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Introduction

The first version of this work came from a lecture course in noncommutative algebraic
geometry and related (views on) homological algebra and, in particular, K-theory, which
was given at Kansas State University during the Spring of 2006. It was the half of cen-
tury anniversary of the appearance of Cartan-Eilenberg book and forty nine years after
Grothendieck’s Tôhoku lectures which based homological algebra on abelian categories.

It seemed timely to look at homological functors from the classical point of view,
but, in a very different, much more general, setting: abelian categories were replaced
by right exact categories. The latter are Grothendieck presites whose covers are strict
epimorphisms. The dual structures, left exact categories, appear naturally and play a
crucial role in a version of K-theory sketched in Chapters V and VI of this work.

It is worth to mention that the starting point of the actual lectures (which is behind
the scene in this manuscript) was the homological algebra of exact categories as it is viewed
by Keller and Vossieck [KeV]. Besides an optimization of the Quillen’s definition of an exact
category, they observed that the stable categories of exact categories with enough injective
objects have a suspension functor and triangles whose properties give a ’one-sided’ version
of Verdier’s triangulated category, which they call a suspended category. A short exposition
of this topic is given in Appendix K.

The next opportunity to look at the subject was preparing my lectures (and especially
their extended notes several months later) at the School on Algebraic K-Theory and Ap-
plications which took place at the International Center for Theoretical Physics (ICTP) in
Trieste during the last two weeks of May of 2007 (see [R2], or [R3]).

A detailed exposition of the homological algebra and K-theory part (– the last three
lectures) of [R2] can be found in [R5].

The present text is a considerable refinement of [R5]. It is based on lecture courses on
homological algebra and K-theory given at Kansas State University in the Spring of 2009
and in the Fall of 2010.

In Chapter I, we introduce right exact (not necessarily additive) categories and sketch
their basic properties. In particular, we define Karoubian right exact categories and prove
the existence of Karoubian envelopes. We introduce the notion of a kernel of a morphism
in a category with initial objects and study the elementary properties of kernels, which are
well known in the abelian case. The properties of kernels are used then for studying right
exact categories with initial objects. In the last sections, we look at exact categories. We
observe, among other things, that any k-linear right exact category is canonically realized
as a subcategory of an exact k-linear category – its exact envelope.

Chapter II is dedicated mostly to homological functors on right exact categories,
otherwise called left satellites, or universal ∂∗-functors. Its content might be regarded as
a non-abelian and non-additive (that is not necessarily abelian or additive) version of the
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classical theory of homological functors. We start with preliminaries on trivial morphisms,
pointed objects and complexes. Then we introduce ∂∗-functors, and prove the existence
of (by producing a formula for) left derived functors of any functor from any right exact
category to a category with kernels of morphisms and limits of filtered diagrams. We look
at contravariant functoriality of universal ∂∗-functors. One of its applications is replacing
the computation of universal ∂∗-functors from a right exact category by computation of
universal ∂∗-functors from the category of non-trivial sheaves of sets on it endowed with the
canonical right exact structure formed by epimorphisms. The k-linear version of this fact
replaces computation of universal k-linear ∂∗-functors from a k-linear right exact category
by the computation of the corresponding ∂∗-functors from the canonically associated k-
linear Grothendieck category. We consider the dual notion – ∂-functors, and introduce
the higher Exts. We establish ’exactness’ of ∂∗-functors whose zero component is right
’semi-exact’ and the target right exact category satisfies an analog of the Grothendieck’s
(AB5∗) property. Then we consider the category of universal ∂∗-functors from a right
exact category with values in categories with initial objects and prove that this category
has an initial object, which is the ∂∗-functor Ext•. We establish a similar fact in k-linear
setting. We show that the initial universal ∂∗-functor Ext• is also an initial object for
the (appropriately defined) category of universal ’exact’ functors from a fixed right exact
category. We conclude the chapter with a short discussion of relative satellites.

We start Chapter III with studying projective objects of a right exact category and
right exact categories with enough projective objects. We observe that projective objects
are compatible with the contravariant functoriality of universal ∂∗-functors discussed in
Chapter II. In particular, the canonical embedding of a right exact category into the
category of non-trivial sheaves of sets on it maps projective objects to projective objects;
and if the right exact category has enough projective objects, same holds for the category of
sheaves of sets. Projective objects play approximately the same role as in the classical case:
higher components of every universal ∂∗-functor annihilate pointed (– having morphisms
to initial objects) projective objects; and if the right exact category has enough projective
objects, then every ’exact’ ∂∗-functor which annihilates all projective objects is universal.

Analyzing the structure of universal cohomological functors and results of Chapter II
leads to an observation that the information on all universal functors from a given left exact
category (CX , IX) is encoded in a canonical structure of a Z+-category on the category
of non-trivial presheaves of sets on CX (induced by the functor Ext1) and the category of
standard triangles related with conflations of the left exact category (CX , IX). We apply
the obtained structure to producing formulas for satellites of composition of functors.

Then we look at computational aspects of satellites of functors F from left exact
categories such that their domain has enough F -acyclic objects. We introduce F -acyclic
resolution, cohomology of complexes, and show that if the functor F is weakly left ’exact’
and maps inflations with trivial cokernels to isomorphisms, then its satellites are isomorphic
to cohomologies of the images of acyclic resolutions, similarly to the classical, abelian, case.

We return to studying the structure of cohomological functors and define prestable
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and stable categories of a left exact category. Turning the properties of prestable and
stable categories into axioms, we introduce the notions of presuspended and quasi-suspended
categories. We conclude with definition of homology of ’spaces’ with coefficients in a right
exact category and the homotopy groups of pointed ’spaces’.

Starting from Chapter IV, a noncommutative geometric flavor (introduced by passing
in Chapter I) becomes a permanent part of the picture: we interpret svelte right exact
categories as dual objects to (noncommutative) right exact ’spaces’ and ’exact’ functors
between them as inverse image functors of morphisms of ’spaces’. After introducing and
studying certain canonical left exact structures on the category |Cat|o of ’spaces’ repre-
sented by categories, we define a family of canonical left exact structures on the category
of right exact ’spaces’ and their ’exact’ morphisms (that is morphisms whose inverse im-
age functors are ’exact’). We show that each of these canonical left exact structures has
enough injective objects by producing natural inflations from any right exact ’space’ into
an associated with it injective. We explain the k-linear version of these facts with some
ramifications. In particular, we prove the existence of enough injective objects and use this
to establish a similar fact for the full subcategory of the category of right exact k-’spaces’
formed by ’spaces’ represented by Karoubian categories and for the left exact category of
exact k-’spaces’ (that is ’spaces’ represented by exact k-linear categories). We conclude
with a couple of miscellaneous complements: introducing the path ’space’ of a right exact
’space’ and a short discussion of localizations of right exact ’spaces’.

Chapter V is dedicated to the first applications: the universal K-theory of right exact
’spaces’. We define a contravariant functor K0 from the category of right exact ’spaces’ to
the category of abelian groups and prove that K0 is right ’exact’ with respect to a certain
canonical left exact structure on the category of right exact ’spaces’.

The category of right exact ’spaces’ does not have final objects; so that we cannot
apply the formalism of cohomological functors developed in Chapters II. A natural way to
acquire final objects is to consider the category of right exact ’spaces’ over a ’space’. We
do this defining the relative K0-functors and their derived functors with respect to a left
exact structure on the category of right exact ’spaces’ over a right exact ’space’.

Most of the chapter is dedicated to the case of ’spaces’ over the ’point’ – the category
Esp∗r of right exact ’spaces’ over the standard initial object x represented by the category
with one morphism. The ’space’ x is interpreted as the affine scheme associated with the
”field” F1. So that Esp∗r can be regarded as the category of right exact ’spaces’ over F1.
It is endowed with a canonical left exact structure. The left exact category Esp∗r is used
as a device for producing higher K-theories on other left exact categories. Namely, every
functor from a left exact category (CS, IS) (having final objects) to Esp∗r which preserves
conflations gives rise to an ’exact’ higher K-theory on the left exact category (CS, IS).
We apply this consideration to obtain the universal K-theory of (’spaces’ represented by)
svelte abelian categories and the universal K-theory of k-linear exact categories.

Then we start creating the standard tools of higher K-theory which generalize the
corresponding facts of Quillen’s K-theory: reduction by resolution and characteristic filtra-
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tions and sequences. We conclude the chapter with extending the Quillen’s Q-construction
to right exact categories with initial objects.

In Chapter VI, we introduce topologizing subcategories of a right exact ’space’, their
infinitesimal neighborhoods, and the (left exact) category of relative right exact ’spaces’.
We establish some general facts about devissage of higher images of functors and then, as
an application, obtain the devissage theorem in higher K-theory.

The next several sections appear under the general title “complementary facts”. We
start with some examples of kernels and cokernels and simple general constructions and ob-
servations, which acquire importance somewhere in the text. Then we spend some effort on
expanding standard facts on diagram chasing to right exact categories. Then follow some
facts on localizations of exact and (co)suspended categories. In particular, t-structures
of (co)suspended categories appear on the scene. Again, a work by Keller and Vossieck,
[KV1], suggested the notions. We consider cohomological functors on suspended categories
with values in exact categories and prove the existence of a universal cohomological functor.
The construction of the universal functor gives, among other consequences, an equivalence
between the bicategory of Karoubian suspended svelte categories with triangle functors as
1-morphisms and the bicategory of exact svelte Z+-categories with enough injective objects
whose 1-morphisms are ’exact’ functors. We show that if the suspended category is trian-
gulated, then the universal cohomological functor takes values in an abelian category, and
our construction recovers the abelianization of triangulated categories by Verdier [Ve2]. It
is also observed that the triangulation of suspended categories induces an abelianization
of the corresponding exact Z+-categories. We conclude with a discussion of homological
dimension and resolutions of suspended categories and exact categories with enough injec-
tive objects. These resolutions suggest that the ’right’ objects to consider from the very
beginning are exact (resp. abelian) and (co)suspended (resp. triangulated) Zn+-categories.
All the previously discussed facts (including the content of Appendix K) extend easily to
this setting. We define the weak costable category of a right exact category as the local-
ization of the right exact category at a certain class of arrows related with its projective
objects. If the right exact category in question is exact, then its costable category is iso-
morphic to the costable category in the conventional sense. If a right exact category has
enough pointable object (in which case all its projective objects are pointable), then its
weak costable category is naturally equivalent to the costable category of this right exact
category introduced in Chapter 4. We study right exact categories of modules over monads
and associated stable and costable categories. The general constructions acquire here a
concrete shape. We introduce the notion of a Frobenius monad. The category of modules
over a Frobenius monad is a Frobenius category, hence its stable category is triangulated.
We consider the case of modules over an augmented monad, which includes, as special
cases, most of standard homological algebra based on complexes and their homotopy and
derived categories.

The main purpose of Chapter VII is to extend basic notions and constructions of
homological algebra to arbitrary right and left exact categories. This means that we do
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not require a priori the existence of initial (resp. final) objects in our right (resp. left)
exact categories, or in the categories, in which (co)homological functors take their values.

We start with a natural definition of kernels of arrows in an arbitrary category and
show that the main properties of kernels summarized in Chapter I hold in the general
setting. In order to acquire flexibility, we introduce the notion of a virtual kernel, which
is a morphism of presheaves of sets. The virtual kernel is a kernel iff this morphism is
representable. It turns out that the existence of morphisms with non-trivial virtual kernels
(which is a necessary condition of non-triviality of our version of homological algebra)
imposes a very precise choice of categories: they should be virtually semi-complete, which
means, by definition, that each connected component has pointed objects, or what is the
same, morphisms from constant functors to the identical functor. We introduce ∂∗-functors
from a right exact category to an arbitrary category, define universal ∂∗-functors (otherwise
called right derived functors of their zero component) in a standard way (that is by a
universal property) and constructively prove their existence (i.e. write a formula) in the
case when the target category has pull-backs and limits of filtered diagrams. By duality,
we obtain ∂-functors from a left exact category to an arbitrary category and universal
∂-functors, otherwise called left derived functors. We consider the category of universal
∂∗-functors from a given right exact category taking values in virtually semi-complete
categories and establish the existence of an initial object of this category – the functor
Ext•, in the case when the right exact category in question is virtually semi-complete.
Following the scenario of Chapter III, we define the stable category of the category of
presheaves of sets associated with a virtually semi-complete left exact category and define
prestable and stable categories of a left (or right) exact category. We give a brief account
on ’exactness’ properties of derived functors and, generalizing and using the corresponding
fact of Chapter II, show that, under certain condition on the target right exact category,
’exact’ ∂∗-functors are universal. We conclude with a couple of examples-applications:
homology of ’spaces’ with coefficients in arbitrary right exact category, and the “absolute”
higher K-theory of arbitrary right exact ’spaces’, which gives rise to absolute K-theories
of arbitrary left exact categories over the left exact category of right exact ’spaces’.

Appendix K (where ’K’ stands for Bernhard Keller) is dedicated mostly to suspended
categories of exact k-linear categories.

Acknowledgements. A large part of this manuscript was written during my visiting
Max Planck Institut für Mathematik in Bonn and IHES. I would like to express my grati-
tude to both Institutes for hospitality and excellent working conditions.

I thank Eric Bunch for indicating a number of typos in the text.



Chapter I

Right Exact Categories.

In Section 1, we introduce right exact categories and different classes of functors
between them defined by different ’exactness’ properties. Svelte right exact categories
are regarded as representatives of right exact ’spaces’ and functors between right exact
categories are interpreted as inverse image functors of morphisms of right exact ’spaces’.
In Section 2, we discuss the canonical embedding of a right exact category into the right
exact category of sheaves of sets on it and the k-linear version of this embedding. In Section
3, we introduce Karoubian (not necessarily additive) categories and Karoubian right exact
categories. We prove that every category has Karoubian envelope and show that same
holds for right exact categories. In Section 4, we introduce the notions of kernels and
coimages of morphisms in categories with initial objects (dually, the notions of cokernels
and images of morphisms in categories with final objects) and study their basic properties
which are used through the whole work (and beyond) starting from Section 5, where we
discuss shortly right exact categories with initial objects. Every deflation of a right exact
category with an initial object has a kernel, which allows to introduce analogs of short
exact sequences, which we call (extending Gabriel’s terminology) conflations. Conflations
are interpreted as extensions, which prompts definition of fully exact subcategories of a
right exact category as its full subcategories closed under extensions. In Section 7, we
recover the main properties of exact k-linear categories complementing already obtained
facts on right exact categories. Section 8 discusses some complements on exact categories.

1. Right exact categories and (right) ’exact’ functors.

1.1. Right exact categories. We define a right exact category as a pair (CX ,EX),
where CX is a category and EX is a pretopology on CX whose covers are strict epimor-
phisms; that is, for any element M

s
−→ L of EX (– a cover), the diagram

K2(s)

s1

−−−→
−−−→

s2

M
s

−−−→ L

is exact. Here K2(s) =M×LM ofM
s
−→ L is the kernel pair of the morphism M

s
−→ L

and K2(s)
s1
−→
−→
s2

M the canonical projections – pull-backs of M
s
−→ L along itself.

This exactness of the diagram means precisely that the pretopology EX is subcanon-
ical; i.e. every representable presheaf of sets on CX is a sheaf on (CX ,EX).

We call the elements of EX deflations and assume that all isomorphisms are deflations.
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1.2. The coarsest and the finest right exact structures. The coarsest right ex-
act structure on a category CX is the discrete pretopology: the class of deflations coincides
with the class Iso(CX) of all isomorphisms of the category CX .

1.2.1. The canonical right exact structure. Right exact structures on a category
CX form a filtered family: if {Ei | i ∈ I} is a set of right exact structures, then all possible
compositions of arrows from Ei, i ∈ I, form a right exact structure which we denote by
sup
i∈I

Ei. This is the coarsest common refinement of all right exact structures Ei, i ∈ I.

In particular, it follows that the union of all right exact structures on the category
CX is a right exact structure, which we call canonical and denote by Es

X .
The canonical right exact structure can be described directly as follows.

1.2.2. Proposition. The canonical right exact structure Es
X on the category CX

consists of universally strict epimorphisms; that is morphisms whose arbitrary pull-backs
(in particular, themselves) exist and are strict epimorphisms.

Proof. (i) Let L1
t1−→ L2 and L2

t2−→ L3 be strict epimorphisms whose pull-backs

along strict epimorphisms are strict epimorphisms. Then their composition, L1

j2◦j1
−−−→ L3,

is a strict epimorphism.

The kernel pair of the composition L1

t2◦t1
−−−→ L3 is naturally decomposed into the

diagram

K2(t2 ◦ t1)
t′′1
−−−→ K12

t′′2
−−−→ L1

p̃1

y cart p1

y cart
y t1

K12

t′1
−−−→ K2(t2)

t′2
−−−→ L2

p̃2

y cart π2

y cart
y t2

L1

t1
−−−→ L2

t2
−−−→ L3

(1)

whose all squares are cartesian.

For any morphism M
f
−→ N , let Λo(f) denote the class of all pairs of arrows

V −→−→ M which are equalized by the morphism f.

Let L1
ξ
−→ V be a morphism such that Λo(t2 ◦ t1) ⊆ Λo(ξ). In particular, Λo(t1) ⊆

Λo(ξ). The latter implies that ξ = ξ1 ◦ t1 for a uniquely defined morphism L1
ξ1
−→ V. The

inclusion Λo(t2 ◦ t1) ⊆ Λo(ξ) = Λo(ξ1 ◦ t1) implies (actually, means) that

ξ1 ◦ t1 ◦ (p̃2 ◦ p̃1) = ξ1 ◦ t1 ◦ (t
′′
2 ◦ t

′′
1).

It follows from the commutativity of the diagram (1) that

ξ1 ◦ t1 ◦ (p̃2 ◦ p̃1) = (ξ1 ◦ p2) ◦ (p1 ◦ t
′′
1) and

ξ1 ◦ t1 ◦ (t
′′
2 ◦ t

′′
1) = (ξ1 ◦ t

′
2) ◦ (p1 ◦ t

′′
1).
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So that
(ξ1 ◦ p2) ◦ (p1 ◦ t

′′
1) = (ξ1 ◦ t

′
2) ◦ (p1 ◦ t

′′
1). (2)

Since p1 and t′′1 are (strict) epimorphisms, their composition p1 ◦ t
′′
1 is an epimorphism.

Therefore, it follows from the equality (2) that ξ1 ◦p2 = ξ1 ◦ t
′
2. By hypothesis, t2 is a strict

epimorphism, that is the cokernel of the pair of arrows K2(t2)
t′
2
−→
−→
p2

L2 (see the lower right

square of the diagram (1)). Therefore, ξ1 = ξ2 ◦ t2 for a unique morphism L2
ξ2
−→ V.

(ii) Since a pull-back of a composition of morphisms having pull-backs is the composi-
tion of pull-backs, it follows from (i) that the composition of universal strict epimorphisms
is a strict epimorphism.

1.3. Special cases and examples.

1.3.1. Abelian categories and toposes. If CX is an abelian category or a topos,
or a category dual to a topos. Then the canonical right exact structure Es

X consists of all
epimorphisms of the category CX .

1.3.2. Quasi-abelian categories. A quasi-abelian category is an additive category
CX with kernels and cokernels and such that every pullback of a strict epimorphism is a
strict epimorphism, and every pushout of a strict monomorphism is a strict monomorphism.

It follows from the definition that if CX is a quasi-abelian category, then Es
X consists

of all strict epimorphisms.
Notice that abelian categories can be described as quasi-abelian categories in which

every epimorphism is strict.

1.3.3. Example. Let CX be the category Algk of associative unital k-algebras.
The category Algk has arbitrary limits; in particular, it has fiber products. Therefore,
the finest right exact structure, Es

X , consists of all strict epimorphisms. The latter are
precisely surjective morphisms of algebras.

1.4. Right ’exact’ and ’exact’ functors. Let (CX ,EX) and (CY ,EY ) be right

exact categories. A functor CX
F
−→ CY will be called right ’exact’ (resp. ’exact’) if it

maps deflations to deflations and for any deflation M
e
−→ N of EX and any morphism

Ñ
f
−→ N , the canonical arrow

F (Ñ ×N M) −−−→ F (Ñ)×F (N) F (M)

is a deflation (resp. an isomorphism). Thus, the functor F is ’exact’ if it maps deflations
to deflations and preserves pull-backs of deflations.

1.5. Weakly right ’exact’ and weakly ’exact’ functors. A functor CX
F
−→ CY

is called weakly right ’exact’ (resp. weakly ’exact’) if it maps deflations to deflations and
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for any arrow M −→ N of EX , the canonical morphism

F (M ×N M) −→ F (M)×F (N) F (M)

is a deflation (resp. an isomorphism). In particular, weakly ’exact’ functors are weakly
right ’exact’.

1.5.1. Note. Of coarse, ’exact’ (resp. right ’exact’) functors are weakly ’exact’
(resp. weakly right ’exact’). In the additive (actually, a more general) case, weakly ’exact’
functors are ’exact’ (see 2.5 and 2.5.2).

1.6. Interpretation: ’spaces’ represented by right exact categories. We
consider the category Espwr whose objects are pairs (X,EX), where (CX ,EX) is a svelte
right exact category. A morphism from (X,EX) to (Y,EY ) is a morphism of ’spaces’

X
ϕ
−→ Y whose inverse image functor CY

ϕ∗

−→ CX is a right weakly ’exact’ functor from
(CY ,EY ) to (CX ,EX). We denote by Espr the subcategory of the category Espwr formed by
right exact ’spaces’ and ’exact’ morphisms, which is the name used for morphisms having
’exact’ inverse image functors.

The map which assigns to every ’space’ X the pair (X, Iso(CX)) is a full embedding
of the category |Cat|o of ’spaces’ into the category Espwr . This full embedding is a right
adjoint functor to the forgetful functor

Espwr −−−→ |Cat|
o, (X,EX) 7−→ X.

2. The canonical embedding.

2.0. Preliminaries: functors, (pre)sheaves of sets, and continuous functors.

2.0.1. Notations and conventions.

2.0.1.1. Non-trivial presheaves of sets. Let CX be a svelte category.
We denote by ∅̄, or ∅̄X , the trivial presheaf of sets on CX ; that is the presheaf which

maps all objects of CX to the empty set. The presheaf ∅̄X is the unique initial object of
the category C∧

X of presheaves of sets on CX .
We denote by C∗

X the full subcategory of the category C∧
X formed by all non-trivial

presheaves of sets; that is we exclude the trivial presheaf ∅̄X .
The category C∧

X has a final object, which is the constant presheaf with values in a
one-element set. In particular, it is a final object of the category C∗

X . If the category CX
has a final object, y, then ŷ = CX(−, y) is a final object of the category C∧

X .
Notice that the coproduct of any set of non-trivial presheaves of sets is a non-trivial

presheaf; and the cokernel of a pair of arrows F −→−→ G between non-trivial presheaves is
a non-trivial presheaf too (which follows from the corresponding fact for non-empty sets).
Therefore, the category C∗

X has colimits of arbitrary small diagrams.
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2.0.1.2. Let τ be a (pre)topology on a svelte category CX . We denote by (CX , τ)
∧

the category of all sheaves of sets on the (pre)site (CX , τ).

2.0.1.3. We denote by CXτ the full subcategory of (CX , τ)
∧ generated by non-trivial

sheaves; that is CXτ = (CX , τ)
∧ ∩ C∗

X .
If (CX ,EX) is a right exact category, then we usually denote the category of non-trivial

sheaves of sets on (CX ,EX) by CXE
instead of CXEX

.

2.0.1.4. Conventions. Recall that a category is called cocomplete if it has colimits
and initial objects. The latter are sometimes interpreted as colimits of the empty diagram.
When we say that a category has colimits, this is not the same as a cocomplete category –
only colimits of non-empty diagrams are considered. Thus, the category C∗

X of non-trivial
presheaves of sets on a category CX has colimits, but, it does not have initial objects.

A similar convention in the dual setting: categories with limits are categories with
limits of non-empty small diagrams. complete categories are categories with limits and
final objects (interpreted as limits of the empty diagram).

We need a slightly more elaborate version of the canonical extension of functors onto
the category of presheaves of sets [GZ, II.1.3], which is as follows.

2.0.2. Proposition. Let CX be a svelte category and CY a category with colimits.

(a) The functor of the composition with the Yoneda embedding CX
h∗
X−→ C∗

X ,

Hom(C∗
X , CY )

h̃∗
X

−−−→ Hom(CX , CY ), G 7−→ G ◦ h∗X , (1)

has a fully faithful left adjoint,

Hom(CX , CY )
h̃X!

−−−→ Hom(C∗
X , CY ). (2)

The functor h̃X! establishes an equivalence between the category Hom(CX , CY )
of functors from CX to CY and the full subcategory Hom(C∗

X , CY ) of the category
Hom(C∗

X , CY ) generated by all functors C∗
X −→ CY preserving colimits.

(b) Suppose that the category CX has an initial object x. Let C⊛

X
def
= x̂\C∗

X = x̂\C∧
X

and CX
h⊛

X

−−−→ C⊛

X the canonical fully faithful functor induced by Yoneda embedding.
The following conditions are equivalent:

(b1) There exists a continuous (i.e. having a right adjoint) functor from C⊛

X to CY .
(b2) The category CY has initial objects.

If the equivalent conditions (b1), (b2) hold, then the functor

Hom(C⊛

X , CY )
h̃⊛

X

−−−→ Hom(CX , CY ), G 7−→ G ◦ h⊛X , (3)
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establishes an equivalence between the full subcategory Hom⊛(CX , CY ) of the category
Hom(CX , CY ) generated by functors mapping initial objects to initial objects and the full
subcategory Homc(C

⊛

X , CY ) of the category Hom(C⊛

X , CY ) generated by all continuous
functors C⊛

X −→ CY .
(c) Suppose that the category CY has initial objects (i.e. it is cocomplete). Then the

functor of the composition with the Yoneda embedding CX
hX−→ C∧

X

Hom(C∧
X , CY )

h̃X
−−−→ Hom(CX , CY ), G 7−→ G ◦ hX ,

establishes an equivalence between the category Hom(CX , CY ) of functors from CX to
CY and the full subcategory Homc(C

∧
X , CY ) of the category Hom(C∧

X , CY ) generated by
all continuous functors C∧

X −→ CY .
(c1) If the category CY is cocomplete, then a functor C∧

X −→ CY is continuous iff it
preserves colimits of all small diagrams (including the empty diagram: i.e. it maps initial
objects to initial objects).

(c2) Let CX and CY be categories with final objects and Hom(CX , CY )
⊛ the full sub-

category of the category Hom(CX , CY ) generated by functors mapping final objects to final
objects. The functor G 7−→ G◦hX induces an equivalence of the category Hom(CX , CY )

⊛

and the full subcategory

Homc(C
∧
X , CY )

⊛ def
= Hom(C∧

X , CY )
⊛
⋂
Homc(C

∧
X , CY )

of the category Hom(C∧
X , CY ) generated by continuous functors mapping final objects to

final objects.

Proof. (a) For every functor CX
F
−→ CY , we denote by F ⋄ the functor C∗

X −→ CY ,
which assigns to every non-trivial presheaf of sets G on CX the colimit of the composition

of the forgetful functor h∗X/G −→ CX and the functor CX
F
−→ CY .

The map F 7−→ F ⋄ extends to a functor

Hom(CX , CY )
h̃X!

−−−→ Hom(C∗
X , CY )

which is left adjoint to the functor (1).
It follows from this definition that the composition of the functor F ⋄ with Yoneda

embedding coincides with the functor F . This means that one of the adjunction morphisms
is an isomorphism, which implies that the functor (1) is a localization its left adjoint,
F 7−→ F ⋄, is fully faithful. The functor F ⋄ preserves colimits, because every presheaf of
sets G is isomorphic to the colimit of the composition of the forgetful functor h∗X/G −→ CX

with the Yoneda embedding CX
h∗
X−→ C∗

X . This also implies that if C∗
X

F
−→ CY is a

functor preserving colimits, then the natural morphism (F◦h∗X)⋄ −→ F is an isomorphism.
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All together shows that the fully faithful functor F 7−→ F ⋄ induces an equivalence
between the category Hom(CX , CY ) and the full subcategory Hom(C∗

X , CY ) of the
category Hom(C∗

X , CY ) generated by all functors C∗
X −→ CY preserving colimits.

(b) The full subcategory Homc(C
⊛

X , CY ) of the category Hom(C∗
X , CY ) generated

by continuous functors is contained in the subcategory Hom(C⊛

X , CY ), because continuous
functors preserve colimits.

(b1)⇒(b2). If the category CX has an initial object, x, then (̂x = CX(−, x), idx) is an
initial object of the category C⊛

X . Continuous functors map initial objects to initial objects.
So that if there exist continuous functors from C⊛

X to CY , then the category CY has initial
objects.

(b2)⇒(b1). Let the category CY have initial objects, and let CX
F
−→ CY be a functor

which maps initial objects to initial objects. We denote by CY
F⋄−→ C⊛

X the functor
which maps every object L of the category CY to the pair (CY (F (−),L), ζL), where ζL

is the composition of the morphism x̂ = CX(−, x)
F−,x

−−−→ CY (F (−), F (x)) and the map
CY (F (−), F (x)) −→ CY (F (−),L) corresponding to the unique morphism F (x) −→ L.

One can see that the functor F⋄ is a right adjoint to the composition of the forgetful

functor C⊛

X

f∗−→ C∗
X and the functor C∗

X
F⋄

−→ CY constructed in (a) above.
In fact, for every L ∈ ObCY , the object F ⋄f∗F⋄(L) is the colimit of the composition

of the forgetful functor hX/f∗F⋄(L) −→ CX and the functor F . Objects of the category

hX/f∗F⋄(L) are pairs (V, V̂
ξ
→ f∗F⋄(L)) By Yoneda Lemma, morphisms V̂

ξ
−→ f∗F⋄(L)

are in a natural bijective correspondence with elements of f∗F⋄(L)(V) = CY (F (V),L).
this correspondence assigns to the category hX/f∗F⋄(L) a cone

F (V )
ξ̂

−−−→ L, (V, ξ) ∈ ObhX/f∗F⋄(L),

from the composition the forgetful functor hX/f∗F⋄(L) −→ CX and the functor F to L.

This cone determines a morphism F ⋄f∗F⋄(L)
ǫ(L)
−−−→ L which is the value at L of the

adjunction arrow (F ⋄f∗)F⋄
ǫ
−→ IdCY .

The other adjunction arrow, IdC⊛

X

η
−→ F⋄F

⋄f∗, is defined as follows.

Notice that it suffices to define the values of the adjunction arrow η on representable

presheaves, V̂
η(V̂)
−−−→ F⋄F

⋄(V) = CY (F (−), F (V)). The obvious canonical choice is the
morphism corresponding to the identical morphism F (V) −→ F (V). This choice, indeed,
defines the second adjunction arrow.

This shows that, for every functor CX
F
−→ CY which maps initial objects to initial

objects, the functor f∗F
⋄ is continuous. It follows from (a) that the restriction of the

functor F 7−→ F ⋄ to functors preserving initial objects defines an equivalence between the
full subcategory Hom⊛(CX , CY ) of the category Hom(CX , CY ) generated by functors
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mapping initial objects to initial objects and the full subcategory Homc(C
⊛

X , CY ) of the
category Hom(C∗

X , CY ) generated by all continuous functors C⊛

X −→ CY .
The category Hom⊛(CX , CY ) has an initial object – the constant functor, which

maps all morphisms of the category CX to the identical morphism of an initial object of
the category CY . In particular, the category Homc(C

∗
X , CY ) of continuous functors from

C∗
X to CY is not empty.

(c) Suppose that the category CY has an initial object y. To every functor CX
F
−→ CY ,

we assign a functor C∧
X

F⋆
−→ CY whose restriction to the subcategory C∗

X of non-trivial
functors coincides with the functor F ⋄ defined in (a) and which maps the trivial functor
∅̄ (– the initial object of the category C∧

X) to the initial object y. The functor F⋆ which
maps every object L of the category CY to the presheaf of sets CY (F (−),L) is a right
adjoint to the functor F ⋆. The argument is the same as in the proof of (b2)⇒(b1).

(c1) The fact follows from the argument of (b2)⇒(b1).
(c2) This follows from the fact that Yoneda embedding maps final objects to final

objects. Details are left to the reader.

2.0.3. Corollary. Let CX and CY be svelte categories.
(a) There is an equivalence of categories between the category Hom(CX , CY ) of func-

tors from CX to CY and the full subcategory Hom(C∗
X , C

∗
Y ) of the category Hom(C∗

X , C
∗
Y )

generated by all functors C∗
X −→ C∗

Y which preserve colimits and map representable
presheaves to representable presheaves.

(b) Suppose that the categories CX and CY have initial objects. Then the functor (1)
establishes an equivalence between the full subcategory Hom⊛(CX , CY ) of the category
Hom(CX , CY ) generated by functors mapping initial objects to initial objects and the full
subcategory Homc(C

⊛

X , C
⊛

Y ) of the category Hom(C⊛

X , C
⊛

Y ) generated by all continuous
functors C⊛

X −→ C⊛

Y which map representable presheaves to representable presheaves.

Proof. (a) The equivalence in question is the functor

Hom(CX , CY ) −−−→ Hom(C∗
X , C

∗
Y )

which assigns to every functor CX
F
−→ CY a functor C∗

X
F∗

−→ C∗
Y which preserves

colimits and is determined uniquely up to isomorphism by commutativity of the diagram

CX
h∗
X

−−−→ C∗
X

F
y

y F ∗

CY
h∗
Y

−−−→ C∗
Y

(1)

This fact follows from (the argument of) 2.0.2(a) applied to the composition of the

functor CX
F
−→ CY with the Yoneda embedding CY

h∗
Y−→ C∗

Y . In the notations of the
argument of 2.0.2, the functor F ∗ coincides with (F ◦ h∗X)⋄.
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(b) If the category CX has initial objects, then the Yoneda embedding CX
h⊛

X−→ C⊛

X .
maps initial objects to initial objects. So that if CX and CY have initial objects, than the

composition F 7−→ h⊛Y ◦ F with the Yoneda embedding CY
h⊛

Y−→ C⊛

Y is a functor from
Hom⊛(CX , CY ) to Hom⊛(CX , C

⊛

Y ). It follows from (the argument of) 2.0.2(b) that the

map F 7−→ F⊛ def
= (h⊛Y ◦ F )

⋄ ◦ f∗ gives the claimed equivalence.

2.0.4. The categories of functors and subcanonical topologies. Let τ be a
pretopology on a svelte category CX . The sheafification functor C∧

X −→ (CX , τ)
∧ maps

non-trivial presheaves of sets to non-trivial sheaves of sets. Therefore, it induces an exact

localization functor C∗
X

q∗
τ−→ CXτ which has a right adjoint, CXτ

qτ∗−→ C∗
X .

2.0.4.1. For any category CY , this pair of adjoint functors induces a pair of adjoint
functors

Hom(C∗
X , CY )

q̃∗
τ

−−−→ Hom(CXτ , CY ), G 7−→ G ◦ qτ∗,

Hom(CXτ , CY )
q̃τ∗
−−−→ Hom(C∗

X , CY ), F 7−→ F ◦ q∗τ ,

(1)

with adjunction morphisms induced by the adjunction morphisms for the pair (q∗τ , qτ∗).
In particular, the adjunction morphism q̃∗τ ◦ q̃τ∗ −→ IdHom(CXτ ,CY ) is an isomorphism,

which means that the functor Hom(CXτ , CY )
q̃τ∗
−−−→ Hom(C∗

X , CY ) is fully faithful, or,

equivalently, Hom(C∗
X , CY )

q̃∗
τ

−−−→ Hom(CXτ , CY ) is a localization functor.

2.0.4.2. It follows that the functor Hom(CXτ , CY )
q̃τ∗
−−−→ Hom(C∗

X , CY ) establishes
an equivalence between the category Hom(CXτ , CY ) and the full subcategory of the

category Hom(C∗
X , CY ) generated by all functors C∗

X
G
−→ CY such that the canonical

morphism G −→ G ◦ (qτ∗q
∗
τ ) is an isomorphism.

2.0.4.3. Suppose that CY is a category with colimits. Then it follows from (the proof
of) 2.0.2 that the functor

Hom(C∗
X , CY )

h̃∗
X

−−−→ Hom(CX , CY ), G 7−→ G ◦ h∗X , (2)

has a fully faithful left adjoint

Hom(CX , CY )
h̃X!

−−−→ Hom(C∗
X , CY ), F 7−→ F⋄. (3)

Taking the composition with the corresponding functors of 2.0.4.1(1), we obtain a pair
of adjoint functors
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Hom(CX , CY )
τ j∗X
−−−→ Hom(CXτ , CY ) (4)

Hom(CXτ , CY )
τ jX∗

−−−→ Hom(CX , CY ) (5)

2.0.4.4. The case of a subcanonical pretopology. One can see that a pretopology
τ on the category CX is subcanonical iff the functor 2.0.4.3(4) is fully faithful. It follows
from 2.0.4.2 that, in this case, the functor (4) establishes an equivalence between the
categoryHom(CX , CY ) of functors from CX to CY and the full subcategory of the category

Hom(CXτ , CY ) generated by all functors CXτ
F
−→ CY such that the canonical morphism

(F ◦ q∗τ )
⋄ ◦ qτ∗ −→ F

(– the composition of ((F ◦ q∗τ )
⋄ −→ F ◦ q∗τ )qτ∗ and the isomorphism F ◦ q∗τqτ∗

∼−→ F)
is an isomorphism.

2.0.5. Sheafification functors and initial objects. Let CX be a svelte category
with an initial object x. Notice that the representable presheaf x̂ = CX(−, x) is a sheaf for
any pretopology τ . We denote by CX⊛

τ
the category x̂\CXτ = x̂\(CX , τ)

∧ and by

CX
j⊛
Xτ

−−−→ x̂\CXτ = CX⊛
τ

(6)

the composition of the canonical embedding

CX
h⊛

X

−−−→ x\C∧
X = x\C∗

X

and the functor

x̂\C∗
X = x̂\C∧

X

q∗
τ

−−−→ x̂\(CX , τ)
∧ = x̂\CXτ

induced by the sheafification functor C∗
X

q∗
τ

−−−→ CXτ .
The functor (6) maps initial objects to initial objects.

2.0.5.1. Subcanonical pretopologies. It follows that the pretopology τ on the
category CX is subcanonical iff the functor (6) is fully faithful.

2.0.5.2. Remark. The forgetful functor

CX⊛
τ
= x̂\(CX , τ)

∧
f∗
−−−→ (CX , τ)

∧
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has a left adjoint, (CX , τ)
∧

f∗

−−−→ CX⊛
τ
, which maps every sheaf M to the object

(M
∐

x, x −→ M
∐

x), where x −→ M
∐

x is the coprojection. So that the functor

CX⊛
τ

f∗
−−−→ (CX , τ)

∧ preserves limits. But, it does not preserve colimits.

2.0.6. The categories of k-linear functors. Let CX and CY be svelte k-linear cate-
gories. We denote by Homk(CX , CY ) the full subcategory of the category Hom(CX , CY )
of functors from CX to CY generated by k-linear functors.

2.0.6.1. The category of k-linear presheaves of k-modules and k-linear
Yoneda embedding. We denote by Mk(X) the category of k-linear presheaves of k-
modules on CX . In other words,

Mk(X)
def
= Homk(C

op
X , k −mod).

We call the canonical embedding

CX
hX
−−−→Mk(X), L 7−→ L̂

def
= CX(−,L),

the k-linear Yoneda embedding.

2.0.6.2. Proposition. Let CX be a svelte k-linear category and CY a k-linear
category with colimits. The functor

Homk(Mk(X), CY )
h∗
X

−−−→ Homk(CX , CY ), G 7−→ G ◦ hX ,

has a fully faithful left adjoint,

Homk(CX , CY )
hX!

−−−→ Homk(Mk(X), CY ),

which establishes an equivalence between the category Homk(CX , CY ) and the full subcate-
gory Homc

k(Mk(X), CY ) of the category Homk(Mk(X), CY ) generated by all continuous
functors fromMk(X) to CY .

Proof. Fix a k-linear functor CX
G
−→ CY and consider the map which assigns to

every object L of the category CY the presheaf of k-modules CY (G(−),L). This map

defines a k-linear functor CY
G⋆−→ Mk(X). If the category CY has colimits, then the

functor G∗ has a left adjoint, Mk(X)
G∗

−→ CY , which assigns to every object V of the
category Mk(X) the colimit of the composition of the forgetful functor hX/V −→ CX

with the functor CX
G
−→ CY . The functor

Homk(CX , CY )
hX!

−−−→ Homk(Mk(X), CY )
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assigns to every k-linear functor CX
G
−→ CY a left adjoint Mk(X)

G⋆
−→ CY to the

functor G⋆ and acts accordingly on morphisms of functors.

2.0.6.3. Corollary. Let CX and CY be svelte k-linear categories. There is a natural
fully faithful functor

Homk(CX , CY ) −−−→ Homk(Mk(X),Mk(Y )) (1)

which establishes an equivalence between the category Homk(CX , CY ) of k-linear func-
tors from CX to CY and the full subcategory Homk(Mk(X),Mk(Y )) of the category
Homk(Mk(X),Mk(Y )) generated by all continuous functors Mk(X) −→Mk(Y ) which
map representable presheaves to representable presheaves.

Proof. The functor (1) assigns to every k-linear functor CX
F
−→ CY a continuous

k-linear functor Mk(X)
F∗

−→ Mk(Y ) determined uniquely up to isomorphism by the
commutativity of the diagram

CX
hX
−−−→ Mk(X)

F
y

y F ∗

CY
hY
−−−→ Mk(Y )

(2)

The existence and uniqueness of F ∗ follows from 2.0.6.2: in the notations of the argument
of 2.0.6.2, F ∗ = (hX ◦ F )

⋆.

2.0.7. The categories of k-linear functors and k-linear sheaves of k-modules.
Let τ be a pretopology on a svelte k-linear category CX . We denote by Shk(X, τ) the
category of k-linear sheaves of k-modules on the presite (CX , τ); that is Shk(X, τ) is the
intersection of the category Sh((CX , τ), k−mod) of sheaves of k-modules on (CX , τ) and
the category Homk(CX , k −mod) of k-linear functors from CX to k −mod.

The sheafification functor induces an exact functor Mk(X) −→ Shk(X, τ) which is
a right adjoint to the embedding Shk(X, τ) −→Mk(X).

2.0.7.1. For any k-linear category CY , this pair of adjoint functors induces a pair of
adjoint functors

Homk(Mk(X), CY )
q̃∗
τ

−−−→ Hom(Shk(X, τ), CY ), G 7−→ G ◦ qτ∗,

Hom(Shk(X, τ), CY )
q̃τ∗
−−−→ Hom(Mk(X), CY ), F 7−→ F ◦ q∗τ ,

(1)

with adjunction morphisms induced by the adjunction morphisms for the pair (q∗τ , qτ∗).
Both functors are exact, and it follows that the second functor is fully faithful (see 2.0.4.1).
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It establishes an equivalence between the category Homk(Shk(X, τ), CY ) and the

full subcategory of the category Hom(C∗
X , CY ) generated by all functors M(X)

G
−→ CY

such that the canonical morphism G −→ G ◦ (qτ∗q
∗
τ ) is an isomorphism.

2.0.7.2. Suppose that CY is a category with colimits. Then, by 2.0.6.2, the functor

Homk(Mk(X), CY )
h∗
X

−−−→ Homk(CX , CY ), G 7−→ G ◦ hX ,

has a fully faithful left adjoint, Homk(CX , CY )
hX!

−−−→ Homk(Mk(X), CY ).
Taking the composition with the corresponding functors of 2.0.7.1(1), we obtain a pair

of adjoint functors

Homk(CX , CY )
τ j∗X
−−−→ Homk(Shk(X, τ), CY ) (2)

Homk(Shk(X, τ), CY )
τ jX∗

−−−→ Homk(CX , CY ) (3)

2.0.7.3. The case of a subcanonical pretopology. One can see that a pretopology
τ on the category CX is subcanonical iff the functor 2.0.7.2(2) is fully faithful for any k-
linear category CY . It follows from 2.0.7.2 that, in this case, the functor (2) establishes
an equivalence between the category Homk(CX , CY ) of k-linear functors from CX to CY
and the full subcategory of the category Homk(Shk(X, τ), CY ) generated by all functors

Shk(X, τ)
F
−→ CY such that the canonical morphism

(F ◦ q∗τ )
⋆ ◦ qτ∗ −→ F

(– the composition of ((F ◦ q∗τ )
⋆ −→ F ◦ q∗τ )qτ∗ and the isomorphism F ◦ q∗τqτ∗

∼−→ F)
is an isomorphism.

2.1. Proposition. (a) Let (CX ,EX) be a svelte right exact category. The Yoneda
embedding induces an ’exact’ fully faithful functor

(CX ,EX)
j∗X
−−−→ (CXE

,Es
XE

),

from (CX ,EX) to the category CXE
of non-trivial sheaves of sets on (CX ,EX) endowed

with the canonical (– the finest) right exact structure Es
XE
.

(b) Let (CX ,EX) and (CY ,EY ) be right exact categories and

(CX ,EX)
ϕ∗

−−−→ (CY ,EY )
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a weakly right ’exact’ functor. There exists a functor CXE

ϕ̃∗

−−−→ CYE
such that the

diagram

CX
ϕ∗

−−−→ CY

j∗X

y
y j∗Y

CXE

ϕ̃∗

−−−→ CYE

quasi commutes, i.e. ϕ̃∗j∗X ≃ j∗Y ϕ
∗. The functor ϕ̃∗ is defined uniquely up to isomorphism.

(c) If the categories CX and CY have initial objects and the functor ϕ∗ maps initial

objects to initial objects, then the functor CXE

ϕ̃∗

−−−→ CYE
has a right adjoint, ϕ̃∗.

Proof. (a) By definition, CXE
is a full subcategory of the category C∗

X of presheaves

of sets on CX whose objects are presheaves (CX , EX)op
F

−−−→ Sets such that the image

F(N) −→ F(M) −→−→ F(M ×N M) (1)

of the canonical diagram

M ×N M = K2(s)

s1

−−−→
−−−→

s2

M
s

−−−→ N

is an exact diagram for any deflation M
s
−→ N.

The inclusion functor CXE
−→ C∗

X has a left adjoint – the sheafification functor
C∗
X −→ CXE

, which is exact. Since the pretopology EX on CX is subcanonical (see
1.1), the Yoneda embedding induces an equivalence between the category CX and a full

subcategory of CXE
. It remains to show that the embedding CX

j∗X−→ CXE
is an ’exact’

functor, i.e. it maps deflations to deflations and preserves pull-backs of deflations.
The Yoneda embedding CX −→ C∗

X is a left exact functor, and the sheafification

functor C∗
X −→ CXE

is exact. Therefore, their composition CX
j∗X−→ CXE

is a left exact
functor; in particular, it preserves all pull-backs. Therefore, we need only to show that the
functor j∗X maps every deflation to an epimorphism of the category CXE

.
In fact, let M −→ N be a deflation and M ×N M −→−→ M −→ N the associated exact

diagram. The Yoneda embedding maps this diagram to the diagram

M̂ ×
N̂
M̂ −→
−→ M̂ −→ N̂ , (2)

where M̂ = CX(−,M). For any presheaf of sets F, the functor C∗
X(−,F) maps the diagram

(2) to a diagram isomorphic to

F(N) −→ F(M) −→−→ F(M ×N M).
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which is exact if F is a sheaf on (CX ,EX). This shows that for every sheaf F, the functor
CXE

(−,F) maps the diagram (2) to an exact diagram. Therefore the diagram (2) viewed
as a diagram in the category of sheaves, is exact.

(b) If the functor ϕ∗ is weakly right ’exact’, then the functor

C∧
Y −−−→ C∧

X , F 7−→ F ◦ ϕ∗,

maps sheaves on the pretopology (CY ,EY ) to sheaves on (CX ,EX); in particular, it induces

a functor (CY ,EY )
∧

ϕ̂∗

−−−→ (CX ,EX)∧.

In fact, for any arrow M −→ N of EX , consider the decomposition

ϕ∗(M
∏

N

M) −−−→ ϕ∗(M)
∏

ϕ∗(N)

ϕ∗(M) −−−→−−−→ ϕ∗(M) −−−→ ϕ∗(N) (3)

of the diagram

ϕ∗(M
∏

N

M) −−−→−−−→ ϕ∗(M) −−−→ ϕ∗(N) (4)

Since the functor ϕ∗ is weakly right ’exact’, the right and the left arrows of the diagram
(3) belong to EY . Therefore, for any sheaf F on (CY ,EY ) the diagram

Fϕ∗(N) −−−→ Fϕ∗(M) −−−→−−−→ F
(
ϕ∗(M)

∏

ϕ∗(N)

ϕ∗(M)
)

is exact and the morphism

F
(
ϕ∗(M)

∏

ϕ∗(N)

ϕ∗(M)
)
−−−→ Fϕ∗(M

∏

N

M)

is a monomorphism. Therefore, the diagram

Fϕ∗(N) −−−→ Fϕ∗(M) −−−→−−−→ Fϕ∗(M
∏

N

M)

is exact. This shows that F ◦ ϕ∗ is a sheaf on the presite (CX ,EX).

(b1) The functor ϕ̂∗ has a left adjoint, (CX ,EX)∧
ϕ̂∗

−−−→ (CY ,EY )
∧.

Notice that this left adjoint maps non-trivial sheaves to non-trivial sheaves. This
follows from the fact that there is an adjunction morphism F −→ ϕ̂∗ϕ̂

∗(F). So that if
F(M) 6= ∅ for some objectM, then ϕ̂∗ϕ̂

∗(F)(M) 6= ∅.

Therefore, the functor ϕ̂∗ induces a functor CXE

ϕ̃∗

−−−→ CYE
.
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It follows that ϕ̃∗j∗X ≃ j∗Y ϕ
∗.

(c) If the categories CX and CY have initial objects and the functor ϕ∗ maps ini-
tial objects to initial objects, then the functor ϕ̂∗ maps non-trivial sheaves to non-trivial

sheaves. Therefore, it induces a functor CYE

ϕ̃∗

−−−→ CXE
, which is a right adjoint to the

functor CXE

ϕ̃∗

−−−→ CYE
.

2.1.1. Proposition. (a) Let (CX ,EX) be a svelte right exact category with an initial
object x. The Yoneda embedding induces a fully faithful ’exact’ functor

(CX ,EX)
j⊛
X

−−−→ (CXE
,Es

X⊛

E

),

from (CX ,EX) to the category CX⊛

E

def
= x̂\(CX ,EX)∧ of sheaves of sets on (CX ,EX) over

x̂ endowed with the canonical (– the finest) right exact structure Es
X⊛

E

.

(b) Let (CX ,EX) and (CY ,EY ) be right exact categories and

(CX ,EX)
ϕ∗

−−−→ (CY ,EY )

a weakly right ’exact’ functor. There exists a functor CX⊛

E

ϕ̃⊛

−−−→ CY ⊛

E
such that the

diagram

CX
ϕ∗

−−−→ CY

j⊛X

y
y j⊛Y

CX⊛

E

ϕ̃⊛

−−−→ CY ⊛

E

quasi commutes, i.e. ϕ̃⊛j⊛X ≃ j⊛Y ϕ
∗. The functor ϕ̃⊛ is defined uniquely up to isomorphism.

(c) If the categories CX and CY have initial objects and the functor ϕ∗ maps initial

objects to initial objects, then the functor CX⊛

E

ϕ̃⊛

−−−→ CY ⊛

E
has a right adjoint, ϕ̃⊛.

Proof. The assertion follows from 2.1 and 2.0.5. Details are left to the reader.

2.2. An observation on sheaf epimorphisms. Let N ∈ ObCX and F
γ
−→ N̂ a

morphism of sheaves on (CX ,EX). Regarding γ as a presheaf morphism, we represent it as

the composition of the presheaf epimorphism F −→ Im(γ) and the embedding Im(γ) →֒ N̂ .
It follows from the exactness of the sheafification functor that γ is a sheaf epimorphism
iff the sheafification functor maps the embedding Im(γ) →֒ N̂ to an isomorphism; i.e.

Im(γ) →֒ N̂ is a refinement of N in the topology associated with the pretopology EX .

The latter means that there exists a deflation M ′ e′

−→ N such that the image of ê′ is
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contained in Im(γ), i.e. M̂ ′ ê′

−→ N̂ is the composition of a morphism M̂ ′ v′
−→ Im(γ) and

the embedding Im(γ) →֒ N̂ . Since representable functors are projective objects in C∗
X ,

the morphism v′ factors through the presheaf epimorphism F −→ Im(γ). Thus, we obtain
a commutative diagram

M̂ ′
ê′

−−−→ N̂

v
y

y id

F
γ

−−−→ N̂

(5)

2.2.1. Proposition. Fix a right exact category (CX ,EX).

(a) Let L
f
−→ N be a morphism of the category CX . Its image L̂

f̂
−→ N̂ is a sheaf

epimorphism iff e = f ◦ v for some deflation M
e
−→ N and an arrowM

v
−→ L.

In particular, L
f
−→ N is a strict epimorphism.

(b) A morphism F
γ
−→ G of sheaves of sets on (CX ,EX) is an epimorphism iff for

any morphism L̂
ξ
−→ G, there exists a commutative diagram

M̂
ê

−−−→ L̂

v
y

y ξ

F
γ

−−−→ G

(6)

such that M
e
−→ L is a deflation.

Proof. (a) If e = f ◦ v for some deflation M
e
−→ N , then ê = f̂ ◦ v̂, and, by the

argument of 2.1(a), ê is an epimorphism. Therefore, f̂ is an epimorphism.
The converse assertion follows from the observation preceding this proposition.

(b) If F
γ
−→ G is an epimorphism of sheaves, then, for any morphism L̂

ξ
−→ G , the

upper horizontal arrow of the cartesian square

F̃
γ̃

−−−→ L̂

ξ′
y cart

y ξ

F
γ

−−−→ G

is an epimorphism. Applying (a) to the epimorphism F̃
γ̃
−→ L, we obtain the claimed

commutative diagram (6).

Conversely, suppose that a sheaf morphism F
γ
−→ G is such that for any morphism

L̂
ξ
−→ G, there exists a commutative diagram (6) whose upper arrow is an epimorphism.

Then γ is an epimorphism.
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In fact, let G
ψ

−→
−→
φ

H be a pair or sheaf morphisms which equalizes γ, that is ψ◦γ = φ◦γ.

It follows from the commutativity of the diagram (6) that ψ ◦ ξ ◦ ê = φ ◦ ξ ◦ ê. Since ê is
an epimorphism, the latter equality implies that ψ ◦ ξ = φ◦ ξ. This shows that the pair of

arrows G
ψ

−→
−→
φ

H equalizes any morphism from a representable (pre)sheaf to the sheaf G.

Since any presheaf of sets is a colimit of a diagram of representable presheaves, it follows
that ψ = φ, which proves that γ is an epimorphism.

2.3. The canonical embedding of a k-linear right exact category. Fix an asso-
ciative, commutative, unital ring k. Let (CX ,EX) be a svelte k-linear right exact category.
We denote by Mk(X) the category of presheaves of k-modules and by Shk(X,EX) the
category of sheaves of k-modules. Since the pretopology EX is subcanonical, the Yoneda

embedding CX −→Mk(X) induces a full embedding CX
j∗X−→ Shk(X,EX) of the category

CX into the Grothendieck category Shk(X,EX) of sheaves of k-modules on (CX ,EX).

2.3.1. Proposition. (a) For any svelte k-linear right exact category (CX ,EX),

the full embedding CX
j∗X−→ Shk(X,EX) is an ’exact’ functor from (CX ,EX) to the

Grothendieck category Shk(X,EX) of sheaves of k-modules on (CX ,EX).
(b) Let (CX ,EX) and (CY ,EY ) be right exact k-linear svelte categories and

(CX ,EX)
ϕ∗

−−−→ (CY ,EY )

a right ’exact’ k-linear functor. There exists a k-linear functor

Shk(X,EX)
ϕ̃∗

−−−→ Shk(Y,EY )

such that the diagram

CX
ϕ∗

−−−→ CY

j∗X

y
y j∗Y

Shk(X,EX)
ϕ̃∗

−−−→ Shk(Y,EY )

quasi commutes, i.e. ϕ̃∗j∗X ≃ j∗Y ϕ
∗. The functor ϕ̃∗ is defined uniquely up to isomorphism

and has a right adjoint, ϕ̃∗.

Proof. The argument is similar to that of 2.1.

2.3.2. Note. Even if the functor (CX ,EX)
ϕ∗

−−−→ (CY ,EY ) is ’exact’, the functor

Shk(X,EX)
ϕ̃∗

−−−→ Shk(Y,EY )
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need not to be (left) exact. For instance, let (CX , EX) (resp. (CY , EY )) be the exact
category of projective A-modules (resp. B-modules) of finite type; and let ϕ∗ be the
functor M 7−→ B ⊗A M corresponding to an algebra morphism A −→ B. Then the
category Shk(X,EX) is naturally identified with A−mod and the functor ϕ̃∗ with

A−mod
B⊗A
−−−→ B −mod.

Therefore, the functor ϕ̃∗ is exact iff the algebra morphism A −→ B turns B into a
flat right A-module.

3. Karoubian envelopes of right exact categories.

3.1. Lemma. Let M be an object of a category CX and M
p
−→ M an idempotent

(i.e. p2 = p). The following conditions are equivalent:

(a) The idempotent p splits, i.e. p is the composition of morphisms M
e
−→ N

j
−→M

such that e ◦ j = idN .

(b) There exists a cokernel of the pair M
id
M
−→
−→
p
M .

(c) There exists a kernel of the pair M
id
M
−→
−→
p
M .

If the equivalent conditions above hold, then Ker(id
M
, p) ≃ Coker(id

M
, p).

Proof. (b)⇐ (a)⇒ (c). If the idempotent M
p
−→ M is the composition of M

e
−→ N

and N
j
−→ M such that e ◦ j = idN , then M

e
−→ N is a cokernel of the pair M

id
M
−→
−→
p
M,

because e ◦ p = e ◦ j ◦ e = e and if M
t
−→ L any morphism such that t ◦ p = t, then

t = (t ◦ j) ◦ e. Since e is an epimorphism, there is only one morphism g such that t = g ◦ e.
This shows that (a)⇒ (b). The implication (a)⇒ (c) follows by duality.

(b) ⇒ (a). Let M
e
−→ N be a cokernel of the pair M

id
M
−→
−→
p
M. Since p ◦ p = p, there

exists a unique morphism N
j
−→M such that p = j ◦ e. Since e ◦ j ◦ e = e ◦ p = e = idN ◦ e

and e is an epimorphism, e ◦ j = idN .
The implication (c)⇒ (a) follows by duality.

3.2. Definition. A category CX is called Karoubian if each idempotent in CX splits.

It follows from 3.1 that CX is a Karoubian category iff for every idempotent M
p
−→M in

CX , there exists a kernel (equivalently, a cokernel) of the pair (id
M
, p).

3.3. Proposition. For any category CX , there exists a Karoubian category CXK

and a fully faithful functor CX
k∗X−→ CXK such that any functor from CX to a Karoubian

category factors uniquely up to a natural isomorphism through k∗X . Every object of CXK is
a retract of an object k∗X(M) for some M ∈ ObCX .
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Proof. Objects of the category CXK are pairs (M,p), where M is an object of the

category CX and M
p
−→ M is an idempotent endomorphism, i.e. p2 = p. Morphisms

(M,p) −→ (M ′, p′) are morphisms M
f
−→ M ′ such that fp = f = p′f . The composition

of (M,p)
f
−→ (M ′, p′) and (M ′, p′)

g
−→ (M ′′, p′′) is (M,p)

gf
−→ (M ′′, p′′). It follows from

this definition that (M,p)
p
−→ (M,p) is the identical morphism. If (M,p)

q
−→ (M,p) is an

idempotent, then it splits into the composition of (M,p)
q
−→ (M, q) and (M, q)

q
−→ (M,p).

The composition of (M, q)
q
−→ (M,p)

q
−→ (M, q) is (M, q)

q
−→ (M, q), which is the

identical morphism. The functor CX
k∗X−→ CXK assigns to each object M of CX the pair

(M, id
M
) and to each morphism M

g
−→ N the morphism (M, id

M
)

g
−→ (N, idN ).

For any functor CX
F
−→ CZ to a Karoubian category CZ , let CXK

FK−→ CZ denote a
functor which assigns to every object (M,p) of the category CXK the kernel of the pair

(idF (M), F (p)). It follows that FK ◦ K
∗
X ≃ F . In particular, for any functor CX

F
−→ CY ,

there exists a natural functor CXK
FK−→ CXK such that the diagram

CX
F
−−−→ CY

K∗
X

y
y K∗

Y

CXK
FK
−−−→ CYK

quasi-commutes. The map F 7−→ FK defines a (pseudo) functor from Cat to the category
KCat of Karoubian categories, which is a left adjoint to the inclusion functor. This implies,
in particular, the universal property of the correspondence CX 7−→ CXK .

For every object (M,p) of the category CXK , the morphism (M,p)
p
−→ (M, id

M
)

splits; i.e. (M,p) is a retract of k∗X(M) = (M, id
M
).

3.3.1. The category CXK in 3.3 is called the Karoubian envelope of the category CX .

3.4. Karoubian envelopes of right exact categories.

3.4.1. Definition. We call a right exact category (CX ,EX) Karoubian, if the
category CX is Karoubian and any split epimorphism of the category CX is a deflation.

3.4.2. Proposition. Let (CX ,EX) be a right exact category. Suppose that, for every

idempotent M
p
−→ M in CX and every morphism N

f
−→ M such that f = pf, there

exists a cartesian square

N ′
f ′

−−−→ M

e′
y cart

y p

N
f

−−−→ M
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Then the Karoubian envelope CXK of the category CX has a structure EXK of a right exact

Karoubian category such that the canonical functor CX
k∗X−→ CXK is an ’exact’ functor

from (CX ,EX) to (CXK ,EXK ). The right exact Karoubian category (CXK ,EXK ) is
universal in the following sense: every right exact (resp. weakly right exact) functor from
the right exact category (CX ,EX) to a right exact Karoubian category (CY ,EY ) is
uniquely represented as the composition of the canonical exact, hence ’exact’, functor from
(CX ,EX) to its Karoubian envelope (CXK ,EXK ) and a right exact (resp. weakly right
exact) functor from (CXKEXK ) to (CY ,EY ).

Proof. (a) Let CX be a category and M
e
−→ L a split epimorphism; i.e. there exists

a morphism L
j
−→ M such that e ◦ j = idL. Let N

g
−→ L be a morphism. Since j is a

monomorphism, a pullback of N
g
−→ L

e
←− M exists iff a pullback of N

jg
−→ M

je
←− M .

exists and they are isomorphic to each other. Notice that p = je is an idempotent and a

morphism N
f
−→M factors through L

j
−→M iff f = pf . Thus, we have cartesian squares

N ′
f ′

−−−→ M N ′
f ′

−−−→ M

e′
y cart

y p and e′
y cart

y e

N
f

−−−→ M N
g

−−−→ L

It follows from the right cartesian square that the morphism e′ is a split epimorphism,
because it is a pullback of a split epimorphism.

(b) Suppose that the condition of 3.4.2 holds, and consider a pair of morphisms

(N, u)
f
−→ (M, q)

q
←− (M,p) of the Karoubian envelope CXK . By definition, fu = qf = f

and qp = pq = q. By the hypothesis, there exists a pullback N ×f,q M . The equality

qf = f implies that the projection N ×f,q M
q′

−→ N splits, i.e. there exists a morphism

N
j′

−→ N ×f,q M such that q′j′ = idN . Set u′ = j′q′. Then

(N ×f,q M,u′)
f ′

−−−→ (M,p)

q′
y

y q

(N, u)
f

−−−→ (M, q)

is a cartesian square in CXK . This shows that split epimorphisms of CXK are stable under
base change. The class of deflations EXK consists of all possible compositions of morphisms
of k∗X(EX) and split epimorphisms.

(c) By the universal property of Karoubian envelopes, any functor CX
F
−→ CY is

represented as the composition of the canonical embedding CX −→ CXK and a uniquely
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determined functor CXK
F̃
−→ CY . If F is a (weakly) right ’exact’ functor from (CX ,EX) to

(CY ,EY ), then F̃ is a (resp. weakly) right ’exact’ morphism from the Karoubian envelope
(CXK ,EXK ) of (CX ,EX) to (CY ,EY ).

3.4.3. Proposition. For every svelte right exact category (CX ,EX), there exists
a ”Karoubian envelope” of (CX ,EX), which is a Karoubian category (CXK ,EXK ) such
that every right exact (resp. weakly right exact) functor from (CX ,EX) to a right exact
Karoubian category (CY ,EY ) is uniquely represented as the composition of the canonical
exact, hence ’exact’, functor from (CX ,EX) to (CXK ,EXK ) and a right exact (resp. weakly
right exact) functor from (CXKEXK ) to the right exact category (CY ,EY ).

Proof. The Karoubian envelope CXK of the category CX is naturally equivalent to the
smallest Karoubian subcategory CXK of the category CXE

of sheaves of sets on the presite
(CX ,EX) containing all representable sheaves. The equivalence is given by the unique
functor CXK −→ CXK corresponding by the universal property of Karoubian envelopes to
the corestriction to CXK of the canonical embedding of the category CX into the category
of sheaves CXE

. Identifying CXK with CXK , we take as EXK all possible compositions
of the images of deflations and split epimorphisms. It follows that the canonical functor
CX −→ CXK is an ’exact’ functor from (CX ,EX) to (CXK ,EXK ). The universality of
the morphism (CX ,EX) −−−→ (CXK ,EXK ) follows from the functoriality (with respect to
’exact’ functors) of the canonical embedding of (CX ,EX) into the category CXE

.

3.5. Proposition. Let (CX ,EX) and (CY ,EY ) be right exact categories. Suppose

that EX consists of split deflations. Then a functor CX
F
−→ CY is a weakly right ’exact’

functor from (CX ,EX) to (CY ,EY ) iff it maps deflations to deflations.

In particular, every functor CX
F
−→ CY is weakly right ’exact’, if all split epimor-

phisms of the category CY are deflations.

Proof. Let M
e
−→ N be a split epimorphism in CX and N

j
−→ M its section. Set

p = j ◦ e. Suppose that M ×N M exists (which is the case if e ∈ EX). Then we have a
commutative diagram

M

p

−−−→
−−−→
id
M

M
e

−−−→ N

t
y

y id
M

y idN

M ×LM
p1

−−−→
−−−→
p2

M
e

−−−→ N

(1)

whose left vertical arrow, t, is uniquely determined. A functor CX
F
−→ CY maps (1) to



Right Exact Categories. 23

the commutative diagram

F (M)

F (p)

−−−→
−−−→

id

F (M)
F (e)
−−−→ F (N)

F (t)
y

y id
y id

F (M ×LM)

F (p1)

−−−→
−−−→
F (p2)

F (M)
F (e)
−−−→ F (N)

(2)

whose upper row is an exact diagram (by 3.1). Therefore, the lower row of (2) is an exact
diagram. The assertion follows now from the definition of a weakly right ’exact’ functor.

3.6. Corollary. Let (CX ,EX) be a right exact category whose deflations are split.
Then every presheaf of sets on (CX ,EX) is a sheaf.

4. Kernels, cokernels, coimages and images of morphisms.

4.1. Kernels and cokernels of arrows. Let CX be a category with an initial

object x. We define the kernel of a morphism M
f
−→ N, (if any) is the upper horizontal

arrow in a cartesian square

Ker(f)
k(f)
−−−→ M

f ′
y cart

y f

x −−−→ N

(1)

when the latter exists.
Cokernels of morphisms are defined dually, via a cocartesian square

N
c(f)
−−−→ Cok(f)

f
x cocart

x f ′

M −−−→ y

where y is a final object of CX .

4.1.0. Note. If CX is a pointed category (i.e. its initial objects are final), then the

notion of the kernel is equivalent to the usual one: the kernel of a morphism M
f
−→ N

(if any) is determined uniquely up to isomorphism by the exactness of the diagram

Ker(f)
k(f)
−−−→M

f

−−−→
−−−→

0

N.

Here M
o
−→ N denotes the zero morphism, i.e. the unique morphism fromM to N which

factors through a zero object.
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Dually, the cokernel of M
f
−→ N makes the diagram

M

f

−−−→
−−−→

0

N
c(f)
−−−→ Cok(f)

exact and is, therefore, determined by this property.

4.1.1. Lemma. Let CX be a category with an initial object x.

(a) Let a morphism M
f
−→ N of CX have a kernel. The canonical morphism

Ker(f)
k(f)
−−−→M is a monomorphism, if the unique arrow x

iN−→ N is a monomorphism.

(b) If M
f
−→ N is a monomorphism, then x

iM−→M is the kernel of f .

Proof. (a) By definition of the kernel of f , we have a cartesian square

Ker(f)
k(f)
−−−→ M

f ′
y cart

y f

x
iN
−−−→ N

Pull-backs of monomorphisms are monomorphisms. In particular, Ker(f)
k(f)
−−−→ M

is a monomorphism if x
iN−→ N is a monomorphism.

(b) Suppose that M
f
−→ N is a monomorphism. If

L
φ

−−−→ x

ψ
y

y iN

M
f

−−−→ N

is a commutative square, then f equalizes the pair of arrows (ψ, iM ◦φ). If f is a monomor-
phism, the latter implies that ψ = iM ◦ φ. Therefore, in this case, the square

x
idx
−−−→ x

iM

y
y iN

M
f

−−−→ N

is cartesian.

4.1.2. Corollary. Let CX be a category with an initial object x. The following
conditions on the category CX are equivalent:
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(a) If M
f
−→ N has a kernel, then the canonical arrow Ker(f)

k(f)
−−−→ M is a

monomorphism.

(b) The unique arrow x
iM−→M is a monomorphism for any M ∈ ObCX .

Proof. (a) ⇒ (b). By 4.1.1(b), the unique morphism x
iM−→ M is the kernel of the

identical morphism M
idM−→M.

The implication (b)⇒ (a) follows from 4.1.1(a).

4.1.3. Note. The converse assertion is not true in general: a morphism might have
a trivial kernel without being a monomorphism. It is easy to produce an example in the
category of pointed sets.

4.2. Examples and relevant digressions.

4.2.1. Kernels of morphisms of unital k-algebras. Let CX be the category Algk
of associative unital k-algebras. The category CX has an initial object – the k-algebra k.

For any k-algebra morphism A
ϕ
−→ B, we have a commutative square

A
ϕ

−−−→ B

k(ϕ)
x

x

k ⊕K(ϕ)
ǫ(ϕ)
−−−→ k

where K(ϕ) denote the kernel of the morphism ϕ in the category of non-unital k-algebras
and the morphism k(ϕ) is determined by the inclusion K(ϕ) −→ A and the k-algebra
structure k −→ A. This square is cartesian. In fact, if

A
ϕ

−−−→ B

γ
x

x

C
ψ

−−−→ k

is a commutative square of k-algebra morphisms, then C is an augmented algebra: C =
k⊕K(ψ). Since the restriction of ϕ ◦ γ to K(ψ) is zero, it factors uniquely through K(ϕ).

Therefore, there is a unique k-algebra morphism C = k ⊕K(ψ)
β
−→ Ker(ϕ) = k ⊕K(ϕ)

such that γ = k(ϕ) ◦ β and ψ = ǫ(ϕ) ◦ β.

This shows that each (unital) k-algebra morphism A
ϕ
−→ B has a canonical kernel

Ker(ϕ) equal to the augmented k-algebra corresponding to the ideal K(ϕ).

It follows from the description of the kernel Ker(ϕ)
k(ϕ)
−−−→ A that it is a monomor-

phism iff the k-algebra structure k −→ A is a monomorphism.
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Notice that cokernels of morphisms are not defined in Algk, because this category
does not have final objects.

4.2.2. Kernels and cokernels of maps of sets. Since the only initial object of
the category Sets is the empty set ∅ and there are no morphisms from a non-empty set

to ∅, the kernel of any map X −→ Y is ∅ −→ X. The cokernel of a map X
f
−→ Y

is the projection Y
c(f)
−−−→ Y/f(X), where Y/f(X) is the set obtained from Y by the

contraction of f(X) into a point. So that c(f) is an isomorphism iff either X = ∅, or f(X)
is a one-point set.

4.2.3. Digression: categories with isolated initial objects. Suppose that CX is
a category with initial objects, which are isolated in the following sense: every morphism
to an initial object is an isomorphism. Then every morphism M −→ L of CX has a
kernel, but, this kernel is trivial – the unique morphism from an initial object to M .

4.2.3.1. Sets and topological spaces. The category Sets and the category T op
of topological spaces are examples of categories with isolated initial objects.

4.2.3.2. Presheaves and sheaves of sets. If CX is a category with isolated initial
objects, then the category Hom(CY , CX) of functors from a svelte category CY to the
category CX is a category with isolated initial points.

In particular, the category C∧
X of presheaves of sets on CX is a category with isolated

initial point, which is the presheaf ∅̄ mapping all objects of CX to the empty set.
The same ∅̄ is the isolated initial object in the category (CX , τ)

∧ of sheaves of sets
on a (pre)site (CX , τ).

4.2.3.3. Non-commutative affine schemes. Let CX = Affk
def
= Algopk – the

category of non-commutative affine k-schemes. The initial object of Affk is the affine
k-scheme corresponding to the zero algebra. It is the isolated initial object – the ’empty’
affine k-scheme.

4.2.4. Note. The categories with isolated initial objects are useless for constructions
which involve kernels. In particular, they should be avoided in the constructions of right
derived functors (– universal ∂∗-functors) in Chapter II and related questions (in Chapter
III). The following examples are all in the spirit of avoiding isolated initial points.

4.2.5. Digression: categories with pointed objects. An object M of a svelte
category CX is called pointed, if there is a cone M −→ IdCX .

4.2.5.1. Pointed objects in categories with initial objects. If CX is a category
with initial objects, then pointed objects in CX are precisely those objects which have
morphisms to initial objects.

4.2.5.2. Augmented algebras. Thus, pointed objects of the category Algk of
associative unital algebras are k-algebras which have augmentations.
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4.2.5.3. Right exact categories with enough pointed objects. We say that
a right exact category (CX ,EX) has enough pointed objects, if, for any object L of CX ,

there is a deflation M
e
−→ L, where M is a pointed object.

4.2.5.4. Augmented algebras. The category Algk of associative unital k-algebras
endowed with the canonical (that is the finest) right exact structure is an example of a
right exact category with enough pointed objects. In fact, if A is a unital k-algebra and V
a k-submodule of A generating A, then the embedding of k-modules V −→ A determines
a strict epimorphism from the tensor algebra Tk(V) of the k-module V to the algebra A;
and tensor algebras have canonical augmentations.

4.2.6. Non-trivial presheaves of sets. The category C∗
X of non-trivial presheaves

of sets has final objects and colimits of arbitrary small diagrams. In particular, the category
C∗
X has cokernels of arbitrary morphisms which are computed object-wise (as in 4.2.2).

4.3. Some properties of kernels. Fix a category CX with an initial object x.

4.3.1. Proposition. Let M
f
−→ N be a morphism of CX which has a kernel pair,

M ×N M
p1
−→
−→
p2

M. Then the morphism f has a kernel iff p1 has a kernel.

Proof. Suppose that f has a kernel, i.e. there is a cartesian square

Ker(f)
k(f)
−−−→ M

f ′
y

y f

x
iN
−−−→ N

(1)

Then we have the commutative diagram

Ker(f)
γ

−−−→ M ×N M
p2
−−−→ M

f ′
y p1

y
y f

x
iM
−−−→ M

f
−−−→ N

(2)

which is due to the commutativity of (1) and the fact that the unique morphism x
iN−→ N

factors through the morphism M
f
−→ N . The morphism γ is uniquely determined by

the equality p2 ◦ γ = k(f). The fact that the square (1) is cartesian and the equalities
p2 ◦ γ = k(f) and iN = f ◦ iM imply that the left square of the diagram (2) is cartesian,

i.e. Ker(f)
γ

−−−→M ×N M is the kernel of the morphism p1.
Conversely, if p1 has a kernel, then we have a diagram

Ker(p1)
k(p1)
−−−→ M ×N M

p2
−−−→ M

p′1

y cart p1

y cart
y f

x
iM
−−−→ M

f
−−−→ N
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which consists of two cartesian squares. Therefore the square

Ker(p1)
k(f)
−−−→ M

p′1

y cart
y f

x
iN
−−−→ N

with k(f) = p2 ◦ k(p1) is cartesian.

4.3.2. Remarks. (a) Needless to say that the picture obtained in (the argument of)

4.3.1 is symmetric, i.e. there is an isomorphism Ker(p1)
τ ′
f
−→ Ker(p2) which is an arrow

in the commutative diagram

Ker(p1)
k(p1)
−−−→ M ×N M

p1
−−−→ M

τ ′f

y≀ τf

y≀
y id

M

Ker(p2)
k(p2)
−−−→ M ×N M

p2
−−−→ M

(b) Let a morphismM
f
−→ N have a kernel pair, M×NM

p1
−→
−→
p2

M, and a kernel. Then,

by 4.3.1, there exists a kernel of p1, so that we have a morphism Ker(p1)
k(p1)
−−−→M ×NM

and the diagonal morphism M
∆M
−−−→M×NM. Since the right square of the commutative

diagram

x −−−→ Ker(p1)
p′1
−−−→ xy k(p1)

y cart
y

M
∆M
−−−→ M ×N M

p1
−−−→ M

is cartesian and compositions of the horizontal arrows are identical morphisms, it follows
that its left square is cartesian too. Loosely, one can say that the intersection of Ker(p1)
with the diagonal of M ×N M is zero. If there exists a coproduct Ker(p1)

∐
M , then the

pair of morphisms Ker(p1)
k(p1)
−−−→M ×N M

∆M
←−−−M determine a morphism

Ker(p1)
∐

M −−−→M ×N M. (3)

(b1) If the category CX is additive, then this morphism is an isomorphism, that is
Ker(f)

∐
M ≃ M ×N M . In general, it is rarely the case, as the reader can find out

looking at the examples of 4.2.
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4.3.3. Proposition. Let

M̃
f̃

−−−→ Ñ

g̃
y cart

y g

M
f

−−−→ N

(3)

be a cartesian square. Then Ker(f) exists iff Ker(f̃) exists, and they are naturally iso-
morphic to each other.

Proof. Suppose that Ker(f)
k(f)
−−−→M exists, i.e. we have a cartesian square

Ker(f)
k(f)
−−−→ M

f ′
y cart

y f

x
iN
−−−→ N

(4)

Since x −→ N factors through N ′ g
−→ N and the square (3) is cartesian, there is a unique

morphism Ker(f ′)
γ
−→ N ′ such that the diagram

Ker(f)
γ

−−−→ M̃
g̃

−−−→ M

f ′
y

y f̃ cart
y f

x −−−→ Ñ
g

−−−→ N

(5)

commutes and k(f) = g̃ ◦ γ. Therefore the left square of (5) is cartesian.

If Ker(f̃) exists, then we have the diagram

Ker(f̃)
k(f̃)
−−−→ M̃

g̃
−−−→ M

f̃ ′
y

y f̃ cart
y f

x −−−→ Ñ
g

−−−→ N

whose both squares are cartesian. Therefore, their composition

Ker(f̃)
g̃◦k(f̃)
−−−→ M

f̃ ′
y

y f

x
iN
−−−→ N

is a cartesian square.
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It follows that the unique morphism Ker(f̃)
g′

−→ Ker(f) making the diagram

Ker(f̃)
k(f̃)
−−−→ M̃

f̃
−−−→ Ñ

g′
y g̃

y cart
y g

Ker(f)
k(f)
−−−→ M

f
−−−→ N

(6)

commute is an isomorphism.

4.4. The kernel of a composition and related facts. Fix a category CX with
an initial object x.

4.4.1. The kernel of a composition. Let L
f
−→ M and M

g
−→ N be morphisms

such that there exist kernels of g and g ◦ f . Then the argument similar to that of 4.3.3
shows that we have a commutative diagram

Ker(gf)
f̃

−−−→ Ker(g)
g′

−−−→ x

k(gf)
y cart

y k(g) cart
y iN

L
f

−−−→ M
g

−−−→ N

(1)

whose both squares are cartesian and all morphisms are uniquely determined by f, g and
the (unique up to isomorphism) choice of the objects Ker(g) and Ker(gf).

Conversely, if there is a commutative diagram

K
u

−−−→ Ker(g)
g′

−−−→ x

t
y cart

y k(g)
y iN

L
f

−−−→ M
g

−−−→ N

whose left square is cartesian, then its left vertical arrow, K
t
−→ L, is the kernel of the

composition L
g◦f
−−−→ N .

4.4.2. Remark. It follows from 3.3.3 that the kernel of L
f
−→M exists iff the kernel

of Ker(gf)
f̃

−−−→ Ker(g) exists and they are isomorphic to each other. More precisely,
we have a commutative diagram

Ker(f̃)
k(f̃)
−−−→ Ker(gf)

f̃
−−−→ Ker(g)

g′

−−−→ x

≀
y k(gf)

y cart
y k(g) cart

y iN

Ker(f)
k(f)
−−−→ L

f
−−−→ M

g
−−−→ N
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whose left vertical arrow is an isomorphism.

The following observations is useful (and will be used) for analyzing diagrams.

4.4.3. Proposition.(a) Let M
g
−→ N be a morphism with a trivial kernel. Then

a morphism L
f
−→ M has a kernel iff the composition g ◦ f has a kernel, and these two

kernels are naturally isomorphic one to another.
(b) Let

L
f

−−−→ M

γ
y

y g

M̃
φ

−−−→ N

be a commutative square such that the kernels of the arrows f and φ exist and the kernel
of g is trivial. Then the kernel of the composition φ ◦ γ is isomorphic to the kernel of the
morphism f , and the left square of the commutative diagram

Ker(f)
∼

−−−→ Ker(φγ)
k(f)
−−−→ L

f
−−−→ M

γ̃
y cart γ

y
y g

Ker(φ)
k(φ)
−−−→ M̃

φ
−−−→ N

is cartesian.

Proof. (a) Since the kernel of g is trivial, the diagram 4.4.1(1) specializes to the
diagram

Ker(gf)
f̃

−−−→ x
idx
−−−→ x

k(gf)
y cart

y k(g)
y iN

L
f

−−−→ M
g

−−−→ N

with cartesian squares. The left cartesian square of this diagram is the definition ofKer(f).
The assertion follows from 4.4.1.

(b) Since the kernel of g is trivial, it follows from (a) that Ker(f) is naturally isomor-
phic to the kernel of g ◦ f = φ ◦ γ. The assertion follows now from 4.4.1.

4.4.4. Definition. Let CX be a category with initial objects. A morphism of CX is
called trivial if it factors through an initial object.

4.4.5. Proposition. Let CX be a category with an initial object x. Let L
f
−→ M be

a strict epimorphism and M
g
−→ N a morphism such that Ker(g)

k(g)
−−−→ M exists and is

a monomorphism. Then the composition g ◦ f is a trivial morphism iff g is trivial.
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Proof. The morphism g ◦ f being trivial means that there is a commutative square

L
f

−−−→ M

γ
y

y g

x
iN
−−−→ N

By 4.4.3(a), Ker(g ◦ f) ≃ Ker(γ) = L. Thus, we have a commutative diagram

Ker(gf)
f̃

−−−→ Ker(g)
g′

−−−→ x

≀
y cart

y k(g) cart
y iN

L
f

−−−→ M
g

−−−→ N

(cf. 4.4.1). Since f is a strict epimorphism, it follows from the commutativity of the

left square that Ker(g)
k(g)
−−−→ M is a strict epimorphism. Since, by hypothesis, k(g) is a

monomorphism, it is an isomorphism, which implies the triviality of g.

4.4.5.1. Note. The following example shows that the requirement ”Ker(g) −→ M
is a monomorphism” in 4.4.5 cannot be omitted.

Let CX be the category Algk of associative unital k-algebras, and let m be an ideal
of the ring k such that the epimorphism k −→ k/m does not split. Then the identical
morphism k/m −→ k/m is non-trivial, while its composition with the projection k −→ k/m
is a trivial morphism.

4.5. The coimage of a morphism. Let M
f
−→ N be an arrow which has a kernel,

i.e. we have a cartesian square

Ker(f)
k(f)
−−−→ M

f ′
y cart

y f

x
iN
−−−→ N

with which one can associate a pair of arrows Ker(f)
k(f)

−→
−→
0f

M, where 0f is the composition

of the projection f ′ and the unique morphism x
iM−→M . Since iN = f ◦ iM , the morphism

f equalizes the pair Ker(f)
k(f)

−→
−→
0f

M. If the cokernel of this pair of arrows exists, it will

be called the coimage of f and denoted by Coim(f), or. loosely, M/Ker(f).
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Let M
f
−→ N be a morphism such that Ker(f) and Coim(f) exist. Then f is the

composition of the canonical strict epimorphismM
pf
−−−→ Coim(f) and a uniquely defined

morphism Coim(f)
jf
−−−→ N .

4.5.1. Lemma. Let M
f
−→ N be a morphism such that Ker(f) and Coim(f) exist.

There is a natural isomorphism Ker(f) ∼−→ Ker(pf ).

Proof. The outer square of the commutative diagram

Ker(f)
f ′

−−−→ x −−−→ x

k(f)
y cart

y
y

M
pf
−−−→ Coim(f)

jf
−−−→ L

(1)

is cartesian. Therefore, its left square is cartesian which implies, by 4.3.3, that Ker(pf ) is
isomorphic to Ker(f ′). But, Ker(f ′) ≃ Ker(f).

4.5.2. Note. By 4.4.1, all squares of the commutative diagram

Ker(f)
f ′

−−−→ x

id
y cart

y

Ker(jfpf )
p̃f
−−−→ Ker(jf ) −−−→ x

k(f)
y cart

y cart
y

M
pf
−−−→ Coim(f)

jf
−−−→ L

(2)

are cartesian.

If CX is an additive category and M
f
−→ L is an arrow of CX having a kernel and

a coimage, then the canonical morphism Coim(f)
jf
−−−→ L is a monomorphism. Quite a

few non-additive categories have this property.

4.5.3. Example. Let CX be the category Algk of associative unital k-algebras. Since
cokernels of pairs of arrows exist in Algk, any algebra morphism has a coimage. It follows

from 4.2.1 that the coimage of an algebra morphism A
ϕ
−→ B is A/K(ϕ), where K(ϕ)

is the kernel of φ in the usual sense (i.e. in the category of non-unital algebras). The
canonical decomposition ϕ = jϕ ◦ pϕ coincides with the standard presentation of ϕ as the
composition of the projection A −→ A/K(ϕ) and the monomorphism A/K(ϕ) −→ B. In
particular, ϕ is a strict epimorphism of k-algebras iff it is isomorphic to the associated

coimage map A
pϕ
−−−→ Coim(ϕ) = A/K(ϕ).
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5. Right exact categories with initial objects.

5.1. Inflations and conflations. Fix a right exact category (CX ,EX) with an

initial object x. We denote by EX the class of all sequences of the form K
k
−→M

e
−→ N ,

where e ∈ EX and K
k
−→M is a kernel of e. Expanding the terminology of exact additive

categories, we call any such sequence a conflation.

Any kernel K
k
−→M of a deflation will be called an inflation. We denote by MX the

class of all inflations of the right exact category (CX ,EX).

5.2. A useful observation. Suppose that L
f
−→M is a deflation and M

g
−→ N

a morphism having a kernel. Then it follows from 4.4.2 that the canonical morphism

Ker(gf)
f̃
−→ Ker(g) is a deflation too, and we have a commutative diagram

Ker(f̃)
k(f̃)
−−−→ Ker(gf)

f̃
−−−→ Ker(g)

≀
y k(gf)

y cart
y k(g)

Ker(f)
k(f)
−−−→ L

f
−−−→ M

whose rows are conflations.

5.3. The property (†) and ’exactness’ of functors.

5.3.1. Proposition. Let (CX ,EX) and (CY ,EY ) be right exact categories with initial
objects. Suppose that the right exact category (CY ,EY ) satisfies the following property:

(†) if the rows of a commutative diagram

L̃ −−−→ M̃ −−−→ Ñy
y

y
L −−−→ M −−−→ N

are conflations and its right and left vertical arrows are isomorphisms, then the middle
arrow is an isomorphism.

Then the following conditions on a functor CX
F
−→ CY are equivalent:

(a) F is an ’exact’ functor from (CX ,EX) to (CY ,EY ).
(b) F maps deflations to deflations and cartesian squares of the form

Ker(e) −−−→ x

k(e)
y cart

y
M

e
−−−→ N

(1)
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where M
e
−→ N is a deflation and x an initial object, to cartesian squares.

Proof. The implication (a)⇒(b) follows from definition of an ’exact’ functor and does
not require any additional conditions.

(b)⇒(a). Let a functor CX
F
−→ CY satisfy the conditions (b). We need to show that

F preserves arbitrary pull-backs of deflations.

Let M
e
−→ N be a deflation and Ñ

f
−→ N an arbitrary morphism of CX . Consider

the associated with this data diagram

Ker(e)
k(̃e)
−−−→ M̃

f ′

−−−→ M

γe

y cart ẽ
y cart

y e

x −−−→ Ñ
f

−−−→ N

(2)

with cartesian squares. By hypothesis, the functor CX
F
−→ CY maps the diagram (2) to

the commutative diagram

F (Ker(e))
F (k(̃e))
−−−→ F (M̃)

F (f ′)
−−−→ F (M)

F (γe)
y cart F (̃e)

y
y F (e)

F (x) −−−→ F (Ñ)
F (f)
−−−→ F (N)

(3)

whose left square is cartesian, as well as the outer square

F (Ker(e))
F (k(e))
−−−→ F (M)

F (γe)
y cart

y F (e)

F (x) −−−→ F (N)

(3′)

Since all vertical arrows of (3) are deflations, we can extend the diagram (3) to the
commutative diagram

Ker(F (γe))
λ1

−−−→ Ker(F (̃e))
λ2

−−−→ Ker(t)
λ3

−−−→ Ker(F (e))y
y

y
y

F (Ker(e))
F (k(̃e))
−−−→ F (M̃)

ψ
−−−→ M

φ
−−−→ F (M)

F (γe)
y cart F (̃e)

y t
y cart

y F (e)

F (x) −−−→ F (Ñ)
id
−−−→ F (Ñ)

F (f)
−−−→ F (N)

(4)
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whose columns are conflations, right lower square is cartesian, and φ ◦ ψ = F (f ′). By
4.3.3, the morphisms λ1 and λ3 in the upper row of the diagram (4) are isomorphisms.
The composition λ3 ◦ λ2 ◦ λ1 is an isomorphism by the same reason, because the square

(3’) is cartesian. Therefore, Ker(F (̃e))
λ2

−−−→ Ker(t) is an isomorphism. Since the

property (†) holds in (CY ,EY ), the latter implies that the morphism F (M̃)
ψ
−→ M is an

isomorphism. This shows that the functor F preserves pull-backs of deflations.

5.3.2. Corollary. Let (CX ,EX) and (CY ,EY ) be right exact categories with initial
objects and F a functor CX −→ CY which maps initial objects to initial objects and
deflations to deflations. Suppose that the right exact category (CY ,EY ) has the property
(†) of 5.3.1. Then the functor F is ’exact’ iff it maps conflations to conflations.

5.3.3. Corollary. Let (CX ,EX) and (CY ,EY ) be additive k-linear right exact cate-
gories and F an additive functor CX −→ CY . Then the functor F is weakly ’exact’ iff it
is ’exact’.

Proof. By 4.3.2.1, a k-linear functor CX
F
−→ CY is a weakly ’exact’ iff it maps

conflations to conflations. The assertion follows now from 5.3.2.

5.4. Right exact categories with the property (†).

5.4.1. Abelian and additive categories. It is well known (and easy to check) that
every abelian category has this property.

Any additive right exact category (CY ,EY ) has the property (†).
In fact, applying the canonical ’exact’ embedding of (CY ,EY ) to the category CYE

of
sheaves of Z-modules on the presite (CY ,EY ), we reduce the assertion to the case when
the category is abelian (with the canonical exact structure).

5.4.2. Groups. One of the simplest non-additive examples of a right exact category
with the property (†) is the category of groups with the standard (that is the finest) right
exact structure.

5.4.3. An obvious observation: If (CX ,EX) and (CY ,EY ) are right exact cate-

gories with initial objects and CX
F
−→ CY a conservative functor which maps conflations

to conflations, then the property (†) holds in (CX ,EX), provided it holds in (CY ,EY ).

5.4.3.1. Example. Let k be a field and CX the category Algk of k-algebras with

strict epimorphisms as deflations. The map which assigns to every k-algebra (A, k
ϕ
→ A)

the cokernel of ϕ (more precisely, the cokernel of ϕ∗(k
ϕ
→ A)) defines a conservative functor

Algk
Ω̄k−→ k −mod which maps conflations to conflations.

5.4.3.2. Note. This example is valid for arbitrary unital commutative ring k, if we

take as CX the full subcategory Algk of the category Algk formed by k-algebras (A, k
ϕ
→ A)

for which the structure morphism ϕ is a monomorphism.
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The following observation is more subtle than the one in 5.4.3 and much more helpful.

5.4.4. Lemma. Let (CX ,EX) and (CY ,EY ) be right exact categories with initial

objects; and let CX
F
−→ CY be a conservative functor which maps deflations to deflations

and cartesian squares
Ker(e) −−−→ x

k(e)
y cart

y
M

e
−−−→ L

(1)

where e is a deflation and x an initial object, to cartesian squares. Then the property (†)
holds in (CX ,EX) provided it holds in (CY ,EY ).

Proof. Fix an initial object y of the category CY . The diagram (1) corresponding to

a deflation M
e
−→ L gives rise to a diagram

Ker(F (e)) −−−→ yy cart
y

Ker(F (e)) −−−→ F (Ker(e)) −−−→ F (x)

id
y≀ F (k(e))

y cart
y

Ker(F (e)) −−−→ F (M)
F (e)
−−−→ F (L)

(2)

whose two right squares are cartesian and two lower rows are conflations. IfM
γ
−→ M is

a morphism such that e ◦ γ is a deflation and Ker(e ◦ γ) = Ker(e), then it follows (from
the middle row of the diagram (2)) that this data extends (2) to the diagram

Ker(F (e)) −−−→ yy cart
y

Ker(F (e)) −−−→ F (Ker(e)) −−−→ F (x)

id
y≀ F (k(e))

y cart
y

Ker(F (e)) −−−→ F (M)
F (e)
−−−→ F (L)

id
x≀ F (γ)

x
x id

Ker(F (e ◦ γ)) −−−→ F (M)
F (e◦γ)
−−−→ F (L)

(3)

whose lower row is also a conflation. If the right exact category (CY ,EY ) has property
(†), then the morphism F (γ) is an isomorphism. Since the functor F is, by hypothesis,

conservative, this implies thatM
γ
−→M is an isomorphism.
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5.4.5. Corollary. Let (CX ,EX) be a right exact category with initial objects and
(CY ,EY ) is a right exact k-linear category. Suppose that there exists a conservative ’exact’

functor (CX ,EX)
F
−→ (CY ,EY ). Then the property (†) holds in (CX ,EX).

Proof. The assertion follows from 5.4.4 and the fact that the property (†) holds for
k-linear right exact categories (see 5.4.1).

5.4.6. Note. If (CX ,EX) and (CY ,EY ) are right exact categories with initial objects,

and the property (†) holds in (CY ,EY ), then, by 5.3.1, functor CX
F
−→ CY satisfying the

conditions of 5.4.4, are precisely ’exact’ functors from (CX ,EX) to (CY ,EY ).

5.4.7. Example. Let CX be the right exact category (Algk,E
s) of associative unital

k-algebras with strict epimorphisms as deflations. The forgetful functor Algk
f∗−→ k−mod

is conservative, maps deflations to deflations (that is to epimorphisms of k-modules) and,
as every functor having a left adjoint, it preserves limits; In particular, f∗ preserves pull-
backs. So that f∗ is an ’exact’ conservative functor from (Algk,E

s) to the abelian category
k −mod. By 5.4.4, the right exact category (Algk,E

s) has the property (†).

5.4.8. A general setting. Let (CY ,EY ) be a right exact category and CX
f∗−→ CY

a conservative functor having a left adjoint, f∗, and such that the class f−1
∗ (EY ) consists

of universal (that is stable under base change) strict epimorphisms: f−1
∗ (EY ) ∈ Es

X . Then
f−1
∗ (EY ) is a right exact structure on the category CX and the functor f∗ is a conservative
’exact’ functor from (CX , f

−1
∗ (EY )) to (CY ,EY ).

It follows from 5.4.4 that, if the categories CX and CY have initial objects and the
property (†) holds in the right exact category (CY ,EY ), then it holds in (CX , f

−1
∗ (EY )).

The ’exact’ functor (Algk,E
s) −→ k −mod (of example 5.4.7) is a very special case

of this setting, as well as its commutative version (CAlgk,E
s) −→ k −mod.

Another example is the forgetful functor from the category Liek of Lie algebras over
k to k−mod. Its left adjoint assigns to a k-module V a free Lie k-algebra generated by V .

Both these cases and many others are instances of the categories of algebras over an
operad and their canonical forgetful functors considered in the next example.

5.4.9. Algebras over operads. Fix a symmetric additive monoidal category C∼ =
(C,⊗,1, a, l, r;β) (here β is a symmetry, βX,Y : X ⊗ Y −→ Y ⊗ X). Let S denote the
category objects of which are sets [n] = {1, ..., n}, n ≥ 1, and [0] = ∅ and morphisms are
bijections. Denote by CS the category of functors Sop −→ C. In other words, objects of CS

are collections M = (M(n)| n ≥ 0), where M(n) is an object of C with an action of the
symmetric group Sn.

The category CS acts on the category C by polynomial functors:

M : V 7−→M(V ) =
⊕

n≥0

M(n)⊗
Sn
V ⊗n (4)
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The composition of polynomial functors is again a polynomial functor. This defines
a tensor product, ⊙, on CS called the plethism product. We denote the corresponding
monoidal category (CS,⊙,1S) by C∼S. Here 1S is the unit object 1S. One can see that
1S(n) = 0 if n 6= 1 and 1S(1) is the unit object of the category C∼. Thus we have an
action C of the monoidal category CS on the category C.

Algebras in the monoidal category CS are called operads, or C∼-operads. For each
operad R, the corresponding category of R-modules is usually called the category of R-

algebras. This terminology is, of coarse, due to the same example Algk
f∗−→ k −mod.

Fixing any right exact structure on the category C, we obtain the induced structures
on the category of algebras over an operad R. By the observation 5.4.8, the obtained this
way right exact category of R-algebras has the property (†).

5.4.10. Example. A simple special case of 5.4.9, which is not reduced to the category
of algebras over an operad is the category R\Algk of k-algebras over a k-algebra R and
the forgetful functor, f∗, from R\Algk to the abelian category R⊗kR

o-modules (or, what
is the same, k-central R-bimodules). Its left adjoint, f∗ maps every R ⊗k R

o-module M
to the tensor algebra TR(M) with the natural morphism R −→ TR(M) (which identifies
the k-algebra R with the zero component of TR(M).

5.5. A digression: the property (†) without initial objects. Let (CX ,EX)

be a right exact category. Let ΣX denote the class of morphisms M
γ
−→ M having the

following property: there exist a deflation M
e
−→ L such that e ◦ γ is also a deflation and

a cartesian square

M̃
ẽ

−−−→ V

λ′
y cart

y λ

M
e◦γ
−−−→ L

(1)

such that the square

M̃
ẽ

−−−→ V

γ ◦ λ′
y cart

y λ

M
e

−−−→ L

(2)

is cartesian too.

5.5.1. Proposition. Let (CX ,EX) be a right exact category and ΣX the class of
arrows of the category CX defined above.

(a) The class ΣX is stable under pull-backs along deflations.

(b) The intersection ΣX ∩ EX coincides with the class E⊛

X of all deflations e whose
pull-backs contain isomorphisms.



40 Chapter 1

(c) If the category CX has initial objects, then ΣX consists of all morphismsM
γ
−→M

having the following property: there exist a deflation M
e
−→ L such that e ◦ γ is also a

deflation and the natural morphism Ker(e ◦ γ) −→ Ker(e) is an isomorphism.
(d) If the category CX has initial objects, then the class E⊛

X consists of all deflations
with trivial kernels.

Proof. (a) Let M
γ
−→ M be a morphism from ΣX , M

e
−→ L a deflation such that

e ◦ γ is a deflation and V
λ
−→ L an arrow which give rise to the cartesian squares (1) and

(2) above. For any deflation N
t
−→M, consider the commutative diagram

Ñ
t̃

−−−→ M̃
ẽ

−−−→ V

λ′′
y cart λ′

y cart
y λ

N
t1
−−−→ M

e◦γ
−−−→ L

γ′
y cart γ

y
y idL

N
t

−−−→ M
e

−−−→ L

(3)

with three cartesian squares as indicated. Since the square built of cartesian squares is
cartesian, the square

Ñ
ẽ◦̃t
−−−→ V

λ′′
y cart

y λ

N
e◦γ◦t1
−−−→ L

(4)

is cartesian; and e ◦ γ ◦ t1 = (e ◦ t) ◦ γ′.
By a similar reason, since the square (2) is cartesian, the square

Ñ
ẽ◦̃t
−−−→ V

γ′ ◦ λ′′
y cart

y λ

N
e◦t
−−−→ L

(5)

is cartesian. This shows that the pull-back γ′ of the morphism γ belongs to ΣX .

(b) IfM
γ
−→M is a deflation such that a pull-back, γ̃, of γ along along some morphism

V
λ
−→ L is an isomorphism, then we obtain the cartesian squares (1) and (2) with e = idL.

This shows the inclusion E⊛

X ⊆ ΣX ∩EX . Conversely, let γ ∈ ΣX ∩EX , and let (1) and (2)
are cartesian squares. Since γ is a deflation, it can be pulled back along any morphism.
Therefore, we can decompose the diagram (1) into two squares:

M̃
id
−−−→ M̃

ẽ
−−−→ V

λ′
y γ ◦ λ′

y cart
y λ

M
γ

−−−→ M
e

−−−→ L

(6)



Right Exact Categories. 41

Since the right square in (6) is cartesian and the composition of these two squares –
the square (1), is cartesian, the left square is cartesian too. This shows that γ ∈ E⊛

X ; hence
the inverse inclusion ΣX ∩ EX ⊆ E⊛

X .

(c) Suppose that the category CX has an initial object, x. Let M
γ
−→ M be a

morphism from ΣX and (1) and (2) the cartesian squares acknowledging this fact. Pulling

back the deflation M̃
ẽ
−→ V along the unique arrow x −→ V (see (1) and (2) above), we

obtain the diagrams

Ker(̃e)
k(̃e)
−−−→ M̃

λ′

−−−→ My cart ẽ
y cart

y e ◦ γ

x −−−→ V
λ

−−−→ L

(7)

and

Ker(̃e)
k(̃e)
−−−→ M̃

γ◦λ′

−−−→ My cart ẽ
y cart

y e

x −−−→ V
λ

−−−→ L

(8)

built of cartesian squares. It follows from (7) and (8) that Ker(̃e) = Ker(e), and we
obtain, instead of (1) and (2), the cartesian squares

Ker(e) −−−→ x Ker(e) −−−→ xy cart
y and

y cart
y

M
e◦γ
−−−→ L M

e
−−−→ L

So that the object V in the diagrams (1) and (2) can be replaced by x.

(d) If some pull-back of a morphismM
γ
−→ L can be included into a cartesian square

M̃ −−−→ M

s
y≀ cart

y γ

L̃ −−−→ L

whose left arrow is an isomorphism, than, by 4.3.3, Ker(γ) = Ker(s) and Ker(s) is an
initial object.

5.5.2. Note. Because of 5.5.1(d), the arrows of E⊛

X are called deflations with trivial
kernel, even if the category CX does not have initial objects.

5.5.3. The property (†). We say that a right exact category (CX ,EX) has the
property (†) if the class of morphisms ΣX consists only of isomorphisms.
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If follows from 5.5.1(b) that if (CX ,EX) has the property (†), then the class E⊛

X of
deflations with trivial kernel also consists of isomorphisms; in particular, ΣX = E⊛

X .

5.5.4. Proposition. Let (CX ,EX) and (CY ,EY ) be right exact categories and

(CX ,EX)
F
−→ (CY ,EY ) an ’exact’ functor. Then F (ΣX) ⊆ ΣY .

Proof. The fact thatM
γ
−→M belongs to ΣX means that there exist cartesian squares

M̃
ẽ

−−−→ V M̃
ẽ

−−−→ V

λ′
y cart

y λ and γ ◦ λ′
y cart

y λ

M
e◦γ
−−−→ L M

e
−−−→ L

(9)

in which all horizontal arrows are deflations. Since the functor F is ’exact’, it preserves
deflations and their pull-backs. In particular, it maps the cartesian squares (9) to cartesian
squares whose horizontal arrows are deflations, hence F (γ) ∈ ΣX .

5.5.5. Corollary. Suppose that an ’exact’ functor (CX ,EX)
F
−→ (CY ,EY ) is conser-

vative and the right exact category (CY ,EY ) has the property (†). Then (CX ,EX) has this
property.

Proof. By 5.5.4, the ’exactness’ of F implies that F (ΣX) ⊆ ΣY . The property (†)
for (CY ,EY ) means that ΣY coincides with the class Iso(CY ) of all isomorphisms of the
category CY . Since F is conservative, this implies that ΣX = Iso(CX).

There is also a more general version of Proposition 5.3.1:

5.5.6. Proposition. Let (CX ,EX) be a right exact category with initial objects and
(CY ,EY ) a right exact category with the property (†). Then the following conditions on a

functor CX
F
−→ CY are equivalent:

(a) F is an exact functor from (CX ,EX) to (CY ,EY ).
(b) F maps deflations to deflations and cartesian squares

Ker(e) −−−→ x

k(e)
y cart

y
M

e
−−−→ N

where e is a deflation and x an initial object, to cartesian squares.

Proof. We need to show that a functor satisfying the conditions (b) maps any cartesian
square

M̃
f ′

−−−→ M

ẽ
y cart

y e

Ñ
f

−−−→ N
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whose vertical arrows are deflations to a cartesian square. The argument is similar to that
of 5.3.1, only instead of the diagram 5.3(4), we take the diagram

F (Ker(e))
id
−−−→ F (Ker(e))

λ2

−−−→ F (Ker(e))
id
−−−→ F (Ker(e))

id
y

y
y

y

F (Ker(e))
F (k(̃e))
−−−→ F (M̃)

ψ
−−−→ M

φ
−−−→ F (M)

F (γe)
y cart F (̃e)

y t
y cart

y F (e)

F (x) −−−→ F (Ñ)
id
−−−→ F (Ñ)

F (f)
−−−→ F (N)

(10)

which is obtained taking the pull-backs of the lower vertical arrows in (10) along the

morphisms F (x −→ Ñ) and F (x −→ N). Here φ ◦ ψ = F (f ′). Since the composition of

all upper horizontal arrows is an isomorphism, the arrow F (Ker(e))
λ2−→ F (Ker(e)) is an

isomorphism too. This implies that the arrow F (M̃)
ψ
−→M belongs to ΣY .

In fact, since the composition of three lower squares is, by hypothesis (b), a cartesian
square, the composition of the two left lower squares is cartesian too. Together with the

extreme left lower cartesian square, this gives the criteria that F (M̃)
ψ
−→ M belongs to

ΣY . Since ΣY = Iso(CY ), the morphism ψ is an isomorphism, hence the square

F (M̃)
F (f ′)
−−−→ F (M)

F (̃e)
y cart

y F (e)

F (Ñ)
F (f)
−−−→ F (N)

is cartesian.

5.5.7. Examples of deflations with trivial kernel.

5.5.7.1. Non-empty sets. Let CX be the category Sets∗ of non-empty sets and EX
the class of all surjective maps – the canonical right exact structure. The category Sets∗

does not have initial objects. One can see that a map M
f
−→ N has a trivial kernel iff

there is an element y ∈ N such that f−1(y) consists of one element. So that if the set N
has more than one element, then most of deflations to N having a trivial kernel are not
bijective maps.

5.5.7.2. Non-zero non-unital algebras. Let CX be the category of non-unital
non-zero k-algebras and non-unital k-algebra morphisms with the canonical right exact
structure: deflations are surjective homomorphisms. Then any deflation with a trivial
kernel is an isomorphisms.



44 Chapter 1

6. Fully exact subcategories of a right exact category.

6.1. Definition. Let (CX ,EX) be a right exact category with initial objects. We call
a full subcategory B of CX a fully exact subcategory of the right exact category (CX ,EX),
if B contains the initial object x and is closed under extensions; i.e. if objects K and N in

a conflation K
k
−→M

e
−→ N belong to B, then M is an object of B.

In particular, fully exact subcategories of (CX ,EX) are strictly full subcategories.

6.2. Example. Let (CX ,EX) be a right exact category with an initial object, x; and
let CXm

be the full subcategory of CX generated by all objects L such that the unique

arrow x −→ L is a monomorphism. Notice that if L is an object of CXm
and M

e
−→ L a

deflation, then M is an object of CXm
too. In fact, it follows from the diagram

Ker(e) −−−→ x

k(e)
y cart

y
M

e
−−−→ L

with cartesian square that Ker(e)
k(e)
−−−→ M is a monomorphism and x −→ Ker(e) is a

split monomorphism, hence their composition, x −→M , is a monomorphism.

In particular, CXm
is a fully exact subcategory of (CX ,EX).

6.2.1. If (CX ,EX) is the category Algk of associative unital k-algebras with the finest
right exact structure, then CXm

coincides with its full subcategory Algk generated by k-
algebras A for which the structure morphism k −→ A is a monomorphism (it already
appeared in 5.4.3.2).

6.3. Proposition. Let (CX ,EX) be a right exact category with an initial object x

and B its fully exact subcategory. Then the class EX,B of all deflations M
e
−→ N such

that M, N, and Ker(e) are objects of B is a structure of a right exact category on B such
that the inclusion functor B −→ CX is an ’exact’ functor (B,EX,B) −→ (CX ,EX).

