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Hausaufgaben

1.

Sei f € C%(U), U eine offene Teilmenge im RZ, a € U mit grad f(a) = 0. Es sei
A= fr,x(a)fy,y(a) - fz,y(a)z- Zeigen Sie:

(i) Der Punkt a ist ein lokales Maximum (Minimum) von f genau dann, wenn
A > 0und f;:(a) <0 (>0) gilt.

(i1)  Der Punkt a ist ein Sattelpunkt von f genau dann, wenn A < 0 ist.

Bestimmen Sie die kritischen Punkte der Funktion f(z,y) = cosz +siny und das Ver-
halten von f in den kritischen Punkten. Skizzieren Sie den Verlauf der Niveaukurven
der Funktion auf dem RZ?.

Finden Sie die kritischen Punkte der Funktion f(z,y) = y(3z? — y?) — (z? + ¢*)?,
entscheiden Sie, welche davon Maxima oder Minima sind, und skizzieren Sie den

Verlauf der Niveaukurven der Funktion auf dem ganzen R?.

Sei U eine offene, den Nullpunkt enthaltene Teilmenge des R™, und sei f € C®(U).
Es gebe homogene Polynome p,(z;,...,z,) vom Grad v und ein k, sodafl

B [£(21,..,20) = (o +P1(o1,- 1 20) + -+ pa(a1, .., 2a))] /Il = 0

ist, wobei |z| die euklidische Norm von z = (zy,...,z,) bezeichnet. Zeigen Sie:

F(0)(z)*

Pz, za) = L

fur0<v <k.
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IDEMPOTENTS IN THE GRESS ALGEBRA - -

: L I TR
by Werner Meyer and Wolfram Neutsch.

Abstract o

&

~In an earlier publication we have shown that 1n order»to 1nvestigate the“
structure . of assocliative subalgebras of the Griess algebra (whose automor—
phism group is the Monster sporadic group) it is 1mportant to have - detailed
information on the dlstribution of the idempotent elements

We show that the variety of ldempotents consists of - several algebraic com—
ponents of varlous dimensions, ranging from O to at least 144 On the other
hand, among the connected components of the’ set of 1dempotents are some.
which are invariant under the actlon of.the Monster We feel that these
constructions are of great geometric interest and may lead to a better un—.
derstanding of the properties of the sporadic groups ' ' ‘
Furthermore we consider the Jordan. elements’ in the Griess algebra (lntro—

duced, by Conway).
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Introduction

In this paper we continue the considerdtions;of thé%éiﬁééthre bf thé-Grieé§‘
algebra 6 begun in Meyer and Neutsch {1980]. We shaii}fréély;uée the‘noﬁa;
tion .of this publication. In particular, the alggbrg-ptggu¢t»1ﬁ“slié chosen
in the same.way as 1n COnway [1984] while our séalaf:pfédpét;<.;.>'1s tﬁicé
as large as Conway’s. ' - _1t~i »A '
While the emphasis in the above-mentloned inyesfigat;dn§~is 6n}the algebra-
ic structure, we shall here discuss the “set of the“idé@ébtent'glemenﬁs in§

which. play a prominent réle in both previoué,papefs.'ﬂ"

.-




Definitions and Notation

. : e T :
We shall need some further notation. The.set of. all idempotents.in 6 1s :

0= {.1 €6 ‘ 1% = 1} R ¢ b

while the square roots of the unit elementi(shortlyjcaLle& roéts) are con-,

tained“in

K = { x e 6""x2é 1 } oy N - (2)

x> = xx = XX Lo (4)

1s well-defined since 6 is. commutative. The Jordan conditlon guarantees by

Conway [1984] that x € J associates with its square,"'1’
(x-a)-x* = x-(ax). . (5)

_for all a € §. Another (trivial) observation will be useful The sets 0 and

K are related by a simple affine transformation,

el o z(1+1)ek ’ o ~.(B)

or, vice versa, '}J.f
- o . "': oY .
v l i« R .
xek o (1-2x)el " (7).
P
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'Obviously, all elements in 0 and’ K are Jordan -i_‘ izhdff. _
The conditions for an elemerit of E to. be contained ‘in either of i,4,K are -
-systems of 1986884 real algebraic equations each (with coefficients in @),

This implies that ‘all three sets are affine varieties over. the. field R (or
Q). In the sequel, we shall cons@dergsomerof thg prqpe:tigs_ofy;heselvarief

ties and their embedding in 8.




