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INTRODUCTORY LECTURE

Michael Atiyah

Oxford University

§ 1 Review of last Ringherg meeting

At the meeting in Ringberg two years ago I ended by summarizing in a brief table
the main topics relating Geometry and Physics at that time. The table listed the topics

under the relevant dimension as follows:

dimension Theory Fhysical background
4 Donaldson self—dual Yang—Mills
3 Floer Chern—Simons
3 Jones (Knots)
2 Conformal Field Theory
1 Loop Groups, Virasoro
0 Lie Groups

Donaldson and Floer theory are intimately related, but there appeared to be a
major gap between gauge theories in 3 and 4 dimensions on the one hand and theories

-arising from lower dimensional ideas.



.

§ 2 Topological Quantum Field Theories
A major breakthrough since last time has been made by E. Witten who has shown:

(1) Donaldson/Floer theory can be formulated, via a suitable Lagrangian, as a
quantum field theory which is éz/:aé?ma/ in the sense that the Hamiltonian is

Z€10.

(2) The Jones theory can be understood (and generalized) by interpreting it as a
topological QFT in 2+ 1 dimensions, with the Chern—Simons function as
Lagrangian.

This Witten—Jones theory, in its Hamiltonian version, assigns finite—dimensional
vector spaces to Riemann surfaces. Work of N. Hitchin suggests that it may be possible
to understand these spaces (for a non—abelian group G ) in terms of the abelian theory

of its maximal torus and an appropriate generalization of the Weyl group.

§ 3 Dimensional Reduction

For some time R. Ward and I have advocated the view that all 2—dimensional
integrable systems may be obtained by dimensional reduction from the self-dual Yang—
Mills equations in dimension 4. Recently L. Mason and G. Sparling have explicitly
shown that both the KdV and the Non—Linear Schrodinger equations arise in this way.
Moreover the twistor theory in 4 dimensions explains the main features of the

2—dimensional reductions.
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This suggests that, in our table, we should start at the top and work down —~ even

at the quantum level.

§ 4 Witten’s Fuler characteristic
A few years ago, in connection with strings on orbifolds Witten introduced a

numerical invariant for a finite group G acting on a compact manifold X . This

invariant, denoted say by WG(X) , i8 defined by

818
where the summation is over pairs 8 & of mmaéry elements of G, X 1%2

denotes the common fixed point set of g, 8y and x is the usual Euler characteristic.
Recently G.B. Segal and I discovered that
Wg(x) =X K(;(X)
when KG(X) is the equivariant K—-theory of X, and
x=rkK0—rkK1.

This formula was suggested by the idea that the Sl—equivariant cohomology of the free
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loop space of X (as defined by Witten), which is a mod 2 graded theory, should be
viewed as the K—theory of X.

§ 5 Topics for the conference

I hope that at least some of the topics I have mentioned will be treated in detailed
lectures during the conference. There are of course other important topics to be covered

and I have only concentrated on the most geometrical aspects.
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QUANTUM FIELD THEORY IN TWO AND THREE DIMENSIONS
Jiirg Frohlich

Theoretical Physics
ETH-Zirich

The purpose of this lecture is to discuss some feaj;ures of two—dimensional
conformal field theory and three—dimensional gauge theory, describe the mathematical
connections between these theories and show how Yang—Baxter representations of the
braid groups and representations of quantum groups appear in their study. Underlying
this presentation is work of Witten; Tsuchiya and Kanie; Kohno; Moore and Seiberg;
Fredenhagen, Rehren and Schroer; Woronowicz, Faddeev et al., Jimbo, Drinfel’d,
Reshetikhin; Jones, Ocneanu and Wenzl; Myrheim, Wilczek and Zee, Wy, ... ; Laughlin,
Girvin, Wiegmann, ... ; and work which has been carried out in collaboration with
G. Felder, G. Keller, Chr. King and P.—A. Marchetti [1-3, 6—8]. Work by Witten [5]
and by Felder [4] is of particular importance.

It has been known for a number of years that there are connections between gauge
theories in d + 1 dimensions and scalar field theories in d dimensions. This has been
exploited at a classical and quantized level. A particularly beautiful connection between
three—dimensional Chern~Simons gauge theory and two—dimensional conformal field
theory (W—Z—W models) has recently been discovered by Witten [5]. Both,
Chern—Simons theory and the equivalent W-Z—W  models, have an intimate
connection with the representation theory of (Kac—Moody) current algebras and of

quantum groups, and with complex analysis. The representation theories of current
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algebra and of quantum groups, based on classical Lie groups, are essentially <zandioz/
in structure. The relation between the two theories are uncovered by studying associated
Yang—Baxter representations of braid groups. These representations can be used to

construct invariants for knots and links imbedded in a general class of three-manifolds

(5,6]. The invariants are generalizations of the fanss fadynamdal .

The appearance of quantum groups and of braid group representations in two —
and three — dimensional quantum field theory is quite fundamental: The structure of
superselection sectors in such theories is coded into certain Yang—Baxter representations
of braid groups which, in examples, turn out to generate the commutant of a tensor
product representation of some quantum group. The quantum group plays the role of a
global internal symmetry of the quantum field theory; the representations of the braid
groups describe the statistics of superselection sectors [1,7,8]. These are " éeatiznds" of
the qua.ﬁtum field theory in the sense that they are locally d@actfanand of coupling
constants and masses: Quantum groups as symmetries and representations of braid
groups as a description of the statistics of superselection sectors appear in a general class
of two—dimensional quantum field theories, mas just of conformal field theories, and of
three—dimensional gauge theories, mad just of topological theories.

These ideas might have important applications to real /M;mcd Excitations
carrying fractional charge and fractional spin and exhibiting braid group statistics could
play an important role in theories of the fractional quantum Hall effect and in certain

models of high—temperature superconductivity, [7,8].

Briefly, the four parts of the lecture can be summarized in the following way:



1)

3)

4)

Math i t8.

3—dim. Chern—Simons theory
R
2—dim W-Z—W. models

Representation theory of
chiral algebras

complex analysis: vector
bundles over Riemann sur—
faces; flat connections

on such bundles

Physics.

Reps. of braid groups and of quantum
+~+ ¢ groups; link polynomials ;new

invariants for framed three—manifolds.

[ Representation

theory of quantum

groups.

reps. of
braid groups

General 3-dim. gauge theories with Chern~Simons term in the action (parity

breaking!) —— describe charged particles with arbitrary real spin and braid group

statistics (intermediate between Fermi— and Bose statistics).

I

General theory of superselection sectors, as developed by Doplicher, Haag and
Roberts, Buchholz and Fredenhagen, and others. (See [1,7,8] and refs. quoted

there.)

Applications to condensed matter physics: Fractional quantum Hall effect; models
of high—T , superconductivity. #as Swaddem : Derivation of ggfclime gauge theory
from mdorascasicc quantum—mechanical theory.
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SUPERSYMMETRIC QUANTUM FIELD THEORY, DISCRETE GROUPS,
AND ENTIRE CYCLIC COHOMOLOGY

Alain Connes

THES

Bures—sur—Yvette

We describe an analogy between the theory of discrete groups of exponential
growth and quantum field theory. Both theories involve analysis in infinite dimension
and require the same tool provided i)y entire cyclic cohomology. It allows to give a coho-
mological meaning to Wightman funtionals of boson fields in the presence of super-

symmetry, and to develop successfully higher index theory for non simply connected
manifolds.

We explain how the machine works in the case of discrete groups.

1)  The finite dimensional "toy" case.

If we start with a non commutative algebra £ playing the role of functions on a
space X, the most obvious commutative notions to extend to this case are the notion of
vector bundle on X yielding the group K, (.¢) and of K-homology cycle on X
yielding the notion of Fredholm module (J¥,F,7) on ¢ . Then the replacement of the

formula
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J' £04f A . A df®
X

by its analogue:
*) Tr(f (R 1] ... [F£7])

*
yields the theory of cyclic cohomology HC (.6) which is a direct generalization of the
de Rham theory. Among its distinctive features let us retain only the following:

Lemma 1

a) If .6 s an algebra, 7 a 2q cyclic cocycdle on ¢ then the formula
P— 7 (P,..,P) gives a pairing with K theory (i.e. is unchanged by a
homotopy of P’s)

b) the equality (*) defines a cyclic cocycle if n =2q 2> degree of summability of
(#,F,7) and the pairing with K, is the index pairing.

As applications of this lemma to the non commutative case let us quote the inte-
grality of the trace on algebra of free groups, and the integrality of the conductivity in
the Quantum Hall effect. But the real power of cyclic cohomology beyond this inte-
grality result is the possibility of constructing WW on £ without the pre-
sence of a Fredholm module, thus:

Lemma 2 Let .6 = (T be the algebra of a discrete group, and c(g,, ... ,8,) be a group
cocycle, then the following defines a cyclic cocycle on £ :
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'rc(go, ,gn) =0 if ']_rgi $1, rc(go, ,gn) = c(gl, ,gn) if '[_rgi =1.

It turns out moreover that the K theory of CI'®R where R is the ring of o
matrices with rapid decay is extremely rich and contains elements associated with Jnzaz
‘ﬂaug;a/»ﬂwagééﬁ&uﬂ x, =T . Thus in particular to any elliptic operator D on such
a manifold M, there corresponds an element Ind(D) e KO(RI‘) ; and one has the

following generalization of the Atiyah Singer index theorem.
Theorem 3 (with Henri Moscovici) With the above notations one has:

Ind(D),7 =—L D M
< Indp(D),7,> 2 (20) ﬂ()‘P(C)[]>

This theorem and some hard analysis on discrete hyperbolic groups allows to prove the

Novikov conjecture for these groups.
2) The infinite dimensional case

The theory of cyclic cohomology and its computation is based on a bicomplex
(b,B) which is quite simple to define by
b(p(a.o,.. n+1 =X (- 1)-’t,a(a. ,a.ja.j+1, n+1) and By = Cyclic antisymme-
trization of (,a(l,a T 1) - (- l)ngo(ao, .. n—-l ,1) . In fact it is slightly better to
normalize by %-B =d, and (n+1)b=d; . It is a quite important lemma of the

theory that any cocycle can be assembled at one point



and that it then gives cyclic cohomology — this follows technically from the vanishing of
the 1st spectral sequence — this gives for the pairing with K theory the formula

Z (-1)"nl gy (e, ... ,0)

and makes it obvious that one should try to understand the @ dim cycles with some

growth condition.

For this one needs good examples of K-—cycles which are not finitely summable
but have yet some summability property, and also to extend the formula (*) above. My

examples come from discrete groups and lead to the following notion:

Definition A #—summable (unbounded Fredholm module) over § is given by Hilbert
space representation ¥ of .6 with Z/2—grading 7 and an unbounded operator

2
D=D , yD =—D7 such that Tr(e PP ) <oV 8 and [D,a] bounded Vae .4.

For 6 = (I' where ' is a discrete subgroup of a Lie group; the crucial example
is obtained as the Dirac dual Dirac operator in the symmetric space G/K which was
considered by Hérmander, MiS&enko, Kasparov and G. Luke for instance, and can be
reformulated 3 la Witten as d_+ (d 1_)f" = D . In general the construction of the entire

cocycle character of such a module relies on the following ansatz, analogue of (*):
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(**) g n(xo, ,x2n) = An"Tr"(FxO [F,xl] [F,xzn])

where "Tr" is a suitable trace on the formal algebra obtained by adjoining F to £,

and An are constants which are uniquely determined by the cocycle property and turn

out to be given by the following gmotading funcliam:

n
BLEP-%mkv~A)=”h"[*—~EL——]-

ﬁ—ﬁﬂz

The larger algebra turns out to be the convolution algebra of distributions T on
[0,4 o [ with operator values in ¥ and such that T(s) is holomorphic in 8 for
s > 0 and belongs to the Schatten class .?1/ % then F isin Laplace transform given
by

¢

H 1/2"
F=D+ v A .

o7+

1/2

7/
Here A"/“ i3 a daaa/ square root of the derivative 8y of the Dirac mass at the origin.