Proof. (a) We start with the invariance of EX,B under base change. Let

M̃
ẽ

−−−→ Ñ

g̃
y cart

y g

M
e

−−−→ N

be a cartesian square such that e (hence ẽ) is a deflation and the objects M, N, Ker(e),

and Ñ belong to B. The claim is that the remaining object, M̃ , belongs to B.
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In fact, consider the diagram

Ker(̃e)
k(̃e)
−−−→ M̃

ẽ
−−−→ Ñ

g′
y g̃

y cart
y g

Ker(e)
k(e)
−−−→ M

e
−−−→ N

(1)

Since its right square is cartesian, it follows from 4.3.3 that the canonical morphism

Ker(̃e)
g′

−−−→ Ker(e) is an isomorphism; i.e. the upper row of the diagram (1) is a

conflation whose ends, Ker(̃e) and Ñ , are objects of B. Since B is fully exact, the middle

object, M̃ , belongs to B, which means that the deflation M̃
ẽ
−→ Ñ belongs to EX,B.

(b) The invariance of EX,B under base change implies that it is closed under composi-

tion. In fact, let L
s
−→M

t
−→ N be morphisms of EX,B. By 4.4.1, we have a commutative

diagram

Ker(ts)
s̃

−−−→ Ker(s)
t′

−−−→ x

k(ts)
y cart

y k(s) cart
y iN

L
s

−−−→ M
t

−−−→ N

(2)

whose squares are cartesian. Since s belongs to EX,B, its kernel Ker(s)
k(s)
−−−→ M is an

arrow of B. Applying (a) to the left cartesian square of (2), we obtain thatKer(ts)
k(ts)
−−−→ L

is an arrow of B, which means that ts ∈ EX,B.
(c) Each isomorphism of the category B belongs to the class EX,B, because each

isomorphism is a deflation and its kernel is an initial object, and, by hypothesis, initial
objects belong to B.

6.4. Remark. Let (CX ,EX) be a right exact category with an initial object x and
B its strictly full subcategory containing x. Let E be a right exact structure on B such

that the inclusion functor B
J
−→ CX maps deflations to deflations and preserves kernels

of deflations. Then E is contained in EX,B. In particular, E is contained in EX,B if the
inclusion functor is an ’exact’ functor from (B,E) to (CX ,EX). This shows that if B is
a fully exact subcategory of (CX ,EX), then EX,B is the finest right exact structure on B
such that the inclusion functor B −→ CX is an ’exact’ functor from (B,EX,B) to (CX ,EX).

7. Exact k-linear categories and their fully exact subcategories.

7.1. Definition. An exact k-linear category is a right exact k-linear category whose
class of inflations is stable under arbitrary push-forwards.
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We denote by ExCatk the category whose objects are exact k-linear categories and
morphisms ’exact’ k-linear functors, that is k-linear functors which map conflations to
conflations.

7.1.1. Observations. For any right exact category (CX ,EX), all arrows from an
initial object are (kernels of identical morphisms, hence) inflations. So that the category
CX has finite coproducts iff push-forwards of inflations of initial objects exist. Moreover,
if these push-forwards are inflations, then coprojections of summands in a finite coprod-
uct are inflations. In particular, any exact k-linear category is additive and all its split
monomorphisms are inflations, or, equivalently, all its split epimorphisms are deflation.

7.1.2. Note. It is easy to see that our definition of an exact k-linear category is
equivalent to the one given by Keller and Vossieck [KeV] (see Appendix K).

7.2. Examples of exact categories.

7.2.1. The smallest exact structure. For any additive k-linear category CX , let
EsplX denote the class of all split epimorphisms. The pair (CX ,E

spl
X ) is an exact category.

It follows from 7.1.1 that EsplX is the smallest exact structure on CX .

Let CX and CY be additive k-linear categories. Every k-linear functor CX
F
−→ CY

is an ’exact’ functor (CX ,E
spl
X )

F
−→ (CY ,E

spl
Y ). The map which assigns to an additive k-

linear category CX the exact category (CX ,E
spl
X ) and to a k-linear functor the correspond-

ing ’exact’ functor is a full embedding of the category Addk of additive k-linear categories
and k-linear functors to the category ExCatk of exact k-linear categories and ’exact’ k-
linear functors. This embedding is a left adjoint to the forgetful functor ExCatk −→ Addk.

7.2.2. The category of complexes. Let C(A) be the category of complexes of

an additive k-linear category A. Deflations are morphisms M• e•

−→ N• such that the

morphism Mn en

−→ Nn is split for every n ∈ Z.

7.2.3. Quasi-abelian categories. A quasi-abelian k-linear category is an additive
k-linear category CX with kernels and cokernels and such that every pullback of a strict
epimorphism is a strict epimorphism, and every pushout of a strict monomorphism is a
strict monomorphism. It follows from definitions that the pair (CX ,Es), where Es is the
class of all strict epimorphisms in CX , is an exact category.

7.2.3.1. ’Exact’ functors from a quasi-abelian category. Let (CX ,EX) and
(CY ,EY ) be exact k-linear categories. If (CX ,EX) is quasi-abelian, then a k-linear functor

CX
F
−→ CY is an ’exact’ functor from (CX ,EX) to (CY ,EY ) iff it preserves finite limits and

colimits. This follows from the fact that all k-linear functors preserve finite coproducts,
which coincide with the products in additive case, and the functors mapping strict epimor-
phisms of CX to strict epimorphisms of CY are precisely those functors which preserve the
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cokernels of pairs of morphisms. Dually, the functors which map strict monomorphisms to
strict monomorphisms are the functors preserving kernels of pairs of arrows.

In other words, ’exact’ functors in this case are precisely exact functors.

7.2.3.2. Abelian categories. Abelian k-linear categories are quasi-abelian k-linear
categories in which every epimorphism is strict.

7.2.4. Filtered objects. Let (CX ,EX) be an exact k-linear category. Objects of
the filtered category F(CX ,EX) are sequences of inflations

M = (. . . −→Mn
jn−→Mn+1 −→ . . .)

such that Mn = 0 for n≪ 0 and jm are identical isomorphisms for m≫ 1. We denote by
M∞ the object Mm for m≫ 1 and regardM as a filtration of the object M∞.

Morphisms of filtered objects are defined in a natural way: a morphism from

M = (. . . −→Mn
jn−→Mn+1 −→ . . .) to M̃ = (. . . −→ M̃n

j̃n−→ M̃n+1 −→ . . .)

is a sequence of morphisms Mn
gn
−→ Ln for each n making the diagrams

Mn

jn
−−−→ Mn+1

gn

y
y gn+1

M̃n

j̃n
−−−→ M̃n+1

commute for all n ∈ Z. Deflations are morphisms whose components belong to EX .

Since inflations are monomorphisms, every morphism M
(gn)
−→ M̃ of filtered objects

is determined by a morphism M∞
g∞
−→ M̃∞, which is the notation for the morphism

Mm
gm
−→ M̃m when m ≫ 1. So that a morphism M −→ M̃ of filtered objects can be

viewed as a morphism M∞ −→ M̃∞ of the category CX which is compatible with the
filtration of these objects.

7.2.4.1. Remarks. (i) Notice that, for any nonzero k-linear exact category (CX ,EX),
the category F(CX ,EX) is non-abelian. This follows from the fact that, for any nonzero
object M of the category CX , the morphism (0, idM ) from the filtered object (0→M) to

(M
idM→ M) is a bimorphism (– both mono- and epimorphism), which is not invertible.
(ii) The class of quasi-abelian categories turns out to be much more robust: if (CX ,EX)

is a quasi-abelian category, then the filtered category F(CX ,EX) is quasi-abelian too.
In particular, the category of filtered objects of an abelian category is quasi-abelian.

7.2.5. The category of Banach spaces. Let CX be the category of complex
Banach spaces. Then CX is a quasi-abelian category. The canonical (that is the finest)
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exact structure on this category is formed by morphisms M
e
−→ N of Banach spaces such

that the map e is surjective.

7.2.6. Categories of functors. Let (CX ,EX) be a right exact k-linear category
and CZ a category. The standard right exact structure on the category Hom(CZ , CX) of

functors from CZ to CX is defined as follows: a functor morphism F
e
−→ F ′′ is a deflation

if F (M)
e(M)
−−−→ F ′′(M) is a deflation for every object M of the category CZ . If the right

exact category (CX ,EX) is exact, then the right exact category of functors defined this
way is an exact k-linear category too.

7.2.7. Examples created via pairs of adjoint functors. Let (CX ,EX) be right

exact category and CX
f∗

−→ CY a functor having a right adjoint functor, CY
f∗
−→ CX .

Let EY be the intersection of f−1
∗ (EX) with the finest right exact structure, Est

Y , on CY .
Since the functor f∗ preserves limits, in particular, pull-backs, the class EY is a right exact
structure on the category CY . It is the finest right exact structure on CY such that f∗ is
an ’exact’ functor from (CY ,EY ) to (CX ,EX).

7.2.7.1. Proposition. ((a) Suppose that the category CY has cokernels of pairs

of arrows and the functor CY
f∗
−→ CX preserves cokernels of pairs of arrows and is

conservative.

(a1) EY = f−1
∗ (EX).

(a2) Suppose that, in addition, the category CY has initial objects and the functor
f∗ preserves push-forwards and maps initial objects to initial objects. Then the class of
inflations of (CY ,EY ) is stable under push-forwards, if the class of inflations of (CX ,EX)
has this property.

(b) Suppose that the categories CX and CY are additive and k-linear and the functors

f∗, f∗ are k-linear. Let the functor CY
f∗
−→ CX be exact and conservative. Then

EY = f−1
∗ (EX) and the right exact structure EY is exact iff EX is exact.

Proof. (a1) By Beck’s theorem, the functor f∗ is isomorphic to the forgetful functor
from the category Ff−mod of modules over the monad F = (f∗f

∗, µf ) associated with the

pair of adjoint functors f∗, f
∗ and the adjunction morphism f∗f∗

ǫf
−→ IdCY (µf = f∗ǫff∗).

This forgetful functor preserves and reflects universally strict epimorphisms.

(a2) Let N
j
−→ M

e
−→ L be a conflation in (CY ,EY ) and N

ξ
−→ N an arbitrary

morphism. Let

f∗(N)
f∗(j)
−−−→ f∗(M)

f∗(ξ)
y cocart

y ξ′

f∗(N)
j̃

−−−→ M̃

(1)
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be a cocartesian square. It follows from the fact that f∗ preserves cocartesian squares
and from Beck’s theorem (which allows to replace the category CY by the category of
F-modules and the functor f∗ by the forgetful functor F −mod −→ CX) that the diagram
(1) is the image of a cocartesian square

N
j

−−−→ M

ξ
y cocart

y ζ

N
i

−−−→ M

of the category CY .
(b) The assertion follows from (a) and (b).

7.2.7.2. Application. Let CX and CY be additive k-linear categories and

CX
f∗

−→ CY
f∗
−→ CX

a pair of k-linear adjoint functors such that the the functor f∗ is conservative and exact.
Then the preimage EY = f−1

∗ (EsplX ) of the coarsest exact structure on the category CX is
an exact structure on the category CY .

The example 7.2.2 is a special case of this.

7.2.8. Intersection of exact structures. For any family {Ei | i ∈ J} of right exact

structures on a category CX , their intersection EJ =
⋂

i∈J

Ei is a right exact structure on

CX . If CX is an additive k-linear category and all the right exact structures Ei, i ∈ J, are
exact, then their intersection EJ is exact.

7.3. Proposition. Any fully exact subcategory B of an exact k-linear category
(CX ,EX) is an exact category with respect to the canonical right exact structure EX,B.

Proof. By 6.3, (B,EX,B) is a right exact subcategory of (CX ,EX). But, if (CX ,EX)
is an exact category, then the notion of a fully exact subcategory of an exact category is
self-dual: B is a fully exact subcategory of the exact category (CX ,EX) iff Bop is a fully
exact subcategory of (CopX ,M

op
X ). Therefore, the class MX,B of inflations of the right exact

category (B,EX,B) is a structure of a left exact category on B.

7.4. Proposition. A svelte right exact k-linear category (CX ,EX) is exact iff the
canonical embedding of (CX ,EX) into the category Shk(X,EX) of sheaves of k-modules on
(CX ,EX) induces an equivalence of (CX ,EX) and a fully exact subcategory of Shk(X,EX).

Proof. (i) Let N ∈ ObCX and F
γ
−→ N̂ an epimorphism of sheaves on (CX ,EX). By

(the k-linear version of) the argument of 2.2, there is a commutative diagram

M̂ ′
ê′

−−−→ N̂

v
y

y id

F
γ

−−−→ N̂

(1)



50 Chapter 1

such that M ′ e′

−→ N is a deflation.

(ii) Suppose that the kernel of γ is representable by an object L, and let L′ j′

−→ M ′

be the kernel of M ′ e′

−→ N . Then the diagram (1) extends to a commutative diagram

0 −−−→ L̂′
ĵ′

−−−→ M̂ ′
ê′

−−−→ N̂ −−−→ 0

û
y

y v
y id

0 −−−→ L̂
λ

−−−→ F
γ

−−−→ N̂ −−−→ 0

(2)

with exact rows. Since the right exact category (CX ,EX) is exact and L′ j′

−→ M ′ is an
inflation, we have a commutative diagram

L′
j′

−−−→ M ′
e′

−−−→ N

u
y cocart

y u′
y id

L
j

−−−→ M
e

−−−→ N

(3)

whose left square is cocartesian and both rows are conflations.
(iii) The Yoneda functor assigns to the diagram (3) the commutative diagram

0 −−−→ L̂′
ĵ′

−−−→ M̂ ′
ê′

−−−→ N̂ −−−→ 0

û
y

y û′
y id

0 −−−→ L̂
ĵ

−−−→ M̂
ê

−−−→ N̂ −−−→ 0

(3̂)

whose rows are exact sequences in the category of sheaves. We claim that the latter implies
that the left square of the diagram (3̂) is cocartesian.

In fact, let

L̂′
ĵ′

−−−→ M̂ ′

û
y cocart

y ν

L̂
j̃

−−−→ G

be a cocartesian square. Applying the argument of (iii) above, we obtain the commutative
diagram

0 −−−→ L̂′
ĵ′

−−−→ M̂ ′
ê′

−−−→ N̂ −−−→ 0

û
y cocart

y ν
y id

0 −−−→ L̂
j̃

−−−→ G
ẽ

−−−→ N̂ −−−→ 0
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with exact rows. Therefore, the canonical morphism G
g
−→ M̂ gives rise to the commutative

diagram

0 −−−→ L̂
j̃

−−−→ G
ẽ

−−−→ N̂ −−−→ 0

id
y

y g
y id

0 −−−→ L̂
ĵ

−−−→ M̂
ê

−−−→ N̂ −−−→ 0

(4)

of sheaves on (CX ,EX) with exact rows, which shows that G
g
−→ M̂ is an isomorphism.

(iv) The commutative diagrams (2) and (3̂) give rise to the commutative diagram of
sheaves

0 −−−→ L̂
ĵ

−−−→ M̂
ê

−−−→ N̂ −−−→ 0

id
y

y t
y id

0 −−−→ L̂
λ

−−−→ F
γ

−−−→ N̂ −−−→ 0

(5)

with exact rows, which implies that M̂
t
−→ F is an isomorphism.

(v) By (iii) above, L
j
−→ M

e
−→ N is a conflation. Therefore, the isomorphism (5)

shows also that the functor j∗X reflects conflations: if 0 −→ L̂
ĩ
−→ M̂

ê
−→ N̂ −→ 0 is an

exact sequence of sheaves on (CX ,EX), then L
i
−→M

e
−→ N is a conflation.

7.4.1. Corollary. A right exact k-linear category is exact iff it is equivalent to a
fully exact subcategory of a k-linear Grothendieck category.

Proof. By 7.3, any fully exact subcategory of an exact category is exact. By 7.4,
any exact k-linear category is equivalent to a fully exact subcategory of the Grothendieck
category Shk(X,EX) of sheaves of k-modules on the presite (CX ,EX).

7.4.2. Remark. Definition 7.1 of an exact category is (up to a rewording) the
one introduced by Keller and Vossieck [KeV]. Quillen’s original definition contains some
additional axioms. On the other hand, it is easy to show that fully exact subcategories of
abelian categories are exact in the sense of Quillen. Therefore, it follows from Proposition
7.4 that the two notions are equivalent.

In particular, 7.4 implies the self-duality of Keller’s axioms:

A k-linear right exact category (CX ,EX) is exact iff the class of its inflations, MX ,
forms a left exact structure on the category CX ; that is, besides stability under push-
forwards, MX is closed under compositions and contains all isomorphisms of CX .

7.5. Proposition. Let (CX ,EX) be a svelte k-linear right exact category. Then
there exists an exact category (CXe

,EXe
) and a fully faithful k-linear ’exact’ functor

(CX ,EX)
γ∗
X

−−−→ (CXe
,EXe

) which is universal; that is any ’exact’ k-linear functor from
(CX ,EX) to an exact k-linear category factors uniquely through γ∗X .
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Proof. We take as CXe
the smallest fully exact subcategory of the category CXE

of
sheaves of k-modules on (CX ,EX) containing all representable sheaves. Objects of the
category CXe

are sheaves F such that there exists a finite filtration

0 = F0 −→ F1 −→ . . . −→ Fn = F

such that Fm/Fm−1 is representable for 1 ≤ m ≤ n. By 7.3, the subcategory CXe
, being

a fully exact subcategory of an abelian category, is exact.

Let (CY ,EY ) be an exact k-linear category and (CX ,EX)
ϕ∗

−→ (CY ,EY ) an ’exact’
k-linear functor. The functor ϕ∗ extends to a continuous (i.e. having a right adjoint)

functor CXE

ϕ̃∗

−→ CYE
such that the diagram

CX
ϕ∗

−−−→ CY

j∗X

y
y j∗Y

CXE

ϕ̃∗

−−−→ CYE

is quasi-commutative (see 2.1). Since the functor ϕ∗ is ’exact’, it preserves pullbacks of
deflations. In particular, it preserves kernels of deflations. Therefore, the restriction of
ϕ∗ to the Gabriel square, CX(2) , of CX regarded as a subcategory of the exact category
(CXe

,EXe
), preserves conflations, hence it is ’exact’. This implies that the restriction of

ϕ∗ to the n-th Gabriel power CX(n) , of CX (in (CXe
,EXe

)) is ’exact’ for all n, whence the
assertion.

7.5.1. The bicategories of exact and right exact k-linear categories. Right
exact svelte k-linear categories are objects of a bicategory Rexk. Its 1-morphisms are right
weakly ’exact’ k-linear functors and 2-morphisms are morphisms between those functors.

We denote by Exrk the full subbicategory of Rexk whose objects are exact k-linear
categories. It follows from 7.5 that the inclusion functor Exrk −→ Rexk has a left adjoint
(in the bicategorical sense).

7.6. Proposition. Let (CX ,EX) be an exact category. The Karoubian envelope
CXK has a structure of an exact category, EK , whose conflations are direct summands of
conflations of E.

Proof. Consider the Gabriel-Quillen embedding CX
j∗X−→ Shk(X,EX). The category

Shk(X,EX) is abelian, hence Karoubian. It follows from 3.4.3 that the functor j∗X factors

through CX
K∗
X−→ CXK , i.e. there exists a canonical morphism CXK −→ Shk(X,EX) which

induces an equivalence between the category CXK and the full subcategory of Shk(X,EX)
whose objects are all direct summands of objects of j∗X(CX) (see the argument of 3.4.3).
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Since the subcategory j∗X(CX) is closed under extensions in Shk(X,EX), by 7.4, the image
of CXK in Shk(X,EX) has the same property.

In fact, let 0 −→ L −→ M −→ N −→ 0 be an exact sequence in Shk(X,EX) such
that L⊕ L′ and N ⊕N ′ are isomorphic to objects of j∗X(CX) for some objects L′ and N ′

of Shk(X,EX). Since the subcategory j∗X(CX) is closed under extensions in Shk(X,EX)
and the sequence

0 −→ L⊕ L′ −→M ⊕ L′ ⊕N ′ −→ N ⊕N ′ −→ 0

is exact, the object M ⊕ L′ ⊕N ′ is isomorphic to an object of j∗X(CX). This shows that
M is a direct summand of an object of j∗X(CX) and that any exact sequence

0 −→ L −→M −→ N −→ 0

in Shk(X,EX) whose objects belong to the image of CXK is a direct summand of an image
of a conflation. The assertion follows now from 7.3.

7.7. Digression: non-additive exact categories.

7.7.1. Definition. We call a right exact category (CX ,EX) (and the corresponding
right exact ’space’ (X,EX)) an exact category (resp. an exact ’space’), if the Yoneda
embedding induces an equivalence of (CX ,EX) with a fully exact subcategory of the right
exact category (CXE

,Est) of sheaves on (CX ,EX).
Let Espe denote the full subcategory of the category Espr of right exact ’spaces’

generated by exact ’spaces’.

7.7.2. Proposition. The inclusion functor Espe
J∗

−→ Espr has a right adjoint.

Proof. This right adjoint, J∗, assigns to each right exact ’space’ (X,EX) the ’space’
(Xe,EXe

), where CXe
is the smallest fully exact subcategory of the right exact category of

sheaves on (CX ,EX) containing all representable sheaves and endowed with the induced
right exact structure.

8. Complements.

8.1. Admissible morphisms. Let (CX , EX) be an exact k-linear category with
the class of inflations MX and the class of deflations EX . We call arrows of MX ◦ EX
admissible. In general, the class of admissible morphisms is not closed under composition.

8.1.1. Lemma. Suppose that for any pair of arrows L
j
−→M

j′

←− L̃ of MX , there
exists a cartesian square

M̃
j′′

−−−→ L̃

j̃
y cart

y j

L
j′

−−−→ M

(1)
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Then the class of admissible arrows is closed under composition.

Proof. (i) Notice that if (1) is a cartesian square with j ∈MX ∋ j′, then the remaining

two arrows, j′′ and j̃, belong to MX too. In fact, the arrows j′′ and j̃ are (strict) monomor-
phisms in any category. The Gabriel-Quillen embedding, preserves cartesian squares, maps
arrows of MX to monomorphisms, and reflects monomorphisms to arrows of MX .

(ii) It suffices to show that EX ◦MX ⊆ MX ◦ EX . Let L
j
−→ M be a morphism of

MX and M
e
−→ N a morphism of EX . Then we have a commutative diagram

0 −−−→ Ker(̃e)
j̃

−−−→ L
ẽ

−−−→ M ′ −−−→ 0

j′′
y j

y
y j′

0 −−−→ Ker(e)
je
−−−→ M

e
−−−→ N −−−→ 0

(2)

with exact rows. Its left square is cartesian and formed by arrows of MX . The morphism

L
ẽ
−→ M ′ is a cokernel of j̃; in particular, belongs to EX . The existence of the right

vertical arrow in (2), M ′ j′

−→ N , follows from the exactness of the rows. Applying the
Gabriel-Quillen embedding, j∗X . to the diagram (2), we reduce to the case of an abelian
category with the canonical exact structure. One can see that j∗X(j′) is a monomorphism.
Therefore, j′ is an arrow of MX . Thus, we obtain the equality e ◦ j = j′ ◦ ẽ, where j′ ∈MX

and ẽ ∈ EX .

8.1.2. Remarks. (a) If the condition of 8.1.1 holds, then the dual condition holds

for deflations. In fact, let N ′ e′

←− M
e
−→ N be a pair of arrows of EX . So that we have

exact sequences 0 −→ L′ j′

−→ M
e′

−→ N ′ −→ 0 and 0 −→ L
j
−→ M

e
−→ N −→ 0. By

hypothesis (and the part (i) of the argument above), there is a cartesian square

L̃
j̃

−−−→ L′

j′′
y

y j′

L
j

−−−→ M

with all arrows from MX . Since j ◦ j′′ ∈MX , there is an exact sequence

0 −−−→ L̃
j◦j′′

−−−→ M
e1
−−−→ Ñ −−−→ 0.

By the universal properties of cokernels, there exists a commutative square

M
e

−−−→ N

e′
y

y e′′

N ′
ẽ

−−−→ Ñ

(3)
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with arrows e′′ and ẽ uniquely determined by the equalities e′′ ◦ e = e1 = ẽ ◦ e′. Since
e1 ∈ EX , it follows, by a property of exact categories, that e′′ and ẽ are arrows of EX . It
is easy to see that the square (3) is cocartesian.

(b) The assumption of 8.1.1 holds for exact categories associated with quasi-abelian
categories (discussed shortly in 8.2 below), because in quasi-abelian categories all fibred
products and coproducts exist, MX is the class of all strict monomorphisms, and a pull-
back of a strict monomorphism is a strict monomorphism.

8.1.3. Proposition. Suppose the condition of 8.1.1 holds. Then the class of all
admissible morphisms of the exact category (CX , EX) forms the largest abelian exact sub-
category, CXa(E), of (CX , EX).

Proof. Let M
g

−→
−→
h

N be a pair of morphisms of CX . Their sum is the composition of

the arrows

M
∆M
−−−→ M ⊕M

g⊕h
−−−→ N ⊕N

+
N

−−−→ N, (4)

where ∆M is the diagonal morphism and +
N

is the codiagonal morphism. Since the
composition of ∆M and any of projections M ⊕ M −→ M is the identical morphism,
∆M ∈M. Dually, +N belongs to EX . If both g and h are admissible arrows, then g⊕ h is
admissible. Therefore, in this case, g+h is the composition of admissible morphisms. Under
the condition of 8.1.1, the composition of admissible morphisms is an admissible morphism.
The subcategory CXa(E) has same objects as CX . Therefore, since the category CX is
additive, CXa(E) is additive too. It is quasi-abelian, because every admissible morphism
has a kernel and a cokernel. An admissible arrow is a monomorphism iff it belongs to MX .
Since all arrows of MX are strict monomorphisms, an inflation is an epimorphism iff it
is an isomorphism. Altogether means that CXa(E) is an abelian subcategory. The exact
structure EX induces the canonical exact structure on the subcategory CXa(E). It follows
that any other abelian exact subcategory of (CX , EX) is formed by admissible arrows, i.e.
it is contained in CXa(E).

8.1.4. Example: the category of torsion-free objects. Let (CX , EX) be an
exact k-linear category. Let T be a full subcategory of CX such that if M ′ −→ M is an
inflation and M ∈ ObT , then M ′ is an object of T too. In particular, the subcategory T
is strictly full. Let CXT denote the full subcategory of CX generated by all T -torsion free
objects; i.e. objects N such that the only inflation L −→ N with L ∈ ObT is zero.

8.1.4.1. Lemma. Suppose that for any pair L′ −→ L ←− L′′ of inflations of
(CX , EX), there exists a pull-back L′ ×L L

′′. Then the subcategory CXT of T -torsion free
objects is closed under extensions. In particular, CXT is an exact subcategory of (CX , EX).

Proof. Let M ′ j
−→ M

e
−→ M ′′ be a conflation with M ′ ∈ ObCXT . Let L −→ M be
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an inflation with L ∈ ObT . Then we have a commutative diagram

L′
j′

−−−→ L
e′

−−−→ L′′y
y

y

M ′
j

−−−→ M
e

−−−→ M ′′

(1)

whose left square is cartesian and the both rows are conflations.
In fact, by 8.1.2(a), all arrows of the left square are inflations. The arrow e′ is the

cokernel of j′. It follows from the argument of 8.1.3 (or direct application of the Gabriel-
Quillen embedding and the corresponding fact for abelian categories) that the remaining
(right) vertical arrow is an inflation too. Since L′ ∈ ObT and M ′ is T -torsion free, it
follows that L′ = 0 therefore e′ is an isomorphism. Therefore, if M ′′ is also T -torsion free,
then L′′ = 0 which implies that L = 0. This shows that if the ends of a conflation are
T -torsion free, same holds for the middle.

8.2. Quasi-abelian categories. Recall that a quasi-abelian category is an additive
category CX with kernels and cokernels and such that every pullback of a strict epimor-
phism is a strict epimorphism, and every pushout of a strict monomorphism is a strict
monomorphism.

It follows from definitions that the pair (CX , Es), where Es is the class of all short
exact sequences in CX , is an exact category.

Every abelian category is quasi-abelian.

8.2.1. Proposition. Let CX be a quasi-abelian category. There exist two canonical
fully faithful functors CLX ←֓ CX →֒ CRX of CX into abelian categories which preserve
and reflect exactness. Moreover, the category CX is stable under extensions in these em-
beddings. The category CX is closed under taking subobjects in CLX and every object of
CLX is a quotient of an object of CX . Dually, CX is closed under taking quotients in CRX

and every object of CRX is a subobject of an object of CX .

Proof. See [Sch, 1.2.35, 1.2.31].

8.2.2. Quasi-abelian categories and torsion pairs. Let CX be a quasi-abelian
category, and let (T ,F) be a torsion pair in CX . That is T and F are full subcategories
of CX such that F ⊆ T ⊥ and CX = T • F . The latter means that every object M of CX
fits into an exact sequence

0 −→M ′ j
−→M

e
−→M ′′ −→ 0 (1)

with M ′ ∈ T and M ′′ ∈ ObF . Notice that the exact sequence (1) is unique up to isomor-

phism. In fact, if N
f
−→ M is a morphism and N ∈ ObT , then e ◦ f = 0, hence f factors

uniquely through the monomorphism M ′ j
−→M .
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This implies, in particular, that T is closed under taking quotients (in CX) and, dually,
F is closed under taking strict subobjects.

The assignments M 7−→M ′ and M 7−→M ′′ in (1) extend to functors CX
jT ∗−→ T and

CX
jT !−→ F which are resp. a right and a left adjoint to the inclusion functors T

j∗T−→ CX

and F
j∗F−→ CX . By [GZ, 1], the categories T and F have all types of limits and colimits

which exist in the category CX given by the formulas

limD = jT ∗(lim(j∗T ◦D)) and colimD = jT ∗(colim(j∗T ◦D)) (2)

for any small diagram D
D
−→ T . In particular, T has kernels and cokernels given by

CokerT = CokerCX and KerT = jT ∗(KerT ). Similarly for F .

A torsion pair (T ,F) in CX is called tilting if every object of CX is a subobject of
an object of T . Dually, (T ,F) is called a cotilting torsion pair if every object of CX is a
quotient of an object of F .

8.2.2.1. Proposition. Let CX be an additive category. The following conditions are
equivalent.

(a) CX is quasi-abelian.
(b) There exists a tilting torsion pair (T ,F) in an abelian category CY such that T is

equivalent to CX .
(c) There exists a cotilting torsion pair (T ′,F ′) in an abelian category CW such that

F ′ is equivalent to CX .

Proof. It follows from 8.2.1 that CY = CRX and CY = CLX . See details of the proof
in [BOVdB, B.3].
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Derived Functors in Right and Left Exact Categories.

After necessary preliminaries on trivial morphisms, pointed objects and complexes
gathered in Section 1, we introduce, in Section 2, ∂∗-functors from a right exact category.
Universal ∂∗-functors, which can be called otherwise left derived functors, or (left) satel-
lites, or homological functors of their zero components, appear in Section 3. We prove the
existence of the left satellites for every functor from a right exact category to any cate-
gory with kernels of morphisms and filtered limits. In Section 4, we look at contravariant
functoriality of universal ∂∗-functors. A particular instance is the contravariant functo-
riality of ∂∗-functors from a right exact category (CX ,EX) with respect to the canonical
embedding of (CX ,EX) into the category of non-trivial sheaves on (CX ,EX). It allows to
replace the computation of universal ∂∗-functors from (CX ,EX) by computation of uni-
versal ∂∗-functors from the category of non-trivial presheaves of sets on (CX ,EX). The
k-linear version of this fact replaces computation of universal k-linear ∂∗-functors from a
k-linear right exact category by the computation of the corresponding ∂∗-functors from
the abelian category k-linear category of sheaves of k-modules on (CX ,EX). In Section 5,
we consider the dual notion – ∂-functors, and introduce the higher Exts. In Sections 6 and
7, we establish ’exactness’ of ∂∗-functors whose zero component is weakly right ’exact’ and
the target right exact category satisfies an analog of the Grothendieck’s (AB5∗) property.
In Section 8, we consider the category of universal ∂∗-functors from a right exact category
with values in categories with initial objects and prove that this category has an initial
object, which is the ∂∗-functor Ext•. We establish a similar fact in k-linear setting. In
Section 9, we prove that the initial universal ∂∗-functor of Section 8 is also an initial ob-
ject for the (appropriately defined) category of universal ’exact’ functors from a fixed right
exact category. We conclude the chapter with a short discussion of relative satellites.

1. Preliminaries: trivial morphisms, pointed objects, and complexes.

Let CX be a category with initial objects. We call a morphism of CX trivial if it
factors through an initial object. It follows that an object M is initial iff id

M
is a trivial

morphism. If CX is a pointed category, then the trivial morphisms are usually called zero
morphisms.

1.1. Trivial compositions and pointed objects. If the composition of arrows

L
f
−→M

g
−→ N is trivial, i.e. there is a commutative square

L
f

−−−→ M

ξ
y

y g

x
iN
−−−→ N
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where x is an initial object, and the morphism g has a kernel, then f is the composition of

the canonical arrow Ker(g)
k(g)
−→ M and a morphism L

fg
−→ Ker(g) uniquely determined

by f and ξ. If the arrow x
iN−→ N is a monomorphism, then the morphism ξ is uniquely

determined by f and g ; therefore in this case, the arrow fg does not depend on ξ.

1.1.1. Pointed objects. In particular, fg does not depend on ξ, if N is a pointed
object. The latter means that there exists an arrow N −→ x.

1.2. Complexes. A sequence of arrows

. . .
fn+1

−−−→Mn+1

fn
−−−→Mn

fn−1

−−−→Mn−1

fn−2

−−−→ . . . (1)

is called a complex if each of its arrows has a kernel and the next arrow factors uniquely
through this kernel.

1.3. Lemma. Let each arrow in the sequence

. . .
f3
−−−→M3

f2
−−−→M2

f1
−−−→M1

f0
−−−→M0 (2)

of arrows have a kernel and the composition of any two consecutive arrows is trivial. Then

. . .
f4
−−−→M4

f3
−−−→M3

f2
−−−→M2 (3)

is a complex. If M0 is a pointed object, then (2) is a complex.

Proof. The composition M2

f0◦f1
−−−→M0 factors through an initial object; in particular,

there exist morphisms from Mi to an initial object x of CX for all i ≥ 2. Therefore, the
unique morphism x −→ Mi is a (split) monomorphism for all i ≥ 2. By 1.1, this implies

that Ker(fi)
k(fi)
−−−→ Mi+1 is a monomorphism. Therefore, there exists a unique arrow

Mi+2

f ′
i+1

−−−→ Ker(fi) whose composition with Ker(fi)
k(fi)
−−−→Mi+1 equals to fi+1.

By the similar reason, if there exists a morphism from M0 (resp. M1) to x, then

Ker(fi)
k(fi)
−−−→Mi+1 is a monomorphism for i ≥ 0 (resp. for i ≥ 1).

1.4. Corollary. A sequence of morphisms

. . .
fn+1

−−−→Mn+1

fn
−−−→Mn

fn−1

−−−→Mn−1

fn−2

−−−→ . . .

unbounded on the right is a complex iff the composition of any pair of its consecutive arrows
is trivial and for every i, there exists a kernel of the morphism fi.
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1.4.1. Example. Let CX be the category Algk of unital associative k-algebras. The
algebra k is its initial object, and every morphism of k-algebras has a kernel. Pointed
objects of CX which have a morphism to initial object are precisely augmented k-algebras.
If the composition of pairs of consecutive arrows in the sequence

. . .
f3
−−−→ A3

f2
−−−→ A2

f1
−−−→ A1

f0
−−−→ A0

is trivial, then it follows from the argument of 1.3 that Ai is an augmented k-algebra for
all i ≥ 2. Any unbounded on the right sequence of algebras with trivial compositions of
pairs of consecutive arrows is formed by augmented algebras.

1.5. The categories of complexes. Let CX be a category with initial objects. For
any integer m, we denote by Km(CX) the category whose objects are complexes of the
form

. . .
fm+2

−−−→Mm+2

fm+1

−−−→Mm+1

fm
−−−→Mm

and morphisms are defined as usual. Every finite complex

Mn

fn−1

−−−→Mn−1

fn−2

−−−→ . . .
fm+2

−−−→Mm+2

fm+1

−−−→Mm+1

fm
−−−→Mm (3)

is identified with an object of Km(CX) by adjoining on the left the infinite sequence of
trivial objects and (unique) morphisms from them.

We call an object (3) of the category Km(CX) a bounded complex if Mn is an initial
object for all n ≫ m. We denote by Kbm(CX) the full subcategory of Km(CX) generated
by bounded complexes.

The categories Km(CX) (resp. Kbm(CX)) are naturally isomorphic to each other via
obvious translation functors.

We denote by K(CX) the category whose objects are complexes

. . .
fn+1

−−−→Mn+1

fn
−−−→Mn

fn−1

−−−→Mn−1

fn−2

−−−→ . . . (4)

which are infinite in both directions. Unless CX is a pointed category, there are no natural
embeddings of the categories Km(CX) into K(CX). There is a natural embedding into
K(CX) of the full subcategory Km,∗(CX) of Km(CX) generated by all complexes (3) with
Mm equal to an initial object.

We say that an object (4) of the category K(CX) is a complex bounded on the left
(resp. on the right) if Mn is an initial object for all n ≫ 0 (resp. n ≪ 0). We denote by
K+(CX) (resp. by K−(CX)) the full subcategory of K(CX) whose objects are complexes
bounded on the left (resp. on the right). Finally, we set Kb(CX) = K−(CX)

⋂
K+(CX)

and call objects of the subcategory Kb(CX) bounded complexes.
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1.6. ’Exact’ and strictly ’exact’ complexes. Let (CX ,EX) be a right exact
category with initial objects.

1.6.1. We call a sequence of two arrows L
f
−→M

g
−→ N of the category CX ’exact’,

if the arrow M
g
−→ N has a kernel, and L

f
−→M is the composition of Ker(g)

k(g)
−→M

and a deflation L
fg
−→ Ker(g).

1.6.2. We call an ’exact’ sequence of arrows L
f
−→ M

g
−→ N strictly ’exact’, if the

deflation L
fg
−→ Ker(g) coincides with its coimage.

1.6.3. A complex is called ’exact’ (resp. strictly ’exact’), if any pair of its consecutive
arrows forms an ’exact’ (resp. strictly ’exact’) sequence.

2. ∂∗-Functors.

2.0. Definitions. Fix a right exact category (CX ,EX) with an initial object x and
a category CY with an initial object. A ∂∗-functor from (CX ,EX) to CY is a sequence

of functors CX
Ti−→ CY , i ≥ 0, together with a functorial assignment to every conflation

E = (N
j
−→ M

e
−→ L) and every i ≥ 0 a morphism Ti+1(L)

di(E)
−−−→ Ti(N), which

depends functorially on the conflation E and such that the sequence of arrows

. . .
T2(e)
−−−→ T2(L)

d1(E)
−−−→ T1(N)

T1(j)
−−−→ T1(M)

T1(e)
−−−→ T1(L)

d0(E)
−−−→ T0(N)

T0(j)
−−−→ T0(M)

is a complex. The morphisms Ti+1(L)
di(E)
−−−→ Ti(N), i ≥ 0, are called connecting

morphisms.

Taking the trivial conflation x −→ x −→ x, we obtain that Ti(x)
idTi(x)
−−−→ Ti(x) is a

trivial morphism, or, equivalently, Ti(x) is an initial object, for every i ≥ 1.

Let T = (Ti, di| i ≥ 0) and T ′ = (T ′
i , d

′
i| i ≥ 0) be a pair of ∂∗-functors from (CX ,EX)

to CY . A morphism from T to T ′ is a family f = (Ti
fi
−→ T ′

i | i ≥ 0) of functor morphisms

such that for any conflation E = (N
j
−→ M

e
−→ L) of the exact category CX and every

i ≥ 0, the diagram

Ti+1(L)
di(E)
−−−→ Ti(N)

fi+1(L)
y

y fi(N)

T ′
i+1(L)

d′
i(E)

−−−→ T ′
i (N)

commutes. The composition of morphisms is naturally defined. Thus, we have the category
Hom∗((CX ,EX), CY ) of ∂

∗-functors from (CX ,EX) to CY .
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2.1. Trivial ∂∗-functors. We call a ∂∗-functor T = (Ti, di| i ≥ 0) trivial if all
Ti are functors with values in initial objects. One can see that trivial ∂∗-functors are
precisely initial objects of the category Hom∗((CX ,EX), CY ). Once an initial object y of
the category CY is fixed, we have a canonical trivial functor whose components equal to
the constant functor with value in y – it maps all arrows of CX to idy.

2.2. Some natural functorialities. Let (CX ,EX) be a right exact category with
an initial object and CY a category with initial object. If CZ is another category with an

initial object and CY
F
−→ CZ a functor which maps initial objects to initial objects, then

for any ∂∗-functor T = (Ti, di| i ≥ 0), the composition F ◦ T = (F ◦ Ti, Fdi| i ≥ 0) of T
with F is a ∂∗-functor. The map (F, T ) 7−→ F ◦ T is functorial in both variables; i.e. it
extends to a functor

Cat∗(CY , CZ)×Hom
∗((CX ,EX), CY ) −−−→ Hom

∗((CX ,EX), CZ). (1)

Here Cat∗ denotes the subcategory of Cat whose objects are categories with initial objects
and morphisms are functors which map initial objects to initial objects.

2.2.1. On the other hand, let (CX,EX) be another right exact category with an
initial object and Φ a weakly ’exact’ functor from (CX,EX) to (CX ,EX); that is Φ is
functor CX −→ CX which maps conflations to conflations. In particular, it maps initial

objects to initial objects (because if x is an initial object of CX, then x −→ M
id
M−→ M

is a conflation; and Φ(x −→ M
id
M−→ M) being a conflation implies that Φ(x) is an initial

object). For any ∂∗-functor T = (Ti, di| i ≥ 0) from (CX ,EX) to CY , the composition
T ◦Φ = (Ti ◦Φ, diΦ| i ≥ 0) is a ∂∗-functor from (CX,EX) to CY . The map (T,Φ) 7−→ T ◦Φ
extends to a functor

Hom∗((CX ,EX), CY )× Ex∗((CX,EX), (CX ,EX)) −−−→ Hom∗((CX,EX), CY ), (2)

where Ex∗((CX,EX), (CX ,EX)) denotes the full subcategory of Hom(CX, CX) whose ob-
jects are preserving conflations functors CX −→ CX .

3. Universal ∂∗-functors.

3.0. Definition. Fix a right exact category (CX ,EX) with an initial object x and a
category CY with an initial object y.

A ∂∗-functor T = (Ti, di| i ≥ 0) from (CX ,EX) to CY is called universal if, for
every ∂∗-functor T ′ = (T ′

i , d
′
i| i ≥ 0) from (CX ,EX) to CY and every functor morphism

T ′
0

g
−→ T0, there exists a unique ∂∗-functor morphism f = (T ′

i
fi
−→ Ti | i ≥ 0) from T ′

to T such that f0 = g.

3.0.1. Notation. We denote by ∂∗Un((CX ,EX), CY ) the full subcategory of the
category Hom∗((CX ,EX), CY ) of ∂∗-functors from the right exact category (CX ,EX)
to the category CY generated by universal ∂∗-functors.
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3.1. Interpretation. Consider the functor

Hom∗((CX ,EX), CY )
Ψ∗

−−−→ Hom(CX , CY ) (3)

which assigns to every ∂∗-functor (resp. every morphism of ∂∗-functors) its zero compo-

nent. For any functor CX
F
−→ CY , we have a presheaf of sets Hom(CX , CY )(Ψ

∗(−), F )
on the category Hom∗((CX ,EX), CY ). Suppose that this presheaf is representable by an
object (i.e. a ∂∗-functor) Ψ∗(F ). Then Ψ∗(F ) is a universal ∂∗-functor.

Conversely, if T = (Ti, di| i ≥ 0) is a universal ∂∗-functor, then T ≃ Ψ∗(T0).

3.2. Proposition. Let (CX ,EX) be a right exact category with an initial object x;
and let CY be a category with initial objects, kernels of morphisms, and limits of filtered

diagrams. Then, for any functor CX
F
−→ CY , there exists a unique up to isomorphism

universal ∂∗-functor T = (Ti, di| i ≥ 0) such that T0 = F .
In other words, the functor

Hom∗((CX ,EX), CY )
Ψ∗

−−−→ Hom(CX , CY ) (3)

which assigns to each morphism of ∂∗-functors its zero component has a right adjoint, Ψ∗.

Proof. (a) For an arbitrary functor CX
F
−→ CY , we set S−F (L) = limKer(F (k(e))),

where the limit is taken by the (filtered) system of all deflationsM
e
−→ L. Since deflations

form a pretopology, the map L 7−→ S−F (L) extends naturally to a functor CX
S−F

−−−→ CY .

By the definition of S−F , for any conflation E = (N
j
−→M

e
−→ L), there exists a unique

morphism S−F (L)
∂̃0
F

(E)

−−−→ Ker(F (j)). We denote by ∂0F (E) the composition of ∂̃0F (E) and
the canonical morphism Ker(F (j)) −→ F (N).

(b) Notice that the correspondence F 7−→ S−F is functorial. Applying the iterations
of the functor S− to F , we obtain a ∂∗-functor S•

−(F ) = (Si−(F )|i ≥ 0). The claim is that
this ∂∗-functor is universal.

In fact, let T = (Ti, d|i ≥ 0) be a ∂∗-functor and T0
λ0−→ F a functor morphism. For

any conflation E = (N
j
−→M

e
−→ L), we have a commutative diagram

T1(L)
d0(E)
−−−→ T0(N)

T0(j)
−−−→ T0(M)

T0(e)
−−−→ T0(L)

λ0(N)
y

y λ0(M)
y λ0(L)

F (N)
F (j)
−−−→ F (M)

F (e)
−−−→ F (L)

(4)

Since T1(L)
d0(E)
−−−→ T0(N)

T0(j)
−−−→ T0(M) is a complex, the morphism d0(E) is the

composition of a uniquely defined morphism T1(L)
d̃0(E)
−−−→ Ker(T0(j)) and the canonical
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arrow Ker(T0(j)) −→ T0(N). We denote by λ̃1(E) the composition of the morphism d̃0(E)

and the morphism Ker(T0(j))
λ′
1

−−−→ Ker(F (j) uniquely determined by the commutativity
of the diagram

Ker(T0(j))
k(T0(j))
−−−→ T0(N)

T0(j)
−−−→ T0(M)

λ′1

y λ0(N)
y

y λ0(M)

Ker(F (j))
k(F (j))
−−−→ F (N)

F (j)
−−−→ F (M)

Thus, we have a commutative diagram

T1(L)
d0(E)
−−−→ T0(N)

T0(j)
−−−→ T0(M)

T0(e)
−−−→ T0(L)

λ̃1(E)
y λ0(N)

y
y λ0(M)

y λ0(L)

Ker(F (j))
k(F (j))
−−−→ F (N)

F (j)
−−−→ F (M)

F (e)
−−−→ F (L)

with the morphism λ̃1(E) uniquely determined by the arrows of the diagram (4). Since

the connecting morphism T1(L)
d0(E)
−−−→ T0(N) depends on the conflation E functorially,

same is true for λ̃1(E); that is the morphisms T1(L)
λ̃1(E)
−−−→ Ker(F (j)), where E runs

through conflations N −→M −→ L (with fixed L and morphisms of the form (h, g, idL)),

form a cone. This cone defines a unique morphism T1(L)
λ1(L)
−−−→ S−F (L). It follows from

the universality of this construction that λ = (λ1(L)| L ∈ ObCX) is a functor morphism

T1
λ1

−−−→ S−F such that the diagram

T1(L)
d0(E)
−−−→ T0(N)

T0(j)
−−−→ T0(M)

T0(e)
−−−→ T0(L)

λ1(L)
y λ0(N)

y
y λ0(M)

y λ0(L)

S−F (L)
k(F (j))
−−−→ F (N)

F (j)
−−−→ F (M)

F (e)
−−−→ F (L)

commutes. Iterating this construction, we obtain uniquely defined functor morphisms

Ti
λi
−−−→ Si−(F ) for all i ≥ 1.

3.3. Remark. Let the assumptions of 3.2 hold. Then we have a pair of adjoint
functors

Hom∗((CX ,EX), CY )
Ψ∗

−−−→ Hom(CX , CY )
Ψ∗

−−−→ Hom∗((CX ,EX), CY )
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By 3.2, the adjunction morphism Ψ∗Ψ∗ −→ Id is an isomorphism which means that Ψ∗

is a fully faithful functor and Ψ∗ is a localization functor at a left multiplicative system. The
fully faithful functor Ψ∗ establishes an equivalence between the category Hom(CX , CY )
of functors from CX to CY and the category ∂∗Un((CX ,EX), CY ) of universal ∂∗-functors
from the right exact category (CX ,EX) to the category CY .

3.4. Proposition. Let (CX ,EX) be a right exact category with an initial object and
T = (Ti, di | i ≥ 0) a ∂∗-functor from (CX ,EX) to CY . Let CZ be another category with
an initial object and F a functor from CY to CZ which preserves initial objects, kernels of
morphisms and limits of filtered systems. Then

(a) If T is a universal ∂∗-functor, then F ◦ T = (F ◦ Ti, Fdi| i ≥ 0) is universal.
(b) If, in addition, the functor F is fully faithful, then the ∂∗-functor F ◦T is universal

iff T is universal.

Proof. (a) Suppose that the ∂∗-functor T = (Ti, di | i ≥ 0) is universal. Then it
follows from the argument of 3.2 that Ti ≃ Si−(T0) for all i ≥ 0, where S−(G)(L) =

limKer(G(k(e))) and the limit is taken by the system of all deflations M
e
−→ L. Since

the functor F preserves kernels of morphisms and filtered limits (that is all types of limits
which appear in the construction of S−(G)(L)), the natural morphism

F ◦ S−(G)(L) −→ S−(F ◦G)(L)

is an isomorphism for any functor CX
G
−→ CY such that S−(G)(L) = limKer(G(k(e))) ex-

ists. Therefore, the natural morphism F ◦Si−(T0)(L) −→ Si−(F ◦T0)(L) is an isomorphism
for all i ≥ 0 and all L ∈ ObCX .

(b) Suppose that the functor F is fully faithful and the ∂∗-functor F ◦ T is universal.
Then

F ◦ Ti+1(L) ≃ S−(F ◦ Ti)(L) = limKer(F ◦ Ti(k(e))) ≃

limF (Ker(Ti(k(e)))) ≃ F (limKer(Ti(k(e)))) = F (S−(Ti)(L)),

where the isomorphisms are due to compatibility of F with kernels of morphisms and
filtered limits. Since all these isomorphisms are natural (i.e. functorial in L), we obtain
a functor isomorphism F ◦ Ti+1

∼−→ F ◦ S−(Ti). Since the functor F is fully faithful, the
latter implies an isomorphism Ti+1

∼−→ S−(Ti) for all i ≥ 0. The assertion follows now
from (the argument of) 3.2.

3.5. An application. Let (CX ,EX) be a right exact category and CY a category,
both with initial objects. Fix an initial object y of the category CY and consider the
”reduced” Yoneda embedding

CY
h⊛

Y

−−−→ CY ⊛ , M 7−→ (M̂, ŷ→ M̂).
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of the category CY into the category C⊛

Y
def
= y\C∧

Y of non-trivial presheaves of sets on
CY over ŷ = CY (−, y).

3.5.1. Proposition. Let (CX ,EX) be a svelte right exact category with initial objects
and CY a category with initial objects. A ∂∗-functor T = (Ti, di | i ≥ 0) from (CX ,EX)

to CY is universal iff the ∂∗-functor T̂
def
= h⊛Y ◦ T = (h⊛Y ◦ Ti, d̂i | i ≥ 0) from (CX ,EX) to

the category CY ⊛ is universal.

Proof. The ”reduced” Yoneda embedding CY
h⊛

Y−→ CY ⊛ is a fully faithful functor
which preserves all limits and maps initial objects to initial objects. In particular, it
satisfies the conditions of 3.4(b). The assertion follows from 3.4.

3.5.2. The existence of derived functors and representability. Let (CX ,EX)

be a svelte right exact category. By 3.2, for any functor CX
G
−→ C∗

Y , there exists a unique
up to isomorphism universal ∂∗-functor T = (Ti, di| i ≥ 0) = Ψ∗(G) from (CX ,EX) to

C∗
Y whose zero component coincides with G. In particular, for every functor CX

F
−→ CY ,

there exists a unique up to isomorphism universal ∂∗-functor T = (Ti, di | i ≥ 0) such that

T0 = h∗Y ◦ F = F̃ . It follows from 3.4(b) that there exists a universal ∂∗-functor whose
zero component coincides with F iff for all L ∈ ObCX and all i ≥ 1, the presheaves Ti(L)
are representable.

4. Contravariant functoriality for universal ∂∗-functors.

4.1. Proposition. Let (CX ,EX) and (CX,EX) be right exact categories with initial

objects and CX
Φ
−→ CX a fully faithful functor which maps conflations to conflations.

Let EΦ
X denote the class of all arrows M

t
−→ L of EX such that, for any morphism

Φ(L)
f
−→ L, there exists a commutative square

Φ(M)
f′

−−−→ M

Φ(s)
y

y t

Φ(L)
f

−−−→ L

where M
s
−→ L is a deflation.

(a) The class EΦ
X is a right exact structure on the category CX.

(b) If T = (Ti, di | i ≥ 0) is a universal ∂∗-functor from (CX,E
Φ
X) to a category CY ,

then T ◦ Φ = (Ti ◦ Φ, diΦ | i ≥ 0) is a universal ∂∗-functor from (CX ,EX) to CY .

Proof. (a) Evidently, the class of deflations EΦ
X is closed under composition and con-
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tains all isomorphisms. Let

Mt,γ

γt
−−−→ M

t′γ

y cart
y t

Lγ
γ

−−−→ L

be a cartesian square whose right vertical arrow belongs to EΦ
X and Φ(L)

f
−→ Lγ a

morphism. Then there exists a commutative square

Φ(M)
f′

−−−→ M

Φ(s)
y

y t

Φ(L)
γ◦f
−−−→ L

By the universal property of cartesian squares, there is a morphism Φ(M)
f′′

−→ Mt,γ

uniquely determined by the equalities γt ◦ f
′′ = f′ and t′γ ◦ f

′′ = γ ◦ Φ(s). The latter
equality means the commutativity of the square

Φ(M)
f′′

−−−→ Mt,γ

Φ(s)
y

y t′γ

Φ(L)
f

−−−→ Lγ

which shows that the pull-back Mt,γ

t′γ
−→ Lγ of the deflation M

t
−→ L along Lγ

γ
−→ L

belongs to the class EΦ
X.

(a1) It follows that the functor Φ maps conflation of (CX ,EX) to conflations of the
right exact category (CX,E

Φ
X).

(b) Thanks to 3.5.1, we can (and will) assume that the category CY has limits of small
diagrams. This allows to use the formula

S−F (L) = lim
Lt

t
→L

Ker(F (k(t)))

for any functor CX
F
−→ CY . Here Lt

t
−→ L runs through deflations of L from EΦ

X.
It follows from the definition of the right exact structure EΦ

X that, for any object L of

the category CX , the images Φ(Ls
s
−→ L) of deflations of L contain refinements of any

deflation Lt
t
−→ Φ(L) from EΦ

X. This implies that the canonical morphism

S−F (Φ(L)) = lim
(Lt

t
→Φ(L))∈EΦ

X

Ker(F (k(t))) −−−→ lim
(Ls

s
→L)∈EX

Ker(F (k(Φ(s))))
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is an isomorphism; or, equivalently, S−F (Φ(L))
∼−→ S−(F ◦ Φ)(L)).

The assertion (b) follows now from 3.2.

4.2. Example-application. Let (CX ,EX) be a right exact category with an initial
object x and

(CX ,EX)
j⊛
X

−−−→ (CX⊛

E
,Es

X⊛

E

)

the canonical embedding of (CX ,EX) into the category CX⊛

E
= x̂\(CX ,EX)∧ of non-trivial

sheaves of sets on the presite (CX ,EX) over sheaf x̂ endowed with the canonical (that is

the finest) right exact structure Es
X⊛

E

. By I.2.1.1, (CX ,EX)
j⊛
X

−−−→ (CX⊛

E
,Es

X⊛

E

) is a fully

faithful ’exact’ functor. In particular, the functor j⊛X maps conflations to conflations.

Moreover, it follows from I.2.2.1(b) that the canonical (that is the finest) right exact
structure Es

XE
on the category of sheaves of sets CXE

coincides with the right exact struc-

ture coinduced by the embedding (CX ,EX)
j⊛
X

−−−→ (CX⊛

E
,Es

X⊛

E

); that is, in the notations

of 4.1, Es
X⊛

E

= E
j⊛
X

X .

4.2.1. Proposition. Suppose that T = (Ti, di | i ≥ 0) is a universal ∂∗-functor from
the right exact category (CX⊛

E
,Es

X⊛

E

) to a category CY . Then T ◦j⊛X = (Ti◦j
⊛

X , dij
⊛

X | i ≥ 0)

is a universal ∂∗-functor from (CX ,EX) to CY .

Proof. The fact follows from the preceding discussion and 4.1.

4.2.2. Proposition. Let (CX ,EX) be a svelte right exact category with initial objects
and CY a category with colimits, kernels of morphisms and limits of filtered diagrams.
Then the functor

∂∗Un(CX⊛

E
,Es

X⊛

E

), CY ) −−−→ ∂∗Un((CX ,EX), CY ),

T = (Ti, di | i ≥ 0) 7−→ T ◦ j⊛X = (Ti ◦ j
⊛

X , dij
⊛

X | i ≥ 0)

has a fully faithful right adjoint which establishes an equivalence between the category
∂∗Un((CX ,EX), CY ) of universal ∂∗-functors from (CX ,EX) to CY and the full subcate-
gory of the category ∂∗Un((CX⊛

E
,Es

X⊛

E

), CY ) of universal ∂∗-functors from the right exact

category (CX⊛

E
,Es

X⊛

E

) to the category CY , which is generated by universal ∂∗-functors

T = (Ti, di | i ≥ 0) such that (T0 ◦ j
⊛

X)⋄ ◦ qX⊛ ≃ T0.

Here qX⊛ is a right adjoint to the ”reduced” sheafification functor CX⊛

q⊛

X

−−−→ CX⊛

E
.
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Proof. For any category CY , we have a commutative diagram of functors

Hom∗((XE,E
s
XE

), CY ) −−−→ Hom∗((CX ,EX), CY ),y
y

Hom(CXE
, CY ) −−−→ Hom(CX , CY )

(1)

whose vertical arrows map ∂∗-functors to their zero components and the horizontal arrows

are functors of composition with the canonical embedding CX
j⊛
X

−−−→ CX⊛

E
.

(a) If the category CY has kernels of arrows and limits if filtered diagrams, then it
follows from 3.2 that the vertical arrows of the diagram (1) are continuous localizations,

and their right adjoint functors assign to every functor CX
F
−→ CY the universal ∂∗-

functor S•−(F ), whose zero component is F. Thus, the diagram (1) yields a commutative
diagram of functors

∂∗Un((CX⊛

E
,Es

X⊛

E

), CY ) −−−→ ∂∗Un((CX ,EX), CY ),

≀ ≀
y

y ≀ ≀
Hom(CX⊛

E
, CY ) −−−→ Hom(CX , CY )

(2)

whose vertical arrows are category equivalences.
(b) If the category CY has colimits, then it follows from I.2.0.4.4 that the lower

horizontal arrow of the diagram (2),

Hom(CX⊛

E
, CY )

j̃⊛
X

−−−→ Hom(CX , CY ), G 7−→ G ◦ j⊛X ,

is a localization functor having a (necessarily) fully faithful right adjoint. The latter assigns

to every functor CX
F
−→ CY the composition of the embedding CX⊛

E

qX⊛

−−−→ CX⊛ – a right

adjoint to the ”reduced” sheafification functor CX⊛

q⊛

X

−−−→ CX⊛

E
, the forgetful functor

CX⊛ = x\C∗
X −→ C∗

X , and the functor C∗
X

F⋄

−→ CY , which preserves colimits and whose

composition with the Yoneda embedding CX
h∗
X−→ C∗

X coincides with F .
(c) The assertion follows from (a) and (b).

4.3. Derived functors via the category of sheaves. Let (CX ,EX) be a svelte
category with an initial object x and CY an arbitrary category with an initial object y.

Proposition 4.2.2 allows to replace computation of derived functors of any functor CX
F
−→

CY (that is the universal ∂∗-functor from (CX ,EX) to CY whose zero component coincides
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with F ) by the computation of derived functors of a canonically associated with F functor

F⊛ from the right exact category (CX⊛

E
,Es

X⊛

E

) to the category CY ⊛

def
= ŷ\C∧

Y = ŷ\C∗
Y .

In fact, it follows from I.2.0.2 that there is a natural equivalence between the category
Hom(CX , CY ) of functors from CX and CY and the full subcategory Homc(CX , CY ) of
the category Homc(C

∧
X , C

∧
Y ) generated by all continuous (that is having a right adjoint)

functors from C∧
X to C∧

Y which map representable presheaves to representable presheaves.

This equivalence assigns to any functor CX
F
−→ CY the (unique up to isomorphism)

continuous functor C∧
X

F∧

−→ C∧
Y such that the diagram

CX
hX
−−−→ C∧

X

F
y

y F∧

CY
hY
−−−→ C∧

Y

(1)

commutes. The commutative diagram (1) induces the commutative diagram

CX
h⊛

X

−−−→ CX⊛

F
y

y F⊛

CY
h⊛

Y

−−−→ CY ⊛

(2)

Let CX⊛

E

F⊛

EX

−−−→ CY ⊛ denote the composition of the functor F⊛ with the inclu-

sion functor CX⊛

E
−−−→ CX⊛ . The composition of F⊛

EX
with the canonical embedding

(CX ,EX)
j⊛
X

−−−→ (CX⊛

E
,Es

X⊛

E

) is isomorphic to the composition of CX
F
−→ CY with the

”reduced” Yoneda embedding CY
h⊛

Y−→ CY ⊛ .
By 4.2.1, the universal ∂∗-functor S•−(h

⊛

Y ◦ F ) whose zero component is h⊛Y ◦ F is
isomorphic to the composition S•−(F

∗
EX

)◦ j⊛X of the universal ∂∗-functor, whose zero com-

ponent is the functor F⊛

EX
with the canonical embedding (CX ,EX)

j⊛
X

−−−→ (CX⊛

E
,Es

X⊛

E

).

It follows that the universal ∂∗-functor (CX ,EX)
S•
−F

−−−→ CY exists iff the functors

Sn−(F
⊛

EX
) ◦ j⊛X factor through the ”reduced” Yoneda embedding CY

h⊛

Y

−−−→ C⊛

Y for every

n ≥ 1. In this case, h⊛X ◦ S
•
−F ≃ S

•
−(F

⊛

EX
) ◦ j⊛X .

4.4. Deflations with trivial kernels and derived functors. Let (CX ,EX) be a
right exact category with initial objects. We denote by E⊛

X the class of all arrows of EX
whose kernel is an initial object.
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4.4.1. Proposition. The class E⊛

X of deflations with trivial kernel is a right exact
structure on the category CX .

Proof. The class E⊛

X contains all isomorphisms of the category CX . It is closed under
compositions, because, by I.4.4.5, if Ker(s) is trivial (i.e is an initial object of CX), then
Ker(s ◦ t) is naturally isomorphic to Ker(t). In particular, Ker(s ◦ t) is trivial, if both
Ker(s) and Ker(t) are trivial. Finally, if

M̃
p1
−−−→ M

t
y

y s

N
f

−−−→ L

is a cartesian square, then, by I.3.3.3, Ker(s) ≃ Ker(t), which shows that E⊛

X is stable
under base change.

4.4.2. Proposition. Let (CX ,EX) be a right exact category with an initial object x;
and let CY be a category with initial objects, kernels of morphisms, and limits of filtered
systems. Let T = (Ti, di | i ≥ 0) be a universal ∂∗-functor from (CX ,EX) to CY .

If the functor T0 maps all arrows of E⊛

X to isomorphisms, then all functors Ti, i ≥ 0,
have this property.

Proof. By the argument of 3.2, the assertion is equivalent to the following one:

If a functor CX
F
−→ CY maps arrows of E⊛

X to isomorphisms, then its satellite, S−F ,
has the same property.

In fact, let L
s
−→ L be an arrow of E⊛

X and M
e
−→ L an arbitrary deflation. Then we

have a commutative diagram

Ker(̃e)
k(̃e)
−−−→ M̃

ẽ
−−−→ L

s2

y≀ s1

y cart
y s

Ker(e)
k(e)
−−−→ M

e
−−−→ L

(1)

whose vertical arrows belong to E⊛

X . By hypothesis, F (s1) is an isomorphism. Therefore,

the left square of (1) determines isomorphism Ker(F (k(̃e))
φ(e)
−−−→ Ker(F (k(e)), which is

functorial in e. So that we obtain an isomorphism

limKer(F (k(̃e))
∼

−−−→ limKer(F (k(e)) = S−F (L),

whose composition with the canonical arrow S−F (L) −−−→ limKer(F (k(̃e)) coincides

with the morphism S−F (L)
S−F (s)

−−−→ S−F (L) (see the argument of 3.2).
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On the other hand, for any deflationM1
γ
−→ L, there is a commutative diagram

Ker(γ)
k(γ)
−−−→ M1

γ
−−−→ Ly≀ id

y
y s

Ker(sγ)
k(sγ)
−−−→ M1

sγ
−−−→ L

(2)

Here the left vertical arrow is an isomorphism, because Ker(s) is an initial object (see
I.4.4.5). The left square of (2) induces an isomorphism

Ker(F (k(sγ))
φ(γ)
−−−→ Ker(F (k(γ)),

which is functorial in γ. The latter implies that the composition ϕ(γ) of φ(γ) with the
unique morphism S−F (L) −−−→ Ker(F (k(sγ)) defines a cone

S−F (L)
ϕ(γ)
−−−→ Ker(F (k(γ)),

hence a unique morphism S−F (L)
ϕ

−−−→ S−F (L). The claim is that ϕ is the inverse to

the morphism S−F (L)
S−F (s)

−−−→ S−F (L).
We complete (2) to a commutative diagram

Ker(s̃γ)
k(s̃γ)
−−−→ M̃1

s̃γ
−−−→ L

t2

y≀ t1

y
y id

Ker(γ)
k(γ)
−−−→ M1

γ
−−−→ L

s2

y≀ id
y

y s

Ker(sγ)
k(sγ)
−−−→ M1

sγ
−−−→ L

(3)

where the square

M̃1

s̃γ
−−−→ L

t1

y cart
y s

M1

sγ
−−−→ L

is cartesian. Since t1 ∈ E⊛

X , by hypothesis, F (t1) is an isomorphism. So that the diagram
(3) induces isomorphisms

KerF (k(s̃γ)) ∼−→ KerF (k(γ)) ∼−→ KerF (k(sγ)),
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which imply isomorphisms of the lower row of the commutative diagram

S−F (L)
id
−−−→ S−F (L)

S−F (s)

−−−→ S−F (L)
id
←−−− S−F (L)y

y id
y ϕ

y

limKerF (k(s̃γ))
∼

−−−→ limKerF (k(γ))
id
−−−→ S−F (L)

∼

−−−→ limKerF (k(sγ))

The fact that ϕ is an isomorphism (or, equivalently, that S−F (s) is an isomorphism)
follows from the universal property of limits.

4.5. Remark about the shape of ”triangles”. Let (CX ,EX) be a svelte right
exact category with an initial object x and CY a category with an initial object y and limits.
Then, by the argument of 3.2, we have an endofunctor S− of the category Hom(CX , CY )

of functors from CX to CY , together with a cone S−
λ
−→ y, where y is the constant

functor with the values in the initial object y of the category CY . For any conflation

E = (N
j
−→M

e
−→ L) of (CX ,EX) and any functor CX

F
−→ CY , we have a commutative

diagram

S−F (L)
λ(L)
−−−→ y

d0(E)
y

y

F (N)
F j
−−−→ F (M)

F e
−−−→ F (L)

(1)

4.6. The case of k-linear categories. Let (CX ,EX) be a k-linear right exact
category and CY a k-linear category.

4.6.1. Linearity of derived functors. Suppose that the category CY has kernels
of morphisms (which this time can be understood in usual way) and limits of filtered

diagrams. If CX
F
−→ CY is a k-linear functor, then, as it follows from the formula for

the derived functor S−(F) (see the argument of 3.2), the functor S−(F) is k-linear too.
Therefore, all its iterations, Sn−(F), n ≥ 1, are k-linear functors from CX to CY .

4.6.2. Using k-linear Yoneda embedding. Let CY be an arbitrary k-linear

category. The Yoneda embedding CY
h∗
Y−→ C∗

Y is the composition of the full embedding

CY
hY
−−−→Mk(Y ), L 7−→ L̂ = CY (−,L), (1)

of the category CY into the k-linear Grothendieck category Mk(Y ) of presheaves of k-
modules on CY and the forgetful functor Mk(Y ) −→ C∗

Y .

Since the categoryMk(Y ) has all limits (and colimits), for any functor CX
F
−→ CY ,

there exist all derived functors Sn−(hY ◦F), n ≥ 1, of the composition CX
hY ◦F
−−−→Mk(Y ).
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Since the functor CY
hY−→ Mk(Y ) preserves limits and is fully faithful, it follows

from 3.4 that the universal ∂∗-functor S•−(F) exists iff all functors Sn−(hY ◦ F), n ≥ 1,
take values in the subcategory of representable presheaves on CY . If this is the case,
Sn−(hY ◦ F) ≃ hY ◦ S

n
−(F) for all n ≥ 1.

4.6.2.1. Linearity of derived functors in general case. If CX
F
−→ CY is a

k-linear functor, then the composition hY ◦F is a k-linear functor and, as it was observed in
4.6.1, all derived functors Sn−(hY ◦ F), n ≥ 1, are k-linear. If these derived functors take
values in the subcategory of representable presheaves, then the isomorphisms Sn−(hY ◦F) ≃
hY ◦ S

n
−(F) imply that the functors Sn−(F) are k-linear.

4.6.2.2. Notations. We denote by Hom∗
k((CX ,EX), CY ) the full subcategory of

the category Hom∗((CX ,EX), CY ) of the category ∂∗-functors from a k-linear right exact
category (CX ,EX) to a k-linear category CY generated by k-linear ∂∗-functors.

We denote by ∂∗kUn((CX ,EX), CY ) the full subcategory of Hom∗
k(CX ,EX), CY )

generated by universal ∂∗-functors.

4.6.3. Proposition. Let (CX ,EX) be a k-linear right exact category and CY a
k-linear category with limits and colimits. The functor

Hom∗
k((CX ,EX), CY )

Ψ∗

−−−→ Hom∗
k(CX , CY ),

which assigns to every k-linear ∂∗-functor its zero component is a has a fully faithful right
adjoint, Ψ∗. The latter establishes an equivalence between the category Hom∗

k(CX , CY )
of k-linear functors from CX to CY and the category ∂∗kUn((CX ,EX), CY ) of k-linear
universal ∂∗-functors from the right exact category (CX ,EX) to the category CY .

Proof. The functor

Hom∗
k(CX , CY )

Ψ∗

−−−→ Hom∗
k((CX ,EX), CY )

assigns to every k-linear functor CX
F
−→ CY the universal ∂∗-functor

S•−(F ) = (Sn−(F ), d
F
n | n ≥ 0),

which, by 4.6.1, is automatically k-linear. The fact that Ψ∗Ψ∗(F ) = S
0
−(F ) = F means

that the adjunction arrow Ψ∗Ψ∗ −→ IdHom∗
k
(CX ,CY ) is the identical isomorphism, which

implies that the functor Ψ∗ is fully faithful; hence it is the composition of a category
equivalence

Hom∗
k(CX , CY )

≈

−−−→ ∂∗kUn((CX ,EX), CY ), F 7−→ S•−(F ),
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and the full embedding of ∂∗kUn((CX ,EX), CY ) into Hom∗
k(CX , CY ).

4.6.4. Proposition. Let (CX ,EX) be a k-linear right exact category and T =
(Ti, di | i ≥ 0) a k-linear ∂∗-functor from (CX ,EX) to a k-linear category CY .

Let CY
F
−→ CZ a k-linear functor which preserves limits. Then

(a) If T is a universal ∂∗-functor, then F ◦ T = (F ◦ Ti, Fdi| i ≥ 0) is universal.
(b) If, in addition, the functor F is fully faithful, then the ∂∗-functor F ◦T is universal

iff the ∂∗-functor T is universal.

Proof. The assertion follows from (the argument of) 3.4.

4.6.4.1. Corollary. Let (CX ,EX) be a k-linear right exact category. A k-linear
∂∗-functor T = (Ti, di | i ≥ 0) from (CX ,EX) to a k-linear category CY is universal iff

its composition with the Yoneda embedding CY
hY−→Mk(Y ) of the category CY into the

category of presheaves of k-modules on CY is a universal ∂∗-functor.

Proof. The fact follows from 4.6.4(b).

4.6.5. Proposition. Let (CX ,EX) be a k-linear right exact category.
If T = (Ti, di | i ≥ 0) is a universal k-linear ∂∗-functor from the abelian category

Shk(CX ,EX) of sheaves of k-modules on (CX ,EX) to a k-linear category CY , then the
composition T ◦ j∗X = (Ti ◦ j

∗
X , dij

∗
X | i ≥ 0) of the ∂∗-functor T with the canonical ’exact’

embedding (CX ,EX)
j∗X
−−−→ Shk(CX ,EX) is a universal ∂∗-functor from (CX ,EX) to CY .

Proof. The assertion follows from 4.1 and the fact that the right exact structure
on the category Shk(X,EX) of sheaves of k-modules on the presite (CX ,EX) by the
canonical embedding CX −→ Shk(X,EX) coincides with the class of all epimorphisms of
the category Shk(X,EX).

There is also a k-linear version of Proposition 4.2.2:

4.6.6. Proposition. Let (CX ,EX) be a svelte right exact k-linear category and CY
a k-linear category with limits and colimits. Then the functor

∂∗kUn(Shk(X,EX), CY ) −−−→ ∂∗kUn((CX ,EX), CY ),

T = (Ti, di | i ≥ 0) 7−→ T ◦ j∗X = (Ti ◦ j
∗
X , dij

∗
X | i ≥ 0)

has a fully faithful right adjoint which establishes an equivalence between the category
∂∗kUn((CX ,EX), CY ) of universal k-linear ∂∗-functors from (CX ,EX) to CY and the full
subcategory ∂∗kUn(Shk(X,EX), CY ) of universal k-linear ∂∗-functors from the abelian
category Shk(X,EX) of sheaves of k-modules on the presite (CX ,EX) to the category
CY , which is generated by universal k-linear ∂∗-functors T = (Ti, di | i ≥ 0) such that

(T0 ◦ j
∗
X)⋄ ◦ qX∗ ≃ T0. Here Mk(X)

qX∗

−−−→ Shk(X,E) is the sheafification functor.



76 Chapter 2

Proof. For any category CY , we have a commutative diagram of functors

Hom∗
k(Shk(X,EX), CY ) −−−→ Hom∗

k((CX ,EX), CY ),y
y

Homk(Shk(X,EX), CY ) −−−→ Homk(CX , CY )

(1)

whose vertical arrows map ∂∗-functors to their zero components and the horizontal arrows

are functors of composition with CX
jX∗

−−−→ Shk(X,EX).
(a) If the category CY has kernels of arrows and limits if filtered diagrams, then it

follows from 3.2 that the vertical arrows of the diagram (1) are continuous localizations,

and their right adjoint functors assign to every functor CX
F
−→ CY the universal ∂∗-

functor S•−(F ), whose zero component is F. Thus the diagram (1) yields a commutative
diagram of functors

∂∗kUn(Shk(X,EX), CY ) −−−→ ∂∗kUn((CX ,EX), CY ),

≀ ≀
y

y ≀ ≀
Homk(Shk(X,EX), CY ) −−−→ Homk(CX , CY )

(2)

whose vertical arrows are category equivalences.
(b) If the category CY has colimits, then it follows from I.2.0.4.4 that the lower

horizontal arrow of the diagram (2),

Homk(Shk(X,EX), CY )
j̃∗X
−−−→ Homk(CX , CY ), G 7−→ G ◦ j∗X ,

is a localization functor having a (necessarily) fully faithful right adjoint. The latter assigns

to every functor CX
F
−→ CY the composition of the embedding Shk(X,EX) −→Mk(X)

(– a right adjoint to the sheafification functor) and the functor Mk(X)
F⋆
−→ CY , which

preserves colimits and whose composition with the Yoneda embedding CX
hX−→ Mk(X)

coincides with F .
(c) The assertion follows from (a) and (b).

5. The dual picture: ∂-functors and universal ∂-functors.

Let (CX , IX) be a left exact category, which means by definition that (CopX , I
op
X ) is a

right exact category. A ∂-functor on (CX , IX) is the data which becomes a ∂∗-functor in
the dual right exact category. A ∂-functor on (CX , IX) is universal if its dualization is a
universal ∂∗-functor. We leave to the reader the reformulation in the context of ∂-functors
of all notions and facts about ∂∗-functors. Below, there are two versions – non-linear and
linear, of a fundamental example of a universal ∂-functor.
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5.1. Example: Ext•(−, L). Let (CX ,EX) be a right exact category with an initial
object. For any L ∈ ObCX , we have the corresponding representable functor

CopX
hX(L)
−−−→ Sets, M 7−→ CopX (L,M) = CX(M,L).

Therefore, by (the dual version of) 3.2, there exists a universal ∂-functor Ext•X(−, L) =
(ExtiX(L)| i ≥ 0) from the left exact category (CX ,EX)op = (CopX ,E

op
X ) to the category

Sets, whose zero component, Ext0X(−, L), coincides with hX(L) = CX(−, L).

5.2. The functors Ext•X(−,L). Suppose that the category CX is k-linear. Then for
any L ∈ ObCX , the functor hX(L) factors through the category k −mod (that is through
the forgetful functor k − mod −→ Sets). Therefore, by 3.2, there exists a universal ∂-
functor Ext•X(−,L) = (ExtiX(−,L)| i ≥ 0), whose zero component, Ext0X(−,L), coincides

with the presheaf of k-modules L̂ = CX(−,L).

6. Universal ∂∗-functors and ’exactness’.

6.1. The properties (CE5∗) and (CE5). Let (CX ,EX) be a right exact category.

6.1.1. We say that it satisfies (CE5∗), if the category CX has limits of filtered
diagrams and the limit of a filtered diagram of deflations is a deflation.

Dually, a left exact category (CY , IY ) satisfies (CE5), if the category CY has colimits
of filtered diagrams and colimits of filtered diagrams of inflations are inflations.

6.1.2. In terms of conflations. If (CX ,EX) is a right exact category with initial
objects, then the property (CE5∗) is equivalent to the requirement that limits of filtered
diagrams of conflations exist and are conflations. In this case, one can formulate an analog
of the property (CE5) for right exact categories by replacing ’limits’ with ’colimits’: colimits
of filtered system of conflations exist and are conflations.

6.1.2.1. In particular, if CX is a svelte abelian category with the canonical exact
structure, then the property (CE5∗) is equivalent to the Grothendieck’s property (AB5∗).

Dually, for an abelian category, the property (CE5) is equivalent to the Grothendieck’s
property (AB5) (see [Gr, 1.5]).

6.1.3. The property (CE5) holds for Grothendieck toposes.

6.1.4. Remark. Apparently, the property (CE5) does not make much sense for a
right exact category, unless the kernels of deflations form a left exact structure. Therefore,
in what follows, we use (CE5∗) for right exact categories and the dual property (CE5) for
left exact categories.

6.2. Weakly right ’semi-exact’ functors. Let (CX ,EX) and (CY ,EY ) be

right exact categories with initial objects. A functor CX
F
−→ CY will be called a right
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weakly ’semi-exact’ functor from (CX ,EX) to (CY ,EY ), if it maps initial objects to

initial objects and, for any deflation M
e
−→ L, there exists the kernel Ker(F (e)) of the

morphism F (M
e
−→ L) and the canonical morphism F (Ker(e)) −→ Ker(F (e)) is a

deflation.

6.2.1. The dual notion. The notion of a weakly right ’semi-exact’ functor is

dualized in an obvious way: a functor CX
F
−→ CY between categories with final objects is

called a weakly left ’semi-exact’ functor from a left exact category (CX, IX) to a left exact

category (CY, IY), if the opposite functor CopX
F op
−→ CopY is a weakly right ’semi-exact’

functor from (CopX , IopX ) to (CopY , IopY ).

6.2.2. Note. Let (CX ,EX) and (CY ,EY ) be exact categories and CX
F
−→ CY a

functor which is both left and right weakly ’semi-exact’. Then, for any deflation M
e
−→ L,

we have a decomposition

F (Ker(e)) −−−→ Ker(F (e))
k(F (e))
−−−→ F (M)

c(F (e))
−−−→ Coim(F (e)) −−−→ F (L) (1)

of the morphism F (M
e
−→ L), in which the first arrow on the left is a deflation, because

F is weakly right ’semi-exact’ and M
e
−→ L is a deflation, and the last arrow is an

inflation, because F is weakly left ’semi-exact’ and Ker(e)
k(e)
−→M is an inflation.

The middle pair of arrows form (the essential part of) a short exact sequence in the

usual sense: F (M)
c(F (e))
−−−→ Coim(F (e) is the cokernel of Ker(F (e))

k(F (e))
−−−→ F (M)

and Ker(F (e))
k(F (e))
−−−→ F (M) is the kernel of F (M)

c(F (e))
−−−→ Coim(F (e). So that if all

strict epimorphisms in CY are deflations (or all strict monomorphism are inflations), then

F (M)
c(F (e))
−−−→ Coim(F (e) is a deflation and Ker(F (e))

k(F (e))
−−−→ F (M) is an inflation.

6.3. Proposition. Let (CX ,EX), (CY ,EY ) be right exact categories with initial
objects; and let F be a weakly right ’semi-exact’ functor (CX ,EX) −−−→ (CY ,EY ) such
that S−F exists. Suppose that (CY ,EY ) satisfies (CE5∗).

Then, for any conflation E = (N
j
−→M

e
−→ L) in (CX ,EX), the sequence

S−F (N)
S−F (j)

−−−→ S−F (M)
S−F (e)

−−−→ S−F (L)
d0(E)
−−−→ F (N)

F (j)
−−−→ F (M) (1)

is ’exact’. In particular, S−F is a weakly right ’semi-exact’ functor from (CX ,EX) to
(CY ,EY ).

Proof. (a) Let (CX ,EX)
F
−−−→ (CY ,EY ) be a weakly right ’semi-exact’ functor

such that its derived functor S−F exists. The claim is that, for any conflation

E = (N
j
−→M

e
−→ L)
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of the right exact category (CX ,EX), the canonical morphism

S−F (L)
d̃0(E)
−−−→ Ker(F (j))

is a deflation.

(a1) Let M
e
−→ L and M ′ e′

−→ L be deflations of an object L of the category CX ,
and let

M ′
f

−−−→ M
e′ ց ւ e

L

be a commutative diagram (– a morphism of deflations). This diagram extends to a
morphism of the corresponding conflations

N ′
j′

−−−→ M ′
e′

−−−→ L

f ′
y cart

y f
y idL

N
j

−−−→ M
e

−−−→ L

(2)

Since e′ = e ◦ f , it follows from I.3.3.4.1 that the left square of (2) is cartesian.

For an arbitrary functor CX
F
−→ CY , the diagram (2) gives rise to the commutative

diagram

Ker(F (j′))
k′

−−−→ F (N ′)
F (j′)
−−−→ F (M ′)

F (e′)
−−−→ F (L)

γ̃
y cart γ

y
y id

y id

Ker(α)
k(α)
−−−→ N

α
−−−→ F (M ′)

F (e′)
−−−→ F (L)

φ̃
y≀ φ

y cart
y F (f)

y id

Ker(F (j))
k

−−−→ F (N)
F (j)
−−−→ F (M)

F (e)
−−−→ F (L)

(3)

where the lower middle square is cartesian, which implies (by I.3.3.3) that the left lower

vertical arrow Ker(α)
φ̃
−→ Ker(F (j)) is an isomorphism. The morphism F (N ′)

γ
−→ N

is uniquely determined by the equalities φ ◦ γ = F (f ′) and F (j′) = α ◦ γ; and the left
upper square is cartesian due to the latter equality (see I.3.3.4.1).

(a2) Suppose now that the morphism M ′ f
−→ M in the diagram (2) (and (3)) is a

deflation and the functor CX
F
−→ CY is right ’semi-exact’. Since the left square of the

diagram (2) is cartesian, the morphism F (N ′)
γ
−→ N in (3) is a deflation. Therefore,
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since the left upper square in (3) is cartesian, the vertical arrow Ker(F (j′))
γ̃
−→ Ker(α)

is a deflation; or, what is the same, the canonical morphism Ker(F (j′)) −→ Ker(F (j))

(equal to the composition φ̃ ◦ γ̃) is a deflation.

(a3) Notice that the object S−F (L) is isomorphic to the limit of Ker(F (k(e′))),

where e′ runs through the (filtered) diagram of refinements of the deflation M
e
−→ L.

That is

S−F (L) = lim
M

t
→M

Ker(F (k(t ◦ e))),

where M
t
−→ M runs through the deflations of M (and morphisms of this diagram are

also deflations). Thus, the canonical morphism

S−F (L)
d̃0(E)
−−−→ Ker(F (j))

is the limit of a filtered diagram of deflations. Therefore, since, by hypothesis, the limit of

filtered diagram of deflations is a deflation, the morphism S−F (L)
d̃0(E)
−−−→ Ker(F (j)) is

a deflation.

(b) For any conflation E = (N
j
−→ M

e
−→ L) of the right exact category (CX ,EX),

the canonical morphism S−F (M) −→ Ker(d0(E)) is a deflation.

In fact, let

N ′′
j′′

−−−→ M ′′
e′′

−−−→ M

k
y

y id
y e

Ñ ′
j̃′

−−−→ M ′′
ẽ′

−−−→ L

t̃′
y cart

y t′
y id

N ′
j′

−−−→ M ′
e′

−−−→ L

t̃
y cart

y t
y id

N
j

−−−→ M
e

−−−→ L

(4)

be a commutative diagram whose rows are conflations and the central vertical arrows

M ′ t
−→ M and M ′′ t′

−→ M ′ are deflations. By I.4.4.5, the two lower left squares of

the diagram (4) are cartesian. In particular, the left vertical arrows N ′′ t̃′

−→ N ′ and

N ′ t̃
−→ N are deflations. It follows from I.3.3.4.2(b) that the upper two arrows of the left

column of the diagram (4) form a conflation; i.e. N ′′ k
−→ N ′ is the kernel of t̃′.
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Applying the functor CX
F
−→ CY to the diagram (4) and taking kernels of the

horizontal arrows yields a commutative diagram

Ker(F (j′′)) −−−→ F (N ′′)
F (j′′)
−−−→ F (M ′′)

F (e′′)
−−−→ F (M)y cart F (k)

y
y id

y F (e)

Ker(F (̃j′)) −−−→ F (Ñ ′)
F (̃j′)
−−−→ F (M ′′)

F (̃e′)
−−−→ F (L)y F (̃t′)

y
y F (t′)

y id

Ker(F (j′)) −−−→ F (N ′)
F (j′)
−−−→ F (M ′)

F (e′)
−−−→ F (L)y F (̃t)

y
y F (t)

y id

Ker(F (j)) −−−→ F (N)
F (j)
−−−→ F (M)

F (e)
−−−→ F (L)

(5)

whose left upper square is cartesian.

Since the functor CX
F
−→ CY is weakly right ’semi-exact’, the diagram (5) is decom-

posed into the diagram

Ker(F (j′′)) −−−→ F (N ′′)

γ1

y cart γ2

y

Ker(s) −−−→ Ker(F (̃t′))
F (j′′)
−−−→ F (M ′′)

F (e′′)
−−−→ F (M)

k(s)
y cart k′

y
y id

y F (e)

Ker(F (̃j′)) −−−→ F (Ñ ′)
F (̃j′)
−−−→ F (M ′′)

F (̃e′)
−−−→ F (L)

s
y F (̃t′)

y
y F (t′)

y id

Ker(F (j′)) −−−→ F (N ′)
F (j′)
−−−→ F (M ′)

F (e′)
−−−→ F (L)y F (̃t)

y
y F (t)

y id

Ker(F (j)) −−−→ F (N)
F (j)
−−−→ F (M)

F (e)
−−−→ F (L)

(6)

where γ1, γ2 are deflations, k′ is the kernel (morphism) of F (̃t′); F (j′) ◦ γ2 = F (j′′), and
k′ ◦ γ2 = F (k). It follows that the two upper left squares of (6) are cartesian. The left
column of the diagram (6) induces, via passing to limit, the sequence of arrows

S−F (M)
γ̃

−−−→ Ker(d0(E))
k0
−−−→ S−F (L)

σ
−−−→ Ker(F (j))

k(F (j))
−−−→ F (N)

where k(F (j)) ◦ σ = d0(E), k0 ◦ γ̃ = S−F (e); σ is a deflation by (a) above, and γ̃ is a
deflation by hypothesis, because it is a filtered limit of deflations.
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7. ’Exact’ ∂∗-functors and universal ∂∗-functors.

Fix right exact categories (CX ,EX) and (CY ,EY ), both with initial objects.
A ∂∗-functor T = (Ti, di| i ≥ 0) from (CX ,EX) to CY is called ’exact’, if, for every

conflation E = (N
j
−→M

e
−→ L) in (CX ,EX), the complex

. . .
T2(e)
−−−→ T2(L)

d1(E)
−−−→ T1(N)

T1(j)
−−−→ Ti(M)

T1(e)
−−−→ T1(L)

d0(E)
−−−→ T0(N)

T0(j)
−−−→ T0(M)

is ’exact’.

7.1. Proposition. Let (CX ,EX) and (CY ,EY ) be right exact categories with
inital objects. Suppose that (CY ,EY ) has the property (CE5∗). Let T = (Ti| i ≥ 0) be a
universal ∂∗-functor from (CX ,EX) to (CY ,EY ). If the functor T0 is weakly right ’exact’,
then the universal ∂∗-functor T is ’exact’.

Proof. If T0 is weakly right ’exact’, then, by 6.3, the functor T1 ≃ S−(T0) is weakly

right ’exact’ and, for any conflation E = (N
j
−→M

e
−→ L), the sequence

T1(N)
T1(j)
−−−→ T1(M)

T1(e)
−−−→ T1(L)

d0(E)
−−−→ T0(N)

T0(j)
−−−→ T0(M)

is ’exact’. Since Tn+1 = S−(Tn), the assertion follows from 6.3 by induction.

7.2. Corollary. Let (CX ,EX) be a right exact category with initial objects. For each
object L of the category CX , the ∂-functor Ext

•
X(−, L) = (ExtiX(−, L) | i ≥ 0) is ’exact’.

Suppose that the category CX is k-linear. Then, for each L ∈ ObCX , the ∂-functor
Ext•X(−, L) = (ExtiX(−, L) | i ≥ 0) is ’exact’.

Proof. In fact, the ∂-functor Ext•X(−, L) is universal by definition (see 5.1), and the
functor Ext0X(−, L) = CX(−, L) is left exact. In particular, it is left ’exact’.

If CX is a k-linear category, then the universal ∂-functors Ext•X(−, L), L ∈ ObCX ,
with the values in the category of k-modules (see 5.2) are ’exact’ by a similar reason.

8. Universal problems for universal ∂∗- and ∂-functors.

8.1. The categories of homological and cohomological functors.

8.1.0. Morphisms of ∂∗- functors. Let T be a universal ∂∗- functor from a
svelte right exact category (CX ,EX) to a category CY and T ′ a universal ∂∗- functor from

(CX ,EX) to CZ . A morphism from T to T ′ is a pair (F, φ), where CX
F
−→ CZ is a

functor which preserves filtered limits and φ is a ∂∗-functor isomorphism F ◦ T ∼−→ T ′.
It follows from this isomorphism and the fact that higher components of ∂∗-functors map
initial objects to initial objects that the functor F maps initial objects to initial objects.
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If (F ′, φ′) is a morphism from T ′ to T ′′, then the composition of (F, φ) and (F ′, φ′)
is defined by (F ′, φ′) ◦ (F, φ) = (F ′ ◦ F, φ′ ◦ F ′φ). This defines a category of ∂∗-functors

from (CX ,EX) which we denote by ∂∗Ũn(CX ,EX).

8.1.0.1. Note. The category ∂∗Ũn((CX ,EX), CY ) of ∂∗-functors from (CX ,EX)
to a category CY (defined in 3.0.1) is identified with the subcategory of the category

∂∗Ũn(CX ,EX) formed by all morphisms of the form (IdCY , φ).

8.1.1. The category ∂∗Un(X,EX). We denote by ∂∗Un(X,EX) the full subcat-

egory of the category ∂∗Ũn(CX ,EX) generated by universal ∂∗-functors from the right
exact category (CX ,EX) whose zero components (hence all components) map initial ob-
jects to initial objects.

8.1.2. The category ∂∗Unc(X,EX). We denote by ∂∗Unc(X,EX) the subcategory of
∂∗Un(X,EX) whose objects are ∂∗-functors from (CX ,EX) to categories with limits (and
initial objects) and morphisms are pairs (F, φ) such that the functor F preserves limits.

8.1.3. The categories ∂Ũn(CX, IX) and ∂Un(X,EX). Dually, for a svelte left exact

category (CX, IX) with a final object, we denote by ∂Ũn(CX, IX) the category whose
objects are universal ∂-functors from (CX, IX) to categories with final object. Given two
universal ∂-functors T and T ′ from (CX, IX) to respectively CY and CZ , a morphism from
T to T ′ is a pair (F, ψ), where F is a functor from CY to CZ preserving filtered colimits
and ψ is a functor isomorphism T ′ ∼−→ F ◦T (which implies that the functor F maps final
objects to final objects). The composition is defined by (F ′, ψ′)◦(F, ψ) = (F ′◦F, F ′ψ◦ψ′).

8.1.3.1. We denote by ∂Un(X, IX) the full subcategory of the category ∂Ũn(CX, IX)
generated by universal ∂-functors from the right exact category (CX, IX) whose zero com-
ponents (hence all components) map final objects to final objects.

8.1.4. The category ∂Unc(X, IX). We denote by ∂Unc(X, IX) the subcategory of
∂Un(X, IX) whose objects are ∂-functors with values in categories with colimits and final
objects and morphisms are pairs (F, ψ) such that the functor F preserves colimits.

8.2. Proposition. Let (CX ,EX) be a svelte right exact category with initial objects
and (CX, IX) a svelte left exact category with final objects. The categories ∂∗Un(X,EX),
∂∗Unc(X,EX), ∂Un(X, IX), and ∂Unc(X, IX) have initial objects.

Proof. (a) We start with the category ∂Unc(X, IX). Consider the Yoneda embedding

CX

h∗
X

−−−→ C∗
X , M 7−→ M̂ = CX(−,M).

We denote by Ext•X,IX
the universal ∂-functor from the left exact category (CX, IX)

to the category C∗
X whose zero component coincides with CX

h∗
X−→ C∗

X .
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The claim is that Ext•X,IX
is an initial object of the category ∂Unc(X, IX).

In fact, let CY be a category with colimits of small diagrams. By I.2.0.2(a), the com-

position with the Yoneda embedding CX
h∗
X−→ C∗

X is an equivalence between the category
Hom(C∗

X, CY ) of preserving colimits functors C∗
X −→ CY and the category Hom(CX, CY )

of functors from CX to CY . Let CX
F
−→ CY be an arbitrary functor and C∗

X

F∗

−→ CY its
preserving colimits extension. By definition,

S+F (L) = colim(Cok(F (M −→ Cok(j)),

where L
j
−→ M runs through inflations of the object L. Since the functor F ∗ preserves

colimits, it follows from (the dual version of) 3.4(a) that F ∗ ◦ Ext•X,IX
is a universal

∂-functor whose zero component is F ∗ ◦ Ext0X,IX
= F ∗ ◦ h∗X = F. Therefore, by (the

dual version of the argument of) 3.2, the universal ∂-functor F ∗ ◦ Ext•X,IX
is isomorphic

to S•
+F . This shows that Ext

•
X,IX

is an initial object of the category ∂Unc(X, IX).

(b) Let CXs
denote the smallest strictly full subcategory of the category C∗

X containing
all presheaves ExtnX,IX

(L), L ∈ ObCX, n ≥ 0. The claim is that the corestriction of the
∂-functor Ext•X,IX

to the subcategory CXs
is an initial object of the category ∂Un(X, IX).

Indeed, let CY be a category with a final object y and T = (Ti, di | i ≥ 0) a universal
∂-functor from the left exact category (CX, IX) to CY . Set CY o = CopY and consider the
”reduced” Yoneda functor

CopY = CY o
h⊛

Y o

−−−→ C⊛

Y o
def
= y∨\C∧

Y o (1)

(see I.2.0.2(b)). Here y∨ = CY o(−, y) = CY (y,−). The ”reduced” Yoneda embedding
preserves limits and maps initial objects to initial objects. So that the opposite functor,

CopY o = CY
(h⊛

Y o
)op

−−−→ (C⊛

Y o)
op def

= (y∨\C∧
Y o)

op, (2)

preserves colimits and maps final objects to final objects.
Therefore, by 3.4, the composition (h⊛Y o)

op ◦ T is a universal ∂-functor from the left
exact category (CX, IX) to the category (C⊛

Y o)
op. By (a) above, the ∂-functor (h⊛Y o)

op◦T is
the composition of the universal ∂-functor Ext•X,IX

from the left exact category (CX, IX)

to C∗
X and the unique up to isomorphism functor C∗

X

G
−→ (C⊛

Y o)
op which preserves colimits

and satisfies the equation G ◦ hX = (h⊛Y o)
op ◦ T0. Since the functor (h⊛Y o)

op is fully
faithful, this implies that the universal ∂-functor T = (Ti, di | i ≥ 0) is isomorphic to the
composition of the corestriction of Ext•X,IX

to the subcategory CXs
and a unique functor

CXs

Gs

−−−→ CY such that the composition h∗Y o ◦ Gs coincides with the restriction of the
functor G to the subcategory CXs

.
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(c) The assertions about ∂∗-functors are obtained via dualization. Essential details
are as follows. Let (CX ,EX) be a right exact category with initial objects. We take the
category C∗

Xo of non-trivial functors CX −→ Sets (interpreted as presheaves of sets on
CXo = CopX ) and the dual to the Yoneda functor:

CopXo = CX
(h∗
Xo )

op

−−−→ (C∗
Xo)

op, M 7−→ CX(M,−).

Let Ext•(X,EX) denote the universal ∂∗-functor from (CX ,EX) to (C∗
Xo)

op such that

Ext0(X,EX) = (h∗Xo)
op. Let CY be a category with limits and initial objects. By the dual

version of I.2.0.2, the composition with the functor (h∗Xo)
op gives a category equivalence

between Hom(CX , CY ) and the category Homc(C∗
Xo , CY ) of functors (C∗

Xo)
op −→ CY

which preserve limits. Let F be a functor CX −→ CY and F c the corresponding functor
from (C∗

Xo)
op to CY . Since the functor F

c preserves limits, it follows from 3.4 (a), that the
composition F c◦Ext•(X,EX) is a universal ∂

∗-functor. Its zero component, F c◦Ext0(X,EX) =
F c ◦ h∗Xo , coincides with the functor F . Therefore, by 3.2, the universal ∂∗-functor
F c ◦ Ext•(X,EX) is isomorphic to S•

−F . This shows that Ext•(X,EX) is an initial object of

the category ∂∗Unc(X,EX).

(d) It follows from (b) (by duality) that the corestriction of the ∂∗-functor Ext•(X,EX)

to the smallest subcategory of the category C∗
Xo containing all representable functors and

closed under the endofunctor S− (that is the full subcategory of C∗
Xo generated by the

functors Extn(X,EX)(L), L ∈ ObCX , n ≥ 0) is an initial object of the category ∂∗Un(X,EX)
of universal ∂∗-functors.

8.2.1. The categories ∂Un⊛(X, IX) and ∂Un⊛(X,EX). Let (CX, IX) be a
svelte left exact category. We denote by ∂Un⊛(X, IX) the subcategory of the category
∂Un(X, IX) whose objects are ∂-functors with values in categories with colimits having
both final and initial objects, and morphisms are pairs (F, ψ) such that the functor F
(maps final objects to final objects and) has a right adjoint. The latter implies that the
functor F maps initial objects to initial objects. Since any functor having a right adjoint
preserve colimits, the category ∂Un⊛(X, IX) is a subcategory of the category ∂Unc(X, IX).

Dually, given a svelte right exact category (CX ,EX), we denote by ∂Un⊛(X,EX)
the subcategory of the category ∂Un(X,EX) whose with values in categories with limits
having both final and initial objects, and morphisms are pairs (F, ψ) such that the functor
F maps initial objects to initial objects and has a left adjoint. The latter implies that the
functor F maps final objects to final objects.

8.2.2. Proposition. Let (CX ,EX) be a svelte right exact category with initial objects
and (CX, IX) a svelte left exact category with final objects. The categories ∂∗Un⊛(X,EX)
and ∂Un⊛(X, IX) have initial objects.

Proof. (a) The canonical initial object of the category ∂Un⊛(X, IX) is the universal
∂-functor Ext•X,IX

from the left exact category (CX ,EX) to the category C∧
X of presheaves
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of sets on the category CX whose zero component coincides with the Yoneda functor

CX
hX−→ C∧

X. The proof of this fact is similar to the argument 8.2(a) and uses the assertion
I.2.0.2(c).

(b) By duality, we obtain a canonical initial object of the category ∂∗Un⊛(X,EX).

8.3. The k-linear version. Fix a right exact k-linear additive category (CX ,EX).
Let ∂∗kUn(X,EX) denote the category whose objects are universal k-linear ∂∗-functors
from (CX ,EX) to k-linear additive categories. Let T be a universal k-linear ∂∗- functor

from (CX ,EX) to CY and T̃ a universal k-linear ∂∗- functor from (CX ,EX) to CZ . A
morphism from T to T ′ is a pair (F, φ), where F is a k-linear functor from CY to CZ which
preserves limits of filtered diagrams and φ is a ∂∗-functor isomorphism F ◦ T ∼−→ T ′. If
(F ′, φ′) is a morphism from T ′ to T ′′, then the composition of (F, φ) and (F ′, φ′) is defined
by (F ′, φ′) ◦ (F, φ) = (F ′ ◦ F, φ′ ◦ F ′φ).

We denote by ∂∗kUnc(X,EX) the subcategory of ∂∗kUn(X,EX) whose objects are k-
linear ∂∗-functors from (CX ,EX) to complete (i.e. having limits of small diagrams) k-linear
categories CY and morphisms are pairs (F, φ) such that the functor F preserves limits.

Dually, for a left exact additive k-linear category (CX, IX), we denote by ∂kUn(X, IX)
the category whose objects are universal k-linear ∂-functors from (CX, IX) to k-linear
additive categories. Given two universal k-linear ∂-functors T and T ′ from (CX, IX) to
respectively CY and CZ , a morphism from T to T ′ is a pair (F, ψ), where F is a k-
linear functor from CY to CZ preserving filtered colimits and ψ is a functor isomorphism
T ′ ∼−→ F ◦ T . The composition is defined by (F ′, ψ′) ◦ (F, ψ) = (F ′ ◦ F, F ′ψ ◦ ψ′).

We denote by ∂kUn
c(X, IX) the subcategory of ∂kUn(X, IX) whose objects are k-linear

∂-functors with values in cocomplete categories and morphisms are pairs (F, ψ) such that
the functor F preserves colimits.

8.3.1. Proposition. Let (CX ,EX) be a svelte k-linear right exact category and
(CX, IX) a svelte k-linear left exact category. The categories ∂∗kUn(X,EX), ∂∗kUnc(X,EX),
∂kUn(X, IX), and ∂kUn

c(X, IX) have initial objects.

Proof. The argument is similar to that of 8.2, except for we replace the category C∗
X

(resp. C∗
Xo) of non-trivial presheaves of sets on CX (resp. on CopX ) by the categoryMk(X)

(resp. Mk(X
o)) of k-linear presheaves of k-modules on CX (resp. on CopX = CXo).

(a) The initial object of the category ∂kUn
c(X, IX) is the universal k-linear ∂-functor

Ext•X,IX from (CX, IX) to the categoryMk(X) of k-linear presheaves of k-modules on CX

whose zero component is the Yoneda embedding CX −→Mk(X), L 7−→ CX(−, L).
(b) The initial object of the category ∂kUn(X, IX) is the corestriction of Ext•X,IX to

the smallest additive strictly full subcategory of Mk(X) which contains all presheaves
ExtnX,IX (L), L ∈ ObCX, n ≥ 0.

(c) The universal k-linear ∂∗-functor Ext•(X,EX) from the right exact k-linear category

(CX ,EX) to the categoryMk(X
o) of presheaves of k-modules on CXo = CopX is an initial

object of the category ∂∗kUnc(X,EX).
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(d) The corestriction of the ∂∗-functor Ext•(X,EX) to the smallest strictly full additive

subcategory of Mk(X
o) spanned by the presheaves Extn(X,EX)(L), L ∈ ObCX , n ≥ 0, is

an initial object of the category ∂∗kUn(X,EX).
The argument is similar to that of 8.2. Details are left to the reader.

9. Universal problems for universal ’exact’ ∂∗- and ∂-functors.

9.0. The category ∂∗UEx(X,EX). Fix a right exact category (CX ,EX) with initial
objects. Let ∂∗UEx(X,EX) denote the category whose objects are universal ’exact’ ∂∗-
functors T = (Ti, di | i ≥ 0) from (CX ,EX) to right exact categories (CY ,EY ) satisfying
(CE5∗) (see 6.1) such that the functor T0 maps deflations to deflations. Let T be a universal

’exact’ ∂∗-functor from (CX ,EX) to (CY ,EY ) and T̃ a universal ’exact’ ∂∗- functor from
(CX ,EX) to (CZ ,EZ). A morphism from T to T ′ is a pair (F, φ), where F is a functor
from CY to CZ which preserves filtered limits and conflations, and φ is an isomorphism of
∂∗-functors F ◦ T ∼−→ T ′. If (F ′, φ′) is a morphism from T ′ to T ′′, then the composition
of (F, φ) and (F ′, φ′) is defined by (F ′, φ′) ◦ (F, φ) = (F ′ ◦ F, φ′ ◦ F ′φ).

9.0.1. The category ∂∗UExc(X,EX). We denote by ∂∗UExc(X,EX) the subcategory
of ∂∗UEx(X,EX) whose objects are ∂∗-functors from (CX ,EX) to complete right exact
categories (CY ,EY ) satisfying (CE5∗) and morphisms are pairs (F, φ) such that the functor
F preserves limits.

Dually, for a left exact category (CX, IX) with a final object, we denote by ∂UEx(X, IX)
the category whose objects are universal ’exact’ ∂-functors T = (Ti, di | i ≥ 0) from
(CX, IX) to left exact categories satisfying (CE5) such that the functor T0 maps inflations
to inflations. Given two universal ’exact’ ∂-functors T and T ′ from (CX, IX) to respectively
(CY , IY ) and (CZ , IZ), a morphism from T to T ′ is a pair (F, ψ), where F is a functor
from CY to CZ preserving filtered colimits and conflations and ψ is a functor isomorphism
T ′ ∼−→ F ◦ T . The composition is defined by (F ′, ψ′) ◦ (F, ψ) = (F ′ ◦ F, F ′ψ ◦ ψ′).

We denote by ∂UExc(X, IX) the subcategory of ∂UEx(X, IX) whose objects are ∂-
functors with values in cocomplete left exact categories (with final objects) satisfying
(CE5) and morphisms are pairs (F, ψ) such that the functor F preserves colimits.

9.1. Proposition. Let (CX ,EX) be a svelte right exact category with initial objects
and (CX, IX) a svelte left exact category with final objects. The categories ∂∗UEx(X,EX),
∂∗UExc(X,EX), ∂UEx(X, IX), and ∂UEx

c(X, IX) have initial objects.

Proof. (a) The Yoneda embedding

CX

h∗
X

−−−→ C∗
X, L 7−→ L̂ = CX(−, L)

is a fully faithful left exact functor. Therefore, it maps strict monomorphisms (in particular,
inflations – arrows of IX) to strict monomorphisms of C∗

X; and the latter are universally



88 Chapter 2

strict. We denote by I∗X the coarsest left exact structure on C∗
X which contains h∗X(IX)

and is closed with respect to inductive colimits.

Since the functor h∗X is left exact, it is a left ’exact’ functor from the left exact category
(CX, IX) to the left exact category (C∗

X, I
∗
X). Therefore, by (the dual version of) 7.1, the

universal ∂-functor Ext•X,IX from (CX, IX) to C∗
X whose zero component is the Yoneda

embedding hX is an ’exact’ ∂-functor from (CX, IX) to (C∗
X, I

∗
X).

The claim is that the universal ’exact’ ∂-functor Ext•X,IX from (CX, IX) to (C∗
X, I

∗
X)

is an initial object of the category ∂UExc(X, IX).

Let (CZ , IZ) be a left exact category such that the category CZ is cocomplete, and
let F be a left ’exact’ functor from (CX, IX) to (CZ , IZ). Then the corresponding functor

C∗
X

F∗

−→ CZ is an ’exact’ functor from (C∗
X, I

∗
X) to (CZ , IZ).

Since the functor F ∗ is right exact, it suffices to show that F ∗ maps inflations to in-
flations, i.e. I∗X to IZ . The arrows of I∗X are obtained from the class of (strict) monomor-
phisms hX(IX) via compositions, push-forwards and filtered colimits. The functor F ∗

preserves all colimits, in particular, it preserves push-forwards and (any functor preserves)
compositions. Since F = F ∗ ◦ h∗X, the class of morphisms F ∗(h∗X(IX)) coincides with
the class of monomorphisms F (IX). Therefore, it follows from the above description of I∗X
(and the fact that F ∗ preserves colimits) that F ∗(I∗X) is contained in IZ .

