

is defined by requiring the following
square to commute.

crr1�����rnpF qpX
1
1 , . . . , X

r1
1 , X

1
2 , . . . , X

r2
2 , . . . , X

1
n, . . . , X

rn
n q

S
X1,...,Xn
r1,...,rn ,2

_��
ι
X1

1 ,...,X
rn
n

��

crnpF qpX1, . . . , Xnq_��
ιX1,...,Xn

��
F pr2 �X1 � � � � � rn �Xnq

F p∇r1X1
�����∇rnXn q

,2 F pX1 � � � � �Xnq

Remark 2.29. Note that the folding operations are natural in their
arguments. It is also easily checked by the very definition of cross-
effects that the morphism

F p∇r1
X1

� � � � �∇rn
Xn
q�ιX1

1 ,...,X
rn
n

does indeed factor through ιX1,...,Xn .

Notation 2.30. Taking n � 1 and writing m � r1 we obtain a natural
transformation

SFm : crmpF q�∆
m ñ F ,

with ∆m : C Ñ Cm the m-fold diagonal functor, defined by

pSFmqX : crmpF qpX, . . . , Xq
SXm ,2 cr1pF qpXq

ιFX ,2 F pXq

for X P ObpCq.
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Proposition 2.31. Suppose that C is pointed with binary coproducts,
A is semi-abelian and F : C Ñ A is reduced. Then F preserves coequal-
isers of reflexive graphs if and only if any cokernel

A
B ,2 G

q � ,2 Q ,2 0

in C gives rise to an exact sequence

F pA|Gq � F pAq

B
pSF2 qG�F pB|1Gq

F pBq

F
,2 F pGq

F pqq � ,2 F pQq ,2 0

(D)
in A.

Proof. Suppose that F preserves coequalisers of reflexive graphs. For
a cokernel as above, the diagram

A�G

@
B

1G

D
,2@

0
1G

D ,2 GiGlr q � ,2 Q

is a reflexive graph with its coequaliser, hence so is its image

F pA�Gq

F

�@
B

1G

D

,2

F

�@
0

1G

D
 ,2 F pGqF piGqlr
F pqq � ,2 F pQq (E)

through F . Since the kernel of F
�@

0
1G

D�
is F pA|Gq �F pAq by Propo-

sition 2.8, the sequence

F pA|Gq � F pAq
F

�@
B

1G

D

�j

,2 F pGq
F pqq � ,2 F pQq ,2 0

is a cokernel. Here j : F pA|Gq � F pAq Ñ F pA�Gq is the canonical in-
clusion, a normal monomorphism. Hence already the morphism F

�@
B

1G

D�
�j,

as any normalisation of a reflexive graph, is proper: it is a compos-
ite of a split epimorphism with a kernel. Furthermore, this morph-
ism decomposes on the semi-direct product as claimed: first of all,
F
�@

B
1G

D�
�F piAq � F pBq; secondly,

F
�@

B
1G

D�
�ιA,G � F

�
∇2
G

�
�F pB � 1Gq�ιA,G

� F
�
∇2
G

�
�ιG,G�F pB|1Gq

� pSF2 qG�F pB|1Gq.

(F)

Conversely, let

R
d ,2

c
,2 Gelr q � ,2 Q
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be a reflexive graph with its coequaliser. Then its normalisation

Kerpdq
c�kerpdq

,2 G
q � ,2 Q ,2 0

is a cokernel, hence for B � c�kerpdq : A � Kerpdq Ñ G we obtain the
exact sequence (D). Then Proposition 2.8 gives the reflexive graph
with its coequaliser (E). Since R is a regular quotient of A � G this
proves the statement. �

Corollary 2.32. Suppose that C is pointed with binary coproducts, A
is semi-abelian and F : C Ñ A is reduced and preserves coequalisers of
reflexive graphs. Consider an object X and a cokernel

A
B ,2 G

q � ,2 Q ,2 0

in C. Then we obtain an exact sequence

F pX|A|Gq � F pX|Aq

C
SX,G1,2 �F p1X |B|1Gq

F p1X |Bq

G
,2 F pX|Gq

F p1X |qq � ,2 F pX|Qq ,2 0

in A.

Proof. By Theorem 2.26 the functor F pX|�q preserves coequalisers of
reflexive graphs, hence by Proposition 2.31 the sequence

F pX|�qpA|Gq � F pX|Aq

B
F

�
1X

����@ B
1G

D

�ιA,G

F p1X |Bq

F
,2 F pX|Gq

F p1X |qq � ,2 F pX|Qq ,2 0

is exact. Now we only need to prove that

F
�
1X
��@ B

1G

D�
�ιA,G � SX,G1,2 �F p1X |B|1Gq;

but this equality is easily obtained when post-composing with the
monomorphism ιX,G. �

When the morphism q in the statement of Proposition 2.31 happens
to be a split epimorphism in a homological category, the proof may be
simplified and the result extended to the case whereA is not necessarily
Barr exact.

Proposition 2.33. Suppose that C is pointed protomodular with bin-
ary coproducts, A is finitely cocomplete homological and F : C Ñ A is
reduced and preserves regular epimorphisms. Then any split right-exact
sequence

A
B ,2 G

q � ,2 Qlr
s

lr ,2 0

gives rise to split exact sequences

F pA|Qq � F pAq

B
pSF2 qG�F pB|sq

F pBq

F
,2 F pGq

F pqq � ,2 F pQqlr
F psq

lr ,2 0

(G)
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and, given an object X in C,

F pX|A|Qq � F pX|Aq

C
SX,G1,2 �F p1X |B|sq

F p1X |Bq

G
,2 F pX|Gq

F p1X |qq� ,2 F pX|Qq ,2lr
F p1X |sq
lr 0

(H)
in A.

Proof. Consider the following diagram of solid arrows.

F pA|Qq � F pAq

@
ιFA,Q
F piAq

D
,2

_��

F pA�Qq
F prQq � ,2

F

�@
B
s

D

_��

F pQq ,2 0

KerpF pqqq � ,2 ,2 F pGq
F pqq

� ,2 F pQq ,2 0

Its top row is exact by Proposition 2.8. Moreover, F
�@

B
s

D�
is a regular

epimorphism by the protomodularity of C and the hypothesis on F .
Hence by the uniqueness of image factorisations, kerpF pqqq is equal to

im
�
F
�@

B
s

D�
�
@ ιFA,Q
F piAq

D	
� im

�A
pSF2 qG�F pB|sq

F pBq

E	
,

taking (F) into account. Hence the sequence (G) is exact. Now the
exactness of (H) may be deduced as in the proof of Proposition 2.32,
noting that the functor F pX|�q preserves regular epimorphisms (Prop-
osition 2.23). �

3. Internal actions and semi-direct products

There are several ways in which the concept of action can be in-
troduced categorically: starting from monoidal structures [9, 10]; as
algebras over a certain monad, so that an equivalence between actions
and points is obtained [20, 41]; or via cross-effects, as explained in [36].
The interpretation of actions as algebras due to Bourn and Janelidze
is conceptually very beautiful and rests on a deep categorical result:
when A is semi-abelian, the kernel functor PtGpAq Ñ A is monadic, so
that the resulting category of algebras is equivalent to PtGpAq. Thus
the construction of semi-direct products is part of the definition of ac-
tion from the start; being algebras of a monad, actions form a category
of which the properties are well-studied.

In comparison, the definition of actions via cross-effects is rather
ad hoc. But, even when actions-as-algebras are formally equivalent to
actions-via-cross-effects, in some situations the latter notion is easier to
work with. And there is one further, and more important, advantage:
these actions are defined using binary cross-effects, but there are also
higher cross-effects, which may be used to express properties of actions
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that are not so easily captured by other means. In the present article
we shall be studying one instance of this phenomenon.

3.1. Basic definition. Let A, G be objects of A and ψ : pA|Gq Ñ A
a morphism. Consider the coequaliser

pA|Gq
ι
,2

iA�ψ ,2 A�G
q � ,2 Q.

We say that the pair pA,ψq is an action (of G on A) or a G-action
when the morphism kψ � q�iA is a monomorphism. (Compare with
the analysis of actions worked out in [54].) When this happens, we
write A�ψ G � Q and call Q the semi-direct product of A and G
along ψ. It fits into the split short exact sequence

0 ,2 A � ,2
kψ ,2 A�ψ G

pψ � ,2 G ,2lr
sψ

lr 0 (I)

where pψ is induced by rG : A�GÑ G and sψ � q�iG.
It is further proved in [36] that assigning to an action pA,ψq the

point

A�ψ G
pψ � ,2 Glr
sψ

lr

defines one half of an equivalence between the category ActGpAq of G-
actions in A and the category PtGpAq of points in A over G. The other
half takes a point

X
p � ,2 Glr
s

lr

and sends it to the induced dotted arrow ψ in the diagram with short
exact rows

0 ,2 pA|Gq � ,2
ιA,G ,2

ψ
��

A�G
xrA,rGy � ,2@

a
s

D
��

A�G

πG

��

,2 0

0 ,2 A � ,2
a

,2 X
p � ,2 Glr
s

lr ,2 0.

Example 3.2. In the category of groups any action ψ : pA|Gq Ñ A is
already a G-group, i.e., the function

pg, aq ÞÑ g � a � ψpgag�1a�1qa

does not only satisfy the rules 1 �a � a and pgg1q �a � g � pg1 �aq, but also
g � paa1q � pg �aqpg �a1q. This agrees with the fact that in Gp, semi-direct
products correspond with G-groups rather than with general actions.

In practice, it is often desirable to construct suitable actions; a rich
source of actions is given by normal monomorphisms as they carry a
conjugation action of the object they are contained in [36].
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Example 3.3. For any object X, the conjugation action

cX,X � cX2 � ∇2
X�ιX,X : pX|Xq Ñ X

of X on itself corresponds to the split short exact sequence

0 ,2 X � ,2
x1X ,0y ,2 X �X

π2 � ,2 X ,2lr
x1X ,1Xy
lr 0.

