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Toponogov'’s Theorem for Metric Spaces

by Conrad Plaut

An immediate corollary of the Rauch Comparison Theorem is
that 1f M is a complete Riemannian manifeld having sectional
curvature > k, then the Alexandroff distance/angle comparisons
are valid in a neighborhood of any point. Toponogov's Theorem
states that, in fact, these comparisons are wvalid globally. We
show that Toponogov’s Theorem is actually true in the most
general class of spaces for which the theorem, in its present
form, even makes sense: the clgss of inner metric spaces with
(metric) curvature locally bounded below. In the Riemannian
special case, the present proof is, to the author's knowlege, the
first entirely "metric" proof of Toponogov’s Theorem. In
particular, 1t shows for the first time that the powerful
improvement from local comparisons to global comparisons is not a
differential geometric phenomenon.

Throughout this paper, X will be a metrically complete,
locally compact inner metric space. For basic definitions and
results, see [R], {Pl], or [P2]. We denote by SP the space of
directions at a point p (which in the Riemannian case is simply
the unit sphere in Tp), with the angle metric denoted by a. Note

that metric completeness and local compactness imply

{(y € Sp: c{y) =z § } 1s compact for any positive §, where c 1is



the cut radius map. VWe let Sk denote the 2-dimensional, simply
connected space form of curvature k. By monotonicity we will
mean the well-known fact that the angle between two minimal
curves of fixed length in Sk is a monotone increasing function of
the distance between thelr non-coincident endpoints. We say that
a (geodesic) wedge (71, 12) or triangle (-yl, Y, -73) is proper if

7, and 7, are minimal and L('yz) = rr/,/l_c;

Definition. We say that a triangle (11, T, 73) in X is Al
if there exlsts a representative trilangle (;1, ;2, ;3) in Sk
(i.e., the sides ;1 are minimal with L(;i) - L(yi)), and
a(;i, ;2) < a(yi, 12) for i = 1, 3. We say that a wedge
(-yab, ﬂac) is A2 if there 1s a representative wedge (;AB, EAC) in
S (li.e., whose sides are minimal with 1&;&5) - L(7ﬂ), I(Ztc) -

k

LB, ), a(r,,, B,) =aly ., B,)) and d(B, C) = d(b, c).

If X has curvature (locally) = k, then in a neighborhood of
each point every proper triangle is Al and every proper wedge is

A2 (cf. Lemma 1 and [Pl]). We prove

Theorem A. If X is of curvature (locally) = k, then every

proper triangle in X is Al and every proper wedge in X is A2.

Corollary B. If X is of curvature (locally) = k > 0, then X

is compact, with diameter < n/Jk.

We say X is almost Riemannian ([P2]) of curvature =z k if X



is finite dimensional, geodesically complete, and has curvature
(locally) = k. Using Theorem A we prove the following

precompactness theorem (cf. [GLP]).

Theorem C. For fixed k, n, and D > 0, the class of
n-dimensional almost Riemannian spaces of curvature z k and

diameter < D is precompact with the Gromov-Hausdorff metric.

For the remainder of this paper we assume that X has
curvature (locally) = k and 1is at least 2-dimensional (the one
dimensional case is trivial). The following lemma formulates a
standard technique In proofs of Toponogov’'s theorem 1in the

Riemannian case (see, e.g., [CE] for an argument).

Lemma 1. Let Ty C [0, 1] —> X be a geodesic with L('yab) <
n/Jk, v be minimal, and 0 = t < t. < ... < t = 1. Let v
ac 0 1 i 3

denote T restricted to [tj, tj+1], and suppose a, is minimal

from ¢ to tj, with o = Then if the triangles
ac

(0'3' 7.1’ °3+1) are Al for 0 < j < i, (-ynh, 1“) Is A2.

Lemma 2. For any o, f € S, 6>Oandal, 32>Osuch that
p
a, + a, = a(a, B), there exists y € S such that |a(a, 7v) - al| <
P

5 and |a(a, v) - azl < §.