(b) The initial object of the category ∂UEx(X, IX) is the corestriction of the univer-
sal ∂-functor Ext•X,IX to the smallest strictly full subcategory of CXo

I
which contains all

presheaves ExtnX,IX (L), L ∈ ObCX, n ≥ 0.

(c) The universal ∂∗-functor Ext•(X,EX) from the right exact category (CX ,EX) to the

category C∗
Xo of presheaves of sets on CXo = CopX endowed with the coarsest right exact

structure containing the image of EX is an initial object of the category ∂∗UExc(X,EX).

(d) The corestriction of the ∂∗-functor Ext•(X,EX) to the smallest strictly full subcat-

egory of C∗
Xo spanned by the presheaves Extn(X,EX)(L), L ∈ ObCX , n ≥ 0, is an initial

object of the category ∂∗UEx(X,EX).

The argument is similar to that of 8.2. Details are left to the reader.

9.2. The k-linear version. Fix a right exact k-linear category (CX ,EX). Let
∂∗kUEx(X,EX) denote the category whose objects are universal ’exact’ k-linear ∂∗-functors
T = (Ti, di | i ≥ 0) from (CX ,EX) to right exact k-linear categories (CY ,EY ) satisfying
(CE5∗) such that T0 maps deflations to deflations. Let T be a universal ’exact’ k-linear

∂∗- functor from (CX ,EX) to (CY ,EY ) and T̃ a universal ’exact’ k-linear ∂∗- functor
from (CX ,EX) to (CZ ,EZ). A morphism from T to T ′ is a pair (F, φ), where F is a
k-linear functor from CY to CZ which preserves filtered limits and conflations, and φ is an
isomorphism of ∂∗-functors F ◦ T ∼−→ T ′. If (F ′, φ′) is a morphism from T ′ to T ′′, then
the composition of (F, φ) and (F ′, φ′) is defined by (F ′, φ′) ◦ (F, φ) = (F ′ ◦ F, φ′ ◦ F ′φ).
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We denote by ∂∗kUExc(X,EX) the subcategory of ∂∗kUEx(X,EX) whose objects are
∂∗-functors from (CX ,EX) to complete right exact categories (CY ,EY ) and morphisms are
pairs (F, φ) such that the functor F preserves limits.

Dually, for a left exact k-linear category (CX, IX), we denote by ∂kUEx(X, IX) the
category whose objects are universal ’exact’ k-linear ∂-functors T = (Ti, di | i ≥ 0) from
(CX, IX) to k-linear left exact categories satisfying (CE5) such that the functor T0 maps
inflations to inflations. Given two universal ’exact’ k-linear ∂-functors T and T ′ from
(CX, IX) to respectively (CY , IY ) and (CZ , IZ), a morphism from T to T ′ is a pair (F, ψ),
where F is a k-linear functor from CY to CZ preserving filtered colimits and conflations
and ψ is a functor isomorphism T ′ ∼−→ F ◦ T . The composition is defined by

(F ′, ψ′) ◦ (F, ψ) = (F ′ ◦ F, F ′ψ ◦ ψ′).

We denote by ∂kUEx
c(X, IX) the subcategory of ∂kUEx(X, IX) whose objects are k-

linear ∂-functors with values in cocomplete left exact categories and morphisms are pairs
(F, ψ) such that the functor F preserves colimits.

9.2.1. Proposition. Let (CX ,EX) be a svelte k-linear right exact category and
(CX, IX) a svelte k-linear left exact category. The defined above categories ∂∗kUEx(X,EX),
∂∗kUExc(X,EX), ∂kUEx(X, IX), and ∂kUEx

c(X, IX) have initial objects.

Proof. The argument is similar to that of 9.1, except for we replace the category C∗
X

(resp. C∗
Xo) of presheaves of sets on CX (resp. on CopX ) by the category Mk(X) (resp.

Mk(X
o)) of presheaves of k-modules on CX (resp. on CopX = CXo).

(a) For a svelte k-linear left exact category (CX, IX), we denote by IX,k the coarsest
left exact structure on the categoryMk(X) of presheaves of k-modules on CX closed under

inductive colimits and such that the Yoneda embedding CX

hX,k

−−−→Mk(X) maps inflations
to inflations (i.e. IX to IX,k) and is a left exact k-linear functor, hence it is a left ’exact’
functor from (CX, IX) to (Mk(X), IX,k). Therefore, by the k-linear version of 7.1, the
universal functor Ext•X,IX

whose zero component is the Yoneda embedding hX,k is ’exact’.
If (CZ , IZ) be a left exact k-linear category such that the category CZ is cocomplete

and F a left ’exact’ k-linear functor from (CX, IX) to (CZ , IZ), then the corresponding

continuous functor C∗
X

F∗

−→ CZ is an ’exact’ functor from (Mk, IX,k) to (CZ , IZ).
The argument is similar to that of the corresponding part of 9.1.
This implies that the universal k-linear ∂-functor Ext•X,IX from (CX, IX) to the left

exact category (Mk(X), IX,k) is the initial object of the category ∂kUEx
c(X, IX).

(b) The initial object of the category ∂kUEx(X, IX) is the corestriction of Ext•X,IX
to the smallest additive strictly full left exact subcategory of (Mk(X), IX,k) containing all
presheaves ExtnX,IX (L), L ∈ ObCX, n ≥ 0.
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(c) It follows from (a) (by duality) that the universal k-linear ∂∗-functor Ext•(X,EX)

from the right exact k-linear category (CX ,EX) to the category Mk(X
o) of presheaves

of k-modules on CXo = CopX is an ’exact’ universal k-linear ∂∗-functor from (CX ,EX) to
the right exact category (Mk(X

o),EXo
k
), where EXo

k
is the coarsest right exact structure

on Mk(X
o) such that the Yoneda embedding CXo −→ Mk(X

o) maps EX to EXo
k
. This

’exact’ universal k-linear ∂∗-functor is an initial object of the category ∂∗kUExc(X,EX).

(d) The corestriction of the ∂∗-functor Ext•(X,EX) to the smallest strictly full addi-

tive right exact subcategory of Mk(X
o) spanned by the presheaves Extn(X,EX)(L), L ∈

ObCX , n ≥ 0, is an initial object of the category ∂∗kUEx(X,EX).
Details are left to the reader.

10. Relative satellites.

Fix a right exact category (CS,ES). Fix an object Y of CS and denote by CY\S the
category Y\CS. Consider the right exact category (CY\S,EY\S), where EY\S denote the
right exact structure on CY\S = Y\CS induced by ES.

10.1. The ∂∗-functor FY
• . For a functor CS

F
−→ CZ , let CY\S

FY
0

−−−→ CZ be the

composition of the forgetful functor CY\S = Y\CS −→ CS and the functor CS
F
−→ CZ .

Suppose that the category CZ has initial objects, kernels of arrows, and limits of
filtered diagrams. Then the functor FY

0 extends to a (unique up to isomorphism) ∂∗-
functor FY

• = (FY
n , d

Y
n | n ≥ 0) from the right exact category (CY\S,EY\S) to CZ . If the

category CS has initial objects and Y is one of them, then the category CY\S = Y\CS is
isomorphic to the category CS and the functor FY

• is the composition of this isomorphism
and the universal ∂∗-functor F•, where F0 = F .

It follows from the definition of satellites that, for every object (V,Y
ξV
−→ V) of the

category Y\CS, we have

FY
1 (V, ξV) = SY(F)(V, ξV) = limKer(F(Y

∏

e,ξV

W
p
W−→W)), (1)

where pW is the canonical projection and the limit is taken by the filtered system of

deflations (W, ξW)
e
−→ (V, ξV). By (the argument of) 3.2, FY

n = SnY(F) for all n ≥ 0.

10.2. The ∂∗-functor FY,ES
• . Let CZ be a category with final objects and cok-

ernels of arbitrary morphisms. For any functor CS
F
−→ CZ , let FY denote the func-

tor Y\CS −→ CZ which assigns to every object (W,Y
ξ
→ W) the object Cok(F (ξ))

and acts correspondingly on morphisms. Notice that the functor FY maps the initial
object (Y, idY) of the category Y\CS to a final object of the category CZ . If, in addi-
tion, the category CZ has initial objects (e.g. it is pointed), kernels of arrows and limits
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of filtered systems, then there exists a (unique up to isomorphism) universal ∂∗-functor

FY,ES
• = (FY,ES

n , dY,ES
n | n ≥ 0) such that FY,ES

0 = FY .



Chapter III

Stable Categories and Homological Functors.

Stable categories were defined (by Keller and Vossieck) for exact categories with
enough injective objects via homotopy equivalence of arrows: two morphisms are homo-
topy equivalent, if their difference factors through an injective object. In this chapter, we
define, among other things, the stable category of an arbitrary (non-additive in general)
right exact category. Considering that every category has a canonical (the finest) struc-
ture of a right exact category, we obtain the notion of the stable category of an arbitrary
category.

Section 1 is dedicated to projective objects of a right exact category (and injective
objects of a left exact category) and right exact categories with enough projective objects.
Our main examples are the right exact categories of modules over monads (and left exact
categories of comodules over comonads).

We observe that projective objects are compatible with the contravariant functoriality
of universal ∂∗-functors discussed in Section 4 of Chapter II. In particular, the canonical
embedding of a right exact category (CX ,EX) into the category of non-trivial sheaves
of sets on (CX ,EX) maps projective objects to projective objects; and if the right exact
category (CX ,EX) has enough projective objects, same holds for the category of sheaves
of sets on (CX ,EX). Similarly, the canonical embedding of a k-linear right exact category
(CX ,EX) into the k-linear Grothendieck category Shk(X,EX) of k-linear sheaves of k-
modules maps projective objects to projective objects. If the right exact k-linear category
(CX ,EX) has enough projective objects, then the abelian category Shk(X,EX) has enough
projective objects too.

In Section 2, we extend (in an obvious way) the notion of a coeffaceable functor to right
exact categories and prove that a coeffaceable ’exact’ ∂∗-functor is universal, if in the target
category, all deflations with trivial kernels are isomorphisms. On the other hand, we show
that if a right exact category has enough projective objects and all projective objects are
pointed, then derived functors of any functor from this right exact category are coeffaceable.
In abelian case, these statements recover well known facts from Grothendieck’s Tôhoku
paper [Gr]. We start Section 3 with observations on the structure of universal ∂-functors
related with results of Sections 3, 8 and 9 of Chapter II. These observations produce, for
a given left exact category (CX , IX), a structure of a Z+-category on the category C∗

X

of non-trivial presheaves of sets on CX (induced by the functor Ext1) and the category
of standard triangles related with conflations of the left exact category (CX , IX). We
apply the obtained structure to deriving some formulas for satellites of composition of
functors. In Section 4, we look at computational aspects of satellites of functors F from
left exact categories such that their domain has enough F -acyclic objects. We introduce
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F -acyclic resolution, cohomology of complexes, and show that if the functor F is weakly
left ’exact’ and maps inflations with trivial cokernels to isomorphisms, then its satellites
are isomorphic to cohomologies of the images of acyclic resolutions. The observations
of Section 3 lead to definitions, in Section 5, of prestable and stable categories of a left
exact category. Turning the properties of prestable and stable categories into axioms, we
introduce, in Section 6, the notions of presuspended and quasi-suspended categories. In
Section 7, we define homology of ’spaces’ with coefficients in a right exact category and
the homotopy groups of pointed ’spaces’.

1. Projective objects and injective objects.

Fix a right exact category (CX ,EX).

1.1. Lemma. The following conditions on an object P of CX are equivalent:
(a) Every deflation M −→ P splits.

(b) For every deflation M
e
−→ N and a morphism P

f
−→ N , there exists a morphism

P
g
−→M such that f = e ◦ g.

Proof. Obviously, (b)⇒ (a): it suffices to take f = id
P
.

(a) ⇒ (b). Since deflations are stable under any base change, there is a cartesian
square

M̃
f ′

−−−→ M

e′
y cart

y e

P
f

−−−→ N

whose left vertical arrow is a deflation. By (a), it splits; i.e. there is a morphism P
g
−→ M̃

such that e′ ◦ g = id
P
. Therefore, e ◦ (f ′ ◦ g) = (e ◦ f ′) ◦ g = (f ◦ e′) ◦ g = f .

1.2. Projective objects. Let (CX ,EX) be a right exact category. We call an object
P of CX a projective object of (CX ,EX), if it satisfies the equivalent conditions of 1.1. We
denote by PEX the full subcategory of CX generated by projective objects.

1.2.1. Example. Let (CX ,EX) be a right exact category whose deflations are split.
Then every object of CX is a projective object of (CX ,EX).

1.3. Functorialities and right exact categories with enough projective ob-
jects. We say that (CX ,EX) has enough projective objects if for every object N of CX
there exists a deflation P −→ N , where P is a projective object.

1.3.1. Proposition. Let (CX ,EX) and (CY ,EY ) be right exact categories, and let

CY
f∗

−→ CX be a functor having a right adjoint, f∗. If the functor f∗ maps deflations to
deflations, then f∗ maps projective objects to projective objects.
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Proof. Let P be a projective object of (CY ,EY ) and M
e
−→ f∗(P ) a deflation. Then,

by hypothesis, f∗(M)
f∗(e)
−−−→ f∗f

∗(P ) is a deflation. Since P is a projective object, there

exists an arrow P
t
−→ f∗(M) such that the diagram

P
t ւ ցη(P )

f∗(M)
f∗(e)
−−−→ f∗f

∗(P )

(1)

commutes (here η(P ) is an adjunction arrow). Then the composition f∗(P )
t′

−→ M of

f∗(P )
f∗(t)
−−−→ f∗f∗(M) and the adjunction morphism f∗f∗(M)

ε(M)
−−−→M splits the deflation

M
e
−→ f∗(P ). This follows from the commutativity of the diagram

f∗(P )
f∗(t) ւ ցf∗η(P )

f∗f∗(M)
f∗f∗(e)

−−−−−−−→ f∗f∗f
∗(P )

ε(M)
y

y εf∗(P )

M
e

−−−−−−−→ f∗(P )

(2)

and the equality εf∗ ◦ f∗η = Idf∗ .

1.3.1.1. Note. Let (CX ,EX) and (CY ,EY ) be right exact categories and CY
f∗

−→ CX
a functor having a right adjoint, f∗. The functor f∗ maps deflations to deflations iff it is
an ’exact’ functor from (CX ,EX) to (CY ,EY ).

The part ’if’ follows from the definition: a functor is ’exact’ if it maps deflations to
deflations and preserves pull-backs of deflations. On the other hand, f∗, as any functor
having a left adjoint, preserves limits; in particular, it preserves pull-backs. So that if f∗
preserves deflations it preserves also their pull-backs.

1.3.2. Proposition. Let (CX ,EX) and (CY ,EY ) be right exact categories, and let

CY
f∗

−→ CX be a functor having a right adjoint, f∗. Suppose that EY consists of all
split epimorphisms of CY and the functor f∗ maps deflations to deflations (that is split
epimorphisms) and reflects deflations (i.e. if f∗(t) is a split epimorphism, then t is a
deflation). Then (CX ,EX) has enough projective objects.

Proof. Since EY consists of split epimorphisms, all objects of CY are projective.
Therefore, by 1.3.1, every object of the form f∗(N), N ∈ ObCY , is projective. For every

object M of CX the adjunction morphism f∗f∗(M)
ε(M)
−−−→ M is a deflation, because the

morphism f∗ε(M) is a split epimorphism, hence, by hypothesis, it belongs to EY .
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1.3.3. Coinduced right exact structures and projective objects. Let (CX ,EX)

be a right exact category and CX
Φ
−→ CY a functor. Let ΦEY denotes the class of all

universally strict epimorphisms M
t
−→ L of the category CY such that for every morphism

Φ(L)
f
−→ L, there exists a commutative square

Φ(M)
f′

−−−→ M

Φ(s)
y

y t

Φ(L)
f

−−−→ L

where M
s
−→ L is a deflation.

1.3.3.1. Proposition. (a) The class of arrows ΦEY is a right exact structure on the
category CY .

(b) The functor CX
Φ
−→ CY maps projective objects of the right exact category

(CX ,EX) to projective objects of the right exact category (CY ,
Φ EY ).

Proof. (a) The argument is the same as in II.4.1(a).

(b) Let P be a projective object of (CX ,EX) and Φ(P)
f
−→ L an arbitrary morphism.

By definition of the class ΦEY , for any morphism M
t
−→ L from ΦEY , there exists a

commutative square

Φ(M)
f′

−−−→ M

Φ(s)
y

y t

Φ(P)
f

−−−→ L

where M
s
−→ P is a deflation. Since P is a projective object of (CX ,EX), the deflation

M
s
−→ P splits; that is s ◦ j = idP for some arrow P

j
−→M. Therefore t ◦ (f′ ◦Φ(j)) =

f◦Φ(s)◦Φ(j) = f, which shows that Φ(P) is a projective object of the right exact category
(CY ,

ΦEY ).

1.3.3.2. Note. If (CX ,EX) is a right exact category and CX
Φ
−→ CY is a full

functor, which maps deflations to universally strict epimorphisms, then Φ(EX) ⊆ ΦEY .

In fact, for any deflation Lu
u
−→ L in (CX ,EX) and any morphism Lξ

ξ
−→ L, we

have the image

Φ




Lt,ξ

ξu
−−−→ Lu

u′ξ

y cart
y u

Lξ
ξ

−−−→ L
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of the corresponding cartesian square whose vertical arrows are deflations.

1.3.4. Proposition. Let (CX ,EX) be a svelte right exact category with an initial
object and

(CX ,EX)
j⊛
X

−−−→ (CX⊛

E
,Es

X⊛

E

)

the canonical embedding of (CX ,EX) into the right exact category (CX⊛

E
,Es

X⊛

E

) (see

I.2.1.1).
(a) The functor j∗X maps projective objects of (CX ,EX) to projective objects of the

right exact category (CX⊛

E
,Es

X⊛

E

).

(b) If the right exact category (CX ,EX) has enough projective objects, then the right
exact category of sheaves (CX⊛

E
,Es

X⊛

E

) has enough projective objects too.

Proof. (a) It follows from I.2.2.1(b) that the canonical right exact structure Es
X⊛

E

on the

category CX⊛

E
coincides with the right exact structure coinduced by the full embedding

(CX ,EX)
j∗X
−−−→ (CX⊛

E
,Es

X⊛

E

). Therefore, by 1.3.3.1(b), the functor j⊛X maps projective

objects of (CX ,EX) to projective objects of the right exact category (CX⊛

E
,Es

X⊛

E

).

(b) For any object L of the category CX⊛

E
, consider all morphisms j⊛X(Pξ)

ξ
−→ L,

where Pξ runs through projective objects of the right exact category (CX ,EX). Let

∐

j⊛
X
(Pξ)

ξ
→L

j⊛X(Pξ)
ξL
−−−→ L (1)

be the corresponding morphism of the coproduct of the objects j⊛X(Pξ). The coproduct of
projective objects is a projective object. If there are enough projective objects in (CX ,EX),
then (1) is an epimorphism; hence it is a deflation in the right exact category (CX⊛

E
,Es

X⊛

E

).

1.4. Right exact structure with a given class of projective objects. Let CX
be a category and P a class of objects of CX . Let E(P) denote the class of all arrows

M
f
−→ L of CX such that the map CX(P,M)

CX(P,f)
−−−→ CX(P,L) is surjective for all

P ∈ P and, for any morphism N
g
−→ L, there exists a pull-back of f along g.

1.4.1. Lemma. The class E(P) is the class of covers of a Grothendieck pretopology.

Proof. Obviously, the class E(P) contains all isomorphisms and is closed under com-

positions. By assumption, for any arrow M
t
−→ L of E(P) and an arbitrary morphism
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N
g
−→ L of CX , there exists a cartesian square

M̃
g′

−−−→ M

t̃
y cart

y t

N
g

−−−→ L

(1)

The functor CX(P,−) preserves cartesian squares for any object P of CX . In particular,
the image

CX(P, M̃)
CX(P,g′)
−−−→ CX(P,M)

CX(P, t̃)
y cart

y CX(P, t)

CX(P,N)
CX(P,g)
−−−→ CX(P,L)

(2)

of (1) is a cartesian square. If P belongs to P, then its right vertical of (2) is surjective,

hence its left vertical arrow is surjective too. This shows that the pull-back M̃
t̃
−→ N of

the morphism t belongs to E(P).

1.4.2. Proposition. Let CX be a category. For any class of objects P of the category

CX , the class of morphisms Est
X(P)

def
= Est

X

⋂
E(P) is the finest among the right exact

structures EX on CX such that all objects of P are projective objects of (CX ,EX).

Proof. Recall that Est
X is the finest right exact structure on CX ; it consists of all

universal strict epimorphisms of CX . The intersection of Grothendieck pretopologies is
a Grothendieck pretopology. Since it is contained in Est

X , it is a right exact structure.
Evidently, any right exact structure EX such that all objects of P are projective objects
of (CX ,EX), is coarser than Est

X(P).

1.4.3. The closure of deflations. Let (CX ,EX) be a right exact category. We

denote by ĒX the class of all morphisms M
t
−→ L such that t◦γ ∈ EX for some morphism

γ and there exist pull-backs of t along all arrows to L.

1.4.3.1. Proposition. The class ĒX is a right exact structure on the category CX .

Proof. Obviously, EX ⊆ ĒX ; in particular, ĒX contains all isomorphisms of the
category CX . It remains to show that ĒX is stable under base change and compositions.

(a) Let M
t
−→ L be an arrow of ĒX and M

γ
−→M an arrow such that t ◦ γ ∈ EX .

By hypothesis, for any arrow L
f
−→ L, there exists a cartesian square

M
t̃

−−−→ L

f ′
y cart

y f

M
t

−−−→ L

(3)
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On the other hand, since t ◦ γ is a deflation and the class EX of deflations is stable
under pull-backs, we have a cartesian square

M̃
t̃1
−−−→ L

f ′′
y cart

y f

M
t◦γ
−−−→ L

(4)

whose horizontal arrows are deflations.

Notice that the deflation M̃
t̃1−→ L is the composition of M

t̃
−→ L and a morphism

M̃
γ̃
−→M uniquely determined by the commutativity of the diagram

M̃
γ̃

−−−→ M
t̃

−−−→ L

f ′′
y f ′

y cart
y f

M
γ

−−−→ M
t

−−−→ L

(5)

This follows from the fact that the square (4) yields a commutative square

M̃
t̃1
−−−→ L

γ ◦ f ′′
y cart

y f

M
t

−−−→ L

and the square (3) is cartesian.
This shows that an arbitrary pull-back of an arrow of ĒX belongs to ĒX .

(b) If M
t
−→ L and N

s
−→M are arrows from ĒX , then t ◦ s ∈ ĒX .

In fact, since both arrows, s and t have pull-backs along any morphism with the
same target, their composition has this property. It remains to show that there exists a
morphism ψ to N such that (t ◦ s) ◦ ψ is a deflation.

Let M
γ
−→M be a morphism such that t ◦ γ is a deflation. Consider the diagram

N
s̃

−−−→ M

γ′
y cart

y γ

N
s

−−−→ M
t

−−−→ L

(6)

with cartesian square. Since s ∈ ĒX and, by (a) above, ĒX is stable under base change,

the upper horizontal arrow, M̃
s̃
−→M, belongs to ĒX . Therefore, there exists a morphism

Ñ
λ
−→ N such that s̃ ◦ λ is a deflation. It follows from the diagram (6) that

(s ◦ t) ◦ (γ′ ◦ λ) = (t ◦ γ) ◦ (s̃ ◦ λ) ∈ EX ◦ EX = EX .
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(c) It follows from the argument above that elements of ĒX form a Grothendieck
pretopology. Notice that if the composition t◦γ is a deflation, hence a strict epimorphism,
then t is a strict epimorphism. So that ĒX is a right exact structure on CX .

1.4.3.2. Definition. Let (CX ,EX) be a right exact category. We call the refinement
ĒX of the right exact structure EX the closure of EX .

1.4.3.3. Note. Suppose that (CX ,EX) is a Karoubian right exact category. Then the

closure of EX consists of all universally strict epimorphisms M
t
−→ L such that t ◦ e ∈ EX

for some e ∈ EX .
In fact, let M

γ
−→M be a morphism such that t ◦ γ ∈ EX . Then the upper horizontal

arrow of the cartesian square

N
t̃

−−−→ My cart
y t ◦ γ

M
t

−−−→ L

splits. Since the right exact category (CX ,EX) is Karoubian, this arrow is a deflation.
The left vertical arrow is a deflation, because it is a pull-back of a deflation.

1.4.4. Proposition. Let (CX ,EX) be a right exact category. Then
(a) The right exact categories (CX ,EX) and (CX , ĒX) have the same class of projective

objects: PEX = PĒX
.

(b) If there are enough projective objects in (CX ,EX), then ĒX coincides with E(PEX ).
In particular, ĒX = E(PEX ) = Est

X(PEX ); that is ĒX is the finest right exact structure
on CX for which all objects of PEX are projective objects.

Proof. (a) Let M
t
−→ L be an arrow from ĒX and P

g
−→ L a morphism with P

projective of (CX ,EX). Since t ∈ ĒX , there exists a morphism M
γ
−→ M such that

t◦γ ∈ EX . Since P is a projective, there exists an arrow P
g′

−→M such that g = (t◦γ)◦g′.
So that g = t ◦ (γ ◦ g′).

(b) Suppose now that there are enough projective objects. Let M
s
−→ L be an arrow

of E(PEX ). Since there are enough projective objects, there exists a deflation P
e
−→ L

with P a projective of (CX ,EX). Since s ∈ E(PEX ), there exists an arrow P
γ
−→ M such

that e = s ◦ γ. By 1.4.1, the class of arrows E(PEX ) forms a Grothendieck pretopology. In
particular, there exist pull-backs of s along all arrows to L.

1.4.4.1. Corollary. For any class P of objects of a category CX , the finest right
exact structure EX = Est

X(P) on CX , for which all objects of P are projective objects (cf.
1.4.2), is closed: EX = ĒX .

Proof. This follows from 1.4.4(a).
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1.4.5. Proposition. Let (CX ,EX) and (CY ,EY ) be right exact categories, and let

CY
f∗

−→ CX be a functor having a right adjoint, f∗. Suppose that (CY ,EY ) has enough
projective objects and EY is closed (that is EY = ĒY ) and there exist pull-backs of the

adjunction arrows N
ηf (N)

−−−→ f∗f
∗(N) along morphisms f∗(t), where M ′ t

−→ f∗(N) is a
deflation. Then f∗ is an ’exact’ functor from (CX ,EX) to (CY ,EY ) iff the functor f∗

maps projective objects to projective objects.

Proof. The ’exactness’ of f∗ means precisely that it maps deflations to deflations
(see 1.3.1.1). Let M

e
−→ L be an arrow of EX . Notice, that there exists a pull-back of

f∗(M
e
−→ L) along any arrow N

ξ
−→ f∗(L).

In fact, to the arrow N
ξ
−→ f∗(L), there corresponds an arrow f∗(N)

ξ∨

−→ L. Since

M
e
−→ L is a deflation, there exists a cartesian square

M̃
ζ

−−−→ M

ẽ
y cart

y e

f∗(N)
ξ∨

−−−→ L

The functor f∗ maps it to a cartesian square – the right cartesian square in the diagram

N
γ

−−−→ f∗(M̃)
f∗(ζ)
−−−→ f∗(M)

p
y cart f∗(̃e)

y cart
y f∗(e)

N
ηf (N)

−−−→ f∗f
∗(N)

f∗(ξ
∨)

−−−→ f∗(L)

whose left cartesian square exists by hypothesis. Since the composition f∗(ξ
∨) ◦ ηf (N)

coincides with N
ξ
−→ f∗(L), the outer square of the diagram

N
f∗(ζ)◦γ
−−−→ f∗(M)

p
y cart

y f∗(e)

N
ξ

−−−→ f∗(L)

is a pull-back of f∗(e) along N
ξ
−→ f∗(L).

Since (CY ,EY ) has enough projective objects, there exists a deflation P
t
−→ f∗(L).

To the arrow t corresponds an arrow f∗(P )
t̂
−→ L. Since f∗(P ) is a projective, the arrow t̂

factors through the deflationM
e
−→ L. But, this implies that P

t
−→ f∗(L) factors through

f∗(M
e
−→ L). So that f∗(e) ◦ γ = t for some morphism P

γ
−→ f∗(M).
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1.5. Right exact categories of modules over monads. Fix a category CY such
that the class EsplY of split epimorphisms of CY is stable under base change. Equivalently,

for each split epimorphism M
t
−→ L and for an arbitrary morphism N

f
−→ L of the

category CY , there exists a cartesian square

M̃
f ′

−−−→ M

t̃
y cart

y t

N
f

−−−→ L

whose left vertical arrow splits, because the right vertical arrow t splits. In other words,
the pair (CY ,E

spl
Y ) is a right exact category.

Let F = (F, µ) be a monad on the category CY . Set CX = F −mod = (F/Y )−mod
(i.e. X = Sp(F/Y ) – the spectrum of the monad F) and denote by f∗ the forgetful functor

CX −→ CY . We set EX = f−1
∗ (EsplY ). Since f∗ preserves and reflects limits (in particular,

pull-backs), the arrows of EX are covers of a subcanonical pretopology, i.e. (CX ,EX)

is a right exact category. The functor f∗ has a left adjoint, V
f∗

7−→ (F (V ), µ(V )), and all
together satisfy the conditions of 1.3.2. Therefore, (CX ,EX) has enough projective objects.
Explicitly, it follows from (the argument of) 1.3.2 that objects f∗(V ) = (F (V ), µ(V )) are
projective objects of (CX ,EX) for all V ∈ ObCY , and for every F-module M = (M, ξ),

the action F (M)
ξ
−→M can be regarded as a canonical deflation from a projective object:

f∗f∗(M) = (F (M), µ(M))
ξ
−→M.

1.5.1. Proposition. Suppose that (CY ,E
spl
Y ) is a Karoubian right exact category

(i.e. CY is a Karoubian category and split epimorphisms are stable under base change).
Then for every monad F = (F, µ) on CY , the right exact category (F −mod,EX), where

EX is the induced by EsplY right exact structure, is Karoubian.

Proof. (a) The forgetful functor F −mod
f∗
−→ CY reflects and preserves limits; in par-

ticular, it reflects and preserves pull-backs. Therefore, the stability of split epimorphisms
of CY under base change implies the same property of split epimorphisms of F −mod.

(b) It remains to show that F − mod is a Karoubian category. Let M = (M, ξ)
be an F-module and p an idempotentM −→M. Since CY is a Karoubian category, the

idempotent f∗(M) =M
f∗(p)
−−−→M splits. By I.2.1, the latter is equivalent to the existence

of the kernel of the pair of arrows M

id
M
−→
−→
f∗(p)

M . Since the forgetful functor f∗ reflects and

preserves limits, in particular kernels of pairs of arrows, there exists the kernel of pair of

arrowsM
id
M
−→
−→

p
M; i.e. the idempotent p splits.
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1.5.2. Corollary. Let G = (G, δ) be a comonad on a Karoubian category CX .

Suppose that class IsplX of split monomorphisms in CX is stable under cobase change (i.e.

IsplX is a left exact structure on CX). Let IY be the preimage of IsplX in the category
CY = G−comod of G-comodules. Then (CY, IY) is a Karoubian left exact category having
enough injective objects.

Proof. The assertion is dual to that of 1.5.1. Further on, we need details which are
as follows. Let CY be the category G − comod of G-comodules with the exact structure
induced by the forgetful functor

CY = G − comod
g∗

−−−→ CX .

Its right adjoint

CX
g∗
−−−→ CY = G − comod, M 7−→ (G(M), δ(M)), (1)

maps every object M of the category CX to an EY-injective object. If the category CX is

Karoubian, then, for every objectM = (M,M
ν
−→ G(M)), the adjunction morphism

M
ν

−−−→ g∗g
∗(M) = (G(M), δ(M)) (2)

is an inflation of G-comodules (see the argument of the dual assertion 1.5.1).

1.5.3. Corollary. Under the conditions of 1.5.2, an object M = (M,ν) of the cate-

gory CY of G-comodules is IY-injective iff the adjunction morphismM
ν
−→ (G(M), δ(M))

splits (as a morphism of G-comodules).

1.5.4. Proposition. Suppose that CX is a Karoubian category whose split epimor-
phisms (resp. split monomorphisms) are stable under base (resp. cobase) change. Let
F = (F, µ) be a continuous monad on CX (i.e. the functor F has a right adjoint) and

f∗ the forgetful functor F − mod −→ CX . Set CX = F − mod, EX = f−1
∗ (EsplX ), and

IX = f−1
∗ (IsplX ). Then (CX,EX) is a right exact category with enough projective objects

and (CX, IX) is a left exact category with enough injective objects.

Proof. If the monad F = (F, µ) is continuous, i.e. the functor F has a right adjoint,

F !, then (and only then) the forgetful functor F −mod = CX
f∗
−→ CX has a right adjoint,

f !, such that F ! = f∗f
!. Thus, we have the comonad F ! = (F !, δ) corresponding to the

pair of adjoint functors f∗, f
! and an isomorphism of categories

F −mod
Φ

−−−→ F ! − comod
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which assigns to every F-module (M,F (M)
ξ
−→M) the F !-comodule (M,M

ξ̂
−→ F !(M))

determined (uniquely up to isomorphism) by adjunction. It follows that the diagram

F −mod
Φ

−−−→ F ! − comod
f∗ ց ւ g∗

CX

(3)

commutes. By 1.5.1, the category CX = F − mod has enough EX-injective objects. By
1.5.2, the category CY = F ! − comod has enough IY-injective objects. The functor Φ in
(3) is an isomorphism of exact categories, hence the assertion.

2. Coeffaceable functors, universal ∂∗-functors, and projective objects.

2.0. Coeffaceable functors. Let (CX ,EX) be a right exact category and CY a

category with an initial object. We call a functor CX
F
−→ CY coeffaceable, or EX-

coeffaceable, if, for any object L of CX , there exists a deflation M
t
−→ L such that F (t)

is a trivial morphism.

2.1. Projective deflations. Let (CX ,EX) be a right exact category. We call a
deflation P −→ L projective if it factors through any other deflationM−→ L.

One can see that an objectM is projective iff idM is a projective deflation. And any
deflationM−→ L in which the objectM is projective, is a projective deflation.

2.1.1. Coeffaceable functors and projective objects. If a functor CX
F
−→ CY

is EX -coeffaceable, then the morphism F (t) is trivial for any projective deflation t, and F
maps every projective object of (CX ,EX) to an initial object of CY .

In fact, a projective deflation M
t
−→ L factors through any other deflation of L; and,

by hypothesis, there exists a deflation M
e
−→ L such that F (e) is trivial. Therefore, the

morphism F (t) is trivial. An object M is projective iff id
M

is a projective deflation; and
the triviality of F (id

M
) means precisely that F (M) is an initial object.

So that if the right exact category (CX ,EX) has enough projective deflations (resp.

enough projective objects), then a functor CX
F
−→ CY is EX -coeffaceable iff F (e) is trivial

for any projective deflation e (resp. F (M) is an initial object for every projective object
M).

2.2. Universal ∂∗-functors and pointed projective objects. Let CZ be a
category with initial objects. We call an object M of CZ pointed if there are morphisms
from M to initial objects, or, equivalently, a unique morphism from an initial object to M
is splittable.

2.2.1. Proposition. Let (CX ,EX) be a right exact category with initial objects and
T = (Ti, di | i ≥ 0) a universal ∂∗-functor from (CX ,EX) to CY . Then Ti(P ) is an initial
object for any pointed projective object P and for all i ≥ 1.
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Proof. Let F denote the functor Ti, i ≥ 0. By II.3.3.2, Ti+1(P ) ≃ S−(F )(P ). Let x
be an initial object of CX and P a projective object of (CX ,EX) such that there exists a
morphism P −→ x. Then Ti+1(P ) ≃ S−(F )(P ) is an initial object.

In fact, consider the conflation x
i
P−→ P

id
P−→ P. If there exists a morphism P −→ x,

then the unique arrow x
i
P−→ P is a split monomorphism. Therefore F (i

P
) is a (split)

monomorphism. By II.1.1, the latter implies that Ker(F (i
P
)) is an initial object. Since

the object P is projective, any deflation M
e
−→ P is split; i.e. there exists a morphism

of deflations (P
id
P−→ P )

u
−→ (M

e
−→ P ). This implies that the canonical morphism

S−(F )(P ) −→ Ker(F (k(e)) factors through the morphism Ker(F (iP )) −→ Ker(F (k(e))
determined by the morphism of deflations u. Since Ker(F (iP )) = y is an initial object of
the category CY , it follows that the morphism Ker(F (iP )) −→ Ker(F (k(e)) is unique

(in particular, it does not depend on the choice of the section P
u
−→ M). Therefore, the

canonical morphism S−(F )(P ) −→ Ker(F (iP )) = y is an isomorphism.

2.2.2. Corollary. Let (CX ,EX) be a right exact category with initial objects and
T = (Ti, di | i ≥ 0) a universal ∂∗-functor from (CX ,EX) to CY . Suppose that (CX ,EX)
has enough projective objects and projective objects of (CX ,EX) are pointed objects. Then
the functors Ti are coeffaceable for all i ≥ 1.

Proof. The assertion follows from 2.2.1 and 2.1.

2.2.3. Note. If a right exact category (CX ,EX) has enough pointed objects, then
each of its projective objects is pointed. In fact, ”enough pointed objects” implies that,
for any projective P , there exists a deflation M −→ P with M a pointed object. This
deflation splits, because P is a projective object; so that there exists an arrow P −→M,
hence is an arrow from P to an initial object.

2.3. Proposition. Let (CX ,EX) and (CZ ,EZ) be right exact categories with initial

objects; and let CZ
f∗

−→ CX be a functor having a right adjoint f∗. Suppose that the
functor f∗ maps deflations of the form N −→ f∗(M) to deflations and the adjunction

arrow f∗f∗(M)
ǫ(M)
−−−→ M is a deflation for all M (which is the case if any morphism t

of CX such that f∗(t) is a split epimorphism belongs to EX). If the right exact category
(CZ ,EZ) has enough pointed objects, then each projective of (CX ,EX) is a pointed object.

If, in addition, f∗ maps deflations to deflations, then (CX ,EX) has enough projective
objects.

Proof. (a) Let M be an object of CX . Since (CZ ,EZ) has enough pointed objects,

there exists a deflation P̃
t
−→ f∗(M), where P̃ is a pointed object. By hypothesis, the

morphisms

f∗(P̃ )
f∗(t)
−−−→ f∗f∗(M)

ǫ(M)
−−−→M (1)
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are deflations. Since the functor f∗ has a right adjoint, if z is an initial object of the
category CZ , then f∗(z) is an initial object of the category CX . Therefore, the functor

f∗ maps pointed objects to pointed objects. In particular, the object f∗(P̃ ) in (1) is
pointed. Altogether shows that the right exact category (CX ,EX) has enough pointed
objects. Therefore, by 2.2.3, every projective object of (CX ,EX) is pointed.

(b) If, in addition, the functor f∗ maps deflations to deflations, then, by 1.3.1, its

left adjoint f∗ maps projective objects to projective objects. So that if the object P̃ in
the argument above is a projective, then the composition of the arrows (1) is a deflation
with a projective domain. This shows that the right exact category (CX ,EX) has enough
projective objects.

2.4. Note. The conditions of 2.3 can be replaced by the requirement that if
N −→ f∗(M) is a deflation, then the corresponding morphism f∗(N) −→M is a deflation.
This requirement follows from the conditions of 2.3, because the morphism f∗(N) −→M

corresponding to N
t
−→ f∗(M) is the composition of f∗(t) and the adjunction arrow

f∗f∗(M)
ǫ(M)
−−−→M .

2.5. Example. Let (CX ,EX) be the category Algk of associative k-algebras endowed
with the canonical (that is the finest) right exact structure. This means that class EX of
deflations coincides with the class of all are strict epimorphisms of k-algebras. Let (CY ,EY )
be the category of k-modules with the canonical exact structure, and f∗ the forgetful
functor Algk −→ k − mod. Its left adjoint, f∗ preserves (all colimits; in particular, it
preserves) strict epimorphisms, and the functor f∗ preserves and reflects deflations; i.e. a
k-algebra morphism t is a strict epimorphism iff f∗(t) is an epimorphism. In particular,
the adjunction arrow f∗f∗(A) −→ A is a strict epimorphism for all A. By 2.3, (CX ,EX)
has enough projective objects and each projective has a morphism to the initial object k;
that is each projective has a structure of an augmented k-algebra.

2.6. Proposition. Let (CX ,EX) and (CY ,EY ) be right exact categories with initial
objects; and let T = (Ti, di| i ≥ 0) be an ’exact’ ∂∗-functor from (CX , EX) to (CY ,EY ).

Suppose that E⊛

Y = Iso(CY ) and the functors Ti are EX-coeffaceable for i ≥ 1.
Then T is a universal ∂∗-functor.

Proof. Let T ′ = (T ′
i , d

′
i| i ≥ 0) be another ∂∗-functor from (CX , EX) to CY and f0 a

functor morphism T ′
0 −→ T0. Fix an object L of CX . Let N

j
−→M

e
−→ L be a conflation

such that T1(e) factors through the initial object y of CY . Then we have a commutative
diagram

T ′
1(M)

T ′
1(e)

−−−→ T ′
1(L)

d′

−−−→ T ′
0(N)

T ′
0(j)

−−−→ T ′
0(M)

T ′
0(e)

−−−→ T ′
0(L)

f0(N)
y

y f0(M)
y f0(L)

T1(M)
T1(e)
−−−→ T1(L)

d
−−−→ T0(N)

T0(j)
−−−→ T0(M)

T0(e)
−−−→ T0(L)

(1)
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Since the lower row of the diagram (1) is an ’exact’ sequence and the morphism

T1(M)
T1(e)
−−−→ T1(L)

factors through the initial object y of the category CY , the sequence

y −−−→ T1(L)
d

−−−→ T0(N)
T0(j)
−−−→ T0(M) (2)

is ’exact’. Since, by hypothesis, E⊛

Y = Iso(CY ), it follows from the ’exactness’ of (2)

that the canonical morphism from T1(L) to the kernel of T0(N)
T0(j)
−−−→ T0(M) is an

isomorphism. Therefore, there exists a unique morphism T ′
1(L)

f1(L)
−−−→ T1(L) such that

the diagram

T ′
1(L)

d′

−−−→ T ′
0(N)

T ′
0(j)

−−−→ T ′
0(M)

f1(L)
y f0(N)

y
y f0(M)

T1(L)
d

−−−→ T0(N)
T0(j)
−−−→ T0(M)

commutes. By a standard argument, it follows from the uniqueness of f1(L) and the
fact that the family of the deflations of L is filtered (since pull-backs of deflations are
deflations) that the morphism f1(L) does not depend on a choice of the conflation and the
family f1 = (f1(L) | L ∈ ObCX) is a functor morphism T ′

1 −→ T1 compatible with the
connecting morphisms d0, d

′
0.

2.6.1. Note. If a right exact category (CX ,EX) has enough projective objects and
(enough pointed objects, so that) each projective is a pointed object, then, by 2.2.2, for
any universal ∂∗-functor T , the functors Ti are EX -coeffaceable for i ≥ 1.

2.7. A refinement: acyclic objects. Let (CX ,EX) be a right exact category, CY a
category with initial objects, and F a functor from CX to CY . An objectM of the category
CX is called F -acyclic, if the higher images (– satellites) of the composition of F with the

Yoneda embedding CY
h∗
Y−→ C∗

Y map M to initial elements; that is Si−(h
∗
Y ◦ F )(M) is

an initial object of the category CY for all i ≥ 1.

2.7.1. Remarks. (a) It follows from 2.2.2 that every pointed projective is F -acyclic
for all functors F from the category CX .

(b) If (CX ,EX) is a right exact category and F is a functor CX −→ CY such that
there are enough F -acyclic objects, then, evidently, all higher images (satellites) of F are
coeffaceable.

2.7.2. Proposition. Let (CX ,EX), (CY ,EY ), and (CZ ,EZ) be right exact categories
with initial objects. Let T = (Ti, di| i ≥ 0) is a universal ’exact’ ∂∗-functor from (CX ,EX)
to (CY ,EY ) such that there are enough T0-acyclic objects.



Stable Categories and Homological Functors. 107

Suppose that E⊛

Z = Iso(CZ). Then, for any functor F from (CY ,EY ) to (CZ ,EZ)
which respects conflations, the composition F ◦ T = (F ◦ Ti, Fdi| i ≥ 0) is a universal
’exact’ ∂∗-functor.

Proof. Since T is a universal ∂∗-functor and there are enough T0-acyclic objects, the
functors Ti, i ≥ 1, map all T0-acyclic objects to initial objects of the category CY . If a

functor CY
F
−→ CZ preserves conflations, it maps initial objects to initial objects and the

composition and its composition F ◦ T = (F ◦ Ti, Fdi| i ≥ 0) with the ’exact’ ∂∗-functor
T is an ’exact’ ∂∗-functor. Since there are enough T0-acyclic objects and the functors
F ◦ Ti, i ≥ 1, map them to initial objects, all these functors are coeffaceable. Therefore,
by 2.6, the ∂∗-functor F ◦ T is universal.

2.8. A remark about (co)effaceable functors. Let CX be a category with initial
objects and B its subcategory. We say that an object M of CX is right (resp. left)
orthogonal to B if for every N ∈ ObB, there are only trivial morphisms, or no morphisms,
from N to M (resp. from M to N). We denote by B⊥ (resp. ⊥B) the full subcategory of
CX generated by objects right (resp. left) orthogonal to B.

Let (CX ,EX) and (CY ,EY ) be right exact categories, and let y be an initial object of
the category CY . The category Hom(CX , CY ) of functors from CX to CY has an initial
object, which is the constant functor with values in y. Let Rex((CX ,EX), (CY ,EY )) be
the full subcategory of Hom(CX , CY ) whose objects are right ’exact’ functors. And let
Effo((CX ,EX), CY ) denote the full subcategory of Hom(CX , CY ) generated by coefface-
able functors from (CX ,EX) to CY .

2.8.1. Proposition. Let (CX ,EX) be a svelte right exact category with enough
projective objects and (CY ,EY ) a right exact category with initial objects. Suppose that
CY is a category with kernels of morphisms and the morphisms from the initial objects of
CY are monomorphisms. Then Effo((CX ,EX), CY ) is right orthogonal to the subcategory
generated by all functors CX −→ CY which map deflations to strict epimorphisms.

Proof. Let F ∈ ObEffo((CX ,EX), CY ); and let G
φ
−→ F be a functor morphism,

where G is a functor which maps deflations to strict epimorphisms. Since (CX ,EX) has

enough projective objects, for each object L of CX , there exists a deflation P
e
−→ L such

that P is a projective object. Then we have a commutative diagram

G(P )
φ(P )
−−−→ F (P )

G(e)
y

y F (e)

G(L)
φ(L)
−−−→ F (L)

(1)

Since P is a projective object of (CX ,EX) and the functor F is coeffaceable, F (P ) is
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an initial object of the category CY . Therefore, the square (1) decomposes into

G(P )
γ

−−−→ Ker(φ(L))
λ

−−−→ F (P )

k(φ(L))
y cart

y F (e)

G(L)
φ(L)
−−−→ F (L)

(2)

where the morphism G(P )
γ
−→ Ker(φ(L)) is uniquely determined by the equalities

G(e) = k(φ(e)) ◦ γ and φ(P ) = λ ◦ γ. By hypothesis, G(e) is a strict epimorphism.
Therefore, it follows from the equality G(e) = k(φ(e)) ◦ γ that

Ker(φ(L))
k(φ(L))
−−−→ G(L)

is a strict epimorphism.
On the other hand, by I.4.1.2, the condition that the morphisms from initial objects are

monomorphisms means precisely that, for any morphism M
f
−→ N, the kernel morphism

Ker(f)
k(f)
−→M is a monomorphism. Therefore, Ker(φ(L))

k(φ(L))
−−−→ G(L), being a strict

epimorphism and a monomorphism, is an isomorphism. Therefore, it follows from the

cartesian square in (2) that G(L)
φ(L)
−−−→ F (L) factors through the initial object F (P );

i.e. it is a trivial morphism.

2.8.2. Proposition. Let (CX ,EX) be a svelte right exact pointed category with
enough projective objects, and let (CY ,EY ) be the category of pointed sets with the canonical

exact structure. Then a functor CX
F
−→ CY is coeffaceable iff it is a right orthogonal to

the subcategory Ex((CX ,EX), (CY ,EY )) of ’exact’ functors from (CX ,EX) to (CY ,EY ).

Proof. The fact that coeffaceable functors to CY are right orthogonal to ’exact’ func-
tors follows from 2.8.1, because ’exact’ functors map deflations to deflations, and deflations
in CY are strict epimorphisms.

Conversely, let a functor CX
F
−→ CY be right orthogonal to all right ’exact’ functors

from (CX ,EX) to CY . Notice that for any projective object P of (CX ,EX), the functor
P̌ = CX(P,−) is ’exact’. By the (dual version of) Yoneda lemma, Hom(P̌ , F ) ≃ F (P ).
By hypothesis, Hom(P̌ , F ) consists of the trivial morphism. So that F (P ) is trivial for
all projective objects P of (CX ,EX). Since (CX ,EX) has enough projective objects, this
means precisely that F is a coeffaceable functor.

The k-linear version of 2.8.2 is as follows.

2.8.3. Proposition. Let (CX ,EX) be a svelte right exact k-linear category with

enough projective objects. A k-linear functor CX
F
−→ k −mod is coeffaceable iff it is right
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orthogonal to the subcategory Exk((CX ,EX), k − mod) of ’exact’ k-linear functors from
(CX ,EX) to the abelian category k −mod.

Proof. The argument is similar to that of 2.8.2.

2.9. Digression: sheafification functor and weakly coeffaceable presheaves.

2.9.0. The Heller functor and sheafification. Let PS(X,CZ) denote the cat-
egory of presheaves on the category CX with values in the category CZ . We denote by
Sh((X,EX), CZ) the category of sheaves on the right exact category (CX ,EX) with values
in the category CZ . We assume that the category CZ has filtered colimits which commute
with kernels of pairs of arrows. Let HX denote the endofunctor of PS(X,CZ), which

assigns to every presheaf CopX
F
−→ CZ the presheaf HX(F ) defined by

HX(F )(N) = colim(Ker(F (M) −→−→ F (M ×N M))) (1)

where colimit is taken by the diagram EX(N) of deflations M −→ N.
The correspondence F 7−→ HX(F ) is functorial in F ; i.e. it extends to an endofunctor

PS(X,CZ)
HX

−−−→ PS(X,CZ)

The morphisms

F (N) −→ Ker(F (M) −→−→ F (M ×N M))

determine a morphism F (N)
τF (N)
−−−→ HX(F )(N) for every N ∈ ObCX which is functorial

in N ; i.e. it defines a functor morphism F
τF−→ HX(F ). The function F 7−→ τF is a

functor morphism from the identical functor to the endofunctor HX .

2.9.0.1. Note. The endofunctor PS(X,CZ)
HX

−−−→ PS(X,CZ) is a special case of
the Heller endofunctor on presheaves associated with a Grothendieck (pre)topology.

2.9.0.2. Monopresheaves and the Heller functor. A presheaf F on (CX ,EX) is

called a monopresheaf if for every deflation M
e
−→ N, the morphism F (N)

F (e)
−→ F (M)

is a monomorphism. There are the following facts:

(a) A presheaf of F is a monopresheaf (resp. a sheaf) iff the canonical morphism

F
τF
−−−→ HX(F ) is a monomorphism (resp. an isomorphism).

(b) The functor HX maps presheaves to monopresheaves and monopresheaves to
sheaves.
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It follows from (a) and (b) that the functor H2
X maps presheaves to sheaves and its

corestriction to the subcategory Sh((X,EX), CZ) of sheaves is isomorphic to the sheafifi-
cation functor t∗X . Or, what is the same, H2

X ≃ tX∗t
∗
X .

Another consequence of (a) and (b) is that the kernel of t∗X coincides with the kernel
of the functor HX .

2.9.1. Weakly coeffaceable presheaves. Let now CZ be the category k − mod
of modules over a commutative unital ring k. Recall that Mk(X) denotes the category
of k-linear presheaves of k-modules on the category CX and Shk(X,EX) the category of
k-linear sheaves of k-modules on the presite (CX ,EX).

We call a presheaf F weakly coeffaceable if, for every pair (N, ξ), where N ∈ ObCX
and ξ is an element of F (N), there exists a deflation M

e
−→ N such that F (e)(ξ) = 0.

Equivalently, for any object N of CX and any morphism N̂
ξ̃
−→ F, there exists a deflation

M
e
−→ N such that the composition of M̂

ê
−→ N̂ and ξ̃ equals to zero.

It follows from the formula (1) that a presheaf F belongs to the kernel of HX iff it is
weakly coeffaceable.

Thus, objects of the kernel SEX of the sheafification functor Mk(X)
t∗X−→ Shk(X)

are precisely weakly coeffaceable presheaves. Since the functor t∗X is a flat localization,
SEX is a Serre subcategory of the categoryMk(X), and the category of sheaves Shk(X)
is equivalent to the quotient categoryMk(X)/SEX .

3. The structure of universal ∂-functors to cocomplete categories.

3.1. Observations. Let (CX , IX) be a svelte left exact category with a final object x
and CY a category with a final object y and arbitrary colimits. Then, by the (dual version
of the) argument of II.3.3.2, we have an endofunctor S+ of the category Hom(CX , CY )

of functors from CX to CY , together with a cone y
λ
−→ S+, where y is the constant

functor with the values in the final object y of the category CY . For any conflation

E = (N
j
−→M

e
−→ L) of (CX , IX) and any functor CX

F
−→ CY , we have a commutative

diagram

F (N)
F j
−−−→ F (M)

F e
−−−→ F (L)y

y d0(E)

y
λ(N)
−−−→ S+F (N)

(1)

Here S+F (N) = colim(Cok(F (M ′ e′

−→ N))), where the colimit is taken by the diagram of

all conflations N
j′

−→M ′ e′

−→ L (see the argument of II.3.3.2). By I.2.0.2(a), the functor

of composition with the Yoneda embedding CX
h∗
X−→ C∗

X of CX into the category C∗
X of
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non-trivial presheaves of sets on CX ,

Hom(C∗
X , CY )

◦h∗
X

−−−→ Hom(CX , CY ), G 7−→ G ◦ h∗X ,

establishes an equivalence between the category Hom(CX , CY ) of functors from CX to
CY and the full subcategory Hom(C∗

X , CY ) of the category Hom(C∗
X , CY ) generated by

all functors C∗
X −→ CY preserving colimits. Let F ⋄ denote a (determined uniquely up

to isomorphism) functor from Hom(C∗
X , CY ) corresponding to F , i.e. F = F ⋄ ◦ h∗X .

Since the functor F ⋄ preserves colimits, the formula for S+F (N) can be rewritten as
follows:

S+F (N) = colim(Cok(F (M ′ e′

−→ N))) = colim(Cok(F ⋄(M̂ ′ ê′

−→ N̂)))

= F ⋄(colim(Cok(M̂ ′ ê′

−→ N̂))) = F ⋄ ◦ S+h
∗
X(N) = F ⋄ ◦ Ext1X,IX (N).

(2)

where colimit is taken by the diagram of all conflations N
j′

−→ M ′ e′

−→ L with the fixed

object N , or, what is the same, by the diagram of all inflations N
j′

−→M ′ of N .

3.2. A structure of a Z+-category on C∗
X . We denote by Θ̂∗

X the preserving
colimits functor C∗

X −→ C∗
X corresponding to Ext1X,IX ; that is, in the notations of 3.1,

Θ̂∗
X = (Ext1X,IX )

⋄. Thus, a left exact structure IX on the category CX determines a
canonical structure of a Z+-category on the category C∗

X .

3.3. Standard triangles. Taking as F the Yoneda functor hX (and setting N̂ =
hX(N)), we obtain from the diagram (1) the diagram

N̂
ĵ

−−−→ M̂
ê

−−−→ L̂y
y d0(E)

x̂
λ(N̂)
−−−→ Θ̂∗

X(N̂)

(1)

3.3.1. Definition. We call the subdiagram

N̂
ĵ

−−−→ M̂
ê

−−−→ L̂
d0(E)
−−−→ Θ̂∗

X(N̂)

of the diagram (1) a standard triangle.

3.3.2. Note. If CX is a pointed category, then the presheaf x̂ = CX(−, x) is both
a final and an initial object of the category C∗

X . In particular, the morphism

x̂
λ(N̂)
−−−→ Θ̂∗

X(N̂)
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in (1) is unique; hence it is not a part of the data.

3.4. Triangles in the category of presheaves. A triangle is any diagram in C∗
X

of the form
N

j
−→M

e
−→ L

d
−→ Θ̂∗

X(N ),

which is isomorphic to a standard triangle. It follows that, for every triangle, the diagram

M
e

−−−→ Ly
y d

x̂
λ(N )
−−−→ Θ̂∗

X(N )

commutes. Triangles form a category TrX∗ : morphisms from

N
j

−−−→M
e

−−−→ L
d

−−−→ Θ̂∗
X(N )

to

N ′
j′

−−−→M′
e′

−−−→ L′
d′

−−−→ Θ∗
X(N ′)

are given by commutative diagrams

N
j

−−−→ M
e

−−−→ L
d

−−−→ Θ̂∗
X(N )

f
y

y g
y h

y Θ̂∗
X(f)

N ′
j′

−−−→ M′
e′

−−−→ L′
d′

−−−→ Θ̂∗
X(N ′)

The composition is obvious.

3.5. Prestable category of presheaves. Thus, the left exact structure IX on the
category CX produces the data (C∗

X , I
∗
X , Θ̂

∗
X ,TrX∗), where I∗X is the coarsest left exact

structure on C∗
X which is closed under filtered colimits and makes the Yoneda embedding

CX
h∗
X−→ C∗

X an ’exact’ functor from (CX , IX) to (C∗
X , I

∗
X) (see the argument of II.9.1),

Θ̂∗
X a continuous endofunctor of C∗

X corresponding to Ext1X , TrX∗ the category of triangles

on the category of presheaves. We call the data (C∗
X , I

∗
X , Θ̂

∗
X ,TrX∗) the prestable category

of presheaves on the left exact category (CX , IX).

Notice that already (C∗
X , Θ̂

∗
X ,TrX∗) contains all the information about the universal

∂-functor Ext•X = (ExtiX , di | i ≥ 0), and, therefore, due to the universality of Ext•X ,
all the information about all universal ∂-functors from the left exact category (CX , IX)

to cocomplete categories. In fact, the universal ∂-functor Ext•X is of the form (Θ̂∗n
X ◦

hX , Θ̂
∗n
X (d0)|n ≥ 0); and for any functor F from CX to a category CY with colimits and
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final objects, the universal ∂-functor (Ti, di | i ≥ 0) from (CX , IX) to CY with T0 = F is
isomorphic to

F ⋄ ◦ Ext•X = (F ⋄Θ̂∗n
X , F ⋄Θ̂∗n

X (d0) | n ≥ 0) ◦ h∗X . (1)

Here d0 = (d0(E)), where E runs through conflations, and d0(E) is a connecting morphism
in the diagram 3.3(1).

3.5.1. A ”presuspended” structure on the category C∧
X . Following (the argu-

ment of) I.2.0.2(c), for any presheaf of sets G on CX , we consider the presheaf of sets

θ̂X∗(G)(−) = C∧
X(Ext1X,IX (−),G), (1)

where Ext1X,IX = S+hX – the derived functor of the Yoneda embedding CX
hX−→ C∧

X

(see II.8.2.2). The map G 7−→ θ̂X∗(G) extends to an endofunctor C∧
X

θ̂X∗−→ C∧
X . It follows

from the definition of θ̂X∗ (and the Yoneda’s formula) that

C∧
X(Ext1X,IX (−),G) = θ̂X∗(G)(−) ≃ C

∧
X(−, θ̂X∗(G)). (2)

Let θ̂∗X denote the continuous functor C∧
X −→ C∧

X corresponding to Ext1X,IX . It

follows from the definition of the functor θ̂X∗ (and 7.0.2(c)) that

C∧
X(θ̂∗X(−),G) ≃ C∧

X(−, θ̂X∗(G)),

that is the functor θ̂X∗ is a right adjoint to θ̂∗X .
The triangles are the same as in 3.4. Namely, a triangle is a diagram

N
j
−→M

e
−→ L

d
−→ θ̂∗X(N ),

which is isomorphic to a standard triangle, that is a diagram

N̂
ĵ

−−−→ M̂
ê

−−−→ L̂
d0(E)
−−−→ θ̂∗X(N̂) = Θ̂∗

X(N̂)

for a conflation E = (N
j
−→M

e
−→ L).

3.6. Functorialities.

3.6.1. Preliminary remarks. By I.2.0.2, there is a natural equivalence between
the category Hom(CX , CY ) of functors from CX and CY and the full subcategory
Hom(C∗

X , C
∗
Y ) of the category Homc(C

∗
X , C

∗
Y ) generated by all those functors from C∗

X
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to C∗
Y which map representable presheaves to representable presheaves and preserve col-

imits. This equivalence assigns to any functor CX
F
−→ CY the (unique up to isomorphism)

continuous functor C∗
X

F∗

−→ C∗
Y such that the diagram

CX
h∗
X

−−−→ C∗
X

F
y

y F ∗

CY
h∗
Y

−−−→ C∗
Y

commutes.

3.6.1.1. Lemma. Let (CX , IX) be a svelte left exact category with final objects, CY
a svelte category with final objects, and CZ a category with colimits. Then, for any pair of

functors CX
F
−→ CY

G
−→ CZ , the continuous functor

C∗
X

(G◦F )⋄

−−−→ CZ ,

which is determined (uniquely up to isomorphism) by the equality (G ◦F )⋄ ◦ h∗X = G ◦F,
is isomorphic to the composition G⋄ ◦ F ∗.

Proof. By definition, G⋄ is a preserving colimits functor C∗
Y −→ CZ such that

G⋄ ◦ h∗Y = G. The composition of preserving colimits functors preserves colimits; so that
the functor G⋄ ◦ F ∗ preserves colimits. By definition of the functor F ∗, we have:

(G⋄ ◦ F ∗) ◦ h∗X = G⋄ ◦ (h∗Y ◦ F ) = G ◦ F,

whence the assertion.

3.6.2. Proposition. Let (CX , IX) be a svelte left exact category with final objects,
CY a svelte category with final objects, and CZ a category with colimits. Then, for any

pair of functors CX
F
−→ CY

G
−→ CZ , we have the following formula:

S•
+(G ◦ F ) = G⋄ ◦ F ∗ ◦ Ext•X,IX = G⋄ ◦ F ∗ ◦ (Θ̂∗n

X , F ∗Θ̂∗n
X (d0) | n ≥ 0) ◦ h∗X . (1)

Proof. The fact follows from 3.6.1.1 and the formula (1) in 3.5.

3.6.3. Remarks. (a) Suppose that both categories CY and CZ in 3.6.2 have colimits.
Then there is a canonical morphism

G⋄ ◦ F ∗ −→ G ◦ F ⋄, (2)
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which is due to the equalities G⋄ ◦ F ∗ ◦ h∗X = G ◦ F = G ◦ F ⋄ ◦ h∗X and the fact that, for
any presheaf of sets F,

G⋄◦F ∗(F) = colimG◦F◦(h∗X/F −→ CX) and G◦F ∗(F) = G(colim F◦(hX/F −→ CX)),

where h∗X/F −→ CX is the forgetful functor.

(b) Since the the category CZ in 3.6.2 has colimits, the ∂-functor S•
+(G ◦ F ) is well

defined. Suppose that the ∂-functor S•
+(F ) exists. Then there is a natural morphism

S•
+(G ◦ F ) = G⋄ ◦ F ∗ ◦ Ext•X,IX −−−→ G ◦ F ⋄ ◦ Ext•X,IX = G ◦ S•

+(F ), (3)

This follows from the universality of the ∂-functor S•
+(G ◦ F ) and the fact that its

zero component coincides with the zero component of the ∂-functor G ◦ S•
+(F ).

3.6.4. Functoriality of prestable category of presheaves. Let (CX , IX) and

(CY , IY ) be svelte left exact categories with final objects and CX
F
−→ CY a functor which

preserves conflations; that is F is a weakly ’exact’ functor from (CX , IX) to (CY , IY ). Then

the corresponding (preserving colimits) functor C∗
X

F∗

−→ C∗
Y (cf. 3.6.1) is a weakly ’exact’

functor from the left exact category (C∗
X , I

∗
X) of presheaves on (CX , IX) to the left exact

category (C∗
Y , I

∗
Y ) of presheaves on (CY , IY ).

Since F is a weakly ’exact’ functor from (CX , IX) to (CY , IY ), its composition with
∂-functors from (CY , IY ) produces ∂-functors (see II.2.1). In particular, Ext•Y,IY ◦F is a
∂-functor. On the other hand, S•

+(h
∗
Y ◦ F ) is a universal ∂-functor having the same zero

component as Ext•Y,IY ◦ F. Therefore, there exists a unique morphism

S•
+(h

∗
Y ◦ F ) −−−→ Ext•Y,IY ◦ F (4)

of ∂-functors. Notice that

Ext•Y,IY ◦ F = (Θ̂•
Y , Θ̂

•
Y (d0)) ◦ h

∗
Y ◦ F = (Θ̂•

Y , Θ̂
•
Y (dY )) ◦ F

∗ ◦ h∗X .

On the other hand,

S•
+(h

∗
Y ◦ F ) = S•

+(F
∗ ◦ h∗X) = F ∗ ◦ (Θ̂•

X , Θ̂
•
X(dX)) ◦ h∗X .

Since functors F ∗, Θ̂X , Θ̂Y and all their compositions are continuous, the morphism
(4) induces (and is determined by) a morphism

F ∗ ◦ (Θ̂•
X , Θ̂

•
X(dX)) −−−→ (Θ̂•

Y , Θ̂
•
Y (dY )) ◦ F

∗. (5)

In particular, there is a canonical morphism F ∗ ◦ Θ̂X −→ Θ̂Y ◦ F
∗.



116 Chapter 3

3.6.5. Proposition. Let (CX , IX) and (CY , IY ) be svelte left exact categories with

final objects and (CX , IX)
F
−−−→ (CY , IY ) a weakly ’exact’ functor. Suppose that the left

exact category (CX , IX) has enough pointed injective objects and all morphisms of IY with
trivial cokernel are isomorphisms. Then the morphisms (4) and (5) are isomorphisms. In

particular, the canonical morphism F ∗ ◦ Θ̂X −→ Θ̂Y ◦ F
∗ is an isomorphism.

Proof. In fact, since the ∂-functor Ext•Y is ’exact’ and F is a weakly ’exact’ functor
from (CX , IX) to (CY , IY ), their composition, Ext•Y ◦ F is an ’exact’ ∂-functor from
(CX , IX) to C∗

Y , I
∗
Y ). Since the left exact category (CX , IX) has enough pointed injective

objects, by (the dual version of) 3.6.1, the ’exact’ functor Ext•Y,IY ◦ F is universal.
Therefore, since the zero component of the ∂-functor morphism (4) is an isomorphism, the
morphism (4) is an isomorphism.

3.6.6. Corollary. Let (CX , IX) and (CY , IY ) be svelte left exact categories with

final objects and (CX , IX)
F
−−−→ (CY , IY ) a weakly ’exact’ functor. Suppose that the left

exact category (CX , IX) has enough pointed injective objects and all morphisms of IY with
trivial cokernel are isomorphisms. Then, for any functor G from the category CY to a
cocomplete category, the natural morphism

S•
+(G ◦ F ) −−−→ S•

+(G) ◦ F

(which is due to universality of the ∂-functor on the left and the fact that the zero compo-
nents of both ∂-functors coincide) is an isomorphism.

Proof. In fact, S•
+(G) ◦F = G∗ ◦Ext•Y,IY ◦F and, by 3.6.5, under the hypothesis, the

natural morphism F ∗ ◦ Ext•X,IX −→ Ext•Y,IY ◦ F is an isomorphism. Therefore,

S•
+(G) ◦ F = G∗ ◦ Ext•Y,IY ◦ F ≃ G

∗ ◦ (F ∗ ◦ Ext•X,IX ) = G∗ ◦ F ∗ ◦ Ext•X,IX .

But, by 3.6.2, G∗ ◦ F ∗ ◦ Ext•X,IX ≃ S
•
+(G ◦ F ).

3.6.7. An application. Let F1 and F2 be weakly ’exact’ functors from a left

exact category (CX , IX) to a left exact category (CY , IY ); and let F1
ρ
−→ F2 a functor

morphism. Let G be a functor from a the category CY to a cocomplete category CZ . We
have a (quasi-)commutative diagram

S•
+(G ◦ F1)

S•
+(G(ρ))

−−−→ S•
+(G ◦ F2)y

y

S•
+(G) ◦ F1

S•
+(G)(ρ)

−−−→ S•
+(G) ◦ F2
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of ∂-functor morphisms. Suppose that the left exact category (CX , IX) has enough in-
jective objects and morphisms of IY with a trivial cokernel are isomorphisms. Then, by
3.6.6, the vertical arrows are isomorphisms. Therefore,

G ◦ F1

G(ρ)
−−−→ G ◦ F2

is an isomorphism iff

S•
+(G) ◦ F1

S•
+(G)(ρ)

−−−→ S•
+(G) ◦ F2

is an isomorphism.

3.7. The stable category of presheaves of sets on a left exact category.
Given a left exact category (CX , IX), we denote by CX∗

s
the quotient category Σ−1

Θ̂∗
X

C∗
X ,

where Σ
Θ̂∗
X

denote the class of all arrows t of C∗
X such that Θ̂∗

X(t) is an isomorphism. The

endofunctor Θ̂∗
X induces a conservative endofunctor ΘX∗

s
of the category CX∗

s
.

We denote by TrX∗
s
the category of all diagrams of the form

L −→M −→ N −→ ΘX∗
s
(L)

in the category CX∗
s
, which are isomorphic to the images of (standard) triangles. The

objects of the category TrX∗
s
will be also called triangles.

We call the triple (CX∗
s
,ΘX∗

s
,TrX∗

s
) the stable category of presheaves of sets on the

left exact category (CX , IX).

4. Acyclic objects and resolutions.

4.1. Left ’exact’ functors with enough acyclic objects. Let (CX , IX) and

(CY , IY ) be left exact categories with final objects and CX
F
−→ CY a functor.

We assume that the morphisms of IY with a trivial cokernel are isomorphisms.

4.1.0. Let E = (L −→M0 −→ L1) be a conflation in (CX , IX) such that M0 is an
F -acyclic object. Then the corresponding long sequence splits into shorter sequences

F (L) −−−→ F (M0) −−−→ F (L1)
d0(E)
−−−→ S+F (L) −→ S+F (M0) = y

Sn+F (M0) = y −−−→ Sn+F (L1)
dn(E)
−−−→ Sn+1

+ F (L) −−−→ y = Sn+1
+ F (M0)

(1)

for n ≥ 1. Here y is a final object of the category CY .
If the functor F is weakly left ’exact’ and the left exact category (CY , IY ) satisfies the

property (C5), then, by the dual version of II.6.3, all sequences (1) are ’exact’. So that, in
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this case, the morphism F (L1)
d0(E)
−−−→ S+F (L) is the cokernel of F (M0) −→ F (L1)

and the connecting morphisms

Sn+F (L1)
dn(E)
−−−→ Sn+1

+ F (L)

are isomorphisms for n ≥ 1.

Let (CX , IX) and (CY , IY ) be left exact categories with final objects and CX
F
−→ CY

a weakly left ’exact’ functor such that there are enough F -acyclic objects. Then, for any
object L of the category CX , we can construct a sequence of morphisms

L = L0 −→M0 −→ L1 −→M1 −→ L2 −→ . . . −→ Li −→Mi −→ Li+1 −→ . . . (2)

where Ei = (Li −→ Mi −→ Li+1) are conflations for all i ≥ 0 and all Mi are F -acyclic
objects. Therefore, we have ’exact’ sequences

F (Ln) −−−→ F (Mn) −−−→ F (Ln+1)
d0(En)
−−−→ S+F (Ln) −−−→ y (3)

and isomorphisms

S+F (Ln+1)
d1(En)
−−−→ S2

+F (Ln) (4)

for n ≥ 0 (which are due to the assumption that morphisms of IY with trivial cokernel are
isomorphisms). The isomorphisms (4) yield canonical isomorphisms

S+F (Ln)
∼−→ Sn+1

+ F (L0) = Sn+1
+ F (L), n ≥ 1. (5)

Thus, for n ≥ 2, the satellites Sn+F (L) can be obtained from (5) – as the first satellites
of the functor F at the objects Ln−1; and S+F (L) is determined by the exact sequence

F (L) −−−→ F (M0) −−−→ F (L1)
d0(E0)
−−−→ S+F (L) −−−→ y (6)

which is the sequence (3) above for n = 0.

4.1.1. Proposition. Let (CX , IX), (CY , IY ), (CZ , IZ) be svelte left exact categories;

and let (CZ , IZ) satisfy (C5). Let (CX , IX)
F
−−−→ (CY , IY ) be a weakly ’exact’ functor,

and (CY , IY )
G
−−−→ (CZ , IZ) a weakly left ’exact’ functor. Suppose that the category

CX has enough F -acyclic objects M such that F (M) is a G-acyclic object and that every
morphisms of IZ with trivial cokernel is an isomorphism. Then the natural morphism
S•
+(G ◦ F ) −−−→ (S•

+G) ◦ F is an isomorphism.



Stable Categories and Homological Functors. 119

Proof. Let L be an object of CX and

L = L0
j0−→M0

c0−→ L1
j1−→M1

c1−→ L2 −→ . . . −→ Li
ji−→Mi

ci−→ Li+1 −→ . . . (7)

a sequence of morphisms such that Ei = (Li
ji−→ Mi

ci−→ Li+1) is a conflation for every
i ≥ 0 and all Mi are F -acyclic objects such that F (Mi) are G-acyclic objects. Since the
functor F is weakly ’exact’, it maps (7) to a sequence with the similar properties with

respect to the functor G: F (Ei) = (F (Li)
F (ji)
−−−→ F (Mi)

F (ci)
−−−→ F (Li+1)) is a conflation

for every i ≥ 0 and all F (Mi) are G-acyclic objects. Therefore, the satellites of G at the
object F (L) are computed via formulas following from the (3) and (5) above.

Namely, Sn+G(F (L)) is the cokernel of the morphism

G(F (Mn−1))
GF (cn−1)

−−−−−−−→ G(F (Ln)), n ≥ 1.

But, the same formulas compute the satellites Sn+(G ◦ F )(L).

4.1.2. Corollary. Let the conditions of 4.1.1 hold and, in addition, the composition
G ◦ F of the functors is a weakly ’exact’ functor from (CX , IX) to (CZ , IZ). Then the
object F (M) is G-acyclic for all objects M of the category CX .

Proof. It follows from the isomorphism

S•
+(G ◦ F )

∼−→ (S•
+G) ◦ F (8)

established in 4.1.1 that every F -acyclic object M such that F (M) is a G-acyclic object is
an G◦F -acyclic object. So that the left exact category (CX , IX) has enough G◦F -acyclic
objects. Since the functor G ◦ F is weakly ’exact’, this implies that Sn+(G ◦ F )(M) is an
initial object for n ≥ 1. But, then the isomorphism (8) says that Sn+G(F (M)) is the initial
object for all n ≥ 1 and all objects M of the category CX , hence the assertion.

4.1.3. Note. The conditions of 4.1.2 appear in the most basic context of noncommu-
tative (and commutative) algebraic geometry. Namely, a locally affine ’space’ over a ’space’

Z is given by a continuous (”global sections”) morphism X
f
−→ Z and a locally affine cover,

which is a (weakly) flat morphism U
u
−→ X whose inverse image functor CX

u∗

−→ CU is
(weakly) exact (which means that it preserves kernels of coreflexive pairs of arrows) and

conservative, and such that the composition U
f◦u
−→ Z is affine. In particular, its direct

image functor CU
f∗u∗

−−−→ CX is exact. If the locally affine ’space’ is semi-separated, then
the direct image functor CU

u∗−→ CX is exact too. For every object L of the category CX,
the adjunction morphism L −→ u∗u

∗(L) is an inflation for a natural left exact structure
on CX associated with this picture. We can use this fact to construct a canonical sequence
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(2) with all Mn being of the form u∗u
∗(Ln); hence all of them are f∗-acyclic objects. So

that we compute the satellites of the ”global sections” functor f∗ using this sequence.

4.1.4. Proposition. Let F1 and F2 be weakly ’exact’ functors from a left exact

category (CX , IX) to a left exact category (CY , IY ); and let F1
ρ
−→ F2 a functor morphism.

Let (CZ , IZ) be a left exact category satisfying (C5) and (CY , IY )
G
−−−→ (CZ , IZ) a

weakly left ’exact’ functor such that G ◦ F1

Gρ
−−−→ G ◦ F2 is an epimorphism.

If the category (CX , IX) has enough pointed injective objects, then the morphism

S•
+(G) ◦ F1

S•
+(G)(ρ)

−−−→ S•
+(G) ◦ F2

is an epimorphism.

Proof. (a) Let L be an object of CX and

L = L0
j0−→M0

c0−→ L1
j1−→M1

c1−→ L2 −→ . . . −→ Li
ji−→Mi

ci−→ Li+1 −→ . . . (7)

a sequence of morphisms such that Ei = (Li
ji−→ Mi

ji−→ Li+1) is a conflation for every
i ≥ 0 and all Mi are injective objects. We have commutative diagrams

G ◦ F1(L) −−−→ G ◦ F1(M0) −−−→ G ◦ F1(L1)
d0(E0)
−−−→ S+(G) ◦ F1(L) −→ y

Gρ(L)
y

y Gρ(M0)
y Gρ(L1)

y S+G(ρ(L))

G ◦ F2(L) −−−→ G ◦ F2(M0) −−−→ G ◦ F2(L1)
d0(E0)
−−−→ S+(G) ◦ F2(L) −→ y

(8)
with ’exact’ rows. Therefore, the extreme right vertical arrow, S+Gρ(L), is an epimor-

phism, if the previous vertical arrow, G ◦ F (L1)
Gρ(L1)
−−−→ G ◦ F2(L1), is an epimorphism.

Since, by hypothesis, G ◦ F1

Gρ
−−−→ G ◦ F2 is an epimorphism, this shows that

S+G ◦ F1

S+Gρ

−−−→ S+G ◦ F2

is an epimorphism.
(b) It follows from the commutative square

S+G ◦ F1(Ln)
∼−→ Sn+1

+ G ◦ F1(L)

S+G(ρ(Ln))
y

y Sn+1
+ (G)(ρ(L))

S+G ◦ F2(Ln)
∼−→ Sn+1

+ G ◦ F2(L)

that Sn+1
+ (G)(ρ(L)) is an epimorphism for all n ≥ 1.
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4.1.5. Remarks. (a) In 4.1.4, the requirement of having enough pointed injective
objects in (CX , IX) can be replaced by demanding the existence of enough objects M of
the category CX which are Fi-acyclic and Fi(M) are G-acyclic, i = 1, 2.

By 4.1.1, this condition implies that the natural morphisms

S•
+(G ◦ Fi) −−−→ (S•

+G) ◦ Fi

are isomorphisms.
(b) Let S be any class of arrows of the category CZ which is closed under composition

and has the property: if both horizontal arrows in the commutative square

M −−−→ Ly
y

M −−−→ L

in the category CZ are deflations and the left vertical arrow belongs to S, then the right
vertical arrow belongs toS too. The class of epimorphisms, the class of strict epimorphisms
and natural classes of deflations satisfy this condition.

The argument of 4.1.4 shows that if Gρ(N) ∈ S for all N ∈ ObCY , then S
i
+(Gρ)(N)

belongs to the class S for all N ∈ ObCY and i ≥ 0.

4.2. Satellites and resolutions.

4.2.1. The image of a morphism. The notion of the image of a morphism is dual
to the notion of the coimage discussed in I.4.5. Below, we provide the direct definition
leaving the dualization of the assertions of Section I.4.5 to the reader.

Let CX be a category with a final object x. Let M
f
−→ N be an arrow which has a

cokernel, that is we have a cocartesian square

M
f

−−−→ N

iM

y cocart
y c(f)

x
fx
−−−→ C(f)

(1)

which gives rise to a pair of arrows N
c(f)

−→
−→
0f

C(f), where 0f is the composition of the

unique morphism N
iN−→ x and the morphism x

fx
−→ C(f). If the kernel of this pair of

arrows exists, it is called the image of f and denoted by Im(f).

Notice that the morphism M
f
−→ N equalizes the pair N

c(f)

−→
−→
0f

C(f). Therefore,

if there exists the image of M
f
−→ N, then it is the composition of the canonical strict

monomorphism Im(f)
if
−→ N and a uniquely defined morphism M

f̄
−→ Im(f).
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4.2.1.1. Lemma. Let M
f
−→ N be a morphism which has cokernel and image.

There is a natural isomorphism C(f) ∼−→ C(if ) between the cokernel of the morphism

M
f
−→ N and the cokernel of the canonical embedding Im(f)

if
−→ N.

Proof. This fact is the dual version of I.4.5.1.

4.2.2. The cohomology of a complex. Let (CX , IX) be a left exact category with
a final object x; and let

M• = (L =M−1

g−1

−−−→ M0

g0
−−−→ M1

g1
−−−→ M2

g2
−−−→ . . .) (2)

be a complex; that is, for every n ≥ −1, the composition of the arrows

Mn

gn
−−−→ Mn+1

gn+1

−−−→ Mn+2

uniquely factors through the final object x; or, equivalently, gn+1 factors uniquely through

the cokernel Mn+1

c(gn)
−−−→ C(gn) of the arrow gn. Since there is a uniquely defined

morphism from the final object x to C(gn) (and the unique morphism from Mn+1 to x),

the latter condition determines a trivial morphism Mn+1
0
−→ C(gn). All this data is

incorporated in the commutative diagram

Mn

gn
−−−→ Mn+1

gn+1

−−−→ Mn+2y cocart
y c(gn)

y id

x −−−→ C(gn)
γn+1

−−−→ Mn+2

(3)

Assuming that the category CX has kernels of pairs of arrows (in particular, images
of morphisms having cokernels), we can associate with the diagram (3) the diagram

Mn

ḡn
−−−→ Im(gn)

ign
−−−→ Mn+1

c(gn)

−−−→
−−−→

0gn

C(gn)
γn+1

−−−→ Mn+2. (4)

Let Z(gn+1) denote the kernel of the composition

Mn+1

gn+1

−−−→
−−−→
0gn+1

Mn+2 (5)

of the pair Mn+1

c(gn)

−−−→
−−−→

0gn

C(gn) and the following it morphism C(gn)
γn+1

−−−→ Mn+2.
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Since Im(gn)
ign
−−−→ Mn+1 equalizes the pair of arrows (5), it factors through its

kernel Z(gn+1)
kn+1

−−−→ Mn+1 of the pair (5).
We set H0(M•) equal to Z(g0.) For n ≥ 1, we denote by Hn(M•) the cokernel of the

unique morphism

Im(gn)
ign
−−−→ Z(gn+1).

For each n ≥ 0, we call Hn(M•) the n
th cohomology object of the complexM•.

4.2.3. Resolutions. Let (CX , IX) be a left exact category with a final object x. Let
L be an object of the category CX and

L = L0
j0−→M0

c0−→ L1
j1−→M1

c1−→ L2 −→ . . . −→ Ln
jn−→Mn

cn−→ Ln+1 −→ . . . (6)

a sequence of arrows such that En = (Ln −→Mn −→ Ln+1) are conflations for n ≥ 0.
Notice that the objects Ln and Mn are pointed for all n ≥ 1; that is their morphisms

to final objects are split epimorphisms; in particular, they are strict epimorphisms. Since
a push-forward of a strict epimorphism is a strict epimorphism and the squares

Ln
jn
−−−→ Mny cocart

y cn

x −−−→ Ln+1

are cocartesian, the morphisms Mn −→ Ln+1 in (6) are strict epimorphisms for n ≥ 1.
This implies that the squares

Mn

gn
−−−→ Mn+1y cocart

y
x −−−→ Ln+2

are cocartesian for n ≥ 1. Therefore, we can reconstruct (up to isomorphism) the part

M2

c2
−−−→ L3

j3
−−−→M3

c3
−−−→ . . .

cn−1

−−−→ Ln
jn
−−−→Mn

cn
−−−→ Ln+1

jn+1

−−−→ . . .

of the sequence (6) from the associated with it complex

M• = (M0

g0
−−−→ M1

g1
−−−→ M2

g2
−−−→ . . .) (7)

We have a canonical morphism C(g0) −→ L2 from the cokernel of M0
g0
−→ M1 to L2,

which is due to the commutativity of the diagram

M0

g0
−−−→ M1y

y
x −−−→ L2

(8)
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It follows from the commutative diagram

L0 −−−→ x

j0

y cocart
y

M0

c0
−−−→ L1

j1
−−−→ M1y cocart

y cocart
y

x −−−→ C(c0) −−−→ C(g0)y cocart
y

x −−−→ L2

(9)

built of cocartesian squares and the stability of epimorphism under push-forwards, that the
canonical morphism C(g0) −→ L2 is an isomorphism (that is the square (8) is cocartesian),
if the unique morphism L0 −→ x is an epimorphism.

In fact, if L0 −→ x is an epimorphism, then the morphism x −→ C(c0), being a
push-forward of L0 −→ x, is an epimorphism. On the other hand, x −→ C(c0) is a split
(hence a strict) monomorphism, which means that it is an isomorphism. Since C(c0) is a
final object, it follows from the right upper cocartesian square in (9) that the canonical
morphism C(g0) −→ L2 is an isomorphism.

4.2.3.1. Note. It follows from the lower right cartesian square of the diagram (9)
and the fact that C(c0) −→ x is a split (hence strict) epimorphism that the canonical
morphism C(g0) −→ L2 is always a strict epimorphism.

This follows also from the already observed fact that M1
c0−→ L2 is a push-forward of

the split epimorphism L1 = C(j0) −→ x, hence it is a strict epimorphism. SinceM1
c0−→ L2

is the composition of M1

c(g0)
−−−→ C(g0) and the morphism C(g0) −→ L2, the latter is a

strict epimorphism too.

4.2.3.2. The sequence with images. Since each morphism Mn
gn
−→ Mn+1 of the

complex

M• = (M0

g0
−−−→ M1

g1
−−−→ M2

g2
−−−→ . . .) (7)

associated with

L = L0
j0−→M0

c0−→ L1
j1−→M1

c1−→ L2 −→ . . . −→ Ln
jn−→Mn

cn−→ Ln+1 −→ . . . (6)

is the composition of Mn
cn−→ Ln+1 and an inflation (in particular, a monomorphism)

Ln+1
jn+1
−→ Mn+1, the image of Ln

jn−→ Mn, which, by definition, is the kernel of the pair

of arrows Mn

cn
−→
−→
0jn

C(jn) = Ln+1 (see 4.2.2), is isomorphic to the kernel of the pair

Mn

gn
−→
−→
0gn

Mn+1, which we denote (in 4.2.2) by Z(gn)
ign−→Mn.
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Therefore, we have a commutative diagram

L0

j0
−−−→ M0

c0
−−−→ L1

j1
−−−→ M1

c1
−−−→ L2

j2
−−−→ . . .y id

y
y id

y
y

Z(g0)
kg0
−−−→ M0

cn
−−−→ Z(g1)

kg1
−−−→ M1

cn
−−−→ Z(g2)

kg2
−−−→ . . .

(10)
whose vertical arrows Lm −→ Z(gm), m ≥ 0, are inflations with trivial cokernels and the
generic part (that is for n ≥ 2) can be included into the diagram

. . .
cn−1

−−−→ C(gn−2)
γn−1

−−−→ Mn

c(gn−1)

−−−→ C(gn−1)
jn+1

−−−→ . . .y id
y

y≀

. . .
cn−1

−−−→ Ln
jn
−−−→ Mn

cn
−−−→ Ln+1

jn+1

−−−→ . . .y id
y

y

. . .
cn−1

−−−→ Z(gn)
kgn
−−−→ Mn

cn
−−−→ Z(gn+1)

kgn+1

−−−→ . . .

(10′)

where the vertical arrow C(gn−2) −→ Ln is an isomorphism for n ≥ 3 and, by 4.2.3.1,
the arrow C(g0) −→ L2 is a strict epimorphism. Notice that the canonical (strict)

monomorphisms Im(gn)
ign
−−−→ Z(gn+1) are isomorphisms here.

4.2.3.3. Resolutions of objects. We call the complex

M• = (M0

g0
−−−→ M1

g1
−−−→ M2

g2
−−−→ . . .) (7)

associated with the sequence

L = L0
j0−→M0

c0−→ L1
j1−→M1

c1−→ L2 −→ . . . −→ Ln
jn−→Mn

cn−→ Ln+1 −→ . . . (6)

a resolution of the object L.
We call the resolution (7) injective if all objects Mn are pointed injective objects of

(CX , IX) and F -acyclic for some functor F from CX to a category with final objects, if
all Mn are F -acyclic objects.

4.2.3.4. A short summary. It follows from the preceding discussion that the tail

M2

c2
−−−→ L3

j3
−−−→M3

c3
−−−→ . . .

cn−1

−−−→ Ln
jn
−−−→Mn

cn
−−−→ Ln+1

jn+1

−−−→ . . .

of the sequence (6) is reconstructed uniquely up to isomorphism from the associated reso-
lution (7) and the beginning

L = L0
j0−→M0

c0−→ L1
j1−→M1

c1−→ L2
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is reconstructed uniquely up to inflations with trivial cokernels (see diagram (10) for the
precise statement). In particular, if in the left exact category (CX , IX), every inflation
with a trivial cokernel is an isomorphism, then the whole sequence (6) is reconstructed
uniquely up to isomorphism from the resolution (7) of the object L.

4.2.4. Proposition. Let (CX , IX) and (CY , IY ) be svelte left exact categories with

final objects and (CX , IX)
F
−−−→ (CY , IY ) a weakly left ’exact’ functor. Suppose that

(a) the functor F maps inflations to inflations isomorphic to their images,

(b) the left exact category (CX , IX) has enough F -acyclic objects,

(c) every arrow of IY with trivial cokernel is an isomorphism.

Then, for any L ∈ ObCX , the satellites of F at L are isomorphic to the cohomology of the
complex F (M•), whereM• is any F -acyclic resolution of the object L.

Proof. Since the left exact category (CX , IX) has enough F -acyclic objects, we can
construct, for any object L of the category CX , the sequence

L = L0
j0−→M0

c0−→ L1
j1−→M1

c1−→ L2 −→ . . . −→ Ln
jn−→Mn

cn−→ Ln+1 −→ . . . (6)

such that Ln
jn−→ Mn

cn−→ Ln+1 is a conflation for every n ≥ 0 and all objects Mn are
F -acyclic. So that the corresponding resolution

M• = (M0

g0
−−−→ M1

g1
−−−→ M2

g2
−−−→ . . .) (7)

of the object L is F -acyclic. Since the functor CX
F
−→ CY is weakly left ’exact’, its

satellites can be computed via canonical isomorphisms

S+F (Ln)
∼−→ Sn+1

+ F (L0) = Sn+1
+ F (L), n ≥ 1. (≥ 2)

for n ≥ 2 and via the ’exact’ sequence

F (L)
F (j0)
−−−→ F (M0)

F (c0)
−−−→ F (L1)

d0(E0)
−−−→ S+F (L) −→ y (0, 1)

for n = 0 and n = 1 (see Subsection 4.1).

(a) Consider the commutative diagrams

F (Ln)
F (jn)
−−−→ F (Mn)

F (cn)
−−−→ F (Ln+1)

F (jn+1)

−−−→ F (Mn+1)y id
y

x γn

Im(F (jn))
i
F (jn)

−−−→ F (Mn)
c(F (jn)
−−−→ C(F (jn))

(11)
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for n ≥ 0 (with L0 = L). By definition, the image In(F (jn))
i
F (jn)

−−−→ F (Mn) of the
morphism F (jn) is the kernel of the pair of arrows

F (Mn)

c(F (jn))

−−−→
−−−→

0

C(F (jn)). (12)

Since the functor F is weakly left ’exact’, the arrows γn and F (Ln+1)
F (jn+1)

−−−→ F (Mn+1)
in the diagram (11) are inflations, in particular monomorphisms. Therefore, the kernel of
the pair (12) is naturally isomorphic to the kernel of the composition of (12) with these

arrows, which is F (Mn

gn

−−−→
−−−→

0gn

Mn+1) or F (Mn)

F (gn)

−−−→
−−−→

0

F (Mn+1). So that the natural

monomorphism from the image Im(F (jn)) of the morphism F (jn) to the kernel Z(F (gn))

of the pair F (Mn)

F (gn)

−−−→
−−−→

0

F (Mn+1) is an isomorphism.

By hypothesis, the canonical monomorphism F (Ln) −→ In(F (jn)) is an isomor-
phism; so that F (Ln) −→ Z(F (gn)) is an isomorphism for all n ≥ 0.

(b) By definition, Z(F (g0)) is the zero cohomology object H0(F (M•)) of the complex
F (M•). So that the isomorphism F (L0) −→ Z(F (g0)) is an isomorphism between the
zero satellite F (L) = F (L0) of the functor F at the object L and the zero cohomology of
the F -acyclic resolutionM• of the object L:

S0
+F (L)

def
= F (L) ≃ Z(F (g0))

def
= H0(F (M•)).

(c) Since the sequence

F (Ln)
F (jn)
−−−→ F (Mn)

F (jn)
−−−→ F (Ln+1)

d0(En)
−−−→ S+F (Ln) −→ y

is ’exact’, the first satellite S+F (Ln) is isomorphic to the cokernel of the morphism

F (Mn)
F (cn)
−−−→ F (Ln+1), or, what is the same (according to (a) above), the cokernel

of the canonical morphism

F (Mn)
ĝn
−−−→ Z(F (gn+1)).

By 4.2.1.1, this cokernel is isomorphic to the cokernel of the embedding of the image
of this morphism to Z(F (gn+1)), which is, by definition, the n plus first cohomology object
Hn+1(F (M•)) of the complex F (M•):

S+F (Ln)
∼−→ Hn+1(F (M•)).
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In combination with the isomorphism (≥ 2) above, it gives the claimed isomorphism

Sn+F (L)
∼−→ Hn(F (M•)).

for n ≥ 2; hence the assertion.

4.2.5. Corollary. Let (CX , IX) and (CY , IY ) be svelte left exact categories with

final objects and (CX , IX)
F
−−−→ (CY , IY ) a weakly left ’exact’ functor. Suppose that all

inflations of (CY , IY ) with trivial cokernels are isomorphisms and (CX , IX) has enough
F -acyclic objects. Then, for every object L of the category CX and for all n ≥ 0,

Sn+F (L)
∼−→ Hn(F (M•)),

whereM• is any F -acyclic resolution of L.

4.2.6. Remark. Let (CX , IX) and (CY , IY ) be svelte left exact categories with

final objects and (CX , IX)
F
−−−→ (CY , IY ) a weakly left ’exact’ functor. Suppose that all

arrows of IY with trivial cokernel are isomorphisms. Let

M• = (M0

g0
−−−→ M1

g1
−−−→ M2

g2
−−−→ . . .)

be an F -acyclic resolution of an object L of the category CX . It follows from 4.1 and 4.2.3
that, for n ≥ 3, the object Sn+F (L) is isomorphic to the cokernel of the natural morphism

F (Mn−1) −−−→ F (C(gn−2)),

where C(gn−2) is the cokernel of Mn−2

gn−2

−−−→Mn−1.
So that, for n ≥ 3, the satellites Sn+F (L) are reconstructed from an F -acyclic resolu-

tion of the object L without additional hypothesis. Moreover, if the unique morphism of
L to a final object of CX is an epimorphism, then we can reconstruct S2

+F (L) the same
way: it is isomorphic to the cokernel of the canonical morphism F (M0) −→ F (C(g0)).

5. Prestable and stable categories of a left exact category.

Consider the full subcategory CXp
of the category C∗

X whose objects are Θ̂∗n
X (M),

whereM runs through representable presheaves and n through nonnegative integers. We
denote by θXp

the endofunctor CXp
−→ CXp

induced by Θ̂∗
X . It follows that CXp

is the

smallest Θ̂∗
X -stable strictly full subcategory of the category C∗

X containing all presheaves

M̂ = CX(−,M), M ∈ ObCX .

5.1. Triangles. We call the diagram

N̂
ĵ

−−−→ M̂
ê

−−−→ L̂
d0(E)
−−−→ Θ̂∗

X(N̂), (1)
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where E = (N
j
−→M

e
−→ L) is a conflation in (CX , IX), a standard triangle.

A triangle is any diagram in CXp
of the form

N
j
−→M

e
−→ L

d
−→ θXp

(N ), (2)

which is isomorphic to a standard triangle. It follows that, for every triangle, the diagram

M
e

−−−→ Ly
y d

x̂
λ(N )
−−−→ θXp

(N )

commutes. Triangles form a category TrXp
: morphisms from

N
j

−−−→M
e

−−−→ L
d

−−−→ θXp
(N )

to

N ′
j′

−−−→M′
e′

−−−→ L′
d′

−−−→ θXp
(N ′)

are given by commutative diagrams

N
j

−−−→ M
e

−−−→ L
d

−−−→ θXp
(N )

f
y

y g
y h

y θXp
(f)

N ′
j′

−−−→ M′
e′

−−−→ L′
d′

−−−→ θXp
(N ′)

The composition is obvious.

5.2. The prestable category of a left exact category. Thus, we have obtained
a data (CXp

, (θXp
, λ),TrXp

). We call this data the prestable category of the left exact
category (CX , IX).

5.3. The stable category of a left exact category with final objects. Let
(CX , IX) be a left exact category with a final object x and (CXp

, θXp
, λ;TrXp

) the asso-
ciated with (CX , IX) presuspended category. Let Σ = ΣθXp

be the class of all arrows t of
CXp

such that θXp
(t) is an isomorphism.

We call the quotient category CXs
= Σ−1CXp

the stable category of the left exact
category (CX , IX). The endofunctor θXp

determines a conservative endofunctor θXs
of

the stable category CXs
. The localization functor CXp

q∗

Σ−→ CXs
maps final objects to final

objects. Let λs denote the image x̃ = q∗
Σ
(x̂) −→ θXs

of the cone x̂
λ
−→ θXp

.
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Finally, we denote by TrXs
the strictly full subcategory of the category of diagrams

of the form N −→M −→ L −→ θXs
(N ) generated by q∗

Σ
(TrXs

).

The data (CXs
, θXs

, λs;TrXs
) will be called the stable category of the left exact cate-

gory (CX , IX).

5.4. Dual notions. If (CX,EX) is a right exact category with an initial object, one
obtains, dualizing the definitions of 5.2 and 5.3, the notions of the precostable and costable
category of (CX,EX).

6. Presuspended and quasi-suspended categories.

Fix a category CX with a final object x and a functor CX

θ̃X
−−−→ x\CX, or, what is

the same, a pair (θX, λ), where θX is an endofunctor CX −→ CX and λ is a cone x −→ θX.

We denote by T̃rX the category whose objects are all diagrams of the form

N
j

−−−→M
e

−−−→ L
d

−−−→ θX(N )

such that the square

M
e

−−−→ Ly
y d

x
λ(N )
−−−→ θX(N )

commutes. Morphisms from

N
j

−−−→M
e

−−−→ L
d

−−−→ θX(N )

to

N ′
j′

−−−→M′
e′

−−−→ L′
d′

−−−→ θX(N
′)

are triples of arrows (N
f
−→ N ′,M

g
−→M′,L

h
−→ L′) making the diagram

N
j

−−−→ M
e

−−−→ L
d

−−−→ θX(N )

f
y

y g
y h

y θX(f)

N ′
j′

−−−→ M′
e′

−−−→ L′
d′

−−−→ θX(N
′)

commute. The composition of morphisms is natural.

6.1. Definition. A presuspended category is a triple (CX, θ̃X,TrX), where CX and

θ̃X = (θX, λ) are as above and TrX is a strictly full subcategory of the category T̃rX, whose
objects are called triangles, which satisfies the following conditions:
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(PS1) Let CX0 denote the full subcategory of CX generated by objects N such that

there exists a triangle N
j
−→M

e
−→ L

d
−→ θX(N ). For every N ∈ ObCX0 , the diagram

N
idN
−−−→ N −−−→ x

λ(N )
−−−→ θX(N )

is a triangle.

(PS2) For any triangle N
j
−→ M

e
−→ L

d
−→ θX(N ) and any morphism N

f
−→ N ′

with N ′ ∈ ObCX0 , there is a triangle N ′ j′

−→M′ e′

−→ L′ d′

−→ θX(N
′) such that f extends

to a morphism of triangles

(N
j
−→M

e
−→ L

d
−→ θX(N ))

(f,g,h)
−−−−−−−→ (N ′ j′

−→M′ e′

−→ L′ d′

−→ θX(N
′)).

(PS3) For any pair of triangles

N
j
−→M

e
−→ L

d
−→ θX(N ) and N ′ j′

−→M′ e′

−→ L′ d′

−→ θX(N
′)

and any commutative square

N
j

−−−→ M

f
y

y g

N ′
j′

−−−→ M′

there exists a morphism L
h
−→ L′ such that (f, g, h) is a morphism of triangles, i.e. the

diagram

N
j

−−−→ M
e

−−−→ L
d

−−−→ θX(N )

f
y

y g
y h

y θX(f)

N ′
j′

−−−→ M′
e′

−−−→ L′
d′

−−−→ θX(N
′)

commutes.
(PS4) For any pair of triangles

N
u
−→M

v
−→ L

w
−→ θX(N ) and M

x
−→M′ s

−→ M̃
r
−→ θX(M),

there exists a commutative diagram

N
u

−−−→ M
v

−−−→ L
w

−−−→ θX(N )

id
y x

y
y y

y id

N
u′

−−−→ M′
v′

−−−→ L′
w′

−−−→ θX(N )

s
y

y t
y θX(u)

M̃
id
−−−→ M̃

r
−−−→ θX(M)

r
y

y r′

θX(M)
θX(v)
−−−→ θX(L)

(2)
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whose two upper rows and two central columns are triangles.

(PS5) For every triangle N
j
−→M

e
−→ L

d
−→ θX(N ), the sequence

. . . −−−→ CX(θX(N ),−) −−−→ CX(L,−) −−−→ CX(M,−) −−−→ CX(N ,−)

is exact.

6.1.1. Remarks. (a) If CX is an additive category, then three of the axioms above
coincide with the corresponding Verdier’s axioms of triangulated category (under condition
that CX0 = CX). Namely, (PS1) coincides with the first half of the axiom (TRI), the axiom
(PS3) coincides with the axiom (TRIII), and (PS4) with (TRIV) (see [Ve2, Ch.II]).

(b) It follows from (PS4) that if N −→M −→ L −→ θX(N ) is a triangle, then all
three objects, N , M, and L, belong to the subcategory CX0 .

(c) The axiom (PS2) can be regarded as a base change property, and axiom (PS4)
expresses the stability of triangles under composition. So that the axioms (PS1), (PS2)
and (PS4) say that triangles form a ’pretopology’ on the subcategory CX0 . The axiom
(PS5) says that this pretopology is subcanonical: the representable presheaves are sheaves.

These interpretations (as well as the axioms themselves) come from the main examples:
prestable and stable categories of a left exact category.

6.2. The category of presuspended categories. Let T+CX = (CX, θX, λX;TrX)
and T+CY = (CY, θY, λY;TrY) be presuspended categories. A triangle functor from
T+CX to T+CY is a pair (F, φ), where F is a functor CX −→ CY which maps initial object
to an initial object and φ is a functor isomorphism F ◦ θX −→ θY ◦ F such that for every

triangle N
u
−→M

v
−→ L

w
−→ θX(N ) of T+CX, the sequence

F (N )
F (u)
−−−→ F (M)

F (v)
−−−→ F (L)

φ(N )F (w)
−−−→ θY(F (N ))

is a triangle of T+CY. The composition of triangle functors is defined naturally:

(G,ψ) ◦ (F, φ) = (G ◦ F, ψF ◦Gφ).

Let (F, φ) and (F ′, φ′) be triangle functors from T−CX to T−CY. A morphism from

(F, φ) to (F ′, φ′) is given by a functor morphism F
λ
−→ F ′ such that the diagram

θY ◦ F
φ

−−−→ F ◦ θX

θYλ
y

y λθX

θY ◦ F
′

φ′

−−−→ F ′ ◦ θX

commutes. The composition is the compsition of the functor morphisms.
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Altogether gives the definition of a bicategory PCat formed by svelte presuspended
categories, triangle functors as 1-morphisms and morphisms between them as 2-morphisms.

As usual, the term “category PCat” means that we forget about 2-morphisms.
Dualizing (i.e. inverting all arrows in the constructions above), we obtain the bicat-

egory PoCat formed by precosuspended svelte categories as objects, triangular functors as
1-morphisms, and morphisms between them as 2-morphisms.

6.3. Quasi-suspended categories.

We call a presuspended category (CX, θX, λ;TrX) quasi-suspended if the functor θX is
conservative. We denote by SCat the full subcategory of the category PCat whose objects
are quasi-suspended svelte categories.

Let (CX, θX, λ;TrX) be a presuspended category and Σ = ΣθX the class of all arrows
s of the category CX such that θX(s) is an isomorphism. Let ΘX denote the endofunctor
of the quotient category Σ−1CX uniquely determined by the equality ΘX ◦ q

∗
Σ = q∗Σ ◦ θX,

where q∗Σ denotes the localization functor CX −→ Σ−1CX. Notice that the functor q∗Σ
maps final objects to final objects. Let λ̃ denote the morphism q∗Σ(x) −→ ΘX induced by

x
λ
−→ θX (that is by q∗Σ(x)

q∗
Σ(λ)

−−−→ q∗Σ ◦ θX = ΘX ◦ q
∗
Σ) and T̃rX the essential image of TrX.

Then the data (Σ−1CX,ΘX, λ̃; T̃rX) is a quasi-suspended category.
The constructed above map

(CX, θX, λ;TrX) 7−→ (Σ−1CX,ΘX, λ̃; T̃rX)

extends to a functor PCat
J∗

−→ SCat which is a left adjoint to the inclusion functor

SCat
J∗−→ PCat. The natural triangle (localization) functors

(CX, θX, λ;TrX)
q∗
Σ

−−−→ (Σ−1CX,ΘX, λ̃; T̃rX)

form an adjunction arrow IdPCat −→ J∗J
∗. The other adjunction arrow is identical.

6.4. The stable category of a left exact category with final objects.

Let (CX , IX) be a left exact category with a final object x and (CXp
, θXp

, λ;TrXp
)

the associated with (CX , IX) presuspended category. We call the category Σ−1CXp
the

stable category of the left exact category (CX , IX). The corresponding quasi-suspended

category (Σ−1CXp
,ΘXp

, λ̃; T̃rXp
) will be called the stable quasi-suspended category of

(CX , IX).

6.4.1. Proposition. Let (CX , IX) be a left exact category with final objects. Suppose
that (CX , IX) has enough pointed (i.e. having a morphism from a final object) injective
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objects. Then the stable quasi-suspended category of (CX , IX) is naturally equivalent to its
weak stable category.

Proof. It is easy to see that the natural functor CX −→ Σ−1CX factors through the
weak stable category of (CX , IX). The claim is that the corresponding (unique) functor
from the weak stable category of (CX , IX) to Σ−1CX is a category equivalence.

7. Homology and homotopy of ’spaces’.

7.0. Right exact structure on the category of functors. Let CX be a svelte
category and (CZ ,EZ) a svelte right exact category. We denote by CH(Z,X) the category
Hom(CX , CZ) of functors CX −→ CZ .

7.0.1. Lemma. The class EH(Z,X) of all functor morphisms F
t
−→ G such that

F(L)
t(L)
−−−→ G(L) is a deflation for every L ∈ ObCX is a right exact structure on the

category CH(Z,X).

Proof. Evidently, the class EH(Z,X) is closed under composition and contains all iso-
morphisms of the category CH(Z,X). It is stable under pull-backs, because if the morphism

t in the diagram F
t
−→ G

f
←− G′ belongs to the class EH(Z,X), then, for every L ∈ ObCX ,

there exist a cartesian square

F ′(L)
t′(L)
−−−→ G′(L)

f̃(L)
y cart

y f(L)

F(L)
t(L)
−−−→ G(L)

whose upper horizontal arrow is a deflations too. These cartesian squares determine the

functor F ′ and a morphism F ′ t′

−→ G′ from EH(Z,X), which is a pull-back of t.

7.0.2. Note. A similar argument shows that any Grothendieck pretopology τ on
a category CZ naturally induces a Grothedieck pretopology on the category CH(Z,X) of
functors from CX to CZ .

7.1. Homology of ’spaces’ with coefficients in a right exact category. Let CX
be a svelte category and (CZ ,EZ) a svelte right exact category with colimits and initial

objects. We define the zero homology object of a ’space’ X with coefficients in CX
F
−→ CZ

by setting H0(X,F) = colimF . The higher homology groups, Hn(X,F), n ≥ 1, are values

at F of satellites of the functor CH(Z,X)

H0(X,−)
−−−→ CZ with respect to the (object-wise)

right exact structure EH(Z,X) induced by EZ (cf. 7.0.1).
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If the category CZ has limits of filtered diagrams, then, since the category (CH(Z,X)

of functors from CX to CZ inherits this property, there exists a universal ∂∗-functor

H•(X,−) = (Hn(X,−), dn | n ≥ 0)

from the right exact category of coefficients (CH(Z,X),EH(Z,X)) to (CZ ,EZ).

7.1.1. Proposition. Suppose that the right exact category (CZ ,EZ) satisfies (CE5∗).
Then the universal ∂∗-functor H•(X,−) is ’exact’.