Proposition 3.4. Let n : N Ñ X be a normal monomorphism in A.
Then there is a unique action cN,X : pN |Xq Ñ N of X on N such that

pN |Xq
cN,X ,2

pn|1Xq
��

N_��
n

��
pX|Xq

cX,X
,2 X

commutes, the conjugation action of X on N . It is natural in the
sense that any commutative square as on the left

N ,2
_��

��

N 1
_��

��
X ,2 X 1

pN |Xq ,2

cN,X

��

pN 1|X 1q

cN
1,X1

��
N ,2 N 1

gives a commutative square as on the right. �

Proposition 3.5 (Co-universal property of the semi-direct product).
Consider in A an action ψ : pA|Gq Ñ A and morphisms

A
f ,2 Z G.

glr

Then there exists a (necessarily unique) morphism
@
f
g

D
: A�ψ GÑ Z

such that
@
f
g

D
�kψ � f and

@
f
g

D
�sψ � g if and only if the square

pA|Gq
ψ ,2

pf |gq
��

A

f

��
pZ|Zq

cZ2

,2 Z

commutes. �

Example 3.6. The trivial action of an object G on an object A is the
zero morphism 0: pA|Gq Ñ A. Then the semi-direct product A�0 G
is A�G and p0 is the product projection πG : A�GÑ G. Hence two
coterminal morphisms f and g as in Proposition 3.5 Huq-commute if
and only if cZ2 �pf |gq is trivial. This of course also follows immediately
from the fact that A � G is the cokernel of ιA,G : pA|Gq Ñ A�G and
the equality cZ2 �pf |gq �

@
f
g

D
�ιA,G.
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Example 3.7 (Centrality). The conjugation action cN,X of an object
X on a normal subobject N �X is trivial if and only if N is central
in X, which means that n : N Ñ X and 1X : X Ñ X Huq-commute;
indeed n�cN,X � cX,X�pn|1Xq. (Compare with Theorem 3.2.4 in [25].)

Starting from conjugation actions we may again construct various
new actions by the following device (see Lemma 6.1 below for a partial
converse).

Proposition 3.8. [36] Let ψ : pA|Gq Ñ A be an action, let m : M Ñ A
be a monomorphism and h : H Ñ G a morphism. Suppose that M
is H-stable under ψ, i.e., the morphism ψ�pm|hq : pM |Hq Ñ A factors
through a (necessarily unique) morphism ϕ : pM |Hq ÑM such that the
square

pM |Hq
ϕ ,2

pm|hq
��

M
��
m

��
pA|Gq

ψ
,2 A

commutes. Then ϕ is an action of H on M . �

Definition 3.9. When, in particular,M � A in the above proposition,
we write ϕ � h�pψq

pA|Hq
h�pψq

,2

p1A|hq
��

A

pA|Gq
ψ
,2 A

(J)

and call ϕ the pullback of ψ along h.

Remark 3.10. This choice of terminology may be justified as follows.
Through the equivalence of actions and points, the square (J) matches
the morphism of split short exact sequences

0 ,2 A � ,2
kϕ ,2 A�ϕ H

pϕ � ,2

1A�h ��

H

h
��

,2lr
sϕ
lr 0

0 ,2 A � ,2
kψ

,2 A�ψ G
pψ � ,2 G ,2lr
sψ
lr 0;

Lemma 1.5 tells us that the right hand side square of the diagram is a
pullback. (In fact, one easily sees that it is also a pushout.)

Example 3.11. When N �X as in Proposition 3.4,

n�pcN,Xq � cN,N � cN2 .

Indeed, n�cN,X�p1N |nq � cX,X�pn|1Xq�p1N |nq � cX2 �pn|nq, which equals
n�cN2 by naturality of conjugation actions.
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Example 3.12. For any action ψ : pA|Gq Ñ A,

ψ � cA,A�ψG�p1A|sψq � s�ψpc
A,A�ψGq :

the action ψ coincides with the restriction to G of the conjugation
action of the semi-direct product A�ψ G on A.

3.13. A first encounter with a ternary cross-effect. Any action
induces certain higher-order operations which we shall need in what
follows.

Notation 3.14. Let A, G be objects in and ψ : pA|Gq Ñ A a morph-
ism. Consider n ¥ 2 and 1 ¤ k ¤ n � 1. Define ψk,n�k to be the
composite morphism

ψk,n�k : pA| � � � |A|G| � � � |Gq
SA,Gk,n�k ,2 pA|Gq

ψ ,2 A.

In particular, taking ψ to be the conjugation action cN,X of an object
X on some normal subobject N �X, we get morphisms

cN,Xk,n�k : pN | � � � |N |X| � � � |Xq Ñ N.

Note that cN,X1,1 � cN,X . Also the other conjugation actions cN,Xk,n�k are
interrelated, the generic relation being the following one:

Lemma 3.15. For any normal monomorphism n : N Ñ X the equality

cN,X2,1 � cN,X1,2 �p1N |n|1Xq : pN |N |Xq Ñ N

holds. In particular, cX,X2,1 � cX,X1,2 � cX3 .

Proof. Post-compose with n and use the commutative diagrams ob-
tained by injecting the various cross-effects into the corresponding
sums. �

This coherence condition in terms of ternary cross-effects will ap-
pear again in the analysis of crossed modules: see Theorem 5.7 and
Example 5.10 and 5.11 below. We shall also investigate some closely
related structures, such as Beck modules and extensions with abelian
kernel. Those structures all satisfy variations of this condition, vari-
ations which may be expressed in terms of higher-order commutators
(sections 6 and 7).

4. The Smith is Huq condition

We explain how the Smith is Huq condition for finitely cocomplete
homological categories may be expressed in terms of cross-effects as
the vanishing of a ternary commutator. Thus a condition which is
about locally defined internal categorical structures admitting a global
extension is characterised as a computational obstruction. This is the
key point of the present article—all results in the ensuing sections are
based on it.
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Theorem 4.4 characterises when two given equivalence relations R,
S on a common object X commute in the Smith/Pedicchio sense: if K
and L denote their respective denormalisations,

rK,Ls � rK,L,Xs � 0

is a necessary and sufficient condition. This immediately gives a charac-
terisation of the Smith is Huq condition (Theorem 4.6), and a formula
for the Smith/Pedicchio commutator in terms of cross-effects (The-
orem 4.14). We also find a characterisation of double central extensions
(Proposition 4.16), which allows us to obtain a Hopf formula for the
third homology of an object in any semi-abelian category with enough
projectives (Theorem 4.17).

4.1. The Smith/Pedicchio commutator. Consider a pair of equiv-
alence relations pR, Sq on a common object X

R

r1 ,2

r2
,2 X∆R

lr ∆S
,2 S,

s1
lr

s2lr

and consider the induced pullback of r1 and s2.

R �X S
πS ,2

πR

��

S

s2

��
R r1

,2 X

(K)

The equivalence relations R and S Smith/Pedicchio-commute [62,
57, 19] when there is a (necessarily unique) morphism θ (a connector
between R and S) such that the diagram

R
x1R,∆S�r1y

z�

r2

�$
R �X S θ ,2 X

S
x∆R�s2,1Sy

Zd

s1

:D

is commutative. The connector θ is a partially defined Mal’tsev oper-
ation on X, as the diagram commutes precisely when θpx, x, zq � z for
px, zq P S and θpx, z, zq � x for px, zq P R. It is also the same thing
as a pregroupoid structure [46, 44] on the span pd � coeqpr1, r2q, c �
coeqps1, s2qq.

The Smith/Pedicchio commutator rR, SsS of R and S is the
smallest equivalence relation on X that should be divided out to make
R and S commute, so that they do commute if and only if rR, SsS � ∆X .
It may be obtained through the colimit Q of the outer square above,
as the kernel of the (normal epi)morphism X Ñ Q.



THE TERNARY COMMUTATOR OBSTRUCTION FOR INTERNAL CROSSED MODULES27

4.2. The Smith is Huq condition. The normalisation K of an
equivalence relation pR, r1, r2q on X is the monomorphism

r2�kerpr1q : K � Kerpr1q Ñ X.

We say that a monomorphism is an ideal when it is the normal-
isation of some (necessarily unique) equivalence relation [13]. In a
homological category, ideals are direct images of kernels along regu-
lar epimorphisms—see [50] for an in-depth analysis. We shall give a
precise characterisation of ideals in terms of internal actions in Ex-
ample 5.11. For now, it suffices to note that the normalisation of an
effective equivalence relation is always a kernel; conversely, any normal
subobject N �X (in the strong sense, i.e., it may be represented by a
kernel) admits a denormalisation RN , the kernel pair of its cokernel.
This process determines an order isomorphism between the normal su-
bobjects of X and the effective equivalence relations on X, which in
the semi-abelian case coincides with the correspondence between ideals
and equivalence relations.

It is well known that Smith/Pedicchio-commuting equivalence rela-
tions have Huq-commuting normalisations [19]. However, the converse
need not hold; in [7, 16] a counterexample is given in the category of di-
groups, which is a semi-abelian variety, even a variety of Ω-groups [38].
(See also Example 4.9.) Thus arises a property homological categories
may or may not have:

Definition 4.3. A homological category satisfies the Smith is Huq
condition (SH) when any two effective equivalence relations on a
given object commute as soon as their normalisations do.

It turns out that the condition (SH) is fundamental in the study of in-
ternal categorical structures: it is shown in [53] that, for a semi-abelian
category, this condition holds if and only if every star-multiplicative
graph is an internal groupoid. As explained in [41] and in Section 5 of
the present article, this is important in the definition of internal crossed
modules.

The Smith is Huq condition is known to hold for pointed strongly
protomodular exact categories [19] (in particular, for any Moore cat-
egory [58]) and for action accessible categories [22, 25] (in particular,
for any category of interest [55, 56]). Well-known examples are the cat-
egories of groups, Lie algebras, associative algebras, non-unitary rings,
and (pre)crossed modules of groups.

Theorem 4.4. For effective equivalence relations R and S on X with
respective normalisations K, L�X, the following are equivalent:

(i) R and S Smith/Pedicchio-commute;
(ii) rK,Ls � 0 � rK,L,Xs. �

Hence a homological category satisfies (SH) when for any pair of ef-
fective equivalence relations of which the normalisations commute, the
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ternary commutator obstruction vanishes. The proof is an obvious ap-
plication of the following fundamental lemma. The basic admissibility
condition which appears in it was first discovered by Martins–Ferreira,
see e.g. [51]. (Incidentally, we believe Lemma 4.5 answers part of the
question asked in the concluding section of that paper; see also [52].)
We shall consider diagrams of shape

A
f ,2

α
�$

B
r

lr
s
,2

β

��

C
glr

γ
z�

D

(L)

with f �r � 1B � g�s and α�r � β � γ�s. By taking the pullback of f
with g, any diagram such as (L) may be extended to a diagram

A�B C
πC ,2

πA

��

C
e2
lr

g

�� γ

��

A
f ,2

e1

LR

α
'.

B
r

lr

s

LR

β

�$
D

in which the square is a double split epimorphism (i.e., also the obvious
squares involving splittings commute). The triple pα, β, γq is said to
be admissible with respect to pf, r, g, sq if there is a (necessarily
unique) morphism ϑ : A�B C Ñ D such that ϑ�e1 � α and ϑ�e2 � γ.

Lemma 4.5. Given any diagram (L), let k : K Ñ D be the image of
α�kerpfq, l : LÑ D the image of γ�kerpgq and β : B Ñ D the image of
β. Then the triple pα, β, γq is admissible with respect to pf, r, g, sq if
and only if

rK,Ls � 0 � rK,L,Bs.

