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Toponogov's Theorem for Metric Spaces

by Conrad Plaut

An immediate corollary of the Rauch Comparison Theorem is

that if M is a eomplete Riemannian manifold having sectional

eurvature ~ k, then the Alexandroff distance/angle eomparisons

are valid in a neighborhood of any point. Toponogov's Theorem

states that, in fact, these comparisons are valid globally. We

show that Toponogov's Theorem is aetually true in the most

general class of spaces for which the theorem, in its present

form, even makes sense: the elass of inner metrie spaces with

(metrie) eurvature loeally bounded below. In the Riemannian

special ease, the present proof is, to the author's knowlege, the

first entirely "metrieIl proof of Toponogov's Theorem. In

particular, it shows for the first time that the powerful

improvement from local eomparisons to global eomparisons is not a

differential geometrie phenomenon.

Throughout this paper, X will be a metrically eomplete,

loeally eompaet inner metrie space. For basic definitions and

results, see [R], [PI], or [P2]. We denote by S the spaee of
p

directions at a point p (which in the Riemannian ease is simply

the unit sphere in T ), with the angle metrie denoted by Q. Note
p

that metrie eompleteness and loeal eompactness imply

(y ES: e(y) ~ 6 ) is eompact for any positive 6. where e is
p
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the cut radius map. We let S denote the 2·dimensional, simply
k

connected space form of curvature k. By monotonicity we will

mean the well-known fact that the angle between two minimal

curves of fixed length in S is a monotone increasing function of
k

the distance between their non-coincident endpoints. We say that

a (geodesie) wedge (1
1

, 1
2

) or triangle (1
1

, 1
2

, 1
3

) 1s proper if

1 and 1 are minimal and L(1 ) ~ 1r/./k;
1 3 2

Definition. We say that a triangle (11 ' 1
2

, 1
3

) in X is Al

if there ex1sts a representative triangle (11 ' 1
2

, 1
3

) in S
k

(i. e. , the sides 1
1

are minimal with L(1 ) L(1
1
», and

1

a(1 , 1 ) ~ a(1 , 1
2

) for i - 1, 3. We say that a wedge
1 2 1

(1_,-, ß ) is A2 if there 1s a representative wedge ("'( , ß ) in
au ac AB AC

Sk (i.e., whose sides are minimal with L(:Y ) - L(1 ), L(ß ) -
AB ab AI:.

a(1 , ß » and d(B, C) C!:: d(b, C).
ab ac

If X has curvature (locally) C!:: k, then in a neighborhood of

each point every proper triangle 1s Al and every proper wedge 1s

A2 (cf. Lemma 1 and [PI]). We prove

Theorem A. Li X is oi curvature (locally) ~ k, then every

proper triangle in X 15 Al and every proper wedge in X is A2.

Corollary B. Lf X is of curvature (locally) C!:: k > 0, then X

is compact, with diameter s ~/jk.

We say X is slmo5t Riemsnnisn ({P2]) of curvature ~ k if X
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is finite dimensional, geodesieally eomplete, and has eurvature

(loeally) :2:: k. Using Theorem A we prove the following

preeompaetness theorem (cf. [GLP]).

Theorem C. For fixed k, n, and D > 0, the c1ass of

n-dimensiona1 a1most Riemannian spaces oE curvature :2:: k and

diameter S D is precompact with the Gromov-Hausdorff metric.

For the remainder of this paper we assume that X has

eurvature (loeally) ~ k and is at least 2-dimensional (the one

dimensional ease is trivial). The following lemma formulates a

standard teehnique in proofs of Toponogov's theorem in the

Riemannian ease (see, e.g., [CE] for an argument).

Lemma 1. Let ~ : [0, 1J -> X be a geodesie with L(1 ) ~
~ ~

'Ir//k, 1 be minimal, and 0 t < t < ... < t 1. Let 1 jBC 0 1 1

denote ~~ restricted to [t , t j+ll , and suppose 0: is minimal
j j

from c 'to t , with 0: ~ Then ii the triangles
j 0 BC

( 0: , "V , 0: ) are Al for 0 .:S J < 1, ("V , ...., ) 1s A2.
j , j j+l I ~ , BC

Lemma 2. For any 0:, ß ES, 6 > 0 and a , B > 0 such thBt
p 1 2

a + B - 0:(0:, ß), there exists 'Y E S such that 10:(0:, 'Y) - a I <
1 2 P 1

Proof. Assume first that e - 0:(0:, ß) < 'Ir. We need only

eonsider the ease a
1

a - e/2. Let ~ : [0, 1] -> X be minimal
2 1

-i
from 0:(2 )

