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Introduction

In a previous paper [0O1], we showed that all the possible fiber space structures
on a Calabi-Yau threefold fall into six different classes defined by certain intrinsic
properties of the ample cone of the threefold. A special case is the class of fibration
of Type IIp. A fibered Calabi-Yau threefold is said to be of Type Il if it is an
elliptic Calabi-Yau threefold whose base space is a normal, projective, rational sur-
face with only quotient singularities and numerically trivial canonical Weil divisor.
Such a base space is a log Enriques surface in the terminology of [Z]. These are
classified by the global canonical covering = : W—Ww ([Ka3)]) of the base surface,
for which we have either

(1) W is a smooth abelian surface ; or,

(2) W is a K3 surface with only rational double points as its singularities.
A fibered Calabi-Yau threefold is called of Type IIy A if it is of Type Il and the
global canonical cover of the base space is an abelian surface.

The purpose of this paper is to show that, up to isomorphism of fiber spaces,
there are only finitely many Calabi-Yau threefolds of Type Il A. This gives partial,
but non-trivial, evidence to support Gross’ hope, that the family of elliptic Calabi-

Yau threefolds in the biregular sense is finite ([G]).
For the precise statement, we briefly recall Beauville’s example.

Beauville’s Example ([B], (2.2)). Let E. be the elliptic curve whose period is
the primitive third root of unity ¢ in the upper half plane and let E?/ < ( > be the
quotient n-fold of the product manifold EE‘ by scalar multiplication by (. Then,
the blow-up at the 27 singular points of (E}/ < ¢ >) gives a smooth Calabi-Yau
threefold X4 and the projection py : Xy — Eg/ < ¢ >, induced by the projection
P12 Eg — Eg, makes Xy a fibered Calabi-Yau threefold of Type IIgA.

Our main Theorem is as follows.

Main Theorem ((3.1), (2.7) and (2.4)). There exist just fourteen different
fibered Calabi-Yau threefolds of Type IIyA, up to isomorphism as fiber spaces.
Moreover, each of these is obtained from Beauville’s example by a composition of
flops whose centers are contained in the singular fibers.

An explicit construction of the representatives is given in (2.4) and (2.7).

Typeset by Aa5-TEX



In this paper, by a Calabi-Yau threefold, we simply mean a three-dimensional
minimal model ([KMM]) with trivial Cartier canonical class. A priori, we require
neither smoothness nor simply-connectedness. However, the main Theorem implies,

Corollary ((3.2)). Every fibered Calabi-Yau threefold of Type IIyA is smooth,

simply-connected and has no non-trivial deformations. In addition, any two such
threefolds are birationally equivalent.

In particular, they are isolated in the family of Calabi-Yau threefolds and have
no "mirrors” in the usual sense. Moreover, they have a (birational) canonical model
whose first and second Chern classes are zero. (See [SW] for such threefolds.)

For proof of the main Theorem, apart from some standard techniques in minimal
model theory for threefolds ([Ka 3,4, KMM, Ko, M, R]), we use the theory of elliptic
fibrations developed by [Ixa2, N1,2,3], the characterization theorem of abelian vari-
eties by [Kal] and the characterization theorem of the particular abelian varieties
E? by [CC].

The organisation of this paper is as follows. After preparing some easy facts on
fibered Calabi-Yau threefolds of Type II; and special abelian varieties in §1, we
study the flop phenomena associated with Beauville’s example in §2. Finally, in §3,
we apply general theories listed above to prove the main Theorem.

The author would like to express his best thanks to Professor F. Catanese for
showing the author the important Lemma (1.4), to Professor Di-Qi Zhang for his
fruitful discussion on log Enriques surfaces, to Professor A.F. Swann for his many
valuable comments and to Professor F. Hirzebruch for giving him an opprtunity to
visit the Max-Planck-Insitut fiir Mathematik. This work was done during his stay
in the institute. The author dedicates this article to his wife Eiko in comemoration
of their marriage.