Proof. We decompose A, C and A�B C into semi-direct products and
then analyse in terms of the induced actions what it means for ϑ to
exist. By the equivalence between actions and points there are unique
actions ϕ, ψ that give rise to the morphisms of split short exact se-
quences

0 ,2 K � ,2
kerpfq

,2 A
f � ,2 B ,2lr
r

lr 0

0 ,2 K � ,2
kϕ

,2 K �ϕ B

ρ �

LR

pϕ � ,2 B ,2lr
sϕ
lr 0
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and

0 ,2 L � ,2
kerpgq

,2 C
g � ,2 B ,2lr
s

lr 0

0 ,2 L � ,2
kψ

,2 L�ψ B

σ �

LR

pψ � ,2 B ,2lr
sψ
lr 0.

By Remark 3.10 we obtain the following commutative diagram with
exact rows, in which ζ � pg�σq�pϕq � ϕ�p1K |pψq.

0 ,2 K � ,2
kζ ,2 K �ζ pL�ψ Bq

κ�

��

pζ � ,2 L�ψ B ,2lr
sζ

lr

σ�

��

0

0 ,2 K � ,2
xkerpfq,0y

,2 A�B C

πA

��

πC � ,2 C

g

��

,2lr
e2�xr�g,1Cy
lr 0

0 ,2 K � ,2
kerpfq

,2 A
f � ,2 B ,2lr
r

lr 0

Now write k � α�kerpfq : K Ñ D and l � γ�kerpgq : L Ñ D. If the
desired morphism ϑ exists then

ϑ�κ � ϑ�
@
xkerpfq,0y
e2�σ

D
� ϑ�

@
x1A,s�fy�kerpfq

e2�σ

D
�
@
ϑ�e1�kerpfq
ϑ�e2�σ

D
�
@
α�kerpfq
γ�σ

D
�

B
α�kerpfq@
γ�kerpgq

β

DF �
A

k@
l
β

DE
.

Conversely, if the morphism

ϑ1 �
A

k@
l
β

DE
exists then ϑ � ϑ1�κ�1 satisfies the relevant constraints: it is clear from
the above calculation that ϑ1�κ�1�e2 � γ and that ϑ1�κ�1�e1�kerpfq �
α�kerpfq, but we also have

ϑ1�κ�1
�e1�r � ϑ1�κ�1

�x1C , s�fy�r � ϑ1�κ�1
�xr, sy � ϑ1�κ�1

�xr�g, 1Cy�s

� ϑ1�κ�1
�e2�s � γ�s � β � α�r.

Thus ϑ1�κ�1�e1 � α. It follows that the desired morphism ϑ exists if
and only if ϑ1 exists, which according to Proposition 3.5 is the case if
and only if the diagram

pK|L�ψ Bq
ζ ,2�

k

����@ lβD

��

K

k

��
pD|Dq

cD,D
,2 D

(M)

commutes. To find conditions for this to happen we use sequence (H)
on the identity functor of A in order to decompose the object pK|L�ψ
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Bq in three parts, via the regular epimorphismC
S
K,L�ψB

1,2 �p1K |kψ |sψq

p1K |kψq

p1K |sψq

G
: pK|L|Bq � pK|Lq � pK|Bq Ñ pK|L�ψ Bq.

First note that by Example 3.12 and naturality of the conjugation
action

k�ζ�p1K |sψq � k�ϕ�p1K |pψq�p1K |sψq � k�ϕ � k�cK,K�ϕB�p1K |sϕq

� cD,D�pk|
@
k
β

D
q�p1K |sψq � cD,D�pk|βq

� cD,D�pk|
@
l
β

D
q�p1K |sψq,

so that Diagram (M) always commutes on pK|Bq.
Next, k�ζ�p1K |kψqq � k�ϕ�p1K |pψq�p1K |kψq � k�ϕ�p1K |0q � 0 by

reducedness of the cross-effect. Hence, for the equality

k�ζ�p1K |kψqq � cD,D�pk|
@
l
β

D
q�p1K |kψqq

to hold, the morphism cD,D�pk|lq � cD2 �pk|lq�pk1|l1q has to be trivial.
(Here we write k � k�k1, and similarly for l and β). Noting that pk1|l1q
is a regular epimorphism by Proposition 2.23, we see that cD,D�pk|lq � 0
precisely when rK,Ls � ImpcD2 �pk|lqq is trivial.

Finally,

k�ζ�S
K,L�ψB
1,2 �p1K |kψ|sψq � k�ϕ�p1K |pψq�S

K,L�ψB
1,2 �p1K |kψ|sψq

� k�ϕ�SK,B1,2 �p1K |pψ|pψq�p1K |kψ|sψq

� k�ϕ�SK,B1,2 �p1K |0|1Bq

is zero, while

cD,D�pk|
@
l
β

D
q�S

K,L�ψB
1,2 �p1K |kψ|sψq � cD,D�SD,D1,2 �pk|

@
l
β

D
|
@
l
β

D
q�p1K |kψ|sψq

� cD3 �pk|l|βq

� cD3 �pk|l|βq�pk1|l1|β1q.

As pk1|l1|β1q is a regular epimorphism by Proposition 2.23, this tells us
that Diagram (M) commutes on pK|L|Bq if and only if rK,L,Bs �
ImpcD3 �pk|l|βqq � 0, which concludes the proof. �

Theorem 4.6. The following are equivalent:
(i) the Smith is Huq condition holds;
(ii) any two effective equivalence relations on a given object com-

mute as soon as their normalisations do;
(iii) any two equivalence relations on a given object commute as

soon as their normalisations do;
(iv) for any K, L ideals of X,

rK,L,Xs ¤ rK,LsHuq.
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Proof. Conditions (i) and (ii) are equivalent by definition. The equiv-
alence between (ii) and (iii) is Remark 2.4 in [53], but may also be
obtained using Lemma 4.5. Now suppose that (iii) holds and consider
normal subobjects K and L of X. Divide out their Huq commutator

0 ,2 rK,LsHuq � ,2 ,2 X
q � ,2 Q ,2 0

and write qpKq, qpLq ¤ Q for the direct images of K and L along q.
By Proposition 2.18.ii we obtain a diagram

rK,L,Xs
��

��

� ,2

t}

rqpKq, qpLq, Qs
��

��
0 ,2 rK,LsHuq � ,2 ,2 X q

� ,2 Q ,2 0

and a factorisation of rK,L,Xs over rK,LsHuq. Indeed, rqpKq, qpLq, Qs
is zero by Theorem 4.4, as rqpKq, qpLqs � qrK,Ls � 0. Finally, (iv) ñ
(ii) is again a consequence of Theorem 4.4. �

This at once yields a new class of examples.

Example 4.7. A nilpotent category of class 2 is a semi-abelian
category whose identity functor is quadratic, i.e., it has a trivial triple
cross-effect [35]. Hence, almost by definition, any such category satisfies
(SH). In particular, the Smith is Huq condition holds for modules over
a square ring, and specifically for algebras over a nilpotent algebraic
operad of class two [3].

Example 4.8. When K, L, M are normal subgroups of a group G,

rK,L,M s � rK, rL,M ss _ rL, rM,Kss _ rM, rK,Lss

by a result in [35]. Hence in Gp all triple commutator words are essen-
tially of the shape considered in Example 2.4.

This of course also gives (SH). So far it is not clear which categories
allow a similar decomposition of their triple commutators.

For instance, the semi-abelian variety Loop of loops and loop homo-
morphisms forms a counterexample. We show that it does not satisfy
the Smith is Huq condition, which also implies that this category is
neither action accessible nor strongly protomodular.

Example 4.9. A loop is a quasigroup with unit, an algebra

pA, �, z, {, 1q

of which the multiplication � and the left and right division z and {
satisfy the axioms

y � x � pxzyq y � xzpx � yq

x � px{yq � y x � px � yq{y
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and 1 is a unit for the multiplication, x � 1 � x � 1 � x. We shall
sometimes write xy for x � y. The variety Loop of loops is semi-abelian
(as mentioned for instance in [8]). Loops are “non-associative groups”,
and indeed an associative loop is the same thing as a group. It is
easily seen that the abelian objects in Loop are precisely the abelian
groups—which are not to be confused with the objects in the variety
of commutative loops, which have a commutative, but possibly non-
associative, multiplication.

The associator of three elements x, y, z of a loop X is the unique
element vx, y, zw of X such that pxyqz � vx, y, zw�xpyzq. Hence vx, y, zw
is equal to ppxyqzq{pxpyzqq. Given three normal subloops K, L and M
of X, we write vK,L,Mw for the associator subloop of X determined
by K, L and M : the normal subloop of K _ L _M generated by the
elements vx, y, zw, where either px, y, zq or any of its permutations is in
K � L�M .

It is clear that the object vK,L,Mw is a subloop of the triple commu-
tator rK,L,M s, as for any associator element vx, y, zw, the associators
v1, y, zw, vx, 1, zw and vx, y, 1w are trivial (Example 2.5). In general the
triple commutator rK,L,M s is bigger though: otherwise the category
of groups would be quadratic—which it is not, as there exist examples
of groups that are not 2-step nilpotent.

In order to prove that the category Loop does not satisfy the Smith
is Huq condition, it suffices to give an example of a loop X with an
abelian normal subloop A of X such that rA,A,Xs is non-trivial. Then
by Theorem 4.4 the denormalisationRA ofA does not Smith/Pedicchio-
commute with itself, even though rA,As � 0. (This situation is further
analysed in Theorem 6.4.) In fact, in our example, already the associ-
ator vA,A,Xw is non-trivial.

We take X to be the well-known (and historically important) loop of
order eight occurring in relation with the hyperbolic quaternions: the
set

t1,�1, i,�i, j,�j, k, ku

with multiplication determined by the rules

ij � k � �ji

jk � i � �kj ii � jj � kk � 1

ki � j � �ik

and the expected behaviour for�1. The subset t1,�1, j,�ju of L forms
a normal subloop A of index two, isomorphic to the Klein four-group
V � Z2 � Z2. Now jpjiq � jp�kq � �i while pjjqi � i, so

1 � vj, j, iw P vA,A,Xw ¤ rA,A,Xs.
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4.10. Decomposition of the Smith/Pedicchio commutator. The
above Theorem 4.4 leads to a formula for the Smith/Pedicchio com-
mutator of two equivalence relations in terms of binary and ternary
commutators of their normalisations: Theorem 4.14.

Lemma 4.11 (cf. Remark 2.12). For any K, L ¤ X in a semi-abelian
category, the join rK,L,Xs _ rK,Ls is normal in X.

