TOPONOGOV'S THEOREM FOR METRIC SPACES

by

Conrad Plaut

Max-Planck-Institut für Mathematik Gottfried-Claren-Str. 26 5300 Bonn 3
Federal Republic of Germany

Toponogov's Theorem for Metric Spaces

by Conrad Plaut

An immediate corollary of the Rauch Comparison Theorem is that if M is a complete Riemannian manifold having sectional curvature $\geq k$, then the Alexandroff distance/angle comparisons are valid in a neighborhood of any point. Toponogov's Theorem states that, in fact, these comparisons are valid globally. We show that Toponogov's Theorem is actually true in the most general class of spaces for which the theorem, in its present form, even makes sense: the class of inner metric spaces with (metric) curvature locally bounded below. In the Riemannian special case, the present proof is, to the author's knowlege, the first entirely "metric" proof of Toponogov's Theorem. In particular, it shows for the first time that the powerful improvement from local comparisons to global comparisons is not a differential geometric phenomenon.

Throughout this paper, X will be a metrically complete, locally compact inner metric space. For basic definitions and results, see [R], [P1], or [P2]. We denote by S_{p} the space of directions at a point p (which in the Rlemannian case is simply the unit sphere in T_{p}), with the angle metric denoted by α. Note that metric completeness and local compactness imply $\left(y \in S_{p}: c(y) \geq \delta\right)$ is compact for any positive δ, where c is
the cut radius map. We let S_{k} denote the 2 -dimensional, simply connected space form of curvature k. By monotonicity we will mean the well-known fact that the angle between two minimal curves of fixed length in S_{k} is a monotone increasing function of the distance between their non-coincident endpoints. We say that a (geodesic) wedge $\left(\gamma_{1}, \gamma_{2}\right)$ or triangle $\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right)$ is proper if γ_{1} and γ_{3} are minimal and $L\left(\gamma_{2}\right) \leq \pi / \sqrt{k}$;

Definition. We say that a triangle $\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right)$ in X is $A 1$ if there exists a representative triangle $\left(\bar{\gamma}_{1}, \bar{\gamma}_{2}, \bar{\gamma}_{3}\right)$ in S_{k} (i.e., the sides $\bar{\gamma}_{1}$ are minimal with $L\left(\bar{\gamma}_{1}\right)-L\left(\gamma_{1}\right)$), and $\alpha\left(\bar{\gamma}_{i}, \bar{\gamma}_{2}\right) \leq \alpha\left(\gamma_{i}, \gamma_{2}\right)$ for $i=1,3$. We say that a wedge $\left(\gamma_{\mathrm{ab}}, \beta_{\mathrm{ac}}\right)$ is $A 2$ if there is a representative wedge $\left(\bar{\gamma}_{\mathrm{AB}}, \bar{\beta}_{\mathrm{AC}}\right.$) in S_{k} (i.e., whose sides are minimal with $\mathrm{L}\left(\bar{\gamma}_{\mathrm{AB}}\right)=\mathrm{L}\left(\gamma_{\mathrm{ab}}\right), \mathrm{L}\left(\bar{\beta}_{\mathrm{AC}}\right)=$ $\left.\mathrm{L}\left(\beta_{\mathrm{ac}}\right), \alpha\left(\bar{\gamma}_{\mathrm{AB}}, \bar{\beta}_{\mathrm{AC}}\right)=\alpha\left(\gamma_{\mathrm{ab}}, \beta_{\mathrm{ac}}\right)\right)$ and $\mathrm{d}(\mathrm{B}, \mathrm{C}) \geq \mathrm{d}(\mathrm{b}, \mathrm{c})$.

If X has curvature (locally) $\geq k$, then in a neighborhood of each point every proper triangle is A1 and every proper wedge is A2 (cf. Lemma 1 and [P1]). We prove

Theorem A. If X is of curvature (locally) $\geq k$, then every proper triangle in X is $A 1$ and every proper wedge in X is $A 2$.

Corollary B. If X is of curvature (locally) $\geq k>0$, then X is compact, with diameter $\leq \pi / \sqrt{k}$.