‘The set of idempotents in 8 . -

Choose an arbiﬁrary central involution z E'ZB.f%he:qenEfeliéegébf ilin the

Monster F is (Griess [1982]) R
s - 51424 . S |
C = Clz) = N(z) =& 2 C91 I:;'> | 7 (8)

' ' C * u‘ )
and the algebra decomposes into.. C—invariant pairwise orthogonal subspaces,:

5 = Uev oW R )

IR
- '._'i’

‘ .»U splits into ‘two irreducible C-invariant subspaces of- dimensions 1 and 298

(the one generated by the unit element 1-and 1its orthogonal complement),
while V and W are irreducible of dimensicns 98280 and ° 38304,,respectively.
For more informatlon concerning the action of C on the§é~spacee;fSee:Geless,'

[1982] or Conway [1984]. o L “ff O
Multiplication of U with U,V,w,reprodhces the other factor,-‘

¥ . L

Uy = U = ) '!’ e (10)
Uv = VU = Vv .;ﬂ' ) - (11)
UW = WU = W - (12).

therefore the rules for products 1nvolv1ng elements of ‘U are particularly
simple. U itself 1s- a subalgebra which can be represented by the .set of all
‘symmetric real (24,24)-matrices. The product then 1s given (up to a const- .
ant factor) by the Jordan product. ‘

'»Unfortunately, Conway normalises the product inU such that the product of -

" two elements u, and ué.deviates from the Jerdaneprpduct;by a fegtor_of 4,

w-u, = 2 (eluz' + uzul).; (13)

5__{,“,..{.. .
. R .

where on the left-hand side the algebra multlplication enAEBthhe other

the matrix product are involved. Since we 'shall havefto consider both kinds



of products at the same time, we ‘shall prefgq-tgﬁattééh'to each element

u € U the matrix

4= 4u . - ae
Then we get simply
G, +45) (15)
such that, in particglar, the sqﬁafé of u is repﬁgé%#ted:by'thelmathix

Square of u )

It 1s now easy to determine the. 1ntersectlons of ﬂ and K with U

ISR

'Theorem 1:

The set I n U consists of all symmetric (24, 24)-matrices u which ‘have only
eigenvalues 0 and 1,. while K n U contains the symmetric (24 24)—matr1ces
with eigenvalues —1 and 1.

All elements in U are Jordan. - . . ¥

oo

Proof:
Trivial.

We obéervé that only discrete values'of the'norm of 1&éﬁﬂotenté u in U.oc—:"
cur, namely the numbers of the form E; where k 1s the ‘trace of u. 1. - the
multiplicity of the eigenvalue 1. The latter can obviously attain all 1nte—»
ger values between 0 and 24. ~ - s fz-" n

This motivates to split 0 and K into subvarieties ﬂ and K

L= {xe“ ‘ '<1,-x>'=5}' PR €1-) I
k 8 . .
K = { x € K " <1,x> = —/= R o (17)
k : ' 4 Lol .

Here, of course, non-integer values of .k aré‘pbssibie..ﬁe také the notation



Theorem 3: ‘ ‘ . BN R

N
e - N
s

-\-,..

in this form because we shall mainly be concerned with the structure of the
sets I n Uand K nU. - I )
Another ‘trivial fact is -

s
1]
i

Theorem 2:

The intersections of-uk and K_with U are smooth:grred&ciﬁle”ﬁffine?VPrief‘

ties of dimension . - AR
dim (1, aU) = dim (K AU = k(28K (18)
Proof':

For . ﬂ n U, this follows immediately from thE‘well'known'stnucture of U,

.since the matrices u are the orthogonal projectors onto the ‘k~dimensional -

linear subspaces of R Therefore, . ﬂ nu ls isomorphic to the GraBmann
manifold of all k-dimensional subspaces of R and consequently has the di-
mension given in the theorem. The result for KE an ts_obtnined,similarly.

or from equation (6) or (7).