Proof. Assume first that ¢ = a(a, 8) < m. We need only
congider the case a =a = c/2. Let n, - [0, 1] —> X be minimal

from a(2-i) to ﬁ(2-i) and 7, be minimal from p to qi(1/2); we



denote by a the restriction of « to [0, 2_1], with similar

notation for . Let a = }J_.I,I.lw ala, ni) and b = }Zl.lllm a(f, ni). By

the triangle 1inequality, a + b = c. Let (ai, ;1’ -yi)
and (71, b, ’81) represent (ai, nil (0.1/2)° -yi) and
(71’ n1| (1/2.11" ,Bi) , respectively, so that a, and '61 do not

coincide (all of these curves are assumed parameterized on
[0, 1]). By Lemma 3, (P2], a = lim_ a(;i, ;i) - lm, a(Ei, Ei)/z
and b = lim_ a(Ei, ;1) - ln a(Ei, Ei)/z. On the other hand,
d(a, (1), B, (1)) s &(a(2™), n,(1/2)) + d(BQ2™), 7 (1/2)) and so
ala, B) =< }Z_[I:l:lm a(;i, Ei), and the case ¢ < n follows.

If ¢ = # we can choose a direction distinct from o« and 8 and

apply the above special case. a

Remark. One of the few simplifications of the proof of
Theorem A in the Riemannian case 1s that, since a Riemannian
manifold has positive cut radius and Euclidean tangent space,

Lemma 2 is true for § = 0.

Lemma 3. If T, is minimal then for any L < L(yab) and € >
0 there exists a § > 0 so that if vy 1is minimal with L/2 =
.1}

L(y )sLand d(c, v ) < & thena(y , v ) < €.
ac ab ab ac

Proof. We assume Yoy is unit. Suppose there exist minimal

v, ¢ [0, 1} —> X starting at a such that d(‘yi(l), -yab) —> 0 and
a('yi, 7ub) = e, Choosing a subsequence 1f necessary we can
assume 71(1) - 'rab(t), for some t € [L/2, L]. But then



a subsequence of (711 converges to a minimal curve y from a to

v(t) such that a(y, 1ﬂ) > ¢ > 0, which contradicts the

minimality of Y Q

Lemma 4. Suppose a, 8 : fo, 1] —> X are minimal starting at
p with L(a) < n/fk, L(B) < n/fk, and 0 < a = a(a, B) < =.
Suppose also that a, B : [0, 1] — Sk are minimal and (a, E)
represents (a, fB). Let a, a, > 0 satisfy a, +a = ala, B), ;
be minimal from ;(1) to E(l), and t be such that if v is minimal
from a(0) to ;(t) then a(v, a) = a . If for every § > 0 there is
a geodesic u starting at p with L(p) = L(;) so that
la(p, a) - al| < §, |a(v, a) - &2| < §, and both (a, u) and

(B, n) are A2, then (a, B) is A2.

Proof. Let § > 0 be arbitrary. For sufficiently small §,
there 1is a representative (a, E) of (a, u) such that
d(;(l)), ;(t)) < §{. We assume both ; and u are parameterized on
[0, 1]; by A2 and the triangle inequality d(a(l), (1)) =
d(;(O), ;(t)) + ¢. Since a similar argument applies to
d(B(1l), p(l)), we have

d(a(l), A(1)) = d{a(l), u(1)) + d(8(1), B(1l))
< d(a(l), 7(t)) + a(A(Ll), v()) + 2¢

= d(a(l), B(Ll)) + 2¢. ]



Lemma 5. Given k and 0 < D < n/J/k, there exists a x > 0 so
that if Yp' T 8F€ unit minimal in Sk with 0 < a('yAB, 1“:) < x,
L(?AB) < D, and d(B, C) =< 3x, then for any 0 < t <
min {L(vAB), L(7Ac)} and mlnlmgl curve o from 7AB(t) to 7Ac(t),

max (d(A, a(s)} < t + x.

Proof. Since metric balls are convex for k = 0, we need
only consider k > 0; by scaling the metric we reduce to k = 1,

and clearly now we can assume t > x/2., Let x > 0 be small enough

that cos D - (cos (1.5x))(cos (D+x)) > 0. We fix curves ;AB, Ve

as above, assume a is parameterized on [0, 1] and let 7 =
d(A, a(1/2)) - max {d(A, v(s)}. Letting A = L(a) and applying

the Cosine Law to a(;;n, ;) we obtain

cos 7 - (cos t)(cos A/2) _ cos t - (cos t)(cos X)
sin A/2 sin A

which reduces to cos 7 = cos t / cos A/2.