We say X is almost Riemannian ([P2]) of curvature $z k$ if X
is finite dimensional, geodesically complete, and has curvature (locally) $\geq \mathrm{k}$. Using Theorem A we prove the following precompactness theorem (cf. [GLP]).

Theorem C. For fixed k, n, and $D>0$, the class of n-dimensional almost Riemannian spaces of curvature $\geq k$ and diameter $\leq D$ is precompact with the Gromov-Hausdorff metric.

For the remainder of this paper we assume that X has curvature (locally) $\geq k$ and is at least 2 -dimensional (the one dimensional case is trivial). The following lemma formulates a standard technique in proofs of Toponogov's theorem in the Riemannian case (see, e.g., [CE] for an argument).

Lemma 1. Let $\gamma_{a b}:[0,1] \rightarrow X$ be a geodesic with $L\left(\gamma_{a b}\right) \leq$ $\pi / \sqrt{k}, \gamma_{a c}$ be minimal, and $0=t_{0}<t_{1}<\ldots<t_{i}=1$. Let γ_{j} denote $\gamma_{a b}$ restricted to $\left[t_{j}, t_{j+1}\right]$, and suppose α_{j} is minimal from c to t_{j}, with $\alpha_{0}=\gamma_{a c}$. Then if the triangles $\left(\alpha_{j}, \gamma_{j}, \alpha_{j+1}\right)$ are A1 for $0 \leq j<i,\left(\gamma_{a b}, \gamma_{a c}\right)$ is A2.

Lemma 2. For any $\alpha, \beta \in S_{p}, \delta>0$ and $a_{1}, a_{2}>0$ such that $a_{1}+a_{2}=\alpha(\alpha, \beta)$, there exists $\gamma \in S_{p}$ such that $\left|\alpha(\alpha, \gamma)-a_{1}\right|<$ δ and $\left|\alpha(\alpha, \gamma)-a_{2}\right|<\delta$.

Proof. Assume first that $c=\alpha(\alpha, \beta)<\pi$. We need only consider the case $a_{1}=a_{2}=c / 2$. Let $\eta_{1}:[0,1] \rightarrow X$ be minimal from $\alpha\left(2^{-i}\right)$ to $\beta\left(2^{-i}\right)$ and γ_{1} be minimal from p to $\eta_{1}(1 / 2)$; we
denote by α_{1} the restriction of α to $\left[0,2^{-1}\right]$, with similar notation for β. Let $\mathrm{a}=\lim _{\mathrm{i}->\infty} \alpha\left(\alpha, \eta_{1}\right)$ and $\mathrm{b}=\lim _{1 \rightarrow \infty} \alpha\left(\beta, \eta_{1}\right)$. By the triangle inequality, $a+b \geq c$. Let $\left(\bar{\alpha}_{1}, \bar{\nu}_{i}, \bar{\gamma}_{1}\right)$ and $\quad\left(\bar{\gamma}_{i}, \quad \bar{\mu}, \quad \bar{\beta}_{1}\right)$ represent $\left(\alpha_{1},\left.\quad \eta_{i}\right|_{[0,1 / 2]}, \gamma_{1}\right) \quad$ and $\left(\gamma_{1},\left.\eta_{1}\right|_{(1 / 2,1)}, \beta_{i}\right)$, respectively, so that α_{i} and β_{1} do not coincide (all of these curves are assumed parameterized on [0, 1]). By Lemma 3, [P2], a $=\lim _{1-\infty} \alpha\left(\bar{\alpha}_{i}, \bar{\gamma}_{1}\right)=\lim _{i=\infty} \alpha\left(\bar{\alpha}_{i}, \bar{\beta}_{i}\right) / 2$ and $\mathrm{b}=\lim _{\mathrm{i}->\infty} \alpha\left(\bar{\beta}_{1}, \bar{\gamma}_{\mathrm{i}}\right)=\lim _{1=\infty} \alpha\left(\bar{\alpha}_{1}, \bar{\beta}_{\mathrm{i}}\right) / 2$. On the other hand, $\mathrm{d}\left(\bar{\alpha}_{1}(1), \bar{\beta}_{i}(1)\right) \leq \mathrm{d}\left(\alpha\left(2^{-1}\right), \eta_{1}(1 / 2)\right)+\mathrm{d}\left(\beta\left(2^{-1}\right), \eta_{1}(1 / 2)\right)$ and so $\alpha(\alpha, \beta) \leq \lim _{i \rightarrow \infty} \alpha\left(\bar{\alpha}_{1}, \bar{\beta}_{1}\right)$, and the case $\mathrm{c}<\pi$ follows.