Proof. Let J∗ denote the canonical embedding of the category CZ into the category
CH(Z,X) = Hom(CX , CZ) which assigns to every object M of the category CZ the con-
stant functor mapping all arrows of CX to idM . The functor J∗ has a left adjoint, J∗,
which assigns to every functor CX −→ CZ its colimit and to every functor morphism the
corresponding morphism of colimits. The composition J∗J∗ is (isomorphic to) the identi-
cal functor; i.e. J∗ is a (continuous) localization functor. The functor J∗ is exact, hence
’exact’, for any category CX . Since (CZ ,EZ) satisfies (CE5∗), it follows that the functor
J∗ maps deflations to deflations. Besides it is right exact, because it has a right adjoint.
Therefore, J∗ is a right ’exact’ functor. The assertion follows now from II.6.3.

7.1.2. Proposition. Suppose that the right exact category (CZ ,EZ) is closed (that is
EZ is closed; cf. 1.4.3.2), has enough projective objects and pointed objects, and has
small limits. Then, for any svelte category CX , the right exact category of functors
(CH(Z,X),EH(Z,X)) has enough projective objects, and all its projective objects are pointed.

Proof. For every M ∈ ObCX , the functor

CH(Z,X)

ΦM
−−−→ CZ , F 7−→ F(M),

preserves limits (and colimits) of small diagrams. Since the category CZ has limits and

for every L ∈ ObCZ , there exists a functor CX
F
−→ CZ such that there is a morphism

L −→ F(M) (e.g. F is the constant functor with the value L), by Freud’s Theorem, the
functor ΦM has a left adjoint, Φ∗

M . Since the functor ΦM is ’exact’, in particular, it maps
deflations to deflations, by 1.3.1, its left adjoint, Φ∗

M takes projective objects to projective
objects.

Fix a set Ξ of objects of CZ such that every object of CZ is isomorphic to some object

of Ξ. Given a functor CX
F
−→ CZ , we choose for each M ∈ Ξ a deflation PM

tM−→ F(M)
with PM a projective object. By hypothesis, the category CZ has enough pointed objects,
hence all its projective objects are pointed (cf. 2.2.3). We fix an initial object z of the

category CZ and, for eachM ∈ Ξ, an augmentation morphism PM
λM−→ z. Notice that since

the functor Φ∗
M maps initial objects to initial objects (as any functor having a right adjoint

does), it maps augmentation morphisms λM to augmentation morphisms Φ∗
M (λM ).
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The morphisms Φ∗
M (PM )

t̂M
−−−→ F corresponding by adjunction to the morphisms

PM
tM−→ F(M) = ΦM (F) determine a morphism

∐

M∈Ξ

Φ∗
M (PM )

t
−−−→ F . (1)

and the morphisms Φ∗
M (λM ) determine a morphism

∐

M∈Ξ

Φ∗
M (PM )

λ
−−−→ Φ∗

M (z)

to the initial object; so that
∐

M∈Ξ

Φ∗
M (PM ) is a pointed object.

Notice that a coproduct of projective objects is a projective; in particular,
∐

M∈Ξ

Φ∗
M (PM )

is a projective object of the right exact category (CH(Z,X),EH(Z,X)).
It remains to show that (1) is a deflation. In fact, for any L ∈ Ξ, the composition of

the morphisms

PL
ηL(PL)
−−−→ ΦL ◦ Φ

∗
L(PL)

ΦL(πL)
−−−→ ΦL

( ∐

M∈Ξ

Φ∗
M (PM )

) ΦL(t)
−−−→ ΦL(F) = F(L),

where ηL is the adjunction morphism and πL the coprojection

Φ∗
L(PL) −−−→

∐

M∈Ξ

Φ∗
M (PM ),

coincides with the deflation PL
tL−→ F(L). By hypothesis, the class of deflations EZ is

closed. Therefore, ΦL(t) is a deflation for each L ∈ Ξ. Since every object of the category
CZ is isomorphic to an object from Ξ, it follows that ΦL(t) is a deflation for each object of
CZ . But, this means, precisely, that t is a deflation of the right exact category of functors
from CX to CZ .

7.1.2.1. Consequences. Thus, if the conditions of 7.1.2 hold, the homology of any
’space’ X with coefficients in an arbitrary functor from CX to (CZ ,EZ) can be computed
via projective resolutions.

7.1.3. Note. There is a natural equivalence between the category of local systems
of abelian groups on the classifying topological space B(X) of a category CX and the
morphism inverting functors from CX to Z −mod. If F is a morphism inverting functor
CX −→ Z − mod and LF the corresponding local system, then the homology groups
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Hn(X,F) are naturally isomorphic to the homology groupsHn(B(X),LF ) of the classifying
space B(X) with coefficients in the local coefficient system LF (cf. [Q, Section 1].

7.2. The ’space’ of paths of a ’space’. Let Pa∗ be the functor from Cat to the
category of diagrams of sets of the form A ⇉ B which assigns to each category CX the

diagram HomCX
s

−→
−→

r
ObCX , where s maps an arrow to its source and t to its target. The

functor Pa∗ has a left adjoint, Pa∗, which assigns to each diagram T = (T1 ⇉ T0) the

category Pa∗(T ) of paths of T . The adjunction morphism Pa∗Pa∗(CX)
ε(X)∗

−−−→ CX is a
functor which is identical on objects and mapping each path of arrows

M1 −→M2 −→ . . . −→Mn

to its composition M1 −→Mn.
We denote by Pa(X) the ’space’ represented by the category Pa∗Pa∗(CX) and call

it the ’space’ of paths of the ’space’ X. The map X 7−→ Pa(X) extends to an endo-

functor, Pa, of the category |Cat|o. The adjunction morphism Pa∗Pa∗(CX)
ε(X)∗

−−−→ CX is

interpreted as an inverse image functor of a morphism of ’spaces’ X
ε(X)
−−−→ Pa(X). The

morphisms ε = (ε(X) | X ∈ Ob|Cat|o) form a functor morphism Id|Cat|o −→ Pa.

7.2.1. The ’space’ of paths and the loop ’space’ of a pointed ’space’. Consider
the pointed category |Cat|o/x associated with the category of ’spaces’ |Cat|o; Here x is
the initial object of |Cat|o represented by the category with one (identical) morphism. By
C1.5, a choice of a pseudo-functor

|Cat|o −−−→ Catop, X 7−→ CX , f 7−→ f∗; (gf)∗
cf,g
−−−→ f∗g∗,

induces an equivalence between the category |Cat|o/x and the category |Cat|ox whose
objects are pairs (X,OX), where OX ∈ ObCX ; morphisms from (X,OX) to (Y,OY )
are pairs (f, φ), where f is a morphism of ’spaces’ X −→ Y and φ is an isomorphism

f∗(OY ) −→ OX . The composition of (X,OX)
(f,φ)
−−−→ (Y,OY )

(g,ψ)
−−−→ (Z,OZ) is the mor-

phism (g ◦ f, φ ◦ f∗(ψ) ◦ cf,g).
The endofunctor Pa of |Cat|o induces an endofunctor Pax of |Cat|ox which assigns

to each pointed ’space’ (X,OX) the pointed ’space’ (Pa(X),OX) of paths of (X,OX). It

follows that the canonical morphism X
ε(X)
−−−→ Pa(X) is a morphism of pointed ’spaces’

(X,OX) −→ Pax(X,OX) = (Pa(X),OX).
It follows from C1.5.1 that the category representing the cokernel of the canonical

morphism (X,OX)
ε(x)
−−−→ Pax(X,OX) is the subcategory of the category CPa(X) whose

objects are isomorphic to OX and morphisms are paths of arrows M1 −→ . . . −→ Mn
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whose composition is an isomorphism. This category is equivalent to its full subcategory
CΩ(X,OX) of CPa(X) which has one object, OX .

We call the ’space’ Ω(X,OX) represented by the latter category the loop ’space’ of
the pointed ’space’ (X,OX).

7.2.2. Left exact structures on the category of pointed ’spaces’. Let Esplx
be the class of all split epimorphisms of diagrams A ⇉ B. By 1.5.4, the class Pa−1

∗ (Esplx )
is a right exact structure on the category of svelte pointed categories. This right exact
structure determines a left exact structure J0 on the category |Cat|ox of pointed ’spaces’,
so that (|Cat|ox, J0) is a Karoubian left exact category. Each path ’space’ (Pa(X),OX) is

an injective object of (|Cat|ox, J0), and the canonical morphism (X,OX)
ε(X)
−→ (Pa(X),OX)

belongs to J0. The fact that every epimorphism of diagrams of the form A ⇉ B splits

implies that the class J0 consists of all morphisms (X,OX)
j
−→ (Y,OY ) of the pointed

’spaces’ such that the image of j∗ is naturally equivalent to the category CX .

7.3. The first homotopy group of a pointed ’space’. Given a svelte category
CX , we denote by CG(X) the groupoid obtained from CX by localization at Hom(CX). The
map G which assigns to each object (X,OX) of the category |Cat|ox the pair (G(X),OX)
(we identify objects of CG(X) with objects of CX) is naturally extended to a functor from
|Cat|ox to its full subcategory Grox generated by objects (Y,OY ) such that CY is a groupoid.
This functor is a left adjoint to the inclusion functor Grox −→ |Cat|

o
x.

7.3.1. Definition. The fundamental group π1(X,OX) of the pointed ’space’
(X,OX) is the group CG(X)(OX ,OX) of the automorphisms of the object OX of the
groupoid CG(X) associated with the category CX . (see [GZ, II.6.2]).

7.3.2. Note. By [Q, Proposition 1], π1(X,OX) is isomorphic to the fundamental
group π1(B(X),OX) of the pointed classifying space (B(X),OX) of the category CX .

7.4. Higher homotopy groups of a pointed ’space’. The map which assigns
to every pointed ’space; (X,OX) its fundamental group π1(X,OX) is a functor from
(|Cat|ox)

op to the category Groups of groups. The functor π1 maps every inflation to an
epimorphism and every conflation (X,OX) −→ (Y,OY ) −→ (Z,OZ) to an exact sequence
of groups π1(Z,OZ) −→ π1(Y,OY ) −→ π1(X,OX). Therefore, by II.7.1, the universal ∂∗-
functor π• = (πn, dn | n ≥ 1) from (|Cat|ox, J0)

op to Groups is ’exact’. We call πn(X,OX)
the n-th homotopy group of the pointed ’space’ (X,OX).

7.4.1. Proposition. For any pointed ’space’ (X,OX) and any n ≥ 1, there is a
natural isomorphism πn+1(X,OX) ≃ πn(Ω(X,OX)).

Proof. This follows from the long exact sequence

. . . −−−→ πn+1(Pa(X,OX)) πn(Pa(X,OX)) −−−→ . . .y
x

πn+1(X,OX) −−−→ πn(Ω(X,OX))
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corresponding to the (functorial) conflation (X,OX) −→ Pa(X,OX) −→ Ω(X,OX) of
pointed ’spaces’ and the fact that, by the dual version of 2.2, the ’space’ (Pa(X),OX) is an
injective object of the pointed left exact category (|Cat|ox, J0)

op, hence πn(Pa(X),OX) = 0
for n ≥ 1.



Chapter IV

Left Exact Categories of ’Spaces’.

After short preliminaries on the category |Cat|o of ’spaces’ represented by svelte cate-
gories (existence and construction of limits and colimits, facts about localizations) gathered
in Section 1, we start, in Section 2, with observation that the category |Cat|o with the finest
left exact structure (formed by all strict monomorphisms of ’spaces’) has enough injective
objects and all these injective objects are easy to describe. They are pointed, which opens
the possibility to use injective resolution for computing satellites of left ’exact’ functors
from |Cat|o (as it is explained in Chapter III). From the finest left exact structure, we pass
to a much coarser left exact structure on |Cat|o, which we call canonical. This canonical
left exact structure has the same class of injective objects and still there are enough of
them. In Section 3, we mostly study left exact structures on |Cat|o formed by localizations.
They enter naturally into picture, because with any left exact structure on |Cat|o, there
is a canonically associated left exact structure formed by localizations. In Section 4, we
define left exact structures on the category of k-’spaces’, which, by definition, are ’spaces’
represented by k-linear categories. We show that the canonical left exact structure on the
category of k-’spaces’ (induced by the canonical left exact structure on |Cat|o) has enough
injective objects. In Section 5, we extend the canonical left exact structure and left exact
structures formed by localizations to the category of right exact ’spaces’ and their ’exact’
morphisms (that is morphisms whose inverse image functors are ’exact’). Again, we show
that the canonical left exact structure has enough injective objects by producing natural
inflations of each right exact ’space’ into an associated with it injective. In Section 6, we
study the left exact category of right exact k-’spaces’, that is right exact ’spaces’ repre-
sented by k-linear categories. We prove the existence of enough injective objects and use
this to establish similar fact for the full subcategory of the category of right exact k-’spaces’
formed by ’spaces’ represented by Karoubian categories. In Section 7, we consider the left
exact category formed by exact k-’spaces’, that is ’spaces’ represented by exact k-linear
categories, and establish, for every exact k-’space’, the existence of a canonical inflation
into an injective object.

We conclude with a couple of miscellaneous complements: introducing of the path
’space’ of a right exact ’space’ and a short discussion on localizations of right exact ’spaces’.

1. Preliminaries on the category |Cat|o of ’spaces’.

1.1. Initial objects of |Cat|o. The ’space’ x0 represented by the category with one

(identical) morphism is an initial object of |Cat|o. A morphism X
f
−→ Y in |Cat|o with

an inverse image functor CY
f∗

−→ CX is an isomorphism iff f∗ is a category equivalence.
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In particular, X ∈ Ob|Cat|o is an initial object of |Cat|o iff the category CX is a connected
groupoid; i.e. all arrows of CX are invertible and there are arrows between any two objects.

Notice that, for any ’space’X, the set |Cat|o(X, x0) of morphismsX → x0 is isomorphic
to the set |X| of isomorphism classes of objects of the category CX .

The category |Cat|o has no ”real” final objects: its unique final object is the ’space’
represented by the empty category.

1.2. Proposition. The category |Cat|o has small limits and colimits.

Proof. (a) Let {Xi | i ∈ J} be a set of objects of |Cat|o. Then XJ =
∏

i∈J

Xi and

XJ =
∐

i∈J

Xi are defined by

CXJ =
∐

i∈J

CXi and CXJ =
∏

i∈J

CXi .

(b) Every pair of arrows, X
f

−→
−→
g

Y, in |Cat|o has a cokernel.

Let CY
f∗

−→
−→
g∗

CX be inverse image functors of respectively f and g. Let CZ denote

the category whose objects are pairs (x, φ), where x ∈ ObCY and φ is an isomorphism

f∗(x) ∼→ g∗(x). A morphism from (x, φ) to (y, ψ) is an arrow x
ξ
−→ y such that the

diagram

f∗(x)
f∗(ξ)
−−−→ f∗(y)

φ
y

y ψ

g∗(x)
g∗(ξ)
−−−→ g∗(y)

commutes. Denote by h∗ the forgetful functor CZ −→ CY , (x, φ) 7−→ x. Let Y
w
−→ W

be a morphism in |Cat|o with an inverse image functor w∗ such that w ◦ f = w ◦ g. This

means that there exists an isomorphism f∗ ◦ w∗ ψ
−→ g∗ ◦ w∗. The pair (w∗, ψ) defines a

functor γ∗w∗,ψ : CW −→ CZ , b 7−→ (w∗(b), ψ(b)). A different choice, w∗
1 , of the inverse

image functor of w and an isomorphism ψ1 : w∗
1 ◦ f

∗ ∼−→ w∗
1 ◦ g

∗ produces a functor γ∗w∗
1 ,ψ1

isomorphic to γ∗w∗,ψ. This shows that the morphism Y −→ Z having the inverse image
h∗ is the cokernel of the pair (f, g). The existence of cokernels and (small) coproducts is
equivalent to the existence of arbitrary (small) colimits.

(c) Every pair of arrows, X
f

−→
−→
g

Y, in |Cat|o has a kernel.
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Let CY
f∗

−→
−→
g∗

CX be inverse image functors of resp. f and g. Denote by Df∗,g∗ the

diagram scheme defined as follows:

ObDf∗,g∗ = ObCY
∐

ObCX and HomDf∗,g∗ = HomCX
∐

Σf∗,g∗ ,

where

Σf∗,g∗ = {f∗(x)
sx→ x, x

tx→ g∗(x) | x ∈ ObCY }.

Consider the category PaDf∗,g∗ of paths of the diagram Df∗,g∗ together with the natu-

ral embeddings HomCX
τ
−→ HomPaDf∗,g∗ ←− Σf∗,g∗ which define the corresponding

diagrams. We denote by PDf∗,g∗ the quotient of the category PaDf∗,g∗ by the minimal
equivalence relation such that

τ(α ◦ β) ∼ τ(α) ◦ τ(β) and τ(idx) ∼ idτ(x)

α ◦ sx ∼ sy ◦ f
∗(α), g∗(α) ◦ tx ∼ ty ◦ α

for all composable arrows x
α
−→ y, y

β
−→ z and for all x ∈ ObCX .

Finally, we denote by CW the quotient category Σ−1
f∗,g∗PDf∗,g∗ . It follows from the

construction that the object W of the category |Cat|o defined this way is the kernel of the
pair (f, g). Details are left to the reader.

1.3. Proposition. Suppose that X
f

−→
−→
g

Y is a pair of continuous morphisms and

the category CX has small limits and a final object. Then the kernel K(f, g)
k
−→ X, of

the pair (f, g) is a continuous morphism.

Proof. (a) Fix direct image functors f∗ and g∗ of morphisms resp. f and g. Let

CK(f∗,g∗) denote the kernel of the pair of functors CX
f∗
−→
−→
g∗

CY . The objects of the category

CK(f∗,g∗) are pairs (L, φ), where L ∈ ObCX and φ is an isomorphism f∗(L)
∼−→ g∗(L).

Morphisms from (L, φ) to (L′, φ′) are those arrows L
ξ
−→ L′ for which the square

f∗(L)
f∗(ξ)
−−−→ f∗(L

′)

φ
y≀ ≀

y φ′

g∗(L)
g∗(ξ)
−−−→ g∗(L

′)

commutes. The composition is defined in a standard way.
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The functor CK(f∗,g∗)

k∗
−−−→ CX , which maps any morphism (L, φ)

ξ
−→ (L′, φ′) of

the category CK(f∗,g∗) to the morphism L
ξ
−→ L′, equalizes the pair (f∗, g∗) in a pseudo-

functorial way: there is an isomorphism f∗ ◦ k∗
ϕ
−→ g∗ ◦ k∗ which assigns to every object

(L, φ) of the category CK(f∗,g∗) the isomorphism

f∗ ◦ k∗(L, φ) = f∗(L)
φ
−→ g∗(L) = g∗ ◦ k∗(L, φ).

The claim is that k∗ is a direct image functor of the kernel of the pair X
f

−→
−→
g

Y.

In fact, since both functors f∗ and g∗ preserve arbitrary small limits, the functor k∗
has the same property. By hypothesis, the category CX has small limits. Therefore, by
Freud’s Theorem, the functor k∗ has a left adjoint iff for every object M of the category
CX , there exists a morphism M −→ k∗(L, φ) = L for some object (L, φ) of the category
CK(f∗,g∗). By hypothesis, the category CX has a final object, x. Both functors f∗ and
g∗ map it to final objects of the category CY , because each of them has a left adjoint.

Therefore, there exists a unique isomorphism f∗(x)
φx
−→ g∗(x). It is easy to see that (x, φx)

is a final object of the category CK(f∗,g∗), which the functor k∗ maps to the final object x.
So that the functor k∗ has a left adjoint, k∗.

(b) The isomorphism of functors f∗◦k∗ ≃ g∗◦k∗ induces an isomorphism k∗◦g∗ ≃ k∗◦f∗.

The claim is that the functor k∗ is universal; that is if CX
γ∗

−→ CZ is a functor such that
γ∗ ◦ g∗ ≃ γ∗ ◦ f∗, then γ∗ = γ̄∗ ◦ k∗ for a functor γ̄∗ defined uniquely up to isomorphism.

In fact, consider a commutative diagram

CY

f∗

−−−→
−−−→
g∗

CX
κ∗

−−−→ CW
k∗1
−−−→ CK(f∗,g∗)

y
y

y
y

C∧
Y

f̂∗

−−−→
−−−→
ĝ∗

C∧
X

κ̂∗

−−−→ C∧
W

k̂∗1
−−−→ C∧

K(f∗,g∗)

(1)

where κ∗ is an inverse image functor of the kernel of the pair X
f

−→
−→
g

Y, k∗1 is defined

uniquely up to isomorphism by the equality k∗1 ◦ κ
∗ = k∗, all vertical arrows are Yoneda

embeddings and all lower horizontal arrows are functors having a right adjoint. It follows

from the fact that κ̂ is the cokernel of the pair of functors (f̂∗, ĝ∗) that C∧
W

κ̂∗−→ C∧
X is
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the kernel of the pair of functors C∧
X

f̂∗
−→
−→
ĝ∗

C∧
Y . Therefore, the right square of the diagram

CY

f∗

←−−−
←−−−
g∗

CX
k∗
←−−− CK(f∗,g∗)

y
y cart

y

C∧
Y

f̂∗

←−−−
←−−−
ĝ∗

C∧
X

κ̂∗

←−−− C∧
W

is cartesian, which implies that the functor k̂∗1 in the diagram (1) is a category equivalence.
Therefore the functor k∗1 is a category equivalence.

1.4. Push-forwards. Since push-forwards play a special role in the case of left exact
categories, for the reader convenience, we describe them separately.

Let Z
g
←− X

f
−→ Y be morphisms of ’spaces’. Let X denote the ’space’ Z

∐

f,g

Y .

The category CX is CZ
∏

f∗,g∗

CY . Recall that objects of CZ
∏

f∗,g∗

CY are triples (L,M ;φ),

where L ∈ ObCZ , M ∈ ObCY , and φ is an isomorphism f∗(L) ∼−→ g∗(M). A morphism

(L,M ;φ) −→ (L′,M ′;φ′) is given by a pair of arrows, L
α
−→ L′ and M

β
−→M ′, such that

the diagram

f∗(L)
f∗(α)
−−−→ f∗(L′)

φ
y≀ ≀

y φ′

g∗(M)
g∗(β)
−−−→ g∗(M ′)

(1)

commutes. The composition of morphisms is defined naturally.

The (canonical) inverse image CX
g̃∗

−→ CZ of the coprojection Z
q̃
−→ X maps each

object (L,M ;φ) to L and each morphism (L,M ;φ)
(s,t)
−−−→ (L′,M ′;φ′) to L

s
−→ L′.

1.5. Localizations. The following proposition is a refinement of [R1, 1.4.1].

1.5.1. Proposition. Let Z
f
←− X

q
−→ Y be morphisms of ’spaces’ such that q (i.e.

its inverse image functor CY
q∗

−→ CX) is a localization. Then

(a) The canonical morphism Z
q̃
−→ Z

∐

f,q

Y is a localization.

(b) If q is a continuous localization, then q̃ is a continuous localization.
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(c) If Σq∗ = {s ∈ HomCY | q
∗(s) is invertible} is a left (resp. right) multiplicative

system, then Σ
q̃∗

has the same property.

Proof. It follows that the class Σ
q̃∗

consists of all morphisms

(L,M ;φ)
(s,t)
−−−→ (L′,M ′;φ′)

such that s is an isomorphism, hence t ∈ Σq∗ .
(a) Since q∗ is a localization functor, for any L ∈ ObCZ , there exists M ∈ ObCY such

that there is an isomorphism f∗(L)
φ
−→ q∗(M). The map L 7−→ (L,M ;φ) (– a choice for

each L of an object M and isomorphism φ) extends uniquely to a functor CZ −→ Σ−1

q̃∗
CX

which is quasi-inverse to the canonical functor

Σ−1

q̃∗
CX −−−→ CZ , (L,M ;φ) 7−→ L.

(b) Suppose that q is a continuous localization; i.e. the localization functor q∗ has

a right adjoint, q∗. Fix adjunction arrows IdCY
η
−→ q∗q

∗ and q∗q∗
ǫ
−→ IdCX . Since q∗

is a localization, ǫ is an isomorphism. Therefore, we have a functor CZ
q̃∗
−→ CX which

maps any object L of CZ to the object (L, q∗f
∗(L); ǫf∗(L)) of the category CX and any

morphism L
ξ
−→ L′ to the morphism (ξ, q∗f

∗(ξ)) of CX.
The functor q̃∗ is a right adjoint to the projection q̃∗. The adjunction morphism

IdCX
−→ q̃∗q̃

∗ assigns to each object (L,M ;φ) of the category CX the morphism

(L,M ;φ)
(idL,φ̂)

−−−−−−−→ (L, q∗f
∗(L); ǫf∗(L)),

where M
φ̂
−→ q∗f

∗(L) denote the morphism conjugate to q∗(M)
φ−1

−→ f∗(L). The ad-
junction arrow q̃∗q̃∗ −→ IdCZ is the identical morphism. The latter implies that q̃∗ is a
localization functor.

(c) Suppose that Σq∗ = {s ∈ HomCY | q
∗(s) is invertible} is a left multiplicative

system. Let (L,M ;φ)
(s,t)
−−−→ (L′,M ′;φ′) be a morphism of Σ

q̃∗
(that is L

s
−→ L′ is an

isomorphism) and (L,M ;φ)
(ξ,γ)
−−−→ (L′′,M ′′;φ′′) an arbitrary morphism of CX. The claim

is that there exists a commutative diagram

(L,M ;φ)
(ξ,γ)
−−−→ (L′′,M ′′;φ′′)

(s, t)
y

y (s′, t′)

(L′,M ′;φ′)
(ξ′,γ′)
−−−→ (L̃, M̃ ; φ̃)

(1)
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in CX whose right vertical arrow belongs to Σ
q̃∗
.

In fact, since M
t
−→M ′ belongs to Σq∗ and Σq∗ is a left multiplicative system, there

exists a commutative diagram

M
γ

−−−→ M ′′

t
y

y t′

M ′
γ′

−−−→ M̃

in CY such that t′ ∈ Σq∗ . Setting L̃ = L′′, s′ = idL′′ , and φ̃ = q∗(t) ◦ φ′′, we obtain the
required commutative diagram (1).

(c1) Suppose that (L,M ;φ)
(s,t)
−−−→ (L′,M ′;φ′) is a morphism of Σ

q̃∗
which equal-

izes a pair of arrows (L′,M ′;φ′)

(α,β)

−−−→
−−−→

(ξ,γ)

(L′′,M ′′;φ′′). Then there exists a morphism

(L′′,M ′′;φ′′)
(s′,t′)
−−−→ (L̃, M̃ ; φ̃) of Σ

q̃∗
which equalizes this pair of arrows.

In fact, since s is an isomorphism, the equality (α, β)◦(s, t) = (ξ, γ)◦(s, t) implies that
α = ξ. Since Σq∗ is a left multiplicative system, the equality β ◦ t = γ ◦ t (and the fact that

t ∈ Σq∗) implies the existence of a morphism M ′′ t′

−→ M̃ in Σq∗ such that t′ ◦ β = t′ ◦ γ.

Taking L̃ = L′′, s′ = idL′′ , and φ̃ = q∗(t′) ◦ φ′′, we obtain the required morphism of Σ
q̃∗
.

(c’) Suppose that Σq∗ is stable under the base change. Then Σ
q̃∗

has the same property.

In fact, let a morphism (L′,M ′;φ′)
(s,t)
−−−→ (L,M ;φ) of CX belong to Σ

q̃∗
, and let

(L′′,M ′′;φ′′)
(ξ,γ)
−−−→ (L,M ;φ) be an arbitrary morphism of CX. Then there exists a com-

mutative diagram

(L̃, M̃ ; φ̃)
(ξ′,γ′)
−−−→ (L′,M ′;φ′)

(s′, t′)
y

y (s, t)

(L′′,M ′′;φ′′)
(ξ,γ)
−−−→ (L,M ;φ)

(2)

in CX whose left vertical arrow belongs to Σ
q̃∗
.

Since M ′ t
−→M belongs to Σq∗ and Σq∗ is a left multiplicative system, there exists a

commutative diagram

M̃
γ′

−−−→ M ′

t′
y

y t

M ′′
γ

−−−→ M̃
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in CY such that t′ ∈ Σq∗ . Setting L̃ = L′′, s′ = idL′′ , and φ̃ = q∗(t′)−1 ◦ φ′′, we obtain

a morphism (L̃, M̃ ; φ̃)
(s′,t′)
−−−→ (L′′,M ′′;φ′′) which belongs to Σ

q̃∗
. Set ξ′ = s−1 ◦ ξ. The

claim is that the pair (ξ′, γ′) is a morphism from (L̃, M̃ ; φ̃) to (L′,M ′;φ′) which makes

the diagram (2) commute. By definition, (ξ′, γ′) being a morphism from (L̃, M̃ ; φ̃) to
(L′,M ′;φ′) means the commutativity of the diagram

f∗(L̃)
f∗(ξ′)
−−−→ f∗(L′)

φ̃
y≀ ≀

y φ′

q∗(M̃)
q∗(γ′)
−−−→ q∗(M ′)

which amounts to the equalities

q∗(γ′) ◦ q∗(t′)−1 ◦ φ′′ = q∗(γ′) ◦ φ̃ = φ′ ◦ f∗(ξ′) = φ′ ◦ f∗(s)−1 ◦ f∗(ξ). (3)

It follows from the equality t ◦ γ′ = γ ◦ t′ that q∗(γ′) ◦ q∗(t′)−1 = q∗(t)−1 ◦ q∗(γ). On the
other hand, the fact that (s, t) is a morphism from (L′,M ′;φ′) to (L,M ;φ) means that
q∗(t)◦φ′ = φ◦f∗(s), or, equivalently, φ′◦f∗(s)−1 = q∗(t)−1◦φ. Therefore, (3) is equivalent
to the equality q∗(t)−1 ◦ q∗(γ) ◦ φ′′ = q∗(t)−1 ◦ φ ◦ f∗(ξ), or q∗(γ) ◦ φ′′ = φ ◦ f∗(ξ). The
latter equality expresses the fact that (ξ, γ) is a morphism from (L′′,M ′′;φ′′) to (L,M ;φ);
hence (3) holds. The commutativity of the diagram (2) follows directly from the definition
of the morphism (ξ′, γ′).

(c”) Let Σq∗ have the property:

(#) if an arrow M ′ t
−→ M belongs to Σq∗ and equalizes a pair of arrows M ′′−→

−→M
′,

then there exists a morphism M ′′ t′

−→M ′ in Σq∗ which equalizes this pair of arrows.

Then Σ
q̃∗

has the same property; that is if (L′,M ′;φ′)
(s,t)
−−−→ (L,M ;φ) is a morphism

of Σ
q̃∗

which equalizes a pair of arrows (L′′,M ′′;φ′′)

(α,β)

−−−→
−−−→

(ξ,γ)

(L′,M ′;φ′), then there exists

a morphism (L̃, M̃ ; φ̃)
(s′,t′)
−−−→ (L′′,M ′′;φ′′) of Σ

q̃∗
which equalizes this pair of arrows.

In fact, since s is an isomorphism, the equality (s, t)◦(α, β) = (s, t)◦(ξ, γ) implies that
α = ξ. Since Σq∗ is a right multiplicative system, the equality t ◦ β = t ◦ γ (and the fact

that t ∈ Σq∗) implies the existence of a morphismM ′′ t′

−→ M̃ in Σq∗ such that t′◦β = t′◦γ.

Taking L̃ = L′′, s′ = idL′′ , and φ̃ = q∗(t′)−1 ◦ φ′′, we obtain an object (L̃, M̃ ; φ̃) and a

morphism (L̃, M̃ ; φ̃)
(s′,t′)
−−−→ (L′′,M ′′;φ′′) which belongs to Σ

q̃∗
and equalizes the pair of

arrows (L′′,M ′′;φ′′)

(α,β)

−−−→
−−−→

(ξ,γ)

(L′,M ′;φ′).
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If follows from (c’) and (c”) above that Σ
q̃∗

is a right multiplicative system if Σq∗ is

a right multiplicative system.

1.5.2. Corollary. Let Z
f
←− X

q
−→ Y be morphisms of ’spaces’ such that q is a

localization, and let Z
q̃
−→ Z

∐

f,q

Y be a canonical morphism. Suppose the category CY

has finite limits (resp. finite colimits). Then q̃∗ is a left (resp. right) exact localization, if
the localization q∗ is left (resp. right) exact.

Proof. By 1.5.1(a), q̃∗ is a localization functor.

Suppose that the category CY has finite limits and the localization functor CY
q∗

−→ CX
is left exact. Then it follows from [GZ, I.3.4] that Σq∗ = {s ∈ HomCY | q

∗(s) is invertible}
is a right multiplicative system. The latter implies, by 1.5.1(c), that Σ

q̃∗
is a right multi-

plicative system. Therefore, by [GZ, I.3.1], the localization functor q̃∗ is left exact.

The following assertion is a refinement of [R1, 1.4.2].

1.5.3. Proposition. Let X
p
←− Z

q
−→ Y be morphisms of ’spaces’ such that p∗ and

q∗ are localization functors. Then the square

Z
q

−−−→ Y

p
y

y p1

X
q1
−−−→ X

∐

p,q

Y

is cartesian. In particular, every morphism whose inverse image functor is a localization
is a strict monomorphism.

Proof. Let X
u
←− W

v
−→ Y be morphisms of ’spaces’ such that q1 ◦ u = p1 ◦ v.

In other words, there exists an isomorphism u∗ ◦ q∗1
ψ
−→ v∗ ◦ p∗1. Let M

s
−→ M ′ be

any morphism of Σq∗ . Since p∗ is a localization functor, there exists L ∈ ObCX and

an isomorphism p∗(L)
φ
−→ q∗(M). We have a morphism (L,M ;φ)

(idL,s)
−−−→ (L,M ′;φ′) of

the category CX, where φ
′ = q∗(s)φ and X denotes the ’space’ X

∐

p,q

Y represented by

the category CX = CX
∏

p∗,q∗

CY . By the definition of the canonical functors q∗1 and p∗1,

we have q∗1(idL, s) = idL and p∗1(idL, s) = s. Therefore, v∗(s) = v∗ ◦ p∗1(idL, s) and

u∗ ◦ q∗1(idL, s) = u∗(idL) = idu∗(L). Since there is an isomorphism, u∗ ◦ q∗1
ψ
−→ v∗ ◦ p∗1, we
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have a commutative diagram

u∗(L)
ψ(L,M ;φ)
−−−−−−−→ v∗(M)

id
y

y v∗(s)

u∗(L)
ψ(L,M ′;φ′)
−−−−−−−→ v∗(M ′)

whose horizontal arrows are isomorphisms, hence v∗(s) is an isomorphism. Thus, v∗ maps
arrows of Σq∗ to isomorphisms. Since q∗ is a localization, there exists a unique functor

CY
ṽ∗
−→ CW such that v∗ = ṽ∗ ◦ q∗; that is the morphism v is uniquely represented as the

composition q ◦w. Similarly, the morphism u is represented as the composition p ◦ ũ for a
unique ũ. The equality q1 ◦ u = p1 ◦ v can be now rewritten as (q1 ◦ p) ◦ ũ = (p1 ◦ q) ◦ ṽ =
(q1 ◦p)◦ ṽ, which means that ũ∗ ◦ (q1 ◦p)

∗ ≃ ṽ∗ ◦ (q1 ◦p)
∗. By 1.5.1(a), the functors q∗1 and

p∗1 are localizations, hence (q1 ◦ p)
∗ = (p1 ◦ q)

∗ ≃ q∗ ◦ p∗1 is a localization. Therefore the
isomorphism ũ∗ ◦ (q1 ◦ p)

∗ ≃ ṽ∗ ◦ (q1 ◦ p)
∗ implies (is equivalent to) that ṽ∗ is isomorphic

to ũ∗, that is ũ = ṽ.
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2. Two canonical left exact structures on the category of ’spaces’.

2.1. The finest left exact structure on the category of ’spaces’. By 1.2, the
category of ’spaces’ |Cat|o has all small limits (and colimits); in particular, it has arbitrary
pull-backs. Therefore, its finest left exact structure on |Cat|o coincides with the class IstSp

of all strict monomorphisms of ’spaces’.

2.1.1. Note. Let X
f
−→ Y be a morphism in |Cat|o and CY

f∗

−→ CX its inverse image

functor. The functor f∗ is the composition of the full functor CY
f̄∗

−→ Cf(X)
def
= f∗(CY )

and the inclusion functor Cf(X)

j∗f
−→ CX regarded as inverse image functors of morphisms

of ’spaces’, respectively f(X)
f̄
−→ Y and X

jf
−→ f(X). It is easy to see that the

morphism f̄ is a strict monomorphism; and, by general nonsense, the morphism jf is a
strict monomorphism, because the composition f̄ ◦ jf is a strict monomorphism. So that

the morphism X
f
−→ Y is a strict monomorphism iff jf is a strict monomorphism. The

morphism jf is an epimorphism (hence an isomorphism) iff its inverse image functor is full.

2.2. Proposition. The left exact category (|Cat|o, IstSp) has enough injective objects.

Proof. (a) Two elementary injective objects. The smallest injective is the standard
initial object, x0, represented by the category with one (hence identical) morphism. The
second elementary injective, x1 is represented by the category with two objects and three
arrows. Since x0 is an initial object of the category of ’spaces’, it is injective, because
any morphism to x0 splits. Any inverse image functor of a monomorphism x1 −→ X is a
surjective functor which, obviously, splits; so that x1 is also an injective object.

(b) Let CX be a svelte category and CX its small subcategory such that the inclusion
functor CX →֒ CX is a category equivalence. For every arrow α of the category CX, we have

a functor Cx1

i∗α−→ CX which maps the non-identical arrow of Cx1 to α. The functor i∗α is an

inverse image functor of a morphism X
iα−→ x1. The set of morphisms {iα | α ∈ HomCX}

determines a morphism

X
iX
−−−→

∏

α∈HomCX

x1 (1)

whose inverse image functor is surjective. Therefore, (1) is a strict monomorphism, that

is a inflation of the left exact category (|Cat|o, IstSp), to the injective object
∏

α∈HomCX

x1.

(b1) One can replace (1) by a more economic embedding

X
iX
−−−→

( ∏

M∈ObCX

x0
)
×
( ∏

α∈Hom∗CX

x1
)
, (2)

where Hom∗CX denotes the set of all non-identical arrows of the category CX.
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2.3. The canonical left exact structure. We denote by Is the class of all mor-

phisms of ’spaces’ X
f
−→ Y such that every morphism of the category CX is isomorphic

to the inverse image of a morphism of the category CY . Since inverse image functors are
defined uniquely up to isomorphism, this definition does not depend on a choice of an
inverse image functor of the morphism f.

2.3.1. Proposition. The class Is is the smallest left exact structure on |Cat|o

containing all morphisms with surjective inverse image functors.

Proof. Evidently, the class Is contains all isomorphisms (because their inverse image
functors are equivalences of categories) and is closed under composition. It remains to
show that Is is stable under pull-backs.

Let X
f
−→ Y be a morphism from Is and X

g
−→ Z an arbitrary morphism. Let

X denote the ’space’ Z
∐

f,g

Y . The category CX is CZ
∏

f∗,g∗

CY . Recall that objects of

CZ
∏

f∗,g∗

CY are triples (L,M ;φ), where L ∈ ObCZ , M ∈ ObCY , and φ is an isomorphism

f∗(L) ∼−→ g∗(M). A morphism (L,M ;φ) −→ (L′,M ′;φ′) is given by a pair of arrows,

L
α
−→ L′ and M

β
−→M ′, such that the diagram

f∗(L)
f∗(α)
−−−→ f∗(L′)

φ
y≀ ≀

y φ′

g∗(M)
g∗(β)
−−−→ g∗(M ′)

(1)

commutes. The composition of morphisms is defined naturally.

The (canonical) inverse image CX
g̃∗

−→ CZ of the coprojection Z
q̃
−→ X maps each

object (L,M ;φ) to L and each morphism (L,M ;φ)
(s,t)
−−−→ (L′,M ′;φ′) to L

s
−→ L′.

If L
α
−→ L′ is an arbitrary arrow of the category CZ , then, g

∗(β) is isomorphic to a

morphism f∗(α) for some M
α
−→ M ′ of the category CY . So that we have a diagram (1)

which can be interpreted as a morphism (L,M ;φ)
(α,β)
−−−→ (L′,M ′;φ′). By definition of

the canonical inverse functor of the coprojection g̃, we have g̃∗(α, β) = α. So that g̃∗ is a
full functor. In particular, g̃ belongs to Is.

2.3.2. Proposition. The left exact category (|Cat|o, Is) has enough injective objects
and its injective objects coincide with the injective objects for the finest left exact structure
on |Cat|o.

Proof. Evidently, injective object of a left exact category is injective objects for any
coarser left exact structure. In particular, all injective objects of the left exact category
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(|Cat|o, IstSp) are injective objects of (|Cat|o, Is). Notice that the inverse image of the
canonical embedding (1) (or (2)) in the argument of 2.2 has surjective inverse image functor;
i.e. it belongs to the class of inflations Is. So that for every ’space’, there exists a morphism
from Is to a product of a set of copies of the injective object x1. In particular, every injective
object of the left exact category (|Cat|o, Is) is a retract of a product of copies of x1.

2.4. Remarks and observations.

2.4.1. Both the class IstSp of strict monomorphisms of ’spaces’ and the class Is are

self-dual: if X
j
−→ Y belongs to IstSp (resp. to Is), then same holds for the morphism

Xo jo

−→ Y o of dual ’spaces’.

2.4.2. It follows from 1.5.3 that every morphism of ’spaces’ whose inverse image
functor is a localization is a strict monomorphism.

Morphisms whose inverse image functors are localizations at left or right multiplicative
systems belong to the class Is.

2.4.3. The class of morphisms Is has the following property: if the composition

X
f◦g
−→ Y belongs to Is, then g ∈ Is. In fact, (f ◦ g)∗ ≃ g∗ ◦f∗. So that if every morphism

of the category CX is isomorphic to an arrow from the image of (f ◦ g)∗, then, with more
reason this holds for g∗. Taking the canonical decomposition f = pf ◦ fc, where pf is a
localization and fc is a conservative morphism (that is f∗c is a conservative functor), we
obtain that for any morphism f from Is, its conservative component, fc, belongs to Is.

2.4.4. In connection with the last remark, notice that

The class Isc of all conservative morphisms from Is forms a left exact structure.

In fact, all isomorphisms are conservative and composition of conservative morphisms
is conservative. It remains to verify that push-forwards of conservative morphisms are
conservative. Let

X
f

−−−→ Y

g
y cocart

y pg

Z
f̃

−−−→ Y

be a push-forward of a conservative morphism X
f
−→ Y along an arbitrary morphism

X
g
−→ Z. It is represented by the cartesian (in pseudo-functorial sense) square of inverse

image functors

CY

f̃∗

−−−→ CZ

p∗g

y cart
y p∗g

CY
f∗

−−−→ CX
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where CY is the category whose objects are triples (L,M ;φ), where φ is an isomorphism
f∗(L) ∼−→ g∗(M), and morphisms from (L,M ;φ) to (L′,M ′;φ′) are given by pairs of

morphisms L
ξ1
−→ L′, M

ξ2
−→M ′ such that the diagram

f∗(L)
f∗(ξ1)
−−−→ f∗(L′)

φ
y≀ ≀

y φ′

g∗(M)
g∗(ξ2)
−−−→ g∗(M ′)

(1)

commutes. The functor f̃∗ maps a morphism (ξ1, ξ2) to M
ξ2
−→ M ′. It follows from the

diagram (1) that if f̃∗(ξ1, ξ2) = ξ2 is an isomorphism, then f∗(ξ1) is an isomorphism. Since,
by hypothesis, the functor f∗ is conservative, the latter means that ξ1 is an isomorphism.
So that the functor f̃∗ is conservative too.

2.5. The left exact category of Karoubian ’spaces’. Let |KCat|o denote the
full subcategory of |Cat|o generated by ’spaces’ represented by Karoubian svelte categories,
that is svelte categories in which all idempotents split (see I.3.2). We call the objects of
the subcategory |KCat|o Karoubian ’spaces’.

2.5.1. Proposition. The inclusion functor |KCat|o
K∗

−−−→ |Cat|o has a canonical

right adjoint, |Cat|o
K∗

−−−→ |KCat|o.

Proof. The functor |Cat|o
K∗

−−−→ |KCat|o. assigns to each ’space’ X the ’space’
XK represented by the Karoubian envelope, CXK of the category CX (see I.3.3.1 and

I.3.3). The canonical full embedding CX
k∗X−→ CXK of the category CX into its Karoubian

envelope is the inverse image functor of (the value at X of) an adjunction morphism

K∗K∗(X) = XK
k∗X−→ X. The adjunction morphism Id|KCat|o −→ K∗K

∗ is a natural
isomorphism (see the argument of I.3.3).

2.5.2. The canonical left exact structure on |KCat|o. The left exact structure
Is on the category of ’spaces’ |Cat|o induces a left exact structure on |KCat|o, which we
denote by IKa.

2.5.3. Proposition. The left exact category (|KCat|o, IKa) has enough injective
objects.

Proof. The inclusion functor |KCat|o
K∗

−−−→ |Cat|o preserves small colimits and
maps IKa to Is. In particular, K∗ is an ’exact’ functor from (|KCat|o, IKa) to (|Cat|o, Is).

(a) The fact that K∗ maps inflations to inflations implies that its right adjoint, K∗

maps injective objects to injective objects. The claim is that there are enough injective
objects of this form.
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(b) Notice that if X is a Karoubian ’space’ and K∗(X)
f
−→ Y is an inflation (– a

morphism from Is), then the adjoint morphism X
f̂
−→ K∗(Y ) is an inflation.

In fact, f̂ is a morphism from the ’space’ X to the Karoubian envelope YK of the

’space’ Y ; and the inflation X
f
−→ Y is the composition of X

f̂
−→ YK and the canonical

morphism YK
kY−→ Y (corresponding to the full embedding CY into its Karoubian envelope

CYK ). Therefore, by 2.4.3, the morphism X
f̂
−→ YK belongs to Is. Both X and YK are

Karoubian ’spaces’; so that f̂ ∈ IKa.

(c) Since the left exact category (|Cat|o, Is) has enough injective objects, for every

Karoubian ’space’ X, we have an inflation (actually, a canonical inflation) K∗(X)
f
−→ X

to an injective object X of the left exact category (|Cat|o, Is). By (b) above, the adjoint

morphism X
f̂
−→ K∗(X) = XK is an inflation; and by (a), K∗(X) = XK is an injective

object of the left exact category (|KCat|o, IKa).

3. Left exact structures formed by localizations and related constructions.

Let L denote the class of all localizations of ’spaces’ (i.e. morphisms whose inverse
image functors are localizations). We denote by Lℓ (resp. Lr) the class of localizations

X
q
−→ Y of ’spaces’ such that Σq∗ = {s ∈ HomCY | q

∗(s) is invertible} is a left (resp.
right) multiplicative system. We denote by Le the intersection of Lℓ and Lr (i.e. the class
of localizations q such that Σq∗ is a multiplicative system) and by Lc the class of continuous
(i.e. having a direct image functor) localizations of ’spaces’. Finally, we set Lc

e = Lc ∩ Le;

i.e. Lc
e is the class of continuous localizations X

q
−→ Y such that Σq∗ is a multiplicative

system.

3.1. Proposition. Each of the classes of morphisms L, Lℓ, Lr, Le, Lc, and Lc
e are

structures of a left exact category on the category |Cat|o of ’spaces’.

Proof. It is immediate that each of these classes is closed under composition and
contains all isomorphisms of the category |Cat|o. It follows from 1.5.1 that each of the
classes is stable under cobase change. In other words, the arrows of each class can be
regarded as cocovers of a copretopology. It remains to show that these copretopologies are
subcanonical. Since L is the finest copretopology, it suffices to show that L is subcanonical.

The copretopology L being subcanonical means precisely that for any localization

X
q
−→ Y , the square

X
q

−−−→ Y

q
y

y q1

Y
q2
−−−→ Y

∐

q,q

Y
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is cartesian. But, this follows from 1.5.3.

3.2. Observation. Each object of the left exact category (|Cat|o,Lc) is injective.

In fact, a ’space’ X is an injective object of (|Cat|o,Lc) iff each morphism X
q
−→ Y

is split; i.e. there is a morphism Y
t
−→ X such that t ◦ q = idX . Since the morphism

q is continuous, it has a direct image functor, q∗, which is fully faithful, because q∗ is a
localization functor. The latter means precisely that the adjunction arrow q∗q∗ −→ IdCX is

an isomorphism. Therefore, the morphism Y
t
−→ X whose inverse image functor coincides

with q∗ satisfies the equality t ◦ q = idX .

3.3. The left exact structures Isℓ and Isr. We denote by Isℓ (resp. by Isr) the class

of all morphisms X
f
−→ Y from Is such that Σf∗

def
= {s ∈ HomCY | f

∗(s) is invertible}
is a left (resp. right) multiplicative system. We denote by Ise the intersection of the classes
Isℓ and Isr .

3.3.1. Proposition. (a) The classes of morphisms Isℓ and Isr (hence their intersec-
tion Ise) are left exact structures on the category |Cat|o.

(b) The left exact category (|Cat|o, Ise) has enough injective objects and its injective
objects coincide with injective objects for the finest left exact structure on |Cat|o.

Proof. (a) The class Isℓ is formed by compositions q◦f, where f is an arbitrary morphism
from the class Isc of conservative morphisms from Is and q is any morphism (composable
with f) from from the class Lℓ of morphisms whose inverse image functors are localizations
at left multiplicative systems. It follows that if γ = f◦q for some q ∈ Lℓ and f ∈ Isc having a
surjective inverse image functor, then the class Σγ∗ of arrows mapped to isomorphisms is a
left multiplicative system. Since every morphism of Is is a composition of an isomorphism
and a morphism with a surjective inverse image functor, it follows that the class Isℓ is
closed under composition. Since both Isc and Lℓ are stable under push-forwards, same
holds for the class Isℓ = Lℓ ◦ I

s
c .

(b) All morphisms from Is to a product of copies of the injective ’space’ x1 belong to
the class Ise, hence the assertion.

3.3.2. Note. The fact that the left exact category (|Cat|o, Ise) has enough injective
objects and its injective objects coincide with injective objects for the finest left exact
structure on |Cat|o implies a similar assertion for any left exact structure on |Cat|o, which
is finer than Ise. In particular, same assertion holds for (|Cat|o, Isr) and (|Cat|o, Isℓ).

3.4. Relative ’spaces’. The category |Cat|o has canonical initial object represented
by the category with one object and one morphism, but does not have final objects (since
we do not allow empty categories). In particular, the notion of the cokernel of a morphism
is not defined in |Cat|o. So that we cannot apply to |Cat|o the theory of derived functors
(satellites) sketched in Chapter II. The category of relative ’spaces’ (i.e. ’spaces’ over a
given ’space’) has both final objects and cokernels of arbitrary morphisms.
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Fix a ’space’ S. The category |Cat|o/S has a natural final object – (S, idS), and

cokernels of morphisms. The cokernel of a morphism (X, g)
f
−→ (Y, h) of ’spaces’ over

S is the pair (Y
∐

f,g

S, h̃), where Y
∐

f,g

S
h̃
−→ S is the unique arrow determined by the

commutative square

X
f

−−−→ Y

g
y

y h

S
idS
−−−→ S

The canonical inverse image functor h̃∗ of the morphism h̃ maps every object M of the

category CS to the object (h∗(M),M ; f∗h∗(M) ∼→ g∗(M)) of the category CY
∐

f∗,g∗

CS

representing the ’space’ Y
∐

f,g

S.

3.4.1. Lemma. Let CX be a category and V its object. Any left exact structure IX
on CX induces a left exact structure, IX/V on the category CX/V .

Proof. By the definition of IX/V , a morphism (L, ξ)
f
−→ (L′, ξ′) of CX/V belongs to

IX/V iff the morphism L
f
−→ L′ belongs to IX . We leave to the reader the verifying that

IX/V is a left exact structure on CX/V .

In particular, each left exact structure constructed above induces a left exact structure
on the category |Cat|o/S.

4. Left exact structures on the category of k-’spaces’.

Fix a commutative associative unital ring k. Recall that k-’spaces’ are ’spaces’ rep-
resented by k-linear categories. They are objects of the category |Catk|

o whose arrows
X −→ Y are represented by isomorphism classes of k-linear functors CY −→ CX .

4.1. Cokernels in |Catk|
o. The category |Catk|

o is pointed: its zero object is

represented by the zero category. Every morphism X
f
−→ Y of |Catk|

o has a canonical

cokernel Y
c
−→ Cok(f), where CCok(f) is the subcategory Ker(f∗) of CY (– the full

subcategory generated by all objects L such that f∗(L) = 0) and c∗ is the inclusion
functor Ker(f∗) −→ CY .

4.2. Proposition. The category |Catk|
o has small colimits and products.

Proof. (a) The category |Catk|
o has small coproducts and products.
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Let {Xi | i ∈ J} be a set of objects of |Catk|
o. The coproduct XJ =

∐

i∈J

Xi is defined

by CXJ =
∏

i∈J

CXi . The product XJ =
∏

i∈J

Xi is defined by CXJ =
∐

i∈J

CXi , where

∐

i∈J

CXi is the full subcategory of CXJ =
∏

i∈J

CXi generated by all objects (Mi | i ∈ J)

such that Mi 6= 0 only for a finite number of i ∈ J .

(b) Every pair of arrows, X
f

−→
−→
g

Y, in |Catk|
o has a cokernel.

Let CY
f∗

−→
−→
g∗

CX be inverse image functors of respectively f and g. The cokernel

C(f, g) is represented, like in non-additive case, by the kernel of the pair (f∗, g∗) of their
respective inverse image functors: objects of CC(f,g) are pairs (L, φ), where φ is an iso-
morphisms f∗(L) ∼−→ g∗(L) and morphisms (L, φ) −→ (L′, φ′) are given by morphisms

L
ξ
−→ L′ such that the diagram

f∗(L)
f∗(ξ)
−−−→ f∗(L′)

φ
y

y φ′

g∗(L)
g∗(ξ)
−−−→ g∗(L′)

commutes. Since the categories CX and CY are k-linear and additive and functors are
k-linear (in particular, they are additive), the category CC(f,g) is additive an k-linear and

the canonical functor CC(f,g) −−−→ CY , which maps a morphism (L, φ)
ξ
−→ (L′, φ′) to

L
ξ
−→ L′ is k-linear.

4.3. Proposition. Suppose that X
f

−→
−→
g

Y is a pair of continuous morphisms of

k-’spaces’, and let the category CX have small limits. Then the kernel K(f, g)
k
−→ X, of

the pair (f, g) is a continuous morphism.

Proof. The ’space’ K(f, g) is represented by the kernel of the pair CX
f∗
−→
−→
g∗

CY of the

morphisms X
f

−→
−→
g

Y. The direct image functor of the kernel morphism K(f, g)
k
−→ X

maps every morphism (L, φ)
ξ
−→ (L′, φ′) of the category CK(f,g) to the morphism L

ξ
−→ L′

of the category CX . The fact follows from (the argument of) 1.3.

4.3.1. A construction of the kernel in general case. Let X
f

−→
−→
g

Y be an

arbitrary pair of morphisms of k-’spaces’ with the inverse image functors CY
f∗

−→
−→
g∗

CX .
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Then we have a (quasi-)commutative diagram

CY

f∗

−−−→
−−−→
g∗

CX
κ∗

−−−→ CW − − → CK(f∗,g∗)

y
y

y
y

C∧
Y

f̂∗

−−−→
−−−→
ĝ∗

C∧
X

κ̂∗

−−−→ C∧
W

k̂∗1
−−−→ C

K(f̂∗ ,̂g∗)

(1)

where CW is the image of the composition of the Yoneda embedding and the inverse image

functor C∧
X

k∗(f̂ ,̂g)
−−−→ C

K(f̂∗ ,̂g∗)
. It follows from the universality of this functor (due to the

fact that, by 4.3, it is an inverse image functor of the kernel of the pair of morphisms (f̂ , ĝ))

that the functor C∧
W

k̂∗1
−−−→ C

K(f̂∗ ,̂g∗)
in the diagram (1) is a category equivalence.

It follows from this construction that any morphism Z −→ X which equalizes the

pair X
f

−→
−→
g

Y and such that CZ is a k-linear category with small colimits factors uniquely

through the morphism W
κ
−→ X. One can also see that W

κ
−→ X is isomorphic to the

kernel of the pair (f, g) provided this kernel exists. Actually, it does exist, and the proof
of existence is a k-linear version of the argument 1.2(c). Since we do not need this fact,
we omit the argument.

4.4. Left exact structures on the category of k-spaces.

4.4.1. The finest left exact structure. We denote the finest left exact structure on
|Catk|

o by Istk . Since the category |Catk|
o has all colimits, in particular all push-forwards,

the class Istk consists of all strict monomorphisms of k-’spaces’.

4.4.2. The left exact structure Isk. We denote by Isk the k-linear version of the

left exact structure Is: it is formed by morphisms X
f
−→ Y of k-’spaces’ such that every

morphism of the category CX is isomorphic to a morphism f∗(α) for some α ∈ HomCY .

4.4.3. Proposition. The class of morphisms Isk is a left exact structure on the
category of k-’spaces’.

Proof. Evidently, the class Isk is closed under composition and contains all isomor-
phisms. It follows also that every morphism from Isk is a strict monomorphism. It remains
to show that Isk is stable under push-forwards. The argument is the same as for the left
exact structure Is on |Cat|o (cf. 2.3.1).

4.4.4. Proposition. The left exact category (|Catk|
o, Isk) has enough injective ob-

jects.
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Proof. (a) The k-’space’ xk. We denote by xk the k-’space’ represented by the k-linear
category with two objects, a and b such that

Cxk(a, b) = k, Cxk(b, a) = 0, Cxk(a, a) = k, and Cxk(b, b) = k.

Every inflation xk
f
−→ X has a surjective inverse image functor CX

f∗

−→ Cxk ; that
is there exist objects L, M of the category CX such that f∗(L) = a, f∗(M) = b, and
the functor f∗ maps CX(L,M) onto Cxk(a, b) = k. Therefore, since k is a projective k-

module, the map CY (L,M)
f∗L,M
−−−→ Cxk(a, b) splits. This splitting determines a functor

Cxk

γ∗

−→ CX such that f∗ ◦ γ∗ is the identical functor.

(b) Inflations into injective objects. Let X be a k-’space’ represented by a small

k-linear category CX . For each arrow L
α
−→M, of the category CX , consider the functor

Cxk

γ∗
α

−−−→ CX

which maps a to L, b to M and each element λ ∈ k = Cxk(a, b) to the morphism λ ·α. The
functors {γ∗α | α ∈ HomCX} define a functor

∐

α∈HomCX

Cxk

γ∗

−−−→ CX

which is (by construction) surjective. Therefore, γ∗ is an inverse image functor of an

inflation X
γ

−−−→
∏

α∈HomCX

xk.

Since any product of injective objects is an injective object, this proves the assertion.

4.4.5. Elementary injective objects. The following k-’spaces’ are all retracts of
the injective k-’space’ xk, hence all of them are injective objects.

(i) The k-’space’ x1k represented by the category with one object, x, whose endomor-
phism ring is k · idx. There are two (obvious) inflations from x1k to xk.

(ii) For each idempotent e of the ring k, there is an injective ’space’ x1,ek represented
by category with one object whose endomorphism ring is k · e.

(iii) We have also an injective k-space xek represented by the category with two objects,
a and b, defined by

Cxe
k
(a, b) = k · e, Cxe

k
(b, a) = 0, Cxe

k
(a, a) = k, and Cxe

k
(b, b) = k.
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(iv) Finally, we obtain more elementary injective objects by taking in the last example
the algebra of endomorphisms of a (resp. b) equal to k · ea (resp. k · eb), where ea and eb
are idempotents of the ring k such that ea · e = e = eb · e.

4.4.5.1. Note. If the ring k does not have non-trivial idempotents, then each of the
four examples either produces x1k, or reproduces xk.

4.4.6. Left exact structures formed by localizations of k-’spaces’. Each of
the left exact structures L, Lℓ, Lr, Le, L

c, and Lc
e on the category |Cat|o of ’spaces’ (see

2) induces a left exact structure on the category |Catk|
o of k-spaces. Thus, we have left

exact structures L(k), Lℓ(k), Lr(k), Le(k), L
c(k), and Lc

e(k) on |Catk|
o.

4.5. Additivization. Let Catk denote the category whose objects are svelte k-linear
categories and morphisms k-linear functors. We denote by Addk the full subcategory
of Catk generated by additive k-linear categories. Let J̃∗ denote the inclusion functor
Addk −→ Catk. The functor J̃∗ is right adjoint to the additivization functor J̃∗ which maps
every k-linear category CX to the smallest full additive subcategory CXa

of the category
Mk(X) of presheaves of k-modules on CX containing all representable presheaves.

Let |Addk|
o denote the full subcategory of the category |Catk|

o of k-’spaces’ generated
by the ’spaces’ represented by additive k-linear categories. The pair of adjoint functors

Addk
J̃∗

−−−→ Catk
J̃∗

−−−→ Addk

induces a pair of adjoint functors

|Addk|
o

J∗

−−−→ |Catk|
o

J∗

−−−→ |Addk|
o.

Only here the inclusion functor |Addk|
o

J∗

−−−→ |Catk|
o is left adjoint to the addi-

tivization functor. The functor Addk
J̃∗

−−−→ Catk preserves small limits and colimits;

hence the functor |Addk|
o

J∗

−−−→ |Catk|
o does the same.

The left exact structure Isk induces a left exact structure I+k on |Addk|
o. Since (by

definition of I+k ) the functor J∗ maps inflations to inflations, its right adjoint J∗ maps
injective objects to injective objects. The argument similar of that of 2.5.3(a) and (b)
deduces from the fact that (|Catk|

o, Isk) has enough injective objects (4.4.4) that the left
exact category (|Addk|

o, I+k ) has enough injective objects.

4.6. Karoubianization. Let |KCatk|
o denote the full subcategory of |Catk|

o gen-
erated by ’spaces’ represented by Karoubian svelte k-linear categories. We call the objects
of the subcategory |KCat|o Karoubian k-’spaces’.

4.6.1. Proposition. The inclusion functor |KCatk|
o

K∗
k

−−−→ |Catk|
o has a canonical

right adjoint, |Cat|o
Kk∗
−−−→ |KCatk|

o.
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Proof. The argument is similar to the proof of 2.5.1.

4.6.2. The canonical left exact structure on |KCatk|
o. The left exact structure

Isk on the category of ’spaces’ |Cat|o induces a left exact structure on |KCat|o, which we
denote by IKa

k .

4.6.3. Proposition. The left exact category (|KCat|o, IKa
k ) has enough injective

objects.

Proof. The argument is the same as in 2.5.3.

5. Left exact structures on the category of right (or left) exact ’spaces’.

A right exact ’space’ is a pair (X,EX), where X is a ’space’ and EX is a right exact
structure on the category CX . We denote by Espr the category whose objects are right
exact ’spaces’ (X,EX) and morphisms from (X,EX) to (Y,EY ) are given by morphisms

X
f
−→ Y of ’spaces’ whose inverse image functor, f∗, is ’exact’; i.e. f∗ maps deflations to

deflations and preserves pull-backs of deflations.

Dually, a left exact ’space’ is a pair (Y, IY ), where (CY , IY ) is a left exact category. We
denote by Espℓ the category whose objects are left exact ’spaces’ (Y, IY ) and morphisms
(Y, IY ) −→ (Z, IZ) are given by morphisms Y −→ Z whose inverse image functors are
’coexact’, which means that they preserve arbitrary push-forwards of inflations.

5.1. Note. The categories Espr and Espℓ are naturally isomorphic to each other: the
isomorphism is given by the dualization functor (X,EX) 7−→ (Xo,EopX ). Therefore every
assertion about the category Espr of right exact ’spaces’ translates into an assertion about
the category Espℓ of left exact ’spaces’ and vice versa.

5.2. Proposition. The category Espr has fibred coproducts.

Proof. Let (X,EX)
f
←− (Z,EZ)

g
−→ (Y,EY ) be morphisms of Espr; and let X denote

the ’space’ X
∐

f,g

Y , i.e. CX = CX
∏

f∗,g∗

CY . Let EX denote the class of all morphisms

(L,M ;φ)
(ξ,γ)
−−−→ (L′,M ′;φ′) of CX such that L

ξ
−→ L′ belongs to EX and M

γ
−→ M ′ is

an arrow of EY . The claim is that EX is a right exact structure on CX and (X,EX) is a

coproduct (X,EX)
∐

f,g

(Y,EY ) of right exact ’spaces’.

It is immediate that EX contains all isomorphisms and is closed under composition. Let

(L,M ;φ)
(ξ,γ)
−−−→ (L′,M ′;φ′) be a morphism of EX, and let (L′′,M ′′;φ′′)

(α,β)
−−−→ (L′,M ′;φ′)

be an arbitrary morphism of CX. Since the inverse image functors f∗ and g∗ preserve cor-
responding deflations and their pull-backs and ξ, γ are deflations, the isomorphisms φ, φ′,
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and φ′′ induce an isomorphism f∗(L̃)
φ̃
−→ g∗(M̃), where L̃ = L

∏

ξ,α

L′′ and M̃ =M
∏

γ,β

M ′′.

It is easy to see that the square

(L̃, M̃ ; φ̃)
(α′,β′)
−−−→ (L,M ;φ)

(ξ̃, γ̃)
y

y (ξ, γ)

(L′′,M ′′;φ′′)
(α,β)
−−−→ (L′,M ′;φ′)

(1)

is cartesian, ξ̃ ∈ EX , and γ̃ ∈ EY . Therefore, (ξ̃, γ̃) ∈ EX.
If (α, β) = (ξ, γ), then the square (1) is cocartesian, because the squares

L̃
ξ′

−−−→ L M̃
γ′

−−−→ M

ξ̃
y

y ξ and γ̃
y

y γ

L
ξ

−−−→ L′ M
γ

−−−→ M ′

are (both cartesian and) cocartesian. Altogether shows that the arrows of EX are covers
of a subcanonical pretopology; i.e. EX is a structure of a right exact category on CX.

5.3. The left exact structure Ies on the category of right exact ’spaces’. We

denote by Ies the class of all morphisms (X,EX)
f
−→ (Y,EY ) of right exact ’spaces’ such

that each arrow of CX is isomorphic to the image of some arrow of CY (that is X
f
−→ Y

belongs to Is) and each arrow of EX is isomorphic to an arrow f∗(e) for some e ∈ EY .
The latter condition implies that EX is the smallest right exact structure on CX

containing f∗(EY ).

5.3.1. Proposition. The class Ies is a left exact structure on the category Espr of
right exact ’spaces’.

Proof. The class Ies contains, obviously, all isomorphisms, and it is easy to see that
it is closed under composition. It remains to show that Ies is stable under cobase change
and its arrows are cocovers of a subcanonical copretopology.

Let (X,EX)
q
−→ (Y,EY ) be a morphism of Ies and (X,EX)

f
−→ (Z,EZ) an arbitrary

morphism. The claim is that the canonical morphism Z
q̃
−→ Z

∐

f,q

Y belongs to Ies.

Consider the corresponding cartesian (in pseudo-categorical sense) square of right
exact categories:

(CX,EX)
p∗

−−−→ (CY ,EY )

q̃∗
y

y q∗

(CZ ,EZ)
f∗

−−−→ (CX ,EX)

(2)
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where X = Z
∐

f,q

Y ; that is CX = CZ
∏

f∗,q∗

CY . Recall that the functor q̃
∗ maps each object

(L,M ;φ) of the category CX to the object L of CZ and each morphism (ξ, γ) to ξ.

Let L
e
−→ L′ be an arrow of EZ . Then f

∗(e) is a morphism of EX . Since X
q
−→ Y is

a morphism of Ies, there exists a morphism M
t
−→M ′ of EY and a commutative diagram

f∗(L)
f∗(e)
−−−→ f∗(L′)

ψ
y≀ ≀

y ψ′

q∗(M)
q∗(t)
−−−→ q∗(M ′)

whose vertical arrows are isomorphisms. By the definition of the right exact category
(CX,EX), this means that (e, t) is a morphism (L,M ;ψ) −−−→ (L′,M ′;ψ′) of CX which
belongs to EX. The localization functor q̃∗ maps it to e. Thus, EZ = q̃∗(EX), hence q̃ ∈ EX.
This shows that Ies is stable under cobase change.

It remains to verify that for every morphism (X,EX)
q
−→ (Y,EY ) of I

es the square

(CY,EY)
p∗1
−−−→ (CY ,EY )

p∗2

y
y q∗

(CY ,EY )
q∗

−−−→ (CX ,EX)

(3)

is cocartesian. Here CY = CY
∏

q∗,q∗

CY .

Consider a quasi-commutative diagram

(CY,EY)
p∗1
−−−→ (CY ,EY )

p∗2

y
y v∗

(CY ,EY )
u∗

−−−→ (CW ,EW )

(4)

of ’exact’ functors. Since the square

CY

p∗1
−−−→ CY

p∗2

y
y q∗

CY
q∗

−−−→ CX

is cocartesian, there exists a unique up to isomorphism functor CX
w∗

−→ CW such that
v∗ ≃ w∗q∗ ≃ u∗. The claim is that w∗ is an ’exact’ functor from (CX ,EX) to (CW ,EW ).



164 Chapter 4

Since q ∈ Ies, every morphism of EX is isomorphic to a morphism of q∗(EY ) and v
∗ maps

EY to EW . Therefore w∗ maps EX to EW . The fact that q∗ and v∗ ≃ w∗q∗ are ’exact’
functors implies that the functor w∗ is ’exact’.

5.3.2. Proposition. The left exact category (Espr, I
es) has enough injective objects.

Proof. (a) The canonical embedding of |Cat|o into Espr which provides each ’space’
X with the coarsest right exact structure is an exact fully faithful functor

(|Cat|o, Is)
J∗

−−−→ (Espr, I
es)

which is right adjoint to the functor

(Espr, I
es)

J∗

−−−→ (|Cat|o, Is)

forgetting right exact structures. Since the functor J∗ maps inflations to inflations, by (the
dual version of) III.1.3.1, its right adjoint J∗ maps injective objects to injective objects.

(b) Another elementary injective. We denote by (S,ES) the right exact ’space’ defined
as follows. Objects of the category CS are vn, n ≥ 0, where v0 a final object; morphisms
are generated by identical morphisms and arrows

vn+1
sin−→ vn, 0 ≤ i ≤ n, n ≥ 0, and vn

δin−→ vn+1, 0 ≤ i ≤ n− 1, n ≥ 1,

subject to the relations:

sjn ◦ s
i
n+1 = sin ◦ s

j+1
n+1, if i ≤ j,

δjn+1 ◦ δ
i
n = δin+1 ◦ δ

j−1
n , if i < j

sjn ◦ δ
i
n =





δin ◦ s
j−1
n−1 if i < j,

idvn if j = i or j = i+ 1,

δi−1
n ◦ sjn−1, if i > j + 1.

∣∣∣∣∣∣∣∣
n ≥ 1

(5)

The class of deflations ES is generated by identical morphisms and morphisms sin.

The claim is that the right exact ’space’ (S,ES) is an injective object of the left exact
category (Espr, I

es).

In fact, let (S,ES)
f
−→ (X,EX) be an inflation (that is a morphism from Ies.

Then its inverse image functor CX
f∗

−→ CS is ’exact’ and (since all isomorphisms of the
category CS are identical) it maps EX surjectively onto the set ES of deflations of the
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’space’ (S,ES). In particular, s0 = f∗(e) for some deflation M
e
−→ L of (X,EX). There is

an ’exact’ functor

(CS,ES)
γ∗

−−−→ (CX ,EX)

which is determined uniquely up to isomorphism by the equality γ∗(s0) = e.
Indeed, the ’exactness’ of γ∗ implies that the kernel pair (s00, s

1
0) of the deflation s0

should go to the kernel pair of the deflation e. The morphism [0]
d00−→ [1] is mapped to the

diagonal morphism M −→ M ×L M ; etc.. We use here the fact that all deflations and
their splittings obtained from one deflation via kernel pairs and pull-backs along already
obtained deflations, can be organized into the data like (5).

(c) Every right exact ’space’ has an inflation to a product of a set of copies of the
injective object described in (b) above and an injective object coming from (|Cat|o, Is)
(products of sets of copies of the object x1). One can construct such covers economically
by starting covering with deflations: picking a deflation e ∈ EX , mapping s00 to e which
induces an ’exact’ functor (CS,ES) to (CX ,EX) covering a whole tower of deflations and
their splittings. Then pick another deflation, etc.. This way, one covers eventually (using
a transfinite induction) essentially all deflations. What remains is ordinary arrows (that is
non-deflations), which are covered by a coproduct of copies of Cx1 . Altogether is an inverse
image functor of an inflation to an injective object of the left exact category (Espr, I

es).

5.4. The left exact category of right exact Karoubian ’spaces’. Let KEspr
denote the full subcategory of Espr generated by right exact ’spaces’ represented by right
exact Karoubian svelte categories (see I.3.4.1). We call the objects of the subcategory
KEspr Karoubian ’spaces’.

5.4.1. Proposition. The inclusion functor KEspr
K∗

−−−→ Espr has a canonical

right adjoint, Espr
K∗

−−−→ KEspr.

Proof. The functor Espr
K∗

−−−→ KEspr. assigns to each right exact ’space’ (X,EX)
the ’space’ (XK ,EXK ) represented by the Karoubian envelope, (CXK ,EXK )) of the right
exact category (CX ,EX) (see I.3.4.1 and I.3.4.2). The canonical full embedding

(CX ,EX)
k∗X
−−−→ (CXK ,EXK )

of the right exact category CX into its Karoubian envelope is the inverse image functor of
(the value at (X,EX) of) an adjunction morphism

K∗K∗(X) = (XK ,EXK )
k∗X
−−−→ (X,EX).

The adjunction morphism IdKEspr
−→ K∗K

∗ is a natural isomorphism.
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5.4.2. The canonical left exact structure on the category KEspr. The left
exact structure Ies on the category of ’spaces’ Espr induces a left exact structure on KEspr,
which we denote by IKe.

5.4.3. Proposition. The left exact category (KEspr, I
Ke) has enough injective

objects.

Proof. The argument follows that of 2.5.1. Still, because of the importance of this
fact and in order to fix the notations, we outline it below.

(i) The inclusion functor KEspr
K∗

−−−→ Espr preserves small colimits and (by definition
of the left exact structure IKe) maps IKe to Ies. In particular, K∗ is an ’exact’ functor
from the left exact category (KEspr, I

Ke) to the left exact category (Espr, I
es).

(ii) The fact that K∗ maps inflations to inflations implies that its right adjoint, K∗

maps injective objects to injective objects. The claim is that there are enough injective
objects obtained this way; that is, for any Karoubian right exact ’space’ (X,EX), there
exists an inflation into K∗(Y,EY ) for some injective object (Y,EY ) of the left exact category
(Espr, I

es).

(iii) Notice that if (X,EX) is a Karoubian right exact ’space’ and a morphism

K∗(X,EX)
f

−−−→ (Y,EY )

is an inflation (that is it belongs to Ies), then the adjoint morphism

(X,EX)
f̂

−−−→ K∗(Y,EY )

(which is isomorphic to K∗(f)) is an inflation.

In fact, f̂ is a morphism from the right exact ’space’ (X,EX) to the Karoubian envelope

(YK ,EY ) of the right exact ’space’ (Y,EY ); and the inflation (X,EX)
f
−→ (Y,EY ) is the

composition of (X,EX)
f̂
−→ (YK ,EYK ) and the canonical morphism (YK ,EYK )

kY−→ (Y,EY )
(corresponding to the full embedding CY into its Karoubian envelope CYK ). Therefore, by

2.4.3, the morphism (X,EX)
f̂
−→ (YK ,EYK ) belongs to Ies. Both (X,EX) and (YK ,EYK )

are Karoubian ’spaces’; so that f̂ ∈ IKe.

(iv) Since the left exact category (Espr, I
es) has enough injective objects, for every

right exact Karoubian ’space’ (X,EX), we have an inflation (actually, a canonical infla-

tion) K∗(X,EX)
f
−→ (X,EX) to an injective object (X,EX) of the left exact category

(Espr, I
es). By (iii) above, the adjoint morphism (X,EX)

f̂
−→ K∗(X,EX) = (XK ,EXK )

is an inflation; and by (ii), K∗(X,EX) = (XK ,EXK ) is an injective object of the left exact
category (KEspr, I

Ke) of Karoubian right exact ’spaces’.
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5.5. Some other left exact structures on the category of right exact ’spaces’.

Let Les be the class of all morphisms (X,EX)
q
−→ (Y,EY ) of right exact ’spaces’ such that

q∗ is a localization functor and each arrow of EX is isomorphic to q∗(e) for some e ∈ EY .

If Σq∗ is a left or right multiplicative system, then the morphism q belongs to the class
Ies; so that, in this case, EX is the smallest right exact structure containing q∗(EY ).

5.5.1. Proposition. The class Les is a left exact structure on the category Espr of
right exact ’spaces’.

Proof. The class Les contains, obviously, all isomorphisms, and it is easy to see that
Les is closed under composition. It remains to show that the class Les is stable under
cobase change and its arrows are cocovers of a subcanonical copretopology.

Let (X,EX)
q
−→ (Y,EY ) be a morphism of Les and (X,EX)

f
−→ (Z,EZ) an arbitrary

morphism. The claim is that the canonical morphism Z
q̃
−→ Z

∐

f,q

Y belongs to Les.

Consider the corresponding cartesian (in pseudo-categorical sense) square of right
exact categories:

(CX,EX)
p∗

−−−→ (CY ,EY )

q̃∗
y

y q∗

(CZ ,EZ)
f∗

−−−→ (CX ,EX)

(2)

where X = Z
∐

f,q

Y ; that is CX = CZ
∏

f∗,q∗

CY . Recall that the functor q̃
∗ maps each object

(L,M ;φ) of the category CX to the object L of CZ and each morphism (ξ, γ) to ξ. By
1.5.1(a), q̃∗ is a localization functor (because q∗ is a localization functor).

Let L
e
−→ L′ be an arrow of EZ . Then f

∗(e) is a morphism of EX . Since X
q
−→ Y is

a morphism of Les, there exists a morphism M
t
−→M ′ of EY and a commutative diagram

f∗(L)
f∗(e)
−−−→ f∗(L′)

ψ
y≀ ≀

y ψ′

q∗(M)
q∗(t)
−−−→ q∗(M ′)

whose vertical arrows are isomorphisms. By the definition of the right exact category
(CX,EX), this means that (e, t) is a morphism (L,M ;ψ) −−−→ (L′,M ′;ψ′) of CX which
belongs to EX. The localization functor q̃∗ maps it to e. Thus, EZ = q̃∗(EX), hence q̃ ∈ EX.
This shows that Les is stable under cobase change.
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It remains to verify that for every morphism (X,EX)
q
−→ (Y,EY ) of Les the square

(CY,EY)
p∗1
−−−→ (CY ,EY )

p∗2

y
y q∗

(CY ,EY )
q∗

−−−→ (CX ,EX)

(3)

is cocartesian. Here CY = CY
∏

q∗,q∗

CY .

Consider a quasi-commutative diagram

(CY,EY)
p∗1
−−−→ (CY ,EY )

p∗2

y
y v∗

(CY ,EY )
u∗

−−−→ (CW ,EW )

(4)

of ’exact’ functors. Since, by 1.5.3, that the square

CY

p∗1
−−−→ CY

p∗2

y
y q∗

CY
q∗

−−−→ CX

is cocartesian, there exists a unique up to isomorphism functor CX
w∗

−→ CW such that
v∗ ≃ w∗q∗ ≃ u∗. The claim is that w∗ is an ’exact’ functor from (CX ,EX) to (CW ,EW ).
Since q ∈ Les, every morphism of EX is isomorphic to a morphism of q∗(EY ) and v

∗ maps
EY to EW . Therefore w∗ maps EX to EW . The fact that q∗ and v∗ ≃ w∗q∗ are ’exact’
functors implies that the functor w∗ is ’exact’.

5.5.2. Corollary. Each of the classes of morphisms of ’spaces’ Lℓ, Lr, Le, Lc, and
Lc
e (cf. 3.1) induces a structure of a left exact category on the category Espr of right exact

’spaces’.

Proof. The class Lℓ induces the class Les
ℓ of morphisms of the category Espr formed

by all arrows (X,EX)
q
−→ (Y,EY ) from Les such that the morphism of ’spaces’ X

q
−→ Y

belongs to Lℓ. Similarly, we define the classes Les
ℓ , L

es
r , L

c
es, and Le,c

es .

5.5.3. The left exact structure Les
sq. For a right exact ’space’ (X,EX), let

Sq(X,EX) denote the class of all cartesian squares in the category CX with at least two
parallel arrows from EX .
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The class Les
sq consists of all morphisms (X,EX)

q
−→ (Y,EY ) of right exact ’spaces’

such that its inverse image functor, q∗, is equivalent to a localization functor and each
square of Sq(X,EX) is isomorphic to some square of q∗(Sq(Y,EY )).

5.5.4. Proposition. The class Les
sq is a left exact structure on the category Espr of

right exact ’spaces’ which is coarser than Les and finer than Les
r .

Proof. The argument is left to the reader.

5.6. Right exact ’spaces’ over a ’space’. The category Espr of right exact ’spaces’
has initial objects and no final object. Final objects appear if we fix a right exact ’space’
S = (S,ES) and consider the category Espr/S instead of Espr. The category Espr/S has
a natural final object and cokernels of all morphisms. It also inherits left exact structures
from Espr, in particular those defined above (see 5.5.2). Therefore, our theory of derived
functors (satellites) can be applied to functors from Espr/S.

6. Left exact category of right exact k-’spaces’.

For a commutative unital ring k, we denote by Esprk the category whose objects
are right exact ’spaces’ (X,EX) such that CX is a k-linear additive category and mor-
phisms are morphisms of right exact ’spaces’ whose inverse image functors are k-linear.

Let Esprk
Fr
k

−−−→ Espr be the natural functor forgetting k-linear structure. Notice that the
functor Fr

k preserves and reflects all small colimits; in particular, it preserves and reflects
arbitrary push-forwards.

We denote by Iesk the preimage of the left exact structure Ies; that is Iesk consists of

all morphisms of right exact k-’spaces’ (X,EX)
f
−→ (Y,EY ) such that every arrow of the

category CX is isomorphic to an arrow f∗(ξ) for some ξ ∈ HomCY and every arrow of EX
is isomorphic to the image of an arrow of EY . Since the functor Fr

k preserves and reflects
push-forwards, it follows that Iesk is a left exact structure on the category of right exact
k-’spaces’ and Fr

k is an ’exact’ functor from (Esprk, I
es
k ) to (Espr, I

es).

6.1. Proposition. The left exact category (Esprk, I
es
k ) has enough injective objects.

Proof. The argument that follows is a k-linear version of the proof of 5.3.2.
(a) Injective objects from (|Catk|

o, Is). The canonical embedding of |Catk|
o into Esprk

which provides each ’space’ X with the coarsest right exact structure is an exact fully
faithful functor

(|Catk|
o, Is)

J∗

−−−→ (Esprk, I
es
k )

which is right adjoint to the functor

(Esprk, I
es
k )

J∗

−−−→ (|Catk|
o, Is)
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forgetting right exact structures. Since the functor J∗ maps inflations to inflations, by (the
dual version of) III.1.3.1, its right adjoint J∗ maps injective objects to injective objects.

(b) The k-linear version of (S,ES). We denote by (Sk,ESk) the smallest right exact
k-’space’ having the same right exact structure: ESk = ES. Explicitly, the category CSk

has the same objects, {vn | n ≥ 0}, as the category CS. Morphisms between objects form
free k-modules described as follows:

CSk(vn+1, vn) =
⊕

0≤i≤n

k · sin, n ≥ 0, and

CSk(vn, vn+1) =
⊕

0≤i≤n−1

k · δin, n ≥ 1.
(1)

The composition rules are imposed by the relations for sin and δjm (see 5.3.2 (5)).

An inverse image functor of any inflation (Sk,ESk)
f

−−−→ (X,EX) is determined
by the map of deflations, which is surjective. Therefore, the splitting constructed in the
(part (b) of the) argument of 5.3.2 uniquely extends to a splitting of the functor f∗.

(c) The construction of an inflation of a right exact k-space (X,EX) into an injective
object is an adaptation of the procedure sketched in the part (c) of the argument of 5.3.2.

Let (X,EX) be a right exact ’space’. Replacing (in case of need) (X,EX) by an iso-
morphic right exact ’space’ with a small underlying category, we assume that the category
CX is small. As in 5.3.2, we start the construction from deflations.

(c1) For every e ∈ EX , we map the deflation s00 ∈ ESk to e, which induces an ’exact’
functor

(CSk ,ESk)
f∗e
−−−→ (CX ,EX).

The functors f∗e , e ∈ EX , determine the functor

∐

e∈EX

(CSk ,ESk)
f∗EX
−−−→ (CX ,EX). (2∗)

which is an inverse image functor of a morphism

(X,EX)
fEX
−−−→

∏

e∈EX

(Sk,ESk) (2)

of right exact ’spaces’. Notice that functor f∗EX ’covers’ all deflations of (X,EX).
(c2) What remains ’uncovered’ by the functor f∗EX is the class of arrows

HomCX −
⋃

e∈EX

f∗e(HomCSk)
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which we denote by Ord(X,EX) (meaning ordinary arrows).
For each arrow α ∈ Ord(X,EX), consider the functor

Cxk

γ∗
α

−−−→ CX

(from the part (b) of the argument 4.4.4), which maps a to L, b to M and each element
λ ∈ k = Cxk(a, b) to the morphism λ · α. The functors {γ∗α | α ∈ Ord(X,EX)} define an
’exact’ (by a trivial reason) functor

∐

α∈Ord(X,EX)

Cxk

γ∗
X

−−−→ (CX ,EX) (3∗)

which is an inverse image functor of a morphism

(X,EX)
γX
−−−→

∏

α∈Ord(X,EX)

xk. (3)

(c3) The morphisms (2) and (3) determine a morphism

(X,EX)
γX
−−−→

( ∏

α∈Ord(X,EX)

xk

)∏( ∏

e∈EX

(Sk,ESk)
)

(4)

which is an inflation by construction. Since any product of injective objects is an injective,
the morphism (4) is an inflation into an injective object, whence the assertion.

6.2. Note. The construction of the inflation of a right exact ’space’ into an injec-
tive object described in the argument of 6.1 is canonical, but, of course, not economical.
One can decrease the injective object by taking representatives of isomorphism classes of
deflations and ’ordinary’ arrows. The morphism of the right exact k-’space’ (X,EX) into
an injective object obtained this way will be still an inflation.

6.3. Additivization. Let Espr,ak denote the full subcategory of the category Esprk of
right exact k-’spaces’ generated by the ’spaces’ represented by additive k-linear categories.

6.3.1. Proposition. The inclusion functor Espr,ak
J∗

−−−→ Esprk has a right adjoint.

Proof. To any right exact k-’space’ (X,EX), the functor J∗ assigns the smallest addi-
tive subcategory of the category of sheaves of k-modules on the presite (X,EX) endowed
with the right exact structure generated by the image of EX .

6.3.2. The canonical left exact structure. The left exact structure Iesk on Esprk
induces a left exact structure on the category Espr,ak , which we denote by Ĩesk .
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6.3.3. Proposition. The left exact category (Espr,ak , Ĩesk ) has enough injective objects.

Proof. The argument follows the same idea as the argument of 5.4.3 (or 2.5.1). Namely,

the existence of a right adjoint to the inclusion functor Espr,ak
J∗

−−−→ Esprk together with
the fact that the inclusion functor maps inflations to inflations implies that its right adjoint,
J∗, maps injective objects to injective objects and there are enough of injective objects
obtained this way. Details are left to the reader.

6.4. Left exact category of Karoubian right exact k-’spaces’. Let KEsprk
denote the full subcategory of the category Esprk generated by Karoubian right exact k-
spaces. The canonical left exact structure Iesk induces a left exact structure on the category
KEsprk, which we denote by IKe

k .

6.4.1. Proposition. The left exact category (KEsprk, I
Ke
k ) has enough injective ob-

jects.

Proof. The argument follows the pattern of the proof of 5.4.3.

6.4.2. Remark. Notice that any pointed Karoubian right exact category (CX ,EX)
has finite products. This follows from the fact that the morphism of any object of CX to
a zero object splits, hence it is a deflation; and deflations are stable under base change.

In particular, any Karoubian k-linear right exact category is additive.

6.5. Left exact structures formed by localizations. Each of the left exact
structures Les, L

es
ℓ , L

es
r , L

c
es, and Le,c

es we introduced on the category Espr of ’spaces’ (see
5.5.) induces a left exact structure on the category Esprk of right exact k-’spaces’. We
denote them by respectively Les(k), L

es
ℓ (k), Les

r (k), Lc
es(k), and Le,c

es (k).

6.6. Left and right canonical structures. Let Iesℓ (k) (resp. by Iesr (k)) denote the

class of all morphisms of Iesk such that Σf∗
def
= {s ∈ HomCY | f

∗(s) is invertible} is a
left (resp. right) multiplicative system. We denote by Iese (k) the intersection of the classes
Iesℓ (k) and Iesr (k).

6.6.1. Proposition. (a) The classes of morphisms Iesℓ (k) and Iesr (k) (hence their
intersection Iese (k)) are left exact structures on the category Esprk of right exact k-’spaces’.

(b) The left exact category (Esprk, I
es
e (k)) has enough injective objects.

Proof. (a) The assertion follows from 3.3.1(a) (or its argument).
(b) One can observe that the canonical inflations to injective objects belong to the

subclass Iese (k).

7. Left exact category of exact k-’spaces’.

We denote by Espek the full subcategory of the category Esprk generated by the exact
’spaces’, that is right exact ’spaces’ (X,EX) for which the category (CX ,EX) is exact.
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7.1. Proposition. The inclusion functor Espek
J∗

−−−→ Esprk has a right adjoint.

Proof. By I.7.5, for any svelte k-linear right exact category (CX ,EX), there exists an
exact category (CXe

,EXe
) and a fully faithful k-linear ’exact’ functor

(CX ,EX)
γ∗
X

−−−→ (CXe
,EXe

) (1)

which is universal; that is any ’exact’ k-linear functor from (CX , EX) to an exact k-linear
category factorizes uniquely through γ∗X . This means that the map which assigns to
every right exact k-’space’ (X,EX) the exact k-’space’ (Xe,EXe

) extends to a functor

Esprk
J∗

−−−→ Espek which is right adjoint to the inclusion functor J∗, and (1) is an inverse
image functor of the adjunction morphism

J∗ ◦ J∗(X,EX) = (Xe,EXe
)

γX
−−−→ (X,EX).

The other adjunction morphism is identical.

7.2. The canonical left exact structure. The left exact structure Iesk on Esprk
induces a left exact structure on the category Espek, which we denote by Iek. Since the
inclusion functor J∗ preserves colimits, in particular push-forwards, and, by construction,
maps inflations to inflations, it is an ’exact’ functor from the left exact category (Espek, I

e
k)

to the left exact category (Esprk, I
es
k ).

7.3. Proposition. The left exact category (Espek, I
e
k) has enough injective objects.

Proof. Since the functor J∗ maps inflations to inflations, its right adjoint J∗ maps
injective objects to injective objects. There are enough injective objects are of the form
J∗(X,EX) = (Xe,EXe

), where (X,EX) runs through injective objects of the left exact
category (Esprk, I

es
k ), and the canonical inflations of an exact k-’space’ (X,EX) into an

injective object is the image by the functor J∗ of the canonical inflation of J∗(X,EX) to
an injective object of the left exact category (Esprk, I

es
k ). The argument is similar to that

of 5.4.3.

8. Diagrams.

We fix a diagram scheme D. The category of diagrams D −→ CX will be denoted
by CD

X and the corresponding ’space’ by XD; it is defined by CXD = CD
X .

The map X 7−→ XD extends naturally to an endofunctor PD of the category of

’spaces’ |Cat|o: a morphism X
f
−→ Y with an inverse image functor f∗ is mapped to the

morphism XD fD−→ Y D with an inverse image functor CD
Y

f∗
D−→ CD

X .

8.1. Proposition. The functor PD preserves colimits.
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Proof. For any family {Xi | i ∈ J} of ’spaces’, set XJ =
∐

i∈J

Xj . Then

CXD
J

= CD
XJ =

(∏

i∈J

CXi
)D

=
∏

i∈J

CD
Xi =

∏

i∈J

CXD
i

= C∐

i∈J

XD
i

.

For any pair of arrows X
f

−→
−→
g

Y, their cokernel, C(f, g), is represented by the kernel

of their adjoint functors

CC(f,g) = Ker(f∗, g∗)
c∗

−−−→ CY

f∗

−−−→
−−−→
g∗

CX .

It follows from the description of Ker(f∗, g∗) that Ker(f∗, g∗)D is naturally isomorphic
to Ker(f∗D, g

∗
D), which means that C(f, g)D ≃ C(f

D
, g

D
).

8.1.1. Note. A more conceptual proof of 8.1 is based on observation that the functor
PD has a right adjoint, PD, which assigns to every ’space’X the ’space’ PD(X) represented

by the category Pa(D)× CX and to every morphism of ’spaces’ X
f
−→ Y with an inverse

image functor CY
f∗

−→ CX the morphism PD(f) having inverse image functor Id × f∗.
Here Pa(D) denotes the category of paths of the diagram D.

8.2. The left exact structure ID. Let ID denote the class of all morphisms

X
f
−→ Y of ’spaces’ such that XD fD−→ Y D belongs to Is.

8.2.1. Proposition. (a) ID is a left exact structure on |Cat|o.
(b) The functor PD is an ’exact’ functor from the left exact category (|Cat|o, ID) to

the left exact category (|Cat|o, Is).
(c) The left exact category (|Cat|o, ID) has enough injective objects.

Proof. (a) By definition ID = PD−1

(Is). This implies immediately that ID contains
all isomorphisms and is closed under composition. By 8.1, the functor PD preserves
colimits; in particular, it preserves push-forwards. Therefore, since Is is stable under
push-forwards, its preimage, ID, has the same property.

(b) By definition of the left exact structure ID, the functor PD maps ID ot Is.
Since, by 8.1 (or 8.1.1), the functor PD preserves colimits, in particular, it preserves push-
forwards, PD is an ’exact’ functor from the left exact category (|Cat|o, ID) to the left
exact category (|Cat|o, Is).

(c) The fact that PD maps inflations to inflations implies that its right adjoint, PD

(cf. 8.1.1) maps injective objects to injective objects. The claim is that there are enough
injective objects of the form PD(X), where X runs through injective objects of the left
exact category (|Cat|o, Is).
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In fact, since the left exact category (|Cat|o, Is) has enough injective objects, for any

’space’ X, there is a morphism PD(X)
f
−→ X from the class Is with X an injective

of (|Cat|o, Is). By adjunction, f determines a morphism X
f̂
−→ PD(X) which is the

composition of the adjunction morphism X
ηX
−→ PDP

D(X) and PD(PD(X)
f
−→ X).

Applying PD to this composition, we obtain a commutative square

PD(X)
PD(η(X)
−−−→ PDPDP

D(X)

f
y

y PDPD(f)

X
ǫ(X)
←−−− PDPD(X)

Since PD(X)
f
−→ X belongs to Is, it follows from this commutative square and the

observation 2.4.3 that PD(̂f) ∈ Is. But, this means precisely that f̂ ∈ ID.

8.2.2. Remark. The left exact structure ID is coarser than Is.
In fact, for every X

f
−→ Y , we have a commutative diagram

CY
f∗

−−−→ CX

j
Y ∗

y
y j

X∗

CD
Y

f∗D
−−−→ CD

X

where the vertical arrows are canonical full embeddings identifying every object of the
category with the constant diagram with values in this object (and its identical arrow).

The fact that fD ∈ Is means that every morphism of CD
X is isomorphic to f∗D of some

morphism of CD
Y . In particular, this holds for morphisms between constant functors. But,

if the morphism j
X∗(a→ b) is isomorphic to a morphism f∗(D1

λ
→ D2) for some diagrams

D −→ CY , then there are morphisms between constant diagrams having this property: it

suffices to choose object z ∈ ObD and take the morphism in jY ∗(D1(z)
λ(z)
−−−→ D(z)) of

constant functors.

8.3. Diagrams in right exact categories.

8.3.1. The standard right exact structure on the ’space’ of diagrams. Let
(X,EX) be a right exact ’space’. There is an obvious right exact structure EXD on the

’space’ XD: a morphism of diagrams D1
t
−→ D2 belongs to EXD if D1(a)

t(a)
−→ D2(a) is a

deflation for all a ∈ ObD.

8.3.2. The cartesian right exact structure. Fix a right exact ’space’ (X,EX).

We denote by Ec
XD the class of all morphisms D1

t
−→ D2 from EXD such that for every
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arrow a
γ
−→ b of D, the square

D1(a)
D1(γ)
−−−→ D1(b)

t(a)
y cart

y t(b)

D2(a)
D2(γ)
−−−→ D2(b)

is cartesian.

8.3.3. Proposition. The class of morphisms Ec
XD is a right exact structure on the

category CD
X = CXD .

Proof. The class Ec
XD contains all isomorphisms and (since the composition of carte-

sian squares is a cartesian square) it is closed under compositions. It remains to show that
Ec
XD is stable under base change. In fact, consider a cartesian square

D4

ξ̃
−−−→ D1

t′
y cart

y t

D3

ξ
−−−→ D2

where the morphism D1
t
−→ D2 belongs to Ec

XD and D3
ξ
−→ D2 is an arbitrary diagram

morphism. The claim is that t′ ∈ Ec
XD ; that is for every arrow a

γ
−→ b in D, the square

D4(a)
D4(γ)
−−−→ D4(b)

t′(a)
y

y t′(b)

D3(a)
D3(γ)
−−−→ D3(b)

(1)

is cartesian. In fact, we have a commutative diagram

D4(a)
D4(γ)
−−−→ D4(b)

ξ̃(b)
−−−→ D1(b)

t′(a)
y

y t(b) cart
y t′(b)

D3(a)
D3(γ)
−−−→ D3(b)

ξ(b)
−−−→ D2(b)

(2)

with a right square cartesian and a commutative diagram

D4(a)
ξ̃(a)
−−−→ D1(a)

D1(γ)
−−−→ D1(b)

t′(a)
y cart

y t(a) cart
y t(b)

D3(a)
ξ(a)
−−−→ D2(a)

D2(γ)
−−−→ D2(b)

(3)
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whose both squares are cartesian. The latter implies that the composition of the two
squares (3),

D4(a)
D1(γ)◦ξ̃(a)
−−−−−−−→ D1(b)

t′(a)
y cart

y t(b)

D3(a)
D2(γ)◦ξ(a)
−−−−−−−→ D2(b)

is cartesian. But, this composition coincides with the composition of the squares (2). Since
the composition of the squares (2) is cartesian and the right square of (2) is cartesian, its
left square, (1), is cartesian.

8.3.4. Pointed diagrams and the cartesian right exact structure. We call a
diagram scheme D pointed if it has a final object, pt. In this case, for any ’space’ X, the
standard full embedding

CX
γD
X∗

−−−→ CXD = CD
X

has a canonical left adjoint,

CXD

γD∗
X

−−−→ CX , (D
F
−→ CX) 7−→ colimF = F(pt). (4)

8.3.4.1. Proposition. (a) For every right exact ’space’ (X,EX), the morphism of

’spaces’ X
γD
X

−−−→ XD is a morphism

(X,EX)
γD
X

−−−→ (XD,Ec
XD)

which belongs to Ies.
(b) The inverse image functor γD∗

X establishes an equivalence between the category
of deflations of every object F of the right exact category (CXD ,Ec

XD) and the category
of deflations of the object γD∗

X (F) = F(pt) of the right exact category (CX ,EX).

Proof. (a) The functor γD∗
X maps deflations to deflations, because if G

s
−→ F is a

deflation of the diagrams (– a morphism of Ec
XD), then G(a)

s(a)
−−−→ F(a) for every a ∈ ObD;

in particular, G(pt)
s(pt)
−−−→ F(pt) is a deflation. Similarly, F 7−→ F(pt) preserves pull-backs

of deflations, because pull-backs of diagrams are taken object-wise.

(b) Let L
t
−→ γD∗

X (F) = F(pt) be a morphism of EX . Then for every a ∈ ObD,
there exists a cartesian square

L(a) −−−→ L

t̃(a)
y cart

y t

F(a) −−−→ F(pt)
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It follows from the universal property of cartesian squares that the choice of squares for each

a ∈ ObD (which is unique up to isomorphism) uniquely determines a diagram D
L
−→ CX

such that L(pt) = L and a cartesian deflation L
t̃
−→ F such that t̃(pt) = t.

It follows from the uniqueness (up to isomorphism) of this construction that every
morphism

M
ξ

−−−→ L
sց ւ t
F(pt)

of deflations of the object F(pt) uniquely extends to a morphism

M
ξ̃

−−−→ L
s̃ց ւ t̃
F

of the corresponding cartesian deflations of the diagram F .

8.3.4.2. Proposition. Let D be a pointed diagram scheme with the final object pt.

Then projective objects of the right exact category (CXD ,Ec
XD) are all diagrams D

F
−→ CX

such that F(pt) is a projective object of (CX ,EX).

Proof. Let G
λ
−→ F be a morphism of Ec

XD . In particular, G(pt)
λ(pt)
−−−→ F(pt) is a

deflation. If F(pt) is projective, there exists a splitting, F(pt)
ψpt

−−−→ G(pt) of λ(pt); that
is λ(pt) ◦ ψpt = idF(pt). Thus, for every a ∈ ObD, we have a commutative square

F(a)
ψttF(pa)
−−−→ G(pt)

id
y

y λ(pt)

F(a)
F(pa)
−−−→ F(pt)

where pa is the unique arrow a→ pt. Since, by definition of a deflation, the square

G(a)
G(pa)
−−−→ G(pt)

λ(a)
y cart

y λ(pt)

F(a)
F(pa)
−−−→ F(pt)

is cartesian, there exists a unique morphism F(a)
ψ(a)
−−−→ G(a) such that

λ(a) ◦ ψ(a) = idF(a) and G(pa) ◦ ψ(a) = ψpt ◦ F(pa).
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This constructs a morphism ψ = (ψ(a) | a ∈ ObD) from F to G which splits the

deflation G
λ
−→ F . This shows that F is a projective, if F(pt) is a projective.

It follows from this argument (or from 8.3.4.1) that, conversely, if F is a projective
object of (CXD ,Ec

XD), then F(pt) is a projective object of (CX ,EX).

8.3.4.3. Note. It is easy to see that a projective F of the right exact category
(CXD ,Ec

XD) is pointed iff the projective object F(pt) of (CX ,EX) is pointed.

8.3.5. An application.

8.3.5.1. The class ΣG,EX . Fix a right exact category (CX ,EX) and a functor

CX
G
−→ CZ . As usual, we denote by ΣG the class of all arrows s of the category CX which

the functor G maps to isomorphisms. We denote by ΣG,EX the class of all arrows s such
that their pull-backs along all deflations (in particular, s itself) belong to ΣG.

It is easy to see that ΣG,EX contains all isomorphisms, closed under compositions and,
of course, stable under pull-backs along arbitrary deflations.

8.3.5.2. Proposition. Let (CX ,EX) be right exact category with enough projective
objects and G a functor from CX to a complete category. Then S•

−(G)(s) is an isomorphism
for every s ∈ ΣG,EX .

Proof. (a) Consider the category CX→ = C→
X of arrows of the category CX endowed

with the cartesian right exact structure Ec
X→ . Let CX→

G
denote the full subcategory of

the category CX→ whose objects are arrows of ΣG,EX . Since the class ΣG,EX is stable
under pull-backs along deflations, it follows that CX→ is an exact subcategory of the right

exact category (CX→ ,Ec
X→). Let CX→

Fs
−→
−→
Ft

CX be source and target functors and

CX→
G

FGs
−→
−→
FG
t

CX their restrictions to the subcategory CX→
G
.

(b) The functors Fs and Ft are ’exact’ functors from (CX→ ,Ec
X→) to (CX ,EX), which

implies that FGs and FGt are ’exact’ functors from (CX→
G
,Ec

X→
G
) to (CX ,EX), where Ec

X→
G

is the induced right exact structure. Let FGs
ρ
−→ FGt denote the restriction of the natural

morphism Fs −→ Ft. It follows that G ◦ F
G
s

G(ρ)
−−−→ G ◦ FGt is a functor isomorphism.

(c) Notice that the right exact category (CX→
G
,Ec

X→
G
) has enough projective objects.

In fact, let M
u
−→ L be an arrow of ΣG,EX (regarded as an object of the category

CX→
G
). Since, by hypothesis, the right exact category (CX ,EX) has enough projective

objects, there exists a deflation P
e
−→ L with P projective. By 8.3.4.2, the upper horizontal
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arrow in the cartesian square

P̃
ũ

−−−→ P

e′
y cart

y u

M
u

−−−→ L

is a projective object of (CX→ ,Ec
X→) and the square itself is a deflation – morphism of

Ec
X→ . Since, ΣG,EX is stable under pull-backs along deflations, the (P̃

ũ
−→ P is an object

of the subcategory CX→
G
, hence it is a projective of (CX→

G
,Ec

X→
G
).

(d) It remains to apply (the dual version of) III.3.6.7, which gives an isomorphism

S•
+(G) ◦ F

G
s

S•
+(G)(ρ)

−−−→ S•
+(G) ◦ F

G
t .

This proves the assertion.

8.4. Two power functors.

8.4.1. Proposition. The maps

(X,EX) 7−→ (XD,EXD) and (X,EX) 7−→ (XD,Ec
XD)

extend naturally to endofunctors, respectively

Espr
PD

r

−−−→ Espr and Espr
PD

c

−−−→ Espr

of the category of right exact ’spaces’.

Proof. (a) By definition, morphisms (X,EX)
f
−→ (Y,EY ) have ’exact’ inverse image

functor (CY ,EY )
f∗

−→ (CX ,EX); that is f∗ maps deflations to deflations and preserves pull-
backs of deflations. Since pull-backs of the diagrams are taken object-wise, the functor

CD
Y

f∗

−−−→ CD
X , F 7−→ f∗ ◦ F ,

has the same property with respect to the right exact structures EYD and EXD on the
categories respectively CD

Y and CD
X .

By the similar reasons, because the cartesian right exact structure is defined in terms
of pull-backs of deflations (along arrows of the diagrams), the functor f∗D maps the cartesian
right exact structure Ec

YD to the cartesian right exact structure Ec
XD .

8.4.2. Proposition. The endofunctor

Espr
PD

c

−−−→ Espr
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has a right adjoint.

Proof. For a right exact ’space’ (X,EX), let Pc
D(X,EX) denotes the right exact

’space’ (XD,EXD
), where XD is a ’space’ represented by the category Pa(D) × CX and

EXD
= Iso(Pa(D))×EX . The map (X,EX) 7−→ (XD,EXD

) extends naturally to a functor

Espr
Pc

D

−−−→ Espr.

The functor Pc
D is a right adjoint to the functor PD

c .
The adjunction arrow

PD
c ◦ P

c
D(X)

ǫX
−−−→ X

has inverse image functor

CX
ǫ∗X
−−−→ (Pa(D)× CX)D ≃ Funct(Pa(D),Pa(D)× CX)

which maps every object M of CX to the functor IdPa(D) ×M and acts accordingly on

morphisms. Notice that every arrow (a,M)
(ξ,t)
−−−→ (b, L) of the category Pa(D) × CX ,

the square

a×M
ξ×M
−−−→ b×M

a× t
y

y b× t

a× L
ξ×L
−−−→ b× L

is cartesian. In particular, the functor ǫ∗X maps morphisms of EX to morphisms of Ec
XD

and preserves pull-backs of deflations.
The second adjunction arrow

(X,EX)
ηX
−−−→ Pc

D ◦ P
D
c (X,EX)

has as an inverse image functor the evaluation functor

Pa(D)× Funct(Pa(D), CX)
η∗X
−−−→ CX , (a,F) 7−→ F(a).

It follows from the definition of deflations of Pa(D)×Funct(Pa(D), CX) that the functor
η∗X maps deflations (which are of the form (u, t) ∈ Iso(Pa(D) × Ec

XD) to deflations and
preserves pull-backs of deflations.

Indeed, every cartesian square in Pa(D) × Funct(Pa(D), CX) whose vertical arrows
are deflations is isomorphic to the cartesian square of the form

b× G1
(ξ,φ′)
−−−→ (a,F1)

(b, t̃)
y cart

y (a, t)

b× G2
(ξ,φ)
−−−→ (a,F2)

(1)
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The functor η∗X maps the square (1) to the square which is the composition of two squares:

G1(b)
φ′(b)
−−−→ F1(b)

F1(ξ)
−−−→ F1(a)

t̃(b)
y

y t(b)
y t(a)

G2(b)
φ(b)
−−−→ F2(b)

F2(ξ)
−−−→ F2(a)

(2)

The left square of (2) is cartesian, because the square

G1
φ′

−−−→ F1

t̃
y cart

y t

G2
φ

−−−→ F2

is cartesian and limits in the category of functors are taken object-wise. The right square

of (2) is cartesian, because F1
t
−→ F2 is a cartesian deflation, that is it belongs to the

class Ec
XD (cf. 8.3.2). Since the composition of cartesian squares is a cartesian square, this

shows that the functor η∗X maps the cartesian square (1) to a cartesian square. So that
η∗X preserves pull-backs of deflations.

8.4.3. Corollary. The endofunctor

Espr
PD

c

−−−→ Espr

preserves small colimits. In particular it preserves push-forwards.

8.5. The left exact structure. We denote by IDc the class of all morphisms

(X,EX)
f
−→ (Y,EY ) of right exact ’spaces’ such that PD

c (f) belongs to the left exact
structure Ies.

8.5.1. Observation. The class of morphisms IDc is contained in the left exact
structure Ies. The argument is an adaptation of 8.2.2.

8.5.2. Proposition. (a) The class of morphisms IDc is a left exact structure on the
category Espr of right exact ’spaces’.