Proof. Consider first the quotient q of X by rK,L,Xs, then the direct
image of rK,Ls along q.

rK,Ls
��

��

� ,2 rqpKq, qpLqs
��

��
0 ,2 rK,L,Xs � ,2 ,2 X q

� ,2 Q ,2 0

Note that rK,L,Xs is normal in X by Proposition 2.18.vii. To prove
our claim we only need to show that the commutator rqpKq, qpLqs is
normal in Q � qpXq. But

rrqpKq, qpLqs, qpXqs ¤ rqpKq, qpLq, qpXqs � qrK,L,Xs � 0

by Proposition 2.18 so that the result follows from Proposition 2.16. �

Remark 4.12. When, to the above situation, we add M ¤ X such
that K _ L_M is X,

rK,L,M s _ rK,Ls � rK,L,Xs _ rK,Ls.

Indeed, freely using the rules from Proposition 2.18, we see that

rK,L,K _ L_M s

� rK,L,K,L,M s _ rK,L,K,Ls _ rK,L, L,M s

_ rK,L,K,M s _ rK,L,Ks _ rK,L, Ls _ rK,L,M s

¤ rK,L,M s _ rK,Ls _ rK,L,M s

_ rL,K,M s _ rL,Ks _ rK,Ls _ rK,L,M s

� rK,L,M s _ rK,Ls,

while the other inclusion is obvious.

Remark 4.13. If K, L �X are such that K _ L � X then rK,Ls �
0 suffices for the respective denormalisations R and S of K and L
to commute in the Smith/Pedicchio-sense [32]. In other words, when
rK,Ls is trivial, the ternary commutator rK,L,Xs is trivial as well.
By Remark 4.12 this also follows from

rK,L,Xs _ rK,Ls � rK,L, 0s _ rK,Ls � rK,Ls.

Theorem 4.14. In a semi-abelian category, given equivalence rela-
tions R and S on X with respective normalisations K, L � X, the
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Smith/Pedicchio commutator rR, SsS is the left hand side equivalence
relation

prK,L,Xs _ rK,Lsq �γ X

B
0
0

1X

F
,2

C
rk,l,1X s
rk,ls
1X

G,2 Xsγlr rK,Ls �γ X

@
0

1X

D
,2B

rk,ls
1X

F,2 Xsγlr

where γ is the conjugation action of X on rK,L,Xs _ rK,Ls. When,
in addition, K _ L � X then rR, SsS simplifies to the above right hand
side equivalence relation.

Proof. The equivalence relation in the statement above is the denor-
malisation of the normal subobject rK,L,Xs _ rK,Ls of X considered
in Lemma 4.11. By Theorem 4.4 it satisfies the same universal prop-
erty as rR, SsS, thus it coincides with it. The further refinement is just
Remark 4.13. �

4.15. An application to homology. One situation where expressing
the Smith/Pedicchio commutator in terms of cross-effects yields imme-
diate results is in semi-abelian (co)homology. For instance, according
to [31] the Hopf formula for the third homology object H3pZ, abq of an
object Z with coefficients in the abelianisation functor

ab : A Ñ AbpAq : A ÞÑ A{rA,AsHuq

depends on a characterisation of the double central extensions in A.
Such a characterisation was given in [60] in terms of the Smith/Pedicchio
commutator: a double extension such as (N) below is central if and
only if

rRrds,RrcssS � ∆X � rRrds ^ Rrcs,∇Xs
S.

Here ∇X is the largest equivalence relation on X, the denormalisation
of 1X . When (SH) holds this condition may be reformulated in terms of
the Huq commutator, and when A has enough projectives this makes
it possible to express H3pZ, abq as a quotient of commutators. So far,
however, it was unclear how to obtain a similar explicit formula in
categories that do not satisfy (SH).

Proposition 4.16. Given a double extension

X
c ,2

d
��

C

g

��
D

f
,2 Z

(N)

in a semi-abelian category, writeK � Kerpcq and L � Kerpdq. Then (N)
is central if and only if

rK,L,Xs � rK,Ls � rK ^ L,Xs � 0.
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Proof. Via Theorem 4.4 this is an immediate consequence of The-
orem 2.8 in [60]. �

Recall that a double presentation of an object Z is a double ex-
tension such as (N) in which the objects X, D and C are (regular
epi)-projective.

Theorem 4.17. Let A be a semi-abelian category with enough project-
ives. Let Z be an object in A and (N) a double presentation of Z with
K � Kerpcq and L � Kerpdq. Then

H3pZ, abq �
K ^ L^ rX,Xs

rK,L,Xs _ rK,Ls _ rK ^ L,Xs
.

When, moreover, A is monadic over Set, these homology groups are co-
monadic Barr–Beck homology [2] with respect to the canonical comonad
on A.

Proof. This follows from Proposition 4.16 and the main result of [30];
see also [31]. Note that by Lemma 4.11 and Proposition 2.18.vii, the
denominator is indeed normal in X so that the formula makes sense.

�

5. Internal crossed modules

Now we turn to the study of crossed modules from the viewpoint of
the definition of actions in terms of cross-effects. It turns out that this
literally generalises the classical definition as in the case of groups—
except for a higher coherence condition which does not appear in any
of the usual categories where crossed modules have been considered,
such as groups, Lie algebras and associative algebras. It expresses the
property (SH) needed to extend a star-multiplication to an internal
category structure in arbitrary semi-abelian categories, or even finitely
cocomplete homological ones—see [41, 53].

5.1. Internal categories and internal groupoids, star-multiplicative
graphs and Peiffer graphs. The analysis of the Smith is Huq con-
dition in terms of higher-order commutators yields new conditions for
an internal reflexive graph to be an internal category (or, equivalently,
an internal groupoid).

Theorem 5.2. Consider an internal reflexive graph pR,G, d, c, eq.

R
d ,2

c
,2 Gelr d�e � c�e � 1G (O)

The following are equivalent:
(i) pR,G, d, c, eq is an internal category;
(ii) rKerpdq,Kerpcqs � 0 � rKerpdq,Kerpcq, Rs;
(iii) rKerpdq,Kerpcqs � 0 � rKerpdq,Kerpcq, Impeqs;
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(iv) the conjugation action cA,R : pA|Rq Ñ A of R on A factors
through the morphism p1A|cq : pA|Rq Ñ pA|Gq;

(v) cA,R � pe�cq�pcA,Rq.

Proof. Theorem 4.4 implies that(i) and (ii) are equivalent, because the
given reflexive graph is a groupoid if and only if the kernel pairs Rrds
and Rrcs of d and c Smith/Pedicchio-commute [57]. It is clear that
(ii) implies (iii), while the equivalence between (i) and (iii) may be
obtained via Lemma 4.5. In fact (ii) also follows from (iii) by a direct
commutator calculation using Proposition 2.18, as R � A_ Impeq.

The equivalence between (iii) and (iv) is a consequence of Proposi-
tion 2.33. Finally, if cA,R � c�pϕq then

e�pcA,Rq � e�pc�pϕqq � pc�eq�pϕq � ϕ,

so that cA,R � c�pe�pcA,Rqq � pe�cq�pcA,Rq. �

Condition (ii) on commuting kernels says that a reflexive graph
pR,G, d, c, eq with a multiplication m : Kerpdq � Kerpcq Ñ R defined
locally around 0 as in

0
β

�

� �

α
T]

γ
lr

mpβ, αq � γ

such that m�x1Kerpdq, 0y � kerpdq and m�x0, 1Kerpcqy � kerpcq extends to
a globally defined multiplication (i.e., an internal category structure) if
and only if the obstruction rKerpdq,Kerpcq, Rs vanishes. Similar “local
to global” properties were studied in [49, 53] after they appeared nat-
urally in [41]. Since both are relevant in what follows, we briefly recall
their definition; see [49, 53] and Remark 5.8 for more details and a
proof that the structures are equivalent.

Consider a reflexive graph pR,G, d, c, eq and the pullback

R �G Kerpdq

πR
��

πKerpdq ,2 Kerpdq

B�c�kerpdq
��

R
d

,2 G.

The reflexive graph is star-multiplicative [41] when there is a (ne-
cessarily unique) morphism ς : R �G Kerpdq Ñ Kerpdq such that the
conditions ς�xkerpdq, 0y � 1Kerpdq and ςxe�B, 1Kerpdqy � 1Kerpdq hold.

�
β

�

� 0

α
T]

γ
lr

ζpβ, αq � γ
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It isPeiffer [49] when there is a (necessarily unique) ω : Kerpdq � Kerpdq Ñ R
such that ω�x1Kerpdq, 0y � kerpdq and ω�x1Kerpdq, 1Kerpdqy � e�c�kerpdq.

0
β

�

α

��
� �γ
lr

ωpβ, αq � γ

5.3. Precrossed modules and crossed modules. A precrossed mod-
ule is a normalisation of a reflexive graph, while a crossed module is a
normalisation of an internal groupoid. We describe these structures in
terms of internal actions.

Definition 5.4. A precrossed module in a semi-abelian category A
is a quadruple pG,A, µ, Bq whereG andA are objects inA, µ : pA|Gq Ñ A
is an action of G on A, and B : AÑ G is a G-equivariant morphism
with respect to the action µ and the conjugation action of G on itself,
respectively. In other words, the following square commutes.

pA|Gq
µ ,2

pB|1Gq
��

A

B
��

pG|Gq
cG,G

,2 G

(P)

Together with the obvious morphisms, the precrossed modules in A
form a category PXModpAq.

Proposition 5.5. The category PXModpAq is equivalent to RGpAq.

Proof. This is an extension of the equivalence between actions and
split epimorphisms. Given a precrossed module pG,A, µ, Bq, the action
µ corresponds to a split exact sequence

0 ,2 A � ,2
kerpdq

,2 R
d � ,2

c
� ,2 G ,2lrelr 0 (Q)

where R � A�µG. Proposition 3.5 gives a unique morphism c : RÑ G
such that B � c�kerpdq and c�e � 1G precisely when (P) commutes. �

In particular, since the category PXModpAq is equivalent to a cat-
egory of diagrams in A, it is homological or semi-abelian when so is
A.

Definition 5.6. A precrossed module pG,A, µ, Bq is a crossed module
if its associated reflexive graph is an internal category. This gives us
the full reflective [57] subcategory XModpAq of PXModpAq.

Janelidze analysed this concept of crossed module using internal ac-
tions in semi-abelian categories [41]. Our actions are different, and
thus we obtain a different characterisation, valid in finitely cocomplete
homological categories:
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Theorem 5.7. A precrossed module pG,A, µ, Bq in a finitely cocomplete
homological category is a crossed module if and only if it satisfies the
following two additional conditions:

(i) the conjugation action of A on itself coincides with the pullback
of µ along B, i.e., cA,A � B�pµq so that the square

pA|Aq
cA,A ,2

p1A|Bq
��

A

pA|Gq µ
,2 A

(R)

commutes;
(ii) the square

pA|A|Gq
µ2,1 ,2

p1A|B|1Gq
��

A

pA|G|Gq µ1,2
,2 A

(S)

commutes.