(It plays a role in supersymmetry). Fortunately Jaffe, Lesniewsky and Osterwalder

wrote down a more direct and equivalent formula as:

3

2 2
Q —59Q
W reae ™ 04y |

0 —8
J TTds; Tr, [a. e

slsszg...gsngl

The theory develops then as in the finite toy case, but again it takes all its power

from a procedure which allows to manufacture entire cocycles on group rings out of very
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little data which combines Quillen’s superconnection formalism and tke formula of
Jaffe, Lesniewsky and Osterwalder and the geometry of @ dimensional manifolds of ne-

gative curvature.
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CONSTRUCTIVE FIELD THEORY AND
ENTIRE CYCLIC COHOMOLOGY *

Arthur Jaffe

Harvard University
Cambridge, MA 02138, USA

l. Introduction

Alain Connes described in his report how entire cyclic cohomology provides a tool
to study the analysis and the geometry of infinite dimensional manifolds. I propose a
related method, constructive quantum field theory. These methods provide a powerful
analytic tool, developed over the past 25 years, for the study of analysis over spaces of
infinite dimension. In particular, they can be used in the study of analysis on certain
loop spaces, and they lead to the mathematical definition of function space integrals in
a number of quantum field settings, see for example [GJ, JL2]. In fact, the existence of
functional integrals relies on two techniques of constructive quantum field theory: phase
cell analysis and cluster expansions. The former involves analyzing degrees of freedom
localized simultaneously in space-time and in Fourier variables. The latter combines these

ideas with decoupling of different phase cell regions in performing function space integrals.

One example is the generalization of Garding’s inequality to the infinite dimensional
situation. This coercive estimate establishes the exponential growth of the eigenvalues for

the Hamiltonian (the Laplace operator on loop space) in the Wess-Zumino example. This

) Supported in part by the National Science Foundation under Grant DMS/PHY 8816214.
Presented at Schloss Ringberg, April 25, 1989,
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model describes the coupling of a boson field ¢ coupled to a fermion . That Hamiltonian

18

H=Hy+ /S V() — /S GV

It satisfies the estimate, for € sufficiently small [JL1],
N, <(H+1I), forr<1.

Since N, is a modified form of the free Hamiltonian, with the one particle operator u”
replacing 4 = (82 + 1)!/2, the eigenvalues of H grow at least as fast as (k2 +1)}/%, k € Z.
Hence

Tr e < o0, for all 3 > 0. (1)

Entire cyclic cohomology allows us to compute invariants and to give a cohomological
interpretation to Wightman functionals. Here I describe some work in this direction done
in collaboration with A. Lesniewski, K. Osterwalder, and several students. Entire cyclic
cohomology makes contact with classical statistical mechanics. This version of the theory
enables one to drop the assumption of #-summability in order to construct a Chern char-
acter or to define the index of an operator. Some main references for this talk are [C2,
JLO1, K, JLO2, JLWis, JL3].

Il. Quantum Algebra

A quantum algebra is a Z;-graded algebra 4, with a continuous one-parameter au-
tomorphism group «; which commutes with the grading and with taking adjoints. For

example, if «, arises from a Hamiltonian flow, such as one generated by H above, then
o = e g™ H t € R. (2)
The infinitesimal generator D = —id/dta;|i=¢ of a; is a derivation, namely
D(ab) = (Da)b + aDb.
The fundamental assumption is that D = d?, where d is a super-derivation,
d(ab) = (da)b + a"db,

where v:a — a” denotes the action of the grading. Continuity of a; ensures the existence

of a dense, invariant subalgebra A, of A on which a, extends to an entire function of t.
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11}, Super-KMS Functionals

The theory of KMS states is a central feature of the abstract treatment of statistical
mechanics on the one hand, and of Tomita’s theory of modular automorphisms on the
other. Here we study a super-version of this condition in which the KMS functional is not
necessarily positive (a property of a state).

Connes spoke about systems for which
Tr (e™#) < . (3)
This is the §-summability condition. In that case, one can give a standard example of a
super-KMS functional as a supertrace,
w(a) = Str (ae~#) = Tr (yae™ ). (4)

In the statistical mechanics approach we describe, we can also study cases where (3) is
not valid, such as when H may have continuous spectrum, or when H may not even exist.
However, we can think of our functionals as arising as limits of funtionals of the form (4).

We define a super-KMS functional as a continuous linear functional w on A, such that
for all elements of A,,

w(da) = 0, super — translation invariance (5)
and
w(ab) = w(b7a;(a)), super — KMS property. (6)

The super-property is reflected in the action of the grading, and for this reason w is not

in general positive.

Proposition 1. Ifw i3 a super-KMS functional on A, then the function

fltr, ..o tn) = w(ag, ay, (ar),...,ar,(an)) (7)

extends to an analytic function in the strip 0 < Imt; < --- < Imt, < 1. Furthermore, for
t in the strip,

i=n

|£1 < const. [ llajl - ®)

=0

Proof. One starts on the subalgebra A,. Using the SKMS condition and a Pfragmén-
Lindelof type of theorem, one can establish (8) inductively in n. The passage to analyaticity
on the full algebra A follows by the Weierstrass approximation theorem.
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IV. Entire Cyclic Cohomology

The double complex of entire cyclic cohomology is determined by the coboundary
operators b and B introduced by Connes. These operators define the creation-annihilation

complex

b:C*A) — C"H(A) B:C™1(A) = C*(A) (9)

and satisfy
5% =0, B? =0, Bb+bB =0 . (10)
The coboundary operator 0 = b+ B is used to define entire cyclic cohomology. Explicitly

n—1

(Bfu)(@oy-+-yGn_1) = Z (-1)(“_1)j (f,, (l,a:_j, ey G 1480y Bpejt)

=0

+("’1)n_1fn(a:_ja---aaz_pa()a---:an—j—hl)) ' (11)

and
(bf,,)(ao, e ,an+1) = Z (—l)jf,.(ag, e ,Gja.j.{.l, ey a,.,_H)
=0
+ (=1)**! fa(a) 100,01, .., a5) . (12)
Here

_ al', if f,eCR(A)
“7‘{a, if f,,eCE(A) . (13)

By a computation we then establish
Theorem 2. The functionals

(G0, ) = §" ™o82 f w(ag, iy (da]), .. e, (dal"))  (14)
0<t1 <+ <ta <1 :

are a cocycle for the entire cyclic cohomology.

0 Q-
In order to identify 7, let us consider an example: Suppose that Q = (
Q+ O

is an odd, self-adjoint, Fredholm operator. Assume further that the super-derivation d is
given by the graded commutator da = Qa — a”Q = ég(a). In this case 7(I) = index(Q.).
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This example suggests that we define
index(d+) = (1),

where d.. is the part of d which maps the even subspace of A into the odd subspace.

V. The Chern Character as an Index

If e is an even idempotent in the algebra A, then Connes’ pairing of r with K extends
to this framework. In particular let w.( - ) = w(e - ¢) and let d* = e(da)e. Then we have
(JL3],

Theorem 3. The pairing

(r,e) = Z(—-l)“ (2:;)l Tan(e ey, .. €)
n=0

is equal to the index(dS.).

V1. Stability
Let §; be a bounded derivation, defined by an odd element of A4, and let
dg=d+4,.

Based on perturbation theory, we can establish the stability of the index under such
bounded deformations. This justifies our calling (v, e} a geometric invariant. First we
establish the existence of a continuous, even, automorphism af generated by (d,)* and a

functional w? which is sSKMS with respect to af and (d,)?.

Theorem 4. The cocycle 79 defined by w? 13 cohomologous to r.
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Conclusions
Let me mention some results related to open problems:

The general case of constructing infinite volume limits of the models described here
should yield an interesting example of functionals which are super-KMS, but are not
f-summable.

. In the case of Wess-Zumino models on a cylinder, it is possible to compute the index,

and it is non-trivial. See [JLWel, JL2]. In the case of the infinite volume limits, one
would like to analyze the index and the question of whether the Dirac operator @
exists. In case super-symmetry is broken, one expects that @ does not exist. In the
case of phase transitions (as one expects when the finite volume theory has a non-zero
index), it is not clear whether an operator @ exists for which H = Q2.

In the complex case, the Wess-Zumino models require no renormalization; however the
real case does require “Wick ordering” type of renormalization of the super-potential
V. Theorem 5. These renormalizations are purely cohomological, in the sense that
the cocycle TV for a given superpotential V is independent of the counterterms. It is
possible that the cohomological interpretation of the Wightman functions given by 7
could provide a topological explaination for asymptotic freedom; asymptotically free
models would have unchanged cohomology under renormalization, i.e. they would

"be cohomologically stable. On the other hand, non-asymptotically free models would

have renormalization of the leading interaction term and hence would be cohomologi-
cally unstable. One should investigate carefully the class of unbounded perturbations
which are cohomologically stable.

The analysis of multi-component Wess-Zumino models along the lines already carried
out for one-component models is being done by Ernst [E]. One would like to use these
models as starting points for construction of non-linear o-models as the family of

potentials AV ranges over A — oo.

. One can investigate an equivariant form of entire cyclic cohomology {F|.

Can one construct a similar cocycle for a “topological” setup where Q* = 07

It is interesting to investigate whether the global automorphism group a, can be

replaced by a local object, perhaps ay, ,, suitable for functional on a Riemann surface.
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SOLVABLE CLASSICAL FIELD THEORIES
R.S. Ward

Department of Mathematics
University of Durham

Simple Prototype. On the space LM of loops in a manifold M , there is a natural
set of differential equations for real-valued functions ¢ : LM -—— R . These may be

described by exhibiting their solutions. To construct a solution, take a function
f:Mxst— ¢

and put

2r

(1) ox) = %J f(x(8),6)d8, xeLM.
0

To understand better what the equations are that this field ¢ satisfies, let us take

M =R, and decompose x(f) into its Fourier components:
x(8) = Exkeikg .
/4

In terms of the coordinates X the equations in question are
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The integral formula (1) gives the general solution of these equations (2).

An even simpler version is obtained by considering only polynomial loops. For
example, we may set all the x, to be zero, apart from X0 X & x, . Then the only

equation which remains is
2
(82‘90— 01)¢= 0,

which is the wave equation in 2 + 1 dimensions. The integral formula (1) for solutions

of this essentially goes back to Whittaker, at the turn of the century.

The polynomial case has a neat interpretation in terms of complex geometry.

Think of e/ as the equator |A| =1 on the Riemann sphere P, ; then polynomials

n

X = z xk,\k correspond to holomorphic sections of the holomorphic line bundle Lt ,
k=0

of Chern number n, over P, . The function { should really be thought of as an

element of the cohomology group Hl(Ln,(J(— 2)) .

Whether one uses this geometric description, or discards it by adopting a more
analytic approach, is partly a matter of taste. Historically, the geometric picture came
first, and has proved particularly useful.

The Nonlinear Version. In order to get something less trivial, one needs to
"nonlinearize" the integral formula (1). This is achieved by using the Birkhoff
factorization of loops in GL(N,C} . The function f:R x sl—¢ is replaced by a
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matrix-valued function F:Rx S — GL(N,C) . If x(§) is a loop in R , then
F(x(6),0) is a loop in GL(N,{) . For generic F and x , this can be factorized as
HE !, where the matrices H and H are functions of (x,,A) , and are holomorphic
and nonsingular for |A| <1 and |A| 21 respectively. Then the matrix—valued
function

- -1
I(x) = H(x; ,0) H (x},0)
i8 a solution of the equations
-1 -1 .
These are a set of nonlinear equations that generalizes (2).

marks.
(a) If N =1, then (3) reduces to (2), the correspondence being F = exp(f) ,
J = exp(p) .

(b) In the polynomial case, the matrix F determines a holomorphic vector
bundle over the complex manifold L® , and everything is encoded into this vector

bundle.

(¢)  The "linear system" associated with (3) (solvable equations always have

linear systems associated with them) is Dkw = 0, where

: -1
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The vanishing of the commutators [D j'Dk] is equivalent to the equations (3).

(d) These equations encompass a large variety of well-known solvable classical
systems. The simplest examples come from the polynomial case x = Xy + XA+ x2A2 ,
when (3) becomes

(4) 0o,y - 0,38, 3) = 0.

Imposing a special dependence on x; , for example, reduces (4) to various
two—dimensional integrable systems. These include the Sine~Gordon equation and the
other Toda field equations, and nonlinear sigma and chiral models.

() One may generalize by allowing F to depend on more variables. For
example, if F: R? x ' — GL(N,{) , one can play the same game with
F(x(8),y(6),8) . One equation dealt with in this way is the self-dual Yang—Mills
equation in four dimensions, which historically was the first of these nonlinear equations

to be handled by the sort of procedure described here.

The NLS and KdV_ hierachies. Recently L. Mason and G. Sparling observed
that these hierarchies of integrable soliton equations emerge naturally from the scheme
described above. Briefly, one takes N = 2, restricts to loops with x, =0 for k<0,
and imposes a special dependence on Xg - Namely, J—l 00.1 is agsumed to be a constant
matrix. Two nontrivial possibilities arise, depending on whether the rank of J—1 80.1 is
2 or 1. In the former case, one gets the NLS hierarchy, and in the latter case, the KdV

hierarchy.



- 27 —

()  Certain three—dimensional systems, such as the KP equation, appear not
to fit into this scheme. Is there some way in which they can be incorporated? What
appears to be involved ig that the spectral parameter A gets replaced by an operator

3/ 9z , where z is an "auxiliary" coordinate.