If $\mathrm{c}=\pi$ we can choose a direction distinct from α and β and apply the above special case.

Remark. One of the few simplifications of the proof of Theorem A in the Riemannian case is that, since a Riemannian manifold has positive cut radius and Euclidean tangent space, Lemma 2 is true for $\delta=0$.

Lemma 3. If $\gamma_{a b}$ is minimal then for any $L<L\left(\gamma_{a b}\right)$ and $\epsilon>$ 0 there exists $a \delta>0$ so that if γ_{ac} is minimal with $\mathrm{L} / 2 \leq$ $L\left(\gamma_{\mathrm{ac}}\right) \leq L$ and $d\left(c, \gamma_{\mathrm{ab}}\right)<\delta$ then $\alpha\left(\gamma_{\mathrm{ab}}, \gamma_{\mathrm{ac}}\right)<\epsilon$.

Proof. We assume $\gamma_{\text {ab }}$ is unit. Suppose there exist minimal $\gamma_{1}:[0,1] \rightarrow X$ starting at a such that $d\left(\gamma_{1}(1), \gamma_{a b}\right) \rightarrow 0$ and $\alpha\left(\gamma_{i}, \gamma_{a b}\right) \geq \epsilon$. Choosing a subsequence if necessary we can assume $\gamma_{i}(1) \rightarrow \gamma_{a b}(t)$, for some $t \in[L / 2, L]$. But then
a subsequence of $\left(\gamma_{i}\right)$ converges to a minimal curve γ from a to $\gamma(t)$ such that $\alpha\left(\gamma, \gamma_{a b}\right) \geq \epsilon>0$, which contradicts the minimality of $\gamma_{a b}$.

Lemma 4. Suppose $\alpha, \beta:[0,1] \rightarrow X$ are minimal starting at p with $L(\alpha) \leq \pi / \sqrt{k}, L(\beta)<\pi / \sqrt{k}$, and $0<a=\alpha(\alpha, \beta)<\pi$. Suppose also that $\bar{\alpha}, \bar{\beta}:[0,1] \rightarrow S_{k}$ are minimal and $(\bar{\alpha}, \bar{\beta})$ represents (α, β). Let $a_{1}, a_{2}>0$ satisfy $a_{1}+a_{2}=\alpha(\alpha, \beta), \bar{\gamma}$ be minimal from $\bar{\alpha}(1)$ to $\bar{\beta}(1)$, and t be such that if $\bar{\nu}$ is minimal from $\bar{\alpha}(0)$ to $\bar{\gamma}(t)$ then $\alpha(\bar{\nu}, \bar{\alpha})=a_{1}$. If for every $\delta>0$ there is a geodesic μ starting at p with $L(\mu)=L(\bar{\nu})$ so that $\left|\alpha(\mu, \alpha)-a_{1}\right|<\delta,\left|\alpha(\nu, \alpha)-a_{2}\right|<\delta$, and both (α, μ) and (β, μ) are $A 2$, then (α, β) is $A 2$.

Proof. Let $5>0$ be arbitrary. For sufficiently small δ, there is a representative $(\bar{\alpha}, \bar{\mu})$ of (α, μ) such that $\mathrm{d}(\bar{\mu}(1)), \bar{\gamma}(\mathrm{t})) \leq \zeta$. We assume both $\bar{\mu}$ and μ are parameterized on $[0,1]$; by $A 2$ and the triangle inequality $d(\alpha(1), \mu(1)) \leq$ $\mathrm{d}(\bar{\gamma}(0), \bar{\gamma}(t))+5 . \quad$ Since a similar argument applies to $\alpha(\beta(1), \mu(1))$, we have

$$
\begin{aligned}
\mathrm{d}(\alpha(1), \beta(1)) & \leq \mathrm{d}(\alpha(1), \mu(1))+\mathrm{d}(\beta(1), \mu(1)) \\
& \leq \mathrm{d}(\bar{\alpha}(1), \bar{\gamma}(\mathrm{t}))+\mathrm{d}(\bar{\beta}(1), \bar{\gamma}(\mathrm{t}))+2 \zeta \\
& =\mathrm{d}(\bar{\alpha}(1), \bar{\beta}(1))+2 \zeta .
\end{aligned}
$$