In addition to the standard notation in [KMM], we employ the following:

Notation.

¢ is the primitive third root of unity in the upper half plane;

E. :=C/(Z + Z() is the elliptic curve with period (;

E7 is the abelian variety defined as n-times direct product of E¢;

By Qo, Q1 and Q. we denote the following three-torsion points in E¢, Qg := 0,
Q1 1= (1-¢)/3, and Q2 1= —(1 - ()/3 ;

A:={0,1,2} and A" is the n-times direct product of the set A;

For (i1,...,1n) € A", we denote by Q;, ., the point (Q; ,...,Qi,) in E(’:‘;

By Q(n) we denote the subset {Q;,. i, |({1,...,in) € A"} of EZ;

By ¢ : E ~— E[, we denote the automorphism of E] defined by scalar mul-
tiplication by ( (on the universal covering space C*) with the origin a point in
Q(n);

(Note that the action of { does not depend on this choice of the origin.)

For a subset B in a variety V, we put Aut(V, B) := {f € Aut(V)|f(B) = B};

When a group G acts on a set S faithfully, we put S¢ := {s € S|g(s) = s for
some g € G — {1}} and S9 := {s € S|g(s) = s} forg € G — {1};

For an equivalence relation ~ on a set S, by a minimal complete set of repre-
sentatives (resp. a complete set of representatives) for the quotient space S/ ~, we
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mean a subset M of S such that |[M NC,| =1 (resp. M NC, # ¢) for every orbit
C, of the relation;
By ~p, we denote an isomorphism as fiber spaces.

§1. Preliminaries.

In this section, we shall note some easy facts on fibered Calabi-Yau threefolds
and special abelian varieties, needed in the sequel.

In this paper, by a Calabi-Yau threefold, we simply mean a three-dimensional
minimal model([KMM]) whose canonical divisor is Cartier and linearly equivalent
to zero. In particular, any Calabi-Yau threefold is assumed to be projective. A
proper surjective morphism ® : X — T with connected fibers is called a fibered
Calabi-Yau threefold of Type Il if X is a Calabi-Yau threefold and W is a log
Enriques surface ([Z]), that is, a projective normal rational surface with only quo-
tient singularities and numerically trivial canonical Weil divisor \'yy. Note that a
general fiber of @ is a smooth elliptic curve and that the canonical class K is
@-linearly equivalent to zero. By I(¥), we denote the global canonical index of W
which is defined as min{n € Zso|Ow(nkw) ~ Ow}.

Fibered Calabi-Yau threefolds of Typell are classified further into the following
two sub-classes via the global canonical covering of the base surface W,

m: W= SPECow(@{“‘V)_low(-‘iffuf)) — W

=0
(1) W is a smooth abelian surface ;
(2) W is a K3 surface with only rational double points as its singularities.

For the global canonical covering, see [Ka3, Proposition 1.7]. A fibered Calabi-Yau
threefold is called of Type Iy A if it is of Type II; and the global canonical cover
of the base space 1s an abelian surface.

Lemma (1.1). Let ® : X — W be a fibered Calabi-Yau threefold of Type II,.
Then, for every point w € W — Sing(W), the scheme theoretic fiber ®~!(w) is a
smooth elliptic curve. In particular, ®(Sing(X)) is contained in Sing(W) and @ is
smooth over W — Sing(W).

Proof. Since Ky and Kw are Q-linearly equivalent to zero, the canonical bundle
formula implies that ® is smooth except over a finite set of points of W (cf.[N1],
[01]). Thus, there is a polydisk A? around each w in W — Sing(W) such that ® is
smooth over A% — {w}. Now we may apply [N2, Main Theorem)] to get the result.
g.e.d.

Lemma (1.2). Let ® : X — W be a fibered Calabi-Yau threefold of Type IIj.
Then, the global canonical index of W is either 2, 3, 4, 6 or 12.