(b) Do these methods have any relevance to integrable quantum systems or

integrable lattice (statistical) models?
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ABELIANIZATION OF BUNDLES OVER RIEMANN SURFACES
Nigel J. Hitchin

Mathematical Institute

University of Oxford

L genus g

The moduli space of stable G—bundles over a Riemann surface ¥ plays an im-
portant role in aspects of conformal field theory, as does the moduli space of paraboli-

cally stable bundles — bundles with a reduction to a Borel subgroup at n marked points

Xqy e Xp -

Here we shall describe a systematic way of relating bundles with non-abelian

structure group to line bundles and consider some possible applications of the idea.

The starting point is the cotangent space at a point m of the moduli space. For
stable bundles this is

* =m(zgex
Tm_ (!9 )
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where g is the (complex) bundle of Lie algebras associated to the principal bundle re-

presented by m .

I pg,...py (£ =rank G) are a basis for the invariant polynomials on the Lie
algebra, with degrees dl’ ’dﬂ. respectively, then evaluating them on a cotangent

vector gives a map

p:TM— ® H(ZK )=W.
i=1

By Riemann—Roch and a well-known identity,

L
dimW= ¥ (2d,-1)(g—1) =dim G(g-1).

1=

In the case of marked points, with divisor D = X+t x)
*
T,={ae HO(E;g ® K(D))[a(x;) e b, and is nilpotent}

where bi is the Borel subalgebra at X; € Y . Applying an invariant polynomial p;, we
d. d.
get a section of K 'D ' which vanishes at X5 e X by the nilpotency and so a map
to W= & H (LK D" ). Here,
i=1
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dim W = %(2d; - 1)(g —1) + n £(d; - 1)
=dimG(g—1)+n£djig-—e‘)-
= dim G(g ~ 1) + n dim(G/B) .
In both cases we have dim W =dim M .

By a general argument (see [1]), these functions Poisson commute and are functionally
independent, making

x
p:TM—W
a completely integrable Hamiltonian system.

*
The symplectic manifold can actually be embedded as an openset T M C 4 in a big-
ger sympletic manifold (the moduli space of stable "Higgs bundles") such that

p: — W

i3 Aeasor. The generic fibre is then an abelian variety, in general a "Prym—Tyurin

variety".

Example The moduli space of parabolically semi—stable SL(2,) bundles on pl with
*
4 marked points is pl .Themap p: T Pl — € is of the form

p(19) = 1°a() with q(¢) a quartic polynomial.
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If ¢c#0,then nzq(go) = ¢ is an elliptic curve minus its four branch points over P 1

*
If ¢c=0, then q2q(qp) = 0 consists of the zero section of T P1 with 4 fibres:

A is formed by adding four lines to complete the elliptic curves and the fibres and give
a familiar elliptic surface.

The general case is similar — the singular fibre p_l(O) consists of M and other

components.

The integrable system of the above example is a case of Euler’s spinning top

equation.

In W lies the discriminant locus D — the divisor of singular values of p . We
have then associated to each (Z,G) a family of abelian varieties parametrized by

W\D , and therefore have a representation
7, (W\D) — Sp(2 dim G(g ~1),Z) .

The invariant vectors of wI(W\D) _acting through representations of this symplectic
group give vector spaces associated to the Riemann surface. Moreover, by letting the
conformal structure of the Riemann surface change we obtain a bigger family of abelian

varieties.
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(W\D),

moduli space T
of curves

The covariant constant sections of a flat connection along (W\D)t have an induced flat

connection along the moduli space of curves.

Conjecture 1: The representation of Sp(2n,Z) on theta—functions defines this way a

(projectively) flat connection on holomorphic sections of the determinant bundles of M .

Conjecture 2: The cohomology of the abelian variety which is invariant under the action

of rl(W\D) provides a suitable setting for the Casson invariant of 3—manifolds.

Apart from these questions the Poisson—commuting functions corresponding to the
Killing form p, provide a means of obtaining the flat connection on the bundle of holo-
morphic sections of the determinant bundle, considered as a bundle over the moduli
space of curves. Since we have the quadratic function

T
p,: T M— HY(EK?)

then dually, we have a map

*) HY(ZK ™) — B (MS°T)
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and hence (3g—3) symmetric tensors on M . These can be used to define local heat

equations in the following way.

- moduli space of curves

Choose coordinates on U, V and a trivialization of the determinant line bundle L,

using T ’t3g—3 as part of the coordinate system. Then

- — represents a class in Hl(Mt,.@l(L))
u mi v

where 9 1(L) is the sheaf of linear differential operators on L . The symbol map
k7] 1(L) —— T gives the Kodaira—Spencer class in HI(M;T) .

Take a section G=5GJ e 9 HO(M;S2T) and on U and V defire

Bzi 8zj

second order differential operators on L with G as symbol using the given coordinates:

‘92

8zib‘zj

—y gl
D,=%G

Then D —D, defines a class in H'(M,, #'(L)) which via the map (*) is a multiple
of the deformation class. Thus (with some global assumptions) we have well—defined

operators
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é
. ~| -=D._ on UNV.
iu iv

8ti

v

Moreover,

8D. &D.
_3_Di,_3_ | =-—+—+ ;D]
at,; 8tj J ot 0tj

is a globally defined dccama”aeatr operator since the symbols of D;, D § Poisson—com-
mute. However, under the appropriate assumptions all such operators are constant

scalars. Thus, defining covariant differentiation on sections of L by the heat equation

& =D. 8
o, in
ilu
we have a (projectively) flat connection.
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SUPERSELECTION SECTORS WITH BRAID GROUP STATISTICS
E
Klaus Fredenhagen

Institut fiir Theorie der Elementarteilchen
FU Berlin

Braid group representations and link invariants which have been observed in 2—di-
mensional conformal field theory and in 3—dimensional topological field theory actually
occur as invariants in generic quantum field theory in low dimensional space time. This
follows by a generalization of the theory of superselection sectors developed by Borchers
[2], Doplicher, Haag and Roberts [3]. The basic result of this theory is the intrinsic
notion of statistiés. To each sector (i.e. charge quantum number) there corresponds an
up to equivalence unique unitary representation of the symmetric group. If one applies
tﬁjs theory to 2—dimensional field theory then one finds instead a unitary representation

of the braid group.

The Doplicher—Haag—Roberts theory treats sectors whick differ only locally from
the vacuum. This includes all sectors which one can reach by applying fields to the
vacuum which are relatively local to the observables; and recently Buchholz, Mack and
Todorov [4] have shown that in conformal field theory all conformally covariant sectors
with positive energy are of this type. On the other hand sectors of a more general type

are known (or expected) to occur in gauge theories. There is a theorem due to Buchholz

* (based on joint work with K.H. Rehren and B. Schroer [1])
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and myself [5] which states that in massive theories sectors containing one particle
states differ from the vacuum only in a region which extends to spacelike infinity along
some path. The DHR theory has been generalized to such sectors and yields a represen-
tation of the symmetric group in d > 4 dimensions. In d =3 dimensions one finds a

representation of the braid group.

The analysis of superselection sectors can best be carried out in the algebraic
framework of quantum field theory. There the basic structure is the algebra of obser-
vables ¢ together with its subalgebras €(¢) of observables measurable in the space-

time region ¢ . The net ¢ — £(0) satisfies locality,

[4(0),A(0)] =0 for 0, <0,

/
0, denoting the spacelike complement of 4 ,and translation covariance
a (A£(0))= A(0+x), a e Aut(A4).

The aim is now, as formulated first by Borchers, to analyse the positive energy represen-
tations of € . In the Doplicher—Haag—Roberts analysis one considers a more special
class of representations « namely those which are equivalent to some fixed vacuum re-
presentation 7, on the algebra of the spacelike complement of some bounded region .‘
0 . Using the corresponding unitary intertwiner one may realize n in the same Hilbert

space as 7, , and

mA) = my(A) for Ae £(07).
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One now can show that x,(A) — x(A) , Ae £ , defines an endomorphism p of

wo( §) . The composition of endomorphisms yields new representations
M XM =PPe%y » T =Py

Thus, similar to quantum groups, the representations can be composed. In the following

we shall omit the symbol =, and identify ¢ will 11'0(..«{ ).

Now let us look at the implications of locality. The localization region ¢ of p
may be shifted to ¢ +xC ¢’

Px = 0P _y

and Py i8 equivalent to p
p (AU =T _p(A).
Now PPy = Pyb because of locality, and
P (M) (U)TIU, = 0 (U)o, (AU, = p (U) " 0 AAYU, = p (U0 0°(A)
Hence

_ -1
Ep—p(Ux) U,

commutes with p2( A).€ ) is called the statistics operator. ¢ » is locally constant in x .
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Hence it is constant in d > 3 spacetime dimensions and may have two values in 2 space-

time dimensions.

£ ) satisfies the equation

epp(ap)ep=p(ep)epp(ep).

Thus o, —p i—1(5: p) generates a unitary representation of the braid group. In d >3

dimensions one has in addition the relation

which means that one has a representation of the symmetric group.

The representation of the braid group is evaluated by using a left inverse ¢ of p,
i.e. a linear mapping from £ to € such that p¢ is a conditional expectation from
A to p(A). d(e p) commutes with X .£) , hence for irreducible p we have

¢(Ep) = /\pl

where A )€ € is the so—called statistics parameter of p. By iterating ¢ one obtains a
Markov trace on the braid group representation with Markov parameter A o and by res-

caling a link invariant.

The Markov trace fixes the braid group representation up to equivalence. If p2 is
irreducible, ¢ y is a multiple of the identity, thus the induced braid group representation

is one dimensional. In this case p turns out to be an automorphism, thus ¢ = El I ,a2
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is a direct sum of 2 irreducible subrepresentations one obtains the Jones~-Ocneanu—
Wenzl representations of the braid group and the corresponding link invariants. In the
general case p2 is a direct sum of at most |A p|_2 irreducible subrepresentations pro-
vided A p# 0 . Thus the corresponding braid group representation, restricted to the
braid group with n strands, is a multiple of a finite dimensional representation which,

however, has not been determined in general up to now.

The discrete and locally finite nature of the superselection rules in t}le case A p $0
leads to a direct definition of fusion rules and R matrices which satisfy all relations
(pentagon—, hexagon relations etc.) usually attributed to conformal field theory. The
only exception so far I can see are the implications of modular invariance found by
Verlinde, namely the symmetry of the orthogonal matrix which diagonalizes the fusion
rules. This relation describes a sort of self duality of the superselection rules and has (at

least in the moment) no counterpart in the general theory.

There is also a direct connection to the classification of subfactors of von Neumann
algebras due to Jones et Ocneanu. The number |A p|_2 for instance turns out to be an
index in the sense of Jones. Actually by a generalization of the notion of index for pro-
perly infinite algebras Longo [6] has shown that the index of the inclusion
p(A4(0))C .A(c?)l for sufficiently large ¢ is |Ap|_2.

{



2)

3)

6)
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RATIONAL CONFORMAL FIELD THEORY AND GROUP THEORY
G. Moore
N. Seiberg

School of Natural Sciences
IAS Princeton

The seminar described work done in [1-5]. Further references to the literature may
be found in these references.

The goal of the seminar was to explain the reasoning behind the conjecture [4] that
all RCFT’s may be obtained from some Chern—Simons gauge theory for a compact gauge
group, along the lines described by E. Witten [6].

I. Duality Equations and the Tanngka—Krein viewpoint.

As is well-known from many points of view in RCFT one associates to a Riemann
surface ¥ with punctures P, and corresponding representations j; (of some chiral alge-
bra) a corresponding vector space —

(2.P,) — H(DP,5) -

In RCFT this vector space is finite—dimensional and is known as the space of conformal
blocks. Varying ¥ we obtain a projectively flat vector bundle over the moduli space of
curves. This is the basic datum in Friedan—Shenker "modular-- geometry" [7].

The vector spaces J¥ may be characterized as the space of intertwiners for the
chiral algebra defined by I (see, e.g. [3] and/or papers on the "operator formalism"),
and, as in group theory the intertwining spaces can always be written in terms of those
corresponding to trivalent couplings. In RCFT we therefore define the space of 3—point
couplings to be:



Vijk= P '
j 'k

We may obtain such decompositions as follows. From a trivalent graph (duality dia-
gram) we obtain an asymptotic region of Teichmiller space by 1) thickening the graph to
obtain a surface, 2) using the graph to define a pants decomposition - hence a Fenchel—
Nielsen coordinate system for Teichmiller space, 3) choosing the length parameters g
to be small. (The twist parameters range: — o < f; < o . We should divide the line into 2x
intervals, choose a region from each interval and regard these as distinct asymptotic re--
gions). '

A few examples of the corresponding decomposition ("physical factorization") might
be helpful:

; |
: V.
p o7
N
] o . D
— C @"Q pie 10 Vet

There are many asymptotic regions, so the decomposition is not unique.