Lemma 5. Given k and $0<D<\pi / \sqrt{k}$, there exists a $\chi>0$ so that if $\bar{\gamma}_{A B}, \bar{\gamma}_{A C}$ are unit minimal in S_{k} with $0<\alpha\left(\bar{\gamma}_{A B}, \bar{\gamma}_{A C}\right)<\pi$, $L\left(\bar{\gamma}_{A B}\right) \leq D$, and $d(B, C) \leq 3 \chi$, then for any $0<t \leq$ $\min \left(L\left(\bar{\gamma}_{A B}\right), L\left(\bar{\gamma}_{A C}\right)\right)$ and minimal curve $\bar{\alpha}$ from $\bar{\gamma}_{A B}(t)$ to $\bar{\gamma}_{A C}(t)$, $\max (d(A, \bar{\alpha}(s))<t+\chi$.

Proof. Since metric balls are convex for $k \leq 0$, we need only consider $k>0$; by scaling the metric we reduce to $k=1$, and clearly now we can assume $t>\pi / 2$. Let $\chi>0$ be small enough that $\cos \mathrm{D}-(\cos (1.5 \chi))(\cos (\mathrm{D}+\chi))>0$. We fix curves $\bar{\gamma}_{A B}, \bar{\gamma}_{\mathrm{AC}}$ as above, assume $\bar{\alpha}$ is parameterized on $[0,1]$ and let $\boldsymbol{\tau}=$ $d(A, \bar{\alpha}(1 / 2))-\max \{d(A, \gamma(s)\}$. Letting $\lambda-L(\bar{\alpha})$ and applying the Cosine Law to $\alpha\left(\bar{\gamma}_{A B}, \bar{\alpha}\right)$ we obtain

$$
\frac{\cos \pi-(\cos t)(\cos \lambda / 2)}{\sin \lambda / 2}=\frac{\cos t-(\cos t)(\cos \lambda)}{\sin \lambda}
$$

which reduces to $\cos \tau=\cos t / \cos \lambda / 2$.
Applying the sum formula to $\cos (\tau-t)$ we see that $\tau-t$ is maximized when $d(A, B)=d(A, C)=t=D$ and $\lambda=3 \chi$. Thus we only need to prove $\cos ^{-1}(\cos D / \cos (1.5 \chi)) \leq \cos (D+\chi)$, and this follows from the way x was chosen.

For $0<D<\pi / \sqrt{k}$, fix a closed ball $B-\bar{B}(p, D) \subset X$ and a cover U of $\bar{B}(p, 2 D)$ by regions of curvature $\geq k$, and let $\chi(U)<D$ be as in Lemma 5 and also less than one eighth of a Lebesque number of U. Let $r(U)$ small enough that if $c \bar{\alpha}, \bar{\gamma}$ are unit
geodesics in S_{k} with $\alpha(\bar{\alpha}, \bar{\gamma}) \leq r(U)$, then for all $0 \leq t \leq D$, $\mathrm{d}(\bar{\alpha}(\mathrm{t}), \bar{\gamma}(\mathrm{t})) \leq \chi(\mathrm{U})$. If $\alpha, \beta:[0,1] \rightarrow \mathrm{B}$ are minimal curves starting at p , we call a triangle (α, γ, β) U -tapered if $\mathrm{L}(\gamma) \leq$ $\chi(\mathrm{U})$. We say (α, γ, β) is U -thin if $\alpha(\alpha, \beta) \leq \tau(\mathrm{U})$ and γ is minimal. We do not require that γ lie in B in either definition, but $\chi(\mathrm{U})<\mathrm{D}$ implies γ lies in $\mathrm{B}(\mathrm{p}, 2 \mathrm{D})$.