Proof. 1t is sufficient to show that Ow (12K ) is isomorphic to Ow . The proofis an
easy modification of [N4, Proposition (C.1)]. Let p: ¥V — W be a resolution of W
such that the exceptional divisor E := u~!(Sing(W)) is a simple normal crossing
divisor. By Lemma (1.1), we find a smooth projective threefold Y, a birational
morphism v : ¥ — X and a proper surjective morphism ¢ : ¥ — V" such that

(1) ov =pogand

(2) v|ye and p|yo induce an isomorphism

(P : X - W) ~np (g% : Y — VO,
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where W0 := W — Sing(W), V? := V - E, X := "} (W), Y? := ¢g~}(V?),
®0 := &|X° and ¢° := ¢|V?. Note that, by [Ka2, Theorem 20|, the J-function,
J : V¥ — C extends uniquely to the morphism, J : V — P!. Since F is
negative definite and J*(—o0) is a nef, effective divisor supported in E, we have
J!'(~00) = ¢ by the negative definiteness of E. In particular, J : V — P! is
a constant map. Thus, the canonical bundle formula ([Ka2, Theorem 20]) implies
(gawy, v )®1? =~ Oy(E'), where E' is an effective divisor supported in E. Combining
this with the isomorphism given by (2), we get, (w¢)™" ~ ((2°).wyo/1y0)®!2
Owe. This implies the result. g.e.d.

Corollary (1.3). Let ® : X — W be a fibered Calabi-Yau threefold of Type 1.

Assume that the global canonical cover W of W is a smooth surface. Then, the
global canonical index of W is three.

Proof. Since the set of non-Gorenstein points of W is a non-empty, finite set, the
global canonical index 1s not divisible by two. q.e.d.

Lemma (1.4). Let A be an n-dimensional abelian variety with an automorphism
¢" written as (21,...,2n) — (21, ...,(2n) for some global coordinates (z,...,z,) on
A. Then, A = E and ¢' = ¢ (under an appropriate identification of the origins).

Proof. This is nothing but a special case of [CC, Proposition (5.7)]. q.e.d.

Lemma (1.5).

(1) (EZ) = (EF)<> = Q(n).
(2) Aut(E7,Q(n)) acts transitively on Q(n).
(3) Aut(E7,Q(n)) N Aut(E, {O}) acts transitively on Q(n) - {O}.

Proof. direct calculation. q.e.d.

Consider the following set consisting of subsets of A? = {0, 1,2}

(1.6)
Qrroa ={4,4%{(0,0)},{(0,0)}°, {(0,0),(1,0)}, {(0,0),(1,0)},

{(0,0),(1,0),(2.0)},{(0,0),(1,0),(0, 1)},
{(0,0),(1, ) (2,0)}%,{(0,0),(1,0),(0, 1)},

{(0,0),(1,0),(0, )(2?0)}1{(050)5(110)5(0’1)’(1?1)}1

{(0,0),(1,0),(0,1),(2,0)}%, {(0,0),(1,0),(0,1), (1,1)}"},

where {-}¢ denotes the complement of {-} in AZ.

For a subset a of A*, we denote by @, the corresponding subset of Q(2) under
the bijection A? & Q(2) defined by (i,j) « Qi; (for example, Q(0,0),(1,0)} =
{Qoo, Q10}).

Lemma (1.7). Let Il be the set of all subsets of Q(2). Then, the subset [Inin =
{Qala € 11,4} gives a minimal complete set of representatives for the orbit space

T/ Aut(E2, Q(2)).