(b) The functor PD
c is an ’exact’ functor from the left exact category (Espr, I

D
c ) to the

left exact category (Espr, I
es).

Proof. (a) Evidently, the class of morphisms IDc contains all isomorphisms and is
closed under composition. By 8.4.3, the functor PD

c preserves (small colimits, in particular
it preserves) push-forwards. This implies that the class of morphisms IDc is stable under
push-forwards; that is it forms a copretopology. Since, by 8.5.1, the copretopology IDc is
coarser than the left exact structure Ies, it is a left exact structure.
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(b) By definition of the left exact structure IDc , the functor PD
c maps IDc to Ies. By

8.4.3, it preserves push-forwards; in particular, it preserves push-forwards of morphisms of
IDc , hence the assertion.

8.5.3. Proposition. The left exact category (Espr, I
D
c ) has enough injective objects.

Proof. The argument below follows the pattern of that of 8.2.1(c).
By 8.5.2(b), PD

c is an ’exact’ functor from the left exact category (Espr, I
D
c ) to the

left exact category (Espr, I
es); in particular, it maps inflations to inflations.

The latter implies that its right adjoint, Pc
D maps injective objects to injective objects.

The claim is that there are enough injective objects of the form Pc
D(X,EX), where (X,EX)

runs through injective objects of the left exact category (Espr, I
es).

In fact, since the left exact category (Espr, I
es) has enough injective objects, for any

right exact ’space’ (X,EX), there is a morphism PD
c (X,EX)

f
−→ (X,EX) from the class

Ies with (X,EX) an injective of (Espr, I
es). By adjunction, f determines a morphism

(X,EX)
f̂

−−−→ Pc
D(X,EX),

which is the composition of the adjunction morphism

(X,EX)
ηX
−−−→ Pc

DP
D
c (X,EX) and PD(PD(X,EX)

f
−−−→ (X,EX)).

Applying PD
c to this composition, we obtain a commutative square

PD
c (X,EX)

PD
c (ηX
−−−→ PD

c P
c
DP

D
c (X,EX)

f
y

y PD
c P

c
D(f)

(X,EX)
ǫX
←−−− PD

c P
c
D(X,EX)

Since, by hypothesis, the morphism PD
c (X,EX)

f
−→ (X,EX) belongs to the class Ies,

it follows from this commutative square and the observation 2.4.3 that PD
c (̂f) ∈ Ies. But,

this means precisely that f̂ ∈ IDc .

8.5.4. Remark. The argument of 5.3.2 provides, for every right exact ’space’ (X,EX)
a canonical inflations (that is a morphism from Ies of (X,EX) into an injective object
(X,EX) of the left exact category (Espr, I

es). This canonical injective object is the product
of |EX | copies (where |EX | is the set of isomorphism classes of deflations) of the elementary
injective (S,ES) and a number of copies of the elementary injective x1 (see the argument
of 5.3.2). These canonical (up to isomorphism) construction, for every right exact ’space’
an inflation (that is a morphism from Ies) to an injective object of (Espr, I

es) induces a
canonical construction of a morphism from IDc to an injective of the left exact category
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(Espr, I
D
c ). Namely, given a canonical morphism PD

c (X,EX)
f
−→ (X,EX) into an injec-

tive object, we take (following the argument of 8.5.3) the composition of the adjunction
morphism

(X,EX)
ηX
−−−→ Pc

DP
D
c (X,EX)

and the morphism

Pc
DP

D
c (X,EX)

Pc
D(f)

−−−→ Pc
D(X,EX).

Notice that the functor cP c
D, as every functor having a left adjoint, preserves small

limits, in particular, it preserves small products. Therefore, the injective object Pc
D(X,EX)

is the product of |EX | copies of the (image of the) elementary injective Pc
D(S,ES) and

a the product of a set of copies of the elementary injective Pc
D(x1) (we do not indicate

deflations here, because they are all isomorphisms).

8.6. Functorial dependence on scheme of diagrams. If D1 and D2 are diagram

schemes and D1
γ
−→ D2 is a surjective morphism, then the functor

(Espr, I
D1
c )

P
D1
c

−−−→ (Espr, I
es)

uniquely factors through the functor

(Espr, I
D2
c )

P
D2
c

−−−→ (Espr, I
es).

In other words, the surjective morphism D1
γ
−→ D2 induces an ’exact’ functor

(Espr, I
D1
c )

γ∗

−−−→ (Espr, I
D2
c ).

8.7. Diagrams with finite support. Fix a diagram scheme D. We say that a

diagram D
F
−→ CX has a finite support if F(HomD) has only a finite number of non-

identical arrows. For every category CX , we denote by CXD
f

the full subcategory of the

category CXD whose objects are diagrams with a finite support. The embedding

CXD
f

γD
f (X)∗

−−−→ CXD

is interpreted as an inverse image functor of a morphism

XD
γD
f (X)

−−−→ XD
f .
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The correspondence X 7−→ γDf (X) is functorial; i.e. it defines a functor morphism

PD
γD
f

−−−→ PD
f .

The functor PD
f induces an endofunctor PD

c,f of the category Espr.

9. Functors.

Fix a small category A. We denote the category of functors A −→ CX by CX(A). If
(X,EX) is a right exact category, we denote by EX(A) the standard right exact structure

on CX(A) (– a functor morphism F
t
−→ G is a deflation iff F(a)

t(a)
−→ G(a) is a deflation for

every a ∈ ObA) and by Ec
X(A) the cartesian right exact structure, which is induced by the

cartesian structure on the category of diagrams.

9.1. Proposition. (a) The maps

(X,EX) 7−→ (X(A),EX(A)) and (X,EX) 7−→ (X(A),Ec
X(A))

extend naturally to endofunctors, respectively

Espr
FA

r

−−−→ Espr and Espr
FA

c

−−−→ Espr

of the category of right exact ’spaces’.

(b) The endofunctor Espr
FA

c

−−−→ Espr has a right adjoint.

Proof. (a) The assertion follows from 8.4.1.
(b) Let Fc

A denote the functor which assigns to every right exact ’space’ (X,EX)
the right exact ’space’ (XA,EXA

), where CXA
= A × CX and EXA

= Iso(A) × EX. If

(X,EX)
f
−→ (Y,EY) is a morphism of right exact ’spaces’ with an inverse image functor

f∗, then the functor IdA × f∗ is an inverse image functor of the morphism Fc
A(f).

The adjunction arrow

FA
c ◦ F

c
A(X)

ǫX
−−−→ X

has a canonical inverse image functor

CX
ǫ∗X
−−−→ Funct(A,A× CX)

which maps every object M of CX to the functor a 7−→ a ×M and acts accordingly on

morphisms. For every arrow (a,M)
(ξ,t)
−−−→ (b, L) of the category A× CX , the square

a×M
ξ×M
−−−→ b×M

a× t
y

y b× t

a× L
ξ×L
−−−→ b× L
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is cartesian. Therefore, the functor ǫ∗X maps morphisms of EX to morphisms of Ec
XA and

preserves pull-backs of deflations.
The second adjunction arrow

(X,EX)
ηX
−−−→ Fc

A ◦ F
A
c (X,EX)

has as an inverse image functor the evaluation functor

A× Funct(A, CX)
η∗X
−−−→ CX , (a,F) 7−→ F(a).

It follows from the definition of deflations of A× Funct(A, CX) that the functor η∗X maps
deflations (which are of the form (u, t) ∈ Iso(A × Ec

XA) to deflations and preserves pull-
backs of deflations (see the corresponding part of the argument of 8.4.2).

9.2. The left exact structure IFA
c . We denote by IFA

c the class of all morphisms
f of right exact ’spaces’ such that FA

c (f) ∈ Ies.
It follows from (the argument of) 8.5.2 that FA

c (f) ∈ Ies is a left exact structure on
the category Espr of right exact ’spaces’ which is coarser than Ies.

9.3. Proposition. The left exact category (Espr, I
FA
c ) has enough injective objects.

Proof. The argument is similar to that of 8.5.3.

9.4. Proposition. Suppose that A is a category with a final object, pt. For any
’space’ X, let pA∗

X denote the functor

CX(A) = Funct(A, CX) −−−→ CX , F 7−→ F(pt).

(a) For every right exact ’space’ (X,EX), the morphism of ’spaces’ X
pA
X

−−−→ X(A)
is a morphism

(X,EX)
pA
X

−−−→ (X(A),Ec
X(A))

which belongs to Ies.
(b) The inverse image functor pA∗

X establishes an equivalence between the category of
deflations of every object F of the right exact category (CX(A),E

c
X(A)) and the category

of deflations of the object pA∗
X (F) = F(pt) of the right exact category (CX ,EX).

(c) Projective objects (resp. pointed projective objects) of the right exact category

(X(A),Ec
X(A)) are all functors A

F
−→ CX such that F(pt) is a projective (resp. pointed

projective) of the right exact category (CX ,EX).

Proof. (a) and (b) follows from (the argument) of 8.4.3.1 and (c) is a consequence of
(the argument of) 8.3.4.2.
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10. ’Spaces’ and right exact ’spaces’.

10.1. The functor J!. The natural fully faithful functor

|Cat|o
J∗

−−−→ Espr, X 7−→ (X, Iso(CX)),

is a right adjoint to the forgetful functor

Espr
J∗

−−−→ |Cat|o, (X,EX) 7−→ X.

Notice that the functor J∗ has also a right adjoint functor,

Espr
J!

−−−→ |Cat|o, (X,EX) 7−→ E−1
X X,

which maps every right exact ’space’ (X,EX) to its localization E−1
X X at the class of

deflations. Since inverse image functor of every morphism of the category Espr maps
deflations to deflations, the map (X,EX) 7−→ E−1

X X extends to morphisms; hence it defines
a functor which we denote by J!. The inverse image functor of the adjunction arrow

J∗J
!(X,EX)

ǫ!X
−−−→ (X,EX)

is (given by) the localization functor

(CX ,EX)
q−1
EX

−−−→ (E−1
X CX , Iso(E

−1
X CX)).

The other adjunction arrow, X
ηX
−→ J!J∗(X), is an (identical) isomorphism.

Thus, the forgetful functor J∗ is a localization (because its right adjoint is fully faithful)
and it can be regarded as an inverse image functor of an affine morphism.

10.1.1. Note. Thanks to the fact that the adjunction morphism J∗J∗
ǫJ
−→ Id|Cat|o

is an isomorphism, we have a canonical morphism J!
℘
−→ J∗ which is the composition of

the isomorphism J!
J!ǫ−1

J

−−−→ J∗J∗J
! and the adjunction arrow J∗J∗J

!
J∗ǫ!

−−−→ J∗.

10.2. The functor J! and correspondences. The category CE−1
X
X

def
= E−1

X CX

representing the ’space’ E−1
X X is described as follows. It has the same objects as the

category CX . Morphisms from an object M to an object L are equivalence classes of the

pairs of arrows M
t
←− M

ξ
−→ L, where t ∈ EX , with respect to the following relation:

M
t
←−M

ξ
−→ L is equivalent to M

t̃
←− M̃

ξ̃
−→ L, if there exists a deflation L

s
−→ L′
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such that the compositions of s ◦ ξ and s ◦ ξ̃ with appropriate projections in the cartesian
square

M
t2
−−−→ M

ξ
−−−→ L

t1

y cart
y t

L
ξ̃

←−−− M̃
t̃

−−−→ M

coincide, that is s ◦ ξ ◦ t2 = s ◦ ξ̃ ◦ t1. One can see that this condition does not depend on

the choice of a cartesian square. The composition of morphisms [M1
t1←−M1

ξ1
−→M2] and

[M2
t2←−M2

ξ2
−→M3] is defined via the diagram

M3

ξ̃1
−−−→ M2

ξ2
−−−→ M3

t′2

y cart
y t2

M1

t1
←−−− M1

ξ1
−−−→ M2

with a cartesian square: the composition is the equivalence class

[M1

t1◦t
′
2

←−−−M3

ξ2◦ξ̃1
−−−→M3].

There is a canonical functor

CX
q∗
EX

−−−→ CE−1
X
X (1)

which is identical on objects and maps every morphism M
γ
−→ L to the equivalence

class of M
idM←−M

γ
−→ L. It follows from the definition of the morphisms of the category

CE−1
X
X that two arrows, M

α

−→
−→
β

L have the same image in CE−1
X
X iff s ◦ α = s ◦ β for

some deflations s. It follows from the definition of the composition and the equivalence
classes, that the functor q∗EX maps every deflation (– a morphism of EX) to an invertible

morphism; explicitly, if M
t
−→ L is a deflation, then

q∗EX (t)
−1 = [L

t
←−M

idM−→M ].

Thus, the canonical functor (1) uniquely factors through the localization functor

CX
Q∗

EX

−−−→ E−1
X CX .

That is q∗EX = p∗EX ◦Q
∗
EX

for a unique functor E−1
X CX

p∗
EX

−−−→ CE−1
X
X .
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On the other hand, it follows from the description of the (standard) quotient category

E−1
X CX (cf. [GZ, I.1]) that there exists a natural functor CE−1

X
X

λ∗
X

−−−→ E−1
X CX which is

quasi-inverse to the canonical functor E−1
X CX

p∗
EX

−−−→ CE−1
X
X .

10.3. The functors J∗, J∗, J! and the power functors. Fix a diagram scheme
D. The functors J∗ and J∗ commute with the power functors, that is

J∗ ◦ P
D = PD

c ◦ J∗ and J∗ ◦ PD
c = PD ◦ J∗.

The first equality implies an isomorphism PD ◦ J
! ≃ J! ◦ Pc

D which, in turn, gives an
isomorphism

PD ◦ PD ◦ J
! ◦ PD

c ≃ P
D ◦ J! ◦ Pc

D ◦ P
D
c .

Applying to the latter isomorphism the adjunction morphisms

IdEspr
−−−→ Pc

D ◦ P
D
c and PD ◦ PD −−−→ Id|Cat|o

(from the right to the left), we obtain a canonical morphism

PD ◦ J!
λD

−−−→ J! ◦ PD
c .

This morphism is compatible with the morphism J!
℘
−→ J∗ (cf. 10.1.1); that is we

have a commutative diagram

PD ◦ J!
PD℘
−−−→ PD ◦ J∗

λD

y
y id

J! ◦ PD
c

℘PD
c

−−−→ J∗ ◦ PD
c

11. Complements.

11.1. The path ’space’ of a right exact ’space’. Fix a right exact svelte category
(CX ,EX). Let CX be the quotient of the category CPa(X) of paths of the category CX by

the relations s ◦ f̃ = f ◦ t, where

Ñ
f̃

−−−→ M

t
y cart

y s

N
f

−−−→ L



190 Chapter 4

runs through cartesian squares in CX whose vertical arrows belong to EX . In particular,
ObCX = ObCX . We denote by EX the image in CX of all paths of morphisms of EX and
by Pa(X,EX) the pair (X,EX).

11.1.1. Proposition. Let (CX ,EX) be a svelte right exact category and (X,EX) =
Pa(X,EX) (see above).

(a) The class of morphisms EX is a right exact structure on the category CX.

(b) The canonical functor CPa(X)

ε∗X
−−−→ CX (identical on objects and mapping paths

of arrows to their composition) factors uniquely through a functor CX

p∗
X

−−−→ CX which

is an inverse image functor of a morphism (X,EX)
pX
−−−→ (X,EX) that belongs to Les

sq.

Proof. (a) It follows (from the fact that the composition of cartesian squares is a
cartesian square) that EX is a right exact structure on CX.

(b) The functor CPa(X)

ε∗X
−−−→ CX is (equivalent to) a localization functor which

factors uniquely through CX

p∗
X

−−−→ CX . Therefore, p∗X is (equivalent to) a localization
functor. It follows from definitions that p∗X maps cartesian squares with deflations among
their arrows to cartesian squares of the same type. Moreover, all cartesian squares with
this property are obtained this way. Therefore, the morphism

(X,EX)
pX
−−−→ (X,EX)

of right exact ’spaces’ belongs to the class Les
sq.

11.2. The left exact structure LE
r . Fix a right exact category (CX ,EX). We say

that a class Σ of deflations is EX-saturated if it is the intersection of a saturated system
of arrows of CX and EX .

11.2.1. Lemma. Let Σ be an EX-saturated class of deflations. Then Σ is a right
multiplicative system iff it is stable under base change.

Proof. Let Σ be an EX -saturated system of deflations. In particular, it contains all
isomorphisms of CX and is closed under compositions.

If Σ is stable under base change, it is a right multiplicative system.
Conversely, if Σ is a right multiplicative system, then, by [GZ, I.3.1], the localization

functor CX
q∗

−→ Σ−1CX is right exact. In particular, it maps all cartesian squares of CX
to cartesian squares of Σ−1CX . Since EX is stable under base change, every diagram

M
s
−→ L

f
−→ N with s ∈ EX can be completed to a cartesian square

Ñ
f̃

−−−→ M

t
y

y s

N
f

−−−→ L

(1)
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and t ∈ EX . If s ∈ Σ, then the localization q∗ maps (1) to a cartesian square whose right
vertical arrow, q∗(s), is an isomorphism. Therefore its left vertical arrow is an isomorphism.
Since Σ is EX -saturated, this implies that t ∈ Σ.

We denote by SsMr(X,EX) the preorder (under the inclusion) of all EX -saturated
right multiplicative systems Σ of EX having the following property:

(#) If the right horizontal arrows in the commutative diagram

M̃

p′
1

−−−→
−−−→

p′
2

M
ẽ

−−−→ L

t̃
y

y s
y s′

M ×LM

p1

−−−→
−−−→

p2

M
e

−−−→ L

are deflations, the pairs of arrows are kernel pairs of these deflations and two left vertical
arrows belong to Σ, then the remaining vertical arrow belongs to Σ.

11.2.2. Proposition. (a) For any morphism (Y,EY )
q
−→ (X,EX) of the category

Espr of right exact ’spaces’, the intersection Σq∗

⋂
EX = {t ∈ EX | q

∗(t) is invertible}
belongs to SsMr(X,EX).

(b) For any Σ ∈ SsMr(X,EX), the localization functor CX
q∗

−→ Σ−1CX = CX is an

inverse image functor of a morphism (X,Est
X )

q
−→ (X,EX) of Espr. As usual, Est

X denote
the finest right exact structure on CX.

Proof. (a) By definition of morphisms of the category Espr, its inverse image func-
tor maps pull-backs of deflations to pull-backs of deflations. Therefore the intersection
Σq∗

⋂
EX = {t ∈ EX | q

∗(t) is invertible } is (by definition) saturated and stable under
base change. The property (#) follows from the ’exactness’ of the localization functor q∗.

(b) Let Σ ∈ SsMr(X,EX). Since Σ is a right multiplicative system, the localization

functor CX
q∗

−→ Σ−1CX = CX is left exact. In particular, it maps all cartesian squares to
cartesian squares. It remains to show that it maps deflations to strict epimorphisms.

Let M
e
−→ L be a morphism of EX and M ×L M

p1
−→
−→
p2

M its kernel pair. Let

q∗(M)
ξ′

−→ q∗(N) be a morphism which equalizes the pair q∗
(
M ×LM

p1
−→
−→
p2

M
)
. Since Σ

is a right multiplicative system, the morphism ξ′ is the composition q∗(ξ)q∗(s)−1 for some

morphisms M
s
←−M

ξ
−→ N , where s ∈ Σ. Thus we have a diagram

M1

u1

−−−→ M ×LM
u2

←−−− M2

t1

y cart p1

y
y p2 cart

y t2

M
s

−−−→ M
s

←−−− M
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whose both squares are cartesian, all arrows are deflations, and all horizontal arrows belong
to Σ. Therefore, there exists a cartesian square

M̃
v′
1

−−−→ M2

v2

y cart
y u2

M1

u1

−−−→ M ×LM

whose all arrows belong to Σ. Altogether leads to a commutative diagram

M̃

p′
1

−−−→
−−−→

p′
2

M
ẽ

−−−→ L

t̃
y

y s
y s′

M ×LM

p1

−−−→
−−−→

p2

M
e

−−−→ L

whose rows are exact diagrams and two (left) vertical arrows belong to Σ. Therefore, the
remaining vertical arrow belongs to Σ. The localization functor q∗ maps the compositions
ξ◦p′1 and ξ◦p

′
2 to the same arrow. This means precisely that there exists a morphism λ ∈ Σ

such that ξ ◦p′1 ◦λ = ξ ◦p′2 ◦λ (cf. [GZ, I.2.2]). Since all morphisms of Σ are epimorphisms,

the latter equality implies that the morphism ξ equalizes the pair M̃
p′
1
−→
−→
p′
2

M. Therefore,

it factors uniquely through the morphism M
ẽ
−→ L; i.e. ξ = ξ̃ ◦ ẽ. The pair of arrows

L
s′

←− L
ξ̃
−→ N determines a unique morphism q∗(L) −→ q∗(N) whose composition with

q∗(e) equals to ξ′.

We denote by LE
r the class of all morphisms (X,EX)

q
−→ (Y,EY ) whose inverse image

functor is equivalent to the localization functor at a system which belongs to SsMr(X,EX).

11.2.3. Proposition. The class of morphisms LE
r is a left exact structure on the

category Espr of right exact ’spaces’.

Proof. The class of morphisms LE
r contains all isomorphisms and is closed under

compositions and cobase change.
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K-Theory of Right Exact ’Spaces’.

In Section 1, we assign to each right exact ’space’ (X,EX) an abelian groupK0(X,EX).
This assignment is a contravariant functor from the category of right exact ’spaces’ and
their morphisms (having ’exact’ inverse image functors) to the category Z−mod of abelian
groups. We observe that the map (X,EX) 7−→ K0(X,EX) is functorial with respect to
weakly ’exact’morphisms between right exact ’spaces’ represented by categories with initial
objects, i.e. morphisms whose inverse image functors preserve conflations.

In Section 2, we show that the functor K0 is right ’exact’ with respect to the left exact
structure I→c – one of the canonical left exact structures introduced in Chapter IV.

Notice that the category of right exact ’spaces’ does not have final objects; so that we
cannot apply the formalism of cohomological functors developed in Chapters II and III. An
obvious way to acquire final objects is to consider the category of right exact ’spaces’ over
a ’space’. We do this in Section 3, introducing the relative K0-functors and their derived
functors with respect to a left exact structure on the category of right exact ’spaces’ over
a right exact ’space’. It follows from the results of Section 2 that the relative K0 functors
are right ’exact’ with respect to the left exact structures induced by I→c .

In Section 4, we specialize results and constructions of Section 3 to the ’spaces’ over a
’point’, which is the subcategory Esp∗r of right exact spaces with initial objects and ’exact’
morphisms whose inverse image functors map initial objects to initial objects. Notice that
this category is pointed having a canonical zero object x – the ’point’, which is represented
by the right exact ’space’ with one morphism. The ’space’ x is interpreted as the affine
scheme associated with the ”field” F1. So that Esp∗r can be regarded as the category of
right exact ’spaces’ over F1. It is endowed by the left exact structure I→c∗ induced by I→c .

It is important to realize that the left exact category (Esp∗r , I
→
c∗) is not the ultimate

domain for a higher K-theory. On the contrary, it serves as a device for producing higher
K-theories on other left exact categories. Namely, every functor from a left exact category
(CS, IS) (having final objects) to (Esp∗r , I

→
c∗) which preserves conflations gives rise to an

’exact’ higher K-theory on the left exact category (CS, IS). In Section 5, we apply this
consideration to the natural functor from the left exact category of ’spaces’ represented by
svelte abelian categories endowed with the left exact structure formed by exact localiza-
tions, obtaining this way a universal K-theory of (’spaces’ represented by) svelte abelian
categories. In Section 6, we construct the universal K-theory of k-linear exact categories
via the obvious functor from a left exact category (Espek, I

e
k) of ’spaces’ represented by

k-linear exact categories to (Esp∗r , I
→
c∗).

The purpose of the following sections is creation the standard tools of higher K-
theory which generalize the corresponding facts of Quillen’s K-theory. Notice that the
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most difficult general theorem of Quilllen’s K-theory – the long exact sequence of an exact
localization of an abelian category, is obtained in our approach almost for free and for
all right exact categories. Curiously, devissage, which is easily established in Quillen’s
theory, requires preparation which takes a considerable part of Chapter VI. Of course,
our devissage holds in a much more general setting. The remaining techniques – reduc-
tion by resolution and characteristic filtrations and sequences, appear here: Section 7 is
dedicated to ”reduction by resolution”, Section 8 treats characteristic ’exact’ filtrations
and sequences. Section 9 contains an analog of Quillen’s Q-construction for right exact
categories with initial objects.

1. The functor K0.

1.1. The group Z0|CX |. For a svelte category CX , we denote by |CX | the set of
isomorphism classes of objects of CX , by Z|CX | the free abelian group generated by |CX |,
and by Z0(CX) the subgroup of Z|CX | generated by differences [M ] − [N ] for all arrows
M −→ N of the category CX . Here [M ] denotes the isomorphism class of an object M .

1.2. Proposition. (a) The maps X 7−→ Z|CX | and X 7−→ Z0(CX) extend natu-
rally to presheaves of Z-modules on the category of ’spaces’ |Cat|o (i.e. to functors from
(|Cat|o)op to Z−mod).

(b) If the category CX has an initial (resp. final) object x, then Z0(CX) is the sub-
group of Z|CX | generated by differences [M ]− [x], where [M ] runs through the set |CX | of
isomorphism classes of objects of CX .

Proof. The argument is left to the reader.

1.3. Remarks. (a) Evidently, there are natural isomorphisms Z|CX | ≃ Z|CopX | and
Z0(CX) ≃ Z0(C

op
X ).

(b) Let Z0(CX) be regarded as a groupoid with one object, •. Then the map which
assigns to every object of CX the object • and to any morphism M −→ N of CX the
difference [M ]− [N ] is a functor from CX to the groupoid Z0(CX).

1.4. The group K0 of a right exact ’space’. Let (X,EX) be a right exact ’space’.
We denote by K0(X,EX) the quotient of the group Z0|CX | by the subgroup generated by
the expressions [M ′]− [M ] + [L]− [L′] for all cartesian squares

M ′
f̃

−−−→ M

e′
y cart

y e

L′
f

−−−→ L

whose vertical arrows are deflations.
We call K0(X,EX) the group K0 of the right exact ’space’ (X,EX).
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1.4.1. Example: the group K0 of a ’space’. Any ’space’ X is identified with the
trivial right exact ’space’ (X, Iso(CX)). We set K0(X) = K0(X, Iso(CX)). That is K0(X)
coincides with the group Z0(CX).

1.5. Proposition. (a) The map (X,EX) 7−→ K0(X,EX) extends to a contravariant
functor, K0, from the category Espr of right exact ’spaces’ (cf. 6.8) to the category Z−mod
of abelian groups.

(b) Let (X,EX)
f
−→ (Y,EY ) be a morphism of Espr having the following property:

(†) if M ′ and L′ are non-isomorphic objects of CX which can be connected by non-
oriented sequence of arrows (i.e. they belong to one connected component of the associated
groupoid), then there exist objects M and L of CY which have the same property and such
that f∗(M) ≃M ′, f∗(L) ≃ L′.
Then

K0(Y,EY )
K0(f)
−−−→ K0(X,EX)

is a group epimorphism.

Proof. (a) Let (X,EX) and (Y,EY ) be right exact ’spaces’ and (CY ,EY )
f∗

−→ (CX ,EX)
an ’exact’ functor. Then f∗ induces a morphism

K0(Y,EY )
K0(f)
−−−→ K0(X,EX)

uniquely determined by the commutativity of the diagram

Z0(CY )
Z0(f

∗)
−−−→ Z0(CX)

pY

y
y pX

K0(Y,EY )
K0(f)
−−−→ K0(X,EX)

(1)

of Z-modules. Here Z0(f
∗) denotes the morphism of abelian groups induced by the functor

f∗. The vertical arrows, pY and pX , are natural epimorphisms.

(b) Suppose that (X,EX)
f
−→ (Y,EY ) is a morphism of Espr having the property (†).

Then Z0(CY )
Z0(f

∗)
−−−→ Z0(CX) is a group epimorphism. Thus, K0(f) ◦ pY = pX ◦ Z0(f

∗) is
an epimorphism, which implies that K0(f) is an epimorphism.

1.5.1. Corollary. Let (X,EX)
f
−→ (Y,EY ) be a morphism of Espr whose inverse

image functor, f∗, induces a surjective map |CY | −→ |CX | of isomorphism classes of
objects. If the groupoid associated with the category CY is connected, then K0(f) is a
surjective map. In particular, K0(f) is surjective if the category CY has initial or final
objects.
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Proof. The assertion follows from 1.5(b).

1.5.2. Corollary. For any ’exact’ localization (X,EX)
q
−→ (Y,EY ) (i.e. q∗ is

equivalent to a localization functor), the map K0(q) is an epimorphism.

Proof. If q∗ is equivalent to a localization functor, then each object of CX is isomorphic
to an object of q∗(CY ) and any morphism q∗(M) −→ q∗(L) is the composition of the form
q∗(sn)

−1 ◦ q∗(fn) ◦ · · · ◦ q
∗(s1)

−1 ◦ q∗(f1) for some chain of arrows

M
f1
−→ M̃1

s1←−M1
f1
−→ . . .

fn
−→ M̃n

sn←−Mn = L.

So that the condition (†) of 1.5(b) holds.

1.5.3. Corollary. For every morphism (X,EX)
f
−→ (Y,EY ) such that X

f
−→ Y

belongs to the class Is the map K0(f) is an epimorphism. In particular, K0(f) is an
epimorphism for every f ∈ Ies.

Proof. Since f ∈ Is, its inverse image functor is essentially surjective on arrows. This

implies that the map Z0(CY )
Z0(f)
−−−→ Z0(CX) is surjective. Therefore, it follows from the

diagram (1) that K0(Y,EY )
K0(f)
−−−→ K0(X,EX) is surjective.

1.6. Proposition. Let (X,EX) be a right exact ’space’ such that the category CX
has initial objects. Then the group K0(X,EX) is the quotient of the free abelian group
Z|CX | generated by the isomorphism classes of objects of CX by the subgroup generated by
[M ] − [L] − [N ] for all conflations N −→ M −→ L and the isomorphism class of initial
objects of CX .

Proof. (a) The expressions [M ] − [L] − [N ], where N
k
−→ M

e
−→ L runs through

conflations of (CX ,EX), are among the relations because each of them corresponds to a
cartesian square

N −−−→ x

k
y cart

y
M

e
−−−→ L

where x is an initial object of CX .

(b) On the other hand, let

M̃
ẽ

−−−→ L̃

f ′
y cart

y f

M
e

−−−→ L

(1)
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be a cartesian square whose horizontal arrows are deflations. Therefore we have a commu-
tative diagram

N
k̃

−−−→ M̃
ẽ

−−−→ L̃

id
y f ′

y cart
y f

N
k

−−−→ M
e

−−−→ L

whose rows are conflations. The rows give relations [M̃ ]− [L̃]− [N ] and [M ]− [L]− [N ].

Their difference, [M̃ ]− [M ]+[L]− [L̃], is the relation corresponding to the cartesian square
(1). Hence the assertion.

1.6.1. A curious observation. Let (CX ,EX) be a right exact category andM
t
−→ L

a deflation. Let Ker2(t) denote the kernel pair of the morphism t. It follows from the
cartesian square

Ker2(t)
p1
−−−→ M

p2

y cart
y t

M
t

−−−→ L

that, in the group K0(X,EX), we have:

[Ker2(t)]− [M ] = [M ]− [L]. (2)

On the other hand, if the category CX has initial objects, then [M ]−[L] = [Ker(t)] (see
1.6). So that, in this case, the equality (2) can be rewritten as [Ker2(t)]− [M ] = [Ker(t)],
or

[Ker2(t)] = [M ] + [Ker(t)]. (3)

If the category CX is additive, then Ker2(t) is naturally isomorphic to the coproduct
of M and Ker(t) (cf. I.4.3.2(b)), which, of course, implies the equality (3).

Curiously, the equality (3) holds without additivity hypothesis, and, if the difference
[M ] − [L] between the isomorphisms classes of the source and the target of a deflation t
is interpreted as the isomorphism class of its kernel, the formula (3) acquires sense for an
arbitrary right exact ’space’ (X,EX).

1.7. The categories Espwr and Esp∗r . Let Espwr denote the category whose ob-
jects are right exact ’spaces’ (X,EX) such that CX has initial objects; and morphisms

(X,EX) −→ (Y,EY ) are given by morphisms of ’spaces’ X
f
−→ Y whose inverse image

functors preserve conflations. In particular, they map initial objects to initial objects.
We denote by Esp∗r the subcategory of Espr whose objects are right exact ’spaces’

(CX ,EX) such that the category CX has initial objects and morphisms are defined by the
requirement that their inverse image functor maps initial objects to initial objects.
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It follows that Esp∗r is a subcategory of the category Espwr . The k-linear versions of
these categories coincide.

1.8. Proposition. (a) The map (X,EX) 7−→ K0(X,EX) extends to a contravariant
functor, Kw

0 , from the category Espwr to the category Z−mod of abelian groups.

(b) Let (X,EX)
f
−→ (Y,EY ) be a morphism of Espwr such that f∗ induces a surjective

map |CY | −→ |CX | of the isomorphism classes of objects. Then

Kw
0 (Y,EY )

Kw
0 (f)

−−−→ Kw
0 (X,EX)

is a group epimorphism. In particular, the functor K0 maps ’exact’ localizations to epi-
morphisms.

Proof. The assertions follow from 1.6.

2. Exactness properties of the functor K0.

One of the inconveniences of the functor K0 is that it assigns to a right exact ’space’
an object of different nature – a group. This break of continuity creates difficulties in
studying its properties. Below, we correct the problem replacing K0 by its intermediate
categorical version – a groupoid K̃0. A smooth transition to the definition and study of
K̃0 involves some other functors on ’spaces’ and right exact ’spaces’ which are important
on their own right.

2.1. ’Spaces’ and associated groupoids. The functor Gr∗. Let |Gr|o denote
the full subcategory of |Cat|o generated by ’spaces’ represented by groupoids. We denote
by Gr∗(X) the ’space’ represented by the groupoid obtained by inverting all arrows of the
category CX . The map X 7−→ Gr∗(X) extends to a functor

|Cat|o
Gr∗

−−−→ |Gr|o. (1)

The functor Gr∗ is left adjoint to the natural full embedding

|Gr|o
Gr∗
−−−→ |Cat|o. (2)

So that Gr∗ is a continuous localization functor. Actually, it is not only continuous, but
affine, because the functor (2) has a right adjoint

|Cat|o
Gr!

−−−→ |Gr|o. (3)

which maps each ’space’ X to the ’space’ Gr!(X) represented by the subcategory of CX
with the same objects whose arrows are all isomorphisms of the category CX .
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2.1.1. Left exact structures. The canonical left exact structure Is on the category
of ’spaces’ |Cat|o induces a left exact structure, IsGr, on the category |Gr|o. It follows that
Gr∗ and Gr∗ define ’exact’ functors between the corresponding left exact categories:

(|Cat|o, Is)
Gr∗

−−−→ (|Gr|o, IsGr)
Gr∗
−−−→ (|Cat|o, Is). (4)

In fact, both functors map inflations to inflations, and both preserved small colimits
(as all functors having a right adjoint). In particular, they preserve push-forwards and
map push-forwards of inflations to push-forwards of inflations.

2.2. Preorders. The functor Sk∗. Let |Ord|o denote the full subcategory of |Cat|o

generated by ’spaces’ represented by preorders. For an arbitrary ’space’ X, we denote by
Sk∗(X) the ’space’ represented by the preorder whose objects are isomorphism classes of
objects of the category CX and an arrow from a class |M | to a class |L| exists iff there are
arrows from M to L. The map X 7−→ Sk∗(X) extends naturally to a functor

|Cat|o
Sk∗

−−−→ |Ord|o. (1)

The functor Sk∗ is left adjoint to the full embedding

|Ord|o
Sk∗
−−−→ |Cat|o.

2.2.1. Left exact structures on ’spaces’ represented by preorders. We endow

the category |Ord|o with a left exact structure, Isor induced by Is: a morphism X
f
−→ Y

of |Ord|o belongs to Isor iff its inverse image functor is a surjective morphism of preorders.
It follows that both functor Sk∗ and Sk∗ map inflations to inflations and the functor

Sk∗ defines an ’exact’ functor

(|Cat|o, Is)
Gr∗

−−−→ (|Ord|o, Isor).

2.2.2. Preorder-groupoids. The functor Gs∗. Let |Gsk|o denote the full subcat-
egory of the category |Ord|o formed by ’spaces’ represented by preorders whose all arrows
are invertible. We call such ’spaces’ preorder-groupoids.

The composition Gr∗ ◦Sk∗ ◦Sk∗ induces a functor from |Cat|o to |Gsk|o. We denote
this functor by Gs∗. The functor Gs∗ is left adjoint to the full embedding

|Gsk|o
Gs∗
−−−→ |Cat|o.

2.3
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2.3. The ’spaces’ of deflations. Fix a right exact ’space’ (X,EX). Let CXc
E

denote the subcategory of the category CX2 = C2
X of arrows whose objects are deflations

of (X,EX) (that is arrows of EX) and morphisms from a deflationM
t
−→ L to a deflation

M′ t′

−→ L′ is a cartesian square

M
f

−−−→ M′

t
y cart

y t′

L
g

−−−→ L′

The ”source” and ”target” functors CX2

s

−→
−→

t

CX induce a pair of functors

CXc
E

p∗
s

−−−→
−−−→

p!
t

CX

whose cokernel we denote by CX/E.

Notice that the functor p∗s is left adjoint and the functor p!t is right adjoint to the fully

faithful functor CX
jcX−→ CXc

E
which assigns to every object of CX its identical morphism

and acts correspondingly on arrows.

2.3.1. Functorialities. The map (X,EX) 7−→ Xc
E extends to a functor

Espr
Fc

−−−→ |Cat|o

because inverse image of any morphism of right exact ’spaces’ preserves deflations and
pull-backs of deflations.

2.3.2. Proposition. The functor Espr
Fc

−−−→ |Cat|o is an ’exact’ functor from the
left exact category (Espr, I

→
c ) to the left exact category (|Cat|o, I→).

Proof. We lift the functor Fc to a quotient F̃c of the functor P→
c .

2.4. The functor K̃0.

2.4.1. The groupoid K̃0 of a right exact ’space’. Combining with functors
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introduced in 2.2, we obtain a commutative diagram

CXc
E

p∗
1

−−−→
−−−→

p∗
2

CX
π∗
X/E

−−−→ CX/E
y

y
y

CSk∗(Xc
E
)

p∗
1

−−−→
−−−→

p∗
2

CSk∗(X)

π∗
X/E

−−−→ CSk∗(X/E)

y
y

y

CGs∗(Xc
E
)

p∗
1

−−−→
−−−→

p∗
2

CGs∗(X)

π∗
X/E

−−−→ CGs∗(X/E)

(1)

with exact rows.
We denote the preorder-groupoid CGs∗(X/E) in the right lower corner of the diagram

(1) by K̃0(X,EX) and call it the K̃0 groupoid of the right exact ’space’ (X,EX).

2.4.2. ’Exactness’ properties of K̃0. Notice that the whole diagram (1) consists
of canonical functors and (therefore) is functorial in (X,EX).

2.4.2.1. Proposition. The functor K̃0 is right ’exact’ with respect to the left exact
structure I→c .

Proof. The fact is that the whole diagram (1) is a right ’exact’ functor in (X,EX)
with respect to the left exact structure I→c .

2.4.2.2. Proposition. The functor K0 is right ’exact’ with respect to the left exact
structure I→c .

Proof. We have a contravariant functor Z0 from the category of ’spaces’ to the category
of commutative groupoids with one object, which assigns to each ’space’X the subgroupoid
of Z|CX | generated by differences [M ]−[L] for every morphism L −→M . There is a natural
functor CX −→ Z0(X) which assigns to every morphism L −→M the difference [M ]− [L].

The functor Z0 respects coproducts, that is Z0(
∐

i∈J

Xi) ≃
∏

i∈J

Z0(Xi). In general, Z0

does not preserve cokernels of pairs of arrows. Fortunately, its restriction to preorders (or

preorder-groupoids) does. Notice that Z0 ◦ K̃0 = K0. Applying Z0 to the last row of the
diagram (1), we obtain an exact sequence of groups (identified with groupoids with one
object) and group morphisms

Z0(Gs∗(Xc
E))

Z0(p1)

−−−→
−−−→
Z0(p2)

Z0(Gs∗(X))
Z0(πX/E)

−−−→ Z0K̃0(X,EX) = K0(X,EX). (2)
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This shows that K0 is a right ’exact’ functor from (Espr, I
→
c )op to Z−mod.

3. The relative functors K0 and their higher images.

3.1. Universal relative K-functors. Fix a right exact ’space’ Y = (Y,EY). The

functor (Espr)
op

K0

−−−→ Z−mod induces a functor

(Espr/Y)
op

KY
0

−−−→ Z−mod

defined by

KY
0 (X , ξ) = KY

0 (X ,X
ξ
→ Y) = Cok(K0(Y)

K0(ξ)
−−−→ K0(X ))

and acting correspondingly on morphisms.
The domain of the functor KY

0 , the category Espr/Y, has a final object, cokernels of
morphisms, and natural left exact structures induced by left exact structures on Espr. Fix
a left exact structure I on Espr (say, one of those defined in IV.8.3.2) and denote by IY)
the left exact structure on Espr/Y induced by I. Notice that, since the category Z−mod
is complete (and cocomplete), there is a well defined satellite endofunctor

Hom((Espr/Y)
op,Z−mod)

SIY

−−−→ Hom((Espr/Y)
op,Z−mod), F 7−→ SIYF.

So that, for every functor F from (Espr/Y)
op to Z − mod, there is a unique up to

isomorphism universal ∂∗-functor (SiIY
F, di | i ≥ 0).

In particular, there is a universal contravariant ∂∗-functor KY,I
• = (KY,I

i , di | i ≥ 0)
from the right exact category (Espr/Y, IY) of right exact ’spaces’ over Y to the category

Z−mod of abelian groups; that is KY,I
i = SiIY

KY,I
0 for all i ≥ 0.

We call the groups KY,I
i (X , ξ) universal K-groups of the right exact ’space’ (X , ξ)

over the right exact ’space’ Y = (CY ,EY ) with respect to the left exact structure I.

3.2. The principal left exact structure. Let I→c/Y denote the left exact structure

on Espr/Y induced by the left exact structure I→c on Espr.

3.3. Proposition. Let Y = (Y,EY ) be a right exact ’space’, and let I be a left exact
structure on the category Espr/Y which is coarser than I→c/Y (cf. 3.2). Then the universal

∂∗-functor KY
• = (KY

i , di | i ≥ 0) from the left exact category (Espr/Y, IY) to the category
Z−mod of abelian groups is ’exact’; i.e. for any conflation

(X, ξ)
q
−→ (X ′, ξ′)

cq
−→ (X ′′, ξ′′),
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the associated long sequence

. . .
KY

1 (q)

−−−→ KY
1 (X, ξ)

d0

−−−→ KY
0 (X ′′, ξ′′)

KY
0 (cq)

−−−→ KY
0 (X ′, ξ′)

KY
0 (q)

−−−→ KY
0 (X, ξ) −−−→ 0

is exact.

Proof. (a) Since the left exact structure IY is coarser than I→c/Y , the functor KY
0 is

right ’exact’ on (Espr/Y, IY). This fact can be read from the commutative diagram

Im(ξZ) ←−−− K0(Y) −−−→ Im(ξX )y
y

K0(Z) −−−→ K̃0(Z)
j

−−−→ K0(Z)
∏
K0(X)

p1

−−−→
−−−→

p2

K0(X )

y
y cart

y cart
y

KY
0 (Z, ξZ) −−−→ Ker(pY1 , p

Y
2 )

jY

−−−→ KY
0 (Z, ξZ)

∏
KY

0 (X, ξX)

pY
1

−−−→
−−−→

pY
2

KY
0 (X , ξX )

(1)
corresponding to a cocartesian square

(X , ξX) −−−→ (Z, ξZ)y cocart
y

(X, ξX) −−−→ (Z, ξX)

in Espr/Y whose vertical arrows are inflations.
All lower vertical arrows of the diagram (1) are surjective. Since the (composition) of

two cartesian squares of (1) is a cartesian square and Im(ξX) and Im(ξX ) are kernels of
the corresponding vertical arrows of the cartesian square, they are naturally isomorphic.
The morphism K0(Z) −→ K̃0(Z) factors through Ker(p1 ◦ j, p2 ◦ j) and, by hypothesis,
this factorization,

K0(Z) −−−→ Ker(p1 ◦ j, p2 ◦ j),

is an epimorphism. The latter implies that the map

K0(Z)
∐

Im(ξZ) −−−→ K̃0(Z) (2)

determined by the morphisms K0(Z) −→ K̃0(Z) ←− Im(ξZ) (see the diagram (1)) is
surjective. The surjectivity of the map (2) together with the surjectivity of the morphism
K0(Z) −→ K

Y
0 (Z, ξZ) imply the surjectivity of

KY
0 (Z, ξZ) −−−→ Ker(pY1 , p

Y
2 )
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which proves the right ’exactness’ of the functor KY
0 .

(b) In particular, for any conflation

(X, ξ)
q
−→ (X ′, ξ′)

cq
−→ (X ′′, ξ′′)

of the left exact category (Esp∗r/Y, IY), the sequence

KY
0 (X ′′, ξ′′)

KY
0 (cq)

−−−→ KY
0 (X ′, ξ′)

KY
0 (q)

−−−→ KY
0 (X, ξ) −−−→ 0

of Z-modules is exact. Therefore, by II.6.3, the universal ∂∗-functor KY
• = (KY

i , di| i ≥ 0)
from (Esp∗r/Y, IY) to Z−mod is ’exact’.

It is convenient to have the following generalization of the previous assertion.

3.4. Proposition. Let Y = (Y,EY ) be a right exact ’space’, (CS, IS) be a left
exact category, and F a functor CS −→ Espr/Y which maps conflations of (CS, IS) to
conflations of the left exact category (Espr/Y, I

→
c/Y

). Then there exists a (unique up to

isomorphism) universal ∂∗-functor KS,F
• = (KS,F

i , di | i ≥ 0) from the right exact category

(CS, IS)op to Z − mod whose zero component, KS,F
0 , is the composition of the functor

CopS
Fop

−−−→ Espr/Y
op and the functor KY

0 .

The ∂∗-functor KS,F
• is ’exact’.

Proof. The existence of the ∂∗-functor KS,F
• follows, by 3.3.2, from the completeness

(– existence of limits of small diagrams) of the category Z −mod of abelian groups. The

main thrust of the proposition is in the ’exactness’ of KS,F
• .

By hypothesis, the functor F maps conflations to conflations. Therefore, it follows
from 3.1 that for any conflation X −→ X′ −→ X′′ of the left exact category (CS, IS), the

sequence of abelian groups KS,F
0 (X′′) −→ KS,F

0 (X′) −→ KS,F
0 (X) −→ 0 is exact. By

II.7.1, this implies the ’exactness’ of the ∂∗-functor KS,F
• .

4. The higher K-theory of ’spaces’ over the ’point’.

4.0. The pointed category of right exact ’spaces’. Let |Cat∗|
o denote the

subcategory of the category |Cat|o of ’spaces’ whose objects are ’spaces’ represented by
categories with initial objects and morphisms are those morphisms of ’spaces’ whose inverse
image functor maps initial objects to initial objects. The category |Cat∗|

o is pointed: it
has a canonical zero (that is both initial and final) object, x, which is represented by the
category with one (identical) morphism. Thus, the final objects of the category |Cat|o of
all ’spaces’ are zero objects of the subcategory |Cat∗|

o.

Each morphism X
f
−→ Y of the category |Cat∗|

o has a cokernel, Y
cf
−→ C(f), where

the category CC(f) representing the ’space’ C(f) is the kernel Ker(f∗) of the functor f∗.
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By definition, Ker(f∗) is the full subcategory of the category CY generated by all objects
of CY which the functor f∗ maps to initial objects. The inverse image functor c∗f of the
canonical morphism cf is the natural embedding Ker(f∗) −→ CY .

The category Esp∗r formed by right exact ’spaces’ with initial objects and morphisms
whose inverse image functor is ’exact’ and maps initial objects to initial objects (cf. 1.7),
is pointed and the forgetful functor

Esp∗r
J∗

−−−→ |Cat∗|
o, (X,EX) 7−→ X,

is a left adjoint to the canonical full embedding |Cat∗|
o J∗−→ Esp∗r which assigns to every

’space’ X the right exact category (X, Iso(CX)). Both functors, J∗ and J∗, map zero
objects to zero objects. Similarly, the canonical right adjoint J! to the functor J∗ also
maps the category Esp∗r to the category |Cat∗|

o, because localization functors map initial
objects to initial objects and J!(X,EX) = E−1

X X.
Let x be a zero object of the category Esp∗r . Then Esp∗r/x is naturally isomorphic to

Esp∗r and Kx
0 = K0.

4.1. The left exact structure I→c∗ . We denote by I→c∗ the canonical left exact
structure I→c/x , where x is an initial object. It does not depend on the choice of the zero
object x.

4.2. Proposition. Let (CS, IS) be a left exact category, and let F be a functor
CS −→ Esp∗r which maps conflations of (CS, IS) to conflations of the left exact category
(Esp∗r , I

→
c∗). Let G be a functor from (Esp∗r )

op to a category CZ with limits of ’small’ filtered
systems and initial objects. Then

(a) There exists a universal ∂∗-functor GS,F• = (GS,Fi , d̃i | i ≥ 0) from (CS, IS)op to

CZ whose zero component, GS,F0 , is the composition of the functor

CopS
Fop

−−−→ (Esp∗r )
op

and the functor G.
(b) If (CZ ,EZ) is a right exact category and the functor G is left ’exact’, then the ∂∗-

functor GS,F• is ’exact’. In particular, the ∂∗-functor G• = (Gi, di | i ≥ 0) from (Esp∗r , I
→
c∗)

to (CZ ,EZ) is ’exact’.

Proof. The assertion is a special case of II.3.4.

4.2.1. Corollary. Let (CS, IS) be a left exact category, and CS
F
−→ Esp∗r a functor

which maps conflations of (CS, IS) to conflations of the left exact category (Esp∗r , I
→
c∗).

Then there exists a universal ∂∗-functor KS,F
• = (KS,F

i , d̃i | i ≥ 0) from (CS, IS)op to

Z−mod whose zero component, KS,F
0 , is the composition of the functor

CopS
Fop

−−−→ (Esp∗r )
op
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and the functor K0.
The ∂∗-functor KS,F

• is ’exact’. In particular, the ∂∗-functor K• = (Ki, di| i ≥ 0)
from the left exact category (Esp∗r , I

→
c∗) to the abelian category Z−mod is ’exact’.

4.3. The class of morphisms I→c∗
⊛. We denote by I→c∗

⊛ the class of all morphisms

(X,EX)
f
−→ (Y,EY ) of I

→
c∗ such that Cok(f) is a zero object, or, equivalently, Ker(f∗) is

a trivial category.

4.4. Proposition. The class I→c∗
⊛ is a left exact structure on the category Esp∗r of

right exact ’spaces’ with initial objects.

Proof. The assertion is a special (dual) case of the following fact (see II.4.4.1): given
a right exact ’space’ (X,EX) such that the category CX has initial objects, the class E⊛

X

of all morphisms of EX having a trivial kernel is a right exact structure on the category
CX .

4.5. Proposition. Let (CS, IS) be a left exact category, F a functor CS −→ Esp∗r
which maps conflations of (CS, IS) to conflations of the left exact category (Esp∗r , I

→
c∗

⊛),

and KS,F
• = (KS,F

i , d̃i | i ≥ 0) a universal ∂∗-functor from (CS, IS)op to Z−mod whose

zero component, KS,F
0 , is the composition of CopS

Fop

−−−→ (Esp∗r )
op and K0 (cf. 4.2.1).

If X
q
−→ Y is a morphism of IS with trivial cokernel, then the morphisms

KS,F
i (Y)

KS,F
i

−−−→ KS,F
i (X )

are isomorphisms for all i ≥ 0.

Proof. Let I⊛S denote the class of all morphisms of IS having a trivial cokernel. By
(the dual version of) 3.3.7.1, the class I⊛S is a left exact structure on the category CS.

Since the functor CS
F
−→ Esp∗r maps conflations to conflations, it maps final objects

of the category CS to zero objects of Esp∗r . In particular, F maps morphisms of I⊛S to
morphisms of I→c∗

⊛. By 4.2.1, the ∂∗-functor is ’exact’, so that for any conflation

X
q
−→ X ′ cq

−→ X ′′,

the sequence

KS,F
0 (X ′′)

KS,F
0 (cq)

−−−→ KS,F
0 (X ′)

KS,F
0 (q)

−−−→ KS,F
0 (X ) −−−→ 0

is exact. If q ∈ I⊛S, then KS,F
0 (X ′′) = K0(F(X

′′)) = 0. So that in this case the morphism

KS,F
0 (X ′)

KS,F
0 (q)

−−−→ KS,F
0 (X ) is an isomorphism. The assertion follows now from 5.3.7.2.
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4.6. Corollary. For every morphism (X,EX)
q
−→ (X ′,EX′) of I→c∗

⊛ the corre-
sponding map

Ki(X
′,EX′)

Ki(q)
−−−→ Ki(X,EX)

is an isomorphism for all i ≥ 0.

5. Universal K-theory of abelian categories.

Let Espak denote the category whose objects are ’spaces’ X represented by k-linear

abelian categories and morphisms X
f
−→ Y are represented by k-linear exact functors.

There is a natural functor

Espak
F

−−−→ Esp∗r (1)

which assigns to every object X of the category Espak the right exact (actually, exact)
’space’ (X,EstX), where EstX is the canonical (i.e. the finest) right exact structure on the

category CX , and maps each morphism X
f
−→ Y to the morphism (X,EstX)

f
−→ (Y,EstY ) of

right exact ’spaces’. One can see that the functor F maps the zero object of the category
Espak (represented by the zero category) to a zero object of the category Esp∗r .

5.1. Proposition. Let CX and CY be k-linear abelian categories endowed with the

canonical exact structure. Any exact localization functor CY
q∗

−→ CX is an inverse image
functor of a morphism of I→c∗ .

Proof. We need to show that every cartesian square

q∗(M)
p2

−−−→ q∗(M)

p1

y cart
y t̃

q∗(L)
h̃

−−−→ q∗(L)

(2)

in CX whose vertical arrows are deflations (that is epimorphisms) is isomorphic to the
image of a cartesian square of the same type.

In fact, each morphism q∗(M)
h̃
−→ q∗(N) is of the form q∗(h)q∗(s)−1 for some mor-

phisms M ′ h
−→ N and M ′ s

−→ M such that q∗(s) is invertible. The morphism h is a
(unique) composition j ◦ e, where j is a monomorphism and e is an epimorphism. Since the

functor q∗ is exact, q∗(j) is a monomorphism and q∗(e) is an epimorphism. Therefore, h̃
is an epimorphism iff q∗(j) is an isomorphism. Thus, we include the cartesian square (2)
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into a commutative diagram

q∗(M)
p2

−−−→ q∗(M)
q∗(s)
←−−− q∗(M ′)

p1

y cart
y t̃

y q∗(t)

q∗(L)
h̃

−−−→ q∗(L)
q∗(j)
←−−− q∗(L′)

id
y

x q∗(h) cart
x q∗(h′)

q∗(L)
q∗(u)
←−−− q∗(L′)

q∗ (̃j)
←−−− q∗(L′′)

whose lower right square is the image of a cartesian square

L
j

←−−− L′

h
x cart

x h′

L′
j̃

←−−− L′′

and the left horizontal arrows and q∗(u) are isomorphisms.
This shows that the cartesian square (2) is isomorphic to the image of a pull-back

L
h̃′

−−−→ M ′

t1

y cart
y t

L′′
h′

−−−→ L′

of the deflation M ′ t
−→ L′ along the morphism L′′ h′

−→ L′.

5.2. A left exact structure on the category Espak.

5.2.1. Proposition. The category Espak of ’spaces’ represented by abelian k-linear
categories has arbitrary colimits, and the functor

Espak
F

−−−→ Esp∗r

preserves colimits.

Proof. The product of any set of abelian categories is an abelian category. And for
any pair of exact functors

CX

g∗
1

−−−→
−−−→
g∗
2

CY
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from one abelian category to another, the kernel Ker(g∗1 , g
∗
2) is an abelian category and

the natural functor Ker(g∗1 , g
∗
2)

c∗g1,g2
−−−→ CX is exact. Hence the assertion.

5.2.2. Corollary. Let Iak denote the preimage in the category Espak of the left exact

structure I→c∗ . The functor Espak
F

−−−→ Esp∗r is an ’exact’ functor from the left exact
category (Espak, I

a
k) to the left exact category (Esp∗r , I

→
c∗).

Proof. This follows from the fact that the functor

Espak
F

−−−→ Esp∗r

preserves colimits (in particular, it preserves push-forwards) and that, by definition of Iak,
the functor F maps morphisms of Iak to inflations – morphisms of I→c∗ .

5.2.3. Proposition. (a) The class La of all morphisms X
q
−→ Y of the category

Espak such that CY
q∗

−→ CX is a localization functor is a left exact structure on Espak which
is coarser than Iak.

(b) Every morphism of Iak is a canonical composition of a morphism of La and a
conservative morphism of Iak.

(c) The class cIak of conservative morphisms from Iak coincides with the class of mor-
phisms of inflations with trivial cokernel.

Proof. (a) The assertion follows from 5.1.

(b) Every morphism X
f
−→ Y of |Cat|o is the composition qf ◦ fc of a localization qf

at Σf and a conservative morphism. If f is a morphism of Espak, its inverse image functor
is an exact k-linear functor, hence q∗f is an exact k-linear localization functor and f∗c is an
exact k-linear conservative functor.

(c) The latter means precisely that f∗c is an exact k-linear functor with a trivial kernel.
Hence the assertion.

5.3. The Grothendieck functor. The composition Ka
0 of the functor

(Espak)
op

Fop

−−−→ (Esp∗r )
op

and the functor (Esp∗r )
op

K∗
0

−−−→ Z −mod assigns to each object X of the category Espak
the abelian group K∗

0 (X,E
st
X) which coincides with the Grothendieck group of the abelian

category CX . We call Ka
0 the Grothendieck functor.

5.4. Proposition. There exists a universal ∂∗-functor Ka
• = (Ka

i , d
a
i | i ≥ 0) from

the right exact category (Espak, I
a
k)
op to the category Z−mod whose zero component is the
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Grothendieck functor K0. The universal ∂∗-functor Ka
• is ’exact’; that is for any inflation

X
f
−→ X ′, the canonical long sequence

. . .
Ka

1 (f)

−−−→ Ka
1 (X)

da
0 (f)

−−−→ Ka
0 (X

′′)
Ka

0 (cf)

−−−→ Ka
0 (X

′)
Ka

0 (f)

−−−→ Ka
0 (X) −−−→ 0 (3)

is exact.

Proof. By 5.2.1(b), the functor Espak
F

−−−→ Esp∗r is an ’exact’ functor from the left
exact category (Espak, I

a
k) to the left exact category (Esp∗r , I

→
c∗) which maps the zero object

of the category Espak (– the ’space’ represented by the zero category) to a zero object of
the category Esp∗r . Therefore, F maps conflations to conflations.

The assertion follows now from 4.2.1 applied to the functor F.

5.4.1. Note. Let X
f
−→ X ′ be an inflation and

X
fc−→ X̃ = Σ−1

f X ′ qf
−→ X ′

its canonical decomposition into an exact localization and a conservative inflation. It

follows from 5.2.3(a) that X̃ = Σ−1
f X ′ qf

−→ X ′ is an inflation and from 5.2.3(c) that

X
fc−→ X̃ is an inflation with trivial cokernel. The functor Ka

0 maps inflations with
trivial cokernel to isomorphisms. Therefore, by II.4.4.2, the higher K-functors, Ka

i , do the

same. Thus, we have the long exact sequence (3) corresponding to the inflation X
f
−→ X ′,

another long exact sequence corresponding to the exact localization X̃ = Σ−1
f X ′ qf

−→ X ′

and isomorphism between them

. . .
Ka

1 (f)

−−−→ Ka
1 (X)

da
0 (f)

−−−→ Ka
0 (X

′′)
Ka

0 (cf)

−−−→ Ka
0 (X

′)
Ka

0 (f)

−−−→ Ka
0 (X̃ ) −→ 0

Ka
1 (fc)

y≀ id
y≀ id

y≀ ≀
y Ka

0 (fc)

. . .
Ka

1 (f)

−−−→ Ka
1 (X)

da
0 (f)

−−−→ Ka
0 (X

′′)
Ka

0 (cf)

−−−→ Ka
0 (X

′)
Ka

0 (f)

−−−→ Ka
0 (X) −→ 0

given by the identical morphisms and isomorphisms Ka
i (fc).

5.5. The universal ∂∗-functor Ka
• and the Quillen’s K-theory. For a ’space’

X represented by a svelte k-linear abelian category CX , we denote by KQ
i (X) the i-th

Quillen’s K-group of the category CX . For each i ≥ 0, the map X 7−→ KQ
i (X) extends

naturally to a functor

(Espak)
op

KQ
i

−−−→ Z−mod

It follows from the Quillen’s localization theorem [Q, 5.5] that, for any exact localiza-

tion X
q
−→ X ′ and each i ≥ 0, there exists a connecting morphism

KQ
i+1(X)

dQ
i (q)

−−−→ KQ
0 (X ′′),
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where CX′′ = Ker(q∗), such that the sequence

. . .
KQ

1 (q)

−−−→ KQ
1 (X)

dQ
0 (q)

−−−→ KQ
0 (X ′′)

KQ
0 (cq)

−−−→ KQ
0 (X ′)

KQ
0 (q)

−−−→ KQ
0 (X) −−−→ 0 (4)

is exact. It follows (from the proof of the Quillen’s localization theorem) that the connect-
ing morphisms dQi (q), i ≥ 0, depend functorially on the localization morphism q.

In other words, KQ
• = (KQ

i , d
Q
i | i ≥ 0) is an ’exact’ ∂∗-functor from the right exact

category (Espak,L
a
k)
op to the category Z−mod of abelian groups.

Naturally, we call the ∂∗-functor KQ
• the Quillen’s K-functor.

5.5.1. The canonical morphism. Since Ka
• = (Ka

i , d
a
i | i ≥ 0) is a universal

∂∗-functor from (Espak,L
a)op to Z −mod, the identical isomorphism KQ

0 −→ Ka
0 extends

uniquely to a ∂∗-functor morphism

KQ
•

ϕQ
•

−−−→ Ka
• . (5)

5.6. Remark. There is a canonical functorial morphism of the universal determinant
group Kdet

1 (X) (introduced by Bass [Ba, p. 389]) to the Quillen’s KQ
1 (X). If X is affine,

i.e. CX is the category of modules over a ring, this morphism is an isomorphism. It
is known [Ger, 5.2] that if CX is the category of coherent sheaves on the complete non-
singular curve of genus 1 over C, then Kdet

1 (X) −→ KQ
1 (X) is not a monomorphism. In

particular, the composition Kdet
1 (X) −→ Ka

1 (X) of the morphism Kdet
1 (X) −→ KQ

1 (X)

and the canonical morphism KQ
1 (X)

ϕQ
1 (X)

−−−→ Ka
1 (X) is not a monomorphism.

6. Universal K-theory of k-linear right exact categories.

Let Esprk denote the category whose objects are right exact ’spaces’ (X,EX), where the
’space’ X is represented by a k-linear svelte additive category and morphisms (X,EX) −→

(Y,EY ) are given by morphisms of ’spaces’ X
f
−→ Y whose inverse image functors are

k-linear ’exact’ functors. By 1.4, the ’exactness’ of a morphism f means precisely that its
inverse image functor, f∗, maps conflations to conflations.

There is a natural functor

Esprk
Fr

−−−→ Esp∗r (1)

which maps objects and morphisms of the category Esprk to the corresponding objects and
morphisms of the category Esp∗r .

6.1. Proposition. The functor Esprk
Fr

−−−→ Esp∗r preserves colimits and maps the
zero object of the category Esprk to the zero object of the category Esp∗r .
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Proof. The product of any set of right exact k-linear categories (taken in Esp∗r ) is a
right exact k-linear category. For any pair of ’exact’ functors

(CX ,EX)

g∗
1

−−−→
−−−→
g∗
2

(CY ,EY )

from one k-linear right exact category to another, the kernel Ker(g∗1 , g
∗
2) is a k-linear right

exact category and the natural functor Ker(g∗1 , g
∗
2)

c∗g1,g2
−−−→ (CX ,EX) is ’exact’.

6.2. Corollary. The class of morphisms Irk = F−1
r (I→c∗) is a left exact structure on

the category Esprk and Fr is an ’exact’ functor from the left exact category (Esprk, I
r
k) to

the left exact category (Esp∗r , I
→
c⊛) .

Proof. Since the functor Fr preserves cocartesian squares, the preimage F−1
r (τ) of

any copretopology τ on Esp∗r is a copretopology on the category Esprk. In particular, Irk =
F−1
r (I→c∗) is the class of cocovers of a copretopology. The copretopology Irk is subcanonical,

i.e. Irk is a left exact structure on the category Esprk.

The copretopology Irk is subcanonical iff for any morphism (X,EX)
q
−→ (Y,EY ) the

cocartesian square

(X,EX)
q

−−−→ (Y,EY )

q
y

y p1

(Y,EY )
p2

−−−→ (X,EX)

(2)

is cartesian, or, equivalently, the diagram

(X,EX)
q

−−−→ (Y,EY )

p1

−−−→
−−−→

p2

(X,EX) (3)

is exact. The claim is that, indeed, the diagram (3) is exact.

In fact, let (Z,EZ)
f
−→ (Y,EY ) be a morphism which equalizes the pair of arrows

(Y,EY )
p1
−→
−→
p2

(X,EX). Since the functor Fr transforms (2) into a cartesian square, there

exists a unique morphism Fr(Z,EZ)
h
−→ Fr(X,EX) such that Fr(q) ◦ h = Fr(f). It follows

that the inverse image h∗ of h is a k-linear functor CX −→ CZ . Therefore h is the image
of (a uniquely determined) morphism (Z,EZ) −→ (X,EX), hence the morphism f factors

uniquely through (X,EX)
q
−→ (Y,EY ).

6.2.1. Note. Let L→
c∗ denote the class of all localizations (that is all morphisms

whose inverse image is a localization) which belong to I→c∗ ; And let Lr
k = F−1

r (L→
c∗). Then

Lr
k is a left exact structure on the category Esprk of k-linear right exact ’spaces’.
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This follows from the fact L→
c∗ is a left exact structure on the category Esp∗r .

6.3. The functor Kr
0. We denote by Kr

0 the composition of the functor

(Esprk)
op

Fopr
−−−→ (Esp∗r )

op

and the functor (Esp∗r )
op

K∗
0

−−−→ Z−mod.

6.4. Proposition. There exists a universal ∂∗-functor Kr
• = (Kr

i , d
r
i | i ≥ 0) from

the right exact category (Esprk, I
r
k)
op to the category Z − mod whose zero component is

the functor Kr
0. The universal ∂∗-functor Kr

• is ’exact’; that is for any exact localization

(X,EX)
q
−→ (X ′,EX′) which belongs to Lr, the canonical long sequence

Kr
1(X.EX)

Kr
1(q)

←−−− Kr
1(X

′,EX′)
Kr

1(cq)

←−−− Kr
1(X

′′,EX′′)
dr
1(q)

←−−− . . .

dr0(q)
y

Kr
0(X

′′,EX′′)
Kr

0(cq)

−−−→ Kr
0(X

′,EX′)
Kr

0(q)

−−−→ Kr
0(X,EX) −−−→ 0

(4)

is exact.

Proof. The functor Esprk
Fr

−−−→ Esp∗r is an ’exact’ functor from the left exact category
(Esprk, I

r
k) to the left exact category (Esp∗r , I

→
c∗) which maps the zero object of the category

Esprk (– the ’space’ represented by the zero category) to a zero object of the category Esp∗r .
Therefore, Fr maps conflations to conflations. It remains to apply 4.2.1.

6.5. Proposition. Let (CX ,EX) be a right exact svelte k-linear additive category,

(CXe
,EXe

) the associated exact k-linear category, and (CX ,EX)
γ∗
X

−−−→ (CXe
,EXe

) the
canonical fully faithful ’exact’ universal functor (see I.7.5) regarded as an inverse image

functor of a morphism (Xe,EXe
)

γX
−−−→ (X,EX).

The map K0(X,EX)
K0(γX)
−−−→ K0(Xe,EXe

) is a group epimorphism.

Proof. The assertion follows from the description of the exact category (CXe
,EXe

)
(see the argument of I.7.5). Details are left to the reader.

6.6. The category of exact k-’spaces’ and Grothendieck-Quillen functor.
Let Espek denote the full subcategory of the category Esprk whose objects are pairs (X,EX)
such that (CX ,EX) is an exact k-linear category.

It follows from I.7.5 that the inclusion functor, Espek
J∗

−−−→ Esprk has a right adjoint, J∗
which assigns to each right exact k-space (X,EX) the associated exact k-space (Xe,EXe

).
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The adjunction arrow J∗J∗ −→ IdEspr
k
assigns to each object (X,EX) of Esprk the mor-

phism (Xe,EXe
)

γX
−−−→ (X,EX) (see 6.5). The adjunction morphism IdEspe

k
−→ J∗J

∗ is
the identity morphism.

Thus, Esprk
J∗

−−−→ Espek is a localization functor. According to 6.5, the functor

(Esprk)
op

Kr
0

−−−→ Z−mod factors through the localization functor

(Esprk)
op

Jop∗
−−−→ (Espek)

op.

That is the functor Kr
0 is isomorphic to the composition Ke

0 ◦ J
op
∗ , where Ke

0 denote the
restriction of Kr

0 to the subcategory (Espek)
op, i.e. the composition Kr

0 ◦ J
∗op .

For each exact k-space (X,EX), the groupKe
0(X,EX) coincides with the Grothendieck

group K0 of the exact category (CX ,EX) as it was defined by Quillen [Q].

6.7. Proposition. The restriction Iek of the left exact structure Irk on Esprk to the
subcategory Espek is a left exact structure on Espek.

Proof. The inclusion functor Espek
J∗

−−−→ Esprk preserves all colimits; in particular,

it preserves cocartesian squares. The latter implies that Iek = J∗
−1

(Irk) is a left exact
structure on the category Esprk.

6.7.1. The universal K-functor on exact k-’spaces’. In particular, we have a
universal ∂∗-functor Ke

• = (Ke
i , d

e
i | i ≥ 0) from (Espek, I

e
k)
op to Z−mod which is exact.

6.8. Remarks on K-theory of k-linear exact categories. The category Espek
of exact k-spaces has an automorphism D which assigns to each ’space’ (X,EX) the dual
’space’ (X,EX)o represented by the opposite exact category (CX ,EX)op.

6.8.1. Proposition. Let F be a contravariant functor from the category Espek of
exact k-’spaces’ to a category CZ with filtered limits. If for each ’space’ (X,EX), there
is an isomorphism F (X,EX) ≃ F ((X,EX)o) functorial in (X,EX), then the universal
∂∗-functor SLe

• F is isomorphic to its composition with the duality automorphism D of the
category Espek.

Proof. The argument is left to the reader.

6.8.2. Corollary. There is a natural isomorphism of universal ∂∗-functors

Ke
• ≃ K

e
• ◦D.

Proof. In fact, K0(X,EX) is naturally isomorphic to K0((X,EX)o), because the (iden-
tical) isomorphism ObCX

∼−→ Ob(CopX ) implies a canonical isomorphism Z|CX | ≃ Z|CopX |,
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relations defining K0 correspond to conflations, and the dualization functor D induces an
isomorphism between the corresponding categories of conflations.

7. Reduction by resolution.

7.1. Proposition. Let (CX ,EX) be a right exact category with initial objects and
CY its fully exact subcategory such that

(a) If M ′ −→M −→M ′′ is a conflation with M ∈ ObCY , then M
′ ∈ ObCY .

(b) For any M ′′ ∈ ObCX , there exists a deflation M −→M ′′ with M ∈ ObCY .
Then the morphism K•(Y,EY ) −→ K•(X,EX) is an isomorphism.

Proof. (i) Suppose that F0 is a contravariant functor from Espr to a category with

filtered limits such that the conditions (a) and (b) imply that F0(Y,EY )
F (j)
−−−→ F0(X,EX)

is an isomorphism. Then the morphisms

Sn−F0(Y,EY ) −−−→ Sn−F0(X,EX)

are isomorphisms for all n ≥ 0.

1) If (X,EX)
f
−→ (X,EX) is a morphism of I→c and

(X,EX)
j1
−−−→ (Y,EY)

f
x cocart

x f̃

(X,EX)
j

−−−→ (Y,EY )

(2)

a cocartesian square, then the functor

(CY,EY)
j∗1
−−−→ (X,EX)

inherits the conditions (a) and (b).
In fact, consider the pseudo-cartesian square

CY

j∗1
−−−→ CX

f̃∗
y cart

y f∗

CY
j∗

−−−→ CX

of inverse image functors corresponding to the diagram (2). The functor

CY

j∗1
−−−→ CX, (L,M ; j∗(L) ∼→ f∗(M)) 7−→M,
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is fully faithful without any conditions on f.

Suppose X
f
−→ X is a canonical inflation to an injective object (cf. IV.5.3). Then any

morphism of EX is the image of some morphism of EX (see the argument of IV.5.3.2). Let

M be an object of CX. By the condition (b), there is a deflation j∗(L)
t
−→ f∗(M). This

deflation is the image of an arrow M
t′

−→M of EX. So that j1 satisfies the condition (b).
The condition (a) is also inherited by j∗1, because the functor f

∗ preserves kernels and,
by hypothesis, f∗(Ker(t′) ≃ Ker(t) ≃ j∗(L0) for some object L0 of CY , which shows that

the kernel of j∗1(L,M; id)
t′

−→M is isomorphic to the image of an object of CY.
2) By IV.8.5.3, the left exact category (Espr, I

→
c ) has enough injectives. The assertion

(i) follows now from IV.8.3.5.2.

It remains to verify that the functor K0 satisfy the conditions (i).

(ii) It follows from the conditions (a) and (b) that the map

K0(Y,EY )
K0(j)
−−−→ K0(X,EX)

is surjective. In fact, by condition (b), for every object M of the category CX , there exists

a deflation M
t
−→M such that M ∈ ObCY . By condition (a), the kernel of this deflation

belongs to the subcategory CY . Therefore, the element [M ] of the group K0(X,EX) is
equal to [M]− [Ker(t)], which is the image of an element of the group K0(Y,EY ).

(iii) The map K0(Y,EY )
K0(j)
−−−→ K0(X,EX) is injective.

Notice that the kernel of the map K0(j) consists of combinations (with coefficients in
Z) of the expressions [M ]− [L]− [N ], where N −→ M −→ L runs through conflations of
(CX ,EX). The claim is that each of these combinations is equal to zero.

In fact, let N
it−→M

t
−→ L be conflation in CX . Thanks to the condition (b), it can

be inserted into a commutative diagram

M
u

−−−→ M ′
t̃

−−−→ L

s1

y cart
y s

M
t

−−−→ L

where all arrows are deflations, the square is cartesian, and L, M are objects of the
subcategory CY . Therefore, we obtain a commutative diagram

Ñ −−−→ M̃ −−−→ L̃y
y

y is

N −−−→ M
t̃u
−−−→ Ly s1u

y
y s

N
it

−−−→ M
t

−−−→ L

(3)
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whose rows and columns are conflations. Therefore,

[M ]− [L]− [N ] = ([M]− [L]− [N ])− ([M̃]− [L̃]− [Ñ ]),

because [L] = [L̃] + [L], [M] = [M̃] + [M ] and [N ] = [Ñ ] + [N ].
It follows from the condition (a) (applied to the columns of the diagram (2)) that two

upper rows of (2) are conflations in (CY ,EY ).

7.1.1. Note. The condition (a) in 7.1 can be replaced by the condition

(a2) If M
t
−→ N is a deflation in CX such that M belongs to the subcategory CY ,

then M ×N M is an object of CY .

In the additive case, the condition (a2) is equivalent to the condition (a), because
then M ×N M is isomorphic to M

∐
Ker(t). It follows from the observation 1.6.1 that, in

a sense, the condition (a2) is equivalent to (a) with respect to K0 regardless of additivity
(or any other properties) of the category CX .

7.2. Proposition. Let (CX ,EX) and (CZ ,EZ) be right exact categories with initial
objects and T = (Ti, di | i ≥ 0) an ’exact’ ∂∗-functor from (CX ,EX) to (CZ ,EZ). Let CY
be the full subcategory of CX generated by T -acyclic objects (that is objects V such that
Ti(V ) is an initial object of CZ for i ≥ 1). Assume that for every M ∈ ObCX , there is
a deflation P −→ M with P ∈ ObCY , and that Tn(M) is an initial object of CZ for n
sufficiently large. Then the natural map K•(Y,EY ) −→ K•(X,EX) is an isomorphism.

Proof. Let CYn denote the full subcategory of the category CX generated by all objects
M such that Ti(M) is an initial object of CZ for i ≥ n.

(i) All the subcategories CYn are fully exact.
Indeed, if N −→M −→ L is a conflation in (CX ,EX) such that N and L are objects

of the subcategory CYn , then, thanks to the ’exactness’ of the ∂∗-functor T , we have an
exact sequence

. . . −→ Tm+1(L) −→ Tm(N) −→ Tm(M) −→ Tm(L) −→ . . .

If m ≥ n, then the objects Tm(N) and Tm(L) are initial. Since the kernel of a
morphism of an objectM to an initial object is isomorphic toM, it follows that Tm(M)
is an initial object.

(ii) Let N −→ M −→ L be a conflation in (CX ,EX) such that M ∈ ObCYn and
L ∈ ObCYn+1 . Then N is an object of CYn .

In fact, we have an ’exact’ sequence
which yields the ’exact’ sequence z −→ Tm(N) −→ z for all m ≥ n, where z is an

initial object of the category CZ . Therefore, Tm(N) is an initial object for m ≥ n.
(iii) This shows that the subcategory CYn of the right exact category (CYn+1 ,EYn+1)

satisfies the condition (a) of 7.1. The condition (b) of 7.1 holds, because CY = CY1 ⊆ CYn
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and, by hypothesis, for every M ∈ ObCX , there exists a deflation P −→ M with P ∈
ObCY . Applying 7.1, we obtain that the natural map K•(Yn,EYn) −→ K•(Yn+1,EYn+1)

is an isomorphism for all n ≥ 1. Since, by hypothesis, CX =
⋃

n≥1

CYn , the isomorphisms

K•(Yn,EYn)
∼−→ K•(Yn+1,EYn+1) imply that the natural map K0(Y,EY ) −→ K0(X,EX)

is an isomorphism.

8. Characteristic ’exact’ filtrations and sequences.

8.1. The right exact ’spaces’ (Xn,EXn). For a right exact exact ’space’ (X,EX),
let CXn be the category whose objects are sequences Mn −→Mn−1 −→ . . . −→M0 of n
morphisms of EX , n ≥ 1, and morphisms between sequences are commutative diagrams

Mn −−−→ Mn−1 −−−→ . . . −−−→ M0

fn

y fn−1

y . . .
y f0

M ′
n −−−→ M ′

n−1 −−−→ . . . −−−→ M ′
0

Notice that if x is an initial object of the category CX , then x −→ . . . −→ x is an
initial object of CXn .

We denote by EXn the class of all morphisms (fi) of the category CXn such that
fi ∈ EX for all 0 ≤ i ≤ n.

8.1.1. Proposition. (a) The pair (CXn ,EXn) is a right exact category.
(b) The map which assigns to each right exact ’space’ (X,EX) the right exact ’space’

(Xn,EXn) extends naturally to an ’exact’ endofunctor of the left exact category (Espr, I
→
c )

of right ’exact’ ’spaces’ which induces an ’exact’ endofunctor Pn of its exact subcategory
(Esp∗r , I

→
c∗).

Proof. The argument is left to the reader.

8.2. Proposition. (Additivity of ’characteristic’ filtrations) Let (CX ,EX) and

(CY ,EY ) be right exact categories with initial objects and f∗n
tn−→ f∗n−1

tn−1
−→ . . .

t1−→ f∗0 a
sequence of deflations of ’exact’ functors from (CX ,EX) to (CY ,EY ) such that the functors

k∗i = Ker(t∗i ) are ’exact’ for all 1 ≤ i ≤ n. Then K•(fn) = K•(f0) +
∑

1≤i≤n

K•(ki).

Proof. (a) For 1 ≤ i ≤ n, let p∗Y,i denote the functor CYn −→ CY which assigns to every

objectM = (Mn
γn
−→ . . .

γ1
−→M0) of CYn the object Mi and to every morphism f = (fm)

the morphism fi. The assignment to any objectM = (Mn
γn
−→ . . .

γ1
−→M0) of CYn of CYn

the deflationMi
γi
−→Mi−1 is a functor morphism p∗Y,i

tYi−→ p∗Y,i−1. Let k
∗
Y,i denote the kernel

of tYi , i.e. the functor CYn −→ CY that assigns to an object M = (Mn
γn
−→ . . .

γ1
−→ M0)
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the kernel of Mi
γi
−→Mi−1. Thus, we obtain a diagram

k∗Y,n k∗Y,n−1 . . . k∗Y,1y
y . . .

y

p∗Y,n
tYn−→ p∗Y,n−1 −→ . . . −→ p∗Y,1

tY1−→ p∗Y,0

(1)

of functors from CYn to CY whose horizontal arrows are deflations.

The functors p∗Y,i−1 and k∗Y,i map initial objects to initial objects and pull-backs of
deflations to pull-backs of deflations; i.e. they are inverse image functors of morphisms
of the category Esp∗r . These morphisms depend functorially on the right exact ’space’
(Y,EY ), that is they form functor morphisms

Pn
pi
−−−→ IdEsp∗

r
, 0 ≤ i ≤ n, and Pn

ki
−−−→ IdEsp∗

r
, 1 ≤ i ≤ n.

These morphisms induce morphisms

K•

K•(ki)
←−−− K• ◦ Pn

K•(pi)
−−−→ K•

of ∂∗-functors. The claim is that the morphism K•(pn) coincides with the morphism

K•(p0) +
∑

1≤i≤n

K•(ki).

In fact, the zero components of these morphisms coincide. Since K• is a universal
∂∗-functor, this implies that the entire morphisms coincide with each other.

(b) The argument above proves, in a functorial way, the assertion 8.2 for the special

case of the sequence of deflations p∗Y,n
tYn−→ p∗Y,n−1 −→ . . . −→ p∗Y,1

tY1−→ p∗Y,0. of ’exact’
functors from CYn to CY . That is

K•(pY,n) = K•(pY,0) +
∑

1≤i≤n

K•(kY,i). (2)

Consider now the general case.

A sequence of deflations f∗n
tn−→ f∗n−1

tn−1
−→ . . .

t1−→ f∗0 of ’exact’ functors from

(CX ,EX) to (CY ,EY ) defines an ’exact’ functor (CX ,EX)
f̃∗n
−−−→ (CYn ,EYn). The kernels

k∗i = Ker(ti) map initial objects to initial objects. The fact that they are ’exact’ (which
is equivalent to the condition that they map deflations to deflations) means that they
are inverse image functors of morphisms of Esp∗r , hence the morphisms K•(ki) are well
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defined. Therefore, the morphism K•(f0) +
∑

1≤i≤n

K•(ki) from K•(X,EX) to K•(Y,EY ) is

well defined. One can see that

K•(fn) = K•(pY,n) ◦K•(̃fn) and

K•(f0) +
∑

1≤i≤n

K•(ki) =
(
K•(pY,0) +

∑

1≤i≤n

K•(kY,i)
)
◦K•(̃fn)

So that the assertion follows from the equality (2).

8.3. Corollary. Let (CX ,EX) and (CY ,EY ) be right exact categories with initial
objects and g∗ −→ f∗ −→ h∗ a conflation of ’exact’ functors from (CX ,EX) to (CY ,EY ).
Then K•(f) = K•(g) +K•(h).

8.4. Corollary. (Additivity for ’characteristic’ ’exact’ sequences) Let

f∗n −→ f∗n−1 −→ . . . −→ f∗1 −→ f∗0

be an ’exact’ sequence of ’exact’ functors from (CX ,EX) to (CY ,EY ) which map initial
objects to initial objects. Suppose that f∗1 −→ f∗0 is a deflation and f∗n −→ f∗n−1 is the kernel

of f∗n−1 −→ f∗n−2. Then the morphism
∑

0≤i≤n

(−1)iK•(fi) from K•(X,EX) to K•(Y,EY ) is

equal to zero.

Proof. The assertion follows from 8.3 by induction.
A more conceptual proof goes along the lines of the argument of 8.2. Namely, we

assign to each right exact category (CY ,EY ) the right exact category (CY e
n
,EY e

n
) whose

objects are ’exact’ sequences L = (Ln −→ Ln−1 −→ . . . −→ L1 −→ L0), where L1 −→ L0

is a deflation and Ln −→ Ln−1 is the kernel of Ln−1 −→ Ln−2. This assignment defines
an endofunctor Pe

n of the category Esp∗r of right exact ’spaces’ with initial objects, and
maps L 7−→ Li determine morphisms Pe

n −→ IdEsp∗
r
. The rest of the argument is left to

the reader.

9. Complements.

9.1. Another description of the functor K0. Fix a right exact category (CX ,EX).
Let CL(X,EX) denote the category having the same objects as CX and with morphisms
defined as follows. For any pair M, L of objects, consider all diagrams (if any) of the form

M
e
←− M̃

f
−→ L, where e is a deflation and f an arbitrary morphism of CX . We consider

isomorphisms between such diagrams of the form (idM , φ, idL) and define morphisms from
M to L as isomorphism classes of these diagrams. The composition of the morphisms

N
t
←− Ñ

g
−→M andM

e
←− M̃

f
−→ L is the morphism represented by the pair (t◦ ẽ, f ◦g′)
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in the diagram

Ñ
g′

−−−→ M̃
f

−−−→ L

ẽ
y cart

y e

Ñ
g

−−−→ M

t
y
M

with cartesian square. If the category CX is svelte (i.e. it represents a ’space’), then
CL(X,EX) is a well defined svelte category.

There is a canonical functor CX
r∗X−→ CL(X,EX) which is identical on objects and maps

each morphism M
f
−→ L to the morphism represented by the diagram M

id
←−M

f
−→ L.

Let C|EX | denote the subcategory of CX formed by all deflations. The map which

assigns to every morphism M
e
−→ N of EX the morphism of CL(X,EX) represented by the

diagram N
e
←−M

id
−→M is a functor Cop|EX |

l∗X−→ CL(X,EX).

Let G(X) denote the group Z0|CX | which is identified with the corresponding groupoid
with one object. Let pX denote the map HomCL(X,EX) −→ G(X) which assigns to a

morphism [N
e
←− M

f
−→ L] represented by the diagram N

e
←− M

f
−→ L the element

[M ]− [N ] of the group G(X). We have a (non-commutative) diagram

Hom2CL(X,EX)

pX×pX
−−−→ G(X)× G(X)

c
y

y +

HomCL(X,EX)

pX
−−−→ G(X)

(1)

where Hom2CZ stands for the class of composable morphisms of the category CZ and the
vertical arrows are compositions. Taking the compositions in the diagram (1), we obtain
a pair of arrows

Hom2CL(X,EX)

uX
−→
−→
vX

G(X). (2)

Consider the cokernel of (2) in the category of groupoids, which is, by definition, the
universal groupoid morphism equalizing the pair of maps (2).

9.1.1. Proposition. The cokernel of the pair (2) in the category of groupoids is
(isomorphic to) the group K0(X,EX) defined in Section 1.

Proof. The fact follows from the definitions.

9.1.2. Note. The map HomCL(X,EX)
pX−→ G(X) is the composition of the map

HomCL(X,EX)
πX−→ EX and the map EX

λX−→ G(X) which assigns to each deflationM −→ L
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the element [M ] − [L] of G(X). One can see that πX ◦ l
∗
X is the identical map, and the

map λX is a functor Cop|EX | −→ G(X).

9.1.3. Functorialities. Any ’exact’ functor (CX ,EX)
f∗

−→ (CY ,EY ) between right

exact categories induces a functor CL(X,EX)

L(f)∗

−−−→ CL(Y,EY ) such that the diagram

K0(X) ←−−− G(X)
λX
←−−− Cop|EX |

l∗X
−−−→ CL(X,EX)

r∗X
←−−− CX

K0(f)
y G(f)

y
y L(f)∗

y
y f∗

K0(Y ) ←−−− G(Y )
λY
←−−− Cop|EY |

l∗Y
−−−→ CL(Y,EY )

r∗Y
←−−− CY

(3)

commutes, as well as the diagram

HomCL(X,EX)

πX
−−−→ EX

f∗
y

y E(f)∗

HomCL(Y,EY )

πY
−−−→ EY

(4)

9.2. The Q-construction for right exact categories with initial objects. Let
(CX ,EX) be a right exact category with initial objects. We denote by IX the class of
all inflations of (CX ,EX) (i.e. morphisms which are kernels of deflations) and by I∞X the
smallest subcategory of CX containing IX .

We denote by CQ(X,EX) the subcategory of the category CL(X,EX) formed by all

morphisms M
e
←− M̃

j
−→ L, where (e is a deflation and) j ∈ I∞X .

9.2.1. Note. If (CX ,EX) is an exact k-linear category, then I∞X = IX and the
category CQ(X,EX) coincides with the Quillen’s category QCX associated with the exact
category (CX ,EX) (see [Q, p. 102]).

Let

Hom2CQ(X,EX)

aX

−−−→
−−−→

bX

G(X). (1)

be the composition of the pair of maps 9.1(2) with the embedding

Hom2CQ(X,EX) −−−→ Hom2CL(X,EX);

and let CokG(aX , bX) denote the cokernel of the pair of maps (aX , bX) in the category of
groupoids.
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9.2.2. Proposition. The unique map CokG(aX , bX) −→ K0(X,EX) which makes
commute the diagram

Hom2CQ(X,EX)

aX

−−−→
−−−→

bX

G(X) −−−→ CokG(aX , bX)
y id

y
y

Hom2CL(X,EX)

uX

−−−→
−−−→

vX

G(X) −−−→ K0(X,EX)

is a group(oid) isomorphism.

Proof. The assertion is a consequence of 1.6.

9.3. The category CE\X . Fix a right exact ’space’ (X,EX). For two objects, M

and L, consider the class of all diagrams of the form M
t
←−M1

ξ
−→ L, where t ∈ EX . We

say that the diagram M
t
←− M1

ξ
−→ L, is equivalent to a diagram M

t′

←− M ′
1

ξ′

−→ L, if
the compositions of ξ and ξ′ with appropriate projections in the cartesian square

M
t2
−−−→ M1

ξ
−−−→ L

t1

y cart
y t

L
ξ′

←−−− M ′
1

t′

−−−→ M

coincide, that is ξ◦t2 = ξ′◦t1. Since cartesian squares with arrows t, t′) are all isomorphic to
each other, this condition does not depend on the choice of a cartesian square. It follows
(from the fact that the square built of cartesian squares is cartesian) that the relation
defined this way is, indeed, an equivalence relation.

The equivalence classes of these diagrams with fixed objects M and L form a set,
which we denote by CE\X(M,L). The elements of the set CE\X(M,L) are interpreted

as morphisms from M to L. The composition of morphisms [M1
t1←− M1

ξ1
−→ M2] and

[M2
t2←−M2

ξ2
−→M3] is defined via the diagram

M3

ξ̃1
−−−→ M2

ξ2
−−−→ M3

t′2

y cart
y t2

M1

t1
←−−− M1

ξ1
−−−→ M2

with a cartesian square: the composition is the equivalence class

[M1

t1◦t
′
2

←−−−M3

ξ2◦ξ̃1
−−−→M3].
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Altogether defines a category CE\X which has the same class of objects as the category
CX ; and its morphisms and their compositions are defined above.

9.3.1. A canonical embedding. There is a canonical functor

CX
q∗
E\X

−−−→ CE\X (1)

which is identical on objects and maps every morphism M
γ
−→ L to the equivalence class

of M
idM←−M

γ
−→ L. It follows from the definition of the morphisms of the category CE\X

that the functor (1) is faithful: two arrows of the category CX with the same source and

target, M
α

−→
−→
β

L, have the same image in CE\X iff they coincide.

9.3.2. Proposition. The class ẼE\X = {q∗E\X(s) | s ∈ EX} is a subcanonical

pretopology on the category CE\X . Every morphism of ẼE\X has a canonical splitting.

Proof. (a) It follows from the definition of morphisms of CE\X (– equivalence classes)

and the composition of morphisms that, for every morphism M
s
−→ L of EX , the equiva-

lence class [L
s
←−M

s
−→ L] is the identity morphism: [L

idL←− L
idL−→ L] = q∗E\X(idL).

On the other hand, [L
s
←− M

s
−→ L] is the composition of [L

s
←− M

idM−→ M ] and

[M
idM←−M

s
−→ L] = q∗E\X(s). So that the morphism [L

s
←−M

idM−→M ] is a left inverse of

q∗E\X(s); in other words, the epimorphism q∗E\X(s) splits. The composition in the opposite
order is, by definition,

q∗E\X(s) ◦ [L
s
←−M

idM−→M ] = [M
p1←−M ×LM

p2−→M ].

So that the projector q∗E\X(M)
ps−→ q∗E\X(M) corresponding by the canonical splitting of

q∗E\X(s) is given by the kernel pair of the deflation M
s
−→ L.

(b) Let M
s
−→ L be a deflation and L1

t
←− L

ξ
−→ L a diagram representing a

morphism of the category CE\X (that is t ∈ EX). Consider the diagram

M
idM
←−−− M

ξ′

−−−→ M

t̃s
y s̃

y cart
y s

L1

t
←−−− L

ξ
−−−→ L

(2)

with cartesian square. The observation is that the that both squares in the diagram (2)
are cartesian.
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In fact, let [N
u1←− N1

ζ1
−→M ] and [N

u2←− N2
ζ1
−→ L1] be morphisms of the category

CE\X such that the diagram

N
[u1,ζ1]
−−−→ M

[u2, ζ2]
y

y [idM , s]

L1

[t,ξ]
−−−→ L

(3)

commutes. The compositions of morphisms of the diagram (3) are encoded in the diagram

N
idN
−−−→ N

u1

←−−− N1

u2

x
y ζ1

N2

ζ2
−−−→ L1 M

t1

x cart
x t

y s

N
ζ′2
−−−→ L

ξ
−−−→ L

(4)

in the category CX with a cartesian inner square. The diagram (4) gives rise to the diagram

N1

u1

−−−→ N
u1

←−−− N1

ζ1
−−−→ M

u
x cart u2t1

x
y s

Ñ
ũ1

−−−→ N
ζ′2
−−−→ L

ξ
−−−→ L

with cartesian left square with all arrows deflations. The commutativity of the square (3)
means, by definition, the commutativity of the diagram

Ñ
u

−−−→ N1

ζ1
−−−→ M

ũ1

y
y s

N
ζ′2
−−−→ L

ξ
−−−→ L

But, then, thanks to the cartesian square in (1), we have a commutative diagram

Ñ
u

−−−→ N1

v
y

y ζ1

Ñ
v

−−−→ M
ξ′

−−−→ M

ũ1

y s̃
y cart

y s

N
ζ′2
←−−− L

ξ
−−−→ L

(5)
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with a uniquely determined morphism Ñ
v
−→M.

Thus, we obtain a morphism [N
u1u←− Ñ

v
−→M] from N to M such that

q∗(t ◦ s̃) ◦ [u1 ◦ u, v] = [u2, ζ2] and [idM, ξ
′] ◦ [u1 ◦ u, v] = [u1, ζ1]

(see (1) and (2)). The uniqueness of such morphism follows from the construction.

9.3.3. A right exact structure on CE\X . It follows from 9.3.2 that the class EE\X

of morphisms of the category CE\X generated by ẼE\X = {q∗E\X(s) | s ∈ EX} and all
isomorphisms is a right exact structure on CE\X .

It follows that the functor

CX
q∗
E\X

−−−→ CE\X

is an inverse is an ’exact’ functor (CX ,EX) −−−→ (CE\X ,EE\X).

9.3.4. The universal meaning of the right exact ’space’ (E\X,EE\X). Consider
the category Spr whose objects are pairs (X,PX), where X is a ’space’ and PX is a
class of split idempotents of the category CX such that the associated class Ep

X of split

epimorphisms (which consists of cokernels of the pairs M
p

−→
−→
idM

M , where p = p2) is a

right exact structure on CX . Morphisms from (X,PX) to (Y,PY ) are the corresponding
morphisms (X,Ep

X) −→ (X,Ep
Y ) of right exact ’spaces’. The composition of morphisms

is standard. So that the map

(X,PX) (X,Ep
X)

f
y 7−→

y f

(Y,PY ) (Y,Ep
Y )

is a functor Spr −→ Espr.

9.3.4.1. Proposition. The functor

Spr
Q∗

−−−→ Espr, (X,Ep
X) −→ (X,Ep

Y ),

is left adjoint to the functor Espr
Q∗

−−−→ Spr which maps every right exact ’space’

(X,EX) to (X,PEX), where PEX consists of all idempotents [M
p1←−M ×s,s M

p2−→M ]

– the equivalence classes of the kernel pair of a deflation M
s
−→ L, where s runs through

the class EX of all deflations.

Proof. The canonical functor CX
q∗
E\X

−−−→ CE\X is the inverse image functor of the
adjunction morphism

Q∗Q∗(X,EX) = (E\X,EE\X)
qE\X

−−−→ (X,EX).
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The other adjunction morphism,

(X,PX) −−−→ Q∗Q
∗(X,PX)

is an isomorphism.

9.3.5. Relation with the localization at the class of deflations. It follows from
the description of the localization of the category CX at the class EX given in IV.9.2 that
there is a natural surjective functor

CE\X

π∗
E\x

−−−→ E−1
X CX

which is identical on objects and map morphisms to their equivalence classes with respect
to the relation: two morphismsM ⇉ L are equivalent if they are equalized by a morphism
q∗E\X(s) for some deflation L

s
−→ L′ (here we abuse the fact that the categories CX

and CE\X have the same objects). So that our right exact category (CE\X ,EE\X) is an
intermediate step of the localization at the class of deflations EX : first the ’exact’ functor

(CX ,EX)
q∗
E\X

−−−→ (CE\X ,EE\X)

inverts deflations on the right (that is they obtain a right inverse); then the exact functor

(CE\X ,EE\X)
π∗
E\x

−−−→ (E−1
X CX , Iso(E

−1
X CX)

finishes the localization: the localization functor q∗EX at EX is the composition of the
functors q∗E\X and π∗

E\x.

9.4. Complements to ”reduction by resolution”. The assertions of this section
are of less general nature than those of Section 7: they require certain conditions which
hold by trivial reasons in exact categories and by less trivial reasons in a wide class of
non-additive categories (including the categories of algebras over operads and far beyond).

9.4.1. Proposition. Let (CX ,EX) be a right exact category with initial objects; and
let

Ker(f ′)
β′
1

−−−→ Ker(f)
α′

1

−−−→ Ker(f ′′)

k′
y k

y
y k′′

Ker(α1)
β1

−−−→ A1

α1

−−−→ A′′
1

f ′
y f

y
y f ′′

Ker(α2)
β2

−−−→ A2

α2

−−−→ A′′
2

(3)
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be a commutative diagram (determined by its lower right square) such that Ker(k′′) and
Ker(β2) are trivial. Then

(a) The upper row of (3) is ’exact’, and the morphism β′
1 is the kernel of α′

1.

(b) Suppose, in addition, that the arrows f ′, α1 and α2 in (3) are deflations and
(CX ,EX) has the following property:

(#) If M
e
−→ N is a deflation and M

p
−→ M an idempotent morphism (i.e. p2 = p)

which has a kernel and such that the composition e ◦ p is a trivial morphism, then the

composition of the canonical morphism Ker(p)
k(p)
−−−→M and M

e
−→ N is a deflation.

Then the upper row of (3) is a conflation.

Proof. (a) It follows from C1.5.1 that the upper row of (3) is ’exact’. It follows from

the argument of C1.5.1 that the morphism Ker(f ′)
β′
1

−−−→ Ker(f) is the kernel morphism

of Ker(f)
α′

1

−−−→ Ker(f ′′).

(b) The following argument is an appropriate modification of the proof the ’snake’
lemma C1.5.2.

(b1) We have a commutative diagram

Ã1

id
−−−→ Ker(f ′′α1)

α̃1

−−−→ Ker(f ′′)

id
y k̃′′

y cart
y k′′

Ker(α1)
ψ′

−−−→ Ker(α2f)
k̃′′

−−−→ A1

α1

−−−→ A′′
1

id
y h

y cart f
y

y f ′′

Ker(α1)
f ′

−−−→ Ker(α2)
β2

−−−→ A2

α2

−−−→ A′′
2

(4)

with cartesian squares as indicated. It follows (from the left lower cartesian square of (4))
that Ker(h) is naturally isomorphic to Ker(f).

(b2) Since the upper right square of (4) is cartesian, we have a commutative diagram

Ker(α̃1)
k(α̃1)
−−−→ Ker(f ′′α1) = Ã1

α̃1

−−−→ Ker(f ′′)

id
y k̃′′

y cart
y k′′

Ker(α1)
β1

−−−→ A1

α1

−−−→ A′′
1

f ′
y f

y
y f ′′

Ker(α2)
β2

−−−→ A2

α2

−−−→ A′′
2

(5)
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(b3) Since Ker(α1)
f ′

−→ Ker(α2) is a deflation, there exists a cartesian square

M
γ

−−−→ Ã1

p
y cart

y h

Ker(α1)
f ′

−−−→ Ker(α2)

(6)

whose upper horizontal arrow, γ, is also a deflation.
The commutative diagram (5) shows, among other things, that the arrow f ′ factors

through h (see the diagram (4)), there exists a splitting, Ker(α1)
s
−→M, of the morphism

p. Set p = s ◦ p. The morphismM
p
−→M is an idempotent which has the same kernel as

p, because s is a monomorphism.

(b4) Let M
ϕ
−→ Ker(f ′′) denote the composition of the deflations M

γ
−→ Ã1 and

Ã1
α̃1−→ Ker(f ′′). The composition ϕ ◦ p is trivial.
In fact, ϕ ◦ p = α̃1 ◦ γ ◦ s ◦ p, and, by the origin of the morphism s, the composition

γ ◦ s coincides with k(α̃1); so that ϕ◦p = (α̃1 ◦ k(α̃1))◦p which shows the triviality of ϕ◦p.
(b5) Suppose that the condition (#) holds. Then the triviality of ϕ ◦ p implies that

the composition ϕ with the canonical morphism Ker(p)
k(p)
−−−→M is a deflation. It follows

from the commutative diagram

Ker(p)
id
−−−→ Ker(h)

∼

−−−→ Ker(f)y
y

y α′
1

M
γ

−−−→ Ã1

α̃1

−−−→ Ker(f ′′)

p
y cart

y h

Ker(α1)
f ′

−−−→ Ker(α2)

(7)

that the composition of Ker(p)
k(p)
−−−→M withM

ϕ
−→ Ker(f ′′) equals to the composition

of Ker(f)
α′

1−→ Ker(f ′′) with an isomorphism Ker(p) ∼−→ Ker(f). Therefore, the mor-

phism Ker(f)
α′

1−→ Ker(f ′′) is a deflation. Together with (a) above, this means that the
upper row of the diagram (3) is a conflation.

9.4.2. Proposition. Let (CX ,EX) be a right exact category with initial objects having
the property (#) of 9.4.1. Let CY be a fully exact subcategory of a right exact category
(CX ,EX) which has the following properties:

(a) If N −→M −→ L is a conflation in (CX ,EX) and L, M are objects of CY , then
N belongs to CY too.
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(b) For any deflation M −→ L with L ∈ ObCY , there exist a deflationM−→ L with
M∈ ObCY and a morphismM−→M such that the diagram

M
ւ ց

M −−−→ L

commutes.
(c) If P, M are objects of CY and P −→ x is a morphism to initial object, then

P
∐
M exists (in CX) and the sequence P −→ P

∐
M −→ M (where the left arrow

is the canonical coprojection and the right arrow corresponds to the M
id
−→ M and the

composition of P −→ x −→M) is a conflation.
Let CYn be a full subcategory of CX generated by all objects L having a CY -resolution

of the length ≤ n. And set CY∞ =
⋃

n≥0

CYn . Then CYn is a fully exact subcategory of

(CX ,EX) for all n ≤ ∞ and the natural morphisms

K•(Y,EY )
∼−→ K•(Y1,EY1)

∼−→ . . . ∼−→ K•(Yn,EYn)
∼−→ K•(Y∞,EY∞)

are isomorphisms for all n ≥ 0.

Proof. Let N −→M −→ L be a conflation in (CX ,EX). Then for any integer n ≥ 0,
we have

(i) If L ∈ ObCYn+1 and M ∈ ObCYn , then N ∈ ObCYn .
(ii) If N and L are objects of CYn+1 , then M is an object of CYn+1 .
(iii) If M and L are objects of CYn+1 , then N is an object of CYn+1 .
It suffices to prove the assertion for n = 0.
(i) Since L ∈ ObCY1 , there exists a conflation P ′ −→ P −→ L, where P and P ′ are

objects of CY . Thus, we have a commutative diagram

x −−−→ P ′
id
−−−→ P ′y

y
y

N −−−→ P̃ −−−→ P

id
y

y cart
y

N −−−→ M −−−→ L

(8)

whose rows and columns are conflations. Here x is an initial object of the category CX .
Since M and P ′ belong to CY and CY is a fully exact subcategory of (CX ,EX), in partic-

ular, it is closed under extensions, the object P̃ belongs to CY . Since P̃ and P are objects
of CY , it follows from the condition (a) that N ∈ ObCY .
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(ii) Since L ∈ ObCY1 , there exists a deflation P −→ L with P ∈ ObCY . Applying (b)

to the deflation P̃ −→ P in (3), we obtain a deflation M −→ P such that M ∈ ObCY
and the composition M −→ L factors through the deflation M −→ L (see (8)). Since

N ∈ ObCY1 , there exists a conflation P̃ ′ −→ P −→ N where P̃ and P are objects of CY .
Thus, we obtain a commutative diagram

P̃ ′ −−−→ M̃ −−−→ P̃ ′′y
y

y
P −−−→ P

∐
M −−−→ My

y
y

N −−−→ M −−−→ L

(9)

whose two lower rows and the left and the right columns are conflations. By 9.4.1(b), the
upper row of (9) is a conflation too. Applying (i) to the right column of (9), we obtain

that P̃ ′′ ∈ ObCY . This implies that M̃ ∈ ObCY , whence M ∈ ObCY1 .
(iii) Since M ∈ ObCY1 , there is a commutative diagram

P ′
id
−−−→ P ′

λ
−−−→ xy

y
y

K −−−→ P̃ −−−→ Ly cart
y

y id

N −−−→ M −−−→ L

(10)

whose rows and columns are conflations. Here x is an initial object of CX and λ is a unique
morphism P ′ −→ x determined by the fact that P ′ −→ K is the kernel of K −→ N . Since
L ∈ ObCY1 , applying (i) to the middle row, we obtain that K ∈ ObCY . So, N ∈ ObCY .

9.4.3. Proposition. Let (CX ,EX) be a right exact category with initial objects having
the property (#) of 9.4.1. Let CY be a fully exact subcategory of a right exact category
(CX ,EX) satisfying the conditions (a) and (c) of 9.4.2. Let M ′ −→ M −→ M ′′ be a
conflation in (CX ,EX), and let P ′ −→ M ′, P ′′ −→ M ′′ be CY -resolutions of the length
n ≥ 1. Suppose that resolution P ′′ −→M ′ is projective. Then there exists a CY -resolution
P −→ M of the length n such that Pi = P

′
i

∐
P ′′
i for all i ≥ 1 and the splitting ’exact’

sequence P ′ −→ P −→ P ′′ is an ’exact’ sequence of complexes.

Proof. We have the diagram

P ′
0 P ′′

0y
y

M ′ −−−→ M −−−→ M ′′
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whose row is a conflation and vertical arrows are deflations. Since, by hypothesis, P ′′
0 is

a projective object of (CX ,EX) and M −→ M ′′ is a deflation, the right vertical arrow,
P ′′
0 −→ M ′′, factors through M −→ M ′′. Therefore (like in the argument 9.4.2(ii)), we

obtain a commutative diagram

Ker(e′) −−−→ Ker(e) −−−→ Ker(e′′)y
y

y
P ′
0 −−−→ P ′

0

∐
P ′′
0 −−−→ P ′′

0

e′
y e

y
y e′′

M ′ −−−→ M −−−→ M ′′

By 9.4.1(b), the upper row of this diagram is a conflation, which allows to repeat the step
with the diagram

P ′
1 P ′′

1y
y

Ker(e′) −−−→ Ker(e) −−−→ Ker(e′′)

whose vertical arrows are deflations; etc..
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Relative ’Spaces’. Devissage.

In the first three sections, we introduce the Gabriel multiplication of subcategories of
a right exact category with initial objects, upper and lower infinitesimal neighborhoods of
a subcategory and revisit fully exact subcategories observing that the upper infinitesimal
neighborhood of a subcategory B is the smallest fully exact subcategory containing B.
In Section 4, we define cofiltrations of an object as sequences of deflations and prove a
useful generalization of Zassenhouse’s lemma. In Section 5, we introduce semitopologizing,
topologizing and thick subcategories of a right exact category and establish some of their
properties. Section 6 we introduce the (left exact) category of relative right exact ’spaces’
and obtain devissage for higher images of a functor G provided the devissage holds for G
on a certain class of relative right exact ’spaces’. In particular, we establish devissage for
the universal K-functor.

1. The Gabriel multiplication in right exact categories.

Fix a right exact category (CX ,EX) with initial objects. Let T and S be subcategories
of the category CX . The Gabriel product S•T is the full subcategory of CX whose objects

M fit into conflations L
g
−→M

h
−→ N such that L ∈ ObS and N ∈ ObT.