Nevertheless we merely describe the same vectorspace in different ways so we deduce
the existence of isomorphisms B and F:



J k

iy L
j k
- -
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OV, OV .
ikp = "pjt

THH

‘: Viip ® Voke

jk
TedtH

gvﬂ‘p ® vpil;

B and F are known as braiding and fusing isomorphisms, respectively.

Similarly, comparing asymptotic regions of g=1 Teichmiiller space related by

r——1/7 (r = modular parameter) we deduce the duality tranformation S( hE

= — =)

S/n:@V.,. —BYV.
(3", "p >
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The first main point is that with the additional data of e2™%/24 (¢ = central charge of
the Virasoro algebra) we can express a4 duality transformations for all surfaces in terms
of the data B,F,S . The basic reason for this is that if one forms a complex whose vertices
correspond to asymptotic regions (hence sewings) with l—simplices generated by the
simple~moves

X
H
then the resulting complex is connected.
We would like to try to characterize RCFT's in terms of the data B,F,S and to that
end we should study the relations on these transformations. Such relations arise from closed
loops on the: 1—complex defined above. That is, the same duality transformation can be

expressed in terms of different paths of simple moves. A famous example of this is given by
the hexagon:

r_
N
.

-

(*)

s
— b
| —
—

. jk .
From this one learns that Bp e V eV kf. —_ ka q satisfies the Yang—

12
Baxter equations in IRF—form. e the rela.txon ) is very we]li'fmown it is only part of
a much larger story. There are an infinite number of such duality relations following from
all the closed loops on all possible moduli spaces.
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The second main point is that, of all the relations described above, there are only a
finite number of independent relations [1,3]. This is known as the completeness theorem.

To write these relations we first recall that there is a special representation & o of
the chiral algebra generated by the unit operator. The special properties of the unit opera-
tor imply properties:

Voij ¥ Vioj

ne
ne

oy 6ijd:.

(For simplicity we assume all representations are self—conjugate. More precise statements
can be found in the references.) Thus if we put an external representation £ = o the
B—matrix becomes a transformation:

~Blik :
Vi = B[i o] b Vi ™ Vikg

Here we have introduced a graphical notation for vector spaces.

In conformal field theory Q 2 i5 a scalar operator, but is not 1. Rather

Q2. - e21u'(Aj+Ak—-Ai)1
ik~

is the mutual locality factor.

The basic relations are



- j
i) ]k FL”ﬁ

4) S%j) = 1 x (phase)

5) (ST)® = 1 x (phase)

together with a relation expressing S in terms of B,F . For j= o this relation is

(6) gi%: Bl = [ii]]es

FiFj ]
where F, is the "gauge—invariant" ([1])  fusion matrix element

o i
ﬂ"FmLJ°

There is a formula for S(j) similar to (6) for the case j#o.
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Further details and a description of the phases in 4,5 may be found in [3].

There is a strong analogy between the above relations and the pentagon/hexagon re-
lations satisfied by commutativity and associativity constraints in tensor categories [8]. In

fact, when Q 2 _ 1 conditions 2,3 become identical and 1,2 are just the pentagon/hexagon
relations of category theory.

Regarding the above equations as axioms on the data Vijk,B,F,S there is a close re-
lationship with the axioms of a Tannakian category. The relation can be made precise by
considering the classical limit of a conformal field theory. It often happens that conformal
field theories naturally lie in a sequence of theories whose fusion rules stabilize, such that
the duality matrices have a well—defined limit. For example in level k SU(2) current
algebra we have SU(2), — SU(2), 1

In such a limit Q 2_,1 and we obtain precisely the axioms of a rigid abelian
tensor category. With one more axiom it follows from the work of P. Deligne that we in
fact obtain a Tannakian category, the category of representations of some compact group.
(Indeed, in the large level limit of WZW models B,F become 6j symbols and Vijk
become the spaces of interwiners HomG(Ri’Rj ® Rk)') We may express Deligne’s extra
magic condition in terms of "classical knot invariants". It is well-known that one can com-

pute invariants of knotted graphs via the rules [10, 11].

j\q i
ik
N qu[fﬂ]

Instead of introducing a Markov trace we may also introduce creation/annihilation ampli-
tudes:
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- ij
o/ onal

k

m = FiFio B ﬂ '

j

This form for the amplitude can be deduced from consistency conditions such as

L =

The coefficients a j’ﬁj are determined from

k k
/\/ i
1 = .
j j

1 Thus the value of an unknotted, unlinked circle is

i

\

S

All of the above works in the classical "group theory" case. The knot invariants are not
1

very interesting — but they se¢e normalized. One may calculate classically that F;
1

is the

dimension of the representation R, . Deligne’s condition is that F;
tive integer.

should be a nonnega-
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In RCFT Fi'1 is no longer an integer but, as shown in [12]

L —c/24
1S tr.q "dim &."
= 10 =1lim 1 = 1
F S0 1 qLo---c[24 dim &
0

The first equality follows from (6) above.

Thus, it is not unreasonable to hope that by adding an appropriate axiom on the

quantity F{l we may find a quantum version of the reconstruction theorem.
Of course, reconstruction is much easier given a knowledge of what it is one wants to
reconstruct. It is here that Witten’s 3—dimensional viewpoint proves quite helpful.

II. Three—Dimengional Pergpective

In [6] Witten showed that J¥(X) for level k G—current algebra is the same as the
space of physical states in a corresponding Chern—Simons gauge theory when we canoni-
cally quantize on the 3—manifold E x R . One obvious question left open in [6] is whether
other RCFT's can be described in a similar fashion. In the physics literature one finds a
veritable zoo of RCFT’s but these always seem to be one of the following 3 types: 1) Ex-
tensions of affine algebras, 2) coset models, 3) orbifolds of the above. One describes these
as follows:

1) To form extended algebras, one uses the "spectral flow" transformation associated to
automorphisms of extended Dynkin diagrams. Thus, if we wish to extend G, current alge-

bra we begin with § € Center(G) and write 8= 2™ for some weight vector p . (For
simplicity we take G = SU(n) , the discussion can be generalized.) The integrable level k
representations are given by the points in the Weyl alcove:

Awt/kaArt'
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The transformation A — A + ky is equivalent, via the affine Weyl group to a transfor-
mation A — p(A) of highest weight representations. For example, for SU(2), thetrans-
formation is j-—-——»%— j . For any subgroup Z C Center(G) we can "mod out" by this
action thus obtaining the extended chiral algebra

8= ez o)

(The algebra is only consistent for appropriate values of k .) In CSGT this simply corres-
ponds to modifying the gauge group G — G/Z .

Such a change in the gauge group has important consequences for the observables of
the theory. For example, for SO(3) = SU(2)/T , the observables are the Wilson lines:

Wj( €)= Trj(Pexp§ A)
-

but we have

(a) jeZ,only odd—dimensional representations exist. Moreover, k = 0 mod 4, to avoid
global anomalies.

(b) W j( ¥)x W, (9) in the sense that they have the same correlation functions
37—

() W (¥)= 0% + 0 where the operators 0% cannot be conveniently expressed
I=7
in terms of Wilson lines.

The rules a,b,c apply quite generally in the representation theory of extended alge-
bras.

2) GKO Coset models. We can define a coset model Ek / ak when H is a subgroup
H

of G, H = G such that if the embedding index iz £ then kg = Lkq . Decomposmg
the LG representations o¥, (thus A is an integrable level k. representation of LG)
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in terms of LH representations % )\ Ve have

J‘Agiﬂ:\,l\aﬂz\'

*
As Goddard—Kent—Olive showed the spaces ¢ , = () ® o) are Virasoro alge-
bra modules with central charge C g —Cpg and can be used to define a rational conformal
field theory with chiral algebra:

G/H _
AT = HFpga=0"

To obtain a CFT we must have a unique vacuum, which excludes conformal embeddings.

To reproduce these theories from CSGT we introduce G,H gauge fields A,B , res-
pectively, choose the action

k k
2
el J Tr(AdA + 2 A% -2 JT:(BdB + 283

and take the gauge group QEE where Z is the common center. (This description of the
gauge group must be used with care if there are U(1l) factors.) To see-at least
heuristically — why this prescription works let us return to the quantization of CSGT for
the group G at level k on the 3—fold D xR where D = disk . We rephrase the
argument of 6] as a change of variables in the functional integral

J, DA BE [ Tr(AdA +243)

(7) 7ol B°

To do the path—integral we must specify boundary conditions on A , which can be deter-
mined by requiring that there are no boundary contributions to the equations of motion.
Thus, the variation of the action is

ss=X J Tr(6AA) + ...

et
8 DxR volume term
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so we may choose A = 0, where the R—direction is identified with time t . The

t
d DxR
gauge group ® must preserve boundary conditions, hence g is time—independent on

dDxR.

Seperating out global symmetries which are not 1 at t =+ ® we have the gauge
group:

&={g:DxR— G | glﬁDle=1}‘

We may now split the gauge field and exterior derivative into time and space components

and rewrite the action
k NN k -
S = JTr(A——-—A)dt+—JTrAF.
ix Bt 2 ¢

Now integrate over A, to produce the é—function T T §(F(x)) . The constraint is solved
x,a

by A==dUU™ for U:DxR-— G . One may show that there is no Jacobian for

~ N

transforming D A §(F) = DU , the second measure being defined by the Haar measure.
Hence the path—integral (7) becomes
1% Te(U 28 UU™26,U) + ikl (U
[ g™ Jon (U 79,00 "4,U) + ikT'1y5(0)
vol &
U:DxR-G

where ¢ is the angleon 4D and FWZ is the Wess~Zumino term. Since the action only
depends on the boundary values of U we can trivially factor out the gauge volume. The
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resulting action is first order in time, from which one deduces the phase space LG/G to-
gether with the correct symplectic structure to give the basic representation of LG upon
quantization. A similar exercise shows that if a Wilson line in representation A pierces the
disk in the time direction then quantization produces the space of states & 3\

For the coset models we must evaluate a similar path integral

(8) oI B°©

where CS is the Chern—Simons functional. Proceeding as before we vary the action

kg kg
JS=I?JT1:6AA—EJT:6BB + .

When H == G and f,kG =kp we may choose a special boundary condition. Let
7: g — b be the orthogonal projection with the Killing form and set:

7(A)=B on 4D xR
11-(At)=At on dDxR.
By arguments parallel to those above we find the gauge group should be:

&= {(g,h): D x [R—-—b--G---;-g g=h|spxprt-

We may carry out the change of variables in the same way so that:
A=-duu?l U:DxR—G

B=-3vv! V.DxR——H.

Taking account of gauge—fixing we obtain from (8)
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. . -1 1
ik S erepe (U)ik V)+Tr AU ts u-v1g v
J’DUDVD“ cSwzw(U)-kgSwzw(VI+ITr AU 9, oY)

where SWZW is the WZW functional and A:D xR — 1} is a Lagrange multiplier.
Taking account of the first order constraint we see that quantization gives (with insertion

of a Wilson Line) the space of states ¥, , = (% @ J?:)LH of the coset model.

3) Orbifolds. To obtain a CSGT description of orbifolds of the above theories we use an
automorphism group P of the group G to form a new gauge group P X G . The above
arguments show that the chiral algebra A of the G—theory is reduced to the chiral alge-
bra A/P .

Thus, the entire zoo of RCFT’s is nicely organized ~ from the 2 + 1 dimensional
perspective — by a choice of gauge group and levels for simple factors (including U(1)'s) .
This leads to a natural conjecture that all RCFT’s may be obtained, along the lines indi-
cated above, from some CSGT with a compact gauge group G . The proof might well pro--
ceed by a version of quantum reconstruction. For reasons indicated in the following section
one might try to use the axioms sketched in section I to reproduce the category of represen-
tations of a quantized universal enveloping algebra for suitable values of the parameters q
(i.e. suitable roots of unity).

The above conjecture may be interpreted as saying that there are no new RCFT's
beyond the ones we know, and as such would be something of a disappointment for string—
theory model builders. The idea that the coset construction essentially exhausts nontrivial
rational models was probably first stated by E. Martinec in [13] and has been proposed by
P. Goddard, V. Bazhanov, N. Reshetikhin, the authors of [14], and perhaps many others.

The point of [4] was that a) the azxams naturally lead to such a conjecture b)
the simplicity of the CSGT description naturally leads to a precise version of the conjecture
and c¢) we have a framework for trying to prove the conjecture.