Proof. Let us write I1,, for the subset {R € II||R| = n}. Note that Aut(EZ?, Q(2))
acts on each I1,,. If {R,,..., R} is a minimal complete set of representatives for the

k]

1 3
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orbit space II,/Aut(E?, Q(2)), then {Rs,..., R} gives a minimal complete set of

representatives for the orbit space IIg_, /Aut(EQ, Q(2)). So we need only consider
the casesn = 0,1,2,3 and 4. However, when n is 0,1 or 2, the result is trivial. From

Lemma (1.5)(2),(3), we see that {{Qoo,Q10, @20}, {Qo0,@10,Q01}} is a complete
set of representatives for the orbit space II3/Aut(E?, Q(2)). Observe that X; +X,+

X3+ X, # X, for {X, Xy, X3} = {Qoo, @10, Qo1} while Qoo + Q10 + Q20 + Qoo =
Qoo. Thus this set is minimal because any element g in Aut(E%, Q(2)) satisfies
g(Py+ Py +Py+ Py) = ¢g(P)+g(P2)+¢(P3)+ ¢(Ps). A similar argument together

with a concrete calculation shows that {{Qo0, Q10,Q01,@20}, {@o0, @10, Qo1,@11}}
is a minimal complete set of representatives for the orbit space 1y /Aut(E?, Q(2)).

q.e.d.

§2. Standard models of fibered Calabi-Yau threefolds of Type I 4

In this section, we shall construct some fibered Calabi-Yau threefolds of Type
Iy A from the abelian threefold E? ((2.1),(2.3)) and classify them up to isomor-
phism as fiber spaces ({(2.7)). The resulting complete representatives will turn out

to be all the non-isomorphic fibered Calabi-Yau threefolds of Type IIi A ((4.1)).
Let pa : Eg — Eg be the projection to the first two factors. Note that

—

p120¢ =Copiz . Let b: E} — E? be the blow-up of E{ at the 27 points Q(3)(=
(Eg)c) and let E-:L be the exceptional divisor corresponding to @;x(€ Q(3)). The
multiplication map ¢ induces the automorphism E of ETZ’ with E]ﬁ = idﬁ};‘ For

simplicity, we denote by 7 the proper transform of ? under b (this does not apply
to the E; jk)-

Definition (2.1). Xy is the quotient threefold E‘é/ < ( >, B is the quotient
surface E?/ < ¢ > and py : Xy — B is the morphism induced by pi2.

Proposition(2.2).

(1) (/B]) X4 is a smooth, simply-connected Calabi-Yau threefold with no de-
formations, that is, h*1(X,) = 0.

(2) pp : X9 — B is a fibered Calabi-Yau threefold of Type IIyA whose
non-singular fiber is isomorphic to the elliptic curve E.. The map pg
only has singular fibers over the 27 points Q;;(€ B) and (ps)~* (Qi;) =
lij UE;j U E,Jl U Eij2, where Q,_, is the image of Qij, li;(~ P*!) is the
image of {Q,J} x B¢ for (i,7) € A? and Eiji(~ P?) is the image of Eyj for
(z,7,k) € A%. Moreover E;j; does not meet E;;j if k # k', and E;j; meets
l;; transeversely at one point (see figure 1).

(3) NX,U;_.- = ol.'j(_l)e92 and N.\'¢|E.‘jk = OE-',‘&(_s)-

(4) The only isolated rational curve in (pg) =1 (Qi;) is L.

Proof. Since the construction is concrete, everything stated in (2.2) may be checked
directly, except possibly for the first equality in (3). But this is also immediate.

Define T; to be the image of {Q;} x E‘2 Then j; C T; and (l;;)}, = —1 and we get

the exact sequence



0— Oll.j(—*l) — JVX.,H.-,- — 1V,\’¢|T.-|lij — (.
Combining this with the equality ¢;(Nx,|i,;) = —2, we get the result. q.e.d.

By (2.2)(3), we can apply the elementary transformation on X, along [;; to get
another smooth threefold.

Definition (2.3). If T is a subset of A?, then X is the threefold obtained from
X4 by the elementary transformation along Ug; jyerli; and pr : X0 — B is the
morphism induced by pg.

Proposition(2.4).