Proof. Using Proposition 2.8, we decompose the object R in such a
way that the fifth condition of Theorem 5.7 falls apart in three distinct
statements. One of those is the commutativity of (R), a second one is
the commutativity of (S), and a third is trivially satisfied.

Indeed, R � A �µ G, so that we may consider the following pair of
parallel morphisms.

ppA|A|Gq � pA|Aqq � pA|Gq � ,2 pA|A�Gq
p1A|qq� ,2 pA|A�µ Gq

cA,R ,2

pe�cq�pcA,Rq

,2 A

On pA|Gq these morphisms coincide, as q�iG � e : GÑ A�µG � R by
definition of e, and

pe�cq�pcA,Rq�p1A|eq � e�ppe�cq�pcA,Rqq � pe�c�eq�pcA,Rq

� e�pcA,Rq � cA,R�p1A|eq.

On pA|Aq they coincide if and only if the square (R) commutes. To
see this, recall that q �

@
kerpdq
e

D
: A�GÑ A�µ G � R, so that q�iA

is the monomorphism kerpdq : AÑ R. Then

kerpdq�cA,R�p1A|kerpdqq � kerpdq�cA,A

by naturality of conjugation actions (Proposition 3.4), and

kerpdq�pe�cq�pcA,Rq�p1A|kerpdqq � kerpdq�cA,R�p1A|e�cq�p1A|kerpdqq

� kerpdq�cA,R�p1A|eq�p1A|c�kerpdqq

� kerpdq�µ�p1A|Bq.
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Hence cA,A � µ�p1A|Bq if and only if cA,R and pe�cq�pcA,Rq coincide on
pA|Aq.

Similarly, cA,R and pe�cq�pcA,Rq coincide on pA|A|Gq precisely when (S)
commutes. For a proof, consider the commutative diagrams

pA|A|Gq

ι
pA|�q
A,G

�ι22
��

ιA,A,G

$,

p1A|1A|eq ,2 pA|A|Rq
ιA,A,R

$,
pA|A�Gq ιA,A�G

,2

p1A|qq

��

A� A�G

1A�q

��

1A�1A�e ,2 A� A�R

C
iA

iR�kerpdq
iR

G
nu C

kerpdq
kerpdq

1R

G

ou

kerpdq�kerpdq�1R

��

pA|Rq

cA,R

��

ιA,R ,2 A�R@
kerpdq

1R

D
��

A � ,2
kerpdq

,2 R R �R �R
∇3
R

lr

and

pA|A|Gq
p1A|1A|eq,2

SA,G2,1

��
µ2,1

�"

pA|A|Rq
ιA,A,R

"*
SA,R2,1

��
pA|Gq

µ

��

p1A|eq ,2 pA|Rq

cA,R

��

ιA,R ,2 A�R@
kerpdq

1R

D
��

A� A�R

kerpdq�kerpdq�1R

��

∇A�1Rlr

A A � ,2
kerpdq

,2 R R �R �R
∇3
R

lr

which show that µ2,1 � cA,R�p1|qq�ι
pA|�q
A,G �ι22. Similar diagrams show that

µ1,2�p1A|B|1Gq � pe�cq�pcA,Rq�p1|qq�ι
pA|�q
A,G �ι22,

and these two equalities together are precisely what we need to prove
our claim. �

Alternatively, in this proof we could have used Sequence (H) as in
the proof of Lemma 4.5.

Remark 5.8. Condition (i) could be called the Peiffer condition.
It means that the reflexive graph induced by pG,A, µ, Bq is a Peiffer
graph: the commutativity of (R) gives us a morphism of split short
exact sequences

0 ,2 A � ,2
x1A,0y ,2 A� A

π2 � ,2

ω
��

A

B
��

,2lr
x1A,1Ay
lr 0

0 ,2 A � ,2
kerpdq

,2 R
d � ,2 G ,2lr
e

lr 0
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as in Example 3.3. The conditions kerpdq � ω�x1A, 0y and e�B �
ω�x1A, 1Ay tell us that ω is a Peiffer structure on pR,G, d, c, eq. By
Proposition 3.7 in [53] this is equivalent to the reflexive graph being
star-multiplicative in the sense of [41], or—whenA is semi-abelian—the
condition that kerpdq and kerpcq commute.

The star-multiplication on pR,G, d, c, eq may also be obtained dir-
ectly from the commutativity of (R). Indeed, via the co-universal prop-
erty of semi-direct products (Proposition 3.5) we see that the needed
morphism

ζ : A�B�pµq A � R �G AÑ A

exists if and only if B�pµq � cA,A.
Hence a semi-abelian category satisfies (SH) if and only if the coher-

ence condition (ii) always comes for free: any precrossed module that
satisfies the Peiffer condition is a crossed module. This happens, for
instance, in all of the examples considered below in 5.9.

In a non-exact context this is not quite true. As explained in the
last paragraph of [53], in order that (SH) be equivalent to the condi-
tion “all star-multiplications come from internal category structures”, a
slight strengthening of the definitions of star-multiplicative graph and
of Peiffer graph imposes itself. Thus asking that (ii) always follows
from (i) in a finitely cocomplete homological category seems formally
stronger than assuming (SH), as the Peiffer condition (i) only gives
“weak” Peiffer graphs.

Examples 5.9. When A is the category of groups, the above Defini-
tion 5.6 of a crossed module is equivalent with the classical definition,
because the coherence condition (ii) follows from (i). In the case of
augmented (i.e., non-unitary) associative algebras we obtain the defi-
nition due to Dedecker and Lue [26, 47] and Baues [4], and in the case
of Lie algebras the one considered by Kassel and Loday [45].

Example 5.10 (Kernels). In all classical algebraic examples, any ker-
nel is a crossed module. This is of course true in general. Given a
short exact sequence (A), the quadruple pX,A, cA,X , aq is a precrossed
module by naturality of the conjugation action, and it satisfies the
Peiffer condition by Example 3.11 and the coherence condition (S) by
Example 3.15. The internal category corresponding to pX,A, cA,X , aq
is the kernel pair Rrps of p. In a semi-abelian category, any crossed
module pG,A, µ, Bq where B is monic is of this shape, as follows either
from the next example or from Proposition 2.16 and the commutativity
of the square (P).

Example 5.11 (Ideals). In a non-exact setting, however, the exist-
ence of the action µ is not enough to guarantee that B is a kernel.
Actually, when pG,A, µ, Bq is a crossed module in a finitely cocom-
plete homological category, B being a monomorphism is equivalent to
the corresponding internal category being an equivalence relation—but
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there is no reason why this equivalence relation would be effective. The
kernel of B is precisely

Kerpdq ^ Kerpcq � Kerpxd, cy : RÑ G�Gq,

which is zero if and only if d and c are jointly monic.
In any case, a monic precrossed module is the same thing as an ideal

(Subsection 4.2). Furthermore, any monic precrossed module is auto-
matically a crossed module, since in a Mal’tsev category any reflexive
relation is an equivalence relation. In other words, when B is a mono-
morphism, the commutativity of (P) and the naturality of conjugation
actions (Proposition 3.4) imply that also (R) and (S) commute.

Some classical properties of crossed modules of groups easily gener-
alise to homological or semi-abelian categories. Note that here we do
not yet use the coherence condition (S); it is needed, however, in a
refinement of property (ii) given in Proposition 7.18 below.

Proposition 5.12. Let pG,A, µ, Bq be a crossed module in a finitely
cocomplete homological category A. Then the following properties hold:

(i) K is central in A, so that in particular K is abelian;
(ii) K is stable under µ: there is a unique action κ such that the

square
pK|Gq

κ ,2

pk|1Gq
��

K

k

��
pA|Gq µ

,2 A

commutes;
(iii) when A is semi-abelian, the morphism B is proper; we thus

have an exact sequence

0 ,2 K � ,2 k ,2 A
B ,2 G

p � ,2 Q ,2 0 (T)

where k � kerpBq and p � cokerpBq.

Proof. Via Example 3.7, to obtain (i) must prove that the conjuga-
tion action of A on K is trivial. By Proposition 3.4 we have that
k�cK,A � cA,A�pk|1Aq, so that the result follows from the Peiffer condi-
tion (R) and the symmetry of cross-effects. Indeed, since ∇A�twA �
∇A : A� AÑ A where twA denotes the twisting isomorphism

@
r2
r1

D
: A� AÑ A� A,

we have

k�cK,A � cA,A�pk|1Aq � cA,A�tw1
�pk|1Aq

� µ�p1A|Bq�tw
1
�pk|1Aq � µ�p1A|Bq�p1A|kq�tw

2 � 0,

where the tw1 and tw2 are the obviously induced twistings of the cross-
effect.

Statement (ii) follows from the precrossed module condition (P),
which implies B�µ�pk|1Gq � cG,G�pB|1Gq�pk|1Gq � 0, so that µ�pk|1Gq
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factors uniquely over the kernel k of B. The resulting morphism κ
is an action by Proposition 3.8.

Statement (iii) again follows from Proposition 2.16 since the square (P)
commutes. (In general homological categories we only know that ImpBq
is an ideal, as essentially explained in Example 5.11.) �

6. Extensions with abelian kernel vs. abelian extensions

There is a subtle difference between the concept of extension with
abelian kernel—any short exact sequence

0 ,2 A � ,2 a ,2 X
p � ,2 G ,2 0 (U)

where the kernel A is abelian—and the notion of abelian exten-
sion, a regular epimorphism p : X Ñ G which is an abelian object
in the slice category A{G. Since “abelian object” here means that
p admits an internal Mal’tsev operation, this amounts to the condi-
tion rRrps,Rrpss � ∆X (see, for instance, the analysis made in [21]).
We write AbExtpAq the full subcategory of ExtpAq determined by the
abelian extensions in A.

As, for some purposes in homological algebra, one needs extensions
with abelian kernel to be abelian extensions—see for instance Sec-
tion 8—it is worth exploring this instance of the Smith is Huq property
in more detail. Certainly, any abelian extension has abelian kernel,
while unlike what happens for groups, in an arbitrary semi-abelian
category an extension with abelian kernel need not be an abelian ex-
tension (see [7, 16]; in fact also Example 4.9 gives a counterexample,
as follows easily from Theorem 6.4). In the present section we investig-
ate the problem from the point of view of internal actions and ternary
commutators.

Lemma 6.1. Suppose that A is semi-abelian. Let ψ : pA|Xq Ñ A be
an action in A and p : X Ñ G a regular epimorphism such that there
exists a (necessarily unique) factorisation

pA|Xq
ψ ,2

p1A|pq_��

A

pA|Gq ϕ
,2 A

of ψ. Then ϕ is an action of G on A.