-1
to ß(2 ) and ~ be minimal from p to ~ (1/2); we

i 1
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d b h t i i f t [0 Z-i], with simi1arenote y Q: t e res r ct on 0 0: 0 ,
i

notation for ß. Let a - 1im 0:(0:, ~) and b - 1im a(ß, ~i).
i->OO i i-~~

By

the triangle inequa1ity, a + b ~ c.

and IJ, represent (0: ,
i '1 i l(0,1/2]'

and

( ~ niß) respective1y, so that a and ß do not
'i' ·'i [1/2,lJ' i' i i

coincide (all of these curves are assumed parameterized on

[0, 1]). By Lemma 3, [ PZ], a - 1 im a (;; , :y)
i->OO i i

1im a(a, ß )/2
i - >00 i i

and b - 1im a("ß, :y) - 1im a(~ t ß )/2. On the other hand,
i - ~~ i i i - >~ i i

d(~ (1), ß (1» S d(a(2-
i
), '1 (1/2» + d(ß(2-

i
), ~ (1/2» and so

i i i i

a(a:, ß) S 1im a(a -ß), and the ease e < 11' foliows.
i - ><0 i ' i

If e - 11' we ean ehoose a direction distinct from Q and ß and

app1y the above special ease. o

Remark. One of the few simp1ifications of the proof of

Theorem A in the Riemannian ease is that, sinee a Riemannian

manifo1d has positive cut radius and Eue1idean tangent space,

Lemma 2 is true for 6 - O.

Lemma 3. If "(ab is minimal then for any L < L("( ) and f >
ab

o there exists a 6 > 0 so that if 'Y is minimal with L/2 :5
llO

L(1 ):S L and d(c, "(_.... ) < 5 then a(1 , "( ) < f.
lI.C QJ.,I ab llC

Proof. We assume 1 is unit. Suppose there exist minimal
ab

'Y : [0, 1] -> X starting at a such that d("( (1), 1 ) -> 0 and
i i ~

Choosing a subsequence if necessary we can

assume 1 i (1) -> "(ab (t) , for same t E [L/2, L].

4
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a suhsequence of ("'li) converges to a minimal curve "'I from a to

"'I(t) such that a("'I, "'I~) ~ e > 0, which contradicts the

minimality of "'I .
~

Lemma 4. Suppose a, ß

o

[0, 1] -> X sre minimal stsrting st

p with L(a) S tr//fc, L(ß) < 'Tr//fc, snd 0 < s - a(a, ß) < tr.

Suppose slso thst

represents (a, ß).

a, ß : [0, 1] -> S are minimal and (a, ß)
k

Let a , s > 0 sstisfy s + s - a(a, ß), "'I
I 2 1 2

be minimal from ~(1) to ß(l), and t be such thst if v is minims1

from ~(O) to ~(t) then a(~, ~) -s.
I

If for every 6 > 0 there is

s geodesie ~ stsrting st p with L(~) L(lI) so thst

la(~, a) . si< 6, la(v, a) - si< 6, snd both (a, ~) and
I 2

(ß, ~) are A2, then (a, ß) is A2.

Proof. Let r > 0 be arhitrary. For sufficiently small 6,

there is a representative (a, p) of (a, p) such thae

d(~(l)), 1(t)) S r. We assume both ~ and p are pararneterized on

[0, 1]; by AZ and the triangle inequa1ity d(a(1), ~(1)) s

Since a similar argument applies to

d(ß(l), p(l)), we have

d(a(l), ß(l)) S d(a(l), p(1)) + d(ß(l), ~(l))

S d(a(l), ~(t)) + d(ß(l), 1(t)) + 2r

- d(a(1), ß(l)) + Zr.

5

o



Lemma 5. Given k and 0 < D < ~/Jk, there exists a X > 0 so

L(-y ) :s D, and d(B, C) :5 3X, then for any 0 < t :5
AB

to "Y (t),
AC

max (d(A, a(s)) < t + X.

Proof. Since metric balls are convex for k :5 0, we need

only consider k > 0; by scaling the metric we reduce to k - 1,

and clearly now we can assume t > ~/2. Let X > 0 be sma1l enough

that cos D - (cos (1.5X»(cos (D+X» > O. We fix curves "'I
AB

, "Y
AC

as above, assume a is parameterized on [0, 1] and let T

- ,.

d (A • a ( 1/2» - max (d (A • l' ( s) } . Letting >. - L(~) and applying

the Gosine Law to a(~ , ~) we obtain
AB

cos T - (cos t)(cos >'/2)
sin >./2

cos t - (cos t)(cos >.)
sin >.

which reduces to cos T - cos t / cos >'/2.