Note that if $Y \subset B$ has diameter $<4 \chi(U)$ then there exists a region U of curvature $\geq k$ such that every minimal curve joining points in Y lies in U.

Consider the following statements:
$\mathrm{S} 1(\mathrm{n}, \mathrm{m})$. If (α, γ, β) is U -thin such that $\mathrm{L}(\alpha)<n \cdot \chi(\mathrm{U})$ and $L(\beta)<m \cdot \chi(U)$, then (α, γ, β) is Al.
$\mathrm{S} 2(\mathrm{n}, \mathrm{m})$. If (α, γ, β) is U -thin such that $L(\alpha)<n \cdot \chi(\mathrm{U})$ and $L(\beta)<m \cdot \chi(U)$, then (α, β) is A2.

S3(n). If (α, γ, β) is U -tapered such that $L(\alpha), L(\beta)<$ $n \cdot \chi(U)$, then (α, γ, β) is A1.

Note that by monotonicity $\mathrm{S} 1(\mathrm{n}, \mathrm{m})$ and $\mathrm{S} 3(\mathrm{n})$ state equivalently that (α, γ) and (β, γ) are $A 2$. $S 1(3,3), \mathrm{S} 2(3,3)$, and $S 3(3)$ are true by the $\chi(U)$ was chosen. We proceed by induction:

Step 1. $S 1(n, n)$ and $S 2(n, n)$ imply $S 2(n, n+1)$.

Proof. Fix a U-thin triangle (α, γ, β) such that $n \cdot \chi(U) \leq$ $\mathrm{L}(\alpha)<(\mathrm{n}+1) \cdot \chi(\mathrm{U})$ and $\mathrm{L}(\beta)<\mathrm{n} \cdot \chi(\mathrm{U})$. Let q 1ie on α such that $\mathrm{d}(\mathrm{p}, \mathrm{q})=\mathrm{L}(\beta)$, let $\mathrm{x}=\alpha(1), \mathrm{y}=\beta(1)$ and η be minimal from y to q. If ν is the segment of α from p to q, we obtain from $S 2(n, n)$ that (β, ν) is A 2 and from $\mathrm{S} 1(\mathrm{n}, \mathrm{n})$ that (ν, η) is A2. $\mathrm{S} 2(\mathrm{n}, \mathrm{n})$ implies dia $(x, y, q) \leq 2 \chi(U) ;$ if S is the segment of α from q to x we have that both $(\eta, 5)$ and $(5, \gamma)$ are A 2 , and that (α, β) is A2 follows from Lemma 1.

Step 2. $S 1(n, n), S 2(n, n+1)$ and $S 3(n)$ imply $S 1(n, n+1)$.

Proof. Let (α, γ, β) be as above. The proof that (α, γ) is A2 is similar to the argument in Step 1.

To show (β, γ) is A2 consider an arbitrary $\delta>0$. Let a be the point on β such that $d(a, y)=\chi(U), R=d(p, a), \omega$ denote the segement of β from p to a and ξ be minimal from a to x . Choose a representative $(\bar{\omega}, \bar{\xi})$ in S_{k}, denoting the corresponding points with capitals. Let $\bar{\mu}$ be unit minimal from P to X and $\bar{\kappa}$ be minimal from A to $\bar{\mu}(R)$. By Lemma 5 , for all $s, d(P, \bar{\kappa}(s))<$ $R+\chi(U)<n \cdot \chi(U)$. Therefore, if δ was chosen sufficiently small and $\kappa:[0,1] \rightarrow X$ is a geodesic starting at a of length $L=$ $\mathrm{L}(\bar{\kappa})$ such that $|\alpha(\kappa, \omega)-\alpha(\bar{\kappa}, \bar{\omega})|<\delta$ and $|\alpha(\kappa, \xi)-\alpha(\bar{\kappa}, \bar{\xi})|<$ $\delta, S 3(n)$ implies that $d(p, \kappa(s))<n \cdot \chi(U)$ and (κ, ω) is A2. On the other hand, since dia $(\kappa(1), a, x)$ is less than $4 \chi(U),(\kappa, \xi)$
is A2. Lemma 4 now implies (ω, ξ) is $A 2$ and $S 2(n, n+1)$ implies (α, ξ, β) is Al. If λ denotes the segment of β from a to y, (ξ, λ, γ) is also Al , and the proof is complete by Lemma 1.