Proof. This can most conveniently be proved using the extension of ψ
to an algebra structure ξ : A 5X Ñ A, cf. [36] and [20, 41], and using the
fact that p induces a regular epimorphism 1A 5p : A 5X Ñ A 5G. This
allows to check the algebra conditions for the factorisation ζ : A 5GÑ A
of ξ by precomposing with 1A 5p and using the obvious commutative
diagrams. �



THE TERNARY COMMUTATOR OBSTRUCTION FOR INTERNAL CROSSED MODULES43

Example 6.2 (Central extensions). The conjugation cA,X of a given
short exact sequence (U) induces the trivial action ψp � 0: pA|Gq Ñ A
if and only if cA,X itself is trivial, which by Example 3.7 means that (U)
is a central extension: the kernel A of p : X Ñ G is central in X.
(Since the denormalisation of A is the kernel pair Rrps of p, by Ex-
ample 3.6 this also means that Rrps is a product of A and X, cf. [18].)

Note that rA,Xs being trivial immediately implies that also rA,A,Xs
is zero by Proposition 2.18.

In the semi-abelian case this gives another classical “extreme” in-
stance of a crossed module (cf. Examples 5.10 and 5.11), the situation
where the arrow B is a regular epimorphism. Indeed, when p is a
central extension, the quadruple pG,X, µ, pq where µ : pX|Gq Ñ X is
the factorisation of cX,X over the morphism p1X |pq : pX|Xq Ñ pX|Gq
satisfies the three crossed module conditions. First note that such a
factorisation exists by Corollary 2.32 since

ImpcX,X�SX,X1,2 �p1X |a|1Xqq � ImpcX3 �p1X |a|1Xqq � rX,A,Xs � rA,Xs � 0

as A � Kerppq is central. Moreover, µ is an action by Lemma 6.1
and satisfies the Peiffer condition by its very definition. The pre-
crossed module condition now follows by naturality of conjugation ac-
tions (Proposition 3.4) since p1X |pq is a regular epimorphism. Finally,
the square corresponding to (S) commutes by Lemma 3.15:

µ1,2�p1X |p|1Gq�p1X |1X |pq � µ�SX,G1,2 �p1X |p|pq � µ�p1X |pq�S
X,X
1,2 � cX,X�SX,X1,2

� cX,X�SX,X2,1 � µ�p1X |pq�S
X,X
2,1 � µ�SX,G2,1 �p1X |1X |pq

� µ2,1�p1X |1X |pq,

while p1X |1X |pq is a regular epimorphism by Proposition 2.23.
In fact, as shown in [18], central extensions in a semi-abelian cat-

egory are precisely normalisations of internal connected groupoids,
i.e., groupoids (O) where xd, cy : RÑ G�G is regular epic.

Lemma 6.3. Consider a short exact sequence (U).
(i) If p is split by s the conjugation action cA,X of X on A admits

a factorisation

pA|Xq
cA,X ,2

p1A|pq_��

A

pA|Gq
ψp

,2 A

if and only if A is abelian and cA,X2,1 �p1A|1A|sq � 0.
(ii) Suppose that p is arbitrary but A is semi-abelian. Then the

conjugation action cA,X factors through p1A|pq if and only if A
is abelian and cA,X2,1 � 0. Moreover, when this happens, ψp is
an action of G on A.
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Proof. We only treat (ii), the proof of which may easily be adapted to
(i) using Proposition 2.33 instead of Corollary 2.32. The latter tells us
that for semi-abelian A the action cA,X factors through the morphism
p1A|pq if and only if

cA,X�SA,X1,2 �p1A|a|1Xq and cA,X�p1A|aq

are trivial. But cA,X�p1A|aq � a�cA,A by naturality of the conjugation
action, and cA,X1,2 �p1A|a|1Xq � cA,X2,1 by Lemma 3.15. Lemma 6.1 now
says that pA,ψpq is an action. �

The next result is an immediate consequence of Theorem 4.4 and
Lemma 6.3.

Theorem 6.4. For an extension with abelian kernel (U) the following
are equivalent:

(i) p is an abelian extension;
(ii) rRrps,Rrpss � ∆X ;
(iii) rA,A,Xs � 0;
(iv) cA,X2,1 � 0.

When A is semi-abelian, these properties are equivalent to:

(v) the conjugation action cA,X of X on A factors through a (ne-
cessarily unique) action ψp of G on A;

(vi) cA,X � p�pψpq for some morphism ψp : pA|Gq Ñ A. �

Corollary 6.5. If A is semi-abelian the inclusion AbExtpAq Ñ ExtpAq
has a left adjoint

ab : ExtpAq Ñ AbExtpAq

which takes an extension p : X Ñ G and maps it to its induced quotient

abppq :
X

rA,As _ rA,A,Xs
Ñ G.

Proof. This follows from Lemma 4.11 which says that rA,As_rA,A,Xs
is normal in X. �

7. Beck modules

Where abelian extensions are abelian objects in a slice categoryA{G,
Beck modules [6, 2] are abelian groups in A{G or, equivalently, abelian
objects in the category of points PtGpAq. We here provide several
equivalent characterisations of Beck modules in finitely cocomplete ho-
mological categories, again in terms of internal actions and (higher-
order) cross-effects.
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7.1. Beck modules. Given an object G of a finitely cocomplete ho-
mological category A, a G-module or Beck module over G is an
abelian group in the slice category A{G. Thus a G-module pp,m, sq
consists of a morphism p : X Ñ G in A, equipped with a multiplica-
tion m and a unit s as in the commutative triangles

X �G X
m ,2

p� ��

X

p�	
G

G
s ,2 X

p�	
G

satisfying the usual axioms. (Here we write X�GX for the kernel pair
Rrps of p, and we put p� � p�m � p�π1 � p�π2.) In particular we
obtain a split short exact sequence

0 ,2 A � ,2
kerppq

,2 X
p � ,2 G ,2lr
s

lr 0 (V)

where A is an abelian object in A and p is split by s. Furthermore,
since as an abelian extension it carries an internal Mal’tsev operation,
the morphism p satisfies rRrps,RrpssS � ∆X . Conversely, given the
splitting s of p, this latter condition makes it possible to recover the
multiplication m. Hence, for split epimorphisms in A, “being a Beck
module” is a property; the entire module structure is contained in the
splitting. Using the equivalence between split epimorphisms and in-
ternal actions, we can replace X with a semi-direct product A�ψ G.
By the above, modules are “abelian actions”. We write ModGpAq for
the category AbpA{Gq � MalpPtGpAqq of G-modules in A.

Examples 7.2. [6] In the category Gp, a Beck module over G is the
same thing as a classical module over the group-ring ZG. In the cat-
egory Alg

K
of associative (non-unitary) algebras over a commutative

ring K, a Beck module over G is a G-G-bimodule. On the other hand,
when A is an additive category, the kernel functor determines an equiv-
alence ModGpAq � A.

Theorem 7.3. Let A be an abelian object in A endowed with an in-
ternal G-action ψ : pA|Gq Ñ A. Then the following are equivalent:

(i) pA,ψq is a G-module;
(ii) pG,A, ψ, 0q is a crossed module;
(iii) ψ2,1 : pA|A|Gq Ñ A is trivial.

Proof. Let (V) be the split short exact sequence induced by ψ. Then
pA,ψq is a G-module if and only if the reflexive graph

X
p ,2

p
,2 Gslr

is an internal category. Since p�kerppq � 0, this proves that (i) and (ii)
are equivalent.
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Since A is abelian, already rA,As � 0. So Theorem 5.7 tells us that
Condition (ii) holds precisely when ψ2,1 � ψ1,2�p1A|0|1Gq � 0, i.e., when
(iii) holds. �

Remark 7.4. Condition (iii) is equivalent with requiring that ψp,q � 0
for all p ¥ 2 since these morphisms ψp,q clearly factor through ψ2,1.

Corollary 7.5. Suppose that A satisfies (SH). Then any abelian object
in A endowed with an action of an object G is a G-module. �

Example 7.6. The situation considered in Example 4.9 is actually
a loop action of the cyclic group of order two Z2 on the Klein four-
group V � A which is not a module structure. Indeed, the short exact
sequence

0 ,2 A � ,2 ,2 X
� ,2 t1, iu ,2lrlr 0

is split by the inclusion of Z2 � t1, iu in X. (But the subloop t1, iu
is not normal in X, as pijqj � kj � �i R t1, iu although p1jqj � 1.)
Hence X � V �ψ Z2 for some action ψ : pV |Z2q Ñ V in the category of
loops. Now pV, ψq cannot be a Z2-module, as we know that rRA, RAs

S �
∆X ; so ψ2,1 must be non-trivial—and indeed, ψ2,1vj, j, iw � �1.

Corollary 7.7. Suppose that A is semi-abelian. Then for any object
G in A the forgetful functor

ModGpAq Ñ ActGpAq
has a left adjoint abG : ActGpAq Ñ ModGpAq, determined by the natural
exact sequence

pA|Aq � pA|A|Gq

@
cA,A

ψ2,1

D
,2 A

ηGA � ,2 abGpA,ψq ,2 0

where ηGA is a cokernel of the left-hand morphism. Moreover, the natural
transformation ηG defined in this way is the unit of the adjunction.

Proof. We must show that abGpA,ψq carries a G-module structure such
that ηG is G-equivariant. We first check that the morphism kψ�

@
cA,A

ψ2,1

D
represents a normal subobject of X � A�ψ G: in fact,

kψ�ψ2,1 � kψ�ψ�SA,G2,1 � kψ�c
A,X

�p1A|sψq�S
A,G
2,1 � cX,X�pkψ|sψq�S

A,G
2,1

� cX,X�SX,X2,1 �pkψ|kψ|sψq � cX3 �pkψ|kψ|sψq,

whence Impkψ�ψ2,1q � rA,A,Xs. Thus Impkψ�
@
cA,A

ψ2,1

D
q � rA,As _

rA,A,Xs which is normal in X by Lemma 4.11. Now consider the
commutative diagram

0 ,2 A � ,2
kψ ,2

ηGA _��

X

η1
_��

pψ � ,2 G ,2 0

0 ,2 Cokerp
@
cA,A

ψ2,1

D
q � ,2

kψ

,2 Cokerpkψ�
@
cA,A

ψ2,1

D
q

pψ

� ,2 G ,2 0
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with η1 � cokerpkψ�
@
cA,A

ψ2,1

D
q. Both rows are exact; for the bottom

row this follows from the Noether isomorphism theorem. Furthermore,
sψ � η1�sψ is a section of pψ. It follows that ppψ, sψq is a point in A,
giving rise to an action ψ of G on abGpA,ψq; moreover, η1 : ppψ, sψq Ñ
ppψ, sψq is a morphism of points, so that ηGA : pG,A, ψq Ñ pG,A, ψq is
G-equivariant. It remains to show that ψ is a G-module structure; by
Theorem 7.3 it suffices to show that ψ2,1 � 0. But this easily follows
from naturality of the morphisms S2,1 and the fact that pηGA |ηGA |1Gq is
a (regular) epimorphism by Proposition 2.23. �

Example 7.8. In a semi-abelian variety of algebras V , consider an
abelian object A and an internal G-action ψ : pA|Gq Ñ A. Then the
coherence condition ψ2,1 � 0 which must hold for ψ to be a module
structure may be expressed as follows (cf. Example 2.5):$'&'%

tpa1, . . . , ak, ak�1, . . . , ak�l, 0, . . . , 0q � 0 in A� A

tpa1, . . . , ak, 0, . . . , 0, g1, . . . , gmq � 0 in A�G

tp0, . . . , 0, ak�1, . . . , ak�l, g1, . . . , gmq � 0 in A�G

ñ

ψptpa1, . . . , ak�l, g1, . . . , gmqq � 0,

for any term t of arity k�l�m in the theory of V and all a1, . . . , ak�l P A
and g1, . . . , gm P G. We believe this is a basic condition; certainly it is
of the same level of complexity as for instance the characterisation of
ideals due to Ursini [63], valid in semi-abelian varieties [43].