Applying the sum formula to cos (r-t) we see that 7-t is
maximized when d(A, B) = d{(A, C) = t = D and A = 3x. Thus we
only need to prove cosq(cos D / cos (1.5x)) = cos (D+x), and
this follows from the way x was chosen. o

For 0 < D < ﬂ/JE, fix a closed ball B = E(p, D) ¢ X and a
cover U of E(p, 2D) by regions of curvature > k, and let x(U) < D
be as In Lemma 5 and also less than one eighth of a Lebesque

number of U. Let 7(U) small enough that 1f ca, ; are unit



geodesics in S with a(a, ¥) < r(U), then for all 0 < t =< D,
d(a(t), v(t)) < x(U). If a, 8 : [0, 1] => B are minimal curves
starting at p, we call a triangle (a, vy, B) U-tapered if L(y) =<
x(U). We say (a, 7, B) 1s U-thin if a(a, B) < r(U) and ¥ is
minimal. We do not require that vy lie in B in elther definition,
but x(U) < D implies vy lies in B(p, 2D).

Note that if Y ¢ B has diameter < 4x(U) then there exists a
region U of curvature =z k such that every minimal curve joining
points in Y lies in U.

Consider the following statements:

Sl(n,m). If (a, v, B) is U-thin such that L{a) < n-x(U) and

L(B) < mx(U), then (a, v, B) is Al.

S2(n,m). If (a, v, B) is U-thin such that L{a) < n-x(U) and

L(B) < m-x(U), then (a, B) is A2.

S3(n). If (e, v, B) 1is U-tapered such that L(a), L(B8) <

n-x(U), then (a, v, B) is Al.

Note that by monotonicity Sl(n,m) and S3(n) state
equlvalently that (a, v) and (f, <) are A2. $1(3,3), S§2(3,3),

and S3(3) are true by the x(U) was chosen. We proceed by

induction:



Step 1. Sl(n,n) and S2(n,n) imply S$2(n, n+l).

Proof. Fix a U-thin trilangle (a, v, B) such that n-x(U) =<
L{a) < (n+l)-x{(U) and L(8) < n-x(U). Let q lie on a such that
d(p, q) = L(B), let x = a(l), y = B(1) and n be minimal from y to
q. If v is the segment of a from p to q, we obtain from S2(n,n)
that (8, v) is A2 and from Sl(n,n) that (v, n) 1is A2. S2(n,n)
implies dia (x, y, g} =< 2x(U); if ¢ is the segment of a from q to
x we have that both (n, ) and ({, ¥) are A2, and that (a, fB) is

A2 follows from Lemma 1. O
Step 2. Sl(n,n), S2(n,n+l) and $3(n) imply Sl(n,n+l).

Proof. Let (a, v, B) be as above. The proof that (a, ) is
A2 1s similar to the argument in Step 1.

To show (8, ) is A2 consider an arbitrary § > 0. Let a be
the point on B8 such that d(a, y) = x(U), R = d(p, a), w denote
the segement of 8 from p to a and £ be minimal from a to x.
Choose a representative (5, E) in Sk, denoting the corresponding
points with capitals. Let u be unit minimal from P to X and x be
minimal from A to ;(R). By Lemma 5, for all s, d(P, k(s)) <
R + x(U) < n-x(U). Therefore, if § was chosen sufficiently small
and « : [0, 1] —> X 1is a pgeodesic starting at a of length L =
L(k) such that |la{e, w) - alx, ;)| < é§ and |a(x, &) - alx, E)| <
§, S3(n) implies that d(p, x(s)) < n-x(U) and (x, w) is A2. On

the other hand, since dia {x(1), a, x} is less than 4y(U), (s, &)



is A2. Lemma 4 now implies (w, €) is A2 and S52(n,n+l) implies
(a, €, B) 1s Al. If X denotes the segment of B8 from a to y,

(¢, X, v) is also Al, and the proof is complete by Lemma 1. m)

Step 3. Sl(n,n+l) and S2(n,n+l) imply S1l(n+l,n+l) and

S2(n+l,n+1).

Proof. The first implication 1s a straightforward
application of Lemma 1 and the proof of the second 1Is analogous

to that of Step 1. o

Step 4. S83(n), S1(n+l,n+l) and S2(n+1,n+1) imply: If v is a
geodesic in B(p, (n+l)x(B)), then for any t and minimal a from p
to q = y(t) there exists an ¢ > 0 such that if B is minimal from
p to y(s) with |s - t| < ¢, then (a, 7, B) is Al, where T, is ¥

restricted to the interval between s and t.

Proof. We can assume a is unit of length L > 4x(U). Let x
be the point on a such that d(x, q) = x(U) and denote by v the
segment of a from p to x. By S3(n) there exists an a > 0 such
that for any geodesic x starting at x of length =< x(U) with
alk, v) < 2&1, (v, k) is A2.