1.1. Proposition. Let (CX , EX) be a right exact category with initial objects. For
any subcategories A, B, and D of the category CX , there is the inclusion

A • (B • D) ⊆ (A • B) • D.

Proof. Let A, B, and D be subcategories of CX . Let M be an object of A • (B • D);
i.e. there is a conflation L −→M −→ N such that L ∈ ObA and N ∈ ObB •D. The latter
means that there is a conflation N1 −→ N −→ N2 with N1 ∈ ObB and N2 ∈ ObD. Thus,
we have a commutative diagram

L −−−→ M1 −−−→ N1

id
y

y cart
y

L −−−→ M −−−→ Ny
y

N2

id
−−−→ N2
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whose two upper right square is cartesian, and two upper rows and two right columns are
conflations. So, we have a conflationM1 −→M −→ N2 with N2 ∈ ObD andM1 ∈ ObA•B,
hence M is an object of the subcategory (A • B) • D.

1.2. Corollary. Let (CX ,EX) be an exact category. Then the Gabriel multiplication
is associative.

Proof. Let A, B, and D be subcategories of CX . By 1.1, we have the inclusion
A • (B • D) ⊆ (A • B) • D. The opposite inclusion holds by duality, because (A • B)op =
Bop •Aop. Here we use the fact that the category opposite to an exact category is exact.

2. The infinitesimal neighborhoods of a subcategory.

Let (CX ,EX) be a right exact category with initial objects. We denote by OX the full
subcategory of CX generated by all initial objects of CX . For any subcategory B of CX ,
we define subcategories B(n) and B(n), 0 ≤ n ≤ ∞, by setting B(0) = OX = B(0), B

(1) =
B = B(1), and

B(n) = B(n−1) • B for 2 ≤ n <∞; and B(∞) =
⋃

n≥1

B(n);

B(n) = B • B(n−1) for 2 ≤ n <∞; and B(∞) =
⋃

n≥1

B(n)

It follows that B(n) = B(n) for n ≤ 2 and, by 1.1, B(n) ⊆ B
(n) for 3 ≤ n ≤ ∞.

We call the subcategory B(n+1) the upper nth infinitesimal neighborhood of B and the
subcategory B(n+1) the lower nth infinitesimal neighborhood of B. It follows that B(n+1)

is the strictly full subcategory of CX generated by all M ∈ ObCX such that there exists a
sequence of arrows

M0

j1
−−−→ M1

j2
−−−→ . . .

jn
−−−→ Mn =M

with the property: M0 ∈ ObB, and for each n ≥ i ≥ 1, there exists a deflation Mi
ei−→ Ni

with Ni ∈ ObB such that Mi−1
ji−→Mi

ei−→ Ni is a conflation.
Similarly, B(n+1) is a strictly full subcategory of CX generated by all M ∈ ObCX such

that there exists a sequence of deflations

M =Mn

en
−−−→ . . .

e2
−−−→ M1

e1
−−−→ M0

such that M0 and Ker(ei) are objects of B for 1 ≤ i ≤ n.

2.1. Note. Let x be an initial object of the category CX and (x) the subcategory of
CX which consists of idx. It follows that A ⊆ (x) • A for any subcategory A of CX . In
particular, B(n) ⊆ B(n+1) for all n ≥ 0, if B contains an initial object of the category CX .
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3. Fully exact subcategories of a right exact category.

Fix a right exact category (CX , EX). Notice that a subcategory A of CX is a fully
exact subcategory of (CX , EX) iff A • A = A.

3.1. Proposition. Let (CX , EX) be a right exact category with initial objects. For
any subcategory B of CX , the subcategory B(∞) is the smallest fully exact subcategory of
(CX , EX) containing B.

Proof. (a) If A be a fully exact subcategory of the right exact category (CX ,EX), i.e.
A = A • A. then B(∞) ⊆ A, for any subcategory B of A.

(b) For any subcategory B of the category CX , there is the inclusion

B(n) • B(m) ⊆ B(m+n) (1)

for any pair n, m of nonnegative integers.
In fact, Bn • B = Bn+1 by definition of Bn+1. Assuming that the inclusion holds for

n and m, we obtain:

B(n) • B(m+1) = B(n) • (B(m) • B) ⊆ (B(n) • B(m)) • B ⊆ B(n+m) • B
def
= B(n+m+1).

Here the first inclusion follows from 1.1 and the second one holds by induction hypothesis.
(c) It follows from the inclusions (1) that B(∞) = B(∞) • B(∞), that is B(∞) is a fully

exact subcategory of (CX , EX) containing B. By (a) above, it is the smallest fully exact
subcategory containing B.

3.2. Note. Another consequence of (1) is that if B is a subcategory containing an
initial object of the category CX , then

B(n) ⊆ (x) • B(n) ⊆ B • B(n) ⊆ B(n+1)

(compare with 2.1).

4. Cofiltrations. Zassenhouse’s Lemma.

4.1. Cofiltrations. Fix a right exact category (CX ,EX) with initial objects. A
cofiltration of the length n+1 of an object M is a sequence of deflations

M =Mn

en
−−−→ . . .

e2
−−−→ M1

e1
−−−→ M0. (1)

The cofiltration (1) is said to be equivalent to a cofiltration

M = M̃m

ẽn
−−−→ . . .

ẽ2
−−−→ M̃1

ẽ1
−−−→ M̃0
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if m = n and there exists a permutation σ of {0, . . . , n} such that Ker(ei) ≃ Ker(̃eσ(i))

for 1 ≤ i ≤ n and M0 ≃ M̃0. Evidently, this is, indeed, an equivalence relation.

The following assertion is a version (and a generalization) of Zassenhouse’s Lemma.

4.2. Proposition. Let (CX ,EX) have the following property:

(‡) for any pair of deflations M1
t1←−M

t2−→M2, there is a commutative square

M
t1
−−−→ M1

t2

y
y p2

M2

p1

−−−→ M3

of deflations such that the unique morphism M −→M1 ×M3 M2 is a deflation.

Then any two cofiltrations of an object M have equivalent refinements.

Proof. Let

M =Mn

en
−−−→ . . .

e2
−−−→ M1

e1
−−−→ M0 and

M = M̃m

ẽn
−−−→ . . .

ẽ2
−−−→ M̃1

ẽ1
−−−→ M̃0

be cofiltrations. If n = 0, then the second cofiltration is a refinement of the first one.

(a) Suppose that n = 1 = m; that is we have a pair of deflations M̃1
ẽ1←−M

e1−→M1.
Thanks to the property (‡), there exists a commutative square

M
e1
−−−→ M1

ẽ1

y
y p1

M̃1

p′
1

−−−→ N

whose all arrows are deflations, and the unique arrowM
e3−→M2 =M1×N M̃1 is a deflation

too. Since the right lower square in the commutative diagram

Ker(̃e2)
∼

−−−→ Ker(p1)

k̃2

y
y k1

Ker(e2)
k2
−−−→ M2

e2
−−−→ M1

≀
y ẽ2

y cart
y p1

Ker(p′1)
k′1
−−−→ M̃1

p′
1

−−−→ N



Relative ’Spaces’. Devissage 237

is cartesian, its upper horizontal and left vertical arrows are isomorphisms. This shows
that the cofiltrations

M
e3
−−−→ M2

e2
−−−→ M1

p1

−−−→ N and

M
e3
−−−→ M2

ẽ2
−−−→ M̃1

p′
1

−−−→ N

are equivalent to each other.

(b) Let n > 1 and m = 1. Then, applying (a) to the deflations M̃0
ẽ1←−M

en−→Mn−1,
we obtain a commutative diagram

M
e′

−−−→ M ′
en
−−−→ Mn−1

en
−−−→ Mn−2 −−−→ . . . −−−→ M0

ẽ1

y cart
y p1

M̃1

p′
1

−−−→ N

which provides an induction argument.
(c) Finally, (b) provides the main induction step in the general case. Details are left

to the reader.

5. Semitopologizing, topologizing, and thick subcategories of a right exact
category.

Fix a right exact category (CX , EX) with initial objects.

5.1. Definitions. (a) We call a full subcategory T of the category CX semitopolo-
gizing if the following condition holds:

(a1) If M
e
−→ L is a deflation which belongs to T , then Ker(e) is an object of T .

(a2) If N −→ M and M −→ L are deflations whose composition belongs to T (that
is N and L are objects of T ), then both of them belong to T , i.e. M is an object of T .

(b) We call a semitopologizing subcategory T of the category CX topologizing if it is
a right exact subcategory of (CX ,EX), that is if

Ñ
f ′

−−−→ M

ẽ
y cart

y e

N
f

−−−→ L

is a cartesian square in CX and the objects M, L, and N belong to the subcategory T ,
then Ñ is an object of T .

(c) We call a subcategory T of CX a thick subcategory of (CX , EX) if it is topologizing
and fully exact, i.e. T • T = T .
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5.1.1. Note. It follows from (a2) that every semitopologizing subcategory of (CX ,EX)
is strictly full. Applying (a1) to isomorphisms, we obtain that every semitopologizing sub-
category of (CX ,EX) contains all initial objects of the category CX .

5.2. Proposition. (a) Let (CX ,EX) be a right exact pointed category such that all
morphisms to zero objects are deflations (say, (CX ,EX) is Karoubian). Then

(i) A full subcategory T of CX is semitopologizing iff for every deflation M
t
−→ L

with M ∈ ObT , the object L and Ker(e) belong to T .
(ii) Any topologizing subcategory of (CX ,EX) is closed under finite products.
(b) If CX is an abelian category and EX is the canonical exact structure on CX , then

topologizing subcategories of (CX ,EX) are topologizing subcategories of the abelian category
CX in the sense of Gabriel [Gab].

Proof. (a) Let T be a semitopologizing subcategory of (CX ,EX).
(i) By observation 5.1.1, it is a strictly full subcategory of CX containing all zero

objects of CX . Let M
t
−→ L be a deflation with M ∈ ObT . By hypothesis, unique

morphisms of L and M to a zero object x• of CX are deflations and x• is an object of
T . Since the unique morphism M −→ x• is a deflation and it is the composition of the

deflation M
t
−→ L and L −→ x•, it follows from the definition of a semitopologizing

subcategory that L ∈ ObT . Therefore, Ker(t) is an object of T .
(ii) Let M, N be objects of T and x• a zero object of CX . By hypothesis, the unique

morphisms M −→ x• and N −→ x• are deflations. Therefore, the cartesian square

M
∏
N

p
M

−−−→ M

pN

y
y

N −−−→ x•

is contained in T .
(b) If (CX ,EX) is an abelian category with the canonical structure, then it follows

from (a) above that any topologizing subcategory T of (CX ,EX) is closed under finite
(co)products, and if 0 −→M ′ −→M −→M ′′ −→ 0 is an exact sequence with M ∈ ObT ,
then M ′ and M ′′ are objects of T . This means that T is a topologizing subcategory of
the abelian category CX in the sense of Gabriel. On the other hand any topologizing
subcategory of CX in the sense of Gabriel is closed under any finite limits and colimits
(taken in CX), in particular, it is closed under arbitrary pull-backs.

5.3. Proposition. Let (CX ,EX) be a k-linear additive right exact category such that
all morphisms to zero objects are deflations.

(a) Any topologizing subcategory of (CX ,EX) is closed under finite products.
(b) If (CX ,EX) is an exact category, then any topologizing subcategory of (CX ,EX)

is an exact (sub)category.
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Proof. (a) This follows from 5.2(a).
(b) Fix a topologizing subcategory T of an exact k-linear category (CX ,EX). Let

M
j
−→M ′ e

−→M ′′ be a conflation in T and M
f
−→ L an arbitrary morphism of T . Since

(CX ,EX) is an exact category, there is cocartesian square

M
j

−−−→ M ′

f
y cocart

y f ′

N
j̃

−−−→ N ′

(1)

whose horizontal arrows are inflations. Notice that the pair of morphisms

M
(f,j)
−−−→ N ×M ′ = N ⊕M ′

j̃+f ′

−−−→ N ′ (2)

is a conflation. In fact, the Gabriel-Quillen embedding is ’exact’, hence it sends the cocarte-
sian square (1) to a cocartesian square of the abelian category of sheaves of k-modules on
(CX ,EX). And for abelian categories the fact is easy to check. Since the Gabriel-Quillen
embedding reflects conflations, it follows that (2) is a conflation.

By (a) above, N ⊕M ′ ∈ ObT , because N and M ′ are objects of T . Therefore, the
object N ′ belongs to T .

5.4. Proposition. Let (X,EX)
f
−→ (Y,EY ) be a morphism of the category Esp∗r .

If T is a semitopologizing (resp. topologizing, resp. thick) subcategory of the right exact

category (CX ,EX), then f∗
−1

(T ) is a semitopologizing (resp. topologizing, resp. thick)
subcategory of (CY ,EY ).

Proof. By the definition of morphisms of Esp∗r , the inverse image functor f∗ is an
’exact’ (that is preserving pull-backs of deflations) functor from (CY ,EY ) to (CX ,EX)
which maps initial objects to initial objects. The assertion follows from definitions.

5.5. Proposition. Let

(Z,EZ)
g

−−−→ (Y,EY )

f
y cocart

y p1

(X,EX)
p2
−−−→ (X,EX)

be a cocartesian square in the category Esp∗r , and let CX0 , CY0 be semitopologizing subcat-
egories of resp. (CX ,EX) and (CY ,EY ). Then

CX0 = CX0

∏

f∗
0 ,g

∗
0

CY0
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is a semitopologizing subcategory of (CX,EX).
If the subcategories CX0 and CY0 are topologizing (resp. thick), then CX0 is a topolo-

gizing (resp. thick) subcategory of the category (CX,EX).

Proof. (a) By IV.5.2, EX consists of all morphisms

(M,L;φ)
(ξ,γ)
−−−→ (M ′, L′;φ′)

of the category CX such that ξ ∈ EX and γ ∈ EY . And Ker(ξ, γ) = (Ker(ξ),Ker(γ);φ′′),
where φ′′ is a uniquely determined (once Ker(ξ) and Ker(γ) are fixed) isomorphism.
Therefore, if

(M,L;φ)
ξ,γ
−−−→ (M ′, L′;φ′)

ξ′,γ′

−−−→ (M”, L”;φ”)

are deflations, the objects (M,L;φ) and (M”, L”;φ”) belong to the subcategory CX0 ,
and both categories CX0 and CY0 are semitopological, then (M ′, L′;φ′) and Ker(ξ, γ) are
objects of CX0 , which shows that CX0 is a semitopological subcategory of the category CX.

(b) Suppose now that CX0 and CY0 are topologizing subcategories of respectively
(CX ,EX) and (CY ,EY ). By definition of morphisms of the category Esp∗r , the inverse image

functors CX
f∗

−→ CZ and CY
g∗

−→ CZ are ’exact’; i.e. they preserve pull-backs of deflations.

This implies that for any deflation (M,L;φ)
(ξ,γ)
−−−→ (M ′, L′;φ′) and an arbitrary morphism

(M ′′, L′′;φ′′)
(α,β)
−−−→ (M ′, L′;φ′) of the category CX, there exists a cartesian square

(M̃, L̃; φ̃)
(p2,p

′
2)

−−−→ (M,L;φ)

(p1, p
′
1)

y
y (ξ, γ)

(M ′′, L′′;φ′′)
(α,β)
−−−→ (M ′, L′;φ′)

determined uniquely up to isomorphism by the fact that the squares

L̃
p2
−−−→ L M̃

p′2
−−−→ M

p1

y
y ξ and p′1

y
y γ

L′′
ξ

−−−→ L′ M ′′
γ

−−−→ M ′

are both cartesian. Therefore, if L and L′′ are objects of the topologizing subcategory CY0 ,

then L̃ ∈ ObCY0 . Similarly, M̃ ∈ ObCX0 if M and M ′′ are objects of CX0 . This shows
that CX0 is a topologizing subcategory of (CX,EX).

(c) If the subcategories CX0 and CY0 are fully exact, then the subcategory CX0 is fully
exact. So that if CX0 and CY0 thick (that is fully exact and topologizing), this and (b)
above imply that CX0 is a fully exact subcategory.
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6. An application to K-functors: devissage.

6.1. Proposition. (Devissage for K0.) Let (X,EX) be a right exact ’space’ with
the following property (which appeared in 4.2):

(‡) for any pair of deflations M1
t1←−M

t2−→M2, there is a commutative square

M
t1
−−−→ M1

t2

y
y p2

M2

p1

−−−→ M3

of deflations such that the unique morphism M −→M1 ×M3 M2 is a deflation.
Then for every topologizing subcategory CY of the right exact category (CX ,EX), the

natural morphisms

K0(Y,EY ) −−−→ K0(Y∞,EY∞) −−−→ K0(Y
∞,EY∞) (1)

are isomorphisms.

Proof. Let M be an object of CY∞ , and let

M =Mn

en
−−−→ . . .

e2
−−−→ M1

e1
−−−→ M0 (2)

be its CY -cofiltration. That is the arrows of (2) are deflations and the objects M0

and Ker(ei), 1 ≤ i ≤ n, belong to the subcategory CY . Since the subcategory CY is
(semi)topological, any refinement of a CY -cofiltration is a CY -cofiltration.

(a1) The map

[M ] 7−→ [M0]CY +
∑

1≤i≤n

[Ker(ei)]CY (3)

applied to a refinement of the cofiltration (2) gives the same result. Here [N ]CY denotes
the image of the object N in K0(Y ).

In fact, for any sequence of deflations Mm
tm−→ . . .

t2−→ M1
t1−→ M0, we have a

commutative diagram

Km
t̃m
−−−→ Km−1

t̃m−1

−−−→ . . .
t̃3
−−−→ K2

t̃2
−−−→ K1

t̃1
−−−→ xy cart

y cart . . . cart
y cart

y cart
y

Mm

tm
−−−→ Mm−1

tm−1

−−−→ . . .
t3
−−−→ M2

t2
−−−→ M1

t1
−−−→ M0

(4)

formed by cartesian squares. Here x is an initial object of the category CX . Since the
’composition’ of cartesian squares is a cartesian square, it follows that

K1 = Ker(t1), K2 = Ker(t1t2), . . . , Km = Ker(t1t2 . . . tm).
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Since each square

Kℓ
t̃ℓ
−−−→ Kℓ−1y cart

y

Mℓ

tℓ
−−−→ Mℓ−1

of the diagram (4) is cartesian, all morphisms t̃ℓ are deflations and Ker(̃tℓ) ≃ Ker(tℓ) for
all 1 ≤ ℓ ≤ m. Therefore,

[Ker(t1t2 . . . tm)] = [Km] =
∑

1≤i≤n

[Ker(̃ti)] =
∑

1≤i≤n

[Ker(ti)]. (5)

This shows that the right hand side of (3) remains the same when each of the deflations
ei is further decomposed into a sequence of deflations.

(a2) By 4.2, any two finite cofiltrations of an object of CX have equivalent refinements.
Together with (a1) above, this implies that the map (3) does not depend on the choice of

CY -cofiltrations of objects. Thus, (3) defines a map, ψ̃, from the set |CY∞ | of isomorphism
classes of objects of the category CY∞ to the group K∗

0 (Y,EY ).

(a3) For any conflation M ′ j
−→M

e
−→M ′′ in (CY∞ ,EY∞), we have

ψ̃([M ]) = ψ̃([M ′]) + ψ̃([M ′′]).

Indeed, let M −→ . . . −→ M0 be some CY -cofiltration of M . By 4.2, this cofil-
tration and the cofiltration M

e
−→ M ′′ have equivalent refinements which are, forcibly,

CY -cofiltrations. Consider the obtained this way refinement

M =Mn

en
−−−→ . . .

em
−−−→ Mm−1 =M ′′

em
−−−→ . . .

e2
−−−→ M1

e1
−−−→ M0

and the associated commutative diagram

Kn
ẽn
−−−→ Kn−1

ẽn−1

−−−→ . . .
ẽm
−−−→ xy cart

y cart . . . cart
y

M
en
−−−→ Mn−1

en−1

−−−→ . . .
em
−−−→ M ′′

em−1

−−−→ . . .
e1
−−−→ M0

(6)

built of cartesian squares. Here x is an initial object of the category CX . SinceM
e
−→M ′′

equals to the composition em ◦ . . . ◦ en, it follows from the argument of (a1) that Kn ≃
M ′ = Ker(e) and the upper row of (6) is a CY -filtration of the object M ′. The latter
implies that

ψ̃([M ′]) =
∑

m≤i≤n

[Ker(̃ei)]CY =
∑

m≤i≤n

[Ker(ei)]CY
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(see (5) above). From the lower row, we obtain

ψ̃([M ′′]) = [M0]CY +
∑

m<i≤n

[Ker(ei)]CY and

ψ̃([M ]) = [M0]CY +
∑

1≤i≤n

[Ker(ei)]CY .

Therefore, ψ̃([M ]) = ψ̃([M ′]) + ψ̃([M ′′]).

(a4) The map |CX |
ψ̃
−→ K0(Y,EY ) extends uniquely to a Z-module morphism

Z|CY∞ |
Zψ̃
−−−→ K0(Y,EY ). (7)

It follows from (a3) that the morphism (7) factors through a (uniquely determined)
Z-module morphism

K0(Y∞,EY∞)
ψ0

−−−→ K0(Y,EY ).

The claim is that the morphism ψ0 is invertible and its inverse is

K0(Y,EY )
K0(j)
−−−→ K0(Y∞,EY∞).

It is immediate that ψ0 ◦K0(j) = id
K0(Y,EY )

.

The equality K0(j) ◦ ψ0 = id
K0(Y∞,EY∞

)
is also easy to see: if M is an object of CY∞

endowed with a CY -cofiltration M =Mn
en−→ . . .

e2−→ M1
e1−→ M0, then

K0(j) ◦ ψ0([M ]) = K0(j)([M0]CY +
∑

1≤i≤n

[Ker(ei)]CY ) = [M0] +
∑

1≤i≤n

[Ker(ei)] = [M ].

This proves that the map

K0(Y,EY ) −−−→ K0(Y∞,EY∞) (1.1)

is an isomorphism.
(b) Consider the natural maps

K0(Y,EY ) −−−→ K0(Y(2),EY(2)
) −−−→ K0(Y∞,EY∞),

where CY(2)
= CY • CY . It follows from the argument above that the map

K0(Y,EY ) −−−→ K0(Y(2),EY(2)
) (1.2)
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is an epimorphism. It is also a monomorphism, because the composition of two maps (1.2)
is the isomorphism (1.1). Therefore, the map (1.2) is an isomorphism.

Since there is an inclusion CY ⊆ CY • CY for any topologizing subcategory CY of
(CX ,EX) (see 2.1), the subcategory CY∞ is the union of the subcategories CY n defined by

CY 1 = CY , CY n+1 = CY n • CY n .

Therefore, we have a sequence of isomorphisms

K0(Y,EY )
∼−→ K0(Y

2,EY 2) ∼−→ · · · ∼−→ K0(Y
n,EY n)

∼−→ K0(Y
n+1,EY n+1) ∼−→ · · ·

which implies that the map

K0(Y,EY ) −−−→ K0(Y
∞,EY∞)

is an isomorphism.

6.2. The left exact category of relative ’spaces’. Consider the category REspr
whose objects – relative ’spaces’, are pairs (X , Y ), where X = (X,EX) is a right exact
’space’ and CY is a topologizing subcategory of the right exact category (CX ,EX) with
the induced right exact structure. A morphism from (X , Y ) to (X ′, Y ′) is a morphism

of right exact ’spaces’ X
f
−→ X ′ whose inverse image functor maps CY ′ to CY . The

composition of morphisms is defined in an obvious way.

We call a morphism (X , Y )
f
−→ (X,Y) an inflation if the morphism X

f
−→ X belongs

to I→c and CY = f∗
−1

(CY ). We denote by I→r the class of all inflations of relative ’spaces’.

6.2.1. Proposition. (a) The class I→r is a left exact structure on the category REspr
of relative right exact ’spaces’.

(b) The left exact category (REspr, I
→
r ) has enough injective objects.

Proof. (a) This follows from the definition of the class I→r and the fact that I→c is a
left exact structure on the category Espr of right exact ’spaces’.

(b) Injective objects of the left exact category (REspr, I
→
r ) are relative right exact

’spaces’ (X , Y ) such that X is an injective object of the left exact category (Espr, I
→
c ) of

the right exact ’spaces’.

In fact, if (X , Y )
f
−→ (X ′, Y ′) is an inflation, then, by definition, X

f
−→ X ′ is a

morphism of I→c . Since X is an injective object of the left exact category (Espr, I
→
c ), the

inflation X
f
−→ X ′ splits; that is there is a morphism X ′ γ

−→ X such that γ ◦ f = idX .
In particular, its inverse image functor, γ∗, maps the topologizing subcagegory CY to the
topologizing subcategory f∗

−1

(CY ) = CY ′ ; that is γ is a morphism from (X ′, Y ′) to (X , Y ).
Let (X , Y ) be an arbitrary object of REspr. Since (Espr, I

→
c ) has enough injective

objects, there exists a morphism X
f
−→ X from I→c with X an injective object of (Espr, I

→
c ).
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The morphism f can be regarded as an inflation from (X , Y ) to the injective object

(X,Y), where CY = f∗
−1

(CY ).

6.2.2. Three ’exact’ functors on the category of relative right exact ’spaces’.
The maps

(X , Y ) 7−→ Y, (X , Y ) 7−→ Y∞, (X , Y ) 7−→ Y∞

are naturally extended to ’exact’ functors respectively F0, F∞, F∞ from the left exact
category (REspr, I

→
r ) to the left exact category (Espr, I

→
c ) of right exact ’spaces’.

The natural morphisms Y∞ −→ Y∞ −→ Y are functorial in (X , Y ); i.e. they define
morphisms of functors

F∞
λ∞

−−−→ F∞

λ0

−−−→ F0.

Since the functors F0, F∞, F∞ are ’exact’ and the left exact category (REspr, I
→
r )

has enough injective objects, it follows from III.3.6.6 that, for any contravariant functor
G from the category (Espr, I

→
c ) of right exact ’spaces’ to a complete category, we have a

(quasi-)commutative diagram

S•
+(G ◦ F0)

S•
+(G(λ0))

−−−−−−−→ S•
+(G ◦ F∞)

S•
+(G(λ∞))

−−−−−−−→ S•
+(G ◦ F

∞)

≀
y ≀

y
y≀

S•
+(G) ◦ F0

S•
+(G)(λ0)

−−−−−−−→ S•
+(G) ◦ F∞

S•
+(G)(λ∞)

−−−−−−−→ S•
+(G) ◦ F

∞

(8)

of functor morphisms whose vertical arrows are isomorphisms.

6.3. Proposition. Let G be a left ’exact’ contravariant functor from the category
(Espr, I

→
c ) of right exact ’spaces’ to a complete category such that, for every right ex-

act ’space’ (X,EX) with the property (‡) of 6.1 and any topologizing subcategory CY of
(CX ,EX), the natural morphisms

G(Y,EY )
λ0(X ,Y )
−−−−−−−→ G(Y∞,EY∞)

λ∞(X ,Y )
−−−−−−−→ G(Y∞,EY∞)

are isomorphisms. Then, for every relative right exact ’space’ (X , Y ), the natural mor-
phisms

Sm+ (G)(Y,EY ) −−−→ Sm+ (G)(Y∞,EY∞) −−−→ Sm+ (G)(Y∞,EY∞) (9)

are isomorphisms for m ≥ 1.
(b) Suppose (X,EX) is a right exact ’space’ satisfying the property (‡) of 6.1. Then,

for every topologizing subcategory CY of the right exact category (CX ,EX), the morphisms
(1) are isomorphisms for all m ≥ 0.
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Proof. (i) It follows from the fact that the left exact category (REspr, I
→
r ) has enough

injective objects (see 6.2.1(b)), the ’exactness’ of the functors F0, F∞, F
∞ (cf. 6.2.2) and

III.4.1.4 that the morphisms (9) are epimorphisms for all m ≥ 0.
(ii) Let (CX ,EX) be a right exact category satisfying the property (‡) of 6.1 and

(CX ,EX)
F
−→ (CZ ,EZ) an ’exact’ functor. Then the right exact subcategory Ker(F) of

(CX ,EX) satisfies the property (‡) of 6.1.

In fact, let M1
t1←− M

t2−→ M2 be a pair of deflations in Ker(F). Since (CX ,EX)
satisfies the property (†), there is a commutative square

M
t1
−−−→ M1

t2

y
y p2

M2

p1

−−−→ M3

of deflations in (CX ,EX) such that the unique morphismM −→M1×M3M2 is a deflation.
In other words, there is a diagram

M
ξ

−−−→ M
u1

−−−→ M1

u2

y cart
y p2

M2

p1

−−−→ M3

(10)

in CX whose all arrows are deflations, the square is cartesian, and ui ◦ ξ = ti, i = 1, 2.
The claim is that the object M3 belongs to Ker(F).
(ii’) Since the functor F is exact, it maps the diagram (10) to the diagram of the same

kind, and the objects F(M), F(M1), F(M2) are initial. In particular, F(u1) ◦ F(ξ) is
an isomorphism. The latter implies that F(ξ) is a strict monomorphism. Since F (ξ) is a
deflation (in particular, an epimorphism), it is an isomorphism. Thus, F(M) is an initial
object and, therefore, both projections, F(ui), i = 1, 2, are isomorphisms.

(ii”) Notice that if

L
p1
−−−→ L1

p2

y cart
y s2

L2

s1
−−−→ L3

is a cartesian square whose projections are isomorphisms, then the other two arrows are
monomorphisms.

Indeed, replacing the square by an isomorphic square, we can assume that the pro-

jections p1, p2 are identical morphisms, hence s1 = s2. If a pair of arrows N
ζ1
−→
−→
ζ2

L1

equalizes the morphism L1
s1−→ L3, then it is a composition of the unique morphism

N −→ L and the pair of projections (p1, p2). So that ζ1 = ζ2.
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(ii”’) It follows from (ii’) and (ii”) that the morphisms F(p1) and F(p2) are monomor-
phisms. Since F(p1) and F(p2) are deflations (hence strict epimorphisms), this implies that
they are isomorphisms.

(iii) Every relative right exact ’space’ (X , Y ) has a canonical resolution

(X , Y )
def
= X̃0 −→ X0 −→ X̃1 −→ X1 −→ · · ·

· · · −→ X̃n −→ Xn −→ X̃n+1 −→ · · ·
(11)

where

(X̃n, Ỹn) = Xn −→ Xn −→ X̃n+1

is a conflation and Xn = (Xn, Yn) is an injective object and for every n ≥ 0.

It follows from the definition of inflations that the resolution (11) is uniquely deter-
mined by (X,Y ) and a(ny) sequence

X
def
= X̃0 −→ X0 −→ X̃1 −→ X1 −→ · · · −→ X̃n −→ Xn −→ X̃n+1 −→ · · · (11′)

of morphisms of right exact ’spaces’ such that Xn is an injective object and

X̃n −→ Xn −→ X̃n+1

is a conflation for every n ≥ 0.

(iv) Every (canonical) injective object of the left exact category (Espr, I
→
c ) has the

property (‡). In particular, all injective objects Xn, n ≥ 0, in the sequence (11’) have the

property (‡). Since the right exact ’spaces’ X̃n for n ≥ 1 are cokernels of ’exact’ morphisms
(that is their representing categories are kernels of ’exact’ functors), it follows from (ii)

above that X̃n also have the property (‡).

(v) For every n ≥ 0, we have a commutative diagram

G ◦ F0(X̃n) −−−→ G ◦ F0(Xn) −−−→ G ◦ F0(X̃n+1) −−−→ S+(G ◦ F0)(X̃n)−−−→z

Gλ0X̃n)
y Gλ0(Xn)

y Gλ0(X̃n+1)
y

y S+Gλ0(Xn)

G ◦ F∞(X̃n) −−−→ G ◦ F∞(Xn) −−−→ G ◦ F∞(X̃n+1) −−−→ S+(G ◦ F∞)(X̃n)−−−→z

Gλ∞X̃n)
y Gλ∞(Xn)

y Gλ∞(X̃n+1)
y

y S+Gλ∞(Xn)

G ◦ F∞(X̃n) −−−→ G ◦ F∞(Xn) −−−→ G ◦ F∞(X̃n+1) −−−→ S+(G ◦ F
∞)(X̃n)−−−→z

(12)
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with ’exact’ rows (see III.4.1 (3)) and, for n ≥ 1, the commutative diagrams

Sn+1
+ (G) ◦ F0(X̃0)

Sn+1
+

(G)(λ0)

−−−−−−−→ Sn+1
+ (G) ◦ F∞(X̃0)

Sn+1
+

(G)(λ∞)

−−−−−−−→ Sn+1
+ (G) ◦ F∞(X̃0)

≀
y ≀

y
y≀

Sn+1
+ (G ◦ F0)(X̃0)

Sn+1
+

(G(λ0))

−−−−−−−→ Sn+1
+ (G ◦ F∞)(X̃0)

Sn+1
+

(G(λ∞))

−−−−−−−→ Sn+1
+ (G ◦ F∞)(X̃0)

≀
y ≀

y
y≀

S+(G ◦ F0)(X̃n)
S+(G(λ0))

−−−−−−−→ S+(G ◦ F∞)(X̃n)
S+(G(λ∞))

−−−−−−−→ S+(G ◦ F
∞)(X̃n)

≀
y ≀

y
y≀

S+(G) ◦ F0(X̃n)
S+(G)(λ0)

−−−−−−−→ S+(G) ◦ F∞(X̃n)
S+(G)(λ∞)

−−−−−−−→ S+(G) ◦ F
∞(X̃n)

(12′)
whose vertical arrows are isomorphisms (cf. III.4.1 (5) and the diagram (8) in 6.2.2).

Suppose that Gλi(X) (where i = 0 or/and∞) is an isomorphism for every X = (X , Y )
such that the right exact ’space’ X has the property (‡). Then it follows from (iv) that

the arrows Gλi(Xn) are isomorphisms for n ≥ 0 and the arrows Gλi(X̃n) are isomorphisms
for n ≥ 1. Together with the ’exactness’ of rows of the diagram (12), this implies that

S+Gλi(X̃n) is an isomorphism for n ≥ 0.
It follows now from the diagram (12’) that Sn+G(λi) is an isomorphism for any n ≥ 1.

Thus, if Gλ0(X) and Gλ∞(X) are isomorphisms for every X = (X , Y ) such that the right
exact ’space’ X has the property (‡), then the natural morphisms

Sn+(G) ◦ F0

Sn+(G)(λ0)

−−−−−−−→ Sn+(G) ◦ F∞

Sn+(G)(λ∞)

−−−−−−−→ Sn+(G) ◦ F
∞

are isomorphisms for every n ≥ 1.

6.3.1. Corollary. (a) For every relative right exact ’space’ (X , Y ), the natural
morphisms

Km(Y,EY ) −−−→ Km(Y∞,EY∞) −−−→ Km(Y∞,EY∞) (9)

are isomorphisms if m ≥ 1 and epimorphisms for m = 0.
(b) Suppose (X,EX) is a right exact ’space’ satisfying the property (‡) of 6.1. Then,

for every topologizing subcategory CY of the right exact category (CX ,EX), the morphisms
(1) are isomorphisms for all m ≥ 0.

Proof. (a) Applying 6.3 (and 6.1) to the K-functor, we obtain that the canonical
morphisms

Kn ◦ F0

Kn(λ0)
−−−−−−−→ Kn ◦ F∞

Kn(λ∞)
−−−−−−−→ Kn ◦ F

∞

are isomorphisms for every n ≥ 1.
(b) The assertion is the combination of (a) above and 6.1.
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In Section C1 (which complements Section 4 of Chapter I), we look at some examples,
which acquire importance somewhere in the text. In Section C2, we pay tribute to stan-
dard techniques of homological algebra by expanding the most popular facts on diagram
chasing to right exact categories. They appear here mainly as a curiosity and are used
only once in the main body of the manuscript. Section C3 is dedicated to localizations
of exact and (co)suspended categories. In particular, t-structures of (co)suspended cate-
gories appear on the scene. Again, a work by Keller and Vossieck, [KV1], suggested the
notions. Section C4 is dedicated to cohomological functors on suspended categories and
can be regarded as a natural next step after the works [KeV] and [Ke1]. It is heavily
relied on Appendix K. We consider cohomological functors on suspended categories with
values in exact categories and prove the existence of a universal cohomological functor.
The construction of the universal functor gives, among other consequences, an equivalence
between the bicategory of Karoubian suspended svelte categories with triangle functors as
1-morphisms and the bicategory of exact svelte Z+-categories with enough injective objects
whose 1-morphisms are ’exact’ functors. We show that if the suspended category is trian-
gulated, then the universal cohomological functor takes values in an abelian category, and
our construction recovers the abelianization of triangulated categories by Verdier [Ve2]. It
is also observed that the triangulation of suspended categories induces an abelianization
of the corresponding exact Z+-categories. We conclude with a discussion of homological
dimension and resolutions of suspended categories and exact categories with enough injec-
tive objects. These resolutions suggest that the ’right’ objects to consider from the very
beginning are exact (resp. abelian) and (co)suspended (resp. triangulated) Zn+-categories.
All the previously discussed facts (including the content of Appendix K) extend easily to
this setting. In Section C5, we define the weak costable category of a right exact category
as the localization of the right exact category at a certain class of arrows related with
its projective objects. If the right exact category in question is exact, then its costable
category is isomorphic to the costable category in the conventional sense (reminded in
Appendix K). If a right exact category has enough pointable projective objects (in which
case all its projective objects are pointable), then its weak costable category is naturally
equivalent to the costable category of this right exact category defined in Chapter III. We
study right exact categories of modules over monads and associated stable and costable
categories. The general constructions acquire here a concrete shape. We introduce the
notion of a Frobenius monad. The category of modules over a Frobenius monad is a Frobe-
nius category, hence its stable category is triangulated. We consider the case of modules
over an augmented monad which includes as special cases most of standard homological
algebra based on complexes and their homotopy and derived categories.
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C1. Complements on kernels and cokernels.

C1.1. Kernels of morphisms of ’spaces’. The category |Cat|o of ’spaces’ has an
initial object x represented by the category with one object and one (identical) morphism.
By [KR, 2.2], the category |Cat|o has small limits (and colimits). In particular, any

morphism of |Cat|o has a kernel. The kernel of a morphism X
f
−→ Y of |Cat|o can be

explicitly described as follows.

Let CY
f∗

−→ CX be an inverse image functor of f . For any two objects L, M of
the category CX , we denote by If (L,M) the set of all arrows L −→ M which factor
through an object of the subcategory f∗(CY ). The class If of arrows of CX obtained this
way is a two-sided ideal; i.e. it is closed under compositions on both sides with arbitrary
arrows of CX . We denote by CXf the quotient of the category CX by the ideal If ; that
is ObCXf = ObCX , CXf (L,M) = CX(L,M)/If (L,M) for all objects L, M , and the
composition is induced by the composition in CX . Each object M of the image of the
subcategory f∗(CY ) in CXf has the property that CXf (L,M) and CXf (M,L) consist of at
most one arrow. This allows to define a category CK(f) by replacing the image of f∗(CY )
by one object z and one morphism, idz. (i.e. ObCK(f) = ObCX/f

∗(CY )). If objects L and
M are not equal to z, then we set CK(f)(L,M) = CXf (L,M). The set CK(f)(L, z) (resp.
CK(f)(z,M)) consists of one element iff there exists a morphism from L to an object of
f∗(CY ) (resp. from an object of f∗(CY ) to M); otherwise, it is empty.

We denote by k(f)∗ the natural projection CX −→ CK(f). Thus, we have a commu-
tative square of functors

CK(f)

c(f)∗

←−−− CX

π∗
z

x
x f∗

Cx ←−−− CY

where π∗
z maps the unique object of Cx to z. This square corresponds to a cartesian square

K(f)
c(f)
−−−→ X

πz

y
y f

x −−−→ Y

of morphisms of ’spaces’; i.e. the morphism K(f)
c(f)
−−−→ X is the kernel of X

f
−→ Y .

Similarly to Sets, the category |Cat|o has a unique final object represented by the
empty category. Since there are no functors from non-empty categories to the empty
category, the cokernel of any morphism of |Cat|o is the unique morphism to the final
object.

C1.2. Kernels and cokernels of morphisms of relative objects. Fix an object
V of a category CX and consider the category CX/V .
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C1.2.1. Cokernels. This category has a final object, (V, idV ), so we can discuss
cokernels of its morphisms. Notice that the forgetful functor CX/V −→ CX is exact, in

particular, it preserves push-forwards. Therefore, the cokernel of a morphism (M, g)
f
−→

(N,h) exists iff a push-forward N
∐

M

V = N
∐

f,g

V exists and is equal to (N
∐

M

V, h′), where

N
∐

M

V
h′

−→ V is determined by N
h
−→ V .

C1.2.2. Kernels of morphisms of relative objects. If the category CX has
an initial object x, then (x, x → V ) is an initial object of the category CX/V . The
forgetful functor CX/V −→ CX preserves pull-backs; in particular, it preserves kernels

of morphisms. So that the kernel of a morphism (M, g)
f
−→ (N,h) exists iff the kernel

Ker(f)
k(f)
−−−→M of M

f
−→ N exists; and it is equal to (Ker(f), g ◦ k(f))

k(f)
−−−→ (M, g).

C1.3. Application: cokernels of morphisms of relative ’spaces’. Fix a ’space’
S and consider the category |Cat|o/S of ’spaces’ over S. According to C1.2.1, the cokernel

of a morphism (X, g)
f
−→ (Y, h) of ’spaces’ over S is the pair (Cok(f), h̃), where CCok(f)

is the pull-back (in the pseudo-categorical sense) of the pair of inverse image functors

CS
g∗

−→ CX
h∗

←− CY . That is objects of the category CCok(f) are triples (M,N ;φ), where
M ∈ ObCS , N ∈ ObCY and φ an isomorphism g∗(M) ∼−→ f∗(N). Morphisms from

(M,N ;φ) to (M ′, N ′;φ′) are given by a pair of arrows M
u
−→ M ′, N

v
−→ N ′ such that

the square

g∗(M)
g∗(u)
−−−→ g∗(M ′)

φ
y≀ ≀

y φ′

f∗(N)
f∗(v)
−−−→ f∗(N ′)

commutes. The functor CS

h̃∗

−−−→ CCok(f) which assigns to every object L of the category
CS the object (g∗(L), h∗(L);ψ(L)), where ψ is an isomorphism g∗ ∼−→ f∗h∗, is an inverse

image functor of the morphism h̃.

C1.4. Categories with initial objects and associated pointed categories. Let
CX be a category with an initial object, x. Then the category CXx = CX/x is a pointed
category with a zero object (x, idx).

C1.4.1. Example: augmented monads. Let CX be the category Mon(X) of
monads on the category CX . The category CX has a canonical initial object x which is
the identical monad (IdCX , id). The category CXx coincides with the category Mon+(X)
of augmented monads. Its objects are pairs (F , ǫ), where F = (F, µ) is a monad on CX
and ǫ is a monad morphism F −→ (IdCX , id) called an augmentation morphism. One
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can see that a functor morphism F
ǫ
−→ IdCX is an augmentation morphism iff (M, ǫ(M))

is an F-module morphism for every M ∈ ObCX . In other words, there is a bijective
correspondence between augmentation morphisms and sections CX −−−→ F −mod of the

forgetful functor F −mod
f∗
−−−→ CX .

C1.5. Pointed category of ’spaces’. Consider first a simpler case – the category
Catop. It has an initial object, x, which is represented by the category with one object and
one (identical) morphism. The associated pointed category Catop/x is equivalent to the
category whose objects are pairs (X,OX), where X is a ’space’ and OX an object of the
category CX representing X. Morphisms from (X,OX) to (Y,OY ) are pairs (f

∗, φ), where
f∗ is a functor CY −→ CX and φ is an isomorphism f∗(OY ) −→ OX . The composition of

(X,OX)
(f∗,φ)
−−−→ (Y,OY )

(g∗,ψ)
−−−→ (Z,OZ) is given by (g∗, ψ) ◦ (f∗, φ) = (f∗ ◦ g∗, φ ◦ f∗(ψ)).

The pointed category |Cat|o/x associated with the category of ’spaces’ |Cat|o admits
a similar realization after fixing a pseudo-functor

|Cat|o −−−→ Catop, X 7−→ CX , f 7−→ f∗; (gf)∗
cf,g
−−−→ f∗g∗,

– a section of the natural projection Catop −→ |Cat|o. Namely, it is equivalent to a category
|Cat|ox whose objects are (as above) pairs (X,OX), where OX ∈ ObCX , morphisms from
(X,OX) to (Y,OY ) are pairs (f, φ), where f is a morphism of ’spaces’ X −→ Y and φ is an

isomorphism f∗(OY ) −→ OX . The composition of (X,OX)
(f,φ)
−−−→ (Y,OY )

(g,ψ)
−−−→ (Z,OZ)

is the morphism (g ◦ f, φ ◦ f∗(ψ) ◦ cf,g).

C1.5.1. Cokernels of morphisms. One can deduce from the description of coker-
nels in C1.3 in terms of the realization of the category |Cat|ox given above, that the cokernel

of a morphism (X,OX)
(f,φ)
−−−→ (Y,OY ) is isomorphic to (Y,OY )

(c(f),ψ)
−−−→ (C(f),OC(f)), where

CC(f) is a subcategory of CY whose objects are M ∈ ObCY such that f∗(M) ≃ OY and
morphisms are all arrows between these objects which f∗ transforms into isomorphisms.
The ’structure’ object OC(f) coincides with OY ; the inverse image functor of c(f) is the
inclusion functor CC(f) −→ CY ; and the isomorphism ψ is identical.

C1.6. The category of k-’spaces’. We call ’spaces’ represented by k-linear additive
categories k-spaces. We denote by |Catk|

o the category whose objects are k-’spaces’ and
morphismsX −→ Y are isomorphism classes of k-linear functors CY −→ CX . The category
|Catk|

o is pointed: its zero object is represented by the zero category. It is easy to see that

every morphism X
f
−→ Y has a canonical cokernel Y

c
−→ Cok(f), where CCok(f) is the

subcategory Ker(f∗) of CY (– the full subcategory generated by all objects L such that
f∗(L) = 0) and c∗ is the inclusion functor Ker(f∗) −→ CY .

The kernel Ker(f)
k(f)
−−−→ X of f admits a simple description which is a linear version

of the one in C1.1. Namely, CKer(f) is the quotient of the category CX by the ideal If
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formed by all morphisms of CX which factor through objects of f∗(CY ). The inverse image
of k(f)∗ is the canonical projection CX −→ CX/If .

C1.6.1. k-’Spaces’ over Sp(k). Consider now the full subcategory |Catk|
o
Sp(k) of

the category of k-’spaces’ over the affine scheme Sp(k) whose objects are pairs (X, f)

where X
f
−→ Sp(k) is continuous (i.e. f∗ has a right adjoint, f∗). This category admits

a realization in the style of C1.5. Namely, it is equivalent to the category whose objects
are pairs (X,OX), where X is a k-’space’ and OX is an object of the category CX such
that there exist infinite coproducts of copies of OX and cokernels of morphisms between
these coproducts. Morphisms from (X,OX) to (Y,OY ) are pairs (f, φ), where f∗ is a
k-linear functor CY −→ CX and φ an isomorphism f∗(OY ) −→ OX . The composition is
defined as in C1.5 (see [KR, 4.5]). By C1.2.2, kernels of morphisms (as well as other limits)

are inherited from |Catk|
o. That is the kernel of a morphism (X,OX)

(f,φ)
−−−→ (Y,OY ) is

the morphism (Ker(f),OKer(f))
(k(f),id)
−−−→ (X,OX), where CKer(f) = CX/If , k(f)

∗ is the
canonical projection CX −→ CX/If , and OKer(f) is the image of OX .

The cokernel (Y,OY )
(c(f),ψ)
−−−→ (Cf ,OCf ) of (f, φ) is described following C1.3. Objects

of the category CCf are triples (M,N ;φ), where M ∈ ObCY , N ∈ Obk−mod, and α is an
isomorphism f∗(M) −→ γ∗(N). Here γ∗ is a functor k −mod −→ CX which maps k to
OX and preserves colimits (which determines γ∗ uniquely up to isomorphism). Morphisms
are defined as in C1.3. The structure object OCf is (OY , k, φ). The inverse image functor
c(f)∗ of c(f) is the projection (M,N ;α) 7−→M .

C1.7. The (bi)categories Cat⋆ and Catpt. Let Cat⋆ denote the category whose
objects are pairs (CX , x), where CX is a category and x its initial object; morphisms
(CX , x) −→ (CY , y) are pairs (F, φ), where F is a functor CX −→ CY and φ a morphism

F (x) −→ y. The composition of two morphisms, (CX , x)
(F,φ)
−−−→ (CY , y)

(G,γ)
−−−→ (CZ , z), is

given by (G, γ) ◦ (F, φ) = (G ◦ F, γ ◦G(φ)).

Every morphism (CX , x)
(F,φ)
−−−→ (CY , y) defines a functor CXx

Fφ
−→ CYy between the

corresponding pointed categories; and the map (F, φ) 7−→ Fφ respects compositions and
maps identical morphisms to identical functors; i.e. the correspondence

(CX , x) 7−→ CXx , (F, φ) 7−→ Fφ

is a functor, J∗, from the category Cat⋆ onto the full subcategory Catpt of Cat whose ob-

jects are pointed categories. The functor J∗ is a right adjoint to the functor Catpt
J∗

−→ Cat⋆
which assigns to each pointed category CX an object (CX , x) of the category Cat⋆ and to

every functor CX
F
−→ CY between pointed categories the morphism CX , x)

(F,φ)
−−−→ (CY , y)

in which the arrow F (x)
φ
−→ y is uniquely defined. The adjunction arrow IdCatpt

η
−→ J∗J

∗
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assigns to each pointed category CX the natural isomorphism CX
∼−→ CXx (where x is

the zero object of CX involved in the definition of J∗). The other adjunction arrow,

J∗J∗
ǫ
−→ IdCat⋆ , assigns to each object (CY , y) of Cat⋆ the forgetful functor CYy −→ CY .

Notice by passing that the image of this forgetful functor is the full subcategory of CY
generated by all objects having a morphism to an initial object.

C1.8. Induced right exact structures. A pretopology τ on CX induces a pre-
topology τV on the category CX/V for any V ∈ ObCX ; hence τ induces a pretopology τx
on CXx . In particular, a structure EX of a right exact category on CX induces a structure
EXx of a right exact category on CXx . If (CX ,EX) has enough projective objects, then

(CXx ,EXx) has enough projective objects. Finally, if the class EsplX of split epimorphisms

of CX is stable under base change, then the class EsplXx of split epimorphisms of CXx has
this property.

C1.9. Monads on categories with an initial object and monads on corre-
sponding pointed categories.

C1.9.1. Definition. Fix an object (CX , x) of the category Cat⋆. A monad on

(CX , x) is a pair (F , φ), where F = (F, µ) is a monad on CX and F (x)
φ
−→ x is an

F-module structure on the initial object x.
We denote by Mon(CX , x) the category whose objects are monads on (CX , x); mor-

phisms from (F , φ) to (F ′, φ′) are monad morphisms F
g
−→ F ′ such that φ = φ′ ◦ g(x).

C1.9.2. Lemma. Every monad (F , φ) on (CX , x) defines a monad Fφ = (Fφ, µφ)
on the corresponding pointed category CXx . The map (F , φ) 7−→ Fφ extends to an isomor-
phism between the category Mon(CX , x) of monads on CXx and the category Mon(CXx)
of monads on CXx .

Proof is left to the reader.

C1.9.3. A remark on augmented monads. Every augmented monad (F , ǫ) on
the category CX (see C1.4.1) defines a monad (F , ǫ(x)) on (CX , x), hence a monad on the
associated pointed category CXx . The map (F , ǫ) 7−→ (F , ǫ(x)) is functorial; so that we
have functors

Mon+(CX) −→Mon(CX , x)
∼−→Mon(CXx).

On the other hand, it is easy to see that there is a natural isomorphism between
the category Mon+(CX) of augmented monads on CX and the category Mon+(CXx) of
augmented monads on the pointed category CXx .
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C2. Diagram chasing.

C2.1. Proposition. Let (CX ,EX) be a right exact category with an initial object x
and kernels of morphisms; and let

xy

Ker(f ′)
β′
1

−−−→ Ker(f)
α′

1

−−−→ Ker(f ′′)

k′
y k

y
y k′′

A′
1

β1

−−−→ A1

α1

−−−→ A′′
1

f ′
y f

y
y f ′′

x −−−→ A′
2

β2

−−−→ A2

α2

−−−→ A′′
2

(1)

be a commutative diagram whose two lower rows and the right column are ’exact’. Then

its upper row, Ker(f ′)
β′
1

−−−→ Ker(f)
α′

1

−−−→ Ker(f ′′), is ’exact’.

Proof. Let x be an initial object of CX ; and let Ker(β2) = x. The diagram (1) gives
rise to the commutative diagram

Ker(f ′)
e′1
−−−→ Ker(f̃)

j′1
−−−→ Ker(f)

α′
1

−−−→ Ker(f ′′)

k′
y cart k̃

y cart k
y

y k′′

A′
1

e1
−−−→ Ker(α1)

j1
−−−→ A1

α1

−−−→ A′′
1

f ′
y f̃

y f
y

y f ′′

A′
2

id
−−−→ Ker(α2) = A′

2

β2

−−−→ A2

α2

−−−→ A′′
2

(1.1)

where e1 is a deflation, j1 ◦ e1 = β1, j
′
1 ◦ e

′
1 = β′

1, and A
′
2

β2
−→ A2 is the kernel of α2. The

claim is that the morphism Ker(f)
e′1
−−−→ Ker(α′

1) is a deflation.
By 2.3.4.1 (or 2.3.4.3), the upper left square of (1.1) is cartesian, because the left

lower horizontal arrow is identical. Since A′
1

e1
−−−→ Ker(α1) is a deflation, this implies

that Ker(f ′)
e′1
−−−→ Ker(f̃) is a deflation.

Since Ker(β2) is trivial, it follows from 2.3.4.3 (applied to the middle section of the
diagram (1.1)) that the upper middle square of (1.1) is cartesian.

Notice that Ker(f̃)
j′1
−−−→ Ker(f) is the kernel of Ker(f)

α′
1

−−−→ Ker(f ′′).
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In fact, by hypothesis, the kernel ofKer(f ′′)
k′′

−−−→ A′′
1 is trivial. Therefore, by 3.3.4.3,

the right square of the commutative diagram

Ker(α′
1)

j′1
−−−→ Ker(f)

α′
1

−−−→ Ker(f ′′)

k̃′
y cart k

y
y k′′

Ker(α1)
j1
−−−→ A1

α1

−−−→ A′′
1

is cartesian (whenever Ker(α′
1) exists). Therefore, by the universality of cartesian squares,

there is a natural isomorphism Ker(f̃) ∼−→ Ker(α′
1).

The following assertion is a non-additive version of the ’snake lemma’. Its proof is
not reduced to the element-wise diagram chasing, like the argument of the classical ’snake
lemma’. Therefore, it requires more elaboration than its abelian prototype.

C2.2. Proposition (’snake lemma’). Let (CX ,EX) be a right exact category with
an initial object x; and let

xy

Ker(f ′)
β′
1

−−−→ Ker(f)
α′

1

−−−→ Ker(f ′′)

k′
y k

y
y k′′

A′
1

β1

−−−→ A1

α1

−−−→ A′′
1

f ′
y f

y
y f ′′

x −−−→ A′
2

β2

−−−→ A2

α2

−−−→ A′′
2

e′
y e

y
y e′′

A′
3

β3

−−−→ A3

α3

−−−→ A′′
3

(2)

be a commutative diagram whose vertical columns and middle rows are ’exact’, the arrows

α1, e′, e, e′′ are deflations, and the kernel of Ker(f ′′)
k′′

−−−→ A′′
1 is trivial.

(a) Suppose that each deflation of (CX ,EX) is isomorphic to its coimage and the
unique arrow x −→ A′′

3 is a monomorphism. Then there exists a natural morphism

Ker(f ′′)
d
−→ A′

3 such that the sequence

Ker(f ′)
β′
1

−−−→ Ker(f)
α′

1

−−−→ Ker(f ′′)y d

A′
3

β3

−−−→ A3

α3

−−−→ A′′
3

(3)
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is a complex. Moreover, its subsequences Ker(f ′)
β′
1

−−−→ Ker(f)
α′

1

−−−→ Ker(f ′′) and

Ker(f ′′)
d

−−−→ A′
3

β2

−−−→ A3 are ’exact’.
(b) Suppose, in addition, that

(b1) EX is saturated in the following sense: if λ◦s is a deflation and s is a deflation,
then λ is a deflation;

(b2) the following condition holds:

(#) If M
e
−→ N is a deflation and M

p
−→M an idempotent morphism (i.e. p2 = p) which

has a kernel and such that the composition e◦p is a trivial morphism, then the composition

of the canonical morphism Ker(p)
k(p)
−−−→M and M

e
−→ N is a deflation.

Then the entire sequence (3) is ’exact’.

Proof. (i) Since α1 is a deflation, there exists a cartesian square

Ã1

α̃1

−−−→ Ker(f ′′)

k̃′′
y cart

y k′′

A1

α1

−−−→ A′′
1

where α̃1 is a deflation too. It follows from 2.3.4.1 that Ã1 = Ker(α2f) = Ker(f ′′α1).
This is seen from the commutative diagram

Ã1

id
−−−→ Ker(f ′′α1)

α̃1

−−−→ Ker(f ′′)

id
y k̃′′

y cart
y k′′

Ker(α2f)
k̃′′

−−−→ A1

α1

−−−→ A′′
1

h
y cart f

y
y f ′′

A′
2

β2

−−−→ A2

α2

−−−→ A′′
2

e′
y e

y
y e′′

A′
3

β3

−−−→ A3

α3

−−−→ A′′
3

(4)

with cartesian squares as indicated.
(ii) By 2.3.3, we have a commutative diagram

Ker(α̃1)
k(α̃1)
−−−→ Ã1

α̃1

−−−→ Ker(f ′′)

≀
y k̃′′

y cart
y k′′

Ker(α1)
k(α1)
−−−→ A1

α1

−−−→ A′′
1
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whose (rows are conflations and the) left vertical arrow is an isomorphism. Thus, we obtain
a commutative diagram

Ker(α̃1)
k(α̃1)
−−−→ Ã1

α̃1

−−−→ Ker(f ′′)

e1

x k̃′′
y cart

y k′′

A′
1

β1

−−−→ A1

α1

−−−→ A′′
1

f ′
y f

y
y f ′′

A′
2

β2

−−−→ A2

α2

−−−→ A′′
2

e′
y e

y
y e′′

A′
3

β3

−−−→ A3

α3

−−−→ A′′
3

(5)

Since the second row of the diagram (2) is ’exact’, the morphism e1 is a deflation.
(iii) Combining the diagram (4) with (the left upper corner of) (5), we obtain a

commutative diagram

A′
1

e1
−−−→ Ker(α̃1)

k(α̃1)
−−−→ Ker(f ′′α1)

α̃1

−−−→ Ker(f ′′)

k(α̃1)
y k̃′′

y cart
y k′′

Ker(α2f)
k̃′′

−−−→ A1

α1

−−−→ A′′
1

h
y cart f

y
y f ′′

A′
2

β2

−−−→ A2

α2

−−−→ A′′
2

e′
y e

y
y e′′

A′
3

β3

−−−→ A3

α3

−−−→ A′′
3

(6)

where k̃′′◦k(α̃1)◦e1 = β1. Therefore, β2◦(h◦k(α̃1)◦e1) = f ◦(̃k′′◦k(α̃1)◦e1) = f ◦β1 = β2◦f
′.

Since the left middle square of (6) is cartesian, this implies that h ◦ k(α̃1) ◦ e1 = f ′.
Therefore, e′ ◦ h ◦ k(α̃1) ◦ e1 = e′ ◦ f ′ is a trivial morphism.
(iv) Notice that, by 2.1.2, the kernel morphism Ker(e′ ◦ h ◦ k(α̃1))−−−→Ker(α̃1) is a

monomorphism, because A′
3 has a morphism to x, hence x −→ A′

3 is a (split) monomor-
phism. Since e1 is a deflation, in particular a strict epimorphism, it follows from 2.3.4.4 that
the composition (e′◦h)◦k(α̃1) is trivial. By hypothesis, α̃1 (being a deflation) is isomorphic
to the coimage morphism, i.e. Ker(f ′′) is naturally isomorphic to Coim(α̃1). Therefore,
the morphism e′ ◦ h factors through α̃1, i.e. e′ ◦ h = d ◦ α̃1. Since α̃1 is a deflation, in

particular an epimorphism, the latter equality determines the morphism Ker(f ′′)
d
−→ A′

3

uniquely.
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(v) By C2.1, the sequence Ker(f ′)
β′
1

−−−→ Ker(f)
α′

1

−−−→ Ker(f ′′) is ’exact’.

(vi) The composition of Ker(f)
α′

1

−−−→ Ker(f ′′) and Ker(f ′′)
d

−−−→ A′
3 is trivial.

In fact, the diagram (6) induces a commutative diagram

A′
1 Ker(h)

∼

−−−→ Ker(f)
α′

1

−−−→ Ker(f ′′)

e1

y k(h)
y k

y
y k′′

Ker(α̃1)
k(α̃1)
−−−→ Ker(α2f)

k̃′′

−−−→ A1

α1

−−−→ A′′
1

h
y cart f

y
y f ′′

A′
2

β2

−−−→ A2

α2

−−−→ A′′
2

e′
y e

y
y e′′

A′
3

β3

−−−→ A3

α3

−−−→ A′′
3

(7)

where the isomorphism Ker(h) ∼−→ Ker(f) is due the fact that the left middle square of
the diagram (7) is cartesian. We can and will assume that this isomorphism is identical.

The morphism Ker(f)
α′

1

−−−→ Ker(f ′′) is the composition of Ker(f)
k(h)
−−−→ Ker(α2f) and

Ker(α2f)
α̃1

−−−→ Ker(f ′′). Therefore, d ◦ α′
1 = d ◦ α̃1 ◦ k(h) = e′ ◦ h ◦ k(h), which shows

that the composition d ◦ α′
1 is trivial, because already the composition h ◦ k(h) is trivial.

(vii) The argument above can be summarized in the commutative diagram

A′
1 Ker(f)

γ
−−−→ Ker(d)

e1

y
y k(h)

y k(d)

Ker(α̃1)
k(α̃1)
−−−→ Ker(α2f)

α̃1

−−−→ K(f ′′)

e2

y h
y

y d

Ker(e′)
k(e′)
−−−→ A′

2

e′

−−−→ A′
3

(8)

whereKer(α̃1)
e2
−−−→ Ker(e′) is a deflation. Taking into consideration the cartesian square

M
γ̃

−−−→ Ker(d)

µ
y

y k(d)

Ker(α2f)
α̃1

−−−→ K(f ′′)

(9)
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we extend (8) to the commutative diagram

Ker(f)
id
−−−→ Ker(h)

γ
−−−→ Ker(d)

id
y k(h̃)

y
y id

A′
1 Ker(h̃)

k(̃h)
−−−→ M

γ̃
−−−→ Ker(d)

e1

y k(h̃)
y µ

y cart
y k(d)

Ker(α̃1)
k1
−−−→ M

µ
−−−→ Ker(α2f)

α̃1

−−−→ K(f ′′)

e2

y h̃
y cart h

y
y d

Ker(e′)
id
−−−→ Ker(e′)

k(e′)
−−−→ A′

2

e′

−−−→ A′
3

(10)

where µ ◦ k(h̃) = k(h), and µ ◦ k1 = k(α̃1).
Since the square (9) is cartesian and α̃1 is a deflation, its pull-back, γ̃, is a deflation

too. Notice that the commutativity of the left lower square and the fact that e2 is a strict
epimorphism imply that h̃ is a strict epimorphism.

Consider the cartesian square

M̃
e′3
−−−→ M

p
y

y h̃

A′
1

e3
−−−→ Ker(e′)

(11)

where e3 = e2 ◦ e1. Since e3 is a deflation, the arrow M̃
e′3
−−−→ M is a deflation. Since

h̃◦ k1 ◦ e1 = e3, the projection p has a splitting, A′
1

s
−→ M̃; i.e. p◦ s = id. Set p = s◦p and

ϕ = γ̃ ◦ e′3. It follows that M̃
p
−→ M̃ is an idempotent (– a projector), ϕ is a deflation, the

composition ϕ◦p = γ̃ ◦(e′3 ◦s)◦p = γ̃ ◦(k1 ◦e1)◦p is trivial, because k(d)◦ γ̃ ◦k1 = α̃1 ◦k(α̃1)

is trivial and Ker(d)
k(d)
−−−→ K(f ′′) is a monomorphism. The latter follows from the fact

that A′
3 has a morphism to x, hence the unique arrow x −→ A′

3 is a (split) monomorphism.
Since the square (11) is cartesian, it follows from 2.3.4.1 that Ker(p) is naturally

isomorphic to Ker(h̃) = Ker(f). And, by 2.3.4.3, Ker(p) is naturally isomorphic to
Ker(p), because p = s ◦ p and s is a monomorphism.

Thus, Ker(p) is naturally isomorphic to Ker(f).
(viii) Suppose that the condition (#) of the proposition holds. Then the composition of

Ker(p) −→ M̃ and M̃
ϕ
−→ Ker(d) is a deflation; hence the composition of the morphisms

Ker(f)
k(̃h)
−−−→ M andM

γ̃
−−−→ Ker(d) (i.e. the morphism Ker(f)

γ
−−−→ Ker(d) in the

diagram (10)) is a deflation.
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(ix) The claim is that d is the composition of the morphism Ker(β3)
k(β3)
−−−→ A′

3 and

a deflation Ker(f ′′)
d′

−−−→ Ker(β3). Since α̃1 is a deflation, it suffices to prove a similar
assertion for d ◦ α̃1 = e′ ◦ h.

We have a commutative diagram

B
k̃′′

−−−→ A1

α1

−−−→ A′′
1

th

y cart
y tf

y t′′

B
β̃3

−−−→ Ker(e)
λ

−−−→ Ker(e′′)

ψ
y cart

y k(e)
y k(e′′)

B
ψ

−−−→ A′
2

β2

−−−→ A2

α2

−−−→ A′′
2

ẽ′
y cart e′

y
y e

y e′′

Ker(β3)
k(β3)
−−−→ A′

3

β3

−−−→ A3

α3

−−−→ A′′
3

(12)

where f = k(e) ◦ tf , f
′′ = k(e′′) ◦ t′′ and the remaining new arrows are determined by

the commutativity of the diagram (12) and by being a part of a cartesian square. By
hypothesis, the columns of the diagram (2) are ’exact’; in particular, the morphism tf is a

deflation. Therefore, the morphism B
th−→ B is a deflation. Being the composition of two

cartesian diagrams, the diagram

B
k̃′′

−−−→ A1

ψ ◦ th

y
y k(e) ◦ tf = f

A′
2

β2

−−−→ A2

is cartesian, as well as the diagram

Ker(α2f)
k̃′′

−−−→ A1

h
y

y f

A′
2

β2

−−−→ A2

Therefore, they are isomorphic to each other. So, we can and will assume that B =
Ker(α2f) and h = ψ ◦ th. It follows from (the left part of) the diagram (12) that

e′ ◦ h = e′ ◦ ψ ◦ th = k(β3) ◦ (̃e
′ ◦ th),
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that is e ◦ h is the composition of Ker(β3)
k(β3)
−−−→ A′

3 and the deflation ẽ′ ◦ th.
(x) The composition α3 ◦β3 is trivial by 2.3.4.4, because the composition α3 ◦β3 ◦ e

′ =
e′′ ◦ α2 ◦ β2 is trivial, x −→ A′′

3 is a monomorphism (by hypothesis), and e′ is a deflation,
hence a strict epimorphism. The claim is that, if (CX ,EX) has the property (#), then the

morphism A′
3

β3

−−−→ A3 is the composition of the kernel morphism Ker(α3)
k3
−−−→ A′′

3 and

a deflation A′
3

t3
−−−→ Ker(α3).

Since in the upper right square of the diagram (12), the arrows α1, t
′′, and tf are defla-

tions, the forth arrow, Ker(e)
λ

−−−→ Ker(e′′), is a deflation too (due to the saturatedness
condition (b1)). Consider the commutative diagram

Ker(e)
λ

−−−→ Ker(e′′)

v
y

y id

A′
2

t′3
−−−→ D

p2

−−−→ Ker(e′′)

t′3

y β′
2

y cart
y k(e′′)

A′
2

t′3
−−−→ D

β′
2

−−−→ A2

α2

−−−→ A′′
2

e′
y u

y cart e
y

y e′′

A′
3

t3
−−−→ Ker(α3)

k(α3)
−−−→ A3

α3

−−−→ A′′
3

(13)

where β′
2 ◦ v = k(e), β′

2 ◦ t
′
2 = β2.

The upper left corner of the commutative diagram (13) gives rise to the commutative
diagram

Ã′
2

t̃′3
−−−→ D̃

p̃2

−−−→ Ker(e)

λ′
y cart λ̃

y cart
y λ

A′
2

t′3
−−−→ D

p2

−−−→ Ker(e′′)

(14)

whose both squares are cartesian. Since λ is a deflation, all vertical arrows of (14) are

deflations, as well as the arrows p2 and p̃2. The morphism Ker(e)
v

−−−→ D determines a

splitting Ker(e)
s2
−−−→ D̃ of the projection p̃2. Let p2 denote the composition s2 ◦ p2. It

follows that p2 is an idempotent D̃ −→ D̃ and the composition

k(α3) ◦ (u ◦ λ̃) ◦ p2 = e ◦ β′
2 ◦ (λ̃ ◦ s2) ◦ p̃2 = e ◦ β′

2 ◦ v ◦ p̃2 = (e ◦ k(e)) ◦ p̃2

is trivial. Therefore, (u◦ λ̃)◦p2 is trivial. The kernel of the idempotent p2 is isomorphic to
the kernel of p̃2. Since the right square of (14) is cartesian, there is a natural isomorphism
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Ker(p2) ≃ Ker(p̃2). It follows from the right cartesian square of (13) that there is a
natural isomorphism Ker(p2) ≃ Ker(α2) = A′

2.
If the right exact category (CX ,EX) has the property (#), then the above implies that

the morphism A′
2

u◦t′3
−−−→ Ker(α3) is a deflation. Since u ◦ t′3 = t3 ◦ e

′ and e′ is a deflation,

the morphism A′
3

t3
−−−→ Ker(α3) is a deflation.

C2.3. Remarks about conditions of the ’snake lemma’. Fix a right exact cat-
egory (CX ,EX). The main condition of the ’snake lemma’ C2.2, the one which guarantees

the existence of the connecting morphism d, is that each deflation M
e
−→ N is isomorphic

to its coimage morphism M
c(e)
−−−→ Coim(e) =M/Ker(e).

If the category CX is additive, then every strict epimorphism which has a kernel, in
particular, every deflation, is isomorphic to its coimage morphism.

The latter property holds in many non-additive categories, for instance in the category
Algk of unital associative k-algebras (see 2.3.5.3).

Similarly, the property

(#) If M
e
−→ N is a deflation and M

p
−→ M an idempotent morphism (i.e. p2 = p)

which has a kernel and such that the composition e ◦ p is a trivial morphism, then the

composition of the canonical morphism Ker(p)
k(p)
−−−→ M and the deflation M

e
−→ N is a

deflation.

which ensures ’exactness’ of the ’snake’ sequence (3) holds in any additive category.
In fact, if the category CX is additive, then the existence of the kernel of p means

precisely that the idempotent q = id
M
− p is splittable; i.e. M

q
−→ M is the composition

of Ker(p)
k(p)
−−−→M and a (strict) epimorphism M

t
−→ Ker(p) such that t◦ k(p) = id. The

condition e◦p is trivial (that is e◦p = 0) is equivalent to the equalities e = e◦q = (e◦k(p))◦t
which imply (under saturatedness condition, cf. C2.2(b1)) that e ◦ k(p) is a deflation.

C2.3.1. Example. The property (#) holds in the category Algk. In fact, let

A
ϕ
−→ B be a strict algebra epimorphism, and A

p
−→ A an idempotent endomorphism

such that the composition ϕ ◦ p is a trivial morphism; that it equals to the composition of

an augmentation morphism A
π
−→ k and the k-algebra structure k

iB−→ B. In particular,
A = k ⊕A+, where A+ = K(π) is the kernel of the augmentation π in the usual sense.

On the other hand, Ker(p) = k ⊕K(p), and, since p ◦ p = p and the ideal K(p)
def
=

{y ∈ A | p(y) = 0} coincides {x− p(x) | x ∈ A}. Similarly, Ker(ϕ ◦ p) = k⊕K(ϕ ◦ p), and
it follows that K(ϕ ◦ p) = A+.

Every element x of A is uniquely represented as λ · 1A + x+, where 1A is the unit
element of the algebra A and x+ ∈ A+. Therefore, x− p(x) = x+ − p(x+) and

ϕ(µ · 1A + (x− p(x))) = µ · 1B + ϕ(x+ − p(x+)) = µ · 1B + ϕ(x+) = ϕ(µ · 1A + x+).
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Since µ ∈ k and x+ ∈ A+ are arbitrary and ϕ is a strict epimorphism (that is a surjective
map), this shows that ϕ ◦ k(p) is a strict epimorphism.

C3. Localizations of exact categories and (co)quasi-suspended categories.
t-Structures.

C3.1. Remarks on localizations. Let CX
u∗

−→ CZ be a functor. Suppose that the
category CZ is cocomplete, i.e. it has colimits of arbitrary small diagrams (equivalently,
it has infinite coproducts and cokernels of pairs of arrows). By [GZ, II.1], the functor u∗

equals to the composition of the Yoneda embedding CX
hX−→ ĈX of the category CX into

the category ĈX of presheaves of sets on CX and a continuous (that is having a right

adjoint) functor ĈX
ũ∗

−→ CZ . Since every presheaf of sets on a category is a colimit of a
canonical diagram of representable presheaves and the functor ũ∗ preserves colimits, it is
determined uniquely up to isomorphism.

In particular, every functor CX
q∗

−→ CY gives rise to a commutative diagram

CX
q∗

−−−→ CY

hX

y
y hY

ĈX
q̂∗

−−−→ ĈY

(1)

with a continuous functor q̂∗ determined by the commutativity of (1) uniquely up to
isomorphism.

C3.1.1. Lemma. (a) The functor

ĈY
q̂∗
−−−→ ĈX , F 7−→ F ◦ q∗, (2)

is a canonical right adjoint to q̂∗.
(b) If the functor q∗ has a right adjoint q∗, then the diagram

CX
q∗
←−−− CY

hX

y
y hY

ĈX
q̂∗
←−−− ĈY

(1∗)

quasi-commutes.

Proof. (a) Recall that the functor q̂∗ is determined uniquely up to isomorphism by the

equality q̂∗(hY (L)) = hY (q
∗(L)) for all L ∈ ObCX . For every L ∈ ObCX and F ∈ ObĈY ,

we have

ĈX(hX(L), F ◦ q∗) ≃ F (q∗(L)) ≃ ĈY (hY (q
∗(L)), F ) ≃ ĈY (q̂

∗(hY (L)), F ).
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Since all isomorphisms here are functorial, it follows that the functor (2) is a right
adjoint to q̂∗.

(b) For any L ∈ ObCY ,

q̂∗(hY (L)) = hY (L) ◦ q
∗ = CY (q

∗(−), L) ≃ CX(−, q∗(L)) = hX(q∗(L)),

hence the assertion.

C3.1.1.1. Corollary. For every functor CX
q∗

−→ CY , the functor q̂∗ has a right
adjoint, q̂!. In particular, q̂∗ is exact.

Proof. The fact follows from C3.1.1(a).

C3.1.2. Proposition. If CX
q∗

−→ CY is a localization, then the continuous functor
q̂∗ in (1) is a localization too.

Proof. The functor ĈX
q̂∗

−→ ĈY is decomposed into a localization ĈX
q̂∗f
−→ CZ at

Σ
q̂∗

= {s ∈ HomĈX | q̂
∗(s) is invertible} and a conservative functor CZ

q̂∗c−→ ĈY . Since

q∗ is a localization and the composition q̂∗f ◦ hX makes invertible all arrows of Σq∗ = {s ∈

HomĈX | q
∗(s) is invertible}, there exists a unique functor CY

Ψ
−→ CZ such that the

diagram

CX
q∗

−−−→ CY
hX

y
y Ψ

ĈX
q̂∗f
−−−→ CZ

(3)

commutes. The localization q̂∗f is continuous, i.e. it has a right adjoint which is, forcibly,
a fully faithful functor. Therefore, by [GZ, I.1.4], the category CZ has limits and colimits

of arbitrary (small) diagrams. Therefore, the functor CY
Ψ
−→ CZ is the composition of the

Yoneda imbedding CY
hY−→ ĈY and a continuous functor ĈY

Ψ′

−→ CZ ; the latter is defined
uniquely up to isomorphism. Thus, we have the equalities

q̂∗f ◦ hX = Ψ ◦ q∗ = Ψ′ ◦ hY ◦ q
∗ = Ψ′ ◦ q̂∗ ◦ hX = (Ψ′ ◦ q̂∗c ) ◦ q̂

∗
f ◦ hX

(q̂∗c ◦Ψ
′) ◦ hY ◦ q

∗ = q̂∗c ◦Ψ ◦ q
∗ = q̂∗c ◦ q̂

∗
f ◦ hX = q̂∗ ◦ hX ≃ hY ◦ q

∗
(4)

The equality q̂∗f ◦ hX = (Ψ′ ◦ q̂∗c ) ◦ q̂
∗
f ◦ hX implies, thanks to the continuity of the functors

Ψ′ ◦ q̂∗c and q̂∗f and the universal properties of the localization q̂∗f , that the composition
Ψ′ ◦ q̂∗c is isomorphic to the identity functor.

Similarly, thanks to the universal properties of the localization q∗, the isomorphism
(q̂∗c ◦ Ψ

′) ◦ hY ◦ q
∗ ≃ hY ◦ q

∗ implies that (q̂∗c ◦ Ψ
′) ◦ hY ≃ hY . Since the functor q̂∗c ◦ Ψ

′
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is continuous and every presheaf of sets on CY is a colimit of a (canonical) diagram of
representable presheaves, it follows from the latter isomorphism that the composition q̂∗c ◦Ψ

′

is isomorphic to the identical functor. All together shows that q̂∗c and Ψ′ are mutually
quasi-inverse category equivalences.

C3.1.3. Note. Suppose that CX and CY are k-linear categories and CX
q∗

−→ CY
a k-linear functor. If the category CY is cocomplete, then it follows from the assertion
[GZ, II.1] mentioned above that there exists a unique up to isomorphism continuous func-

tor Mk(X)
q̂∗

−→ CY such that q∗ = q̂∗ ◦ hX . Here, as above, Mk(X) is the category
of k-presheaves on the category CX . This establishes an equivalence between the cate-
gory Homk(CX , CY ) of k-linear functors CX −→ CY and the category Homc

k(CX , CY ) of
continuous k-linear functorsMk(X) −→ CY .

If a k-linear functor CX
q∗

−→ CY is equivalent to a localization functor (i.e. it is the

composition of the localization functor at Σq∗
def
= {s ∈ HomCX | q

∗(s) is invertible} and
a category equivalence Σ−1

q∗ CX −→ CY ), then the argument of C3.1.1 with the categories
of presheaves of sets replaced by the categories of k-presheaves shows that the natural

extensionMk(X)
q̂∗

−→Mk(Y ) is equivalent to a continuous localization.

C3.2. Right weakly ’exact’ functors and ’exact’ localizations. Let (CX , EX)
and (CY , EY ) be exact categories. A right weakly ’exact’ functor (CX , EX) −→ (CY , EY ) is a

functor CX
ϕ∗

−→ CY such that for every conflation L
j
−→M

e
−→ N, there is a commutative

diagram

ϕ∗(L)
ϕ∗(j)
−−−→ ϕ∗(M)

ϕ∗(e)
−−−→ ϕ∗(N)

e′ ց ր j′

L1

in which e′ is a deflation and L1

j′

−−−→ ϕ∗(M)
ϕ∗(e)
−−−→ ϕ∗(N) is a conflation.

Recall that the Gabriel-Quillen embedding CX
j∗X−→ CXE

is the composition of the

Yoneda embedding CX
hX−→Mk(X) and the sheafification functorMk(X)

q∗
X−→ CXE

.

C3.2.1. Proposition. Let (CX , EX) and (CY , EY ) be exact k-linear categories and

(CX , EX)
ϕ∗

−−−→ (CY , EY ) a right ’exact’ k-linear functor.

(a) There is a unique up to isomorphism continuous k-linear functor CXE

ϕ̃∗

−−−→ CYE

such that the diagram

CX
ϕ∗

−−−→ CY

j∗X

y
y j∗Y

CXE

ϕ̃∗

−−−→ CYE
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commutes. Here the vertical arrows are the Gabriel-Quillen embeddings.

(b) If the functor CX
ϕ∗

−→ CY is a localization, then the functor CXE

ϕ̃∗

−→ CYE
is a

localization.
(c) Suppose that the following condition holds: for every L ∈ ObCX and every deflation

N
e
−→ ϕ∗(L), there exist a deflation M

t
−→ L and a commutative diagram

ϕ∗(M)
g

−−−→ N
ϕ∗(t)ց ւ e

ϕ∗(L)

Then a right adjoint CYE

ϕ̃∗
−→ CXE

to the functor ϕ̃∗ has a right adjoint, ϕ̃!. In
particular, the functor ϕ̃∗ is exact.

Proof. (a) Objects of the category CXE
– k-sheaves on the pretopology (CX ,EX), are

naturally identified with right ’exact’ k-linear functors from CX to the abelian category

Mk(X)op. Therefore, since the functor CX
ϕ∗

−→ CY is right ’exact’, the composition with
it maps CYE

to CXE
. By C3.1.1, we can (and will) assume that the functor

Mk(Y )
ϕ̂∗

−−−→ Mk(X)

is given by F 7−→ F ◦ ϕ∗. Thus, we have a commutative diagram

Mk(X)
ϕ̂∗

←−−− Mk(Y )

qX∗

x
x qY ∗

CXE

ϕ̃∗

←−−− CYE

whose vertical arrows are inclusion functors. This diagram yields, by adjunction, a quasi-
commutative diagram

Mk(X)
ϕ̂∗

−−−→ Mk(Y )

q∗X

y
y q∗Y

CXE

ϕ̃∗

−−−→ CYE

(1)

where the vertical arrows are sheafification functors. The sheafification functors are exact
localizations. An isomorphism q∗Y ϕ̂

∗ ≃ ϕ̃∗q∗X implies that ϕ̃∗ ≃ q∗Y ϕ̂
∗qX∗, because the

adjunction arrow IdCXE
−→ q∗XqX∗ is an isomorphism. Together with the isomorphism

q∗Y ϕ̂
∗ ≃ ϕ̃∗q∗X , this implies that the canonical morphism q∗Y ϕ̂

∗ −→ q∗Y ϕ̂
∗qX∗q

∗
X is an
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isomorphism. The claim is that the functor ϕ̃∗
def
= q∗X ϕ̂∗qY ∗ is a right adjoint to ϕ̃∗. In

fact, the composition of morphisms

IdCYE
∼−→ q∗Y qY ∗ −→ q∗Y ϕ̂∗ϕ̂

∗qY ∗ −→ q∗Y ϕ̂∗qX∗q
∗
X ϕ̂

∗qY ∗
∼−→ ϕ̃∗ϕ̃

∗

and
ϕ̃∗ϕ̃∗

∼−→ q∗X ϕ̂
∗qY ∗q

∗
Y ϕ̂∗qX∗

∼−→ q∗X ϕ̂
∗ϕ̂∗qX∗ −→ q∗XqX∗

∼−→ IdCXE

are adjunction arrows.

(b) By C3.1.1 (and C3.1.2), the continuous functorMk(X)
ϕ̂∗

−→Mk(Y ) is a localiza-
tion. Thus, the three arrows of the quasi-commutative diagram (1) are localizations, hence
the forth one, ϕ̃∗, is a localization.

(c) The condition (c) means that for every L ∈ ObCY and every presheaf F of k-
modules on CX , the value of the associated sheaf qX(F ) at ϕ∗(L) can be computed using

only deflations (– covers) of the form ϕ∗(M
t
−→ L), where M

t
−→ L is a deflation. This

implies that the diagram

Mk(X)
ϕ̂∗

←−−− Mk(Y )

q∗X

y
y q∗Y

CXE

ϕ̃∗

←−−− CYE

(1∗)

quasi-commutes. Therefore, by the argument similar to (a) above, the functor q∗Y ϕ̂
!qX∗ is

a right adjoint to ϕ̃∗.

C3.3. Example. Suppose that CX is a k-linear category with the smallest exact
structure (given by split conflations). Then any k-linear functor (in particular, any right

or left ’exact’ k-linear functor) CX
ϕ∗

−→ CY is ’exact’. The category CXE
coincides with

the categoryMk(X) of k-presheaves on CX , and the functor

CXE
=Mk(X)

ϕ̃∗

−−−→ CYE

is isomorphic to the composition of the functorMk(X)
ϕ̂∗

−−−→Mk(Y ) and the sheafifica-

tion functor Mk(Y )
q∗
Y

−−−→ CYE
. Therefore, a right adjoint ϕ̃∗ to ϕ̃∗ is isomorphic to the

composition ϕ̂∗qY ∗, which is not, usually, an exact functor.

C3.3.1. Example. Let (CX , EX) be an exact k-linear category. Suppose that CY
is an additive k-linear category endowed with the smallest exact structure, EsplY . Then a

functor CX
ϕ∗

−→ CY is right ’exact’ functor from (CX , EX) to (CX , E
spl
Y ) iff it maps every

deflation of the exact category (CX , EX) to a split epimorphism (i.e. a coretraction). Notice
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that the condition (c) of C3.2.1 holds because every deflation in CY splits. Therefore, by
C3.2.1(c), the functor ϕ̃∗ has a right adjoint, ϕ̃!.

If the exact structure on (CX , EX) is also the smallest one (i.e. EX = EsplX ), then
CXE

= Mk(X) and CYE
= Mk(Y ); i.e. in this case ϕ̃∗ = ϕ̂∗ and, therefore, a right

adjoint to the functor ϕ̃∗ coincides with ϕ̂!.

C3.4. Remark. Let (CX , EX) and (CY , EY ) be exact categories. If CY
ϕ∗

−→ CX is
an arbitrary functor, one can still define functors

CYE

ϕ̃∗

−−−→ CXE

ϕ̃∗

−−−→ CYE

ϕ̃!

−−−→ CXE

by the formulas
ϕ̃∗ = q∗X ϕ̂

∗qY ∗, ϕ̃∗ = q∗Y ϕ̂∗qX∗, ϕ̃
! = q∗X ϕ̂

!qY ∗. (2)

C3.5. Proposition. Let (CX , EX) and (CY , EY ) be exact k-linear categories and

(CX , EX)
ϕ∗

−→ (CY , EY ) a right ’exact’ k-linear functor. Suppose that ϕ∗ is a localization
functor. Then ϕ∗ is ’exact’ iff the class of arrows Σϕ∗ = {s ∈ HomCX | ϕ

∗(s) is an
isomorphism} satisfies the following condition:

(#) If the rows of a commutative diagram

L −−−→ M −−−→ Ny
y

y
L′ −−−→ M ′ −−−→ N ′

(2)

are conflations and any two of its vertical arrows belong to Σϕ∗ , then the remaining arrow
belongs to Σϕ∗ .

Proof. (i) Consider first the case when ϕ∗ is the identical functor. Let

0 −−−→ L −−−→ M −−−→ N −−−→ 0y
y

y
0 −−−→ L′ −−−→ M ′ −−−→ N ′ −−−→ 0

(3)

be a commutative diagram in CY such that L −→ M −→ N and L′ −→ M ′ −→ N ′ are
conflations. If two of the three vertical arrows are isomorphisms, then the third arrow is
an isomorphism as well.

In fact, the Gabriel-Quillen embedding transforms the diagram (2) into a commutative
diagram with exact rows. If two of the vertical arrows of such diagram are isomorphisms,
then the third one is an isomorphism. The Gabriel-Quillen embedding is a fully faithful
functor, in particular, it is conservative. Therefore, all vertical arrows in the original
diagram are isomorphisms.
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(ii) Suppose that the functor CX
ϕ∗

−→ CY is ’exact’; i.e. it maps conflations to confla-
tions. In particular, ϕ∗ maps a diagram (2) with two arrows from Σϕ∗ to a diagram whose
rows are conflations and two vertical arrows are isomorphisms. By (i) above, the third
arrow is an isomorphism too; i.e. all vertical arrows of the diagram (2) belong to Σϕ∗ .

(iii) Suppose now that CX
ϕ∗

−→ CY is a localization functor which is right ’exact’ and
satisfies the condition (#). The claim is that the functor ϕ∗ is ’exact’.

Let L
j
−→M

e
−→ N be a conflation in CX . The functor ϕ∗ being right ’exact’ means

that there is a commutative diagram

ϕ∗(L)
ϕ∗(j)
−−−→ ϕ∗(M)

ϕ∗(e)
−−−→ ϕ∗(N)

e′ ց ր j′

L̃

(4)

such that L̃
j′

−−−→ ϕ∗(M)
ϕ∗(e)
−−−→ ϕ∗(N) is a conflation in CY and e′ ∈ EY . Since ϕ∗ is a

localization, we can and will assume that L̃ = ϕ∗(L′) for some L′ ∈ ObCX . Let j′ be the

composition of arrows ϕ∗(L′)
ϕ∗(j′′)
−−−→ ϕ∗(M1) and ϕ

∗(M1)
ϕ∗−1

(s)
−−−→ ϕ∗(M) for some s ∈ Σϕ∗ .

Consider the cocartesian square

M
e

−−−→ N

s
y

y s′

M1

e1
−−−→ N1

(4)

By hypothesis, e1 is a deflation and ϕ∗ maps (4) to a cocartesian square. The square (4)
is embedded into a commutative diagram

L
j

−−−→ M
e

−−−→ N

s′′
y s

y
y s′

L1

j1
−−−→ M1

e1
−−−→ N1

(5)

whose rows are deflations. Since the vertical arrows s, s′ in (5) belong to Σϕ∗ , the remain-
ing vertical arrow, s′′, belongs to Σϕ∗ .

The equality ϕ∗(e1 ◦ j
′′) = 0 means that e1 ◦ j

′′ ◦ t = 0 for some t ∈ Σϕ∗ . Therefore we
have a commutative diagram

L
j

−−−→ M
e

−−−→ N

s′′
y

y s
y s′

L1

j1
−−−→ M1

e1
−−−→ N1

g
x

x j′′

L′′
t

−−−→ L′

(6)
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with a uniquely defined L′′ g
−→ L1. Thus, we have a commutative diagram

ϕ∗(L)
ϕ∗(s′′)
−−−→ ϕ∗(L1)

e2 ց ր ϕ∗(g)
ϕ∗(L′′)

(7)

where the arrow e2 is the composition of the deflation ϕ∗(L)
e′

−−−→ ϕ∗(L) and the

isomorphism ϕ∗(L′)
ϕ∗(s′′)−1

−−−→ ϕ∗(L′′). Since ϕ∗(L)
ϕ∗(s′′)
−−−→ ϕ∗(L1) is an isomorphism, it

follows from the commutativity of (7) that the arrow e2 is a retraction; in particular it
is a strict monomorphism. On the other hand, e2 is a deflation, hence an epimorphism.
Therefore, e2 is an isomorphism, which implies that the deflation e′ in the diagram (4) is

an isomorphism. Therefore, ϕ∗ maps the deflation L
j
−→M

e
−→ N to a deflation.

C3.5.1. Corollary. Let (CX, EX) and (CY, EY ) be exact categories and CX
ϕ∗

−→ CY
a left ’exact’ functor. Suppose that ϕ∗ is a localization functor. Then the functor ϕ∗ is
’exact’ iff the class of arrows Σϕ∗ = {s ∈ HomCX | ϕ

∗(s) is an isomorphism} satisfies the
condition (#) of C3.5.

Proof. The assertion is dual to that of C3.5.

C3.6. Proposition. Let (CX, EX) and (CY, EY ) be exact categories, CX
φ∗

−→ CY an
’exact’ functor, and

CX

φ∗

−−−→ CY

φ∗s ց ր φ∗c
Σ−1
φ∗ CX

its canonical decomposition into a localization and a conservative functor. The functors
φ∗s and φ∗c are ’exact’.

Proof. We call a pair of arrows L −→ M −→ N in Σ−1
φ∗ CX a conflation if it is

isomorphic to the image of a conflation of CX. We leave to the reader verifying that this
defines a structure of an exact category on the quotient category Σ−1

φ∗ CX. It follows that
the functors φ∗s and φ∗c are ’exact’.

C3.7. Proposition. Let (CX, EX) be an exact svelte category, S a family of arrows of
CX; and let ExS((CX, EX),−)) be the pseudo-functor which assigns to every exact category
(CY, EY) the category of ’exact’ functors from (CX, EX) to (CY, EY) mapping every arrow
of S to an isomorphism. The pseudo-functor ExS((CX, EX),−) is representable.

Proof. Let FS be the family of all ’exact’ functors which map S to isomorphisms,
and let S̄ denote the family of all arrows which are transformed into isomorphisms by all



272 Complementary Facts

functors from FS . Since the category CX is svelte, there exists a subset Ω of FS such that
the family of all arrows of CX made invertible by functors of Ω coincides with S̄.

The product of any set of exact categories is an exact category. In particular, the
product CXΩ of targets of functors of Ω is an exact category and the canonical functor

CX
FΩ−→ CXΩ is an ’exact’ functor. By C3.6, the functor FΩ factors through an ’exact’

localization CX

FS
−−−→ CS̄−1X. The ’exact’ functor FS is the universal arrow representing

the pseudo-functor ExS((CX, EX),−).

We need versions of the above facts for exact categories with actions.

C3.7.1. Proposition. Let (CX, EX) be an exact Z+-category, S a family of ar-
rows of CX; and let ExS((CX, EX),−)) be the pseudo-functor which assigns to every ex-
act Z+-category (CY, EY) the category of ’exact’ Z+-functors from (CX, EX) to (CY, EY)
mapping every arrow of S to an isomorphism. The pseudo-functor ExS((CX, EX),−) is
representable.

C3.8. Multiplicative systems in quasi-(co)suspended categories. Fix a quasi-
cosuspended category T−CX = (CX, θX, T rX). We call a class Σ of arrows of CX a multi-
plicative system of the quasi-cosuspended category T−CX if it is θX-invariant, closed under
composition, contains all isomorphisms, and satisfies the following condition:

(L1) for every pair of triangles

θX(L)
d
−→ N

g
−→M

f
−→ L and θX(L′)

d′

−→ N ′ g′

−→M ′ f ′

−→ L′

and a commutative diagram

M
f

−−−→ L

t
y

y s

M ′
f ′

−−−→ L′

where s and t are elements of Σ, there exists a morphism N
u
−→ N ′ in Σ such that (u, t, s)

is a morphism of triangles, i.e. the diagram

θX(L)
d

−−−→ N
g

−−−→ M
f

−−−→ L

θX(s)
y u

y t
y

y s

θX(L′)
d′

−−−→ N ′
g′

−−−→ M ′
f ′

−−−→ L′

commutes.
We denote by SM−(X) the preorder (with respect to the inclusion) of all multiplicative

systems and by SMs
−(X) the preorder of saturated multiplicative systems of the quasi-

cosuspended category T−CX.
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Recall that a multiplicative system Σ in CX is saturated iff the following condition
holds: if α, β, γ are arrows of CX such that the compositions αβ and βγ belong to Σ,
then β ∈ Σ (equivalently, all three arrows belong to Σ).

C3.8.1. Proposition. (a) Let T−CX = (CX, θX, T rX) and T−CY = (CY, θY, T rY)

be quasi-cosuspended categories and T−CX
F
−→ T−CY a triangle functor. The family of

arrows ΣF = {s ∈ HomCX | F (s) is invertible} is a saturated multiplicative system in
T−CX.

(b) Let T−CX = (CX, θX, T rX) be a quasi-cosuspended category, (CZ , EZ) an exact

category and T−CX
H
−→ (CZ , EZ) a homological functor. Then

ΣH,θX = {s ∈ HomCX | Hθ
n
X(s) is invertible for all n ≥ 0}

is a saturated multiplicative system in T−CX.

Proof. (a) For any functor F , the family ΣF is closed under composition and contains
all isomorphisms. The θX-invariance of ΣF and the property (L1) follow from the axioms
of quasi-cosuspended categories.

(b) The system ΣH,θX is closed under composition, contains all isomorphisms, and is
θX-invariant by construction. It remains to verify the property (L1). Let

θX(L)
d
−→ N

g
−→M

f
−→ L and θX(L′)

d′

−→ N ′ g′

−→M ′ f ′

−→ L′

be a pair of triangles and

M
f

−−−→ L

t
y

y s

M ′
f ′

−−−→ L′

a commutative diagram with s and t elements of ΣH,θX . By the property (S3) of quasi-

cosuspended categories, there exists a morphism N
u
−→ N ′ in Σ such that (u, t, s) is a

morphism of triangles, i.e. the diagram

θX(L)
d

−−−→ N
g

−−−→ M
f

−−−→ L

θX(s)
y u

y t
y

y s

θX(L′)
d′

−−−→ N ′
g′

−−−→ M ′
f ′

−−−→ L′

(1)

commutes. Let H denote the composition of the homological functor CX
H
−→ CZ with

the Gabriel-Quillen embedding CZ −→ CZE
, we obtain for every nonnegative integer n a
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commutative diagram

Hθn+1
X (L)

HθnX(d)

−−−→ HθnX(N)
HθnX(g)

−−−→ HθnX(M)
HθnX(f)

−−−→ HθnX(L)

Hθn+1
X (s)

y≀ HθnX(u)
y HθnX(t)

y≀ ≀
y HθnX(s)

Hθn+1
X (L′)

HθnX(d′)

−−−→ HθnX(N ′)
HθnX(g′)

−−−→ HθnX(M ′)
HθnX(f ′)

−−−→ HθnX(L′)
(2)

in the abelian category CZE
whose rows are exact sequences and three of the for vertical

arrows are isomorphisms. Therefore the fourth vertical arrow, HθnX(u) is an isomorphism
for all n ≥ 0; i.e. u belongs to ΣH,θX .

C3.8.2. Proposition. (a) Let T−CX = (CX, θX, T rX) and T−CY = (CY, θY, T rY)

be quasi-cosuspended categories. Every triangle functor T−CX

F
−−−→ T−CY is uniquely

represented as the composition of a triangle localization T−CX

Fs

−−−→ T−CXs
and a con-

servative triangle functor T−CXs

Fc

−−−→ T−CY.
(b) Let T−CX = (CX, θX, T rX) be a quasi-cosuspended category and (CZ , EZ) an exact

category. Every homological functor T−CX

H
−−−→ (CZ , EZ) is uniquely represented as the

composition of a triangle localization T−CX

Hs

−−−→ T−CXs
and a conservative homological

functor T−CXs

Hc

−−−→ (CZ , EZ).

Proof. Let Σ denote the multiplicative system ΣF of C3.8.1(a), or ΣH,θX of C3.8.1(b).
Then the quotient category Σ−1CX is an additive k-linear category having a unique struc-
ture (θ̃, T rΣ−1X) of a quasi-cosuspended category such that the localization functor

CX

q∗Σ
−−−→ Σ−1CX = CΣ−1X

is a strict triangle functor. Here strictmeans that the quasi-cosuspension functor θ̃ = θΣ−1X

is uniquely determined by the equality θ̃ ◦ q∗Σ = q∗Σ ◦ θX, and Tr−Σ−1X
is the class of all

sequences θ̃(L) −→ N −→ M −→ L in CΣ−1X which are isomorphic to the images of
triangles of TrX by the localization functor q∗Σ. Details are left to the reader.

C3.8.3. Proposition. Let T−CX = (CX, θX,Tr
−
X) be a svelte quasi-cosuspended

category, S a family of arrows of the category CX, and TrS(T−CX,−) the pseudo-functor
which assigns to every quasi-cosuspended category T−CY the category of all triangular
functors F from T−CX to T−CY transforming all arrows of S into isomorphisms. The
pseudo-functor TrS(T−CX,−) is representable.

Proof. Let FS be the family of all triangular functors which map S to isomorphisms,
and let S̄ denote the family of arrows which are transformed into isomorphisms by all
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functors from FS . Since the category CX is svelte, there exists a subset Ω of FS such that
the family of all arrows of CX made invertible by functors of Ω coincides with S̄.

The product of any set of quasi-cosuspended categories is a quasi-cosuspended cat-
egory. In particular, the product CXΩ of targets of functors of Ω is a quasi-cosuspended

category and the canonical functor CX
FΩ−→ CXΩ is a triangle functor. By C3.8.2, the func-

tor FΩ factors through a triangle localization T−CX

FS
−−−→ T−CS̄−1X. The triangle functor

FS is the universal arrow representing the pseudo-functor TrS(T−CX,−).

C3.9. Triangle subcategories. A full subcategory B of the category CX is called
a triangle subcategory of T−CX if it is θX-stable and has the following property: any

morphism M
f
−→ L of B is embedded into a triangle

θX(L)
h
−→ N

g
−→M

f
−→ L

such that N ∈ ObB.
A full triangle subcategory B of T−CX is called a thick triangle subcategory if it is

closed under extensions, i.e. if θX(L)
h
−→ N

g
−→ M

f
−→ L is a triangle with L and N

objects of B, then M belongs to B.

C3.9.1. Saturated triangle subcategories. A full triangle subcategory B of a
quasi-cosuspended category T−CX is called saturated if it coincides with its Karoubian
envelope in T−CX; i.e. any retract of an object of B is an object of B.

Evidently, every thick triangle subcategory of T−CX is saturated.
It is known that the converse is true if T−CX is a triangulated category: a full triangle

subcategory of a triangulated category is thick iff it is saturated.

C3.10. Triangle subcategories and multiplicative systems. Let T−CX =
(CX, θX, T rX) be a quasi-cosuspended k-linear category; and let B be its triangle subcat-

egory. Let Σ(B) denote the family of all arrows N
t
−→ M of the category CX such that

there exists a triangle θX(L)
h
−→ N

t
−→M

f
−→ L with L ∈ ObB. Set

Σ∞(B) = {s ∈ HomCX | θ
n(s) ∈ Σ(B) for some n ≥ 0}.

C3.10.1. Proposition. Let B be a full triangle subcategory of a quasi-cosuspended
category T−CX = (CX, θX, T rX). Then the class Σ∞(B) is a multiplicative system. It is
saturated iff the subcategory B is saturated.

Proof. It follows from the definitions of Σ(B) and Σ∞(B) that both systems are
θX-stable and contain all isomorphisms.

For a full triangle subcategory B of the quasi-cosuspended category T−CX, we set
CX/B = Σ(B)−1CX.
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C3.10.2. Proposition. Let T−CX and T−CY be quasi-cosuspended categories, and

let T−CX
F
−→ T−CY be a triangle functor. Then

(a) Ker(F ) is a thick triangle subcategory of T−CX;
(b) θX(ΣF ) ⊆ Σ(Ker(F )) ⊆ ΣF . In particular, ΣF = Σ(Ker(F )) if the quasi-

cosuspension θX is a conservative functor.

Proof. (a) If θX(L)
h
−→ N

g
−→ M

f
−→ L is a triangle in CX with L and N objects

of Ker(F ), then the functor F maps it to the triangle 0 −→ 0 −→ F (M) −→ 0, hence
F (M) = 0.

(b) Let N
t
−→M be a morphism of Σ(F ); i.e. there exists a triangle

θX(L)
h
−→ N

t
−→M

f
−→ L

with L ∈ ObKer(F ). The functor F maps it to the triangle

0 −→ F (N)
F (t)
−→ F (M) −→ 0

which means, precisely, that F (t) is an isomorphism. This shows that Σ(Ker(F )) ⊆ ΣF .

Conversely, let M
s
−→ L be a morphism of ΣF and θX(L)

h
−→ N

g
−→ M

s
−→ L a

triangle. The functor F maps it to the triangle

. . . −→ FθX(M) ∼−→ FθX(L)
F (h)
−→ F (N)

F (g)
−→ F (M) ∼−→ F (L).

Therefore, FθnX(N) = 0 for all n ≥ 0. This shows that θnX(s) ∈ Σ(Ker(F )) for n ≥ 1.

C3.11. Coaisles and t-structures in a quasi-cosuspended category.

C3.11.1. Coaisles in a quasi-cosuspended category. Let T−CX = (CX, θX, T rX)
be a quasi-cosuspended category. Its thick triangle subcategory U is called a coaisle if the

inclusion functor U
j∗−→ CX has a left adjoint, j∗.

C3.11.2. Proposition [KeV1]. Let T−CX = (CX, θX, T rX) be a triangulated k-
linear category (i.e. the quasi-cosuspension θX is an auto-equivalence). Then a strictly
full subcategory U of CX is a coaisle iff it is θX-stable and for each M ∈ ObCX, there is a
triangle

θX(M
U ) −→M⊥U −→M −→MU , (1)

where MU is an object of U and M⊥U is an object of ⊥U . The triangle (1) is unique up to
isomorphism.

Proof. Suppose U is a coaisle in T−CX, i.e. it is θX-stable and the inclusion functor

U
j∗−→ CX has a left adjoint, j∗. Fix an adjunction morphism IdCX

η
−→ j∗j

∗. Then we
have, for any M ∈ ObCX, a triangle

θXj∗j
∗(M) = θX(M

U )
∂(M)
−−−→M⊥U = K(M)

k(M)
−−−→M

η(M)
−−−→ j∗j

∗(M) =MU (2)
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Since, by hypothesis, j∗ is a triangle functor, its application to the triangle (2) produces a
triangle in the quasi-cosuspended category T−U . Since j

∗η is an isomorphism, j∗(K(M)) =
0, i.e. K(M) = M⊥U belongs to the kernel of the localization functor j∗. It is easy to see
that Ker(j∗) coincides with ⊥U .

Conversely, suppose that for every M ∈ ObCX, there exists a triangle (1) with MU ∈
ObU and M⊥U ∈ Ob

⊥U .

C3.11.2. Cores of t-structures. The core of a t-structure U
j∗−→ CX is the subcat-

egory U ∩ ⊥θX(U).

C4. Universal cohomological and homological functors.

See preliminaries on exact categories in Section 7 of Chapter I and on (co)suspended
categories in Appendix K. Categories (suspended, cosuspended, exact) and functors of this
section are k-linear for a fixed commutative unital ring k.

C4.1. k-Presheaves on a k-linear Z+-category. Fix a k-linear Z+-category

(CX, θX). Let Mk(X)
Θ∗

X

−−−→ Mk(X) denote the continuous (i.e. having a right adjoint)

extension of the functor CX

θX
−−−→ CX. This extension is determined uniquely up to

isomorphism by the quasi-commutativity of the diagram

CX

θX
−−−→ CX

hX

y
y hX

Mk(X)
Θ∗

X

−−−→ Mk(X)

where hX is the Yoneda embedding.
Let Θ∗ be a right adjoint to Θ∗

X. Notice that the projective objects of the category
Mk(X) are direct summands of coproducts of representable presheaves. Since Θ∗

X maps
representable presheaves to representable objects and preserves arbitrary coproducts, it
maps projective objects of Mk(X) to projective objects. Therefore, thanks to the fact
that the categoryMk(X) has enough projective objects, the functor Θ∗ is exact.

C4.1.1. Note. Whenever it is convenient, we shall identify a k-linear Z+-category
(CX, θX) with the equivalent to it full subcategory of the Z+-category (Mk(X),Θ

∗
X) gen-

erated by representable presheaves.

C4.2. Cohomological and homological functors. Let T+CX = (CX, θX,Tr
+
X) be

a suspended category and (CZ , EZ) an exact category. A functor CX
Φ
−→ CZ is called a

cohomological functor on T+CX with values in (CZ , EZ) (and we write T+CX
Φ
−→ (CZ , EZ)),

if for any triangle L −→M −→ N −→ θX(L), the sequence

Φ(L) −→ Φ(M) −→ Φ(N) −→ Φ(θX(L)) −→ Φ(θX(M)) −→ . . . (1)
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is ’exact’ and for any morphism L
f
−→ M of CX, there exists a kernel of Φ(f) and the

canonical monomorphism Ker(Φ(f)) −→ Φ(L) is an inflation.

Dually, if T−CX = (CX, θX,Tr
−
X) is a cosuspended category, then a functor CX

Ψ
−→ CZ

is called a homological functor T−CX
Ψ
−→ (CZ , EZ) if the dual functor CopX

Ψop
−→ CopZ is

cohomological. In other words, for any triangle θX(N) −→ L −→M −→ N , the sequence

. . . −→ Ψ(θX(M)) −→ Ψ(θX(N)) −→ Ψ(L) −→ Ψ(M) −→ Ψ(N)

is ’exact’ and for any morphism L
f
−→ M of CX, there exists a cokernel of Ψ(f) and the

canonical epimorphism Ψ(M) −→ Cok(Ψ(f)) is a deflation in (CZ , EZ).

C4.2.1. Example. Let T−CX = (CX, θX,Tr
−
X) be a k-linear cosuspended category.

Then for every W ∈ ObCX, the sequence

. . . −→ CX(W, θX(M)) −→ CX(W, θX(L)) −→ CX(W,N) −→ CX(W,M) −→ CX(W,L)
(2)

is exact. This means precisely that the Yoneda embedding

CX

h
X

−−−→Mk(X), M 7−→ CX(−,M),

is a homological functor.
Let T+CX = (CX, θX,Tr

+
X) be a suspended category. For every object V of CX and

every triangle L −→M −→ N −→ θX(L), the sequence

CX(L, V )←− CX(M,V )←− CX(N,V )←− CX(θX(L), V )←− CX(θX(M), V )←− . . .
(3)

is exact. In other words, the functor hoX dual to the Yoneda embedding

CopX −−−→ Mk(X
o), M 7−→ CX(M,−),

is a cohomological functor.