Theorem 7.9 (cf. Theorem 6.4). Let A be an abelian object in A
endowed with an internal G-action ψ : pA|Gq Ñ A. Then pA,ψq is a
G-module if and only if the conjugation action of A�ψ G on A factors
through the G-action on A via the projection pψ : A�ψ GÑ G. In
other words,

cA,A�ψG � ψ�p1A|pψq � p�ψpψq.

Proof. We pass via Condition (iii) in Theorem 7.3. Recall thatX � A�ψ G.
Applying Lemma 6.3 to the split extension (I) shows that the action

cA,X : pA|Xq Ñ A

factors through p1A|pψq if and only if cA,X2,1 �p1A|1A|sψq � 0. However,

cA,X2,1 �p1A|1A|sψq � cA,X�SA,X2,1 �p1A|1A|sψq

� cA,X�p1A|sψq�S
A,G
2,1

� ψ�SA,G2,1 � ψ2,1.

Now suppose that cA,X does factor as a composite morphism

pA|Xq
p1A|pψq ,2 pA|Gq

c ,2 A;
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then c � c�p1A|pψq�p1A|sψq � cA,X�p1A|sψq � ψ, which proves our
claim. �

Remark 7.10. This directly leads to the (known) result that in an
action representable category [9, 10], any action on an abelian object is
a module structure. Indeed, it was shown in [22] that any semi-abelian
category A for which the functors

Actp�, Aq : A Ñ Set�

are representable satisfies (SH). Hence Corollary 7.5 yields the claimed
result. Let us now prove this in a different way, passing via The-
orem 7.9.

Recall that the functor Actp�, Aq assigns to G P ObpAq the pointed
set of actions of G on A. We shall only assume that for any abelian
object A, the functor Actp�, Aq : A Ñ Set� is representable. This
means that there exists an object rAs in A together with a natural
equivalence

α : Actp�, Aq ñ Ap�, rAsq.
Since the functor Ap�, rAsq preserves split short exact sequences, any
internal action ψ : pA|Gq Ñ G induces a short exact sequence

0 ,2 ActpG,Aq
Actppψ ,Aq ,2 ActpA�ψ G,Aq

Actpkψ ,Aq ,2
Actpsψ ,Aq
lr ActpA,Aq ,2 0

of pointed sets. (Recall that the category Setop
� is semi-abelian [17].)

Now consider the action cA,A�ψG P ActpA�ψ G,Aq. We have

Actpkψ, Aqpc
A,A�ψGq � cA,A�ψG�p1A|kψq � kψ�c

A,A � 0

by naturality of conjugation actions (Proposition 3.4) and by Remark 2.13
as A is abelian. Hence cA,A�ψG is in the image of Actppψ, Aq � p�ψp�q,
so that already cA,A�ψG � p�ψpϕq for some action ϕ of G on A. Now

ϕ � s�ψpp
�
ψpϕqq � s�ψpc

A,A�ψGq � ψ

by Example 3.12, and ψ is a G-module by Theorem 7.9.

7.11. The biproduct of two modules. We now work towards The-
orem 7.13 which characterises modules in even more elementary terms.
To do so, we shall express the biproduct in the additive categoryModGpAq
as a product of actions.

Lemma 7.12. The biproduct pA,ψq ` pB,ϕq in ModGpAq has as un-
derlying G-action the product pA,ψq � pB,ϕq in ActGpAq, which is the
object A�B in A equipped with the diagonal action

ψ ` ϕ : pA�B|Gq
xpπA|1Gq,pπB |1Gqy ,2 pA|Gq � pB|Gq

ψ�ϕ ,2 A�B.
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Proof. Let

0 ,2 A � ,2 a ,2 X
p � ,2 G ,2lr
s

lr 0

be the split short exact sequence corresponding to pA,ψq and

0 ,2 B � ,2 b ,2 Y
q � ,2 G ,2lr
t

lr 0

the one corresponding to pB,ϕq; then the biproduct pA,ψq ` pB,ϕq
corresponds to the split short exact sequence

0 ,2 A�B � ,2a�b ,2 X �G Y
� ,2 G ,2lr

xs,ty
lr 0

in A. By naturality of the conjugation action, the squares

pA�B|X �G Y q
cA�B,X�GY ,2

pπA|πXq
��

A�B

πA

��
pA|Xq

cA,X
,2 A

pA�B|X �G Y q
cA�B,X�GY ,2

pπB |πXq
��

A�B

πB

��
pB|Y q

cB,Y
,2 B

commute, so that the conjugation action of X �G Y on A�B decom-
poses as

pA�B|X �G Y q
xpπA|πXq,pπB |πY qy,2 pA|Xq � pB|Y q

cA,X�cB,Y ,2 A�B.

The asserted decomposition of the diagonal action, which by Example 3.12
is equal to xs, ty�pcA�B,X�GY q � cA�B,X�GY �p1A�B|xs, tyq, now follows,
as the diagram

pA�B|Gq

p1A�B |xs,tyq
��

xpπA|1Gq,pπB |1Gqy ,2 pA|Gq � pB|Gq

p1A|sq�p1B |tq
��

ψ�ϕ ,2 A�B

pA�B|X �G Y q
xpπA|πXq,pπB |πY qy

,2 pA|Xq � pB|Y q
cA,X�cB,Y

,2 A�B

commutes. �

It is clear that any G-module pp,m, sq corresponds to a morphism of
split short exact sequences

0 ,2 A� A � ,2 a� ,2

�
��

X �G X
p� � ,2

m
��

Glr
s�
lr ,2 0

0 ,2 A � ,2
a

,2 X
p � ,2 Glr
s

lr ,2 0

where � : A� AÑ A is the abelian group structure on A, the morph-
ism a� is a� a : A� AÑ X �G X and s� � xs, sy. Hence via Lemma 7.12,
the correspondence between actions and points gives us
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Theorem 7.13. Let A be an abelian object in A endowed with an
internal G-action ψ : pA|Gq Ñ A. Then pA,ψq is a G-module if and
only if the sum � : A� AÑ A is G-equivariant with respect to the
diagonal action of G on A� A, i.e., if and only if the diagram

pA� A|Gq
xpπ1|1Gq,pπ2|1Gqy,2

p�|1Gq
��

pA|Gq � pA|Gq
ψ�ψ ,2 A� A

�

��
pA|Gq

ψ
,2 A

(W)

commutes. �

Example 7.14. Note the parallel with the equality g�pa�bq � g�a�g�b
which holds in the case of groups. As explained in Example 3.2, this
latter condition is automatically fulfilled, as any action is already a
G-group. Theorem 7.13 expresses the precise internal sense in which
the same property should hold: the rectangle (W) must commute on
all of pA� A|Gq—which it always does in Gp, as a consequence of the
Smith is Huq property.

Example 7.15. Let us come now back to Example 7.6 with this view-
point in mind. We already know that the action pV, ψq is not a Z2-
module. As a matter of fact, we can prove directly that the function

m : X �Z2 X Ñ X : px, yq ÞÑ x � y

is not a loop homomorphism, by simply taking into account that

mppj, 1q � pi, iqq � mp�k, iq � �ki � �j

even though
mpj, 1q �mpi, iq � j1 � ii � j.

Of course also the diagram corresponding to (W) should fail to com-
mute, so let us confirm this with a concrete example. Note that the
expression

pj, jq � ppj, 1qi � p1, jqqi

determines an element of the formal commutator pV � V |Z2q. Now
ψ�p�|1Z2q of it is jj � pji � jqi � p�kjqi � ii � 1, while going around
the rectangle (W) the other way gives

pj � pjiqiq � pj � pijqiq � jp�kiq � pj � kiq � jp�jq � jj � �1.

7.16. The module in a crossed module. We add another state-
ment to Proposition 5.12, but to do so we first need a refinement of
Proposition 3.8 with respect to module structures.

Lemma 7.17. Under the hypotheses and with the notation of Propo-
sition 3.8 the following properties hold.

(i) If ψ is a G-module structure then ϕ is a H-module structure.
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(ii) Suppose that m is an isomorphism and h is a regular epimorph-
ism. If ϕ is a H-module structure then ψ is a G-module struc-
ture.

Proof. This is an easy consequence of Theorem 7.3 using the commu-
tative diagram

pM |M |Hq

pm|m|hq
��

SM,H2,1 ,2 pM |Hq
ϕ ,2

pm|hq
��

M
��
m

��
pA|A|Gq

SA,G2,1

,2 pA|Gq
ψ
,2 A

and the fact that in (ii) the morphism pm|m|hq is a regular epimorphism
by Proposition 2.23. �

Proposition 7.18. Let pG,A, µ, Bq be a crossed module in a semi-
abelian category and consider the induced exact sequence (T). The
action κ of G on K constructed in Proposition 5.12 induces a unique
action ρ of Q on K such that the square

pK|Gq
κ ,2

p1K |pq_��

K

pK|Qq ρ
,2 K

commutes. Moreover, ρ is a Q-module structure on K.

Proof. The first claim is an immediate consequence of Lemma 6.1 once
we can prove that the factorisation exists. We obtain it via Corol-
lary 2.32: we have to show that κ�p1K |Bq and κ�SK,G1,2 �p1K |B|1Gq are
trivial. To prove this for κ�p1K |Bq, compose with the monomorphism k
and use the Peiffer condition. In fact,

k�κ�p1K |Bq � µ�pk|Bq � µ�p1A|Bq�pk|1Aq � cA,A�pk|1Aq � k�cK,A,

which is zero since K is central in A by Proposition 5.12.i. To prove
that the morphism κ�SK,G1,2 �p1K |B|1Gq is trivial consider the following
diagram where τ is the symmetry isomorphism p1 2q1A of the ternary
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cross-effect induced by the transposition p1 2q, cf. Proposition 2.6.

pA|K|Gq

p1A|k|1Gq

��

pK|A|Gq

pk|1A|1Gq

��

τlr
p1K |B|1Gq,2 pK|G|Gq

pk|1G|1Gq

��

SK,G1,2 ,2 pK|Gq

pk|1Gq

��

κ ,2 K
��

k

��
pA|A|Gq

SA,G2,1

��

pA|A|Gq

SA,G2,1

��

τ
lr

p1A|B|1Gq
,2 pA|G|Gq

SA,G1,2

,2 pA|Gq µ
,2 A

pA|Gq pA|Gq µ
,2 A

The diagram commutes; for the lower rectangle this is condition (S).
Thus

k�κ�SK,G1,2 �p1K |B|1Gq � µ�SA,G2,1 �p1A|k|1Gq�τ

� µ�SA,G1,2 �p1A|B|1Gq�p1A|k|1Gq�τ

� µ�SA,G1,2 �p1A|0|1Gq�τ � 0.