ITI. Some Remarks on Quantum Groups

We noted above that for level k G—current—-algebra, in the classical limit (k — )
the F,B matrices become 6jsymbols . In fact, as noted by many people for finite k,F
and B are precisely related to the 6j-symbols of the quantized universal enveloping alge-
bra U q(G) for an appropriate value of q . For example for SU(2) level kX RCFT we
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consider Uq(s£(2)) , generated by Ji,H satisfying

[HJ%] =+ 20°

797 = 9‘172—‘*—151[7/;

for q= 2M/k+2 o generic q the representation theory of (9) is similar to that of
8£(2) , in particular, representations are parametrized by a 1/2—integer spin j:

(9)

Wi=Span{ | ja>:~j<a <j}.
This continues to be true for the special vlaues of q in the case of "good representations"
(j€K/2) . In [5] and in the contribution of Fréhlich to this conference a class of opera-
tors in RCFT was defined which helps one to understand the coincidence of F and B
matrices. Rather than repeat those formulae here we give an intuitive discussion with in
the framework of CSGT. In the Chern—Simons theory the new operators act like quarks
with a gauge theory index and a quantum group charge a corresponding to the state

~
| ha>e Wj . Quarks terminate Wilson lines and therefore we may consider transition

amplitudes like:

/7
with amplitade R 7 % =0®p(R), where % is the universal R-matrix and p is the
spin—j representation. With this picture we can interpret one Wilson line wrapping around
the other a8 an operator on quark states:
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a’ L final quark state

a initial quark state.

In formulas we have defined an operator:
al ) al /
LY |ﬂ>—-»§, (RygRy))3 5 187 >

/
We now ask what relations the operators L aa satisfy.. Congider two
~

representations |a > e W‘i , |A>eW. and corresponding matrices of operators
1

/ 7

Laa and L AA . Furthermore, consider the Yang—Baxter matrix of c—numbers
=p. ®p. (R). The diagram

R12 ho Ty

a/ Al a/ AI

\ L\
~—

a A a
implies the relations.
(10) R12(1 ® L)Rlz(L ®1)=(L® I)Rm(l ® L)Rm
. _e a ¢+ A
where: IOL-6a LA

_r a ¢ A7
LQI—La JA .
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One may check that (10) is indeed a presentation of the defining relations of a quan-
tum group. For example, choosing j1 = _12 to be the spin—1/2 representation we may
parametrize

L [a/E (171 ) g1/ 4E
= — dH -1/2 - -
(1-q g4t/ U (172125t
from (10) one recovers (9). The above gives a description of the quantum group action in
CSGT. Unfortunately, the definition of the quark operators is, at present, somewhat con-
trived and their existence awaits a more natural explanation.

It would be useful to understand the quantum group connection better since, if the
above conjecture is true then to every RCFT/CSGT one may associate a quantum group
for special values of q . This strongly suggests that the proof of the conjecture will proceed
by showing that the defining axioms lead to the representation theory of a quantum group
for which the deformation parameters are roots of unity.
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MONODROMY OF BRAID GROUPS AND QUANTUM GROUPS
Toshitake Kohno

Department of Mathematics

Nagoya University

By investigating the holonomy of the Knizhnik—Zamolodchikov connection, we
show that the monodromy representations of the braid groups appearing in the confor-
mal field theory on the Riemann sphere with gauge symmetry can be described by means
of the quantized universal enveloping algebras in the sense of Drinfel’d and Jimbo. For
any simple Lie algebra g and its irreducible representations Pi 1 g —— End(Vi) ,
1<i<n , the Knizhnik—Zamolodchikov connection is defined to be the l—form

w= ) AQdlog(s; ~3) , AeC, where Q. eEnd(V;®..®V) is given by
i<j

ZP )P (I ) by using the Casimir element X I Y In . The quadratic relations

[Qlk,ﬂ + 0 jk] =0 (ijk distinct) and [Qll Q01 =0 (i,jkL distinct) provide
the integrability of the connection « and they are considered to be the infinitesimal
version of the relations for the pure braid group. In fact it can be shown by means of
K.T. Chen’s iterated integrals that the completion of the group ring of the pure braid
group over € is isomorphic to the algebra € << Xi j >>/[J , where € << xij >> s
the non—commutative formal power series with indeterminates Xij , 1€i<j<n, and
J is the ideal generated by the above infinitesimal pure braid relations for X, i Based
on this method, we describe the holonomy of the Knizhnik—Zamolodchikov connection

by means of the R—matrix with q = exp 7y~1 A .
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Now we consider the situation of the rational conformal field theory on the
Riemann sphere with gauge symmetry of the affine Lie algebra g at level k. For the

chiral vertex operators ¢i(“i’zi) , eV, zed~ {0} , sending Ky o to Hp
i i—1 i

the n—point function ¢(z) = < 0|¢ (u .z ) ... ¢,(u;,2;)|0 > is a horizontal section of

the connection w with A = 1;_41-5 where h is the dual Coxeter number.

On the other hand, associated with the fusion path p = (AO’AI’ ,An) , We con-

sider the composition of the q—Clebsch—Gordan coefficients

x.A.
C Al -1, V.®Vv, —V, , which are the intertwiners as U (g)-module . The
i i i i q

action of the braid group on these fusion paths via the R—matrix was described by
Reshetikhin. We show that under a suitable normalization of the n—point functions the

action of the braid group is given by the above action on gq—Clebsch—Gordan coefficients

with q=-exp f—_ﬁ . This braiding matrix was explicitly obtained by Tsuchiya and
Kanie in the case g=sl(2,{) and each P, is the vector representation. It turns out
that the associated monodromy representation of the braid group factors through the

Jones algebra with index 4 cos?

k_-:i . We claim in a more general situation that the
monodromy of the braid group factors through semi—simple algebras with a positive

Markov trace.
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ALGEBRA COCHAINS AND CYCLIC COHOMOLOGY
Daniel G. Quillen

Mathematical Institute
University of Oxford

In this talk we describe a formalism of algebra cochains which was developed to

understand certain calculations in cyclic cohomology.

Let A be a non unital algebra over € and let B(A) be the bar construction of
the augmented algebra € ® A . The bar construction is naturally a DG coalgebra,
whose cocommutator subspace B(A)# (this is the coalgebra analogue of R/[R,R] for
an algebra R) can be identified with the cyclic complex CA(A) by means of the norm
map N : CA(A) — B(A)¥ .

If R is an algebra, then Homc(B(A),R) is naturally a DG algebra whose
p) on A called cochains with
valezes in R . If 7 is a trace defined on an ideal J in R, then r#(f) =7fN isa

elements of degree p are multilinear functions f(al, v ,d
trace on the ideal Hom(B(A),J) with values in cyclic cochains.

As an application consider the following situation studied by Connes. Let
p: A——> R be a linear map which is an algebra homomorphism modulo an ideal I in
R, and le¢ 7 be a trace on I . We view p as a l—cochain analogous to a

2

"connection" form in Chern—Weil theory. The "curvature" w=dp+ p” is the

2—cochain w (a;,39) = p(3;,39) —p(a;)0 (3y) having values in I. Standard arguments
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using the Bianchi identity show that the cyclic cochains r#( W) for n>m are cyclic
cocycles, and these turn out to be the odd degree cyclic cocycles produced by Connes in

this situation.

In order to prove S-—telations among cyclic cohomology classes, as well as to
understand better entire cyclic cohomology, we need to produce Hochschild cochains,
that is, cochains where the differengial is £b instead of b’ . There is an operation
which associates to cochains f , g as above and a trace 7 a Hochschild cochain

#(3f g) in such a way as to be compatible with differentials and such that

(a8, 1,)8) = 7 (88, (L,g)) + (8 L,(af,))

Using this operation the entire cyclic cocycle of Jaffe—Lesniewski—Osterwalder can
be interpreted as the analogue of a superconmection character form in this cochain

formalism.
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CONNECTION ON THE SPACE OF CONFORMAL BLOCKS
VIA GEOMETRIC QUANTIZATION

Scott Axelrod *

Mathematics Department

Princeton University

An outstanding problem in geometric quantization is to construct a natural identi-
fication, hJ; I o 1 =X 17 between the Hilbert spaces obtained by Kahler quan-
tizing a symplectic manifold, 9%, using complex structures J and J’ . It should be
reasonable in the sense that all quantum operators on & ] are taken to those on & 7’
and hJ; ’ J,hJ, = th ry % (projective facto;) . In this way the dependence of the

quantum Hilbert space and operators on the auxiliary choice of J is trivial.

In our work we apply the known result for an affine symplectic manifold and geo-
metric invariance theory to find the desired identification for 90 = a symplectic quo-

tient of an affine manifold, ¢ , by a subgroup, ¥ , of the affine symplectic group.

This is naturally accomplished as follows. Let % — {J} be the bundle over the
space of ¥ invariant complex structures, J , with fibers equal to the Hilbert space ob-

tained from Kihler quantizing £ .

*x
Joint work with Ed Witten and Steve Della Pietra in progress
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Let a"; — {J} be the bundle with fiber JS‘; = d%? which by geometric
invariance theory is the Hilbert space obtained from quantizing 1. The old results for
quantizing an affine space give us the desired identification in that case as the parallel
transport of a projectively flat connection on & . This connection is compatible with

the ¥ action on the fibers of # and 80 restricts to a projectively flat connection on
~

¥ , which gives the desired identification for the quotient case.

We need to do a version of regularization to make this connection well defined in
the case where £ is the infinite dimensional space of connections for a G—bundle over
a surface ¥, and I is the symplectic quotient of £ by the group of gauge transfor-
mations. The complex structures on .6 are obtained as those induced by picking a
complex structure, also called J , on ¥ . The quantization of the space 0 is part of

Witten’s solution of the Chern—Simon’s gauge theory which gives a conceptual explana-

tion of invariants of links in 3—manifolds. Witten uses the fact that the bundle % is
the same as the bundle of conformal blocks for the well understood Wess—Zumino—

Witten model for the group G .

Presumably all the results he uses about the conformal field theory can be derived
from the three dimensional point of view. In this case, the projectively flat connection
which we find from this poi:_lt of view is simply the connection on the space of conformal
blocks originally produce;d by conformal field theory. Here we show that the connection
has the same curvature as that calculated in conformal field theory.

The approach to regularization and calculation of the curvature is as follows. First
one rewrites the connection in the finite dimensional case in a way which is still well de-

fined in the Chern—Simon’s gauge theory case where .£ is infinite dimensional. This
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involves picking a metric on the group ¥ and evaluating the determinant of

TtT. (Ker T)'L—-» (Ker T)‘L where T is the generator of the group action. To get
this data in the gauge theory case one picks a metricon I and a good regularization of
the determinant of the laplacian on O—forms . The explicit finite dimensional calculation
that the connection in this form is well defined now goes through except for one ano-
maly. This is compensated for by inserting a factor similar to that in the Sugawara con-
struction. The calculation of the curvature in the finite dimensional case goes through to
the gauge theory case with no new anomalies. Happily, it yields the answer in the form

given by conformal field theory.
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HOLOMORPHIC LINKING AND NON-HAUSDORFF RIEMANN SURFACES
Roger Penrose

Mathematical Institute
University of Oxford

In this note I present two twistor—motivated ideas, neither of which has been de-
veloped very far as yet and, indeed, for which the basic concepts still remain to be for-
mulated precisely. Informal accounts of these two ideas have appeared in Penrose (1988)
and Penrose (1989), respectively.

A brief reminder of some of the fundamentals of twistor theory is in order. (For de-
tailed accounts of this theory, see Penrose and Rindler 1986, Huggett and Tod 1985,
Ward and Wells 1989.) The basic twistor correspondence arises from regarding the com-
plexification € M of (conformally compactified) Minkowski 4—space M as the Grass-
mannian of lines in a € P° (projective twistor space P T), i.e. of linear subspaces of
dimension 2 in €* (non—projective twistor space T) . In twistor theory it is féwﬂa/
Aalamarpihic shuclure that codes physical informatibn, which appears a8 el field/cur-
vature information in space—time. Linear massless fields in M, or € M, are coded as
cohomology elements in (regions of) P T ; (anti—) self—dual Yang—Mills fields are coded
as holomorphic vector bundles over (parts of) P T ; (anti—) selfi—dual vacuum Einstein
fields are coded as holomorphic deformations of regions of P T . In each cése the twistor
information disappears when the construction is restricted to a small enough region of

the twistor space.
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Holomorphic Linking

The idea of holomorphic linking is partially motivated by the fact that in a topolo-
gical quantum field theory (TQFT) one also has a structure in which all information dis-
appears in smau enough regions. This, of course has importance for applications in
‘mathematics (invariants for links, knots, braids, etc.) where one may be essentially in-
terested only in topological matters. But the relevance of TQFT to s44gudcs is obscure, if
one is thinking of the background space of the theory as being space—time, since physi-
cally one expects to have &az/ space—time field quantities. The idea, then, is to use
(projective) #acstae space, instead, as the background in which we could imagine the
TQFT to be taking place.