C4.3. Universal homological functors.

C4.3.1. The category CXa
. For any k-linear category CX , let CXa

denote the full
subcategory of the categoryMk(X) of k-presheaves on CX whose objects are k-presheaves
having a left resolution formed by representable presheaves.

C4.3.2. Proposition. (a) The subcategory CXa
is closed under extensions; i.e. CXa

is an exact subcategory of the abelian category Mk(X). In particular, CXa
is an additive

k-linear category.
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(b) Suppose that the category CX is Karoubian. Let

0 −→M ′ −→M −→M ′′ −→ 0

be an exact sequence inMk(X). If two of the objects M ′,M,M ′′ belong to the subcategory
CXa

, then the third object belongs to CXa
.

(b1) More generally, if CX is Karoubian and

0 −→Mn −→Mn−1 −→ . . . −→M2 −→M1 −→ 0

is an exact sequence inMk(X) with at least n−1 objects from the subcategory CXa
, then

the remaining object belongs to CXa
.

Proof. (a) Let 0 −→ M ′ −→ M −→ M ′′ −→ 0 be an exact sequence inMk(X). Let
P ′ −→ M ′ and P ′′ −→ M ′′ be projective resolutions. Then, by [Ba, I.6.7], there exists
a differential on the graded object P = P ′ ⊕ P ′′ such that the splitting exact sequence
0 −→ P ′ −→ P −→ P ′′ −→ 0 is an exact sequence of complexes which are resolutions of
the exact sequence 0 −→M ′ −→M −→M ′′ −→ 0. If the complexes P ′ and P ′′ are formed
by representable presheaves, then P is a complex of representable presheaves, hence M is
an object of the subcategory CXa

.
(b) The assertion (b) follows from [Ba, I.6.8] and (b1) is a special case of [Ba, I.6.9].

C4.3.3. Lemma. If T−CX = (CX, θX,Tr
−
X) is a cosuspended category, then objects

of CXa
are all objects M ofMk(X) such that there exists an exact sequence

M1 −→M0 −→M −→ 0,

where M0 and M1 are representable presheaves.

Proof. In fact, let M1
f
−→M0

e
−→M −→ 0 be such an exact sequence. Since M0 and

M1 are representable, there exists a triangle Θ∗
X(M0)

d
−→M2

g
−→M1

f
−→M0 which gives

rise to a resolution

. . . −−−→ Θ∗
X(M1)

Θ∗
X(f)

−−−→ Θ∗
X(M0)

d
−−−→ M2

g
−−−→ M1

f
−−−→ M0

e
−−−→ M

of the object M .

C4.3.4. Proposition. Let T−CX = (CX, θX,Tr
−
X) be a cosuspended category. Then

the corestriction CX

HX

−−−→ CXa
of the Yoneda embedding CX

hX

−−−→Mk(X) to the subcat-
egory CXa

is a universal homological functor in the following sense: for any exact category

(CZ , EZ) and a homological functor T−CX

H
−−−→ (CZ , EZ), there exists a unique up to

isomorphism ’exact’ functor (CXa
, EXa

)
Ha

−−−→ (CZ , EZ) such that H ≃ Ha ◦ HX.



280 Complementary Facts

The category CXa
has a unique up to isomorphism Z+-category structure CXa

θXa−→ CXa

such that the functor HX is a Z+-functor (CX, θX) −→ (CXa
, θXa

).

Proof. (a) Fix an exact category (CZ , EZ) with the class of deflations EZ . Let qIZ
denote the Gabriel-Quillen embedding CZ −→ CZE

. Since CZE
is a Grothendieck category,

in particular it is cocomplete (i.e. closed under colimits), any functor CX
H
−→ CZ gives a

rise to a quasi-commutative diagram

CX

H
−−−→ CZ

hX

y
y qIZ

Mk(X)
H∗

−−−→ CZE

(1)

in which the functor H∗ has a right adjoint, H∗. Since the functor H
∗ preserves colimits of

small diagrams (thanks to the existence of a right adjoint) and every object of the category
Mk(X) is a colimit of a small diagram of representable presheaves, H∗ is determined
uniquely up to isomorphism by the quasi-commutativity of the diagram (1).

If CX
H
−→ CZ is a homological functor T−CX −→ (CZ , EZ), then the composition

of H and CZ
qI
Z−→ CZE

is a homological functor, because the functor qIZ is ’exact’ and
homological functors are stable under the composition with ’exact’ functors.

(b) The diagram (1) induces the quasi-commutative diagram

CX

H
−−−→ CZ

HX

y
y qIZ

CXa

H∗
a

−−−→ CZE

(2)

The claim is that the functor H∗
a (– the restriction of the functor H∗ to CXa

) is ’exact’.
In fact, let M ′ −→M −→M ′′ be a conflation in CXa . Since the functor H∗ is right

exact, the sequence H∗(M ′) −→ H∗(M) −→ H∗(M ′′) −→ 0 is exact. It remains to show
that H∗(M ′) −→ H∗(M) is a monomorphism.

Let P ′
1

f ′

−→ P ′
0

e′
−→ M ′ −→ 0 and P ′′

1
f ′′

−→ P ′′
0

e′′
−→ M ′′ −→ 0 be exact sequences in

CXa
such that the objects P ′

i , P
′′
i , i = 0, 1, are representable. The morphisms P ′

1
f ′

−→ P ′
0

and P ′′
1

f ′′

−→ P ′′
0 can be inserted into triangles resp. Θ∗

X(P
′
0)

d′

−→ P ′
2

g′

−→ P ′
1

f ′

−→ P ′
0 and

Θ∗
X(P

′′
0 )

d′′

−→ P ′′
2

g′′

−→ P ′′
1

f ′′

−→ P ′′
0 which give rise to the complexes

P ′ =
(
. . . −−−→ Θ∗

X(P
′
1)

Θ∗
X(f ′)

−−−→ Θ∗
X(P

′
0)

d′

−−−→ P ′
2

g′

−−−→ P ′
1

f ′

−−−→ P ′
0

)
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and

P ′′ =
(
. . . −−−→ Θ∗

X(P
′′
1 )

Θ∗
X(f ′′)

−−−→ Θ∗
X(P

′′
0 )

d′′

−−−→ P ′′
2

g′′

−−−→ P ′′
1

f ′′

−−−→ P ′′
0

)

By (the argument of) C4.3.2(a), there is a commutative diagram

0 −−−→ P ′ −−−→ P −−−→ P ′′ −−−→ 0

e′
y e

y
y e′′

0 −−−→ M ′ −−−→ M −−−→ M ′′ −−−→ 0

(3)

in which P ′ e′
−→M ′, P ′′ e′′

−→M ′′, and P
e
−→M are projective resolutions and

0 −→ P ′ −→ P −→ P ′′ −→ 0

is an exact sequence of projective complexes. Since H∗ ◦ hX is a cohomological functor,
the complexes H∗(P ′) and H∗(P ′′) are exact. Together with the exactness of the sequence

0 −→ H∗(P ′) −→ H∗(P) −→ H∗(P ′′) −→ 0

this implies the exactness of the complex H∗(P). Now it follows from the commutative
diagram

0 −−−→ H∗(P ′) −−−→ H∗(P) −−−→ H∗(P ′′) −−−→ 0

H∗(e′)
y H∗(e)

y
y H∗(e′′)

0 −−−→ H∗(M ′) −−−→ H∗(M) −−−→ H∗(M ′′) −−−→ 0

that H∗(M ′) −→ H∗(M) is a monomorphism; hence the sequence

0 −→ H∗(M ′) −→ H∗(M) −→ H∗(M ′′) −→ 0

is exact.
(c) There is a unique up to isomorphism functor CXa

Ha−→ CZ such that H∗
a ≃ qIZ ◦Ha.

The functor Ha is an ’exact’ functor (CXa
, EXa

) −→ (CZ , EZ).

Let M be an object of CXa
, and let P1

f
−→ P0

e
−→ M −→ 0 be an exact sequence

with representable objects P0 and P1. Since H is a homological functor, there exists a
cokernel of the morphism H(f). We set Ha(M) = Cok(H(f)). Since the functor H∗ is

right exact, it maps P1
f
−→ P0

e
−→ M −→ 0 to an exact sequence. Therefore, because

the Gabriel-Quillen embedding (CZ , EZ)
qI
Z−→ (CZE

, EZE
) is an ’exact’ functor, we have an

isomorphism qIZ(Ha(M)) ≃ H∗(M). Since the functor qIZ is fully faithful, it follows that
the object Ha(M) is defined uniquely up to isomorphism. By a standard argument, once
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the objects Ha(M) and Ha(N) are fixed, any morphism M
g
−→ N determines uniquely a

morphism Ha(M) −→ Ha(N).
The ’exactness’ of Ha follows from the isomorphism H∗

a ≃ qIZ ◦Ha, because the functor
H∗

a is ’exact’ (by (b) above) and the functor qIZ reflects ’exactness’: if L′ −→ L −→ L′′ is
a sequence in CZ such that the sequence 0 −→ qIZ(L

′) −→ qIZ(L) −→ qIZ(L
′′) −→ 0 is

exact, then L′ −→ L −→ L′′ is a conflation.
(d) The isomorphismH∗

a ≃ qIZ◦Ha implies that qIZ◦(Ha◦HX) ≃ H
∗
a◦HX ≃ qIZ◦H. Since

the functor qIZ is fully faithful, it follows that H ≃ Ha ◦HX. It follows from the definition
of the exact category CXa

and the exactness of the functor Ha that it is determined by
the isomorphism H ≃ Ha ◦ HX uniquely up to isomorphism.

(e) The extensionMk(X)
Θ∗

X−→Mk(X) of the functor CX
θ∗X−→ CX maps representable

presheaves to representable presheaves and has a right adjoint functor. In particular,
Θ∗

X is a right exact functor, and it maps an exact sequence P1 −→ P0 −→ M −→ 0 in
Mk(X) with representable presheaves P1 and P0 to an exact sequence of the same type.
By C4.3.3, this implies that the subcategory CXa

is Θ∗
X-stable. Therefore, Θ∗

X induces a

functor CXa

θXa−→ CXa
such that the diagram

CX

θX
−−−→ CX

HX

y
y HX

CXa

θXa

−−−→ CXa

quasi-commutes, i.e. HX is a Z+-functor (CX, θX) −→ (CXa
, θXa

).

C4.3.5. Remarks. (a) The universal property described in C4.3.4 determines the

exact category (CXa
, EXa

) and the functor CX
HX−→ CXa

uniquely up to equivalence.
(b) It follows from the definition of the category CXa

that its projective objects are
retracts of representable presheaves. In particular, if the category CX is Karoubian, then
every projective object of the exact category CXa

is isomorphic to an object of the form

HX(M) for some M ∈ ObCX. In other words, the canonical embedding CX
HX−→ CXa

induces an equivalence between CX and the full subcategory of the category CXa
generated

by all projective objects of CXa
.

The following proposition is a cosuspended version of Theorem 2.2.1 in [Ve2].

C4.3.6. Proposition. The map which assigns to each cosuspended category T−CX =
(CX, θX,Tr

−
X) the exact category CXa

is functorial in the following sense: to every triangle

functor Φ̃ = (Φ, φ) from a cosuspended category T−CX to a cosuspended category T−CY,

there corresponds an ’exact’ Z+-functor (CXa
, EXa

)
Φa

−−−→ (CYa
, EYa

) which maps projec-
tive objects to projective objects. The functor Φa is determined uniquely up to isomorphism
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by the quasi-commutativity of the diagram

CX

Φ
−−−→ CY

HX

y
y HY

CXa

Φa

−−−→ CYa

(1)

Proof. (a) Since Φ̃ = (Φ, φ) is a triangle functor and HY is a homological functor, the
composition, HY◦Φ is a homological functor. By the universal property of the homological

functor CX
HX−→ CXa

(see C4.3.4), there exists a unique (up to isomorphism) exact functor

CXa

Φ̃a

−−−→ CYa
such that the diagram (1) quasi-commutes. The quasi-commutativity of

the diagram (1) implies that Φ̃a maps representable presheaves to representable presheaves.
Since projective objects of the categories CXa

and CYa
are all possible retracts (direct

summands) of representable presheaves, it follows that Φ̃a maps projective objects to
projective objects.

The isomorphism Φ ◦ θX
φ
−→ θY ◦ Φ induces an isomorphism Φa ◦ Θ

a
X

φa
−→ Θa

Y ◦ Φa,
where Θa

X is the endofunctor CXa
−→ CXa

induced by Θ∗
X. So that the pair (Φa, φa) is a

Z+-functor (CXa
,Θa

X) −→ (CXa
,Θa

X) and the diagram (1) is a diagram of Z+-functors.

Let T−CX be a cosuspended category and (CZ , EZ) an exact category. We denote by
Ex((CXa

, EXa
), (CZ , EZ)) the category whose objects are ’exact’ functors from (CXa

, EXa
)

to (CZ , EZ) and morphisms are morphisms of functors. Let Hom(CX, CZ) denote the
category whose objects are functors from CX to CZ and morphisms are morphisms of
functors.

C4.3.7. Proposition. The composition with the functor CX

HX

−−−→ CXa
defines a

fully faithful functor

Ex((CXa
, EXa

), (CZ , EZ)) −−−→ Hom(CX, CZ)

which induces an equivalence of the category Ex((CXa
, EXa

), (CZ , EZ)) with the full subcat-
egory of Hom(CX, CZ) generated by homological functors.

Proof. The assertion is a corollary of (actually, it is equivalent to) C4.3.4.

C4.3.8. Triangle functors. Let T−CX = (CX, θX,Tr
−
X) and T−CY = (CY, θY,Tr

−
Y)

be cosuspended categories, and let Φ̃ = (Φ, φ) be a triangle functor T−CX −→ T−CY. Then
we have a quasi-commutative diagram of Z+-categories and Z+-functors

(CX, θX)
HX

−−−→ (CXa
, θXa

)
QXa

−−−→ (CXE
a
,ΘXE

a
)

Φ
y

y Φa

y Φ∗
E

(CY, θY)
HY

−−−→ (CYa
, θYa

)
QYa

−−−→ (CYE
a
,ΘYE

a
)

(1)
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in which QXa
and QYa

are Gabriel-Quillen embeddings, the functor Φa is exact, and the
functor Φ∗

E has a right adjoint, ΦE∗, which is an exact functor.

C4.4. The category CXm
and abelianization of triangulated categories. Fix a

k-linear cosuspended category T−CX = (CX, θX,Tr
−
X). We denote by CXm

the strictly full
subcategory of the categoryMk(X) of k-presheaves on CX whose objects are (isomorphic
to) images of morphisms between representable presheaves. In other words, an object of
Mk(X) belongs to CXm

iff it is a subobject and a quotient object of some representable
presheaves. An immediate consequence of this description is that the category CXm

is
Karoubian. It is easy to show that the subcategory CXm

is closed under finite coproducts
inMk(X); i.e. CXm

is an additive subcategory ofMk(X).
Notice that CXm

is a subcategory of CXa
. In fact, by the definition of the subcategory

CXm
, for every its object M , there exist an epimorphism M0

e
−→M and a monomorphism

M
j
−→ L0, where M0 and L0 are representable presheaves. There is a triangle

Θ∗
X(L0)

d
−−−→M1

g
−−−→M0

j◦e
−−−→ L0.

Since this triangle is an exact sequence, we have an exact sequence

M1
g
−→M0

e
−→M −→ 0

with M0,M1 representable presheaves. By C4.3.3, M is an object of CXa
.

It follows that an object of CXa
belongs to the subcategory CXm

iff it is a subobject
of a representable presheaf.

C4.4.1. Proposition. (a) The subcategory CXm
is Θ∗

X-stable.
(b) For every morphism α of CXm

, the kernel and cokernel of Θ∗
X(α) belong to the

subcategory CXm
.

Proof. (i) Let K
α
−→ K ′ be morphism of CXm

; i.e. there existM
f
−→ L andM ′ f ′

−→ L′

such that K = Im(f), K ′ = Im(f ′), and presheaves M and M ′ are representable. Let

Θ∗
X(L)

h
−→ N

g
−→ M

f
−→ L and Θ∗

X(L
′)

h′

−→ N ′ g′

−→ M ′ f ′

−→ L′ be triangles. Then there
is a commutative diagram

Θ∗
X(M)

Θ∗
X(f)

−−−→ Θ∗
X(L)

h
−−−→ N

g
−−−→ M

e
−−−→ K

j
−−−→ L

Θ∗
X(ξ1)

y ξ̃0

y
y ξ2

y ξ1

y α

Θ∗
X(M

′)
Θ∗

X(f ′)

−−−→ Θ∗
X(L

′)
h′

−−−→ N ′
g′

−−−→ M ′
e′

−−−→ K ′
j′

−−−→ L′

(7)

constructed as follows. The arrow M
ξ1
−→ M ′ is due to the fact that M is a projective

object of Mk(X) and M ′ e′

−→ K ′ is an epimorphism. Similarly, the morphism N
ξ2
−→ N ′
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exists because the sequence N ′ g′

−→M ′ e′

−→ K ′ is exact and the object N is projective. By
the property (SP2), the sequences

Θ∗
X(M)

−Θ∗
X(f)

−−−→ Θ∗
X(L)

h
−−−→ N

g
−−−→M

and

Θ∗
X(M

′)
−Θ∗

X(f ′)

−−−→ Θ∗
X(L

′)
h′

−−−→ N ′
g′

−−−→M ′

are triangles. By (SP3), there exists a morphism Θ∗
X(L)

ξ̃0
−→ Θ∗

X(L
′) such that the diagram

Θ∗
X(M)

−Θ∗
X(f)

−−−→ Θ∗
X(L)

h
−−−→ N

g
−−−→ M

Θ∗
X(ξ1)

y ξ̃0

y
y ξ2

y ξ1

Θ∗
X(M

′)
−Θ∗

X(f ′)

−−−→ Θ∗
X(L

′)
h′

−−−→ N ′
g′

−−−→ M ′

commutes. Therefore, the diagram (7) commutes.
(ii) Since the functor Θ∗

X is right exact, the arrows Θ∗
X(e) and Θ∗

X(e
′) in the commu-

tative diagram

Θ∗
X(N)

Θ∗
X(g)

−−−→ Θ∗
X(M)

Θ∗
X(e)

−−−→ Θ∗
X(K)

Θ∗
X(j)

−−−→ Θ∗
X(L)

h
−−−→ N

Θ∗
X(ξ2)

y
y Θ∗

X(ξ1) Θ∗
X(α)

y ξ̃0

y
y ξ2

Θ∗
X(N

′)
Θ∗

X(g′)

−−−→ Θ∗
X(M

′)
Θ∗

X(e′)

−−−→ Θ∗
X(K

′)
Θ∗

X(j′)

−−−→ Θ∗
X(L

′)
h′

−−−→ N ′

(8)
are epimorphisms. It follows from the exactness of the rows in (7) that the arrows Θ∗

X(j)
and Θ∗

X(j
′) are monomorphisms.

An argument similar to that of [Ve2, 3.2.5] applied to the commutative diagram (7)
shows that the kernel and cokernel of the morphism Θ∗

X(α) belong to the subcategory CXm
.

Since α is an arbitrary morphism of CXm
, it follows, in particular, that the subcategory CXm

is Θ∗
X-stable; i.e. it has a natural structure of a Z+-category and the Yoneda embedding

induces a Z+-functor (CX, θ) −→ (CXm
,Θ∗

X).

C4.4.2. Note. Since the Yoneda functor CX
hX−→ Mk(X) takes values in CXm

, the
Z+-category (CXm

,ΘXm
) has enough projective objects. It follows that the ’translation’

functor CXm

ΘXm

−−−→ CXm
induced by Θ∗

X maps projective objects to projective objects.

C4.4.3. Proposition. Suppose that the cosuspension functor CX
θX−→ CX is a cate-

gory equivalence, i.e. T−CX = (CX, θX,Tr
−
X) is a triangulated category. Then CXm

is an
abelian category which coincides with CXa

.
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Proof. If the suspension functor CX
θX−→ CX is a category equivalence, then its ex-

tension Θ∗
X is a category equivalence. In this case, it follows from C4.4.1(ii) that the

subcategory CXm
contains kernels and cokernels of all its morphisms, hence CXm

is an
abelian subcategory of Mk(X). Since every object of the category CXa

is the cokernel
of a morphism between representable objects, it follows that CXa

⊆ CXm
. Therefore

CXa
= CXm

.

C4.4.4. Note. Proposition C4.4.3 together with 3.2.4 and 5.2.6 recover, in particular,
the ’abelianization’ theory for triangulated categories [Ve2, II.3].

C4.5. Triangulation and abelianization of cosuspended categories.

C4.5.1. Inverting endofunctors. A Z-category (CX, θX) is called strict if the
endofunctor θX is an auto-morphism of the category CX.

There is a standard construction which assigns to each Z+-category (CX, θX) a strict
Z-category (CXs

, θXs
). Objects of the category CXs

are pairs (n,M), where n ∈ Z and
M ∈ ObCX. Morphisms are defined by

CXs
((s,M), (t,N))

def
= colim
n > s, t

CX(θ
n−s
X (M), θn−tX (N)). (1)

The composition is determined by the compositions

CX(θ
n−r
X (L), θn−sX (M))× CX(θ

n−s
X (M), θn−tX (N)) −−−→ CX(θ

n−r
X (L), θn−tX (N)).

The functor θXs
is defined on objects by θXs

(s,M) = (s−1,M). It follows from (1) above
that there is a natural isomorphism

CXs
((s,M), (t,N)) ∼−→ CXs

(θXs
(s,M), θXs

(t,N)) = CXs
((s− 1,M), (t− 1, N)),

which is the action of θXs
on morphisms.

There is a functor CX

ΦX

−−−→ CXs
which maps an object M of CX to the object (0,M)

and a morphism M −→ N to its image in

CXs
((0,M), (0, N))

def
= colim
n ≥ 1

CX(θ
n
X(M), θnX(N)).

The morphism

θXs
◦ ΦX(M) = (−1,M)

ϕ
X
(M)

−−−→ ΦX ◦ θX(M) = (0, θX(M))

is the image of the identical morphism θX(M) −→ θX(M).
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Let Z+ − Catk denote the category of svelte k-linear Z+-categories, and let Z− Catk
denote its full subcategory generated by k-linear strict Z-categories.

C4.5.1.1. Proposition. The map which assigns to a Z+-category (CX, θX) the strict

Z-category (CXs
, θXs

) extends to a functor Z+ − Catk
J∗

−−−→ Z − Catk which is a left

adjoint to the inclusion functor Z− Catk
J∗

−−−→ Z+ − Catk.

Proof. The morphisms (CX, θX)
(ΦX,ϕX)
−−−→ (CXs

, θXs
) defined above form an adjunc-

tion morphism from identical functor on Z − Catk to the composition J∗J
∗. The second

adjunction morphism is a natural isomorphism.

C4.5.2. Cosuspended categories and strict triangulated categories. The
construction of C4.5.1 extends to a functor from the category of cosuspended categories to
the category of strict triangulated categories. Recall that a triangulated category TCX =
(CX, θX, T r

−
X ) is strict if θX is an auto-morphism of the category CX.

C4.5.2.1. Proposition [KeV]. To any cosuspended category T−CX = (CX, θX, T r
−
X ),

there corresponds a strict triangulated category T−CXs
and a triangle functor

T−CX

(ΦX,ϕX
)

−−−→ T−CXs

such that for every triangulated category TCY, the functor

T̃r
−

k (T−CXs
,TCY) −−−→ T̃r

−

k (T−CX,TCY) (1)

of composition with (ΦX, ϕX) is an equivalence of categories.
(a) If TCY is a strict triangulated category, then (1) is an isomorphism of categories.
(b) If T−CX is a triangulated category, then (ΦX, ϕX) is a triangle equivalence.

Proof. By C4.5.1, objects of the category T−CXs
are pairs (n,M), where n ∈ Z and

M ∈ ObCX. The triangles are sequences

θXs
(r, L) = (r − 1, L) −→ (t,N) −→ (s,M) −→ (r, L)

associated to sequences

θXθ
n−r
X (L)

w
−→ θn−tX (N)

v
−→ θn−sX (M)

u
−→ θn−rX (L)

such that ((−1)nw, v, u) is a triangle.

Let T−Catk (resp. TrCatk) denote the category whose objects are svelte cosuspended
(resp. svelte triangulated strict) k-linear categories and morphisms are triangle functors.
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C4.5.3. Proposition. The map which assigns to each cosuspended category the

corresponding strict triangulated category extends to a functor T−Catk
tJ∗

−−−→ TrCatk which
is a left adjoint to the inclusion functor.

Proof. See C4.5.1.1.

C4.5.4. Proposition. Let T−CX be a cosuspended k-linear category. The functor

Z+ − Catk
J∗

−−−→ Z − Catk maps the natural embedding CXm
−→ CXa

of Z+-categories
to an equivalence between abelian strict Z-categories.

Proof. It follows from the construction of the functor J∗ that it is compatible with

the ’triangularization’ functor T−Catk
tJ∗

−−−→ TrCatk of C4.5.3. The constructions of the
categories CXm

and CXa
are also compatible with the functors triangularization functor and

the functor J∗. By C4.4.3, the categories CXm
and CXa

coincide if T−CX is a triangulated
category, hence the assertion.

C4.6. Complements.

C4.6.0. Exact categories and exact categories with enough projective ob-
jects. Let (CX ,EX) be an exact category and CXP

its full subcategory generated by all
objects M of CX such that there exists a deflation P −→ M , where P is a projective
object of (CX ,EX). It follows from (the argument of) C4.3.2 that the subcategory CXP

is fully exact (i.e. it is closed under extensions). In particular, it is an exact subcategory
of (CX ,EX). By construction, this exact subcategory, (CXP

,EXP
), has enough projective

objects.

Let Catex denote the bicategory of exact categories (whose 1-morphisms are ’exact’

functors) and CatPex its full subcategory generated by exact categories with enough pro-
jective objects. The map which assigns to every exact category (CX ,EX) its fully exact

subcategory (CXP
,EXP

) extends to a 2-functor from Catex to CatPex which is left adjoint

to the inclusion functor CatPex −→ Catex (in the 2-categorical sense).

C4.6.1. Costable categories in terms of complexes. Let (CX ,EX) be an exact
category. Consider the full subcategory CP0X of the homotopy category H(CX) whose

objects are acyclic complexes P = (. . .
d2−→ P2

d1−→ P1
d0−→ P0 −→ M −→ 0) such that

objects Pi, i ≥ 0, are projective.

The category CP0X has a natural Z+-action given by the ’translation’ functor θ−

which assigns to every object P = (. . .
d2−→ P2

d1−→ P1
d0−→ P0 −→ M −→ 0) the object

θ−(P) = (. . .
d2−→ P2

d1−→ P1
d0−→ Cok(d0) −→ 0).

C4.6.1.1. Lemma. Let (CX , EX) be an exact category with enough projective objects.
Then the costable category CS−X of CX is Z+-equivalent to the category CP0X .
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Proof. The equivalence is given by the functor CP0X −→ CS−X which assigns to

every object P = (. . .
d2−→ P2

d1−→ P1
d0−→ P0 −→M −→ 0) of CP0X the (image in CS−X

of the) cokernel of P1
d0−→ P0. The quasi-inverse functor assigns to each objectM of CS−X

(the image in CP0X of) its projective resolution (. . . −→ P2 −→ P1 −→ P0 −→M −→ 0).
It follows from the definitions that both functors are compatible with the Z+-actions

on the respective categories.

C4.6.2. Homological dimension.

C4.6.2.1. Proposition. Let (CX , EX) be an exact category with enough projective

objects, T−CS−X = (CS−X , θ,TrS−X) its costable cosuspended category, and CX
PX−→

CS−X the canonical projection.
(a) The following condition on an object M of CX are equivalent:

(a1) hd(M) ≤ n;
(a2) θn(PX(M)) = 0.

(b) An object M of CX is projective iff its image in the costable category is zero.

Proof. Consider first the case n = 0. Then the condition (a1) means that the object
M is projective. The condition (a2) reads: the image of M in the costable category is
zero. The implication (a)⇒ (b) follows from the definition of the costable category.

On the other hand, the image ofM in the costable category is zero iff the image of the
identical morphism id

M
is zero. The latter means that id

M
factors through a projective

object, i.e. M is a retract of a projective object, hence it is projective.

Suppose now that n ≥ 1. Let (. . .
d1−→ P1

d0−→ P0 −→ M) be a projective resolu-
tion of the object M . By the definition of the cosuspension θ, there is an isomorphism
θ(PX(M)) ≃ PX(im(d0)). Therefore, θn(PX(M)) ≃ PX(im(dn−1). The homological
dimension of M is less or equal to n iff im(dn−1) is a projective object, or, equivalently,
PX(im(dn−1) = 0.

C4.6.2.1.1. Corollary. Let (CX , EX) be an exact category with enough projective
objects. The following conditions are equivalent:

(a) hd(CX , EX) ≤ n;
(b) θn = 0.
In particular, hd(CX , EX) = 0 iff the costable category of (CX , EX) is trivial.

C4.6.2.2. Homological dimension of objects of a cosuspended category. Let
T−CX = (CX, θX,Tr

−
X) be a cosuspended category. We say that an object M of CX has

homological dimension n if θn(M) = 0 and θn−1(M) 6= 0. In particular, an object of CX

is of homological dimension zero iff it is zero.

C4.6.2.3. Proposition. Let T−CX = (CX, θX,Tr
−
X) be a cosuspended category.

(a) The full subcategory CXhω of the category CX generated by the objects of finite
homological dimension is a thick cosuspended subcategory of T−CX.
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(b) The subcategory CXhω is contained in the kernel of the canonical ”triangulariza-

tion” functor T−CX

(ΦX,ϕX
)

−−−→ T−CX(Z) (see C4.5.2.1.)

Proof. (a) Recall that a full cosuspended subcategory B of T−CX is called a thick

cosuspended subcategory if it is closed under extensions, i.e. if θX(L)
h
−→ N

g
−→M

f
−→ L

is a triangle and L and N are objects of B, then M is an object of B too.
By K8.4(b), for every triangle θX(L)

w
−→ N

v
−→ M

u
−→ L, the sequence of repre-

sentable functors

. . .−−−→ CX(−, θX(L))
CX(−,w)
−−−→ CX(−, N)

CX(−,v)
−−−→ CX(−,M)

CX(−,u)
−−−→ CX(−, L)

is exact. In particular, there is an exact sequence of representable functors

. . .−−−→ CX(−, θ
n
X(N)) −−−→ CX(−, θ

n
X(M)) −−−→ CX(−, θ

n
X(L)) −−−→ . . . (1)

for every positive integer n. If the objects L and N have finite homological dimension, i.e.
θnX(L)) and θ

n
X(N)) are zero objects for some n, then it follows from the exactness of the

sequence (1) that θnX(M)) = 0.
(b) Triangulated categories are precisely cosuspended categories whose cosuspension

functor is an auto-equivalence. Therefore, every nonzero object of a triangulated category
has an infinite homological dimension.

C4.6.2.4. Homological dimension of a cosuspended category. Homological di-
mension of the cosuspended category T−CX is, by definition, the supremum of homological
dimensions of its objects. In particular, hd(CX) ≤ n for some finite n iff θnX = 0.

C4.6.3. The stable and costable categories of an arbitrary exact category.
Let (CX , EX) be an exact category with the class of deflations (resp. inflations) EX (resp.

MX). Let CX
qI
X−→ CXE

be the Gabriel-Quillen embedding. Since CXE
is a Grothendieck

category, it has enough injective objects. In particular, CXE
has the stable suspended

category (CS+XE
,ΘXE

,TrS+XE
) with infinite coproducts and products.

The composition of the Gabriel-Quillen embedding and the projection CXE
−→ CS+XE

gives a functor CX −→ CS+XE
. We call the stable category of the exact category CX the

triple (CT+X ,ΘX ,TrT+X), where CT+X is the smallest ΘXE
-invariant full subcategory of

CS+XE
containing the image of CX , ΘX is the endofunctor of CT+X induced by ΘXE

, and
TrT+X is the class of all triangles from TrS+XE

which belong to the subcategory CT+X .
One can see that (CT+X ,ΘX ,TrT+X) is a full suspended subcategory of the suspended

category (CT+XE
,ΘXE

). If the exact category CX has enough injective objects, then the
suspended category (CT+X ,ΘX) is equivalent to the stable category of CX defined earlier.

The costable category (CT−X , θX ,TrT−X) of the exact category CX is defined dually.

C4.6.4. Canonical resolutions.
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C4.6.4.1. The resolution of a cosuspended category. Let T−CX = (CX, θX,TrX)
be a cosuspended category. The universal homological functor is the full embedding the

Z+-categories (CX, θX)
HX

−−−→ (CXa
,ΘXa

) which realizes CX as a subcategory of the full
subcategory of CXa

generated by projective objects of (CXa
, EXa

). Since the exact category
CXa

has enough projective objects, its costable category CS−Xa
is (the underlying cate-

gory of) a cosuspended category with the cosuspension functor θ2. Since the functor ΘXa

maps projective objects to projective objects, it induces an endofunctor θ1 on the costable
category CS−Xa

. It follows from the exactness of the functor ΘXa
that θ1 ◦θ2 ≃ θ2 ◦θ1; i.e.

CTXa
is a cosuspended Z+-category. In particular, it is a Z+×Z+-category. The canonical

universal homological functor embeds the cosuspended Z+-category CS−Xa
into an exact

Z+ × Z+-category C(S−Xa)a , etc.. As a result of this procedure, we obtain a sequence of
categories and functors

CX

H
X

−−−→ CXa

P
Xa

−−−→ CX1

H
X1

−−−→ CXa,1

P
Xa,1

−−−→ . . .

. . .
P

Xa,n−1

−−−→ CXn

H
Xn

−−−→ CXa,n

P
Xa,n

−−−→ CXn+1

H
Xn+1

−−−→ . . .

(1)

where Xa,n = (Xn)a, Xn+1 = S−Xa,n for n ≥ 0 and X0 = X.
It follows that Xn is represented by a cosuspended Z

n
+-category (hence a Z

n+1
+ -

category), Xa,n is represented by an exact Z
n+1
+ -category; and the universal homological

functor H
Xn

and the canonical projections P
Xa,n

are Z
n
+-functors. All exact categories

(CXa,n , EXa,n) have enough projective objects.
For every exact category (CX , EX) with enough projective objects, let ΦX denote the

composition of the projection CX
PX−→ CS−X to the costable category and the universal

homological functor CS−X

HS−X

−−−→ CS−Xa
.

Set Φn = H
Xn
◦P

Xa,n−1
. Then we have a sequence of functors

CX

H
X

−−−→ CXa

Φ
Xa

−−−→ CXa,1

Φ
Xa,1

−−−→ CXa,2

Φ
Xa,2

−−−→ . . .

. . .
Φ

Xa,n−2

−−−→ CXa,n−1

Φ
Xa,n−1

−−−→ CXa,n

Φ
Xa,n

−−−→ CXa,n+1

Φ
Xa,n+1

−−−→ . . .

(2)

in which the composition of any two consecutive arrows equals to zero. The kernel of the

functor CXa,n

Φ
Xa,n

−−−→ CXa,n+1 coincides with the full subcategory of the category CXa,n

generated by all its projective objects. It coincides with the Karoubian envelope in CXa,n

of the image of the functor Φ
Xa,n−1

.

C4.6.4.2. The resolution of an exact category with enough projective ob-
jects. Let (CX , EX) be an exact category with enough projective objects. Let CPX denote
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the full subcategory of the category CX generated by all projective objects of (CX , EX).
Then we have a sequence

CPX

K
X

−−−→ CX
P
X

−−−→ CX0

H
X0

−−−→ CXa,0

P
Xa,0

−−−→ CX1

H
X1

−−−→ CXa,1 . . .

. . .
P

Xa,n−1

−−−→ CXn

H
Xn

−−−→ CXa,n

P
Xa,n

−−−→ CXn+1

H
Xn+1

−−−→ . . .

(3)

where X0 = S−X, i.e. CX0 is the costable category of the exact category (CX , EX), and
the rest is defined as in (1) above. Again, one can ignore the intermediate cosuspended
categories and obtain a complex of exact categories

CPX

K
X

−−−→ CX
Φ
X

−−−→ CXa,0

Φ
Xa,0

−−−→ CXa,1

Φ
Xa,1

−−−→ . . .

. . .
Φ

Xa,n−1

−−−→ CXa,n

Φ
Xa,n

−−−→ CXa,n+1

Φ
Xa,n+1

−−−→ CXa,n+2

Φ
Xa,n+2

−−−→ . . .

(4)

C4.6.4.3. Note. If T−CX = (CX, θX,TrX) is a triangulated category (i.e. θX is
an auto-equivalence), then all the cosuspended Z

n
+-categories T−CXn = (CXn , θXn ,TrXn)

constructed above are triangulated Z
n-categories and all exact Z

n
+-categories CXa,n are

abelian Z
n-categories.

C5. The weak costable category of a right exact category.

C5.1. Definition. Let (CX ,EX) be a right exact category such that the category
CX has an initial object, x. We denote by Pr(X,EX) the full subcategory of CX whose

objects are projective objects. Let S̃X denote the class of all arrows t1 in the commutative
diagram

Ker(e′)
k(e′)
−−−→ P

e
−−−→ M

t1

y
y t0

y id
M

Ker(e′)
k(e)
−−−→ V

e
−−−→ M

where e, e′ are deflations, t0 (hence t1) are split epimorphisms, and P (hence V ) is an

object of Pr(X,EX). Let SX be the smallest saturated system containing S̃X and all
deflations P −→ P ′ with P and P ′ in Pr(X,EX). We call the quotient category S−1

X CX
the weak costable category of the right exact category (CX ,EX) and denote it by CS−X .

C5.1.1. Proposition. Let (CX ,EX) be a right exact category with initial objects and
enough projective objects. For any object N of the costable category, let θwX(N) denote the

image in CS−X of Ker(e), where P
e
−→ N is a deflation with P projective (we identify
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objects of CS−X with objects of CX). The object θwX(N) is determined uniquely up to
isomorphism. The map N 7−→ θwX(N) extends to a functor CS−X −→ CS−X .

Proof. Let P ′ e′

−→ N
e′′

←− P ′′ be deflations with P ′ and P ′′ projective objects. Since
(CX ,EX) has enough projective objects, there exists (by the argument C5.3.1(a)) a com-
mutative diagram

P
t′0
−−−→ P ′

t′′0

y
y e′

P ′′
e′′

−−−→ N

whose arrows are deflations and the object P is projective. Therefore, we have a commu-
tative diagram

Ker(e′)
k′

−−−→ P ′
e′′

−−−→ N

t′1

x
x t′0

x idN

Ker(e)
k

−−−→ P
e′′

−−−→ N

t′′1

y
y t′′0

y idN

Ker(e′′)
k′′

−−−→ P ′′
e′′

−−−→ N

Since t′0 and t
′′
0 are deflations to projective objects, they are split epimorphisms. Therefore,

t′1 and t′′1 are split epimorphisms, i.e. they belong to S̃X (cf. 2.5).

Consider a diagram N
f
−→ L

e′

←−M, where e′ is a deflation. Then we have a commu-
tative diagram

Ker(σ)
k(σ)
−−−→ P

σ
−−−→ N

t1

y
y t0

y idN

Ker(e)
k(e)
−−−→ N

e
−−−→ N

f1

y
y f0

y f

Ker(e′)
k(e′)
−−−→ M

e′

−−−→ L

(1)

in which the right lower square is cartesian, the morphism f1 is uniquely determined by the
choice of f0 (hence both f0 and f1 are determined by f uniquely up to isomorphism), t0
is a deflation, and t1 is (a deflation) uniquely determined by t0. Applying the localization

CX
q∗
SX−→ CS−X , we obtain morphisms

θwX(N) ∼−→ q∗SX (Ker(σ))
q∗
SX

(t1)

−−−→ q∗SX (Ker(e))
q∗
SX

(f1)

−−−→ q∗SX (Ker(e
′)). (2)
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The only choice in this construction is that of the deflation P
t0−→ N. If P ′ s0−→ N is

another choice, then there exists a commutative square

P ′′
s′′0
−−−→ P

t′′0

y
y t0

P ′
s0
−−−→ N

whose arrows are deflations and the object P ′′ is a projective. Therefore, t′′0 and s′′0 are
split deflations, and we have a commutative diagram

Ker(σ′)
k(σ′)
−−−→ P ′

σ′

−−−→ N

s′′1

x
x s′′0

x idN

Ker(σ′′)
k(σ′′)
−−−→ P ′′

σ′′

−−−→ N

t′′1

y
y t′′0

y idN

Ker(σ)
k(σ)
−−−→ P

σ
−−−→ N

(3)

whose vertical arrows belong to SX , i.e. their images in the costable category are isomor-
phisms. This implies that the composition θwX(N) −→ q∗SX (Ker(e

′)) of morphisms of (2)

does not depend on the choice of the deflation P
t0−→ N. TakingM projective, we obtain a

morphism θwX(N)
θX(f)
−−−→ θwX(L) which is uniquely defined once the choice of objects θwX(N)

and θwX(L) is fixed.

C5.2. The weak cosuspension functor. Let (CX ,EX) be a right exact category
with enough projective objects and initial objects. Let CS−X its cosuspended category.

The functor CS−X

θwX
−−−→ CS−X defined in C5.1.1 is called the weak cosuspension functor.

Notice that the weak costable category CS−X of (CX ,EX) has initial objects. If the
category CX is pointed, then CS−X is pointed and the image in CS−X of each projective
object of (CX ,EX) is a zero object.

C5.2.1. Note. It follows from C6.7.1 that if the category CX is additive, then the
weak costable category CS−X with the weak cosuspension functor θwX is equivalent to the
costable category CT−X with the cosuspension functor θX .

C5.3. Right exact categories of modules over monads and their weak
costable categories. Suppose that CX is a category with initial objects and such that
the class EsplX of split epimorphisms of CX is stable under base change; so that (CX ,E

spl
X )

is a right exact category. Let F = (F, µ) be a monad on CX . Set CX = F −mod. Let
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CX
f∗
−→ CX be the forgetful functor, f∗ its canonical left adjoint, and ε the standard

adjunction morphism f∗f∗ −→ IdCX
. We denote by EX the right exact structure on CX

induced by EsplX via the forgetful functor f∗. By 5.5, (CX,EX) is a right exact category
with enough projective objects: all modules of the form (F (L), µ(L)), L ∈ ObCX , are
projective objects of (CX,EX), and every module M = (M, ξ) has a canonical deflation

f∗f∗(M)
ε(M)
−−−→M.

We denote by ΩF the kernel of the adjunction morphism f∗f∗
ε
−→ IdCX

and call it
the functor of Kähler differentials.

C5.3.1. Standard triangles. Let M = (M, ξM) and L = (L, ξL) be F-modules

and M
e
−→ L a deflation (i.e. the epimorphism M

f∗(e)
−−−→ L splits). Then we have a

commutative diagram

ΩF (L)
k
F
(L)

−−−→ f∗f∗(L)
ε(L)
−−−→ L

∂
y

y t0

y idL

Ker(e)
k

−−−→ M
e

−−−→ L

(4)

which contains (and defines) the standard triangle

ΩF (L)
∂

−−−→ Ker(e)
k

−−−→ M
e

−−−→ L (5)

corresponding to the deflationM
e
−→ L.

The image of (5) in the weak costable category CS−X is a standard triangle of CS−X .

C5.4. Example: right exact categories of unital algebras. Let CX be the
category Algk of associative unital k-algebras. The category CX has an initial object –
the k-algebra k, and the associated pointed category CXk is the category of augmented
k-algebras.

C5.4.1. The functor of Kähler differentials. Kähler differentials appear when

we have a pair of adjoint functors CX
f∗
−→ CY

f∗

−→ CX . Presently, the role of the category

CY is played by the category of k-modules. The forgetful functor Algk
f∗
−→ k − mod

has a canonical left adjoint f∗ which assigns to every k-module M the tensor algebra
Tk(M) =

⊕
n≥0M

⊗n. Therefore, the class of all split k-module epimorphisms induces via
f∗ a structure EX of a right exact category on CX = Algk. In this case, the tensor algebra
f∗(M) = Tk(M) is a projective object of (CX ,EX) for every k-module M ; and for every
k-algebra A, the adjunction morphism

f∗f∗(A) = Tk(f∗(A))
ε(A)
−−−→ A,
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(determined by the k-algebra structure and the multiplication f∗(A)⊗k f∗(A) −→ f∗(A) in
A) is a canonical projective deflation. By definition, the functor Ωk of Kähler differentials
assigns to each k-algebra A the kernel of the adjunction morphism ε(A), which coincides
with the augmented k-algebra k ⊕ Ω+

k (A), where Ω+
k (A) is the kernel K(ε(A)) of the

algebra morphism ε(A) in the usual sense (i.e. in the category of non-unital algebras).

C5.4.2. The functor of non-additive Kähler differentials. The category Algk
has small products and kernels of pairs of arrows A ⇉ B, hence it has limits of arbitrary

small diagrams. As any functor having a left adjoint, the forgetful functor Algk
f∗
−→ k−mod

preserves limits. In particular, f∗ preserves pull-backs and, therefore, kernel pairs of algebra

morphisms. Therefore, each k-algebra morphism A
ϕ
−→ B has a canonical kernel pair

A×BA
p1
−→
−→
p2

A. Using the fact that A×BA is computed as the pull-back of k-modules, we

can represent A×B A as the k-module f∗(A)⊕K(f∗(ϕ)) with the multiplication induced
by the isomorphism

f∗(A)⊕Ker(f∗(ϕ))
∼

−−−→ f∗(A)×f∗(B) f∗(A), x⊕ y 7−→ (x, x+ y).

That is the multiplication is given by the formula (a⊕ b)(a′ ⊕ b′) = aa′ ⊕ (ab′ + ba′ + bb′).
We denote this algebra by A#K(ϕ).

Applying this to the adjunction arrow f∗f∗
ε
−→ IdCX , we obtain a canonical isomor-

phism between the functor Ω̃k of non-additive Kähler differentials and f∗f∗#Ω+
k , where

Ω+
k (A) is the kernel of the algebra morphism Tk(f∗(A))

ε(A)
−−−→ A in the category of non-

unital k-algebras (cf. C5.4.1). Thus, for every k-algebra A, we have a commutative diagram
similar to the one in the additive case:

k ⊕ Ω+
k (A)

∼−→ Ωk(A)

k(ε)

−−−→
−−−→

0k

Tk(f∗(A))
ε

−−−→ A

j̃k

y jk

y
y id

y id

Tk(f∗(A))#Ω+
k (A)

∼−→ Ω̃k(A)

λ1

−−−→
−−−→
λ2

Tk(f∗(A))
ε

−−−→ A

(6)

Here 0k = 0k(A) is the ’zero’ morphism – the composition of the augmentation morphism
Ωk(A) −→ k and the k-algebra structure k −→ Tk(f∗(A)).

The morphism j̃k (hence jk) becomes an isomorphism in the costable category.

C5.4.3. Another canonical right exact structure. Let Es
X denote the class

of all strict epimorphisms of k-algebras. The class Es
X is stable under base change, i.e.

(CX ,EX) is a right exact category. For every projective k-module V , the tensor algebra

Tk(V ) is a projective object of (CX ,E
s
X), because the forgetful functor Algk

f∗
−→ k−mod
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is exact (hence it maps strict epimorphisms to epimorphisms of k-modules). By 5.3.1, its
left adjoint f∗ maps projective objects of k−mod to projective objects of (CX ,E

s
X). That

is for every projective k-module V the tensor algebra Tk(V ) of V is a projective object of

(CX ,E
s
X). Since the adjunction arrow f∗f∗

ε
−→ IdCX is a strict epimorphism and k−mod

has enough projective objects, the right exact category (CX ,E
s
X) has enough projective

objects: for any k-algebra A, there exists a strict k-algebra epimorphism Tk(V )
e
−→ A for

some projective k-module V . By 2.2.1, the kernel Ker(e) coincides with the augmented
k-algebra k ⊕K(e), where K(e) is the kernel of e in the usual sense – a two-sided ideal in
Tk(V ).

C5.4.4. Remarks. (a) The forgetful functor Algk
f∗
−→ k −mod is conservative and

preserves cokernels of pairs of arrows. Therefore, by Beck’s Theorem, there is a canonical
equivalence (in this case, an isomorphism) between the category Algk and the category
F −mod of modules over the monad F = (f∗f

∗, µ) = (Tk(−), µ) associated with the pair

of adjoint functors f∗, f
∗ and the adjunction morphism f∗f∗

ε
−→ IdAlgk .

(b) Consider the category Affk = Algopk of affine (noncommutative) k-schemes. Right
exact structures on Algk define left exact structures on Affk and vice versa. Inflations
in Affk corresponding strict epimorphisms of algebras are precisely closed immersions of
(noncommutative) affine schemes.

(c) The example C5.4 is generalized to algebras in an additive monoidal category.

C5.5. The left exact category of comodules over a comonad and its weak
stable category. Fix a comonad G = (G, δ) on a category CX with final objects and split

monomorphisms stable under cobase change; i.e. (CX , I
spl
X ) is a left exact category.

C5.5.1. The suspension functor. Let G+ denote the functor CY −→ CY which
assigns to every G-comoduleM = (M,ν) the cokernel of the adjunction morphism

M
ν

−−−→ g∗g
∗(M) = (G(M), δ(M)).

The functor G+ is a canonical suspension functor on the category (Y\G) − comod which
induces a suspension functor on the stable category S+CY of the exact category (CY, EY).

C5.5.2. Lemma. A morphism M
φ
−→ M′ of CY becomes a trivial morphism in

the stable category T+CY iff it factors through an adjunction arrow (3); i.e. there exists a
commutative diagram

M
φ

−−−→ M′

ν ց ր h
g∗g

∗(M)

for some morphism g∗g
∗(M) = (G(M), δ(M))

h
−−−→M′.
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Proof. By definition of the stable category, the image of an arrowM
φ
−→M′ of CY in

the stable category T+CY is trivial iff it factors through an EY-injective object N . By 5.5.3,

the adjunction arrow N −→ g∗g
∗(N ) splits. Therefore, the arrow M

φ
−→ M′ becomes

trivial in the stable category iff it factors through a morphismM−→ g∗(N) for an object
N of CX . Every such arrow factors through the adjunction morphism M −→ g∗g

∗(M);
hence the assertion.

C5.5.3. Standard triangles. For any conflation L
j
−→ M

e
−→ N in CY = G −

comod, the standard triangle

L
j
−→M

e
−→ N

d
−→ G+(L)

is defined via a commutative diagram

L
j

−−−→ M
e

−−−→ N

idL

y
y γ

y d

L
ηγ(L)

−−−→ G(L)
λγ(L)

−−−→ G+(L)

(1)

where G = g∗g
∗ and G

λg
−→ G+ is the canonical deflation. The morphism γ in (1) exists

by the EY-injectivity of G(L). The morphism N
d
−→ G+(L) is uniquely determined by the

choice of γ (because e is an epimorphism). The image of d in the stable category T+CY

does not depend on the choice of γ.

C5.6. Frobenious morphisms of ’spaces’, Frobenious monads. Let Y
f
−→ X

be a continuous morphism of ’spaces’ with an inverse image functor f∗ and a direct image
functor f∗. We say that f is a Frobenious morphism if there exists an auto-equivalence Ψ
of the category CX such that the composition f∗ ◦Ψ is a right adjoint to f∗.

It is clear that every isomorphism is a Frobenious morphism and the composition of
Frobenious morphisms is a Frobenious morphism.

It follows that every Frobenious morphism Y
f
−→ X with a conservative direct image

functor is affine. Therefore, the category CY can be identified with the category F −mod
of modules over the monad F = (F, µ) on a category CX associated with the pair of
adjoint functors f∗, f∗. Conversely, we call a monad F on the category CX a Frobenious

monad if the forgetful functor F−mod
f∗
−−−→ CX is a direct image functor of a Frobenious

morphism; i.e. there exists an equivalence CX
Ψ
−→ CX such that the functor

CX
f∗◦Ψ
−−−→ F −mod, V 7−→ (F (Ψ(V )), µ(Ψ(V )),

is a right adjoint to the forgetful functor f∗. In particular, the monad F is continuous.
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C5.6.1. Proposition. Let F be a Frobenious monad on a category CX such that
(CX ,E

spl
X ) is a right exact category. Then the right exact category (CX,EX), where CX is

the category F −mod of F-modules and EX is a right exact structure induced by EsplX , is
a Frobenious category.

Proof. Let f∗ denote the forgetful functor F −mod −→ CX and f∗ its canonical left
adjoint. Let Ψ be a functor CX −→ CX such that the composition f ! = f∗ ◦Ψ is a right
adjoint to f∗. Then every injective object of the category F −mod is a retract of an object
of the form f∗(Ψ(V )) for some V ∈ ObCX . On the other hand, every projective object of
F −mod is a retract of an object of the form f∗(L) for some L ∈ ObCX . Therefore, every
injective F-module is projective. If the functor Ψ is an auto-equivalence, then f∗ ≃ f !◦Ψ∗,
where Ψ∗ is a quasi-inverse to Ψ. That the functor f ! ◦Ψ is a left adjoint to f∗. By duality,
it follows from the argument above that every projective object of F −mod is injective.

C5.7. The costable category associated with an augmented monad. Let F =
(F, µ) be an augmented monad on a k-linear additive category CX ; i.e. F = IdCX ⊕ F+.
The category F − mod of F-modules is isomorphic to the category F+ − mod1 of F+-
actions. Recall that the objects of F+−mod1 are pairs (M, ξ), where M ∈ ObCX and ξ is
a morphism F+(M) −→M satisfying associativity condition with respect to multiplication

F 2
+

µ+
−→ F+, i.e. ξ ◦ µ+(M) = ξ ◦ F+(ξ). Morphisms are defined naturally.

Notice that the monad F is continuous (i.e. the functor F has a right adjoint) iff the
functor F+ has a right adjoint.

It follows that ΩF −→ f∗f∗ factors through the subfunctor F+ of f∗f∗ corresponding
to the subsemimonad (F+, µ

+) of F . The full subcategory TF+ of F −mod generated by
all F-modulesM such that ΩF (M) −→ F+(M) is an isomorphism (i.e. the action of F+

onM is zero) is isomorphic to the category CX .

C5.7.1. Infinitesimal neighborhoods. Let T
(n)
F+

denote the n-th infinitesimal
neighborhood of TF+ , n ≥ 1. It is the full subcategory of F −mod generated by modules

M = (M, ξ) such that the n-th iteration Fn+(M)
ξ+n−→M of the action of F+ on M is zero.

In particular, T
(1)
F+

= TF+ .

Since ξ+n is an F-module morphism for any n ≥ 1, an F-module M = (M, ξ) is

an object of T
(n)
F+

iff F ·n
+ →֒ ΩF , where F

·n
+ is the image of the iterated multiplication

Fn+
µ+
n−→ F+. One can see that F ·n

+ is a two-sided ideal in the monad F . If the quotient
functor F/F ·n

+ is well defined (which is the case if cokernels of morphisms exist in CX),
then there is a unique monad structure µn on the quotient F/F ·n

+ such that the quotient
morphism F −→ F/F ·n

+ is a monad morphism from F to F/F ·n
+ = (F/F ·n

+ , µn) and

the category T
(n)
F+

is equivalent to the category F/F ·n
+ -modules. Clearly, F/F ·n

+ is an

augmented monad: F/F ·n
+ ≃ IdCX ⊕ F+/F

·n
+ .
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It follows from the preceding discussion that F
·(n−1)
+ /F ·n

+ →֒ ΩF/F ·n
+
→֒ F+/F

·n
+ . In

particular, ΩF/F ·2
+

= F+/F
·2
+ .

C5.7.2. Free actions. Let CX be a k-linear category with the exact structure
Espl; and let L be a k-linear endofunctor on CX . Consider the category L − act whose
objects are pairs (M, ξ), whereM ∈ ObCX and ξ is a morphism L(M) −→M . Morphisms
between actions are defined in a standard way. We endow L− act with the exact structure

induced by the forgetful functor L − act
f∗
−→ CX . If CX has countable coproducts and

the functor L preserves countable coproducts, then the category L − act is isomorphic
to T(L) − mod, where T(L) = (T (L), µ) is a free monad generated by the endofunctor
L; i.e. T (L) = ⊕n≥0L

n and µ is the multiplication defined by the identical morphisms
Ln ◦ Lm −→ Ln+m, n,m ≥ 0.

The category CX is isomorphic to the full subcategory TL of L−act generated by zero

actions. The n-th infinitesimal neighborhood of TL is the full subcategory T
(n)
L of L− act

generated by all actions (M, ξ) such that the n-th iteration Ln(M)
ξn
−→ M of the action

ξ is zero. The category T
(n+1)
L is equivalent to the category TL,n −mod of modules over

the monad TL,n = (TL,n, µn), where TL,n =
⊕

0≤m≤n

Lm and the multiplication defined by

morphisms Lk ◦ Lm −→ Lk+m, 0 ≤ k,m ≤ n, which are identical if k +m < n and zero
otherwise.

It follows from C5.7.1 that Ln →֒ ΩTL,n
→֒ T+

L,n
def
=

⊕

1≤m≤n

Lm.

In particular, ΩTL,2
= L. Here L denotes the functor L−act −→ L−act which assigns

to an object (M, ξ) the object (L(M),L(ξ)) and acts on morphisms accordingly.

C5.7.2.1. Projective objects and injective objects of an infinitesimal neigh-

borhood. Projective objects of the category T
(n+1)
L = TL,n − mod are retracts of

relatively free objects. The latter are TL,n-modules of the form TL,n(V ), V ∈ ObCX .

Suppose that L has a right adjoint functor, L∗. Then the functor TL,n =
⊕

0≤m≤n

Lm

has a right adjoint equal to T !
L,n =

⊕

0≤m≤n

Lm∗ ; that is TL,n is a continuous monad.

Therefore, by G1.4, the injective objects of TL,n−mod are retracts of TL,n-modules of the
form T

!
L,n(V ) = (T !

L,n(V ), γn(V )), V ∈ ObCX .

C5.7.2.2. Proposition. Suppose that L is an auto-equivalence of the category CX .

Then T
(n+1)
L = TL,n −mod is a Frobenius category.

Proof. It suffices to show that TL,n is a Frobenious monad. An adjunction arrow
L ◦ L∗ −→ IdCX induces a canonical morphism from TL,n(L

n
∗ (V )) to the injective object

T
!
L,n(V ). If L is an auto-equivalence, then this canonical morphism is an isomorphism.
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C5.7.3. Example. Let CX be the product of Z copies of a k-linear category CY ; i.e.
objects of CX are sequences M = (Mi| i ∈ Z) of objects of CY . Let L be the translation
functor: L(M)i = Mi−1. Objects of the category L − act of L-actions are arbitrary

sequences of arrows (. . .
dn+1
−→ Mn+1

dn−→ Mn
dn−1
−→ . . .). Objects of the subcategory T

(n)
L

are sequences such that the composition of any n consecutive arrows is zero. In particular,

T
(2)
L coincides with the category of complexes on CY and its subcategory TL = T

(1)
L is the

category of complexes with zero differential. By C5.7.2.2, T
(n)
L is a Frobenious category for

every n. Therefore, its costable category is triangulated. Notice that the costable category

of T
(2)
L coincides with the homotopy category of unbounded complexes.



Chapter VII

A Sketch of a More General Theory

The purpose here is to extend basic notions and constructions of homological algebra
to arbitrary right and left exact categories. This means that we do not require the existence
of initial or final objects in our categories, including the categories, in which homological
functors take their values.

We start, in Section 1, with a natural definition of kernels of arrows of an arbitrary
category and show that the main properties of kernels summarized in Chapter I survive
the generalization. In order to acquire flexibility, we introduce in Section 2 the notion of
a virtual kernel and argue that the existence of morphisms with non-trivial virtual kernels
imposes very precise choice of categories: they should be virtually semi-complete, which
means, by definition, that each connected component has pointed objects. We make an
application of properties of kernels extending the notion of a fully exact subcategory to
arbitrary right (or left) exact categories. In Section 3, we introduce ∂∗-functors from a right
exact category to an arbitrary category. We define universal ∂∗-functors (otherwise called
right derived functors of their zero component) in a standard way (that is by a universal
property) and constructively prove their existence (i.e. write a formula) in the case when
the target category has pull-backs and limits of filtered diagrams. By duality, we obtain
∂-functors from a left exact category to an arbitrary category and universal ∂-functors,
otherwise called left derived functors. In Section 4, following the pattern of Chapter II,
we establish the existence of the universal left derived functor from a given virtually semi-
complete left exact category to semi-complete categories. Following the scenario of Section
4 of Chapter III, we define, in Section 5, the stable category of the category of presheaves
of sets associated with a virtually semi-complete left exact category. In Section 6, we
define prestable and stable categories of a left (or right) exact category. Section 7 gives a
brief account on ’exactness’ properties of derived functors and the fact that, under certain
condition on the target right exact category, ’exact’ ∂∗-functors are universal. In Section 8,
we discuss shortly homology of ’spaces’ with coefficients in arbitrary right exact category.
In Section 9, we apply our machinery to define the “absolute” higher K-theory of arbitrary
right exact ’spaces’, which gives rise to absolute K-theories of arbitrary left exact categories
over the left exact category of right exact ’spaces’.

1. Kernels of arrows.

1.0. Definition. Let M
f
−→ L be a morphism of a svelte category CX and

CX/L
+ the disjoint union of the category CX/L and the “point” – the category with

one morphism. We denote by Df the functor CX/L
+ −→ CX/L, which is identical on

CX/L and maps the “point” to the object (M,M
f
−→ L). We denote the limit of the
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functor CX/L
+

Df

−−−→ CX/L, (if any) by (Ker(f), ξf ) and the canonical morphism

(Ker(f), ξf ) −→ (M, f) by k(f). We call the object (Ker(f),Ker(f)
k(f)
−→ M) of the

category CX/M the kernel of the morphism M
f
−→ L.

1.1. Kernels of arrows in categories with pull-backs. Let CX be a svelte

category with pull-backs. For every morphism M
f
−→ L of CX , let

CX/L
Pf
−−−→ CX/M

be a functor which assigns to each object (N ,N
ξ
→ L) of the category CX/L the ob-

ject (Mξ,f ,Mξ,f
fξ
−→ M), where Mξ,f

ξ′f
−→ M is the pull-back of the morphism

Lξ
ξ
−→ L along M

f
−→ L. The action of Pf on morphisms is natural. The kernel

(Ker(f),Ker(f)
k(f)
−→M) is the limit of the functor Pf . It follows that if the category CX

has (pull-backs and) limits of filtered diagrams, then every morphism of CX has a kernel.

1.2. Note. It follows from 1.1 that, if CX is a category with initial objects, then the
notion of the kernel of a morphism coincides with the one introduced in I.4.1.

1.3. Proposition. Let

Mg,f

fg
−−−→ Ng

g′f

y cart
y g

M
f

−−−→ N

(1)

be a cartesian square. Then Ker(f) exists iff Ker(fg) exists, and they are naturally iso-
morphic to each other.

Proof. It follows from the observation 1.2(a) that it suffices to establish the fact for a
category CX with pull-backs and limits of filtered diagrams. In this case, every morphism
of CX has a kernel. It follows from the definition of the kernel that the commutative

diagram (1) yields a canonical morphism Ker(f)
φ
−→ Ker(fg). On the other hand, for

any morphism L
ξ
−→ N, there is a diagram

Mg,f

fg
−−−→ Ng

ξg
←−−− Lξ

g′f

y cart
y g cart

y gξ

M
f

−−−→ N
ξ

←−−− L

(2)

formed by cartesian squares, which gives rise to a morphism Ker(fg)
ψ
−→ Ker(f). It

follows from the universal property of limits that the morphism ψ is inverse to φ.
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1.3.1. Proposition. Let M
f
−→ N be a morphism of a category CX , which has

a kernel pair, Ker2(f) = M ×N M
p1
−→
−→
p2

M. Then the morphism M
f
−→ N has a

kernel iff the projection Ker2(f)
p1
−→M has a kernel; and there is a natural isomorphism

Ker(f) ∼−→ Ker(p1).

Proof. The fact follows from 1.3.

1.4. Proposition. Let L
f
−→ M and M

g
−→ N be morphisms of a category CX .

Suppose that there exists the kernel (Ker(g),Ker(g)
k(g)
−→M) of the morphism M

g
−→ N.

Then the kernel of the composition L
g◦f
−−−→ N (if any) is the pull-back of the canonical

morphism Ker(g)
k(g)
−−−→M along L

f
−→M.

Proof. Consider a cone L
λ̃
−→ Dg◦f , where CX/N

+
Dg◦f

−−−→ CX/N is the func-

tor associated with the morphism L
g◦f
−−−→ L (see 1.0). This cone can be written as

commutative diagrams

L
λ̃(ξ)
−−−→ Nξ

λ̃0g◦f

y
y ξ

L
g◦f
−−−→ N

(1)

where (Nξ, ξ) runs through the objects of the category CX/N.

Since there exists the kernel (Ker(g), k(g)) of the morphism M
g
−→ N, the diagram

(1) uniquely decomposes into the diagram

L
f̃

−−−→ Ker(g)
λξ
−−−→ Nξ

λ̃0g◦f

y
y k(g)

y ξ

L
f

−−−→ M
g

−−−→ N

with commutative squares. This shows that the kernel of the composition L
g◦f
−−−→ N is

the pull-back of Ker(g)
k(g)
−−−→ N along L

f
−→ M. In particular, the existence of this

pull-back is equivalent to the existence of the kernel of g ◦ f.

1.4.1. Corollary. Let L
f
−→ M and M

g
−→ N be morphisms such that there

exist kernels of g and g ◦ f . Then Ker(f) exists iff there exists the kernel of the canonical

morphism Ker(g ◦ f)
f̃
−→ Ker(g) and both kernels are isomorphic to each other.
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Proof. By 1.4, the square

Ker(gf)
f̃

−−−→ Ker(g)

k(gf)
y cart

y k(g)

L
f

−−−→ M

is cartesian. Therefore, by 1.3, the Ker(f) is naturally isomorphic to Ker(f̃).

1.5. The coimage of a morphism. Let M
f
−→ N be an arrow which has a kernel.

It follows from the definition of the kernel, that there is a uniquely defined commutative
square

Ker(f)
k(f)
−−−→ M

0f

y
y f

M
f

−−−→ N

or, what is the same, a pair of arrows Ker(f)
k(f)

−→
−→
0f

M, which is equalized by the morphism

M
f
−→ N. If the cokernel of this pair of arrows exists, it will be called the coimage of f

and denoted by Coim(f), or. loosely, M/Ker(f).

Let M
f
−→ N be a morphism such that Ker(f) and Coim(f) exist. Then f is

the composition of the canonical strict epimorphism M
pf
−−−→ Coim(f) and a uniquely

defined morphism Coim(f)
jf
−−−→ N.

1.5.1. Note. If the category CX has an initial object, then the notion of the coimage
of a morphism coincides with the one introduced in I.4.5.

1.6. Trivial morphisms, trivial objects, trivial kernels.

1.6.1. Definitions. (a) We call a morphism M
f
−→ N trivial, if Ker(f) exists and

the canonical morphism Ker(f)
k(f)
−−−→M is a split epimorphism.

(b) We call an object M trivial, if the identical morphism M
idM−→M is trivial.

(c) We say that a morphism M
f
−→ N of the category CX has trivial kernel, if

(Ker(f),Ker(f)
k(f)
−→M) is an initial object of the category CX/M.

1.6.2. Remarks. (i) If the category CX has an initial object x, then a morphism

M
f
−→ N of CX is trivial iff it factors through the unique morphism x −→ N.
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(ii) This implies, in particular, that if the category CX has initial objects, then an
object of CX is trivial iff it is initial.

(iii) If M
f
−→ N is a morphism with a trivial kernel, then

(a) the canonical morphism M
pf
−→ Coim(f) is an isomorphism;

(b) the object Ker(f) is trivial.

Conversely, if the object Ker(f) is trivial, then M
f
−→ N is a morphism with a

trivial kernel. So that the definitions 1.6.1 do not create any ambiguity: a morphism with
a trivial kernel is a morphism whose kernel is a trivial object.

1.6.3. Proposition.(a) For every morphism L
f
−→ M having the kernel, the

composition of Ker(f)
k(f)
−→ L and L

f
−→ M is a trivial morphism, as well as the

morphism Ker(f)
0f
−→ L.

(b) Composition of two morphisms is trivial if one of the morphisms is trivial.

(c) If L
f
−→ M is a trivial morphism, then it equalizes any pair of arrows from M

to any object.

(d) If there is a trivial morphism M
g
−→ N, then the converse is true. More precisely,

a morphism L
f
−→M is trivial, if it equalizes any pair of arrows from M to M .

Proof. (a1) It follows from 1.4 that the kernel of the composition of Ker(f)
k(f)
−→ L

and L
f
−→M is naturally isomorphic to the kernel pair of the morphism Ker(f)

k(f)
−→ L,

which is illustrated by the diagram

Ker(f ◦ k(f)) −−−→ Ker(f)y cart
y

Ker(f)
k(f)
−−−→ L

f
−−−→ M

with a cartesian square. So that the canonical projections Ker(f ◦ k(f)) −−−→ Ker(f) are
split epimorphisms.

(a2) The triviality of Ker(f)
0f
−→ L.

For every Lξ
ξ
−→ L, consider the cartesian square

Mξ −−−→ Lξ

pξ

y cart
y ξ

Ker(f)
0f
−−−→ L

By definition of Ker(f), there exists a canonical morphism Ker(f)
kξ
−→ Lξ such

that 0f = ξ ◦ kξ, which depends functorially on ξ. This morphism determines a splitting
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Ker(f)
jξ
−→ Mξ of the projection Mξ

pξ
−→ Ker(f) also functorial in ξ. These split-

tings determine the morphism Ker(f)
j
−→ limξMξ which splits the canonical morphism

limξMξ
p
−→ Ker(f). By 1.1, limξMξ ≃ Ker(0f).

(b) Let L
g
−→M and M

f
−→ N be morphisms. Then, by 1.4, we have a diagram

Ker(g̃)
k(̃g)
−−−→ Ker(f ◦ g)

g̃
−−−→ Ker(f)

φ
y≀ k(f ◦ g)

y cart
yk(f)

Ker(g)
k(g)
−−−→ L

g
−−−→ M

f
−−−→ N

(1)

whose right square is cartesian and, by 1.3, left vertical arrow is an isomorphism.

(b1) If the morphism M
f
−→ N is trivial, i.e. the right vertical arrow of the diagram

(1) is a split epimorphism, then its pull-back – the morphism

Ker(f ◦ g)
k(f◦g)
−−−→ L

is a split monomorphism, which means that L
f◦g
−−−→ N is a trivial morphism.

(b2) Suppose the morphism L
g
−→M is trivial; i.e. that is a splitting L

j
−→ Ker(g)

of the morphism Ker(g)
k(g)
−−−→ L. Then the composition L

φ−1j
−−−→ Ker(f ◦g) is a splitting

of the morphism Ker(f ◦ g)
k(f◦g)
−−−→ L.

(c1) For any morphism L
f
−→M, the canonical morphism Ker(f)

0f
−−−→ L equalizes

any pair of arrows from L to another object.

(c) Let L
f
−→M be a trivial morphism; i.e. there is a morphism L

ι
−→ Ker(f) whose

composition with the canonical morphism Ker(f)
k(f)
−−−→ L is the identical morphism

L −→ L. Therefore, f = f ◦ (k(f) ◦ ι) = f ◦ 0f ◦ ι. Since the morphism Ker(f)
0f
−−−→ L

equalizes any pair of arrows from L to the same target, same holds for the morphism

L
f
−→M.

(d) Let there exist a trivial morphism M
g
−→ N ; that is the canonical morphism

Ker(g)
k(g)
−→M is a strict epimorphism split by some M

ιg
−→ Ker(g). By hypothesis, the

morphism L
f
−→M equalizes the pair of arrows (idM , 0g ◦ ιg); that is f = 0g ◦ (ιg ◦ f).

Since, by (a), the morphism 0g is trivial, it follows from (b) that the morphism L
f
−→M

is trivial.

1.6.3.1. Corollary. A morphism M
f
−→ N is trivial iff it factors through any

arrow L
ξ
−→ N. In particular, an object M is trivial iff any morphism to M is a split

epimorphism.
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Proof. (i) In fact, it follows from the definition of the kernel of an arrow that there

exists a morphism Ker(f)
f(ξ)
−−−→ L such that the diagram

Ker(f)
f(ξ)
−−−→ L

k(f)
y

y ξ

M
f

−−−→ N

commutes. So that if M
f
−→ N is trivial, i.e. there exists a splitting Ker(f)

j
−→ Ker(f)

of the morphism Ker(f)
k(f)
−→M, then f = f ◦ k(f) ◦ j = ξ ◦ (f(ξ) ◦ j).

(ii) Conversely, suppose that M
f
−→ N factors through any morphism toN . Take any

morphism L̂
ζ
−→ Ker(f̂) and denote by L

ξ
−→ N the morphism such that ξ̂ = f̂ ◦ k(f̂)◦ζ.

By hypothesis, M
f
−→ N factors through L

ξ
−→ N, which implies that M̂

f̂
−→ N̂ factors

through f̂ ◦ k(f̂) and, by 1.6.3(a), the latter is a trivial morphism. Therefore, by 1.6.3(b),

the morphism M̂
f̂
−→ N̂ is trivial, which is equivalent to the triviality of M

f
−→ N.

1.6.4. Proposition. The following conditions on a pair of arrows L
f
−→M

g
−→ N

are equivalent:

(i) the composition L
g◦f
−−−→ N is a trivial morphism;

(ii) the morphism L
f
−→M factors through Ker(g)

k(g)
−−−→M.

Proof. Consider the diagram

Ker(g ◦ f)
g̃

−−−→ Ker(g)

k(g ◦ f)
y cart

yk(g)

L
f

−−−→ M
g

−−−→ N

(1)

whose square is cartesian by 1.4. If the composition g ◦ f is trivial, then the left vertical
arrow has a splitting L

σ
−→ Ker(g ◦ f). So that f = f ◦ (k(g ◦ f) ◦ σ) = k(g) ◦ (g̃ ◦ σ).

Conversely, if f = k(g) ◦ γ for some morphism γ, then g ◦ f = (g ◦ k(g)) ◦ γ; and,
by 1.6.3(a), the composition g ◦ k(g) is a trivial morphism. Therefore, by 1.6.3(b), the
morphism g ◦ f is trivial.

1.6.5. Proposition.(a) The kernel of a monomorphism is trivial.

(b) Let M
g
−→ N be a morphism with a trivial kernel. Then a morphism L

f
−→ M

has a kernel iff the composition g ◦ f has a kernel, and these two kernels are naturally
isomorphic one to another.
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(c) Let

L
f

−−−→ M

γ
y

y g

M̃
φ

−−−→ N

be a commutative square such that the kernels of the arrows f and φ exist and the kernel
of g is trivial. Then the kernel of the composition φ ◦ γ is isomorphic to the kernel of the
morphism f , and the left square of the commutative diagram

Ker(f)
∼

−−−→ Ker(φγ)
k(f)
−−−→ L

f
−−−→ M

γ̃
y cart γ

y
y g

Ker(φ)
k(φ)
−−−→ M̃

φ
−−−→ N

is cartesian.

Proof. (a) It follows from the definition of the kernel that, if M
f
−→ L is a monomor-

phism, then Ker(f) is the limit of the forgetful functor CX/M −→ CX , which means
precisely that (Ker(f), k(f)) is the initial object of the category CX/M.

(b) It follows from 1.4 (see also 1.4.1) that the square in the diagram

Ker(gf)
f̃

−−−→ Ker(g)

k(gf)
y cart

y k(g)

L
f

−−−→ M
g

−−−→ N

is cartesian. By hypothesis, the kernel of of the morphism M
g
−→ N is trivial, that is

(Ker(g), k(g)) is an initial object of the category CX/M. This implies that Ker(g ◦ f) is
isomorphic to Ker(f) (see 1.1).

(c) Since the kernel of M
g
−→ N is trivial, it follows from (a) that Ker(f) is naturally

isomorphic to the kernel g ◦ f = φ ◦ γ.

2. Virtual kernels and virtually (semi-)complete categories.

Let CX be a svelte category and M
f
−→ L a morphism of CX . By definition,

the kernel of the morphism M
f
−→ L (if any) is the pair (Ker(f),Ker(f)

k(f)
−→ M),

such that the object (Ker(f), f ◦ k(f)) of the category CX/L is the limit of the diagram

CX/L
+

Df

−−−→ CX/L defined in 1.0.



310 Chapter 7

2.1. Virtual kernels. We define the virtual kernel of a morphism M
f
−→ L of the

category CX as the canonical morphism of the limit lim(hX/L ◦Df) of the composition

of the diagram CX/L
+

Df

−−−→ CX/L with the Yoneda embedding

CX/L
hX/L
−−−→ C∧

X/L̂ = (CX/L)
∧

to the object (M̂,M̂
f̂
−→ L̂) of the category C∧

X/L̂. Thus, the virtual kernel can be

viewed as a pair (Kerv(f),Kerv(f)
kv(f)
−→ M̂).

2.1.1. The virtual kernels and the existence of kernels. Since the category C∧
X

of presheaves of sets has all limits, the virtual kernel of any morphism exists. The kernel

of the morphism M
f
−→ L exists iff the presheaf of sets Kerv(f) is representable.

2.2. The (non-)triviality of virtual kernels. Let Lξ
ξ
−→ L be an arbitrary

morphism and

Mξ,f

fξ
−−−→ L̂ξ

ξ′f

y cart
y ξ̂

M̂
f̂

−−−→ L̂

a cartesian square in the category of presheaves of sets C∧
X .

(a) If the presheaf Mξ,f is the trivial presheaf ∅̄ (– the initial object of the category

C∧
X), then the virtual kernel Kerv(f) of the morphism M

f
−→ L is trivial too.

(b) Suppose that the pull-back of the morphism M̂
f̂
−→ L̂ along any representable

morphism L̂ξ
ξ̂
−→ L̂ is non-trivial (that is Mξ,f is a non-trivial presheaf).

This means that, for every morphism Lξ
ξ
−→ L, there exists a commutative diagram

L
t

−−−→ Lξ

ξ′
y

y ξ

M
f

−−−→ L

If this condition holds, then the virtual kernel Kerv(f) is determined by the cartesian
square

Kerv(f)
fξ
−−−→ limhX/L

kv(f)
y cart

y jL

M̂
f̂

−−−→ L̂

(1)
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(b1) If limhX/L is the trivial presheaf, then, of course, Kerv(f) is trivial too,

because the only morphism to ∅̄ is the identical isomorphism.
(b2) If limhX/L is a non-trivial, then Kerv(f) is non-trivial too.

This follows from the fact that the canonical morphism limhX/L
jL−→ L factors

through M̂
f̂
−→ L̂. Therefore, by the universal property of cartesian squares, the projec-

tion Kerv(f)
fξ
−−−→ limhX/L splits. In particular, there is a morphism from a non-trivial

presheaf limhX/L to Kerv(f), which implies that Kerv(f) is non-trivial too.

2.2.1. Thus, the non-triviality of the virtual kernel of a morphism M
f
−→ L depends

on non-triviality of the presheaf of sets limhX/L. In particular, it depends only on the
target of the morphism f – the object L.

2.3. Virtually complete categories.

2.3.0. Virtually initial objects. For any svelte category CX , we call the limit of

the Yoneda embedding CX
hX
−−−→ C∧

X the virtually initial object of the category CX .

2.3.0.1. Lemma. A svelte category CX has an initial object iff the presheaf limhX
is representable.

Proof. If the category CX has an initial object x, then limhX ≃ x̂ = CX(−, x).
Conversely, if the presheaf limhX is representable by an object x, then this object is an
initial object of the category CX .

2.3.0.2. The category CX⊛ . We denote by CX⊛ the category limhX\C
∧
X and by

CX
h⊛

X

−−−→ CX⊛ the functor induced by the Yoneda embedding CX
hX
−−−→ C∧

X .
(a) If the virtually initial object limhX is trivial, i.e. limhX = ∅X , then CX⊛

coincides with the category C∧
X and, therefore, the functor CX

h⊛

X

−−−→ CX⊛ is the usual
Yoneda embedding.

(b) It follows from (the argument of) 2.3.0.1 that if the category CX has an initial

object x, then CX⊛ = x̂\C∧
X . So that, in this case, the functor CX

h⊛

X

−−−→ CX⊛ coincides
with the ”reduced” Yoneda embedding introduced in I.2.0.2(b).

2.3.1. Definition. We call a svelte category CX virtually complete, if its virtually

initial object – the limit of the Yoneda embedding CX
hX
−−−→ C∧

X , is a non-trivial presheaf.

2.3.1.1. It follows from 2.3.0.1 that every category with initial objects is virtually
complete.

2.3.2. Proposition. The following conditions on a svelte category CX are equivalent:
(a) The category CX is virtually complete.
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(b) The category CX has pointed objects (that is objects M for which there exists a
cone M−→ IdCX ).

Proof. (a)⇒(b). Non-triviality of limhX means that limhX(M) 6= ∅ for some object

M of the category CX , or, equivalently, there exists a morphism M̂ −→ limhX . The
composition of this morphism with the universal cone limhX −→ hX is the image of a
cone M−→ IdCX .

(b)⇒(a). Each cone M−→ IdCX determines a cone M̂ −→ hX . The colimit of all
such cones is a universal cone limhX −→ hX . This shows, in particular, that the presheaf
limhX is non-trivial.

2.3.2.1. Corollary. Every virtually complete category CX is connected and quasi-
filtered.

Proof. (a) A virtually complete category CX is connected, because, by 2.3.2, there
exists a cone M−→ IdCX .

(b) Recall that a category CX is called quasi-filtered if any pair of arrows

L −→M ←− L′

of CX can be complemented to a commutative square

M −−−→ L′y
y

L −−−→ M

(say, CX has pull-backs, or each connected component of CX has initial objects) and, for
any pair of arrows M −→

−→ N , there is an equalizer L −→M.

By I.4.6.2.3, a category CX is virtually complete iff there exists a cone V
ζ
−→ IdCX

for some object V of CX . In particular, we have a commutative square

V
ζ(L′)
−−−→ L′

ζ(L)
y

y β

L
α

−−−→ M

for any pair of arrows L
α
−→ M

β
←− L′. Also, the morphism V

ζ(M)
−−−→M equalizes any

pair of arrows M −→
−→ N .

2.3.3. Proposition. Let CX be a svelte connected category. The following conditions
are equivalent:

(a) The category CX is quasi-filtered and the category CX/L is virtually complete for
some object L of CX .
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(b) The category CX/L is virtually complete for any L ∈ ObCX .
(c) The category CX is virtually complete.

Proof. (c)⇒(b). By 2.3.2, a category CX is virtually complete iff there exists a cone

M
γ
−→ IdCX for some objectM of the category CX . This cone induces, for any L ∈ ObCX ,

a cone (M,M
γ(L)
−→ L)

γL
−−−→ IdCX/L, where γL(N ,N

ξ
→ L) = γ(N ).

(b)⇒(a). We need to show that the category CX is quasi-filtered; that is any pair of
arrows

L −→M ←− L′

of CX can be complemented to a commutative square.

In fact, any pair of arrows L −→M ←− L′ can be viewed as a pair of morphisms of
the category CX/M to the final object (M, idM ). By condition (b), the category CX/M
is virtually complete. Therefore, by 2.3.2.1, it is quasi-filtered. So that there exists a
commutative square

L −−−→ L′y
y

L −−−→ M

which shows that the category CX is quasi-filtered.
(a)⇒(c). Suppose that the category CX/L is virtually complete; that is, by 2.3.2,

there exists a cone (v, v
ξL
−→ L)

ξ
−−−→ IdCX/L. The claim is that, if the category CX is

quasi-filtered, then this cone determines a cone v
ξ

−−−→ IdCX .

Let L
γ
−→ L be a morphism. We define v

ξL−→ L as the composition γ ◦ ξL.
Notice that, thanks to the fact that, the category CX is quasi-filtered, the composition

ξL = γ ◦ ξL does not depend on the choice of the morphism L
γ
−→ L.

Indeed, if L
γ1
−→ L is another morphism, then, since, by hypothesis, the category CX

is filtered, there is a commutative square

M̃
λ1

−−−→ L

λ2

y
y γ

L
γ1
−−−→ L

and a morphism M
β
−→ M̃ equalizing the pair of arrows M̃

λ1
−→
−→
λ2

L. So that we have a

commutative square

M
λ

−−−→ L

λ
y

y γ

L
γ1
−−−→ L
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where λ = λ1 ◦ β. The cone (v, v
ξL
−→ L)

ξ
−−−→ IdCX/L yields a morphism

(v, ξL)
ξ(M,λ)
−−−→ (M, λ).

In other words, λ ◦ ξ(M, λ) = ξL. So that

γ1 ◦ ξL = γ1 ◦ λ ◦ ξ(M, λ) = γ ◦ λ ◦ ξ(M, λ) = γ1 ◦ ξL.

Consider now a pair of arrows, L
γ
−→ L

t
←− Lt. Since the category CX is quasi-

filtered, there is a commutative square

M
β

−−−→ Lt

u
y

y t

L
γ

−−−→ L

(1)

We define a morphism v
ξLt−→ Lt by ξLt

= β ◦ ξM.
The morphism ξLt

does not depend on the choice of the square (1).
In fact, let

N
β1

−−−→ Lt

u1

y
y t

L
γ

−−−→ L

be another commutative square. Since the the category CX is quasi-filtered, there is a
commutative square

V
α

−−−→ M

α1

y
y β

N
β1

−−−→ Lt

Therefore, β1 ◦ ξN = β1α1 ◦ ξV = βα ◦ ξV = β ◦ ξM.

2.3.4. Proposition. (a) Let L be an object of a svelte category CX . The following
conditions are equivalent:

(i) The virtual kernel of some morphism M
f
−→ L is non-trivial.

(ii) The virtual kernel of any morphism M−→ L is non-trivial.
(iii) The category CX/L is virtually complete.

(b) If the category CX is connected and quasi-filtered, then the conditions above are equiv-
alent to each of the following conditions:

(iv) The virtual kernel of any morphism of the category CX is non-trivial.
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(v) The category CX is virtually complete.

Proof. (a) The implication (i)⇒(ii)⇒(iii) follow from the observations 2.2.
The implication (iii)⇒(ii) follows from the fact that the limit of the Yoneda embedding

CX/L
hX/L
−−−→ (CX/L)

∧ = C∧
X/L̂ is either trivial (and then the virtual kernel of any

morphism to L is the trivial presheaf), or it is non-trivial. In the latter case, by definition,
the category CX/L is virtually complete.

(b) The equivalence of the conditions (i), (ii), (iii) to each of the conditions (iv) and
(v) follows from 2.3.3.

2.3.5. Proposition. Let CX be a svelte virtually complete category with colimits.
The following conditions are equivalent:

(a) The category CX is complete and cocomplete; that is it has limits and final objects,
as well as initial objects.

(b) The category CX is virtually complete.

Proof. The implication (a)⇒(b) holds, because every category with initial objects is
virtually complete.

(b)⇒(a). If CX is a virtually complete category. Then there are cones of the form

M −→ IdCX . For any diagram D
D
−→ CX , the cone M −→ IdCX induces a cone

M −→ D. We denote by CX/D the category of such cones and consider the forgetful

functor CX/D
fD−→ CX . One can see that colim(fD) ≃ limD.

2.4. Semi-complete and virtually semi-comlete categories.

2.4.0. The ”reduced” category of presheaves of sets and ”reduced” Yoneda

embedding. Let CX =
∐

i∈π0(X)

CXi
be the decomposition of the category CX into the

disjoint union of its connected components. We call
∐

i∈π0(X)

CX⊛

i
the ”reduced” category

of presheaves of sets on the category CX and denote it by CXre .

2.4.0.1. We denote by CX
hre
X

−−−→ CXre the coproduct of the canonical full embed-

dings CXi

h⊛

Xi

−−−→ CX⊛

i
, i ∈ π0(X). and call the fully faithful functor CX

hre
X

−−−→ CXre

the reduced Yoneda embedding.

2.4.1. Semi-complete categories. We call a category CX semi-complete if each of
its connected components is a svelte category with limits of small diagrams.

In particular, each connected component CXi
of CX has initial objects, which are

limits of a category equivalence CYi
−→ CXi

with CYi
a small category.

2.4.2. Virtually semi-complete categories. We call a category CX virtually
semi-complete if each of its connected components is virtually complete.
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2.4.3. Note. Every category whose all connected components have initial objects are
virtually semi-complete (because every category with initial objects is virtually complete).
In particular, all semi-complete categories are virtually semi-complete.

2.4.4. A semi-complete category associated with a virtually semi-complete

category. Let CX =
∐

i∈π0(X)

CXi
be the decomposition of the category CX into the

disjoint union of its connected components. Notice that the category CX is virtually semi-

complete iff the ”reduced” category CXre =
∐

i∈π0(X)

CX⊛

i
of presheaves of sets on CX is

semi-complete. In this case, we refer to CXre =
∐

i∈π0(X)

CX⊛

i
as the semi-complete category

associated with a virtually semi-complete category CX .

2.4.5. Proposition. Every virtually semi-complete category is quasi-filtered.

Proof. A category is quasi-filtered iff all its connected components are quasi-filtered.
So that the assertion follows from 2.3.2.1.

2.5. Proposition. The following conditions on a svelte category CX are equivalent:
(a) Every morphism of the category CX has a non-trivial virtual kernel.
(b) For any object L of the category CX , the category CX/L is virtually complete.
(c) The category CX is virtually semi-complete.

Proof. The assertion follows from 2.3.3 and 2.3.4.

2.6. Kernels in virtually semi-complete categories. Let CX be a virtually

semi-complete category. If a morphism M
f
−→ L belongs to the connected component

CXi
of the category CX , then its virtual kernel, Kerv(f), is determined by a cartesian

square
Kerv(f) −−−→ xi

kv(f)
y cart

y

M̂
f̂

−−−→ L̂

(2)

where xi = limhXi
– the virtually initial object of the connected component CXi

.

The kernel of the morphism M
f
−→ L (if any) is an object of the subcategory

CXi
which represents the presheaf Kerv(f) and Ker(f)

k(f)
−−−→ M is a morphism, which

represents the left vertical arrow Kerv(f)
kv(f)
−−−→ M̂ of the cartesian square (2).

2.7. Remarks. (a) The observation 2.6 shows that, if a connected component CXi

is virtually complete, then our general notion of kernel is reduced to the case of kernels in
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category CX⊛

i
with initial objects and all limits (in particular, pull-backs), which enables

us to use facts and techniques of Chapters I and II.

(b) On the other hand, if the component CXi
is not virtually complete, then the kernel

of the image in C∧
Xi

of any morphism from CXi
is the (unique morphism from) the trivial

presheaf. In particular, there are no representable kernels of arrows.

Therefore, in the constructions related with kernels of arrows of a category CX , we
shall assume, normally, that CX is virtually semi-complete.

2.8. Virtually trivial morphisms and objects. Virtually trivial kernels.

2.8.1. Virtually trivial morphisms. We call a morphism M
f
−→ L of a category

CX virtually trivial if the canonical morphism Kerv(f)
kv(f)
−−−→ M̂ is a split epimorphism.

This implies, by 2.4.1, that the connected component, CXi
, of the object L is virtually

complete; i.e. the category CX⊛

i
has a non-trivial initial object xi.

So that the morphism M
f
−→ L is virtually trivial iff its image M̂

f̂
−→ L̂ in C∧

Xi

factors through a virtually initial object xi of the category CXi
.

2.8.1.1. Note. It follows that trivial morphisms defined in 1.6.1 are virtually trivial.
Moreover, the only difference between these two notions is the existence of a kernel: a

virtually trivial morphism M
f
−→ L is trivial iff Ker(f) exists, or, what is the same, the

virtual kernel Kerv(f) of the morphism f is representable.

2.8.2. Virtually trivial objects. By definition, an object M of CX is virtually

trivial if the identical morphism M
idM−→M is virtually trivial. It follows from 2.8.1 that

this can happen only if M̂ is an initial object of the category CX⊛

i
associated with the

connected component CXi
of the object M; that is M̂ ≃ xi = limhCXi

. But, M̂ is an
initial object of CX⊛

i
iffM is an initial object of the category CXi

.

Thus, virtually trivial objects are, precisely, initial objects of connected components
of the category CX . Since trivial objects (defined in 1.6.1) are virtually trivial and ini-
tial objects of connected components of the category CX are trivial, these two notions –
virtually trivial and trivial, coincide.

2.8.3. Virtually trivial kernels. We say that a morphism M
f
−→ L has a virtually

trivial kernel if Kerv(f) is a trivial object of the category C∗
X . By 2.8.2, this means that

Kerv(f) is (representable by) an initial object of the connected component CXi
of the

objectM.

2.8.4. Proposition. Suppose that there is a virtually trivial morphism M
g
−→ N .

Then, for any morphism L
f
−→ M, the canonical morphism Kerv(f)

kv(f)
−−−→ L̂ is
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a strict monomorphism. In particular, if Ker(f) exists (that is the presheaf Kerv(f) is

representable), then Ker(f)
k(f)
−−−→M is a strict monomorphism.

Proof. Morphisms L
f
−→M and M

g
−→ N belong to a connected component CXi

of the category CX . Let xi be an initial object of the category CX⊛

i
of presheaves of sets on

the category CXi
. The triviality of the morphism M

g
−→ N means that it factors through

the virtually initial object xi of the category CXi
. In particular, there exists a morphism

M̂ −→ xi, which implies that the unique morphism xi −→ M̂ is a split monomorphism;

therefore, it is a strict monomorphism. The canonical morphism Kerv(f)
kv(f)
−−−→ L̂, being

a pull-back of a strict monomorphism, is itself a strict monomorphism.

2.8.4.1. Corollary. Suppose that there is a virtually trivial morphism M
g
−→ N .

Then, a morphism L
f
−→M is virtually trivial iff M

idL−→ L is a kernel of L
f
−→M.

Proof. By 2.8.4, the canonical morphism Kerv(f)
kv(f)
−−−→ L̂ is a strict monomorphism.

If the morphism L
f
−→M is virtually trivial, then, by definition, Kerv(f)

kv(f)
−−−→ L̂ is a

split epimorphism. Therefore, it is an isomorphism.

2.10. Virtually semi-complete categories versus semi-complete categories.

2.10.1. Proposition. Let CX be a virtually semi-complete category and CY a semi-
complete category. The functor of the composition with the ”reduced” Yoneda embedding

Hom(CXre , CY )
◦hre
X

−−−→ Hom(CX , CY ), G 7−→ G ◦ hreX , (1)

establishes an equivalence between the category Homvc(CX , CY ) of functors from CX
to CY which map virtually trivial morphisms to virtually trivial morphisms and the full
subcategory Hom(CXre , CY ) of the category Hom(CXre , CY ) generated by all continuous
functors CXre −→ CY .

Proof. The argument is an adaptation of the proof of I.2.0.2.

2.10.2. The category of semi-complete categories. We denote by Catsc the
subcategory of the category Cat whose objects are semi-complete categories and morphisms
are continuous functors.

2.10.3. The category of virtually semi-complete categories. We denote by
Catvsc the subcategory of the category Cat whose objects are semi-complete categories and
morphisms functors which map virtually trivial morphisms to virtually trivial morphisms.

2.10.4. Proposition. The inclusion functor Catsc −→ Catvsc has a left adjoint.

Proof. The assertion follows from 2.10.1.
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2.11. Digression: fully exact subcategories of a right exact category.

2.11.1. Conflations. Let (CX ,EX) be a right exact category. A conflation is the

pair of arrows Ker(e)
k(e)
−→M

e
−→ L, where M

e
−→ L is a deflation.

2.11.1.1. Remark. The existence of a conflation Ker(e)
k(e)
−→ M

e
−→ L implies

that the connected component of the objectM is virtually complete (see 2.7(b)). So that
the notion of conflation (and everything based on this notion, in particular, the content of
this section) makes sense only for virtually semi-complete right exact categories: connected
components which are not virtually complete do not participate.

2.11.2 Definition. Let (CX ,EX) be a right exact category. We call a strictly full
subcategory B of the category CX a fully exact subcategory of the right exact category
(CX ,EX), if B is closed under extensions in the following sense: if M

e
−→ L is a deflation

such that Ker(e) exists and belongs to B and the object L belongs to B, then M is an
object of the subcategory B too.

2.11.3. Induced right exact structure. Let (CX ,EX) be a right exact category
and B a full subcategory of the category CX . Let E′

B,X denote the class of all deflations

M
e
−→ L such that Ker(e) (exists and) belongs to B as well as the objectsM and L. We

denote by EB,X the union of E′
B,X and the class of all isomorphisms of the category B.

2.11.3.1. Proposition. Let (CX ,EX) be a right exact category and B its fully exact
subcategory. Then the class EX,B is a structure of a right exact category on B such that
the inclusion functor B −→ CX is an ’exact’ functor (B,EX,B) −→ (CX ,EX).

Proof. It is clear that Iso(CX)◦E′
B,X ◦Iso(CX) = E′

B,X . It remains to show that the
class E′

B,X is stable under arbitrary pull-backs and the composition: E′
B,X ◦E

′
B,X ⊆ E′

B,X .

(a) The first assertion follows from 1.3. In fact, let

M
t̃

−−−→ Ly cart
y

M
t

−−−→ L

be a cartesian square whose right vertical arrow belongs to B and the lower horizontal
arrow is a deflation from E′

B,X . The latter means that Ker(t) exists and is an object of

the subcategory B. By 1.3, Ker(t) is naturally isomorphic to Ker(̃t). Since B is a fully
exact subcategory of (CX ,EX), it follows that the object M belongs to B. Therefore, the

deflation M
t̃
−→ L belongs to the class E′

B,X .
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(b) Let N
s
−→ M and M

s
−→ L be morphisms of E′

B,X . In particular, Ker(s)
exists and belongs to the subcategory B. By 1.4, we have a cartesian square

Ker(t ◦ s)
s′

−−−→ Ker(t)

k(ts)
y cart

y k(t)

N
s

−−−→ M

whose existence follows from the invariance of deflations under pull-backs. By 1.3, the
existence of Ker(s) implies that Ker(s′) exists and is isomorphic to Ker(s). Since Ker(s)
and Ker(t) are objects of the subcategory B and B is a fully exact subcategory of the right
exact category (CX ,EX), it follows that Ker(t ◦ s) is an object of B.

3. Derived functors.

3.1. ∂∗-Functors. Fix a svelte right exact category (CX ,EX).
A ∂∗-functor from (CX , EX) to a category CY is a sequence of functors

CX
Ti
−−−→ CY , i ≥ 0,

together with an assignment to every cartesian square

Mξ,e

eξ
−−−→ Lξ

ξe

y cart
y ξ

M
e

−−−→ L

(1)

whose horizontal arrows are deflations, and every i ≥ 0 a morphism

Ti+1(L)
di(e,ξ)
−−−→ Ti(Mξ,e), (2i)

functorially depending on the cartesian square (or, what is the same, on the pair of arrows

M
e
−→ L

ξ
←− Lξ), whose composition with the morphism Ti(Mξ,e

ξe
−→ M) is virtually

trivial. In other words, the image of the morphism (2) in the category C∗
Y factors through

the virtual kernel of the morphism Ti(Mξ,e
ξe
−→M).

3.1.0. Note about target categories of ∂∗-functors. Let T = (Ti, di| i ≥ 0)
be a ∂∗-functor from a right exact category (CX , EX) to a category CY . The fact that the
image of the morphism

T1(L)
d0(e,ξ)
−−−→ T0(Mξ,e), (20)
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in the category C∗
Y factors through the virtual kernel of the morphism T0(Mξ,e

ξe
−→M)

implies, by 2.4.1, that the functor T0 (hence all functors Ti, i ≥ 0) takes values only in
the virtually complete connected components of the category CY .

3.1.0.1. So that we can (and will) assume, without loss of generality, that ∂∗-functors
take values in virtually semi-complete categories.

3.1.1. The ’long sequence’. Thus, we have a long “sequence”

di+1(e,ξ)

−−−→

Ti+1



Mξ,e

eξ
−−−→ Lξ

ξe

y cart
y ξ

M
e

−−−→ L




di(e,ξ)
−−−→

Ti



M

e
−−−→ L

ξe

x cart
x ξ

Mξ,e

eξ
−−−→ Lξ




di−1(e,ξ)

−−−→

(3)
functorially depending on the cartesian square, or, what is the same, on the pair of arrows

M
e
−→ L

ξ
←− Lξ whose left arrow is a deflation.

3.1.2. Morphisms of ∂∗-functors. Let T = (Ti, di| i ≥ 0) and T ′ = (T ′
i , d

′
i| i ≥ 0)

be ∂∗-functors from a right exact category (CX , EX) to a category CY . A morphism

from T to T ′ is a family f = (Ti
fi
−→ T ′

i | i ≥ 0) of functor morphisms such that, for any
cartesian square (1) whose horizontal arrows are deflations, and every i ≥ 0, the diagram

Ti+1(L)
di(e,ξ)
−−−→ Ti(Mξ,e)

fi+1(L)
y

y fi(Mξ,e)

T ′
i+1(L)

d′
i(e,ξ)

−−−→ T ′
i (Mξ,e)

(4)

commutes. The composition of morphisms is naturally defined. Thus, we have the category
Hom∗((CX ,EX), CY ) of ∂

∗-functors from (CX , EX) to CY .

3.1.3. Contravariant functoriality. Let (CX,EX)
Φ

−−−→ (CX ,EX) be an ’exact’
functor (that is Φ preserves deflations and pull-backs of deflations). For any ∂∗-functor
T = (Ti, di| i ≥ 0) from the right exact category (CX ,EX) to a category CY , the
composition

T ◦ Φ = (Ti ◦ Φ, diΦ| i ≥ 0)

is a ∂∗-functor from (CX,EX) to CY . The map (T,Φ) 7−→ T ◦ Φ extends to a functor

Hom∗((CX ,EX), CY )× Ex∗((CX,EX), (CX ,EX)) −−−→ Hom∗((CX,EX), CY ), (5)

where Ex((CX,EX), (CX ,EX)) denotes the full subcategory of Hom(CX, CX) whose ob-
jects are ’exact’ functors (CX,EX) −−−→ (CX ,EX).
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3.1.4. Covariant functoriality. Let CY and CZ be virtually semi-complete

categories and CY
F
−→ CZ a functor which maps virtually trivial morphisms to virtually

trivial morphisms. For any ∂∗-functor T = (Ti, di| i ≥ 0) from a right exact category
(CX ,EX) to the category CY , the composition

F ◦ T = (F ◦ Ti, Fdi | i ≥ 0)

is a ∂∗-functor from (CX,EX) to CZ .

3.1.4.1. Note. Let CY =
∐

i∈π0(X)

CYi
and CZ =

∐

γ∈π0(Z)

CZγ be the decompositions

of the categories CY and CZ into the disjoint union of connected components.

Any functor CY
F
−→ CZ maps connected components of the category CY to

connected components of the category CZ . In other words, the functor F induces a map

π0(Y )
π0(F )
−−−→ π0(Z)

and, for every i ∈ π0(Y ), a functor CYi

Fi−→ CZπ0(F )(i)
.

It follows from 2.8.1 that the functor CY
F
−→ CZ maps virtually trivial morphisms

to virtually trivial morphisms iff, for every i ∈ π0(Y ), the associated functor

CY ⊛

i

F∗
i

−−−→ CZ⊛

π0(F )(i)

maps initial objects of the category CY ⊛

i
to initial objects of the category CY ⊛

π0(F )(i)
.

3.2. Universal ∂∗-functors. A ∂∗-functor T = (Ti, di| i ≥ 0) from a right exact
category (CX , EX) to a virtually semi-complete category CY is called universal if, for every

∂∗-functor T ′ = (T ′
i , d

′
i| i ≥ 0) from (CX , EX) to CY and every functor morphism T ′

0
g
−→ T0,

there exists a unique morphism f = (T ′
i

fi
−→ Ti | i ≥ 0) from T ′ to T such that f0 = g.

3.2.1. Interpretation. Consider the functor

Hom∗((CX ,EX), CY )
Ψ∗

−−−→ Hom(CX , CY ) (1)

which assigns to every ∂∗-functor (resp. every morphism of ∂∗-functors) its zero compo-

nent. For any functor CX
F
−→ CY , we have a presheaf of sets Hom(Ψ∗(−), F ) on the

category Hom∗((CX ,EX), CY ). Suppose that this presheaf is representable by an object
(i.e. a ∂∗-functor) Ψ∗(F ). Then Ψ∗(F ) is a universal ∂∗-functor.

Conversely, if T = (Ti, di| i ≥ 0) is a universal ∂∗-functor, then T ≃ Ψ∗(T0).
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3.2.2. Right derived functors. If T = (Ti, di| i ≥ 0) is a universal ∂∗-functor,
then, for every i ≥ 1, the functor Ti will be called the i-th right derived functor of the
functor T0. It follows from the universality of T that, for all i ≥ 0, the (i+1)-th derived
functor of T0 is the first right derived functor of the i-th derived functor Ti.

3.3. The construction of the first right derived functor. Let (CX ,EX) be a
svelte right exact category and CY a virtually semi-complete category with pull-backs.

Fix a functor CX
F
−→ CY .

3.3.1. An intermediate diagram and its limit. For any object L of the category
CX , let DS−F (L) denote the diagram

Vα,F (ξe)

dαξ,e
−−−→y cart

Vα
α

−−−→

F



Mξ,e

eξ
−−−→ Lξ

ξe

y cart
y ξ

M
e

−−−→ L


 (1)

where M
e
−→ L runs through deflations of the object L and Lξ

ξ
−→ L and Vα

α
−→ F (M)

through (the set of representatives of isomorphism classes of) arbitrary arrows.
The diagram DS−F (L) is filtered. So that if the category CY has limits of filtered

diagrams, then the limit of the diagram DS−F (L) exists for any object L of the category
CX . We denote this limit by S−F (L).

3.3.2. The connecting morphism. It follows from the definition of S−F (L) that,
for every cartesian square

Mξ,e

eξ
−−−→ Lξ

ξe

y cart
y ξ

M
e

−−−→ L

whose horizontal arrows are deflations, there is a canonical diagram

S−F (L)
dξ,e
−−−→ F (Mξ,e)

F (eξ)

−−−→ F (Lξ)

F (ξe)
y

y F (ξ)

F (M)
F (e)
−−−→ F (L)

(2)

which depends functorially on the morphisms M
e
−→ L

ξ
←− Lξ.

3.3.3. Limits and ”triangles”. Let CY be a virtually semi-complete category with
limits of filtered diagrams. By 2.4.5, CY is quasi-filtered and, therefore, has kernels of
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arrows. It follows from the definition of S−F (L) that it is the limit of Ker(F (ξe)), where

M
e
−→ L runs through deflations of the object L and Lξ

ξ
−→ L through arbitrary arrows.

Thanks to the existence of limits of filtered diagrams, this limit can be split in two
consecutive limits:

S−F (L) = lim
M

e
→L

lim
Lξ

ξ
→L

Ker(F (ξ′e))

In particular, for each deflation M
e
−→ L, we have a canonical morphism

S−F (L)
de

−−−→ lim
Lξ

ξ
→L

Ker(F (ξ′e)),

which is a part of ”triangle”

S−F (L)
de

−−−→ lim
Lξ

ξ
→L

Ker(F (ξ′e))
k̄(e)
−−−→ F (M)

F (e)
−−−→ F (L). (3)

If all deflations of the object L have kernels (which is the case when the category
CX/L has initial objects), then the limit lim

Lξ
ξ
→L

Ker(F (ξ′e)) is isomorphic to the mor-

phism F (Ker(e)
k(e)
−−−→ M). So that S−F (L) is isomorphic to the limit of kernels of

the morphisms F (Ker(e)
k(e)
−−−→ M), where M

e
−→ L runs through the category of

deflations of the object L. In this case, the diagram 3.3.2(2) can be replaced by a more
familiar form of a triangle:

S−F (L)
d(e)
−−−→ F (Ker(e))

F (k(e))
−−−→ F (M)

F (e)
−−−→ F (L). (4)

In particular, if the categories CX and CY have initial objects, we recover the right
derived functor introduced in II.3.2.

3.3.4. Proposition. Let (CX ,EX) be a svelte right exact category, CY a virtu-

ally semi-complete category with limits of filtered diagrams, and CX
F
−→ CY a functor.

Suppose that the category CX is quasi-filtered (say, CX has pull-backs, or CX is virtually
semi-complete; see 2.4.5).

Then the map L 7−→ S−F (L) extends to a functor CX
S−F

−−−→ CY .

Proof. Replacing the svelte category CX by an equivalent small category, we assume
that CX is a small category. Replacing the category CY by the associated semi-complete
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category CY re =
∐

i∈π0(Y )

CY ⊛

i
(see 2.4.4), we assume that the category CY has pull-backs.

Since the canonical embedding

CY =
∐

i∈π0(Y )

CYi

hre
Y

−−−→ CY re =
∐

i∈π0(Y )

CY ⊛

i

preserves limits and, for any L ∈ ObCX , the presheaf of sets S−(h
re
Y ◦F )(L) is representable

by S−F (L) (see 3.3.3), we can do this reduction without loss of generality.

(a) For any morphism L
f
−→ L of the category CX , consider the commutative

diagrams

S−F (L) −−−→ Vα,F (f′eγ
′
ef

)

dαγ,eξ
−−−→y cart

Vα,F (ξ′e)

dαξ,e
−−−→y cart

Vα
α

−−−→x cart

Vα,F (f′e)

dαf
−−−→x cart

S−F (L) −−−→ Vα,F (f′eγ
′
ef

)

dαγ,eξ
−−−→

F




Mfγ,e

efγ
−−−→ Lγ

f′γ,eξ

y cart
y fγ

Mξ,e

eξ
−−−→ Lξ

fγ
←−−− Lγ

ξ′e

y cart
y ξ

y γ

M
e

−−−→ L
f

←−−− L

f′e

x cart
x f

Mf,e

ef
−−−→ L

γ′ef

x cart
x γ

Mfγ,e

efγ
−−−→ Lγ




(1)

built around the diagram 3.3.1(1) and the morphism L
f
−→ L. Here M

e
−→ L runs

through deflations of the object L, Lξ
ξ
−→ L and Vα

α
−→ F (M) through arbitrary

arrows, and (γ, fγ) runs through the set of all pairs of arrows Lξ
fγ
←− Lγ

γ
−→ L satisfying

f ◦ γ = ξ ◦ fγ . By hypothesis, this set is non-empty.