Ta T

o :
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" A more 1nterest1ng and important question 1s thtudo;%heféets.pk‘h-U.anq'

K n U look like ? ;
The fact that 0 n U splits 1nto components on which the norm As constant

can be generalised

The -norm is constant on-each connected COmponent-of_ﬂf

a -, . f
1+

Proof': L ‘i";iE:SQY
et 2 and b be two points on the same component I 1 of 0. Then- there ‘is a
curve ' ’ S

y: [0,11 e o0 (9)
with : R



- and

7(0) ="a (20).

2(1) = b . R R €5 I
because each connected component of [ 1é also pafh;cbﬁnéctéd'

Furthermore, we may assume ¥y to be piecewise differentiable Consider.the‘

function Fow, where ' o ' T, 7%{"
y . “ .l'__ xv l
2 2. .
<X ,X >

F(x) = —— , ‘L..;;f;“{;.:.' . ﬁ22)

o <x'_’ s o et ’ T

has been defined in Meyer and Neutsch [1990]. There (Lémma 2) it was shown -
that the gradient of Fat x € 6 is zero if and only 1f the third power of x.

depends 11nearly on X. , " o S

A

This holds for all idempotents. Thus. SR U

d o d -

— Foy(t) = WF(y(t))— (t). = 0 ‘-0 (23)
dt dt W o
v
and F is.constant on €. This shows that T R, -
CFa) = <@ = FB) = <o T ()

The assertlon 1s Immediate.

By Whitney [1857], a real algebralc variety in a finlte-dimensional vector -
space -over R cannot have 1Infinitely many. topologlcél components Togethen

with Theorem 3, this leads to - . ’ f‘ ~‘; ;:y:h?'

Theorem 4: U o .

(a) Each of the sets [, J, and K consists of a_fiﬁitégpymbéf*of_connected.'
components; , : B 'Qf-:; ) " C

(b) The norm attains only finitely many values on the idempotents 1n G.



- .
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if ~_j;f”
We now aim at 1nvestigating the structure of 1 in greater detail
By Meyer and Neutsch [1990], each transposition idempotent forms a 0 dlmen—
sional ‘component on its own. : o '»,*i ’j ‘ ‘
More 1nteresting are the algebraic components of ﬂ which 1ntersect U (or

one of 1its conjugates)

- "_'.I.‘_“

Theorem S:

For all k # 8,16, the set I n U is'an irreducible component of 1.

“r

Proof R - R n :rwh" A
By assertlon (b) of Theorem 4 (or, simpler, by : the boundedness of F), the.
zero element is an’ 1solated 1dempotent and the same holds for 1, since for
each i € 0, 1-1 is also contained in §. '4 11 w:“

This proves the theorem in the speclal cases k e {0 24} we may thus assume
from now on that 8 J k. Furthermore, we-shall prove. the equivalent fact for.f
the set.K of roots instead of 1, since this is slightly,simpler
It suffices to find some x in K nUuU such that the tangent cone TK of K ata
x fulfills : EERCEE

TK-STU-=U = ..o o T (28)
X X . . .
This holds because under this COndltionr since.K hfdhls;efSubmanifold of.
U, the tangent spaces 1n x at K n U-and K coinclde A
Linearising the root conditlon '

¥ =1 ey e T (28)

-xe = 0 o :-j;'. -7" (27).
In other words, we have to show that an x € Kk'nlu4eifsfs{§1th”}f

10
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: { > I Xx-g =0 } s U ;affﬁ'; : ‘:"‘* ‘ t28)

R

The general solution of (27) can be.found explicitly 'To ééhigvg this._we
split £ into its parts in U,V W, respectlvely, like-_J:' : s

.....