It remains to show that ρ is a Q-module structure. By Lemma 7.17.ii
it suffices to show that κ is a G-module structure, i.e., that κ2,1 � 0.
But

k�κ2,1 � k�κ�SK,G2,1 � µ�pk|1Gq�S
K,G
2,1

� µ�SA,G2,1 �pk|k|1Gq � µ�SA,G1,2 �p1A|B|1Gq�pk|k|1Gq

� µ�SA,G1,2 �pk|0|1Gq � 0

as desired. �

8. An application to cohomology

The above Lemma 7.17 may also be used in the study of semi-abelian
cohomology. In the present article we shall limit ourselves to the lowest-
dimensional case, and extend the interpretation given in [34]—of the
second cohomology group H2pG,Aq of an object G with coefficients in
a trivial module A in terms of central extensions—to arbitrary mod-
ules, and make the link with the torsor theories established in [21]
and [27] explicit. In fact, the article [21] already contains some form
of Theorem 8.7, based on properties of points rather than a calculus
of internal actions. However, we believe the techniques developed here
clarify the connections between several approaches to the same prob-
lem, while they may also be used to extend the analysis of the higher
cohomology groups developed in [61] to arbitrary coefficients.

We work towards Theorem 8.7 which gives an isomorphism

H2pG, pA,ψqq � OpextrG, pA,ψqs



THE TERNARY COMMUTATOR OBSTRUCTION FOR INTERNAL CROSSED MODULES53

between the second cohomology group of G with coefficients in pA,ψq
and the group of equivalence classes of extensions of G by pA,ψq. Of
course, when the action ψ is trivial, those extensions are precisely the
central extensions of G by A, and we regain Theorem 6.3 in [34].

According to Lemma 7.17, any abelian extension (U) of an object G
by an object A gives rise to a unique module structure ψp of G on A
through which the conjugation action of X on A factors. This defines
a functor which is crucial in the directions approach to cohomology,
see [15, 23, 59, 60, 61].

Throughout this section we shall work in a semi-abelian category A.

Definition 8.1. Given an abelian extension (U), the inducedG-module
structure onA is called the direction of p and denoted dGppq : pA|Gq Ñ A.
This defines a functor

dG : AbExtGpAq Ñ ModGpAq : p ÞÑ pKerppq, ψpq

called the direction functor.
The fibre d�1

G pA,ψq of dG over a given G-module pA,ψq is the cat-
egory

OpextpG, pA,ψqq

of all extensions of G by pA,ψq.

Remark 8.2. The direction functor dG is completely determined by a
pullback/pushout property as in [15], where the concept was originally
introduced. Indeed, as essentially explained in Remark 3.10, an abelian
extension (U) has direction pA,ψq if and only if the downward-pointing
square in the induced morphism of points

Rrps
1A�p� ,2

p1
_��

A�ψ G

pψ
_��

X

LR

LR

p
� ,2 G

LR
sψ

LR

is both a pullback and a pushout.
Let us make this somewhat more explicit. As recalled in Example 5.10,

via Remark 3.10 the conjugation action cA,X of X on A corresponds to
the kernel pair projection p1 : Rrps Ñ X. Hence giving a pullback/pushout
square as above amounts to giving a morphism of actions

pA|Xq
p1A|pq ,2

cA,X

��

pA|Gq

ψ
��

A A.

This means that p has direction pA,ψq if and only if p1 is a pullback
of pψ along p.
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This allows us to interpret extensions of an object G by a G-module
pA,ψq as certain torsors in the sense of Duskin and Glenn [27, 28, 33].
Given an object G and a G-module pA,ψq in a semi-abelian category
A, a one-torsor of G by pA,ψq is a KppA,ψq, 1q-torsor in the slice
category A{G, i.e., a diagram

Rrps

_��

p1 � ,2

p2

� ,2 Xlrlr p � ,2

p

_��

G

A�ψ G
pψ � ,2

pψ

� ,2 Glrlr G

in A, where the squares on the left are pullbacks—see [27] or the ana-
lysis given in [61]. Morphisms of such torsors are defined as in the slice
category over the bottom line of this diagram, and thus the category
Tors1pG, pA,ψqq is obtained. From Remark 8.2 we now easily obtain
the following:

Proposition 8.3. Let G be an object and pA,ψq a G-module in a semi-
abelian category A. Then there is a category equivalence Tors1pG, pA,ψqq �
OpextpG, pA,ψqq. �

It is explained in [27] that the set Tors1rG, pA,ψqs of connected com-
ponents of the category Tors1pG, pA,ψqq comes with a suitable abelian
group structure which may be considered as the cohomology group
H2pG, pA,ψqq. Furthermore, when A is monadic over Set, this coho-
mology group is isomorphic to the second Barr-Beck comonadic coho-
mology group [2] of G with coefficients in pA,ψq relative to the ca-
nonically induced comonad on A. We shall now prove that the con-
nected components OpextrG, pA,ψqs � π0pd

�1
G pA,ψqq of the category

OpextpG, pA,ψqq form an abelian group isomorphic to Tors1rG, pA,ψqs,
and thus to H2pG, pA,ψqq.

Proposition 8.4. For any object G, the direction functor dG preserves
finite products.

Proof. The terminal object of AbExtGpAq is 1G, of which the direction
is 0, considered as a G-module. Hence dG preserves terminal objects.

Now we show that dG preserves binary products. On one hand,
Lemma 7.12 says that the biproduct pA,ψq ` pB,ϕq in ModGpAq has
as underlying G-action the product pA,ψq � pB,ϕq in ActGpAq, which
is the object A�B in A equipped with the morphism

ψ ` ϕ : pA�B|Gq
xpπA|1Gq,pπB |1Gqy ,2 pA|Gq � pB|Gq

ψ�ϕ ,2 A�B.

On the other hand, given two abelian extensions p : X Ñ G and q : Y Ñ G
of G with respective kernels A and B, their product in AbExtGpAq is the
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pullback p� q : X �G Y Ñ G, of which the kernel is A�B. It remains
to check that this kernel carries pA,ψq�pB,ϕq as G-module structure,
but this we may see by taking into account Remark 8.2. Indeed, if p1

is a pullback of pψ and q1 is a pullback of pϕ, then pp�qq1 is a pullback
of pψ`ϕ. �

Proposition 8.5 (dG is a fibration). Given an abelian extension p and
a G-module morphism f as in the diagram

0 ,2 A

f

��

� ,2 a ,2 X
p � ,2

g

��

G ,2 0

0 ,2 B � ,2
b
,2 Y q

� ,2 G ,2 0

where A carries the direction of p as G-module structure, there exists
an abelian extension q which completes the diagram in such a way that
dGpqq is the given action of G on B.

Proof. We generalise the proof of Corollary 3.3 in [34]: we split the
problem in two separate cases (f is split monic, f is regular epic in A)
by factoring the morphism f as

pA,ψq
x1pA,ψq,0y ,2 pA,ψq ` pB,ϕq

@
f

1pB,ϕq

D
,2 pB,ϕq

in ModGpAq. Here ψ and ϕ denote the given G-module structures.
The first step involves the product in AbExtGpAq of p with pϕ : B �ϕ GÑ G,

which gives us the diagram

0 ,2 A_��
x1A,0y

��

� ,2 a ,2 X
p � ,2

_��

��

G ,2 0

0 ,2 A�B

πA

_LR

� ,2 ,2 X �G pB �ϕ Gq

πX

_LR

p�pϕ

� ,2 G ,2 0

with short exact rows in A. Proposition 8.4 says that the direction of
the lower extension is the biproduct G-module pA,ψq ` pB,ϕq.

For the second step, assume that f is a regular epimorphism, and
consider its kernel k as in the following diagram.

K_��
k
��

K
��
a�k
��

0 ,2 A

(i)f
_��

� ,2 a ,2 X
p � ,2

g
_��

G ,2 0

0 ,2 B � ,2
b
,2 Y q

� ,2 G ,2 0

If we can prove that the monomorphism a�k is normal, we can take g
to be its cokernel. Then the thus arising square (i) is a pullback and
a pushout by Lemma 1.5, which gives the rest of the diagram and also
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implies that b is a monomorphism, hence a kernel as a direct image of
a kernel. Now K is indeed normal in X by Proposition 2.16.ii, because
cA,X�pk|1Xq factors through the kernel k of f , as

f �cA,X�pk|1Xq � f �ψ�p1A|pq�pk|1Xq � ϕ�pf |1Xq�p1A|pq�pk|1Xq � 0.

Also pf |gq : pA|Xq Ñ pB|Y q is a regular epimorphism and, by Proposi-
tion 3.4,

ϕ�p1B|qq�pf |gq � ϕ�pf |1Gq�p1A|pq � f �ψ�p1A|pq � f �cA,X � cB,Y �pf |gq.

Hence cB,Y factors through ϕ : pB|Gq Ñ B, which finishes the proof.
�

Corollary 8.6. For any G in A, the application

pA,ψq ÞÑ OpextrG, pA,ψqs

defines a finite product-preserving functor OpextrG,�s : ModGpAq Ñ Set.

Proof. This may be proved as in [34, Proposition 6.1] using Proposi-
tion 8.5. �

Since ModGpAq � AbpA{Gq is a category of internal abelian groups,
this implies that the sets OpextrG, pA,ψqs carry a natural abelian group
structure.

Theorem 8.7. Let G be an object and pA,ψq a G-module in a semi-
abelian category A.

(i) We have a group isomorphism

H2pG, pA,ψqq � TorsrG, pA,ψqs � OpextrG, pA,ψqs.

(ii) If A is monadic over Set then these cohomology groups are
comonadic Barr–Beck cohomology with respect to the canonical
comonad on A.

(iii) If (SH) holds in A then every extension with abelian kernel
occurs in some cohomology class.

Proof. By Corollary 8.6, to obtain (i) we only have to prove that the
abelian groups TorsrG, pA,ψqs and OpextrG, pA,ψqs have the same un-
derlying sets. This, however, follows immediately from Proposition 8.3.
Statement (ii) follows from [27] and (iii) from Theorem 6.4. �
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