Observations. (a1) If the morphism L
f
−→ L has arbitrary pull-backs, then the

pairs of arrows Lξ
fγ
←− Lγ

γ
−→ L satisfying f ◦ γ = ξ ◦ fγ are in natural bijective

correspondence with all morphisms Lγ
λ
−→ Lξ,f determined by the choice of a cartesian

square

Lξ,f
fξ
−−−→ Lξ

ξ′f

y cart
y ξ

L
f

−−−→ L
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(a2) If there are no pull-backs of some morphisms to L along L
f
−→ L, then we still

can fix a commutative square

L0

f0
−−−→ Lξ

ξ0

y
y ξ

L
f

−−−→ L

(whose existence is guaranteed by hypothesis) and consider only pairs (γ, fγ) of the form

(ξ0 ◦λ, f0 ◦λ) for an arbitrary Lγ
λ
−→ L.0, because the limits we are taking do not depend

on the choice of this commutative square.
(a3) It follows from (a1) and (a2) that we can replace the diagram (1) by the diagram

Vα
α

−−−→x cart

Vα,F (f′e)

dαf
−−−→x cart

S−F (L) −−−→ Vα,F (f′eγ
′
ef

)

dαγ,eξ
−−−→

F




M
e

−−−→ L

f′e

x cart
x f

Mf,e

ef
−−−→ L

γ′ef

x cart
x γ

Mfγ,e

efγ
−−−→ Lγ




x
S−F (L)

(2)

where M
e
−→ L runs through deflations of the object L and Lγ

γ
−→ L through arbitrary

morphisms.

(b) The diagram (2) incorporates two cones:

S−F (L) −→ DIAGRAM and S−F (L) −→ DIAGRAM, (3)

where DIAGRAM is

Vα,F (f′eγ
′
ef

)

dαfγ,e
−−−→y cart

Vα
α

−−−→

F




Mfγ,e

efγ
−−−→ Lγ

f′eγ
′
ef

y cart
y fγ

M
e

−−−→ L


 (4)

It follows from this construction and the definition of S−F (L) that the first cone,
S−F (L) −→ DIAGRAM, is universal. Therefore, there exists a unique morphism

S−F (L)
S−F (f)

−−−→ S−F (L)
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such that

S−F (L)
S−F (f)

−−−→ S−F (L)
ց ւ
DIAGRAM

commutes.

3.3.5. Remark. Consider the class of all arrows M
f
−→ L of a category CX such

that, for any arrow Lζ
ζ
−→ L, there exists a commutative square

M −−−→ Lζ

ζ ′
y

y ζ

M
f

−−−→ L

This class of arrows contains all isomorphisms of CX and is closed under composition.
Therefore, it defines a subcategory CXf

of the category CX , which is, by construction,
quasi-filtered. Evidently, ObCXf

= ObCX , and it is easy to see that HomCXf
is closed

under pull-backs along morphisms of CX in the sense that if

M −−−→ Ly cart
y

M −−−→ L

is a cartesian square in CX whose right vertical arrow belongs to HomCXf
, then its left

vertical arrow belongs to HomCXf
as well.

Evidently, HomCXf
contains all morphisms stable under arbitrary pull-backs. In

particular, if EX is a right exact structure on CX , then EX ⊆ HomCXf
; hence the pair

(CXf
,EX) is a right exact subcategory of (CX ,EX). Suppose that a functor CX

F
−→ CY

is such that S−F (L) exists for all L ∈ ObCX . It follows from the argument of 3.3.4 that
the map L 7−→ S−F (L) extends to a functor from the category CXf

to the category CY .

3.4. Some observations and details. Let (CX ,EX) be a right exact category

and CX
F
−→ CY a functor. We assume that the category CX is quasi-filtered and the

category CY is virtually semi-complete and has pull-backs and limits of filtered diagrams.
In particular, the category CY has kernels of all arrows, and S−F (L) exists for all functors

CX
F
−→ CY and all L ∈ ObCX . By 3.3.4, these conditions imply that S−F is a well defined

functor from CX to CY .

3.4.1. Functoriality of S−F in terms of kernels. Since the category CY has
kernels, the cone

S−F (L) −→ DIAGRAM
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in the argument of 3.3.4 factors through the limit of the DIAGRAM, with respect to the
morphisms Vα

α
−→ F (M); that is S−F (L) −→ DIAGRAM can be replaced by the

diagram

Ker(F (f′eγ
′
ef
)) −−−→ Vα,F (f′eγ

′
ef

)

dαfγ,e
−−−→x

y cart

S−F (L) Vα
α

−−−→

F




Mfγ,e

efγ
−−−→ Lγ

f′eγ
′
ef

y cart
y fγ

M
e

−−−→ L


 (1)

where M
e
−→ L runs through deflations of the object L and Lγ

ξ
−→ L and Vα

α
−→ F (M)

are arbitrary arrows.

Similarly, the cone S−F (L) −→ DIAGRAM can be replaced by the cone

Vα
α

−−−→x cart

S−F (L) Vα,F (f)

dαf
−−−→y

x cart

Ker(F (γ′ef)) −−−→ Vα,F (f′eγ
′
ef

)

dαγ,eξ
−−−→

F




M
e

−−−→ L

f′e

x cart
x f

Mf,e

ef
−−−→ L

γ′ef

x cart
x γ

Mfγ,e

efγ
−−−→ Lγ




(2)

which is determined uniquely up to isomorphism by the same varying parameters as the

diagram (1): deflations M
e
−→ L of the object L and arbitrary morphisms Lγ

γ
−→ L

and Vα
α
−→ F (M).

Thus, we have a commutative diagram

Ker(F (f′e))
k(F (f′e))

−−−→

ζe,γ

x cart

S−F (L) −−−→ Ker(F (f′eγ
′
ef
))

k(F (f′eγ
′
ef

))

−−−→

F




M
e

−−−→ L

f′e

x cart
x f

Mf,e

ef
−−−→ L

γ′ef

x cart
x γ

Mfγ,e

efγ
−−−→ Lγ




S−F (f)
x k(ζe,γ)

x
x k(F (γ′ef))

S−F (L) −−−→ Ker(F (γ′ef))
id

−−−−−−−→ Ker(F (γ′ef))

(3)

depending on deflations M
e
−→ L of the object L and arbitrary morphisms Lγ

γ
−→ L

and Vα
α
−→ F (M). with cartesian squares and their images as indicated.
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Notice that (3) can be viewed as a cone with the vertex S−F (L).

As it was already mentioned in the argument of 3.3.4, the cone

Ker(F (f′e))
k(F (f′e))

−−−→

ζe,γ

x cart

S−F (L)
λFf,e,γ(L)

−−−→ Ker(F (f′eγ
′
ef
))

k(F (f′eγ
′
ef

))

−−−→

F




M
e

−−−→ L

f′e

x cart
x f

Mf,e

ef
−−−→ L

γ′ef

x cart
x γ

Mfγ,e

efγ
−−−→ Lγ




(4)

is universal. Altogether implies that the morphism S−F (L)
S−F (f)

−−−→ S−F (L) is an arrow
in the commutative diagram

S−F (L)
S−F (f)

−−−→ S−F (L)

λFf (L)
y

y≀

lim
e,γ
Ker(F (γ′ef))

k(ζ̄)
−−−→ lim

e,γ
Ker(F (f′eγ

′
ef
))

ζ̄
−−−→ lim

M
e
→L

Ker(F (f′e))

(5)

whose right vertical arrows is a canonical isomorphism. Here ζ̄ = lim
e,γ

(ζe,γ), where the

limit is taken with respect to deflations M
e
−→ L and arbitrary morphisms Lγ

γ
−→ L.

3.4.2. The limit of connecting morphisms. Suppose now that L
f
−→ L is a

deflation. In particular, for any arrow Lξ
ξ
−→ L, there is a cartesian square

Lξ,f
fξ
−−−→ Lξ

ξ′f

y cart
y ξ

L
f

−−−→ L
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In this case, the diagram 3.4.1(3) can be replaced by the commutative diagram

Ker(F (f′e))
k(F (f′e))

−−−→

ζe,γ

x cart

S−F (L) −→ Ker(F (f′eγ
′
ef
))

k(..)
−−−→

F




Le
e
−→ L

f
−→ L

f′fe

x cart f′f

x cart
x f

Lf,fe

ef′
f
−→ Lf,f

ff
−→ L

γ′ef′
f

x cart γ′ff

x cart
x γ

Lfγ,fe

ef′
f
γ′
ff

−→ Lfγ,f
ffγ
−→ Lγ




x k(ζe,γ)
x k(..)

x cart
x k(f′fγ

′
ff
)

S−F (L) −→ Ker(F (γ′ef))
id
−−−→ Ker(F (γ′ef)) −→ Ker(f′fγ

′
ff
)

(1)

with Le
e
−→ L running through deflations of L and Lγ

γ
−→ L through all arrows to L.

By definition,

S−F (L) = lim
Lξ

ξ
→L

(
lim

Mu
u
→L

Ker(F (ξ′u))
)

∼−→ lim
Lγ

γ
→L

(
lim

Le
e
→L

Ker(F ((f′fγ
′
ff
)′e)

)

y≀
lim

Le
e
→L

(
lim

Lγ
γ
→L

Ker(F ((f′fγ
′
ff
)′e)

)

where Mu
u
−→ L runs through deflations of the object L and Lξ

ξ
−→ L through

arbitrary morphisms, and morphisms e, γ in the right limits come from the diagram (1)
above. Finally, (f′fγ

′
ff
)′e is a suggestive notation for the composition f′efγ

′
ef′

f

of the left

vertical arrows inside of the brackets in the diagram (1) – the pull-back of the composition

f′fγ
′
ff

along Le
e
−→ L.

In particular, there is a canonical morphism

S−F (L)
df

−−−→ lim
Lγ

γ
→L

(Ker(F (Lfγ,f

f′fγ
′
ff

−−−→ L)), (2)

3.5. Proposition. Let (CX ,EX) be a svelte right exact category and CY a virtually
semi-complete category with limits of filtered diagrams. Suppose that the category CX is

quasi-filtered. Then, for any functor CX
F
−→ CY , there exists a (unique up to isomor-

phism) universal ∂∗-functor T = (Ti, di| i ≥ 0) such that T0 = F . In other words, the
functor

Hom∗((CX ,EX), CY )
Ψ∗

−−−→ Hom(CX , CY ) (3)
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which assigns to (morphism of) ∂∗-functors their zero components has a right adjoint, Ψ∗.

Proof. Applying the iterations of the functor S− and the connecting morphism con-
structed in 3.3.4 and 3.3.4 to the functor F , we obtain a ∂∗-functor

S•
−(F ) = (Si−(F ), d

F
i | i ≥ 0).

The claim is that this ∂∗-functor is universal. The proof of the claim is an adaptation of
the argument of 3.2, which is left to the reader.

3.5.1. Corollary. Let (CX ,EX) be a right exact category and CY a virtually semi-
complete category with filtered diagrams. Then the functor

Hom∗((CX ,EX), CY )
Ψ∗

−−−→ Hom(CX , CY )

is a continuous localization.

Proof. By 3.2, we have a pair of adjoint functors

Hom∗((CX ,EX), CY )
Ψ∗

−−−→ Hom(CX , CY )
Ψ∗

−−−→ Hom∗((CX ,EX), CY )

and the adjunction morphism Ψ∗Ψ∗ −→ Id is an isomorphism. The latter means that Ψ∗

is a fully faithful functor and Ψ∗ is a localization functor at a left multiplicative system.

3.6. Proposition. Let (CX ,EX) be a right exact category and T = (Ti, di | i ≥ 0)
a ∂∗-functor from (CX , EX) to a virtually semi-complete category CY . Let CZ be another

virtually semi-complete category and CY
F
−→ CZ a functor which preserves virtually

trivial morphisms and limits of filtered diagrams. Then
(a) If T is a universal ∂∗-functor, then F ◦ T = (F ◦ Ti, Fdi| i ≥ 0) is universal.
(b) If, in addition, the functor F is fully faithful, then the ∂∗-functor F ◦T is universal

iff the ∂∗-functor T is universal.

Proof. (a) The fact that T = (Ti, di | i ≥ 0) is a universal ∂∗-functor from (CX , EX)
to CY means precisely that (Ti+1, di) = (S−Ti, d

Ti), because, by (the argument of) 3.5,
the ∂∗-functor T is isomorphic to the ∂∗-functor

S•
−(T0) = (Si−(T0), d

T0
i | i ≥ 0).

Since the functor F preserves kernels of morphisms and filtered limits, and only these
types of limits appear in the construction of S−(G)(L) (cf. 3.3.1, 3.3.2), the natural
morphism

F ◦ S−(G)(L) −→ S−(F ◦G)(L)
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is an isomorphism for any functor CX
G
−→ CY such that S−(G)(L) exists.

In particular, the canonical morphism F ◦ S−(Ti)(L) −→ S−(F ◦ Ti)(L) is an iso-
morphism for all i ≥ 0 and all L ∈ ObCX .

(b) The argument is the same as in II.3.4(b).

3.6.1. Corollary. Let (CX ,EX) be a svelte right exact category and CY a virtually
semi-complete category. A ∂∗-functor T = (Ti, di | i ≥ 0) from (CX , EX) to CY is universal

iff the ∂∗-functor T̂
def
= hreY ◦ T = (T̂i, d̂i | i ≥ 0) from (CX , EX) to the category CY re is

universal.

Proof. The Yoneda embedding CY
hre
Y−→ CY re is a fully faithful functor which preserves

limits and maps virtually trivial morphisms to virtually trivial morphisms. In particular,
it satisfies the conditions of 3.6(b).

3.6.2. Note. Let (CX ,EX) be a svelte right exact category and CY a virtually

semi-complete category. Then , for any functor CX
G
−→ CY re , there exists a unique up

to isomorphism universal ∂∗-functor T = (Ti, di| i ≥ 0) = Ψ∗(G) from (CX ,EX) to CY re

whose zero component coincides with G. In particular, for every functor CX
F
−→ CY ,

there exists a unique up to isomorphism universal ∂∗-functor T = (Ti, di | i ≥ 0) such

that T0 = hreY ◦ F = F̃ . It follows from 3.6(b) that there exists a universal ∂∗-functor
whose zero component coincides with F iff for all L ∈ ObCX and all i ≥ 1, the presheaves
Ti(L) are representable.

3.7. Contravariant functoriality for universal ∂∗-functors.

3.7.1. Proposition. Let (CX ,EX) and (CX,EX) be right exact categories and

(CX ,EX)
Φ
−→ (CX,EX) a fully faithful ’exact’ functor. Let EΦ

X denote the class of all

arrows M
t
−→ L of EX such that, for any morphism Φ(L)

f
−→ L, there exists a

commutative square

Φ(M)
f′

−−−→ M

Φ(s)
y

y t

Φ(L)
f

−−−→ L

where M
s
−→ L is a deflation.

(a) The class EΦ
X is a right exact structure on the category CX.

(b) Suppose that

(i) the category CX is quasi-filtered,

(ii) the functor CX
Φ
−→ CX has the following property: for any Lξ

ξ
−→ Φ(L),

there is an arrow Φ(L)
γ
−→ Lξ for some L ∈ ObCX .
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Then, for any universal ∂∗-functor T = (Ti, di | i ≥ 0) from the right exact category
(CX, E

Φ
X ) to a virtually semi-complete category CY , the composition

T ◦ Φ = (Ti ◦ Φ, diΦ | i ≥ 0)

is a universal ∂∗-functor from (CX ,EX) to CY .

Proof. (a) One can refer to (the argument of) II.4.1(a), or notice that the class EΦ
X

is the intersection of the coinduced right exact structure ΦEX (see III.1.3.3) and the right
exact structure EX. So that EΦ

X is a right exact structure on the category CX.

(b) We can assume (using the observation 3.1.4.1) that the categories CX , CX and
CY are connected. In particular, by assumption, the category CY is virtually complete.

Thanks to 3.6.1, we can and will replace universal ∂∗-functors by their composition

with the ”reduced” Yoneda embedding CY
hre
Y−→ CY re . The fact that the category CY re

has limits of small diagrams allows to use the formula

S−F (L) = lim
Lξ

ξ
→L

lim
M

e
→L

Ker(F (ξ′e)) (1)

for any functor CX
F
−→ CY re . Here M

e
−→ L runs through deflations of the L which

belong to EΦ
X, Lξ

ξ
→ L through arbitrary morphisms, and Mξ,e

ξ′e−→M is the pull-back

of Lξ
ξ
→ L along the deflation M

e
−→ L.

There is a canonical morphism

S−(F ) ◦ Φ −−−→ S−(F ◦ Φ) (2)

which is due to the fact that Φ maps EX to EΦ
X and preserves pull-backs of deflations.

The claim is that, under conditions (b), the morphism (2) is an isomorphism.

(b1) It follows from the definition of the right exact structure EΦ
X that, for any object

L of the category CX , the images Φ(Ls
s
−→ L) of deflations of L contain refinements of

any deflation Lt
t
−→ Φ(L) from EΦ

X. This implies that, for any morphism Lξ
ξ
→ Φ(L),

the canonical morphism

lim
(Lt

t
→Φ(L))∈EΦ

X

Ker(F (ξ′t))) −−−→ lim
(Ls

s
→L)∈EX

Ker(F (ξ′Φ(s))

is an isomorphism. Therefore, it follows from (1) above that the canonical morphism

S−F (Φ(L)) −−−→ lim
Lξ

ξ
→Φ(L)

lim
(Ls

s
→L)∈EX

Ker(F (ξ′Φ(s)) = lim
(Ls

s
→L)∈EX

lim
Lξ

ξ
→Φ(L)

Ker(F (ξ′Φ(s))
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is an isomorphism.

(b2) Now we fix a deflation Ls
s
→ L of the object L and consider the limit

lim
Lξ

ξ
→Φ(L)

Ker(F (ξ′Φ(s)).

The claim is that the canonical morphism

lim
Lξ

ξ
→Φ(L)

Ker(F (ξ′Φ(s)) −−−→ lim
Lζ

ζ
→L

Ker(F (Φ(ζ ′s)) (3)

is an isomorphism.

In fact, consider a cone

M
λΦ(ζ)

−−−→

λx

y

x −−−→

F ◦ Φ



Lζ,s

sζ
−−−→ Lζ

ζ ′s

y cart
y ζ

Ls

s
−−−→ L


 , (4)

where x is an initial object of the category C∗
Y and (Lζ ,Lζ

ζ
→ L) runs through objects of

the category CX/L. The claim is that the cone (4) uniquely extends to a cone

M
λξ
−−−→

λx

y

x −−−→

F




Lξ,Φ(s)

Φ(s)ξ
−−−→ Lζ

ξ′Φ(s)

y cart
y ξ

Φ(Ls)
Φ(s)
−−−→ Φ(L)


 , (5)

where (Lξ,Lξ
ξ
→ Φ(L)) runs through objects of the category CX/Φ(L).

By condition (b)(ii), there is a morphism Φ(Lγ)
γ̃
−→ Lξ. Since the functor Φ is fully

faithful, the composition Φ(Lγ)
ξ◦γ̃
−−−→ Φ(L) is Φ(γ) for a unique morphism Lγ

γ
−→ L.

Since the functor CX
Φ
−→ CX preserves pull-backs of deflations, it maps the cartesian

square

Lγ,s
sγ
−−−→ Lγ

γ′s

y cart
y γ

Ls

s
−−−→ L
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to a cartesian square, and there is a unique cartesian square

Φ(Lγ,s)
Φ(sγ)

−−−→ Φ(Lγ)

γ̃′′Φ(s)

y cart
y γ̃

Lξ,Φ(s)

Φ(s)ξ
−−−→ Lξ

in particular, a unique morphism Φ(Lγ,s)
γ̃′′
Φ(s)

−−−→ Lξ,Φ(s), such that the cartesian square

Φ



Lγ,s

sγ
−−−→ Lγ

γ′s

y cart
y γ

Ls

s
−−−→ L




is the composition of the cartesian squares

Φ(Lγ,s)
Φ(sγ)

−−−→ Φ(Lγ) Lξ,Φ(s)

Φ(s)ξ
−−−→ Lζ

γ̃′′Φ(s)

y cart
y γ̃ and ξ′Φ(s)

y cart
y ξ

Lξ,Φ(s)

Φ(s)ξ
−−−→ Lξ Φ(Ls)

Φ(s)
−−−→ Φ(L)

We define the claimed morphism M
λξ
−−−→ F (Lξ,Φ(s)) in (5) as the composition of

M
λΦ(γ)

−−−→ FΦ(Lγ,s) and F (Φ(Lγ,s)
γ̃′′
Φ(s)

−−−→ Lξ,Φ(s)). (6γ)

(b2.1) The composition of the morphisms (6) does not depend on the choice of the

morphism Φ(Lγ)
γ̃
−→ Lξ.

Indeed, let Φ(Lβ)
β̃
−→ Lξ be another morphism. By hypothesis, the category CX is

quasi-filtered; in particular, there is a commutative square

Lα
α

−−−→ Φ(Lγ)

α′
y

y γ̃

Φ(Lβ)
β̃

−−−→ Lξ
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By condition (b)(ii), there exists a morphism Φ(Lρ)
ρ̃
−→ Lα. Since the functor

CX
Φ
−→ CX is fully faithful, α ◦ ρ̃ = Φ(α1) and α′ ◦ ρ̃ = Φ(α′

1) for uniquely de-

termined morphisms Lρ
α1−→ Lγ and Lρ

α′
1−→ Lβ ; and we have a commutative square

Φ(Lρ)
Φ(α1)
−−−→ Φ(Lγ)

Φ(α′
1)

y
y γ̃

Φ(Lβ)
β̃

−−−→ Lξ

(7)

Since (4) is a cone, this implies that the composition of the morphisms (6γ) equals to
the composition of the morphisms

M
λΦ(β)

−−−→ FΦ(Lβ,s) and F (Φ(Lβ,s)
β̃′′
Φ(s)

−−−→ Lξ,Φ(s)). (6β)

obtained from Φ(Lβ)
β̃
−→ Lξ the same way as morphisms Φ(Lγ)

γ̃
−→ Lξ, because

F (β̃′′
Φ(s)) ◦ λΦ(β) = F (β̃′′

Φ(s)) ◦ FΦ(α
′
1) ◦ λΦ(ρ) =

F (γ̃′′Φ(s)) ◦ FΦ(α1) ◦ λΦ(ρ) = F (γ̃′′Φ(s)) ◦ λΦ(γ)

thanks to the commutativity of the square (7).
(b2.2) Thus, any cone of the form (4) extends uniquely up to isomorphism to a cone

of the form (5). In particular, the universal cone

lim
Lζ

ζ
→L

Ker(F (Φ(ζ ′s))
λΦ(ζ)

−−−→

λx

y
x −−−→

F ◦ Φ



Lζ,s

sζ
−−−→ Lζ

ζ ′s

y cart
y ζ

Ls

s
−−−→ L


 , (8)

extends to a cone

lim
Lζ

ζ
→L

Ker(F (Φ(ζ ′s))
λξ
−−−→

λx

y
x −−−→

F




Lξ,Φ(s)

Φ(s)ξ
−−−→ Lζ

ξ′Φ(s)

y cart
y ξ

Φ(Ls)
Φ(s)
−−−→ Φ(L)


 , (9)

and the latter determines uniquely a morphism

lim
Lζ

ζ
→L

Ker(F (Φ(ζ ′s)) −−−→ lim
Lξ

ξ
→Φ(L)

Ker(F (ξ′Φ(s)) (10)
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due to the fact that the cone

lim
Lξ

ξ
→Φ(L)

Ker(F (ξ′Φ(s))
dξ,Φ(s)

−−−→

λx

y
x −−−→

F




Lξ,Φ(s)

Φ(s)ξ
−−−→ Lζ

ξ′Φ(s)

y cart
y ξ

Φ(Ls)
Φ(s)
−−−→ Φ(L)




is universal. It follows from the universal properties of limits that the morphism (10) is
inverse to the canonical morphism

lim
Lξ

ξ
→Φ(L)

Ker(F (ξ′Φ(s)) −−−→ lim
Lζ

ζ
→L

Ker(F (Φ(ζ ′s)) (3)

(b3) The fact that (3) is an isomorphism implies that

lim
(Ls

s
→L)∈EX

lim
Lξ

ξ
→Φ(L)

Ker(F (ξ′Φ(s)) −−−→ lim
(Ls

s
→L)∈EX

lim
Lζ

ζ
→L

Ker(F (Φ(ζ ′s))

is an isomorphism. But,

lim
(Ls

s
→L)∈EX

lim
Lζ

ζ
→L

Ker(F (Φ(ζ ′s)) = S−(F ◦ Φ)(L)

and, by (b1), the canonical morphism

S−F (Φ(L)) −−−→ lim
(Ls

s
→L)∈EX

lim
Lξ

ξ
→Φ(L)

Ker(F (ξ′Φ(s))

is an isomorphism. Since L in this argument is an arbitrary object of the category CX ,
this shows that, under the assumptions (b), the canonical functor morphism

(S−F ) ◦ Φ −→ S−(F ◦ Φ)

is an isomorphism for any functor CX
F
−→ CY . This, in turn, proves that, for any universal

∂∗-functor T = (Ti, di | i ≥ 0) from the right exact category (CX, E
Φ
X ) to a virtually

semi-complete category CY , the composition T ◦ Φ = (Ti ◦ Φ, diΦ | i ≥ 0) is a universal
∂∗-functor from (CX ,EX) to CY .

3.8. Right derived functors via the category of sheaves.

3.8.1. The ”reduced” category of sheaves on a subcanonical presite. Let

CX be a svelte category having the decomposition CX =
∐

i∈π0(X)

CXi
into the disjoint
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union of its connected components; and let τ be a subcanonical pretopology on CX . We
associate with the presite (CX , τ) the category

CXre
τ

def
=

∐

i∈π0(X)

CX⊛

i,τi

, (1)

which we call the ”reduced” category of sheaves on (CX , τ). Here τi is the restriction of the
pretopology τ to the connected component CXi

and CX⊛

i,τi

denotes the ”reduced” category

of sheaves on the connected component (CXi
, τi), which is defined by the formula

CX⊛

i,τi

= limhXi
\(CXi

, τi)
∧.

3.8.1.1. Proposition. (a) Each of the subcategories CX⊛

i,τi

is a connected compo-

nent of the category CXre
τ
. So that (1) is the decomposition of the category CXre

τ
into

the disjoint union of connected components.

(b) The sheafification functor C∧
X

q∗
τ

−−−→ (CX , τ)
∧ induces an exact continuous

(that is having a right adjoint) localization functor

CXre

qre
τ

−−−→ CXre
τ
. (2)

which we call the ”reduced” sheafification functor.

(c) If the category CX is virtually semi-complete, then the category CXre
τ

is semi-
complete and semi-cocomplete; that is each of the connected components CX⊛

i,τi

, i ∈ π0(X),

is a complete and a cocomplete category.

Proof. The argument is left to the reader.

3.8.2. The ”reduced” canonical embedding. Let (CX ,EX) be a svelte right
exact category. The construction of 3.8.1 assigns to the right exact category (CX ,EX) the
”reduced” category

CXre
EX

=
∐

i∈π0(X)

CX⊛

i,Ei

, (1)

of sheaves on (CX ,EX). Here Ei denotes the restriction of the right exact structure EX
to the connected component CXi

.

We denote by

CX
jreX
−−−→ CXre

EX
(2)
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the composition of the Yoneda embedding

CX
hre
X

−−−→ CXre =
∐

i∈π0(X)

CX⊛

i

with the sheafification functor

CXre

qre
EX

−−−→ CXre
EX

=
∐

i∈π0(X)

CX⊛

i,Ei

.

Since right exact structures are subcanonical pretopologies, the functor (2) is fully faithful.
We denote by Es

Xre
EX

the canonical right exact structure on the category CXre
EX
.

3.8.2.1. It follows from I.2.1 that the embedding (2) is a fully faithful ’exact’ functor
from the right exact category (CX ,EX) to the right exact category (CXre

EX
,Es

Xre
EX

).

3.8.2.2. It follows from 3.8.1.1 that if the category CX is virtually semi-complete,
then the category CXre

EX
is semi-complete.

3.8.3. Proposition. Let (CX ,EX) be a right exact category and

(CX ,EX)
jreX
−−−→ (CXre

EX
,Es

Xre
EX

)

the canonical embedding. Suppose that the category CX is virtually semi-complete.
Then, for any universal ∂∗-functor T = (Ti, di | i ≥ 0) from the right exact category

(CXre
EX
,Es

Xre
EX

) to a virtually semi-complete category CY , the composition

T ◦ jreX = (Ti ◦ j
re
X , dij

re
X | i ≥ 0)

is a universal ∂∗-functor from the right exact category (CX ,EX) to the category CY .

Proof. It follows from I.2.2.1(b) that the canonical (that is the finest) right exact
structure Es

Xre
EX

on the category CXre
EX

coincides with the right exact structure coinduced

by the embedding (CX ,EX)
jreX
−−−→ (CXre

EX
,Es

Xre
EX

). The condition that the category CX

is virtually semi-complete implies (actually, is equivalent to) that the category CXre
EX

is quasi-filtered. Finally, if F is a presheaf of sets on CX , then F(M) 6= ∅ for some

M ∈ ObCX iff there exists morphisms from M̂ = CX(−,M) to F. In particular, for any
object F of the category CXE

there exist morphisms jreX(M) −→ F for someM∈ ObCX .
All together shows that the assumptions of 3.7.1 hold, hence the assertion.
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3.8.4. Right derived functors via the category of sheaves. Following the
pattern of II.4.3, we can apply 3.8.3 to replace the computation of derived functors of any
functor from a virtually semi-complete right exact category (CX ,EX) to a virtually semi-
complete category CY by computation of derived functors of the associated functor from
the semi-complete right exact category (CXre

EX
,Es

Xre
EX

) to the semi-complete category

CY re =
∐

i∈π0(Y )

CY ⊛

i
associated with the category CY .

Namely, we associate with a functor CX
F
−→ CY the composition CXre

EX

F re
EX

−−−→ CY re

of the functor Cre
X

F re

−−−→ CY re with the inclusion functor CXre
EX
−−−→ Cre

X . The

composition of F re
EX

with the canonical embedding (CX ,EX)
jreX
−−−→ (CXre

EX
,Es

Xre
EX

) is

isomorphic to the composition of CX
F
−→ CY with the Yoneda embedding CY

hre
Y−→ CY re .

By 3.8.3, the universal ∂∗-functor S•−(h
re
Y ◦ F ), whose zero component is hreY ◦ F,

is isomorphic to the composition S•−(F
re
EX

)jreX of the universal ∂∗-functor, whose zero
component is the functor F re

EX
, with the canonical embedding

(CX ,EX)
jreX
−−−→ (CXre

EX
,Es

Xre
EX

).

It follows that the universal ∂∗-functor (CX ,EX)
S•
−F

−−−→ CY exists iff the functors

Sn−(F
re
EX

)jreX factor through the Yoneda embedding CY
hre
Y−→ CY re for every n ≥ 1.

In this case, hreX ◦ S
•
−F ≃ S

•
−(F

re
EX

)jreX .

3.8.4.1. Remark. One of the immediate advantages of having the isomorphism

S•−(F
re
EX

)jreX
∼−→ S•−(h

re
Y ◦ F )

is that it reduces the computation of derived functors to the case already studied in the the
previous chapters: when both the source of the derived functor – a right exact category,
and its target are categories with initial objects.

In fact, the computation of derived functors of functors from a right exact category
(CX ,EX) to a category CY is reduced to the case when both CX and CY are connected.
Since, by hypothesis, the categories CX and CY are virtually semi-complete, their connect-
edness means that they are virtually complete; that is the categories CXre

EX
and CY re

have initial objects.

3.9. The dual picture: ∂-functors and universal ∂-functors.

Let (CX , IX) be a left exact category. A ∂-functor on (CX , IX) is the data which
becomes a ∂∗-functor in the dual right exact category. A ∂-functor on (CX , IX) is universal
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if its dualization is a universal ∂∗-functor. A universal ∂-functor T = (Ti, di | i ≥ 0) will
be also called the left derived functor of its zero component T0.

We leave to the reader the reformulation in the context of ∂-functors of all notions
and facts about ∂∗-functors.

3.10. Remark. If (CX ,EX) is a category with initial objects, the definition of ∂∗-
functors given in 3.1 differs from the one we used prior to Chapter VII (see II.2.0). But, it
follows from the formula for derived functors that universal ∂∗-functors are the same. By
duality, same holds for universal ∂-functors from left exact categories with final objects.

4. Universal problems for universal ∂∗- and ∂-functors.

We extend the setting of Section II.8 to arbitrary right and left exact categories.

4.1. The categories of universal ∂∗-functors. Fix a svelte right exact category

(CX ,EX). Let ∂∗Ũn(X,EX) denote the category whose objects are universal ∂∗-functors
from (CX ,EX) to virtually semi-complete categories (see 3.1.0).

Let T be a universal ∂∗- functor from (CX ,EX) to a category CY and T̃ a universal ∂∗-
functor from (CX ,EX) to a category CZ . A morphism from T to T ′ is a pair (F, φ), where
F is a functor from CY to CZ which preserves filtered limits and maps virtually trivial
morphisms to virtually trivial morphisms, and φ is a ∂∗-functor isomorphism F ◦T ∼−→ T ′.

If (F ′, φ′) is a morphism from T ′ to T ′′, then the composition of (F, φ) and (F ′, φ′) is
defined by

(F ′, φ′) ◦ (F, φ) = (F ′ ◦ F, φ′ ◦ F ′φ).

4.1.0. We denote by ∂∗Un(X,EX) the full subcategory of the category ∂∗Ũn(X,EX)
generated by those universal ∂∗-functors whose zero component maps virtually trivial
morphisms to virtually trivial morphisms.

4.1.1. The category ∂∗Unc(X,EX). We denote by ∂∗Unc(X,EX) the subcategory
of ∂∗Un(X,EX) whose objects are ∂∗-functors from (CX ,EX) to semi-complete categories
CY and morphisms are pairs (F, φ) such that the functor F preserves limits.

4.2. The categories of universal ∂-functors. Dually, for a left exact category

(CX, IX), we denote by ∂Ũn(X, IX) the category whose objects are universal ∂-functors
from (CX, IX) to virtually semi-cocomplete categories. Given two universal ∂-functors T
and T ′ from (CX, IX) to respectively CY and CZ , a morphism from T to T ′ is a pair
(F, ψ), where F is a functor from CY to CZ preserving filtered colimits and ψ is a functor
isomorphism T ′ ∼−→ F ◦ T . The composition is defined by

(F ′, ψ′) ◦ (F, ψ) = (F ′ ◦ F, F ′ψ ◦ ψ′).
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4.2.0. We denote by ∂Un(X, IX) the full subcategory of the category ∂Ũn(X, IX)
generated by the universal ∂-functors from (CX, IX) to virtually semi-cocomplete categories
whose zero component maps virtually cotrivial morphisms to virtually cotrivial morphisms.

4.2.1. The category ∂Unc(X, IX). We denote by ∂Unc(X, IX) the subcategory of
∂Un(X, IX) whose objects are ∂-functors with values in semi-cocomplete categories and
morphisms are pairs (F, ψ) such that the functor F preserves colimits and maps virtually
cotrivial morphisms to virtually cotrivial morphisms.

4.3. Proposition. Let (CX ,EX) be a svelte right exact category and (CX, IX) a svelte
left exact category. Suppose that the category CX is virtually semi-complete and the cate-
gory CX is virtually semi-cocomplete. Then the categories ∂∗Un(X,EX), ∂∗Unc(X,EX),
∂Un(X, IX), and ∂Unc(X, IX) have initial objects.

Proof. It is convenient to start with the category ∂Unc(X, IX). Consider the ”reduced”
Yoneda embedding

CX

hre
X

−−−→ Cre
X =

∐

i∈π0(X)

CX⊛

i
, M 7−→ M̂

def
= CX(−,M). (1)

Let Ext•X,IX
be the universal ∂-functor from the left exact category (CX, IX) to

the semi-bicomplete category Cre
X , whose zero component coincides with the Yoneda

embedding (1), that is Ext0X,IX
= hreX . The claim is that

The universal ∂-functor Ext•X,IX
is an initial object of the category ∂Unc(X, IX).

In fact, let CY be a semi-cocomplete category. The category Homre(CX, CY ) of
functors from CX and CY which map virtually cotrivial morphisms to cotrivial morphisms,
is naturally equivalent to the category Homc(CXre , CY ) of continuous (i.e. having a right
adjoint, or, what is the same, preserving colimits) functors from the category CXre of
presheaves of sets on CX to the category CY . Let F

re denote the determined uniquely up
to isomorphism continuous functor corresponding to F , i.e. F = F re ◦ hreX .

(a) Each of the connected components CX⊛

i
of the category CXre =

∐

i∈π0(X)

CX⊛

i
has

a final object – the constant presheaf taking values in the one-element set. Therefore, for
every object L of the category CX, the presheaf of sets Ext1X,IX

(L) = ExtX,IX
(L) is

the colimit of the diagram

L̂
ĵ

−−−→ M̂

ξ̂
y

y ξ̂j

L̂ξ
ĵξ
−−−→ M̂j,ξ

c(̂jξ)

−−−→ Cok(̂jξ)

(2)
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where

L
j

−−−→ M

ξ
y cocart

y ξj

Lξ
ĵξ
−−−→ Mj,ξ

runs through the (objects of the) category of push-forwards of inflations of the object L.

(b) Since the functor F re preserves colimits, the formula for S+F (N) can be rewritten
as follows:

S+F (L) = colim(Cok(F (M
ξj−→Mj,ξ))) = colim(Cok(F re(M̂

ξ̂j−→ M̂j,ξ))) =

= F re(colim(Cok(M̂
ξ̂j−→ M̂j,ξ))) = F reS+h

re
X (L) = F reExt1X(L),

(3)

where colimit is taken by the diagram of all push-forwards of inflations of the object L.

The proof of the remaining assertions follows (with obvious adjustments) the argu-
ments of the corresponding parts of the proof of II.8.1.

5. The structure of universal ∂-functors to semi-cocomplete categories.

5.1. Observations. Let (CX , IX) be a svelte left exact category and CY a virtually
cocomplete category with colimits of cofiltered diagrams. Then, by (the dual version of)
3.3.4, we have an endofunctor S+ of the category Hom(CX , CY ) of functors from CX to
CY and, for every push-forward

L
j

−−−→ M

ξ
y cocart

y ξj

Lξ
jξ
−−−→ Mj,ξ

(1)

of an inflation L
j
−→M, the connecting morphism

F (Mj,ξ)
dF0 (ξ,j)

−−−→ S+F (L) (2)

which depends functorially on the pair of arrows Lξ
ξ
←− L

j
−→ M and factors through

the cokernel of the morphism F (M)
F (jξ)

−−−→ F (Mj,ξ). Explicitly,

S+F (L) = colim(Cok(F (M
ξj−→Mj,ξ))), (3)
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where the colimit is taken by the diagram of all push-forwards (1) of inflations of the object
L (see the dual version of 3.3.4).

5.1.1. Triangles. If an object L of the category CX belongs to a connected com-

ponent CXi
, i ∈ π0(X), then there is a morphism of functors yFi

λFi
−−−→ S+Fi, where

Fi is the functor CXi
−→ CYπ0(F )(i)

induced by the functor CX
F
−→ CY and yFi is the

constant functor with the values in a final object of the category CYπ0(F )(i)
such that the

diagram

F (L)
F (j)
−−−→ F (M) −−−→ yFi

F (ξj)
y

y F (jξ)
y λFi (L)

F (Lξ)
F (ξj)
−−−→ F (Mj,ξ)

dF0 (ξ,j)

−−−→ S+F (L)

(4)

commutes.

5.2. A structure of a Z+-category on CXre . For any presheaf of sets G on CX,
we set

Θ̂X∗(G)(−) = CXre(Ext1X(−),G). (1)

The map G 7−→ Θ̂X∗(G) extends to an endofunctor CXre

Θ̂X∗

−−−→ CXre . It follows from the

definition of Θ̂X∗ (and the Yoneda’s formula) that

CXre(Ext1X(−),G) = Θ̂X∗(G)(−) ≃ CXre(−, Θ̂X∗(G)). (2)

Let Θ̂∗
X denote the continuous functor CXre −→ CXre corresponding to Ext1X. It

follows from the definition of the functor Θ̂X∗ (see (2)) that

CXre(Θ̂∗
X(−),G) ≃ CXre(−, Θ̂X∗(G)),

that is the functor Θ̂X∗ is a right adjoint to Θ̂∗
X.

5.3. Standard ”triangles”. Applying 5.1.1 to the Yoneda functor hreX , we obtain
from the diagram 5.1.1(4) the diagram

L̂
ĵ

−−−→ M̂ −−−→ yi

ξ̂
y

y ĵξ

y λ(L)

L̂ξ
ξ̂j
−−−→ M̂j,ξ

d0(ξ,j)
−−−→ Θ̂∗

X(L̂)

(1)



A Sketch 345

Here yi is an final object of the category CX⊛

i
corresponding to the connected component

CXi
of the category CX containing the object L; the left square is the image of a push-

forward

L
j

−−−→ M

ξ
y cocart

y ξj

Lξ
jξ
−−−→ Mj,ξ

of an inflation L
j
−→M. We call the diagram (1) a standard ”triangle”.

5.4. ”Triangles” in the category of presheaves of sets. A ”triangle” is any
diagram in CXre of the form

L
j

−−−→ M −−−→ yi

ξ
y

y jξ

y λ(L)

Lξ
ξj
−−−→ Mj,ξ

d
−−−→ Θ̂∗

X(L)

(2)

which is isomorphic to a standard ”triangle”. Here L belongs to a connected component
CX⊛

i
of the category CXre and yi is a final object of the component CX⊛

i
. “Triangles”

form a category TrXre .

5.5. Prestable category of presheaves. Thus, the left exact structure IX on the
category CX produces the data (CXre , IXre , Θ̂∗

X,TrXre), where IXre is the coarsest left
exact structure on CXre which is closed under filtered colimits and makes the Yoneda em-

bedding CX
hre
X−→ CXre an ’exact’ functor from (CX, IX) to (CXre , IXre) (see the argument

of II.9.1), Θ̂∗
X a continuous endofunctor of CXre corresponding to Ext1X, TrXre the category

of ”triangles” on the category of presheaves. We call the data (CXre , IXre , Θ̂∗
X,TrXre) the

prestable category of presheaves on the left exact category (CX, IX).

5.5.1. Note. The prestable category (CXre , IXre , Θ̂∗
X,TrXre) contains all the infor-

mation about the universal ∂-functor Ext•X = (ExtiX, di | i ≥ 0), and, therefore, due to
the universality of Ext•X, all the information about all universal ∂-functors from the left
exact category (CX, IX) to cocomplete categories. In fact, the universal ∂-functor Ext•X
is of the form (Θ̂∗n

X ◦ h
re
X , Θ̂

∗n
X (d0) | n ≥ 0); and for any functor F from CX to a category

CY with colimits and final objects, the universal ∂-functor (Ti, di | i ≥ 0) from (CX, IX)
to CY such that T0 = F is isomorphic to

F re ◦ Ext•X = (F reΘ̂∗n
X , F reΘ̂∗n

X (d0) | n ≥ 0) ◦ hreX . (1)

Here d0 = (d0(ξ, j)), where L
j
−→M is an inflation, L

ξ
−→ Lξ an arbitrary morphism,

and d0(ξ, j) is the connecting morphism in the diagram 5.4(2).
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5.6. The stable category of presheaves of sets on a left exact category. Given
a left exact category (CX, IX), we denote by CXre

s
the quotient category Σ−1

Θ̂∗
X

CXre , where

Σ
Θ̂∗

X

denotes the class of all arrows t of CXre such that Θ̂∗
X(t) is an isomorphism. The

endofunctor Θ̂∗
X induces a conservative endofunctor ΘXre

s
of the category CXre

s
.

We denote by TrXre
s

the category of all diagrams of the form

L
j

−−−→ M −−−→ y

ξ
y

y jξ

y λ(L)

Lξ
ξj
−−−→ Mj,ξ

d
−−−→ Θ∗

Xs
(L)

(1)

in the category CXre
s
, which are isomorphic to the images of (standard) triangles. The

objects of the category TrXre
s

will be also called triangles.
We call the triple (CXre

s
,ΘXre

s
,TrXre

s
) the stable category of presheaves of sets on the

left exact category (CX, IX).

6. Prestable and stable category of a left exact category.

6.1. The category CXp . Let CXp be the smallest strictly full subcategory of the
category CXre which contains all representable presheaves and the trivial presheaf – the
final object of CXre , and is Θ̂∗

X-stable. We denote by θXp the endofunctor CXp −→ CXp

induced by the endofunctor CXre

Θ̂∗
X

−−−→ CXre .

6.2. Triangles. Triangles are the same as in 5.4. That is a triangle is a diagram of
the form

L
j

−−−→ M −−−→ y

ξ
y

y jξ

y λ(L)

Lξ
ξj
−−−→ Mj,ξ

d
−−−→ Θ̂∗

X(L)

(1)

which is isomorphic to a standard ”triangle” defined in 5.3. Here, as in 5.4 and 5.3, y
is the constant presheaf with values in one-element set – the standard final object of the
category of presheaves of sets CXre . We denote TrXp the category of triangles.

6.3. The prestable category of a left exact category. Given a left exact category
(CX, IX), we call the data (CXp , θXp ,TrXp) the prestable category of (CX, IX).

6.4. The stable category of a left exact category. Let (CX, IX) be an arbitrary
left exact category and (CXp , θXp ,TrXp) the associated with (CX, IX) presuspended cate-
gory. Let Σ = ΣθXp be the class of all arrows t of CXp such that θXp(t) is an isomorphism.

Consider the quotient category CXs
= Σ−1CXp . The endofunctor θXp of the category

CXp determines a conservative endofunctor θXs
of the category CXs

.
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We denote by TrXs
the essential image of the category TrXp of triangles in (CX, IX)

and continue to call objects of the category TrXs
”triangles”.

We call the triple (CXs
, θXs

,TrXs
) (and, sometimes, loosely, the category CXs

) the
stable category of the left exact category (CX, IX).

7. ’Exactness’ properties.

7.0. Right ’semi-exact’ functors. Let (CX,EX), (CY ,EY ) be right exact cate-

gories. We say that a functor CX
F
−→ CY is a right ’semi-exact’ functor from (CX,EX)

to (CY ,EY ), if, for any deflation M
e
−→ L and any morphism Lξ

ξ
−→ L, the canonical

morphism from F (Mξ,e) to the pull-back of F (M
e
−→ L) along F (Lξ

ξ
−→ L) is a

deflation.

7.1. Proposition. Let (CX ,EX), (CY ,EY ) be right exact categories. Suppose that
– the category CX is quasi-filtered,
– the category CY is virtually semi-complete and has limits of filtered diagrams,
– the right exact category (CY ,EY ) satisfies (CE5∗); that is limits of filtered diagrams

of deflations are deflations.

Then, for any right ’semi-exact’ functor (CX ,EX)
F
−−−→ (CY ,EY ) and any defla-

tion M
e
−→ L in (CX ,EX),

(i) The canonical morphism

S−F (L)
de

−−−→ lim
Lξ

ξ
→L

(Ker(F (Mξ,e
ξ′e−→M)), (1)

is a deflation. Here Mξ,e
ξ′e−→ M is the pull-back of Lξ

ξ
−→ L along the deflation

M
e
−→ L.

(ii) The pair of arrows

S−F (M)
S−F (e)

−−−→ S−F (L)
de

−−−→ lim
Lξ

ξ
→L

(Ker(F (Mξ,e
ξ′e−→M)), (1.1)

is ’exact’.
(b) The functor S−F is a right ’semi-exact’ functor from (CX ,EX) to (CY ,EY ).

Proof. (a1) Let Mt
t
−→M be a deflation. The diagram

F




Mξ,et

tξ′e
−−−→ Mξ,e

eξ
−−−→ Lξ

ξ′et

y cart ξ′e

y cart
y ξ

Mt

t
−−−→ M

e
−−−→ L


 (2)
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decomposes into a commutative diagram

F (Mξ,et)
γ

−−−→ M −−−→

F (ξet)
y ζe,γ

y cart

F (Mt)
id
−−−→ F (Mt)

F (t)
−−−→

F



Mξ,e

eξ
−−−→ Lξ

ξ′e

y cart
y ξ

Me

e
−−−→ L


 (3)

whose middle square is cartesian (as well as the square inside of the brackets). By 1.3, there
is a natural isomorphism Ker(ζe,γ)

∼−→ Ker(F (ξ′e)). It follows from 1.4 and the right

square of the diagram (3) that the pull-back of Ker(ζ)
k(ζ)
−−−→M along F (Mξ,et)

γ
−→M

is (isomorphic to) the canonical morphism Ker(F (ξ′et)) −−−→ F (Mξ,et).

Since the functor F is right ’semi-exact’, the arrow F (Mξ,et)
γ
−→M is a deflation.

Therefore, its pull-back Ker(F (ξ′et))−−−→Ker(ζ) is a deflation. So that

Ker(F (ξ′et))
γet,ξ
−−−→ Ker(F (ξ′e)) (4et,ξ)

is a deflation for any deflation Mt
t
−→M of the objectM.

(a2) By hypothesis, the right exact category (CY ,EY ) has the property (CE5∗): the
limit of filtered diagram of deflations is a deflation. Since deflations to a given object
form a filtered diagram, it follows from the fact that (4t,ξ) is a deflation for any deflation

Mt
t
−→M of the objectM, which depends functorially on t, the limit

lim
Mt

t
→M

Ker(F (ξ′et))
γe,ξ
−−−→ Ker(F (ξ′e)) (5e,ξ)

of the diagrams (4t,ξ) exists and is a deflation.

(a3) Notice that deflations (5e,ξ) depend functorially on Lξ
ξ
−→ L. More precisely,

they define a functor from the category CX/L to the category of deflations of (CY ,EY ).
By hypothesis, the category CX/L is filtered for any object L of CX . Therefore, by the
property (CE5∗), the limit

lim
Lξ

ξ
→L

(
lim

Mt
t
→M

Ker(F (ξ′et))
γe,ξ
−−−→ Ker(F (ξ′e))

)
=

lim
Lξ

ξ
→L

(
lim

Mt
t
→M

Ker(F (ξ′et))
) γe
−−−→ lim

Lξ
ξ
→L

(
Ker(F (ξ′e))

) (5)

exists and is a deflation.
(a4) It remains to observe that, by definition,

S−F (L) = lim
Lξ

ξ
→L

(
lim

Mu
u
→L

Ker(F (ξ′u))
)
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and the (following from this formula) canonical morphism

S−F (L) −−−→ lim
Lξ

ξ
→L

(
lim

Mt
t
→M

Ker(F (ξ′et))
)

is an isomorphism. The latter follows from the fact that the compositions deflations

Mt
et
−→ L form a final subdiagram in the category of all deflations of the object L.

(b) For any right ’semi-exact’ functor (CX ,EX)
F
−−−→ (CY ,EY ), the derived functor

S−F is right ’semi-exact’.

7.2. Weakly right ’semi-exact’ functors. Let (CX ,EX), (CY ,EY ) be right exact

categories. We say that a functor CX
F
−→ CY is a weakly right ’semi-exact’ functor from

(CX ,EX) to (CY ,EY ), if, for any deflation M
e
−→ L and any morphism Lγ

γ
−→ L,

there exists a morphism Lξ
λ
−→ Lγ such that the canonical morphism from F (Mξ,e) to

the pull-back of F (M
e
−→ L) along F (Lξ

ξ
−→ L), where ξ = γ ◦ λ, is a deflation.

One can replace right ’semi-exact’ in Proposition 7.1 by weakly right ’semi-exact’:

7.2.1. Proposition. Let (CX ,EX), (CY ,EY ) be right exact categories satisfying

the conditions of 7.1; and let CX
F
−→ CY be a weakly right ’semi-exact’ functor from

(CX ,EX) to (CY ,EY ). Then,

(a) For any deflation M
e
−→ L in (CX ,EX), the canonical morphism

S−F (L)
de

−−−→ lim(Ker(F (Mξ,e
eξ
−→M)), (1)

where the limit is taken by all morphisms Lξ
ξ
−→ L, is a deflation.

(b) The functor S−F is a weakly right ’semi-exact’ functor from (CX ,EX) to (CY ,EY ).

Proof. The argument is an easy adoptation of the proof of 7.1.

7.3. ’Exact’ ∂∗-functors.

7.3.1. Definition. Let (CX ,EX), (CY ,EY ) be right exact categories. A ∂∗-functor
T = (Ti, di| i ≥ 0) from (CX ,EX) to CY is called ’exact’, if all functors Ti are right

’semi-exact’ and, for every deflation M
e
−→ L in (CX ,EX), and every i ≥ 0, the

canonical morphism

Ti+1(L)
d̄i(e)
−−−→ lim

Lξ
ξ
→L

(Ker(Ti(Mξ,e
eξ
−→M)) (1)
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is a deflation, and the pair of morphisms

Ti+1(M)
Ti+1(e)

−−−→ Ti+1(L)
d̄i(e)
−−−→ lim

Lξ
ξ
→L

(Ker(Ti(Mξ,e
eξ
−→M)) (1.1)

is ’exact. Here Mξ,e
ξ′e−→M is the pull-back of a morphism Lξ

ξ
−→ L along the deflation

M
e
−→ L.

7.3.2. Proposition. Let (CX ,EX) be a svelte, quasi-filtered right exact category and
(CY ,EY ) a virtually semi-complete right exact categories with limits of filtered diagrams
and such that limits of filtered diagrams of deflations are deflations. Let T = (Ti| i ≥ 0)
be a universal ∂∗-functor from (CX ,EX) to (CY ,EY ). If the functor T0 is weakly right
’exact’, then the universal ∂∗-functor T is ’exact’.

Proof. The assertion follows from 7.2.1.

7.4. Coeffaceable functors. Let (CX ,EX) be a right exact category and CY a

virtually semi-complete category. A functor CX
F
−→ CY is called coeffaceable, if, for

every L ∈ ObCX , there exists a deflation M
t
−→ L which the functor F maps to a

virtually trivial morphism of the category CY .

7.4.1. Proposition. Let (CX ,EX) be a right exact category and CY a virtually
semi-complete category.

(a) Any coeffaceable functor from (CX ,EX) to CY maps all projective objects of
(CX ,EX) to initial objects of connected components of the category CY .

(b) If (CX ,EX) has enough projective objects, then a functor CX
F
−→ CY is

coeffaceable iff it maps all projective objects of the right exact category (CX ,EX) to
trivial objects of the category CY .

Proof. (a) Let CX
F
−→ CY be a coeaffaceable functor and P a projective object of the

right exact category (CX ,EX). The functor F being coeffaceable, there exists a deflation

M
t
−→ P such that F (t) is a trivial morphism. Since the object P is projective, there is

a morphism P
γ
−→M such that t ◦ γ = idP . Since the composition of a virtually trivial

morphism with any morphism is a virtually trivial morphism, idF (P) = F (t) ◦ F (γ) is a
virtually trivial, hence trivial, morphism. So that F (P) is a trivial object of the category
CY . This means, precisely, that F (P) is an initial object of the connected component of
the object F (P).

(b) It follows from (a) that any deflation P
e
−→ L with P a projective object is

mapped, by any coeffaceable functor CX
F
−→ CY , to a morphism from an initial object of

a connected component of the category CY . All such morphisms are trivial; in particular,
they are virtually trivial.
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7.4.2. Corollary. Let (CX ,EX) be a right exact category and CY a virtually complete
category. Suppose that the right exact category has projective objects and there exists a
coeffaceable functor from CX to CY . Then the category CY has initial objects.

Proof. The assertion follows from 7.4.1(a).

7.5. Proposition. Let (CX ,EX) be a quasi-filtered right exact category and
(CY ,EY ) a virtually semi-complete right exact category. Let T = (Ti, di| i ≥ 0) be
an ’exact’ ∂∗-functor from (CX , EX) to (CY ,EY ). Suppose that E⊛

Y = Iso(CY ) and
the functors Ti are EX-coeffaceable for i ≥ 1. Then T is a universal ∂∗-functor.

Proof. Considering restriction of the ∂∗-functor T = (Ti, di| i ≥ 0) (or, what is
the same, its zero component T0) to connected components of the right exact category
(CX ,EX), we reduce to the case when the category CY is virtually complete. Taking

the composition with the canonical ’exact’ embedding (CY ,EY )
j⊛
Y

−−−→ (CY
E
⊛

Y

,Es
Y
E
⊛

Y

), we

reduce the assertion to the case of complete and cocomplete right exact category.

The rest of the argument is an adaptation of the argument of III.2.6. Details are left
to the reader.

7.6. Projective objects and coeffaceability.

7.6.1. Pointed objects and pointed projective objects. We call an objectM of
a category CX pointed, if there exists a cone M −→ IdCXi

, where CXi
is the connected

component of M .

7.6.1.1. Proposition. (a) Let M be an object of a category CX . The following
conditions are equivalent:

(a1) the objectM is pointed;

(a2) the connected component CXi
of M is virtually complete and there is a

morphism from M̂ to an initial object of CX⊛

i
.

(b) The following conditions on a category CX are equivalent:

(i) For every object L, there exists a pointed objectM and a morphism M−→ L.
(ii) The category CX is virtually semi-complete.

(c) If the category CX has an initial object x, then pointed objects are precisely those
objects, which have morphisms to x.

Proof. The assertion follows from definitions.

7.6.2. Pointed objects and pointed sheaves. Let CX be a svelte category having

the decomposition CX =
∐

i∈π0(X)

CXi
into the disjoint union of its connected components;

and let τ be a subcanonical pretopology on CX . Recall that CXre
τ

denotes the associated
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category with colimits:

CXre
τ

=
∐

i∈π0(X)

CX⊛

i,τi

, (1)

where τi is the restriction of the pretopology τ to the connected component CXi
.

An objectM is pointed iff M̂ = CX(−,M) is a pointed object of the category CXre
τ
.

In fact, if M̂ is a pointed object of the category of sheaves, that is there is a cone
M̂ −→ Id(CXi

,τ)re , then, since the pretopology τ is subcanonical, the corestriction of this
cone to representable sheaves defines a cone M−→ IdCXi

.
Conversely, let M be a pointed object of CX ; i.e. there is a cone M −→ IdCXi

,
where CXi

is the connected component of M . Since every presheaf of sets is a colimit of a
canonically dependent on it diagram of representable presheaves, the cone M−→ IdCXi

determines a cone M̂ −→ IdC⊛

Xi

in the ”reduced” category of presheaves of sets on CXi
.

The sheafification functor maps this cone to a cone M̂ −→ IdC⊛

Xi,τi

.

7.6.3. Pointed objects in a right exact category. Let (CX ,EX) be a right exact
category. We are interested in the case when (CX ,EX) has enough pointed objects; that

is every object L of the category CX has a deflation M
t
−→ L withM a pointed object.

7.6.3.1. Proposition. Suppose that a right exact category (CX ,EX) has enough
pointed objects. Then all projective objects of (CX ,EX) are pointed.

Proof. Any deflation to a projective object splits. In particular, every projective object
has a morphism to a pointed object; and any object having a morphism to a pointed object
is pointed.

7.6.4. Proposition. Let T = (Ti, di| i ≥ 0) be a universal ∂∗-functor from a
right exact category (CX , EX) to a virtually semi-complete category CY . Then each of the
functors Ti, i ≥ 1, maps all pointed projective objects to trivial objects.

In particular, if the right exact category (CX , EX) has enough pointed projective
objects, then the functors Ti are coeffaceable for i ≥ 1.

Proof. Being a universal ∂∗-functor, T = (Ti, di| i ≥ 0) is isomorphic to S•−(F ),

where F = T0. Taking the composition with the Yoneda embedding CY
hre
Y−→ CY re , we

can use the isomorphism hreX ◦ S
•
−F ≃ S

•
−(F

re
EX

)j∗X of 3.7.1.2, which allows to reduce the
assertion to the universal ∂∗-functors from the right exact category (CXE

,Es
XE

) of sheaves
of sets on (CX , EX) endowed with the canonical right exact structure. Given a pointed
projective P of the right exact category (CX , EX), we replace (CX , EX) by the connected
component (CXi

, EXi
) of the object P and exclude the trivial (that is taking value in

∅) sheaf from the category of sheaves of sets on (CXi
, EXi

). By III.1.3.4 and 7.6.2, the

canonical embedding (CXi
,EXi

)
j∗Xi

−−−→ (CXE
,Es

XE
) maps pointed projective objects to
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pointed projective objects and the category of non-trivial sheaves on (CXi
, EXi

) has initial
objects. The assertion follows now from III.2.2.1.

8. Homology of ’spaces’ with coefficients in a right exact category. Let CX
be a svelte category and (CZ ,EZ) a svelte right exact category with colimits of functors
CX −→ CZ . We define the zero homology object of a ’space’ X (represented by a category

CX) with coefficients in CX
F
−→ CZ by setting H0(X,F) = colimF .

8.1. Higher homology. Suppose that the category CZ is virtually semi-complete.
The higher homology groups, Hn(X,F), n ≥ 1, are values at F of satellites of the functor

CH(Z,X)

H0(X,−)
−−−→ CZ

with respect to the (object-wise) right exact structure EH(Z,X) induced by EZ (cf. 6.0.1).
If the category CZ has limits of filtered diagrams, then, since the category (CH(Z,X)

of functors from CX to CZ inherits this property, there exists a universal ∂∗-functor

H•(X,−) = (Hn(X,−), dn | n ≥ 0)

from the right exact category of coefficients (CH(Z,X),EH(Z,X)) to (CZ ,EZ).

8.2. Proposition. Suppose that the right exact category (CZ ,EZ) is virtually semi-
complete and satisfies (CE5∗): the limit of filtered diagram of deflations is a deflation.

Then the universal ∂∗-functor H•(X,−) is ’exact’.

Proof. The argument is similar to the proof of III.7.1.1. Namely, the condition that
the right exact category (CZ ,EZ) satisfies (CE5∗), implies that

F 7−→ H0(X,F) = colimF

defines a right ’exact’ functor from the right exact category of functors (CH(Z,X),EH(Z,X))
to the right exact category (CZ ,EZ). Therefore, by 7.3.1, the universal ∂∗-functor

H•(X,−) = (Hn(X,−), dn | n ≥ 0)

is ’exact’.

9. Towards the “absolute” higher K-theory of right exact ’spaces’.

9.1. The basic higher K-theory. We take the category Espr of right exact
’spaces’ endowed with the left exact structure I→c .

9.2. Proposition. Let (CS, IS) be a left exact category and F a weakly ’exact’
functor (CS, IB) −→ (Espr, I

→
c ), Let CZ be a virtually semi-complete category with

limits of filtered diagrams and G be a functor from (Espr)
op to CZ . Then
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(a) There exists a universal ∂∗-functor GS,F• = (GS,Fi , d̃i | i ≥ 0) from the right exact

category (CS, IS)op to the category CZ whose zero component, GS,F0 , is the composition
of the functor

CopS
Fop

−−−→ (Esprer )op

and the functor G.
(b) If (CZ ,EZ) is a right exact virtually semi-complete category satisfying (CE5∗)

and the functor G is left ’exact’, then the ∂∗-functor GS,F• is ’exact’. In particular, the
∂∗-functor G• = (Gi, di | i ≥ 0) from (Esprer , I

→
c ) to (CZ ,EZ) is ’exact’.

Proof. The assertion is a special case of II.3.4.

9.2.1. Corollary. Let (CS, IS) be a left exact category, and

(CS, IS)
F

−−−→ (Espr, I
→
c )

a weakly ’exact’ functor. Then there exists a universal ∂∗-functor

KS,F
• = (KS,F

i , d̃i | i ≥ 0)

from (CS, IS)op to Z −mod, whose zero component, KS,F
0 , is the composition of the

functor

CopS
Fop

−−−→ (Esprer )op

and the functor K0. The ∂∗-functor KS,F
• is ’exact’.

In particular, the ∂∗-functor K• = (Ki, di| i ≥ 0) from the right exact category
(Esprer , I

→
cre)

op to the abelian category Z−mod is ’exact’.
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Exact Categories and (Co)suspended Categories.

The main purpose of this Appendix is to sketch definition and general properties of
suspended categories, following the approach of B. Keller and D. Vossieck [KeV], [KV1],
[Ke2], starting with their definition of an exact category.

K1. Exact categories.

For the convenience of applications, we consider mostly k-linear categories and k-linear
functors, where k is a commutative associative unital ring.

K1.1. Definition. Let CX be a k-linear category and EX a class of pairs of morphisms

L
j
−→M

e
−→ N of CX such that the sequence 0 −→ L

j
−→M

e
−→ N −→ 0 is exact (i.e.

j is a kernel of e and e a cokernel of j). The elements of EX are called conflations. The

morphism e (resp. j) of a conflation L
j
−→M

e
−→ N is called a deflation (resp. inflation).

The pair (CX , EX) is called an exact category if EX is closed under isomorphisms and the
following conditions hold.

(Ex0) id0 is a deflation.
(Ex1) The composition of two deflations is a deflation.

(Ex2) For every diagram M ′ f
−→M

e
←− L, where e is a deflation, there is a cartesian

square

L′
e′

−−−→ M ′

f ′
y

y f

L
e

−−−→ M

where e′ is a deflation.

(Ex2op) For every diagram M ′ f
←− M

j
−→ L, where j is an inflation, there is a

cocartesian square

L′
j′

←−−− M ′

f ′
x

x f

L
j

←−−− M

where j′ is an inflation.
For an exact category (CX , EX), we denote by EX the class of all deflations and by

MX the class of all inflations of (CX , EX).
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K1.2. Remarks.

K1.2.1. Applying (Ex2) to (Ex0), we obtain that id
M

is a deflation for every M ∈
ObCX . Thus, axioms (Ex0), (Ex1), (Ex2) mean simply that the class EX of deflations
forms a right multiplicative system, or, what is the same, a pretopology on CX . The
invariance of EX under isomorphisms implies that all isomorphisms of CX are deflations.

The fact that all arrows of EX are cokernels of their kernels means precisely that the
pretopology EX on CX is subcanonical, i.e. every representable presheaf of sets on CX is
a sheaf on (CX ,EX). Thus, one can start from a class EX of arrows of CX which forms a
subcanonical pretopology (equivalently, it is a right multiplicative system formed by strict
epimorphisms) and define MX as kernels of arrows of EX . The only remaining requirement
is the axiom (Exop) – the invariance of the class MX of inflations under a cobase change.

This shows, in particular, that the first three axioms make sense in any category and
the last axiom, (Ex2op), makes sense in any pointed category.

The fact that all identical morphisms are deflations implies that arrows 0 −→ M
are inflations for all objects M of CX . Applying the axiom (Ex2op) to arbitrary pair of
inflations L ←− 0 −→ M , we obtain the existence of coproducts of any two objects; i.e.
the category CX is additive.

K1.2.2. Quillen’s original definition of an exact category contains some additional
axioms. B. Keller showed that they follow from the axioms (Ex0) – (Ex2) and (Ex2op) (cf.
[Ke1, Appendix A]). Moreover, he observes (in [Ke1, A.2]) that the axiom (Ex2) follows
from (Ex2op) and a weaker version of (Ex2):

(Ex2’) For every diagram M ′ f
−→M

e
←− L, where e is a deflation, there is a commu-

tative square

L′
e′

−−−→ M ′

f ′
y

y f

L
e

−−−→ M

where e′ is a deflation.
Quillen’s description of exact categories is self-dual which implies self-duality of Keller’s

axioms: if (CX , EX) is an exact category, then (CopX , E
op
X ) is an exact category too.

K1.2.3. In the axioms (Ex2) and (Ex2op), the conditions ”there exists a cartesian
(resp. cocartesian) square” can be replaced by ”for any cartesian (resp. cocartesian)
square”. This implies that for any family {Ei | i ∈ J} of exact category structures on an

additive category CX , the intersection EJ =
⋂

i∈J

Ei is a structure of an exact category.

K2. Suspended and cosuspended categories.

Suspended categories were introduced in [KeV]. In a sequel, we shall mostly use their
dual version – cosuspended categories. They are defined as follows.
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K2.1. Definitions. A cosuspended k-linear category is a triple (CX, θX, T r
−
X ), where

CX is an additive k-linear category, θX a k-linear functor CX −→ CX, and Tr
−
X is a class

of sequences of the form

θX(L)
w
−→ N

v
−→M

u
−→ L (1)

called triangles and satisfying the following axioms:

(SP0) Every sequence of the form (1) isomorphic to a triangle is a triangle.

(SP1) For every M ∈ ObCX, the sequence 0 −→M
id
M−→M −→ 0 is a triangle.

(SP2) If θX(L)
w
−→ N

v
−→M

u
−→ L is a triangle, then

θX(M)
−θX(u)
−−−→ θX(L)

w
−−−→ N

v
−−−→M

is a triangle.

(SP3) Given triangles θX(L)
w
−→ N

v
−→M

u
−→ L and θX(L

′)
w′

−→ N ′ v′
−→M ′ u′

−→ L′

and morphisms L
α
−→ L′ and M

β
−→M ′ such that the square

L
u

←−−− M

α
y

y β

L′
u′

←−−− M ′

commutes, there exists a morphism N
γ
−→ N ′ such that the diagram

L
u

←−−− M
v

←−−− N
w

←−−− θX(L)

α
y

y β
y γ

y θX(α)

L′
u′

←−−− M ′
v′

←−−− N ′
w′

←−−− θX(L
′)

commutes.

(SP4) For every pair of morphisms M
u
−→ L and M ′ x

−→ M , there exists a commu-
tative diagram

L
u

←−−− M
v

←−−− N
w

←−−− θX(L)

id
x

x x
x y

x id

L
u′

←−−− M ′
v′

←−−− N ′
w′

←−−− θX(L)

s
x

x t
x θX(u)

M̃
id
←−−− M̃

r
←−−− θX(M)

r
x

x

θX(M)
θX(v)
←−−− θX(N)
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whose two upper rows and two central columns are triangles.

K2.2. Suspended categories. A suspended k-linear category is defined dually;
i.e. it is a triple T+CX = (CX, θX, T r

+
X), where CX is an additive k-linear category, θX a

k-linear functor CX −→ CX, and Tr
+
X is a class of sequences of the form

L
u
−→M

v
−→ N

w
−→ θX(L) (2)

such that the dual data is a cosuspended category.

K2.3. Triangulated categories and (co)suspended categories. A suspended
category T+CX = (CX, θX, T r

+
X) (resp. a cosuspended category T−CX = (CX, θX, T r

−
X )) is

a triangulated category iff the translation functor θX is an auto-equivalence.

K2.4. Properties of cosuspended and suspended categories. The following
properties of a cosuspended category T−CX = (CX, θX, T r

−
X )) follow directly from the

axioms:
(a) Every morphism M

u
−→ L of CX can be embedded into a triangle

θX(L)
w
−→ N

v
−→M

u
−→ L.

(b) For every triangle θX(L)
w
−→ N

v
−→ M

u
−→ L, the sequence of representable

functors

. . .−−−→ CX(−, θX(L))
CX(−,w)
−−−→ CX(−, N)

CX(−,v)
−−−→ CX(−,M)

CX(−,u)
−−−→ CX(−, L) (3)

is exact. In particular, the compositions u ◦ v, v ◦ w, w ◦ θX(u) are zero morphisms.
(c) If the rows of the commutative diagram

L
u

←−−− M
v

←−−− N
w

←−−− θX(L)

α
y

y β
y γ

y θX(α)

L′
u′

←−−− M ′
v′

←−−− N ′
w′

←−−− θX(L
′)

are triangles and the two left vertical arrows, α and β, are isomorphisms, then γ is an
isomorphism too (see the axiom K2.1 (SP3)).

(d) Direct sum of triangles is a triangle.

(e) If θX(L)
w
−→ N

v
−→M

u
−→ L, is a triangle, then the sequence

θX(L)
w
−→ N

v
−→M −→ 0

is split exact iff u = 0.
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(f) For an arbitrary choice of triangles starting with u, x and xu in the diagram K2.1
(SP4), there are morphisms y and t such that the second central column is a triangle and
the diagram commutes.

If T−CX = (CX, θX, T r
−
X )) is a triangulated category, i.e. the translation functor θX

is an auto-equivalence, then, in addition, we have the following properties:

(g) A diagram θX(L)
w
−→ N

v
−→M

u
−→ L, is a triangle if (by (SP2), iff)

θX(M)
−θX(w)
−−−→ θX(L)

w
−−−→ N

v
−−−→M

is a triangle.

(h) Given triangles θX(L)
w
−→ N

v
−→ M

u
−→ L and θX(L

′)
w′

−→ N ′ v′
−→ M ′ u′

−→ L′

and morphisms M
β
−→M ′ and N

γ
−→ N ′ such that the square

N
v

−−−→ M

γ
y

y β

N ′
v′

−−−→ M ′

commutes, there exists a morphism L
α
−→ L′ such that the diagram

L
u

←−−− M
v

←−−− N
w

←−−− θX(L)

α
y

y β
y γ

y θX(α)

L′
u′

←−−− M ′
v′

←−−− N ′
w′

←−−− θX(L
′)

commutes.
(i) For every triangle θX(L)

w
−→ N

v
−→ M

u
−→ L, the sequence of corepresentable

functors

. . .←−−− CX(θX(L),−)
CX(w,−)
←−−− CX(N,−)

CX(v,−)
←−−− CX(M,−)

CX(u,−)
←−−− CX(L,−) (3o)

is exact.

K2.5. Triangle functors. Let T−CX = (CX, θX, T r
−
X ) and T−CY = (CY, θY, T r

−
Y)

be cosuspended k-linear categories. A triangle k-linear functor from T−CX to T−CY is
a pair (F, φ), where F is a k-linear functor CX −→ CY and φ is a functor morphism

θY ◦ F −→ F ◦ θX such that for every triangle θX(L)
w
−→ N

v
−→M

u
−→ L of T−CX, the

sequence

θY(F (L))
F (w)φ(L)
−−−−−−−→ F (N)

F (v)
−−−−−−−→ F (M)

F (u)
−−−−−−−→ F (L)



360 Appendix K

is a triangle of T−CY. It follows from this condition and the property K2.4(b) (applied
to the case M = 0) that φ is invertible. The composition of triangle functors is defined
naturally: (G,ψ) ◦ (F, φ) = (G ◦ F,Gφ ◦ ψF ).

If (F, φ) and (F ′, φ′) are triangle functors from T−CX to T−CY. A morphism from

(F, φ) to (F ′, φ′) is given by a functor morphism F
λ
−→ F ′ such that the diagram

θY ◦ F
φ

−−−→ F ◦ θX

θYλ
y

y λθX

θY ◦ F
′

φ′

−−−→ F ′ ◦ θX

commutes. The composition is the composition of the functor morphisms.

Altogether gives the definition of a large bicategory T̃r
−

k formed by cosuspended k-
linear categories, triangle k-linear functors as 1-morphisms and morphisms between them
as 2-morphisms. Restricting to svelte cosuspended categories, we obtain the bicategory
Tr−k .

We denote by T̃rk (resp. by Trk) the full subbicategory of T̃r
−

k whose objects are
triangulated (resp. svelte triangulated) categories.

Finally, dualizing (i.e. inverting all arrows in the constructions above), we obtain the

large bicategory T̃r
+

k of suspended categories and triangular functors and its subbicategory
Tr+k whose objects are svelte suspended categories. Thus, we have a diagram of natural
full embeddings

T̃r
+

k ←−−− T̃rk −−−→ T̃r
−

kx
x

x
Tr+k ←−−− Trk −−−→ Tr−k

K2.6. Triangle equivalences. A triangle k-linear functor T−CX

(F,φ)
−−−→ T−CY is

called a triangle equivalence if there exists a triangle functor T−CY

(G.ψ)
−−−→ T−CX such that

the compositions (F, φ) ◦ (G,ψ) and (G,ψ) ◦ (F, φ) are isomorphic to respective identical
triangle functors.

It follows from K7.1.1 that the quasi-inverse triangle functor (G,ψ) is k-linear.

K2.6.1. Lemma [Ke1]. A triangle k-linear functor (F, φ) is a triangle equivalence
iff F is an equivalence of the underlying categories.

K3. Stable and costable categories of an exact category.

Let CX be a k-linear category and B its full subcategory. The class JB of all arrows of
CX which factor through some objects of B is an ideal in HomCX . We denote by B\CX , or
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by CB\X the category having same objects as CX ; its morphisms are classes of morphisms
of CX modulo the ideal JB, that is two morphisms with the same source and target are
equivalent if their difference belongs to the ideal JB.

We are particularly interested in this construction when (CX , EX) is an exact k-linear
category and B is the fully exact subcategory of CX generated by EX -projective or EX -
injective objects of (CX , EX). In the first case, we denote the category B\CX by CS−X

and will call it the costable category of (CX , EX). In the second case, the notation is CS+X

and the name of this category is the stable category of (CX , EX).

K3.1. Example. Let CX be an additive k-linear category endowed with the smallest
exact structure EsplX (cf. K2.1). Then the correponding costable category is trivial: all its
objects are isomorphic to zero.

K3.2. Exact categories with enough projective objects and their costable
categories. Let (CX , EX) be an exact k-linear category with enough projective objects; i.e.
for each object M of CX , there exists a deflation P −→M , where P is a projective object.
Then the costable category CS−X of (CX , EX) has a natural structure of a cosuspended
k-linear category defined as follows. The endofunctor θS−X assigns to an object M the
(image in CS−X of) the kernel of a deflation P −→ M , where P is a projective object.

For any morphism L
f
−→ M , the morphism θS−X(f) is the image of the morphism h in

the commutative diagram

θS−X(L)
j

−−−→ PL
e

−−−→ L

h
y

y g
y f

θS−X(M)
j′

−−−→ PM
e′

−−−→ M

A standard argument shows that objects θS−X(L) are determined uniquely up to
isomorphism and the morphism θS−X(f) is uniquely determined by the choice of the
objects θS−X(L) and θS−X(M).

With each conflation N
j
−→M

e
−→ L of (CX , EX), it is associated a sequence

θS−X(L)
∂

−−−→ N
j̄

−−−→M
ē

−−−→ L

called a standard triangle and determined by a commutative diagram

θS−X(L)
j̃

−−−→ PL
ẽ

−−−→ L

∂̃
y

y g
y idL

N
j

−−−→ M
e

−−−→ L
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The morphism g here exists thanks to the projectivity of PL. The connecting morphism

θS−X(L)
∂

−−−→ N is, by definition, the image of ∂̃.

Triangles are defined as sequences of the form θS−X(L′)
∂′

−→ N ′ j′

−→ M ′ e′

−→ L′

which are isomorphic to a standard triangle.

K3.2.1. Proposition ([KeV]). For any exact k-linear category (CX , EX) with
enough projective objects, the triple T−CS−X = (CS−X , θS−X ,TrS−X) constructed above
is a cosuspended k-linear category.

If (CX , EX) is an exact category with enough injective objects, then the dual con-
struction provides a structure of a suspended category on the stable category CS+X of
(CX , EX).

K3.2.2. The case of Frobenius categories. Recall that an exact category
(CX , EX) is called a Frobenius category, if it has enough injective and projective objects
and projective objects coincide with injective objects.

K3.2.1. Proposition. If (CX , EX) is a Frobenius category, then its costable co-
suspended category T−CS−X and (therefore) the stable suspended category T+CS+X are
triangulated, and are triangular equivalent one to another.

Proof. It is easy to check that if (CX , EX) is a Frobenius category, then the translation
functor θS−X is an auto-equivalence of the category CS−X . The rest follows from this fact.
Details are left to the reader.

K3.3. Proposition. Let (CX , EX) and (CY , EY ) be exact k-linear categories with

enough projective objects. Every ’exact’ k-linear functor (CX , EX)
f∗

−−−→ (CY , EY ) which

maps projective objects to projective objects induces a triangle k-linear functor T−CS−X

T−f
∗

−−−→
T−CS−Y between the corresponding costable cosuspended categories.

Proof. The argument is left to the reader.

K3.3.1. Corollary. Let (CX , EX) and (CY , EY ) be exact k-linear categories with
enough projective objects and

(CX , EX)
f∗

−−−→ (CY , EY )
f∗
−−−→ (CX , EX)

a pair of ’exact’ functors such that f∗ is k-linear and a left adjoint of f∗. Then the functor

f∗ induces a triangle k-linear functor T−CS−X

T−f
∗

−−−→ T−CS−Y between the corresponding
costable cosuspended categories.

Proof. By K7.1, the functor f∗ maps projective objects of (CX , EX) to projective
objects of (CY , EY ). The assertion follows now from K3.3.
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[Gab] P. Gabriel, Des catégories abéliennes, Bull. Soc. Math. France, 90 (1962), 323-449
[GZ] P. Gabriel and M. Zisman, Calculus of fractions and homotopy theory, Springer
Verlag, Berlin-Heidelberg-New York, 1967
[Gr] A. Grothendieck, Sur quelques points d’algèbre homologique. Tohuku Math. J., Ser.
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1996



Glossary of notations

Chapter I

(CX ,EX) a right exact category, 1.1
Es
X the class of universally strict epimorphisms of a category CX , 1.1.1

Espwr the category of right exact ’spaces’ and weakly ’exact’ morphisms, 1.6
Espr the category of right exact ’spaces’ and ’exact’ morphisms, 1.6
∅̄X the trivial presheaf of sets on CX : it maps CX to the empty set, 2.0.1.1
C∗
X the category of non-trivial presheaves of sets, 2.0.1.1, 4.2.6

(CX , τ)
∧ the category of all sheaves of sets on the (pre)site (CX , τ), 2.0.1.2

CXτ = (CX , τ)
∧ ∩ C∗

X the category of non-trivial sheaves of sets on (CX , τ), 2.0.1.3

CXE

def
= CXEX

the category of non-trivial sheaves of sets on (CX ,EX), 2.0.1.3

C⊛

X
def
= x̂\C∗

X = x̂\C∧
X 2.0.2(b)

CX
h⊛

X

−−−→ C⊛

X the canonical fully faithful functor induced by Yoneda embedding, 2.0.2(b)
Hom⊛(CX , CY ) the full subcategory of Hom(CX , CY ) generated by functors mapping
initial objects to initial objects, 2.0.2(b2)
Hom(CX , CY )

⊛ the full subcategory of the category Hom(CX , CY ) generated by func-
tors mapping final objects to final objects, 2.0.2(c2)

Homc(C
∧
X , CY )

⊛ def
= Hom(C∧

X , CY )
⊛
⋂
Homc(C

∧
X , CY ) 2.0.2(c2)

C∗
X

F⋄

−→ CY , assigns to every non-trivial presheaf of sets G on CX the colimit of the

composition of the forgerful functor h∗X/G −→ CX and CX
F
−→ CY , argument 2.0.2(a)

CX⊛
τ

def
= x̂\CXτ = x̂\(CX , τ)

∧, where x is an initial object of CX , 2.0.5

CX
j⊛
Xτ

−−−→ x̂\CXτ = CX⊛
τ

the composition of CX
h⊛

X

−−−→ x\C∧
X = x\C∗

X and the

functor x̂\C∗
X = x̂\C∧

X

q∗
τ

−−−→ x̂\(CX , τ)
∧ = x̂\CXτ induced by the sheafification functor

C∗
X

q∗
τ

−−−→ CXτ , 2.0.5
Homk(CX , CY ) the category of k-linear functors from CX to CY , 2.0.6

Mk(X)
def
= Homk(C

op
X , k −mod) the category of k-linear presheaves of k-modules on

a k-linear category CX , 2.0.6.1, 2.3

CX
hX
−−−→Mk(X), L 7−→ L̂

def
= CX(−,L), the k-linear Yoneda embedding, 2.0.6.1

Shk(X, τ) the category of k-linear sheaves of k-modules on (CX , τ), 2.0.7

CX⊛

E

def
= x̂\(CX ,EX)∧ the category of sheaves of sets on (CX ,EX) over x̂ endowed with

the canonical (– the finest) right exact structure Es
X⊛

E

, 2.1.1

(CX ,EX)
j⊛
X

−−−→ (CXE
,Es

X⊛

E

) the canonical fully faithful ’exact’ functor, 2.1.1
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CX⊛

E

ϕ̃⊛

−−−→ CY ⊛

E
the functor induced by (CX ,EX)

ϕ∗

−−−→ (CY ,EY ), 2.1.1

Shk(X,EX) the category of k-linear sheaves of k-modules on (CX ,EX), 2.3
CXK the Karoubian envelope of a category CX , 3.3
(CXK ,EXK ) the Karoubian envelope of a right exact category (CX ,EX), 3.4.3
Ker(f) the kernel of a morphism f , 4.1
Cok(f) the cokernel of a morphism f , 4.1
Algk the category of associative unital k-algebras, 4.2.1

Affk
def
= Algopk the category of non-commutative affine k-schemes, 4.2.3.3

Coim(f) the coimage of f , 4.5
E⊛

X the class of deflations whose pull-backs contain isomorphisms, 5.5.1, 5.5.2
ExCatk the category of exact k-linear categories and ’exact’ k-linear functors, 7.1
EsplX the class of split epimorphisms of a category CX , 7.2.1
Addk the category of additive k-linear categories and k-linear functors, 7.2.1
C(A) the category of complexes of an additive k-linear category A, 7.2.2

Chapter II

K(CX) the category of complexes, 1.5
Kb(CX) the category of bounded complexes, 1.5
T = (Ti, di| i ≥ 0) a ∂∗-functor, 2
Hom∗((CX ,EX), CY ) the category of ∂∗-functors from (CX , EX) to CY , 2.1
Ex∗((CX,EX), (CX ,EX)) the category of preserving conflations functors, 2.2
∂∗Un((CX ,EX), CY ) the category of universal ∂∗-functors from (CX ,EX) to CY , 3.0.1

S−(F )(L) = lim
(
Ker(F (k(e))) | (M

e
→ L) ∈ EX

)
the satellite of F , 3.2

EΦ
X a subclass of deflations coinduced by a functor CX

Φ
−→ CX, 3.6.1

E⊛

X the class of deflations (– arrows of EX) with trivial kernel, 3.7

CX⊛

E

F⊛

EX−→ CY ⊛ composition of the inclusion CX⊛

E
−→ CX⊛ and CX⊛

F⊛

−→ CY ⊛ , 4.3

h⊛X ◦ S
•
−F ≃ S

•
−(F

⊛

EX
) ◦ j⊛X , 4.3

by Hom∗
k((CX ,EX), CY ) the category of k-linear ∂∗-functors, 4.6.2.2

∂∗kUn((CX ,EX), CY ) the full subcategory of Hom∗
k(CX ,EX), CY ) generated by uni-

versal ∂∗-functors, 4.6.2.2
∂∗kUn(Shk(X,EX), CY ) −−−→ ∂∗kUn((CX ,EX), CY ),

T = (Ti, di | i ≥ 0) 7−→ T ◦ j∗X = (Ti ◦ j
∗
X , dij

∗
X | i ≥ 0)

localization functor, 4.6.6

Ext•X,EX (−, L) 5.1
Ext•X,EX (−,L) 5.2
(CE5), (CE5∗) properties of right exact categories, 6.1

∂∗Ũn(X,EX) the category of universal ∂∗-functors from (CX ,EX), 8.1.0
∂∗Un(X,EX) the category of universal ∂∗-functors from (CX ,EX) whose zero compo-
nents map initial objects to initial objects, 8.1.1
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∂∗Unc(X,EX) the category of universal ∂∗-functors from (CX ,EX) to categories with
limits and morphisms (F, φ) with F preserving limits, 8.1.2

∂Ũn(X, IX) the category of universal ∂-functors from a left exact category (CX, IX),
8.1.3
∂Un(X, IX) the category of universal ∂∗-functors from (CX, IX) whose zero components
map final objects to final objects, 8.1.3
∂∗Unc(X, IX) the category of universal ∂-functors from (CX, IX) to categories with limits
and morphisms (F, φ) with F preserving limits, 8.1.4
Ext•X,IX

the universal ∂-functor from (CX, IX) to C
∗
X such that Ext0X,IX

= hX, 8.2
∂∗kUn(X,EX) the category of universal k-linear ∂∗-functors from (CX ,EX) to k-linear
additive categories, 8.3
∂kUn

c(X, IX) the category of k-linear ∂-functors with values in cocomplete categories
and morphisms (F, ψ) such that the functor F preserves limits, 8.3
∂kUn(X, IX) the category of universal k-linear ∂-functors from (CX, IX) to k-linear ad-
ditive categories, 8.3
∂kUn

c(X, IX) the category of universal k-linear ∂-functors to cocomplete categories and
morphisms (F, ψ) such that the functor F preserves colimits, 8.3
∂∗UEx(X,EX) the category of the universal ’exact’ ∂∗-functors, 9.0
∂∗UExc(X, IX) the category of universal ∂∗-functors to complete right exact categories
satisfying (CE5∗) and morphisms (F, ψ) with F preserving limits, 9.0
∂UEx(X, IX) the category of universal ’exact’ ∂-functors from (CX, IX) to left exact
categories satisfying (CE5), 9.0.1
∂UExc(X, IX) the category of universal ∂-functors to cocomplete left exact categories
satisfying (CE5) and morphisms (F, ψ) with F preserving colimits, 9.0.1
∂∗kUEx(X,EX) the category of universal ’exact’ k-linear ∂∗-functors from (CX ,EX) to
right exact k-linear categories satisfying (CE5∗) whose zero component maps deflations to
deflations, 9.2
∂kUEx(X, IX) the category of universal ’exact’ k-linear ∂-functors from (CX, IX) to k-
linear left exact categories satisfying (CE5) whose zero component maps inflations to
inflations, 9.2

Chapter III

ΦEY the right exact structure coinduced via CX
Φ
−→ CY , 1.3.3

F −mod the category of modules over a monad F , 1.5
Rex((CX ,EX), (CY ,EY )) the category of right ’exact’ functors, 2.8
Effo((CX ,EX), CY ) the category of coeffaceable functors from (CX ,EX) to CY , 2.8
Exk((CX ,EX), k−mod) the category of ’exact’ k-linear functors from (CX ,EX) to k−
mod, 2.8.3
HX(F )(N) = colim(Ker(F (M) −→−→ F (M ×N M))), where M −→ N runs through defla-
tions of N, Heller functor, 2.9
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(C∧
X , I

∧
X , Θ̂

∗
X ,TrX∧) the prestable category of presheaves on (CX , IX), 3.5

Im(f) the image of a morphism f , 4.2.1
(CXp

, (θXp
, λ),TrXp

) the prestable category of the left exact category (CX , IX), 5.2

(CX, θ̃X,TrX) presuspended category, 6.1
H•(X,F) = (Hn(X,F), dn | n ≥ 0) homology with coefficients in F , 7.1
Pa(X) the ’space’ of paths of the ’space’ X, 7.2
πn(X,OX) the n-th homotopy group of the pointed ’space’ (X,OX), 6.4

Chapter IV

IstSp the class of strict monomorphisms of ’spaces’, 2.1
Is the canonical left exact structure on |Cat|o, 2.3
Isc the class of all conservative morphisms from Is, 2.4.4
|KCat|o the category of Karoubian ’spaces’, 2.5
IKa the canonical left exact structure on IKa, 2.5.2
L, Lℓ, Lr, Le, L

c, Lc
e structures of a left exact category on the category of ’spaces’, 3.1

Isℓ and Isr left exact structures on the category of ’spaces’, 3.3
|Catk|

o the category of k-’spaces’, 4.1
Istk the finest left exact structure on |Catk|

o, 4.4.1
Isk the k-linear version of the left exact structure Is, 4.4.2
L(k), Lℓ(k), Lr(k), Le(k), L

c(k), Lc
e(k) left exact structures on |Catk|

o, 4.4.6
Ies a left exact structure on the category of right exact ’spaces’, 5.3
KEspr the category of right exact Karoubian ’spaces’, 5.4
IKe a canonical left exact structure on KEspr, 5.4.2
Les a left exact structure on the category Espr of right exact ’spaces’, 5.5
Les
sq a left exact structure on the category Espr of right exact ’spaces’, 5.5.3

Esprk the category of right exact k-spaces, 6
Iesk the preimage of the left exact structure Ies, 6
KEsprk Karoubian right exact k-’spaces’, 6.4
IKe
k a canonical left exact structure on KEsprk, 6.4

Les(k), L
es
ℓ (k), Les

r (k), Lc
es(k), L

e,c
es (k) left exact structures on Esprk, 6.5

Iesℓ (k) and Iesr (k)) canonical left exact structures on Esprk, 6.6
(Espek, I

e
k) left exact category of exact k-’spaces’, 7.2

CXD = CD
X the category of diagrams D −→ CX , 8

PD the endofunctor X 7−→ XD of the category |Cat|o, 8

ID = PD−1

(Is) a left exact structure on |Cat|o, 8.2
Ec
XD a right exact structure on the category CD

X = CXD , 8.3.3
ΣG,EX the class of arrows whose pull-backs along all deflations belong to ΣG, 8.3.5.1
IDc a left exact structure on the category Espr of right exact ’spaces’, 8.5.2
Pa(X,EX) the path ’space’ of a right exact ’space’ (X,EX), 10.1.1
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Chapter V

|CX | the set of isomorphism classes of objects of CX , 1.1
Z|CX | the free abelian group generated by |CX |, 1.1
Z0(CX) the subgroup of Z|CX | generated by {[M ]− [N ] | (M → N) ∈ HomCX}, 1.1
K0(X,EX) the group K0 of a right exact ’space’ (X,EX), 1.4
Espwr the category of right exact ’spaces’ and morphisms preserving conflations, 1.7
Esp∗r the subcategory of Espwr formed by ’exact’ morphisms, 1.7
|Gr|o the category of ’spaces’ represented by groupoids, 2.1
Gr∗ the embedding |Gr|o −→ |Cat|o, 2.1
|Ord|o the subcategory of ’spaces’ represented by groupoids, 2.2
Sk∗ the full embedding |Ord|o −→ |Cat|o, 2.2

KY
0 (X , ξ) = KY

0 (X ,X
ξ
→ Y)

def
= Cok(K0(Y)

K0(ξ)
−−−→ K0(X )), relative K0

KY,I
i (X , ξ) universal K-groups of the right exact ’space’ (X , ξ) over Y, 2

KS,F
• = (KS,F

i , di | i ≥ 0) universal K-functor from (CS, IS)op to Z−mod, 3.4

|Cat∗|
o def
= |Cat|o/x the category of ’spaces’ over the trivial ’space’, 4

Esp∗r
def
= Esp∗r/x the category of right exact ’spaces’ over the trivial ’space’, 4

I→c∗ the canonical left exact structure on Esp∗r , 4.1
Espak the category of k-linear abelian categories, 5
Iak a canonical left exact structure on Espak, 5.2.2
Ka

• = (Ka
i , d

a
i | i ≥ 0) the universal Grothendieck K-functor, 5.4

KQ
• = (KQ

i , d
Q
i | i ≥ 0) the Quillen’s K-functor, 5.5

Chapter VI

S • T the Gabriel product of subcategories of a right exact category, 1
B(n+1) the upper nth infinitesimal neighborhood of B, 2
B(n+1) the lower nth infinitesimal neighborhood of B, 2
REspr the category of right exact relative ’spaces’, 6.2
(REspr, I

→
r ) the left exact category of relative ’spaces’, 6.2

Complementary Facts

Mon+(CX) the category of augmented monads on CX , C1.9.3
Pr(X,EX) the full subcategory of CX whose objects are projective objects, C5.1
ΩF the functor of Kähler differentials, C5.3

Chapter VII

CX/L
+ the disjoint union of the category CX/L and the “point” – the category with

one morphism, 1.0
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Df the functor CX/L
+ −→ CX/L, which is identical on CX/L and maps the “point”

to the object (M,M
f
−→ L), 1.0

(Ker(f),Ker(f)
k(f)
−→M), the kernel of the morphismM

f
−→ L, 1.0

Mξ,f

ξ′f
−→M the pull-back of the morphism Lξ

ξ
−→ L along M

f
−→ L, 1.1

CX/L
Pf
−−−→ CX/M the functor of pull-back along M

f
−→ L, 1.1

(Ker(f),Ker(f)
k(f)
−→M) = lim(Pf ), 1.1

(Ker(f)
0f
−→M the canonical morphism, 1.5

Coim(f) = Cok(Ker(f)
k(f)

−→
−→
0f

M) 1.5

M
pf
−−−→ Coim(f)

jf
−−−→ N a canonical decomposition associated with M

f
−→ N, 1.5

(Kerv(f),Kerv(f)
kv(f)
−→ M̂) the virtual kernel of a morphismM

f
−→ L, 2.1

Kerv(f)
fξ
−→ limhX/L

kv(f)
y cart

y jL cartesian square defining the virtual kernel

M̂
f̂
−→ L̂ of a morphism M

f
−→ L, 2.2

lim(CX
hX−→ C∧

X virtually initial object of CX , 2.3.0

CX⊛

def
= limhX\C

∧
X the ”reduced” category of presheaves of sets on CX , 2.3.0.2

CX
h∗
X−→ C∗

X the corestriction to C∗
X of the Yoneda embedding, 2.3.5.2

CX =
∐

i∈π0(X)

CXi
be the decomposition of a category CX into the disjoint union of its

connected components, 2.4.4

CXre =
∐

i∈π0(X)

CX⊛

i
”reduced” category associated with a category CX , 2.4.0

CX
hre
X−→ CXre =

∐

i∈π0(X)

CX⊛

i
the ”reduced” Yoneda embedding, 2.4.0

Catsc the category of semi-complete categories, 2.10.2

Catvsc the category of virtually semi-complete categories, 2.10.3

E′
B,X the class of all deflations M

e
−→ L such thatM, L and Ker(e) are objects of a

subcategory B, 2.11.3
EB,X = E′

B,X

⋃
Iso(B), 2.11.3

T = (Ti, di| i ≥ 0) ∂∗-functor, 3.1

Ti+1(L)
di(e,ξ)
−−−→ Ti(Mξ,e) connecting morphism for M

e
−→ L

ξ
←− Lξ, 3.1

Hom∗((CX ,EX), CY ) the category of ∂∗-functors from (CX , EX) to CY , 3.1.2
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Hom∗((CX ,EX), CY )
Ψ∗

−−−→ Hom(CX , CY ) assigns to (morphisms of) ∂∗-functors their
zero components, 3.2.1

DS−F (L) the diagram

Vα,F (ξe)

dαξ,e
−−−→y cart

Vα
α

−−−→

F



Mξ,e

eξ
−−−→ Lξ

ξe

y cart
y ξ

M
e

−−−→ L


 , 3.3.1

S−F (L)
def
= DS−F (L) the first right derived functor of a functor F , 3.3.2

S−F (L)
dξ,e
−−−→ F (Mξ,e)

F (eξ)

−−−→ F (Lξ)

F (ξe)
y

y F (ξ)

F (M)
F (e)
−−−→ F (L)

the canonical diagram, 3.3.3

S−F (L)
dξ,e
−−−→ F (Mξ,e) the connecting morphism, 3.3.3

S•
−(F ) = (Si−(F ), d

F
i | i ≥ 0) the derived ∂∗-functor of F , 3.3.5

EΦ
X 3.7.1

CXre
τ

=
∐

i∈π0(X)

CX⊛

i,τi

, the reduced category of sheaves of sets on a (pre)site (CX , τ), 3.8.1

CXre

qre
τ

−−−→ CXre
τ

the ”reduced” sheafification functor 3.8.1.1

CXre
EX

=
∐

i∈π0(X)

CX⊛

i,Ei

, the ”reduced” category of sheaves on a right exact category

(CX ,EX) =
∐

i∈π0(X)

(CXi
,Ei), 3.8.2

CX
jreX
−−−→ CXre

EX
the composition of the embedding CX

hre
X

−−−→ CXre =
∐

i∈π0(X)

CX⊛

i

with the ”reduced” sheafification functor CXre

qre
EX

−−−→ CXre
EX

=
∐

i∈π0(X)

CX⊛

i,Ei

, 3.8.2

S•−(F
re
EX

) ◦ jreX
∼−→ S•−(h

re
Y ◦ F ), 3.8.4, 3.8.4.1

hreX ◦ S
•
−F ≃ S

•
−(F

re
EX

) ◦ jreX when S•−F exists, 3.8.4
∂∗Un(X,EX) the category of universal ∂∗-functors from (CX ,EX) to virtually semi-
complete categories, 4.1
∂∗Unc(X,EX) the subcategory of universal ∂∗-functors from (CX ,EX) to semi-complete
categories and morphisms preserving limits, 4.1.1
∂Un(X, IX) the category of universal ∂-functors from a left exact category (CX , IX) to
virtually semi-cocomplete categories, 4.2
∂Unc(X, IX) the subcategory of ∂-functors from a left exact category (CX , IX) to semi-
cocomplete categories and morphisms preserving colimits, 4.2.1

Ext•X,IX

def
= S•+(h

re
X ) the left derived functor of the Yoneda embedding CX

hX−→ C∧
X, 4.3
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S+F (L) = colim(Cok(F (M
ξj−→ Mj,ξ))), where ξj runs through push-forwards of mor-

phisms L
ξ
−→ L along inflations L

j
−→M, 5.1

S+F (L) = F ∗S+hX(L) = F ∗Ext1X(L), 5.1.2

CXre

Θ̂X∗

−−−→ CXre the structure of Z+-category on CXre determined by Ext1X 5.2

Θ̂X∗(G)(−) = CXre(Ext1X(−),G) the right adjoint to Θ̂∗
X , 5.2

L̂
ĵ

−−−→ M̂ −−−→ yi

ξ̂
y

y ĵξ

y λ(L)

L̂ξ
ξ̂j
−−−→ M̂j,ξ

d0(ξ,j)
−−−→ Θ̂∗

X(L̂)

a standard ”triangle” in CXre , 5.3

IXre the coarsest left exact structure on CXre closed under filtered colimits and making

the embedding CX
hre
X−→ CXre an ’exact’ functor from (CX, IX) to (CXre , IXre), 5.5

(CXre , IXre , Θ̂∗
X,TrXre) the prestable category of presheaves of sets on the left exact

category (CX, IX), 5.5
CXre

s
the quotient category Σ−1

Θ̂∗
X

CXre , where

Σ
Θ̂∗

X

= {t ∈ HomCXre | Θ̂∗
X(t) is an isomorphism}, 5.6

(CXre
s
,ΘXre

s
,TrXre

s
) the stable category of presheaves of sets on (CX , IX), 5.6

CXp

θXp

−−−→ CXp the Z+-structure induced by CXre

Θ̂∗
X

−−−→ CXre , 6.1
(CXp , θXp ,TrXp) the prestable category of (CX, IX), 6.3
(CXs

, θXs
,TrXs

) the stable category of the left exact category (CX, IX), 6.4

S−F (L)
de

−−−→ lim
Lξ

ξ
→L

(Ker(F (Mξ,e
ξ′e−→M)) the canonical morphism, 7.1

H0(X,F) = colimF the zero homology of X with coefficients in CX
F
−→ CZ , 8

H•(X,F) = (Hn(X,F), dn | n ≥ 0) homology of X with coefficients in CX
F
−→ CZ , 8

KS,F
• = (KS,F

i , di | i ≥ 0) universal K-functor from (CS, IS)op to Z−mod, 9.2.1
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acyclic objects, III.1.6.7, III.3.1
associated pointed categories, C1.4
augmented monads, C1.9.3
Beck’s Theorem, C5.4.4
cartesian right exact structure, IV.8.3.2
characteristic

’exact’ filtrations, V.8.2
’exact’ sequences, V.8.4

coaisles in
a quasi-cosuspended category, C3.11.1

coeffaceable functors, III.1.6.1.1, VII.7.4
cohomological functors

on suspended categories, C4.2
coimage of a morphism, I.4.5, VII.5
cokernels

of morphisms, I.4.1
of relative objects, C1.2

conflations, I.5.1
correspondences, IV.10.2
costable category

of a right exact category, III.4.4
cosuspended k-linear category, K2.1
deflations, I.1.1

with trivial kernels, II.3.7
∂∗-functors, II.2
∂-functors, II.4
derived functors, II
devissage, VI.6.1
diagram chasing, C2
diagrams, IV.8

pointed, IV.8.3.4
elementary injective objects, IV.4.4.5
exact category, I.7.1, K1.1
’exact’ complexes, II.1.6
’exact’ ∂∗-functors, II.6
’exact’ functors, I.1.3
free actions, C5.7.2

Frobenius monads, C5.6
Frobenius morphisms, C5.6
fully exact subcategories of

a right exact category, I.6.1,
VI.3.1, VII.2.11

functor Kw
0 , V.1.8

fundamental group
of a pointed ’space’, III.6.3.1

Gabriel multiplication
in right exact categories, VI.1

Gabriel-Quillen embedding, I.7.6, I.8.1.1
Grothendieck K-functor, V.5.3
group K0, V.1.4
homological dimension

of objects of a cosuspended category,
C4.6.2

of a cosuspended category, C4.6.2.4
homological functors

on a cosuspended category, C4.2
homology of ’spaces’, III.6.1, VII.8
higher homotopy groups

of a pointed ’space’, III.6.4
image of a morphism, III.2.1
induced right exact structures, C1.8
infinitesimal neighborhood

of a subcategory, VI.2

injective objects of
a left exact category, III.1, III.1.5,
III.2.6, III.3.1.4, III.5.4.1

injective resolution, III.3.2.3.3,
Karoubian envelope

of a category, I.3.3
of a right exact category, I.3.4.2

Kähler differentials, C5.4.1
kernels

of morphisms, I.4.1, VII.1
of relative objects, C1.2
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of unital k-algebras, I.4.2.1
left exact categories

of ’spaces’, IV.2
of right exact ’spaces’, IV.3
of infinitesimal ’spaces’, VI.8
of comodules over a comonad, C5.5

left exact structure on the category
of ’spaces’, IV.2
finest, IV.2.1
canonical, IV.2.3
formed by localizations, IV.3

of k-’spaces’, IV.4.4
of right exact ’spaces’, IV.5
of right exact k-’spaces’, IV.6.3.2
of exact k-’spaces’, IV.7.2

”long sequence”, VII.3.1.1
loop ’space’ of a pointed ’space’, III.6.2.1
morphisms

connecting, II.2.0, VII.3.3.3
of ∂∗-functors, VII.3.1.2
trivial, II.1, VII.1.6
with trivial kernel, I.4.1.3, I.4.4.3,
VII.1.6

multiplicative systems
in quasi-suspended categories, C3.8

non-additive exact categories, I.7.7
non-additive Kähler differentials, C5.4.2
path ’space’ of a right exact ’space’, IV.11.1
pointed objects, I.4.2.5, II.1.1.1, VII.7.6.1
pointed projective objects, III.1.6.2
power functor associated with a diagram
scheme, IV.8.1, IV.8.4.1
precostable category

of a right exact category, III.4.4
prestable category

of a left exact category, III.4.2, VII.6.3
of presheaves, III.2.5, VII.5.5

presuspended category, III.5.1
projective objects, III.1.2

of an infinitesimal neighborhood,
C5.7.2.1

quasi-abelian categories, I.1.3.2, I.8.2
quasi-filtered category, VII.2.3.2.1
quasi-suspended categories, III.3.4, C3
Q-construction

for right exact ’spaces’, V.9.2
Quillen’s K-theory, V.6.6, V.6.7
”reduced” category of presheaves of sets,
VII.2.4.0
”reduced” Yoneda embedding, VII.2.4.0
reduction by resolution, V.7.2
relative right exact ’spaces’, VI.6.2
relative functor K0, V.3
relative satellites, II.9
resolution

of an object, III.3.2.3.3
of a cosuspended category, C4.6.4.1
of an exact category with enough
projective objects, C4.6.4.2

right derived functor, VII.3.2.2
right exact

categories, I.1.1
categories of unital algebras, C5.4
’spaces’, I.1.6

satellites, II.3.2
semi-complete categories, VII.2.4.1

associated with a virtually
semi-complete category, VII.2.4.4

semi-completion of
a subcanonical presite, VII.3.8.1
a right exact category, VII.3.8.2

semitopologizing subcategories
of a right exact category, VI.5.1

sheafification functor, I.2.1, I.2.2, III.1.7
smallest abelianization

of an exact category, C4.4
’snake lemma’, C2.2
’space’ of paths of a ’space’, III.6.2
stable category

of a left exact category, III.4.3, VII.6.4
of presheaves of sets on a left exact
category, III.2.7, VII.5.6
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standard triangles, C5.3.1, C5.5.3, VII.5.3
strict triangulated categories, C4.5.2
suspended k-linear category, K2.2
suspension functor, C5.5.1
thick subcategories

of a right exact category, VI.5.1
topologizing subcategories

of a right exact category, VI.5.1
torsion pairs, I.8.2.2
triangle equivalences, K2.6
triangle functors, C4.3.8, K2.5
triangles in stable category, III.2.7, III.4.1,
VII.6.2
triangle subcategories, C3.9
triangulated categories, K2.3
triangulation of

(co)suspended categories, C4.5
trivial ∂∗-functor, II.2.1
trivial morphism, II.1, VII.1.6
trivial object, VII.1.6
trivial kernel, VII.1.6
topologizing subcategories, VI.5
universal ∂∗-functors, II.3
universal ∂-functors, II.4
universal ’exact’ ∂-functors, II.8
universal homological functors, C4.3.4
universal relative K-groups, V.3.1
virtually initial objects, VII.2.3.0
virtually complete categories, VII.2.3
virtual kernels, VII.2.1
virtually semi-complete category, VII.2.4.2
virtually trivial

kernels, VII.2.8.3
morphisms, VII.2.8.1

weak costable category
of a right exact category, C5.1

weak cosuspension functor, C5.2
weakly coeaffaceable presheaves, III.1.7.1
weakly right ’semi-exact’ functors, VII.7.2
Zassenhouse’s lemma, VI.4.2