€ = u+v W ; : " §’; i ]f . ' (29) -

By the invariance of U,V,W under multiplication withaelements of U see’
‘equations (10),(11), (12), we find that the required condition is tantamoﬁnt
to the three relations

xu = 0 ' I (30)
. L

xv = 0 o (31)
xw =0 .. VA‘-i: ‘5 Lo . (32)

L

Let us begin with the last one. We may write w in the form '

where

{ q, \ 1 =1,...,4096 } CoT o : (34)
is a basils of ‘the 4096-dimensional space occurring 1n=the C—lnvariant de-
'composition .

W= a8e2s . . .. (35)

(Conway [1984]) and the A are vectors_ih'ﬁaif Bylfﬁé férmﬁlaéféiveh 1n'thé.

Just -cited reference, we deduce g
R



4088 4098 . - j ;rl‘ . - : S

= . = . = . ' 1 HA ¢ 0 (4 :

0 = x'w Z X {q1 ® Al} Z . q,..® {4 A1.§x<+,°" hi}_ (36)

1=1 =1 SO :

'if'we'put
: 1 ‘ 1y ooy oo okm120 0

o = = trace(x) = g5 trace(x), ="=—/%==:_ " (37)

8 32

Since fhe qi are linearly independent, we get”for_all i?é-{l;{¢;!4098}r'

ik X+oA =0 T e 7 (38) .

S L
. L
AT~ e
" Y
. . . F T
. N P
OP- . “I‘* \.
:

N N (39)
Bﬁt X iIs a root; hence

A, = A XK= 18X T U (a0)

which is obviously possible for nonzero Al ohlyxif -

(a1) o
This means that k must have one of the excluded values 8 or 16.

Under the assumption 8 } k, equation (32] thus has no nontrivial solutions,

and : o 3“_~'»~_'-
- O

Lot

S

™ SUeV - T (a2)
We next consider relation (31). Let

v o= E: v X - S PR . (43)
RS T TR R I .

be the canonical decomposition withvCOefficientésvrué'ijﬁéyingf:

o .
L

12



v = -V . 7 >, -‘A. R ‘ (44)

for. all minimal vectors r e A S R 1in ‘the - Leeche»lattice. “A. Coriway's .

choice of the normalisation 1s such that e
(r,r) = 32 S - (45)
" After these preparations, the'fcrmulg in quegﬁionsleaqctfo A

0 = xv = E: v xX = E:f 1 [r X tP] v, X L . - (aB). -
. r r ) 4 . . R ’ LT .
e - - . . . I . .- . . ‘

‘réA. - ‘reA. -"‘";ﬁ SR AL
2 . . -2 <o !
Therefore, vrlvanishes except possibly 1f . : ‘iﬁ'fui
.t _ L o
rx r = 0 I o o - (47) .

It is clear that we can find some X € K AU such that (47) 1s -not fulfill—
ed for any of the 196560 vectors r € Az. For a11 X with thls property, we
get

®K sU T - (48)

This concludes the proof of the theorem.

.Remark _

We. have not been able to calculate the tangent space in the Pemaining cases
k = 8 and k = 168. It 1s conceivable that for these k, ‘the dimension of the
irreducible component of K (or 1 ) whlch 1ntersects U‘may be much larger
than .the value predicted by the above formula.(18), T namely k- (24—k) 128
If so, all polints in ﬂ n U would be singular. and the configuration clear—
ly of high interest. i

On the other hand, the connected components of .1 are much larger: - .

13
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Theorem B:

For all k € {0,. .24} the topological component E of H which contains'

[lk nUlis 1nvar1ant under the action of the Monster F

0

Proof':

The ‘maximal F —subgroup C leaves U and ﬂ invariant thus the stabiliser of

Ek is either C or F itself. If the latter -case’ holds 'we are done. If

otherwise, each two F —conjugates of ﬂ n U would be disjoint

This is not true,<however, since the triality elementte which cyclically
. permutes the three "lahguages of Conway’s construction of 8, leayes all'

eléments u €. U invariant whose corresponding (24 24) matrices a are diago—"

nal. Since all ﬂ n U contaln diagonal matrices, namely those with exactly

k 1 s in the diagonal all other entries_being_o,_theupropositionnimme41r“'

ately follows.
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