(1) X7 is a smooth, simply-connected Calabi-Yau threefold with no deforma-
tions.

(2) pr: X7+ — B is a fibered Calabi-Yau threefold of Type IIyA whose non-
singular fiber is isomorphic to the elliptic curve E;. The map pr only has
singular fibers over the 27 points -Qh,-_j(e B), (pT)‘l(—CZ;) = l;; UE;j0 UE;; U
Eija, if (1,7) ¢ T, and (p7) "N (Qij) = lj; U E{;o U E};, UE};,, if (i,j) € T,
where I} (~ P!) is the proper transform of l;; and E};;(~ F1) is the proper
transform of Ejjx, for (1,j) € T. Moreover, for (i,7) € T, any two of E/,
Ei;, and E{;, meet transeversely along I};, I}; is the negative section of B},
and Ny i, = O,:,j(—l)6132 (see figure 2).

(3) The only isolated rational curve in (pT)‘l(G_i;) is either l;;, if (1,7) ¢ T, or

li;, if(4,7) € T.

Proof. Everything except for the projectivity of X7 is obvious by the construction.
Unfortunately, the projectivity of a threefold is not necessarily preserved under
elementary transformations (cf.[02, Theoreml] for an odd counter example). How-
ever, in our case, the next Lemma (2.5) will guarantee the projectivity. In fact, once
(2.5) is proved, the divisor Lt constructed in (2.5) gives a birational contraction
f= @it Xo — Y i= Im®jnp,(Xy) C PHmInLl] for a large n, such that
Ezc(f) = U, jyerlij- This implies the projectivity of Xt because 3, o —Eij is
relatively ample for the induced birational contraction f': X7 — Y ¢ PéimInLri,
g.e.d. up to (2.5).

Lemma(2.5). There is a divisor Ly on X4 such that
(1) L is nef and big, and
(2) {C C X4|C.LT =0, C is an irreducble curve} = {l;;|(¢,5) € T'}.

Proof. Consider the smooth surface Ry in Xy defined as the image of E? x {Q«}.
It is clear that Ry is a section of pg over B := B — U(i,j)ez\’aij and that Rz N
(Pe)~Y(Qi;) = mijk, where myjr := Ry NE;ji(~ P'). Note that (mijx)%, = —3 and
(m,‘jk)"é‘m = 1. Since pg|Rx : Rk — B is a resolution of B with Exc(pe|Ri) =
Ugi,jyearmiji and 3K g ~ 0, we can apply the adjunction formula to get 3\p, =

(i.j)ea? —TMijk. Let H :=p3Hp be the pull-back of a sufficiently ample divisor
Hpg on B. Consider the divisor Ly := H + 4R, + 4Ry + 4R3 + Er, where Ep =
Z(i,j,k)e(A’—-T)xA E;ji. First, we prove



Claim(2.6).
(1) Ly.l > 0, for any irreducible curve I C Ry.
(2) L7.0> 0, for any irreducible curve | C E;jx with (i,7,k) € (A* = T) x A.

Proof of (2.6). Using the equality Rx|r, = Kr, = —(1/3) 2 jyeaz Mijk, We get
Lr|Ry = H|Ry — Z(i,j)eA? aijrMijk, where a;j; are positive rational numbers in-
dependent of the choice of Hg. Thus L1 |R; is ample on Ry since Hp is sufficiently
ample. So, statement (1) follows. Using the equality L.l = ((H|Eyjx + R).)E; .,
where (7,7,k) € (A* = T) x A and h € |Og,;,(1)|, we get the result (2). q.e.d. for
(2.6).

Proof of (2.5)(1). By (2.6), Lt is nef for some Hp. Hence Lt is nef and big for
2Hpg. g.e.d.