I shall be concerned here witl; the question of linking only. (I shall not attempt to
address more complicated issues raised by knots and braids.) The immediate problem
that arises, if one is to consider the linking of two curves in (projective) twistor space, is
that complex curves are two—dimensional {as real manifolds) and they lie in a six—di-
mensional space (the real dimensionality of P T ). Thus they cannot be considered as
linking in the ordinary sense of topology. However, the Gauss formula

1 [ G- AR
MK”'E§ Z-71°

for the linking number of two closed curves X and Y in R® (where ¥ and 7 are
position vectors of variable points on X and Y , respectively) can be generalized
directly to holomorphic curves ¢ X and €Y in ¢l For this, we must interpret the

distance
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2-7) = {E-9) - R-/?

holomorphically, and the integral is over a two—dimensional contour (% st x Sl) in the
four—dimensional product space € X x €Y of two (not necessarily compact) holomor-
phic curves. We may regard € X and €Y to be the complexifications of real analytic
curves X and Y, respectively, and the contour to be X x Y, and then the formula is
the same as it was before; but the expression is now more general than that. The formula
makes sense provided that the contour (taken to be compact) avoids the zero—distance

locus
ZCCXxCY

defined by the holomorphic equation

The value L of the integral clearly depends only on the homology class of the con-

tour within the space
CXx{Y-Z,
but, more than this, it is independeht of continuous variation of

(a) thetwocurves CX and €Y

and of
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(b)  the particular choice of (complexified) Euclidean metric
where the variations are made in such a way that the condition |i' -}’]2 #0 can be
maintained over the entire contour. In (b), the "metrics" can be taken to be those com-
plex Euclidean metrics that are compatible with the projective structure of P T (where

we regard our ¢ as being completed to a € p3 (namely P T) by the addition of a

plane at infinity). These are given by complex quadratic forms
Qw)=Q*Pw wy=q-ww
in the a%a/ variables W o » Where the matrix of coefficients of Q has rank 3.

The integral for L becomes a simple numerical multiple of

§ XQQQY XYdX A dY

{xYQQxy}*/?

when written in terms of twistor variables X%, Y® (dl4 coordinates for T) and where
the bars denote contractions of sets of four upper indices with Levi—Civita symbols
Ca 6 It now turns out that the rank of Qa B can be 4 (complexified sphere metric)
or 3 (Euclidean). This integral can also be re—expressed as a four—dimensional (non—pro-

jective) contour integral, where the form XYdX A dY is replaced by

— Ll dXAdXAdY AdY =L d°X A d2Y.
an i
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By use of certain known expressions from twistor diagram theory (and assistance from
Andrew Hodges is greatly appreciated here), one can convert the integral to numerical

multiple of the eight—dimensional contour integral expression

§log(Q~WW/R - WW) d W A d®x A dy
(W-X)*(W-Y)*

on, more simply, to

j£ ddw A d%x A &Y
(W-X)*(W-Y)*

where the contour is now not closed but is allowed to have boundary on the regions
Q-WW=0, R-WW=0.Here R is another (arbitrary) quantity of the same
nature a8 Q . By converting the integral to this expression, we see that it depends as

little upon Q as it does uporn R, in accordance with (b).

Using a (somewhat formal) identity from twistor diagram theory, we can reduce

the expression for L to a sum (and difference) of terms of the form

.

dh
Ah—l\

|
“ie

1 1 df A
2 (21|i)z T
where € X is given locally by f=g=0 and CY,locally by h=j=0. For alge-
braic curves order p and q, respectively, there appears to b a "canonical" answer for

this sum, which is
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but other answers are also possible, depending on the original choice of contour (and
some uncertainties depending upon the formal nature of the derivation). More rigorous

(and cohomological) derivations and concepts seem to be required.

I am grateful to Michael Atiyah for helpful discussions and for pointing out a rela-
tion to Green’s functions. For information on twistor diagrams, see Hodges (1982),

(1985), and I am grateful to him also for discussions.

Non—-H Riemann Surf

Complex manifolds with a (rather mild) form of non—Hausdorffness have played a
significant role in twistor theory from time—to—time (Penrose and Sparling 1979, Bailey
1985). Most recently, there is the work of Woodhouse and Mason (1988), who use a con-
struction due to Ward (1983) for the stationary axi—symmetric solutions of the Einstein
vacuum equations. The symmetry gives a dimensional reduction on the twistor space by
two complex dimensions. The original Ward construction is given in terms of holomor-
phic (rank 2) vector bundles over regions of P T , and by the Woodhouse—Mason proce-
dure, this is reduced to bundles over a (compact) complex manifold of one dimension.
This is no ordinary Riemann surface, however, but it has some essential non—Hausdorff
features. (In their main example, the surface is constructed by taking an ordinary
Riemann sphere, but then detaching a closed neighbourhood of the equator and
reattaching it wrapped around twice, so that two points of the boundary are attached to

the north and south caps where there was one point before.)
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There are other reasons that one might be interested in non—Hausdorff Riemann
surfaces in twistor theory, and one of these has to do with the fact that some of them
have a close relationship to certain "chaotic" structures, namely Julia sets and the
Mandelbrot set. (If twistor theory is ever to be able to describe jwwla/ solutions of the
Yang-Mills or Einstein equations, then it must be able to incorporate the "chaotic" be-
haviour that is characteristic of non—integrable systems.)

Let us first recall how an ordinary Riemann surface is described. For genus 1, we
may think of a parallelogram cut from the Argand plane, with vertices at points 0, 1,
A, 1+ A, where opposite edges are to be identified. The universal covering space of
this torus provides a tiling of the plane with this parallelogram, where there are rigid
matching rules as to which edges may be placed against one another. In the same way,
for genus > 1, we get a tiling of the hyperbolic plane, again by some polygonal shape
with rigid matching rules. Now one can construct a polygonal shape which will tile the
hyperbolic plane only in a mam—periodic way, if we interpret "periodic” in the restrictive
sense that there are, two independent motions of the entire tiling to itself (see Fig. 1 and

Penrose 1979).

Figure 1: A forced "non—periodic” tiling
of the hyperbolic plane
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If we try to fold this tile into a Riemann surface, by identifying edges which are to be
matched in the tiling, we get a non—Hausdorff Riemann surface, because two edges must

be matched to one (in two different places).

Let us consider another way of constructing the ordinary torus. Instead of using a
parallelogram, we can use the annular region between the circles |z| =R and
|z| = [#|R in the Argand plane. The inner circle is now to be identified with the

outer one according to the correspondence
Z— 42z
(where I am taking || > 1).
Now let us imagine replacing this linear map by a guackalic one:
z—z +C.

We consider the annular region between the inner circle [z| = R and an outer one of
radius R® and centre ¢ (where R is chosen large enough). We wish to identify the
inner and outer circles, as before, but now we get a non—Hausdorffness, because z and

—z must both be identified with the same point z2

+ ¢ . (To get a proper non—Haus-
dorff manifold, we must consider that our annular region contains its boundary at the

inner circle, but not at the outer circle.)

In a certain sense the surface we have constructed contains the information of the

map 3z w— z2 + ¢ . But, as things stand, it contains too much information because the

circle |z| =R is singled out. To remove this feature, we must adopt a certain point of
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view with regard to egueadma of non—Hausdorff manifolds. Unfortunately it is not yet
clear what is the best way to formulate this equivalence precisely. Roughly speaking, one
should be allowed to move the edge along which the non—Hausdorffness lies, either by
"splitting" the surface apart or by "reglueing" it. This splitting or reglueing proceeds
only locally and must not change the topological structure of the space. A rule of this
kind (more precisely formulated) would also be in line with other requirements suggested

by twistor theory.

Adopting such a viewpoint, we can separate off the region between |z| = R and
lz| =R + ¢, identify opposite points on this region, stretch it out conformally, and
then attach it again at the outside. This removes the special nature of the particular cir-
de |z| = R.A procedure of this kind can also be applied in reverse, and again an
"equivalent" non—Hausdorif manifold is obtained. If this reverse kind of procedure is ite-

rated indefinitely (and maximally), the Julia set for the map z+— 22

+ ¢ is converged
upon. The values of ¢ for which the Julia set is connected and those for which it is a
Cantor set lead to drastically different structures. The first case arises when ¢ lies in
the Mandelbrot set and the second, when ¢ lies outside the Mandelbrot set. Thus, we
see that the "chaotic" Mandelbrot set forms an important part of the modulus space (the
analogue of a Teichmiiller space) for this particular class of "non—Hausdorff Riemann

surfaces".
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QUANTUM GROUPS AND RATIONAL CONFORMAL FIELD THEORY

Luis Alvarez—Gaumé

CERN Theory Division

Genéve

There are several approaches to the classification of Rational Conformal Field
Theories. One can use three dimensional topological theories as suggested by E. Witten
[1] in his treatment of knot and link invariants, or one can exploit the duality
properties of conformal theories as summarized by the polynomial equations written by
Moore and Seiberg [2]. Both approaches capture purely topological information about
conformed theories. In recent work in collaboration with C. Gomez and G. Sierra, we
have approached the second point of view using the theory of Quasi—triangular
Yang—Baxter algebras or quantum groups [3]. For quantum groups with deformation
parameters equal to a root of unity some special features appear. First the number of
representations truncates to a finite number, and their behavior under tensor products
reproduces the fusion rules of the corresponding Wess—Zumino—Witten theories [4]
whose chiral algebra is a Kac—Moody algebra. The defining properties of a
Quasi—triangular Yang—Baxter algebra can easily be understood in simple terms. They
essentially imply that the representation of the conformal blocks in this language furnish
representations of the braid group. They contain the condition that fusing and braiding
are compatible operations and they also relate the duality properties of blocks with some
fields in their external lines with those of the conjugate fields. The modular

transformations can be understood in terms of the remnants of the Virasoro algebra
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that survive the reduction of the features of a conformal field theory to its duality
properties. Any of the quantum groups contains an invertible element which can be
interpreted as exp 21riL0 , where L0 is the energy operator on the Virasoro algebra.
The modular transformation properties of the characters, and in particular the matrix S
which diagonalizes the fusion rules can be expressed in terms of the co-—multiph"cation of
this element. Furthermore, the structural information contained in quantum groups
naturally leads to knot and link invariants [5]. It is reasonable to expect that the series
of Rational Theories which admit a classical limit in the sense defined in [2] can be

obtained from the quantization (as quantum groups) of the group describing this limit.

What is not yet clear is how to classify possible theories (if any) which do not
admit a classical limit, and in particular we do not know which of the approaches will be
more powerful.
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CONFORMAL FIELD THEORY ON UNIVERSAL FAMILY
OF STABLE CURVES

Akihiro Tsuchiya

Department of Mathematics
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§ 0 Introducti

In this talk, I’ll talk about a conformal field theory under the gauge symmetry
associated with integrable representations of an affine Lie algebra over modular family of

stable curves.

This is joint work with K. Ueno and Y. Yamada.

We realize this conformal field theory by constructing a holonomic system with re-
gular singularity over moduli space satisfied by so called conformal blocks. This
D—module is constructed by using Ward—Takahashi identity for Energy—~Momentum

tensor.

Our main theorems say that these D—module constitute finite dimensional vector
bundle over moduli space and the factorization principle at the discriminant locus hold.
And the dimensions of these vector bundles carn be calculated combinatorially from

fusion rules.
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One essential point that finite dimensionality of vector bundles hold comes from
integrability of the representations of affine Lie algebra. |
§ 1. Integral representation of affine Lie agebra.

At first we briefly sketch the theory of integrable representation of affine Lie alge-

bras.

Let C€((¢)) be the field of Laurent series that is €((¢)) = {f(¢) =
=a % +ay "1+ .} andset C[[€]] = {H(€) =ay+a €+ .}

Let g be a simple Lie algebra over € then associated affine Lie algebra E is de-
fined by

8=98C((¢) B Cc
with usual commutation relations. We fix the Gauss decomposition
g=g~_999€cag+

where 3, =g®C[[£]]¢, 8_=8®C[6]¢™ . We fix the Killing form (,) on g
normalized by (4,§) =2 where § is the highest root.

Fix a positive integer € called level and put
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Pp={2eP_ :0<(fA) <L}
where P + is the set of dominant integral weights of g .

Foreach AeP 7%, denote the integrable representation of g with level £

+ ]
and classical highest weight A . We set d'?:l\- = Homc( J{/\,C) , then g acts from right

and < | >: Jb’j\' X A \— C denote the canonical complete pairing.

Let T(z) = z an—n—2 be the energy momentum tensor in Sugawara form.
nel
Element of g is written by

X®f=X[{] for fe C((¢)), Xegq.