Applying the sum formula to cos (T - t) we see that T - t is

maximized when d(A, B) - d(A, C) - t - D and >. - 3x. Thus we

-1
only need to prove cos (cos D / cos (1. 5X» :s cos (D+X) , and

this follows from the way X was chosen. 0

For 0 < D < ~/Jk, fix a closed ball B - B(p, D) C X and a

cover U of B(p, 2D) by regions of curvature ~ k, and let X(U) < D

be as in Lemma 5 and also less than one eighth of a Lebesque

number of U. Let T (U) small enough that if ca, l' are unit
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geodesics in 8 with Q(a, 1) :S l' (U), then for all 0 :5 t ::S D,
k

d(~(t), ::Y(t)):S X(U). Tf Q, ß: [0, lJ -> B are minimal eurves

starting at p, we eall a triangle (a, 1, ß) U-tapered if L(1) :S

x(U) . We say (Q, 1. ß) is U· thin if a(a, ß) ::S l' (U) and 1 i5

minimal. We do not require that 1 lie in B in either definition,

but X(U) < D implies 1 lies in B(p, 2D).

Note that if Y c B has diameter < 4X(U) then there exists a

region U of eurvature ~ k such that every minimal eurve joining

points in Y lies in U.

Consider the following statements:

Sl(n,rn). Li (a, 1, ß) is U-thin such that L(a) < n·x(U) and

L(ß) < m·x(U), then (a, 1, ß) is Al.

S2(n,m). Lf (a, 1, ß) i5 U-th1n such thst L(a) < n·x(U) and

L(ß) < m·x(U), then (a, ß) 15 A2.

S3(n) . Lf (a, 1, ß) i5 U·tapered such that L(a) , L(ß) <

n·x(U), then (a, 1, ß) 1s Al.

Note that by monotoniei ty SI (n, m) and 83 (n) state

equivalently that (a, 1) and (ß, 1) are A2.

and S3(3) are true by the X(U) was chosen.

induction:

7
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Step 1. Sl(n,n) and S2(n,n) imply S2(n, n+l).

Proof. Fix a U-thin triangle (a, ~, ß) such that n·x(U) ~

L(a) < (n+l)' X(U) and L(ß) < n· X(U) . Let q lie on a such that

d(p, q) - L(ß), let x - a(l), y - ß(l) and ~ be minimal from y to

q. Tf v is the segment of a from p to q, we obtain from S2(n,n)

that (P, v) is A2 and from Sl(n,n) that (v, 11) is A2. S2(n,n)

implies dia (x, y, q) s 2X(U); if r is the segment of a from q to

x we have that both (~, r) and (r, ~) are A2, and that (a, P) i5

A2 follows from Lemma 1.

Step 2. Sl(n,n), S2(n,n+l) and S3(n) imply Sl(n,n+l).

o

Proof. Let (a, ~, ß) be as above. The proof that (at ~) is

A2 i5 similar to the argument in Step 1.

To show (ß, ~) is A2 consider an arbitrary 0 > O. Let a be

the point on p such that d(a, y) - X(U), R - d(p, a), w denote

the segement of ß from p to a and e be minimal from a to x.

Choo5e a representative (~, ~) in S , denoting the corresponding
k

points with capita15. Let ~ be unit minimal from P to X and ~ be

minimal from A to ~(R). By Lemma 5 I for all 5, d(P I ;(s)) <

R + X(U) < n·x(U). Therefore, if 5 was chosen sufficiently small

and ~ : [0, 1] -> X is a geodesic starting at a of 1ength L -

0, S3(n) implies that d(p, ~(s)) < n'X(U) and (~, w) 1s A2. On

the other hand, since dia (~(l), a, x} 1s less than 4X(U) , (~, ~)
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is A2. Lemma 4 now implies (w, €) i5 A2 and 82 (n, n+l) implies

(a, €, ß) is Al. If >. denotes the segment of ß from a to y,

(€, >., ~) is also Al, and the proof is eomplete by Lemma 1. 0

Step 3.

S2(n+l,n+l).

Proof.

SI (n,n+l) and S2(n,n+l) imply Sl(n+l,n+l) and

The first implieation is a straightforward

applieation of Lemma 1 and the proof of the seeond is analogous

to that of Step 1. o

Step 4. S3(n) , Sl(n+l,n+l) and S2(n+l,n+l) imply: Jf 1 i5 a

geodesic in B(p, (n+l)x(B)), then for any t and minimal a from p

to q - 1(t) there exist5 an € > 0 such that if ß 1s minimal from

P to ~(5) with ls - tl < €, then (a, 1 , ß) i5 Al, where 1 15 ~
s s

re5tricted to the interval between 5 and t.