Step 3. $S 1(n, n+1)$ and $S 2(n, n+1)$ fmply $S 1(n+1, n+1)$ and $S 2(n+1, n+1)$.

Proof. The first implication is a straightforward application of Lemma 1 and the proof of the second is analogous to that of Step 1.

Step 4. $S 3(n), S 1(n+1, n+1)$ and $S 2(n+1, n+1)$ imply: If γ is a geodesic in $B(p,(n+1) \chi(B))$, then for any t and minimal α from p to $q=\gamma(t)$ there exists an $\epsilon>0$ such that if β is minimal from p to $\gamma(s)$ with $|s-t|<\epsilon$, then $\left(\alpha, \gamma_{s}, \beta\right)$ is Al, where γ_{s} is γ restricted to the interval between s and t.

Proof. We can assume α is unit of length $L>4 \chi(U)$. Let x be the point on α such that $d(x, q)-\chi(U)$ and denote by ν the segment of α from p to x. By $S 3(n)$ there exists an $a_{1}>0$ such that for any geodesic κ starting at x of length $\leq \chi$ (U) with $\alpha(\kappa, \nu)<2 a_{1},(\nu, \kappa)$ is A2.

By Lemma 3, for any $s>t$ sufficiently close to t and minimal curve ζ from x to $\gamma(s), \alpha(\zeta, \nu)$ is arbitrarily close to π. Let $(\bar{\nu}, \bar{\zeta})$ represent (ν, ζ) in S_{k}, with $\bar{\zeta}$ parameterized on $[0,1]$, and let $\bar{\kappa}$ be the geodesic such that $\alpha(\bar{\nu}, \bar{\kappa})-a_{1}$ and $\alpha(\bar{\kappa}, \bar{\zeta})=a_{2}=\alpha(\nu, \kappa)-a_{1}$. For s close enough to t,
$L(\nu)+L(\zeta)<\pi / \sqrt{k}$, and if $\bar{\omega}$ is the unique minimal curve from P to $\bar{\zeta}(1), \bar{\omega}$ intersects $\bar{\kappa}$ at $\bar{\kappa}(r), r \leq \chi(U)$. For any $\delta>0$ we can choose κ as above of length r such that $\left|\alpha(\kappa, \nu)-a_{1}\right|<\delta$ and $\left|\alpha(\kappa, \zeta)-a_{2}\right|<\delta$; applying Lemma 4 we obtain that ν, ζ is A2. If ω is the segment of α from x to q, we have that (ζ, ω) and $\left(\omega, \gamma_{s}\right)$ are both A 2 , and from $\mathrm{S} 2(\mathrm{n}+1, \mathrm{n}+1)$ and Lemma 1 we obtain that $\left(\alpha, \gamma_{s}\right)$ is A2. Repeating this argument for values $s<t$ we obtain that there exists some ϵ^{\prime} such that for all s with $|s-t|<\epsilon^{\prime},\left(\alpha, \gamma_{s}\right)$ is A2.

To complete the proof we need only show that for any $s_{1} \rightarrow t$ and Cauchy sequence $\left(\mu_{i}\right)$, with μ_{i} minimal from p to $\gamma\left(s_{i}\right)$, $\left(\mu_{1}, \gamma_{i}\right)$ is A2 for all sufficiently large i (where γ_{1} denotes the restriction of γ to the interval between t and s_{1}). Without loss of generality we can assume $s_{1}>t$. If $\mu=\lim \mu_{1}$, then μ is minimal from p to q and for all sufficiently large $i,\left(\mu, \mu_{i}\right)$ is U-thin. The argument is now finished by $\mathrm{S} 1(\mathrm{n}+1, \mathrm{n}+1)$.

Step 5. $S 3(n), S 1(n+1, n+1)$ and $S 2(n+1, n+1)$ imply S3($n+1, n+1$) (and the induction is complete).