Proof of (2.5)(2). Since the inclusion > is clear, we show the other inclusion C.
Assume Lr.l = 0. Then by (2.6) we get H.l = Ryl = E7.l = 0. Thus [ is contained
in a fiber over @,-J- for some (i,7) € T. If [ # ;;, then ['is contained in E;;; for some
k. But this implies LRy = (I.Rk|E,-jk)E..j,‘ > 0. Thus | = l;; for some (z,7) € T.
q.e.d.

Proposition (2.7). {pr : X — B|T € Qr1,4} is a minimal complete set of
representatives for the orbit space {pr : X0 — B|T € A?*}/ ~F.

Proof. We can construct a surjective map Aut(E? Q(2)) — Aut(B) by using
Galois theory and the minimality of Eg. Thus (2.7) follows from (1.7). q.e.d.

§3. Classification of fibered Calabi-Yau threefolds of Type Iy A.
In this section, we shall prove the main theorem.

Theorem (3.1). Let & : X — W be a fibered Calabi-Yau threefold of Type
IIyA. Then, there exists a unique T € Q1 4 ((1.6)) such that
(. X — W)~ (pr: Xt — B).

Combining (3.1) with (2.2), (2.4) and (2.7), we get:

Corollary (3.2).

(1) Up to isomorphism as fiber spaces, there are fourteen fibered Calabi-Yau
threefolds of Type Iy A.

(2) Every Calabi-Yau threefold with a Type IIyA fibration is smooth, simply-
connected and has no non-trivial deformations. Moreover any two such
threefolds are birationally equivalent.

In what follows, @ : X — W is assumed to be a fibered Calabi-Yau threefold
of Type IIjA. Let us write 7 : W — W for the global canonical covering of W.

Lemma (3.3). W= Eg and W = Ef/ < ¢ >, under an appropriate identification

of the origins.

Proof. Let < g > (= Z3) be the Galois group of 7. Take a point O in W<9> as
the origin of W and choose global coordinates (wy,w2) of W such that (0,0) = O.
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Since dimW<9> = 0 and g*w = Ciw, where i = 1 or 2 and w is a non-zero
holomorphic two-form on W, an easy coordinate calculation implies that ¢ is a
scalar multiplication by either ¢ or (2. Thus, (1.4) gives the result. q.e.d.

Since 7 is étale over W? := W — Ui, jyeazm(Qi;) and @ is smooth over WO, we
have the following commutative diagram:

(3.4). (Figure 3), where ¢ : Z — Eg is a relatively minimal model of the induced
morphism ®' : X xw Ef — E’g and f: X Xw Eg — — — Z is a birational map
such that §: X xw E2 —(®')7H Ui j1ear@ij) = Z — (6)" (Ui jreazQis)-

Thus, the same argument as in the proofs of (1.1) and (1.2) implies that all
the fibers of ¢ are isomorphic smooth elliptic curves. In particular, Z is smooth
and ¢ : Z — Eg is the unique relatively minimal model of ®'. Thus < { >:=
Gal(C(Z)/C(X)) = Gal(C(EE)/C(W)) =< ¢ > acts on ¢ : Z — EZ holomorphi-
cally. Let ¢ : Z/ < ( >— W be the incuced morphism. The origigal fiber space
® : X — W is recovered as one of the minimal models of Z/ < ¢ > for which
®: X — W agrees with ¢ : Z/ < { >— W over W — Sing(W). Hence the
following Lemma (3.5) together with (2.2), (2.4) and (2.7) implies (3.1) by virture
of the flop theorem for minimal threefolds ([Ka4], [Ko, proof of Theorem 4.9]).
Lemma (3.5).

(1) Z = Eg’

(2) ¢ acts on Z as scalar multiplication by (, for an appropriate choice of the

origin.

(3) (¢:Z — EZ) ~r (p12: Ef — E}).

Proof. First, we shall prove:

Claim (3.6). Z is an abelian threefold.