For £ = £(¢) gz e ¢((6)) g-t. we set

1
T(L] =2«g§o“T[E]“£"

Then X[f] and T[] operateon ¥ ) and satisfy

[T[e].X[f]] = - [&(D)] -
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§ 2. The space of conformal blocks.
Fix integer g2 0, and N2 0.
Consider N—pointed stable curve of genus g, X = (C: Ql QN) that is

C: complete algebraic curve of genus g with only ordinary double

points singularities.

Ql’ ,QN: distinct non—singular points on C and some mild stability condi-

tions,
and assume at first the following condition (Q)

(Q): on each irreducible components C f of C there is at least one point

Q.

Furthermore at each point Q 3 we fix formal local coordinate

f: an"'""'C[[Ej]J .

—
Consider the data X =(C: Q, ... Quty - tx) . For each A= (A, ... Ay) € P
1 Qty - tN 1 AN) € Py

we consider space a'b’_.:Jb’A 0...0%"\ , and
A 1 N
#7T = Hom (#_,C) = xt . @ xt . The space of the conformal block asso-
A LA '\1 '\N
A

Y
ciated to the data (X,A) is defined by
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N .

VI(I)E{( ¥|e Jé’i’: E <'Ii|<pj(X®f(£j) =0 forany
=1

fe HO(C P0a(* Q.+ x QN))} i
The dual space of V+(£) is

V(%) = #,/8@ B (C,00(x Q + .. + % Q) ¥
A A

and there is a complete pairing

<|>: Vi@ xv (@) —C.
A A

Main problems are the following:

1) Is dimg VI(X) finite?
A

2) Is dimg vj(x) independent on X ?
A

3)  Howdoes VI(X) dependon X?
A

We give a complete answer for these problems.
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8§ 3 Local universal family of pointed stable curves.
1

Fix nonnegative integers g and N with 2g—-2+ N> 0.

Let (x:C—S: . ,sn) the local universal family of N-—pointed stable

curves of genus g, that is:

1) C and S are complex manifolds of dimension 3g—2+ N and 3g-3 + N

respectively.
2) x: C — S : proper flat holomorphic map
3) 8 : § — C : cross—section

4) Foreach meS§, (1_1(m) = Cm’Qj = sj(m)) is an N—pointed stable

curve of genus g .
5) Local universality condition is satisfied.
Now set
L={PeC: d1rp : TpC — Tz'(p)S : not surjective} critical locus of 7
D = #(X) : discriminant locus.

Then I is codimension 2 closed submanifold of C and 7|y : X —§ is smooth map

and D CS is normal crossing divisor. Each element m of S consist of an N—pointed
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stable curve m = (C: Ql’ ,QN) , we associate formal coordinate t. at Q. and con-
sider the set S() = {& = (C: Qy, . ,Quity - ty)} » then S(®) is an infinite di-
mensional complex manifold and the canonical projection = : s®) 5 is a principal
bundle with structure group DN where

D = {p(¢) = ay¢ + alfz + .y 3 #0} acts on s(®) 4 coordinate change. Also we

consider the set
s = gx M = (€ qp, Qi ()
where tgl) : order 1 constant element of Qi} .
Then we have the canonical map
5(“’) _— s(l) S
and S(l) —~ S | is a principal (C*)N—bundle and S(m) — S(l) is principal

DN _bundle,

§ 4 Sheafication

—'
At first fix A= (,\1, ,AN) 3 Prg and consider the family of vector spaces over
S(m)

uv_(x) —s(®
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By using more precise construction, we can construct an ¢J¢(w)—module V_ on S(m)
' A
which is sheaf version of the above family of vector spaces, where ¢ () is the sheaf of
' S

holomorphic functions on S(m) .

N on 5(®) can be lifted of the action on V_, and

A

Proposition 1 The actions of D(1

we can construct ds(l) module V_&l)on S(l) as invariant part of V_ .
A A

Theorem A The as(l) module Vil) is a coherent sheaf.
A

Corollary For each X e 5(®) the spaces V (%) and Vi'(x) are finite dimensional.
A A

: o(1
§ 5 Connection on V& )
A

Now consider the following situation

sW_T .5 shee D) =s1D).

L U

D(l) —D

Consider the fb].lowing Lie algebra sheaf on S(l) :
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2] (1)(— log D(l)) = {v : local holomorphic vector field on S(l)
S

where 1 is defining ideal of D(l) .
p(1)

If locally ('rl,
of D(l) , then © (1)(—Iog D(l)) is free 0(1) module generated by
S S

,TM) is local coordinate set Tyt =0 is defining equation

) B/c?rl, s Ty a/8 Ty o d/d Tgt1: ala )

Due to the conformal anomaly, the sheaf eS(l)(— log D(l)) can not act on

Vgl) . But we can construct extension of Lie algebra sheaf for each c, € ¢,
A

0— 71y — D;(l)(— log D¢ ) — 0 (1)(~1o8 p{y 0.
Locally the Lie algebra D;(l)(" log D(l),cv) is isomorphic to
—10g DU
O (1)(~1o6 D e n

but this isomorphism i8 not canonical.

: *
Theorem B For c, = ﬂfz'dl—ma where g is the dual Coxter number of g, the Lie
g + £
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algebra sheaf Dl(l)(— log D(l),cv) acts on V_al) as twisted first order differential
S A
operators.

Corallary On §(1) =p(1) | the 7 (1) module V{1 g locally free, 5o constitutes a
X
vector bundle.

§ 6 Locally freeness and factorization.

Now we study the behavior of V_(}) near the discriminant locus.
A

We take S small-and fix a local coordinate T T of S such that

T e =0 s a defining equation of D . Let D=D1U...UDk and set
_ 1) _ p(1) (1)
E=D,N..ND, and EN=D{Nn..np{}.

Cgz, —C

\ﬁ(;i p (si).

/ 77
la.p)

(si,rrp

Now let CE —— E : the restrictionof C on E and CE —_ CE : the simultaneous

g/’ :E— CE are the cross—sections cor-

normalization of 7p:Cp— E and 0;, p

responding to normalization points.
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Proposition 2 (';-E:CE——-»E 8 al’) ,o‘I’)’) is local universal family of (N + 2k)

pointed stable curves and each fiber is a non—singular curve.
Now fix a trivialization

D;(l)(— log p(l), C,) = 88(1)(— log D(l)) ® 05(1) .

We introduce the following V-filtration on each ds(l) module J such as

1 (1
O (1)(~1o8 p()y, 7 1) v:(\' )

Foreach P = (pl, ,pk) e I¥

P Py
VP'y:Il te. Ik (9‘

where I y is defining ideal of D(ol) . Take associated graded modules
J
Gry F= ) Grp(F)
Per
k

Y
Grp (F) =VpJ/ ) vﬂ,_sj 5
=1
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Then we have

GIIOS(I) = aE(l) [Tl, ,Tk]

M

I~

E

=1 =k+1

where degree T=—€y.

Theorem G As Gr} © (- 1og 1)y e Y 9 (1) module we hare
’ s

ey viVeerr, .. ,n] “m e vl
A A

Theorem D factorization

There exist the following isomorphism as ¢ (1) module
E

v{D) ~ v
Gry V ® 0\ — \%
0 & J (1) (1) zk (T ,A)
E pePE
here E(l) —— E is the 1—st order structure of the family

(?'rE :Cp—E:(s0",0"")) 0 M) () 5 (C*)zk—principa.l bundle.

Theorem E V(1) is locally free as 9 (1) module.
S
A

9 (1)7i0l o7 @ ) aE(l)a/arj)oa:[rl,...

:Tk]
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Corollary The rank of V{!) can be calculated combinatorially from fusion rule. So we

A
calculate the dimension of Vgl) in the case of g=0 and N =23 . In this case
A
S = {points} . Foreach Aure PP. we set N,\,p.,u = rank V/(\}I)AV .

Proposition dim N,\,p.,u= djmc WA’#’V where
WA,p,u ={pe Homg(VA ® V”Q Vv, : €) which satisfy (x)};
now we state the condition (x).

Set ky=€X,8CX _,® CHH be the three dimensional sub—algebra of g corres-
ponding to highest root 6.

£/2
Set V \= z w Aj the decomposition of g—module V )\ 38 kg module. Then
j=0
the condition (%) is

@| =0
WA’i owu,j owu,k

foreach i+ j+k> L.
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On the space of conformal blocks in rational conformal field theory

summary of talk given by Erik Verlinde

Given a semi-simple compact Lie group G and a positive integer k£ one can

associate to a closed Riemann surface ¥ a finite dimensional vector space ’Hg'k,

called the space of conformal blocks. We will give three different descriptions of
this space, which can be considered to be 2, 1 and 3 dimensional respectively.
After that we will present a formula for the dimension of Hg*.

Three descriptions of Ha™

i) Conformal blocks arise in rational conformal field theory as the 'chiral’ building
blocks of the partition function, i.e. which depend holomorphically on the complex
strucure of ¥. In the case of the Wess-Zumino-Witten model one can alternatively
consider the partition function

ZEM4,A) = [[dgle™ss@4D

as a function of the background gauge field (4, 4) (4 and 4 denote the holomor-
phic and anti-holomorphic component respectively). The partition function turns
out to have the following form:

dim K"
Z8MA A = Y A T [A) e e AR
I=1
The holomorphic functionals ¥;[A] are the conformal blocks and span the vector

k
space 'Hg’ .

i) We consider the basic representation HS™* of the Kac-Moody algebra:

Uer), T(ex)] = I(lex, ) + & [ tr(erey)

where ¢, ; are liealgebra-valued functions on S'. We want to construct 'Hg‘h as
a subspace of HS* . To this end we choose a point P on ¥ and a circle around
P which we identify with S'. Next we introduce the set £x of local Laurent
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expansions €(z) at P which extend to liealgebra-valued holomorphic functions on
L. Then we define 'Hg'k C HJ* as

HI* = { @) e HE™; J()|¥) =0 for € € £g}

By considering the action of the loop group on these states one can relate this
definition to 1) and also to the third description which we will now discuss.

131) A beautiful characterization of ‘Hg * which is due to Witten, is that it rep-
resents the Hilbert space of the 241 dimensional Chern-Simons theory on £ x R.
This theory is described by the action

SA_—_k/ tr(AdA + 24°
[] Eer( +3 )

and has as its classical phase space the moduli space of flat connections on £. By
making use of a complex structure on £ one can quantize this phase space using
Kihler quantization. The components A and A are canonical conjugate operators
and the Hilbert space is given by gauge-invariant functionals of A:

Ha* = {¥[A]; F(4,4)¥[4]=0}

where we used that the curvature F(A,A) = 4 — 54 + (A, 4] is the generator of-
gauge transformations.

A dimension formula for Ha*

It is possible to extend the definition of the space of conformal blocks to surfaces
with punctures. In this case one has to assign to each puncture a representation of
G, where only those representations are allowed which lead to integrable represen-
tations of the Kac-Moody algebra. These are labeled by positive weights A € P,
where:

Po={)€P,; ¥-A<k}

where 1 denotes the longest root.

When I degenerates into a surface with nodes one finds that the conformal
blocks on I factorize into those on the punctured surfaces. Therefore, Ha* is
isomorphic to a direct sum of tensor products of the spaces associated with these
punctured surfaces. This means that in order to be able to compute dim H2* one
only has to know the dimensions N,,, (A,u,v € P.) for the case of the three-
punctured sphere. This information is contained in the fusion rules, which can be
described as follows.
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We consider the Weyl characters chy(8) = try(e?F) for A € P,. It turn out
that these characters form a closed algebra when we restrict § to the following
discrete set of points on the Cartan torus:

vefn=2e(s2) s ver)
where p = T,ea, %a and h is the dual Coxeter number. These points correspond

to the set of zeroes of the characters of the first ‘bad’ representations with ¥-A > k.
The multiplication rule of the Weyl characters is precisely given by the fusion rules:

ch;(ﬂ,)ch,\r(ﬁv) = Z N)Ar“ Chp(gu)

HEP,

and this determines the multiplicities N,,,. Then using Weyl’s character formula
and some combinatorics it becomes straightforward to compute dim 'Hg’k. The
result is: .
dim HS* = ((k + h)C’)_!xn o110 (1 - ea(a")) e
AEPy aEA

where yg is the Euler characteristic of £. The constant C, which is independent
of £ and ¥, is uniquely determined by the requirement that dim'H?,‘k = 1. The
form of this result actually suggests that it should be possible to derive dim Hg"”
from a fixed-point formula.