Proof. Let (α, γ, β) be U-tapered with $\mathrm{L}(\alpha), \mathrm{L}(\beta)<$ $\mathrm{n} \cdot \chi(\mathrm{U})$; we assume γ is parameterized on $[0,1]$. For $s>0$, let γ_{s} denote $\left.\gamma\right|_{[0,0]}$, and denote by $\mathrm{Al}(\mathrm{s})$ the statement: for every minimal β_{s} from p to $\gamma(s),\left(\alpha, \gamma_{s}, \beta_{s}\right)$ is A1. Step 4 implies that $A 1(s)$ is true for sufficiently small s, and Step 4 and Lemma 1 prove immediately that if $A 1(T)$ is true for some T, then $A 1(s)$
is true for all $s>T$ sufficiently close to T. Likewise, if $A 1(s)$ is true for all $s<T$ then $A 1(T)$ is true; it follows that Al(1) holds, which is even more than we needed to prove.

Step 6. Every proper wedge in $\bar{B}(p, D)$ such that $\alpha(1)=p$ is A2.

Proof. Let (α, β) be a proper wedge in $\bar{B}(p, D)$ with $\alpha(1)=$ p. (We assume both curves are parameterized on [0, 1].) Subdivide β into minimal curves β_{i} of length $<\chi(U)$. Choosing minimal curves from P to the endpoints of each β_{1} we obtain U-tapered triangles; applying Lemma 1 completes the proof.

The proof of Theorem A is complete by Step 6 in the case $\mathrm{k} \leq$ 0 . For the case $k>0$, note that a limit argument using $S 2(n, n)$ shows that if α and β are minimal of length π / \sqrt{k} and have one endpoint in common, then they have the other endpoint in common. This proves Corollary B. Furthermore, if (α, γ) is a proper wedge, $d(\alpha(1), \gamma(s))=\pi / \sqrt{k}$ at at most a finite number of values s. Taking $p=\alpha(1)$ and D sufficiently close to π / \sqrt{k} we can now use an argument similar to the proof of Step 4, and Lemma 1, to complete the proof of Theorem A.

Proof of Theorem C. For any compact metric space Y we denote by $N(\epsilon, r, Y)$ the maximum number of disjoint balls of radius ϵ that can be put in a ball of radius r in Y. Suppose dim $X-n . \quad B y[G L P]$, Proposition 5.2 , it suffices to prove that
$N(\epsilon, r, X) \leq N\left(\epsilon, r, S_{L}^{n}\right)$, where for simplicity we use $L=$ $\min (0, k)$ instead of k. Let $B(x, r)$ be given, and endow $B(0, r) \subset \bar{T}_{x}$ with the metric δ defined in the proof of Proposition 19, [P2], so that $B(0, r)$ is isometric to a ball of radius r in S_{k}^{2}. Let $B_{i}-B_{1}\left(p_{1}, \epsilon\right)$ be a collection of N disjoint balls in $B(x, r)$. Let $d_{i}=d\left(x, p_{i}\right) \leq r-\epsilon$, and $v_{i} \in S_{x}$ be minimal from x to P_{i}. Then since $\exp _{x}$ is distance decreasing, $\exp _{x}\left(B_{\delta}\left(v_{i}, \epsilon\right)\right) \subseteq B_{i}$, and the balls $B_{\delta}\left(v_{i}, \epsilon\right)$ are N disjoint ϵ-balls in $B(0, r)=B(z, r) \subset S_{k}^{n}$.

The above argument is easily modified to obtain a "pointed" precompactness theorem without an upper bound on the diameter (cf. [GLP]).

Bibliography

[CE] Cheeger, J., and Ebin, D. G. Comparison Theorems in Riemannian Geometry, North Holland, Amsterdam, 1975.
[GLP] Gromov, M., Lafontaine, J., and Pansu, P. Structure Metrique pour les Varietes Riemanniennes, Cedic/Fernant Nathan, Paris, 1981.
[K] Karcher, H. Riemannian Comparison Constructions, preprint.
[P1] Plaut, C. A metric characterization of manifolds with boundary, Max-Planck-Institut preprint no. 89-60.
[P2] Plaut, C, Almost Riemannian spaces, Max-Planck-Institut preprint no. 90-20.
[R] Rinow, W. Die Innere Geometrie der Metrischen Räume, Springer-Verlag, Berlin, 1961.