Proof of (8.6). We have already shown that Z is smooth. Since 7 is étale over
X — Sing(X}, the isomorphism wx _sing(x) = Ox implies wzo =~ O zo, where AR
Z—-U jyear(@)"1(Qij). Thus Oz(Lz) ~ Oz, because dimU(; jeaz(¢) " (Qi;) = 1.
Put H := (R $+Cz)®0p:. Sincewypz ~ F{H) ~ (R'$.Oz)™! by [N3, Theorem
(3.7)], we get (R'¢.0z) ~ OE:" Thus, from the Leray spectral sequence, we get
the exact sequence

0 — H'(Og;) — H'(0z) — H*(Op;) — H(Og3) — H(O2)

Note that HZ(OEg) — H?(Oz) is injective because the natural composition
H%‘Q(Eg) — %’Z(Z) — H%‘z(D) 1s injective for any smooth, ample divisor D
on Z. This exact sequence gives h!(Qz) = 3. Now, we can apply [Kal, Main
Theorem] to get the result. q.e.d. for (3.6).

We now return to the proof of (3.5). Note that for each (i,7) € A?, the smooth
elliptic curve Cj; := (¢)~'(Q;;) is stable under the action of {. The induced action
¢|Cij is then one of the following:

(1) ¢ICsi; = id;



(2) Ci; ~ E¢ and &:Ing 22 (2

(3) Cij ~ E; and ¢|Cj; : z — (2

(4) ¢|C;j is a translation of order 3.

Suppose (4) occurs for every (¢,7) € A2. Then Z/ < ¢ > would be a smooth
threefold with 3K, 5~ 0 but Kz s # 0. But this is absurd because Kx ~ 0.
Hence either (1), (2) or (3) occurs for some (¢,7) € A% Take a fixed point O of
¢|Ci; and regard it as the origin of Z. Considering a local section around O and
using appropriate global coordinates (z,,z2,z3) on Z with (0,0,0) = O, we get the
following (global) descriptions of the action of ¢ on Z corresponding to the previous
possibilities (1), (2), (3):

(1) ¢:(21,22,33) = ((21, T2, 23);

(2) ¢ (z1,22,23) = (Co1, (22, CPa3);

(3) C:(z1,22,23) = (Cz1, (T2, (23).

Claim(3.7). Neither (1) nor (2} occurs.

Proof of (8.7). Assume (1) occurs. Then, by [R, Theorem (4.1)], Z/ < ¢ > has
worse singularities than canonical singularities. Thus &(Z') = —oo for a resolution
of Z/ < ¢ >. But, this is impossible. Assume (2) occurs. Then, by [R, Theo-
rem (4.1})}, Z/ < ¢ > has only Q-factorial terminal singularities of index 3 with
K <5 = 0. Thus, both X and Z/ < ( > are minimal models of C(X). But this
is absurd. q.e.d. for (3.7).

Thus (3) occurs. Now we may apply (1.4) to get (3.5)(1),(2). In order to get
(3.5)(3), it is sufficient to show that ¢ has a section. Choose global coordinates
(21,29,23) 0on Z = Eg such that z; gives a global coordinate on the :-th factor E;

of E2 and (0,0,0) = O. Using the fact CY; C (E2) = Q(3) and (1.5), we can find
an element h € Aut(E?, {0}) N Aut(E2, Q(3)) such that h(P) = Qg0 for a point

Pin Cg different from O. Put ¢ = ¢ o h™! and take Q;; as the origin O of Eg
Since ©(0) = O, ¢ may be written as follows:

(101) _ (Gn a2 013) !
wy /) \a21 a2 ax :3 ’
where (w;,w;) are global coordinates on Eg with O = (0,0).

Since Qo0 = ((1 =¢)/3,0,0) € (¢)~1(0), we get aj; = az; = 0 and (p)~}0) =
E¢ x{(0,0)}. Thus {0} x E? gives a section of ¢. Hence h({0} x E}) gives a section
of ¢. q.e.d. for (3.5).
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