By Lemma 3, for any s > t sufficlently close to t and
minimal curve ¢ from x to vy(s), a{({, v) is arbiltrarily close to
r. Let (v, ¢) represent (v, ¢) in Sk, with ? parameterized on
[0, 1], and let x be the geodesic such that a(v, k) = a_ and

1

a(;, ?) - a = alv, k) - a . For s close enough to ¢t,



L{v) + L({) < W/JE, and if w 1s the unique minimal curve from P
to E(l), w intersects x at ;(r), r < x(U). For any 6§ > 0 we can
choose x« as above of length r such that |a(x, v) - al| < § and
|la(e, ¢) - az| < §; applying Lemma 4 we obtain that v, ¢ is AZ2.
If w is the segment of a from x to g, we have that ({, w) and
(w, 7') are both A2, and from S2(n+l,n+l) and Lemma 1 we obtain
that (a, 13) is A2. Repeating this argument for values s < t we
obtain that there exists some ¢’ such that for all s with
|s - t] < ¢, (a, 73) is A2.

To complete the proof we need only show that for any s, >t
and Cauchy sequence {pi}, with B, minimal from p to 7(51),
(pi, 71) is A2 for all sufficiently large 1 (where 1, denotes the
restriction of ¥y to the interval between t and gi). Without loss
of generality we can assume s, > t, If p = lim B then u is
minimal from p to q and for all sufficientiy large 1, (g, pi) is

U-thin. The argument iIs now finished by S1(n+l,n+l). O

Step 5. 83(n), Sl(n+l,n+l) and S2(n+l,n+l1) imply

S3(n+1,n+1) (and the induction ls complete).

Proof. Let (a, v, B) be U-tapered with L(a), L(8) <
n-x(U); we assume y 1s parameterized on [0, 1]. For s > 0, let
7, denote 7|w’”, gnd denote by Al(s) the statement: for every
minimal ﬂu from p to v(s), (a, 7, ﬁr) is AI. Step 4 1mplies
that Al(s) 1s true for sufficilently small s, and Step 4 and Lemma

1 prove immediately that 1f Al(T) is true for some T, then Al(s)

10



is true for all s > T sufficlently close to T. Likewise, if
Al(s) is true for all s < T then Al(T) is true; 1t follows that

Al(l) holds, which is even more than we needed to prove. O

Step 6. Every proper wedge in B(p, D) such that a(l) = p

is A2,

Proof. Let (a, B) be a proper wedge in B(p, D) with a(l) =
P. {(We assume both curves are parameterized on [0, 1].)
Subdivide B8 into minimal curves ﬁi of length < x(U). Choosing
minimal curves from p to the endpoints of each ﬁi we obtain

U-tapered triangles; applying Lemma 1 completes the proof. O

The proof of Theorem A 1s complete by Step 6 in the case k <
0. For the case k > 0, note that a limit argument using S2(n,n)
shows that if a and B are minimal of length n//k and have one
endpoint in common, then they have the other endpoint in common.
This proves Corollary B. Furthermore, 1f (a, ) is a proper
wedge, d{a(l), v(s)) = ﬂ/JE at at most a finite number of wvalues
s. Taking p = a(l) and D sufficiently close to x//k we can now
use an argument similar to the proof of Step 4, and Lemma 1, to

complete the proof of Theorem A.

Proof of Theorem C. For any compact metric space Y we
denote by N(e, r, Y) the maximum number of disjoint balls of
radius ¢ that can be put in a ball of radius r in Y. Suppose

dim X -« n. By [GLP], Proposition 5.2, it suffices to prove that

11



N(e, ¥, X) = N(e, r, Sz), where for simplicity we use L =
min {0, k) instead of k. Let B(x, r) be given, and endow
B(O, r) C Tx with the metric § defined in the proof of
Proposition 19, [P2], so that B(0, r) 1s isometric to a ball of
radius r in s:. Let B, = B (p,, ¢) be a collection of N disjoint
balls in B(x, r). Let di = d(x, pi) <= r - ¢, and v1 € Sx be
minimal from x to P, - Then since exXp_ is distance decreasing,
expx(Bs(vi, €)) ¢ Bi, and the balls B6(V1' €) are N disjoint

e-balls in B(0, r) = B(z, r) C S:. [}

The above argument is easily modified to obtain a "pointed”
precompactness theorem without an upper bound on the diameter

(cf. [GLP]).
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