Proof. We ean assume a is unit of length L > 4X(U). Let x

be the point on a such that d(x, q) - X(U) and denote by v the

segment of a from p to x. By S3(n) there exists an a > 0 such
1

that for any geodesic It starting at x of length S X(U) with

a(It, v) < 2a, (v, It) is A2.
1

By Lemma 3, for any s > t suffieiently elose to t and

minimal eurve r from x to 1(S), a(r, v) is arbitrari1y close to

1r. Let (v, r) represent (v, r) in Sk' with r parameterized on

[0, 1], and let It be the geodesie such that a(;, ~) - a and
1

- a - a(v,
2

a .
1

9
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L(v) + L(~) < ~/jk, and if ~ 1s the unique minimal curve from P

to ~(1), w intersects ~ at ~(r), r ~ xCV). For any 6 > 0 we can

choose ~ as above of 1ength r such that la(~, v) - a I < 6 and
1

IQ(~, ~) - a I < 6; app1ying Lemma 4 we obtain that v, ~ is A2.
2

If w is the segment of a from x to q, we have that (~, w) and

(w, "() are both A2, and from 82 (n+1, n+1) and Lemma 1 we obtain
a

that (a, "() is A2. Repeating this argument for values s < t we
a

obtain that there exists some e' such that for all s with

Is - tl < e', (a, "() is A2.
a

To complete the proof we need only show that for any s -> t
i

and Cauchy sequence {~1}' with ~ minimal from p to "(s),
1 1

(~1' "() is A2 for all sufficiently large i (where "( denotes the
i 1

restriction of "( to the interval between t and s). Without loss
·1

of generality we can assume s > t.
1

If ~ - lim ~, then JJ is
1

minimal from p to q and for all sufficient1y 1arge i, (JJ, JJ
i

) is

U-thin. The argument is now finished by S1(n+l,n+1). o

Step 5. S3(n), SI (n+l,n+l) snd S2(n+l,n+l) imply

S3(n+l,n+l) (snd the induction is complete).

Proof. Let (a, "'I, ß) be U-tapered with L(a:) , L(ß) <

n·x(V); we assume 'Y is parameterized on [0, 1]. For s > 0, let

"'I denote "( I ,and denote by Al(s) the statement: for every
a [O,aJ

minimal ß from p to ",(s), (a, "(, ß) is Al.
a a a

Step 4 implies

that AI(s) is true for sufficiently small 5, and Step 4 and Lemma

I prove immediate1y that if AI(T) 15 true for some T, then AI(s)
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is true for all s > T sufficiently elose to T. Likewise, if

Al(s) is true for all s < T then A1(T) is true; it follows that

Al(l) holds, whieh is even more than we needed to prove. 0

Step 6. Every proper wedge in B (p, D) such that Cl (1) - p

is A2.

Proof. Let (Cl, ß) be a proper wedge in B(p, D) with Cl(l) -

p. (We assume both eurves are parameterized on [0, 1].)

ChoosingSubdivide ß into minimal eurves ß of length < X(U).
i

minimal eurves from p to the endpoints of eaeh ß we
i

U·tapered triangles; applying Lemma 1 eompletes the proof.

obtain

o

The proof of Theorem A is eomplete by Step 6 in the ease k ~

O. For the ease k > 0, note that a limit argument using S2(n,n)

shows that if a and ß are minimal of length 1r/./k and have one

endpoint in eommon, then they have the other endpoint in eommon.

This proves Corollary B. Furthermore , if (a, -,) is a proper

wedge, d(a(l), ~(s)) 1r/lk at at most a finite number of values

s. Taking p - a(l) and D suffieiently elose to w/lk we ean now

use an argument similar to the proof of Step 4, and Lemma I, to

complete the proof of Theorem A.

Proof of Theorem C. For any eompaet rnetric spaee Y we

denote by N( f, r, Y) the maximum number of disj oint balls of

radius f that ean be put in a ball of radius r in Y. Suppose

dirn X - n. By [GLP] , Proposition 5.2, it suffices to prove that

11



N( f, X) N( Sn)r, S f, r, L' where for simplicity we use L -

min (O, k) instead of k. Let B(x, r) be given, and endow

B(O, r) c T with the metric 6 defined in the proof of
x

Proposition 19, [P2], so that B(O, r) i8 isometric to a ball of

radius r in S2. Let B - B (p , f) be a collection of N disjoint
k i i i

balls in ß(x, r). Let d - d(x, p) S r - f, and v E S be
i i i x

minimal from x to p .
i

Then s ince exp i s di s tance decreasing ,
x

exp (B ,,(v,
x a i

e)) ~ B,
i

are N disjoint

f-balls in B(O, r) - B(z, r) c Sn.
t

o

The above argument is easily modified to obtain a "pointed"

precompactness theorem without an upper bound on the diameter

(cf. [GLP] ) .
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