As a final remark we mention that also for discrete groups one can construct
a space of conformal blocks, given by the L%-functions on the moduli space of
G-bundles. The fusion rules in this case turn out to be related to work of Lusztig
on equivariant K-theory. One might expect that also in the continuous case there
is such a relation.
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COMPLEX IMMERSIONS AND CHARACTERISTIC CLASSES
Jean—Michel Bismut

Université Paris—Sud

Orsay

The purpose of this talk is to review some recent results on refined characteristic
classes associated with immersions of complex manifolds and resolutions of vector

bundles, in relation with Arakelov theory.

Let i: Y — X be an immersion of complex manifolds, let { — iyn—— 0 bea
resolution of a vector bundle 7 on Y by a complex £ on X . Assume that all the

considered vector bundles are equipped with metrics.

For u > 0, one can construct smooth Chern character forms w, on X by using
Quillen’s superconnections. Then a result I obtained recently [1] states that under
compatibility assumptions on the metrics of ¢ with metrics on # and on the normal

bundle N to Y,thenas u— 4+ o

_,ch(n) ¢ .
“u Td(N) 3

Using the analytic torsion formalism, in joint work with Gillet and Soulé [3,4], we

construct currents T(£) on X which solve the current equation
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88 ch(n) Sgyy
2“'1‘(6) —Ch(£)+Td(N) {Y}

With Gillet and Soulé [3,4], we proved natural functorial properties of the current

T(¢) . In particular, to a commutative diagram of immersions

YNY —oY

I

Y —X
we associate a corresponding commutative diagram of currents.

The second part of the talk is to explain how to interpret the Todd form of a vector

bundle as a generalized Chern character form in the superconnection formalism [2].

The third part of the talk is devoted to the construction of a complicate
characteristic class associated with an exact sequence of holomorphic Hermitian vector
bundles 0 — L — M — N — 0 [2]. The idea is to consider a double complex in
M which describes the resolution of the sheaf J(L) by the Koszul complex of N, and
to calculate the corresponding generalized Chern character of the family. In this way,
one calculates a form lB(L,M,gM) (where gM is the metric of M) solving the

equation

9 9pmgMy = TAM) _py(r) .
ir Td(N)
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The evaluation of B(L,M,gM) in terms of the Bott—Chern class ‘f&(L,M,gM) shows
that modulo irrelevant coboundaries

B (LM,g") = - T¢ () Td(L,M,g™) + Tam)D(V)

where D is the additive class associated with the derivative at 0 of the Mellin

- (u,x)
transform of oo , where

+ 4u
1 .

In a joint calculation with Soulé (appendix of [2]), we obtain the formula

The series D(x) is closely related with a series R(x) introduced by Gillet, Soulé [5]

n
SIS Gl
nodd | 1

which they conjectured to appear in a refined arithmetic Todd genus.



(1]

(2]

(3]
(4]
[5]
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THE DIRECT OPERATOR APPROACH IN QUANTUM STRING THEORY
Sergei P. Novikov
Landau Inst. Theor. Phys. Moscow

Let’s consider a nonsingular Riemann surface I' of a genus g with punctures P,

and with fixed real numbers p; such that

The set of data (I‘,Pi,pi) will be called a "multistring diagram". For any such diagram

there exists a unique differential dk which satisfies the following properties:
a) it is holomorphic on I' outside the punctures P,
b) at every point P, it has a simple pole with the residue equal to p,

c) the periods of dk over an arbitrary closed cycle on T ~ (U .Pi) are pure
Imaginary

Rg%k:o.
v

The real part of the multivalued function k(z) is therefore single—valued. This
function
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7(z) = Re k(z)

is called the "time" (euclidean). We denote the curves 7(z) = const = 7 by C_ and

the domains 7, < 7(z) < 7o by C_ _ . In the case of "one-string" diagrams we have
1'2

m=2, p; <0, py>0. Using a transformation 7— a7, a> 0, we may always

assume that p+=p2=1, p_=p1=—1, P2=P+, P1=P_
I. Fourier—Layrent—type bases on the Riemann surfaces.

For any integer A and one—string diagram (T,P,) in general position, for
"almost" any number n e Z + S(g,A) there exists a unique up to a constant factor
tensor fﬁ(z) of weight A such that: a) it is holomorphic on T outside the points
P, ; b) it has the form

+ &
£ =p ats (L4 0@ ez, S=g/2-X(g-1)
near the points P, . Here z, are local coordinates z,(P,) =0, "almost" means
except a finite number of n’s for A =0,1 or g=1. An analogous statement is true

also for spinors A = 1/2 . Corrections for exceptional values of n, g and A seein the

papers 1], [2]. The bases f;l\ and fél-‘\ are dual:

1 Ael-A _
ﬁ{ L iy _'Jn,—m'

CT
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Theorem 1. Let C 1' be nonsingular. Then for any smooth tensor f'\(cr) of weight A
on C_ the (Fourier type) expansion is valid:

£ o) =2fi(a)[2%1—§ f"(a')f:"(a'))] .
i c

T

The same expansion is valid for tensors holomorphic in the domain C oy
172
(Laurent—type) . Theorem 1 is valid also for A =1/2.

We shall use special notations for A=-1,0,1/2,1,2:

.-l
e -fn

_+0
n (vector fields), A  =f_ (scalars)

f111/ 2 ¢, (spinors) , flll(forms) =dw

-1 ?

fﬁ = d%0 _p (quadratic differentials) .

Multiplication of our elements f i has the important "almost graded" property:

Aeph _ ,\,uk At+p
fnfm_ 2 Q f11:L+11—k
|k|<g/2
Ay
[en’fm] - 2 an n+m—k * go—3g/2.
| k| <g,

For A =0 we have the commutative algebra A, and for A =—1 the Lie algebra L.
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The Riemann analogue of the Heisenberg algebra is generated by the elements

a, ~— A and t with the following relations (A = const) :

n —g/2

lat] =0, [aga ] =75, ¢
1
»,m=-mf AdA_, 7. =0, |a|>g/2, |a] >g/2, [m+n| >
Cr

and 7, =0 forall (mn) if |m+nf>2.

The analogue of Virasoro algebra is generated by the elements e, , t with

commuting relations

[eqen] = z Cmn m+n—k ¥ X mn
k| <gg
k -1,k
Cmn Rm n '’ xmn"X(en’em)

x (f.8) = § (£ 'g—g"" ") —2t"g— g’ HR] dz
C

,
f=1(z)0/ , g =g(z)d/ 0z,

R(w) = R@w' 2+ (w'’ /[’ =3 (w' " [w')2), w' = dw/dz.

Conjecture. HX(L,R) = H)(T~ (P, UP_),R).
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Theorem 2. The central extension of algebra L , which is almost graded, is unique.

Let X* and P¥ be the quantized coordinates and momenta (s =1, ... ,d) with
standard commuting relations, J¥(¢) = 8 aX" +xPH= 2 a ﬁdwn(a) .

n

Lemma. [a ﬁ,a 1;] = n‘w'ymn , n”‘”: diag(+ 1,1, ... ,1) . The holomorphic parts on

"vacuum—sectors" of "in" and "out" Fock spaces are defined by relations:
&t 10>=0, 0>g/2, n=~g/2 ("n")
H :<0la,=0, n<—g/2 ("out").

For energy—momentum tensor we have

Normal product is not unique. It is such that

e =aa , (mn)e zt

rapa =a o, (mn)eX”
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s-ust =172
and ST differs from the integer half-plane m < n onlyin thestrip |m+n| <g-2.

Theorem 3. T(Q)=XL,dQ, and L, generates the Riemann analogue of Virasoro
algebra with t =1 and some R:

1 k o,k 1
L =35 2 L Oyt am_ﬁi¥ekdwmdwn.

(m ’ n) CT
Theorem 4. Let 7(z) > 7(w) and z —+ w . We have the expansion
J(z)I(w) = d _@_)7 +21(z) + O (z = )
z - W
T)T(w) =4 L+ 27(s) RS2 (1).
2-(z—w)‘i (z -w)2 z-w

Here T=T + R - 1 (pseudotensor).

The holomorphic operator fields are therefore constructed. For the calculation of
physical quantities we need the "pairing" between right and left Fock spaces correspon-
ding to "in" and "out" states. It was done in the papers [1 ~ 3] on the base of fermioni-

zation.

All these results were obtained by the author and I.M. Krichever.
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ON THE EULER NUMBER OF AN ORBIFOLD

Friedrich Hirzebruch
Thomas Hofer

Max-Planck-Institut fiir Mathematik

Let G be a finite group acting on a compact differentiable manifold X. Topological invari-
ants like Betti numbers of the quotient space X/G are well-known:
b(X/G) = dimH(X,R) = I(li_l S tr(g" | HY(X,R))
9€G
The topological Euler characteristic is determined by the Euler characteristic of the fixed
point sets X7

e(X/G) = l%lze(,w)

g€G

Physicists’ Formula: Viewed as an orbifold, X/G still carries some information on the
group action. In [DHVW), ,], [Va] one finds the following string-theoretic definition of the

‘orbifold Euler characteristic’:

1
X, G) = — e(Xxioh)
(X.G) IGI,E,, (X{eh)

Here summation runs over all pairs of commuting elements in G x G, and X{#:3) denotes
the common fixed point set of ¢ and A. The physicists are mainly interested in the case
where X is a complex threefold with trivial canonical bundle and G is a finite subgroup of
SU(3). They point out that in some situations where X/G has a resolution of singularities
X/G L X/G with trivial canonical bundle e(X,G) is just the Euler characteristic of this
resolution ([DHVW,}, [Str-Wi)).

In this paper we consider some well-known examples from algebraic geometry and check to

what extent the formula

oX,G) = e(X/C)

holds. We will also do this in the local situation of a matrix group G C U(n) acting on C™,

since in this non-compact case all the invariants considered here are meaningful as well.
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Some elementary calculations: For a fixed g € G the elements commuting with g form
the centralizer C(g). The conjugacy class [g] is a system of representatives for G/C(yg), so

we have

#C(9) - #([g]) = G-

Since simultaneous conjugation of ¢ and h by some element of G leaves e(X(94}) fixed,
using the classical formula for ¢(X/G) we can write ¢(X,G) as a sum over the conjugacy
classes of G :

e(X,G)

1G| z:#(tgn 3 e(xtem)

heC(g)

el E#([g - #C(g) - e(X?/C(9))

So we get an equivalent definition which sometimes is more useful than the original one:

oX,G) = D e(X9/C(g))
7

For a free action we immediately get ¢(X, G) = e(X/G), and we also see that some assump-
tion is neccessary: For a cyclic group of order n acting on P!(C) with two fixed points,
the quotient is P!(C) again, whereas e(P!,G) = ¢(P}) +{(n—1)-2 = 2n.

Loop spaces: For g € G we consider the space of paths
L(X,9)={a:R=X|a(t+1)=ga(t)}.

G acts on the disjoint union of these spaces by (ha)(t) := h-a(t). Obviously h transforms
L(X,g) into £L(X,hgh~'). We form the quotient

L(X,G) = (U c(x,w) 16 = | &X9)/C).
g [o]

The real numbers act on the £(X,g) and on L(X,G) by transforming «(t) to a{t + ¢).
The fixed point set of this action is

U (X9/Clg) © £(X,G)
(s}

where X? is embedded in £(X,g) as the set of constant paths. This corresponds to the
inclusion of X in the ordinary loop space £(.X) as the fixed point set of the obvious S'-
action. On each component £{X, g) our R-action is in fact an action of S! as well because
a(t + ord(g)) = a(t). So we can take the Euler characteristic with respect to this action,
L.e. the Euler characteristic of the fixed point set, and get the orbifold invariant ¢(X,G).
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Quotient singularities: If G is a finite subgroup of U(n) acting on C", then every
fixed point set is contractible. Thus ¢(C™,G) equals the number of conjugacy classes, i.e.

the number of isomorphism classes of irreducible representations of G.

If in particular G C SU(2), then the corresponding 2-dimensional quotient singularity
has a minimal resolution C‘ETG by a configuration of rational (-2)-curves. This is equiv-
alent to C-Z’TG having trivial canonical bundle. If the number of exceptional curves is &,
then 3(0770) = k + 1. Now the McKay correspondence states that the number of non-
trivial irreducible representations of G equals this number & of exceptional curves, hence
¢(C3/G) = k+1=¢(C?,G).

For resolution configurations containing other than (-2)-curves and therefore having non-

trivial canonical divisor the result is false: If G is a cyclic subgroup of U(2) generated

by
(exp(%"i‘,%) 0 )
0 exp(2xit) /°

p,q relatively prime to n, we have ¢(C?,G) = n. But now the resolution graph consists
of rational curves with self-intersections —a; determined by the continued fraction 2 =
ay — ;?E-__r, where r = p/¢modn, 0 < r < n. In the case G C SU(2) considered above we
have r = n—1, the continued fraction has length n —1 with entries a; = 2, and the result
is true. But for p = g there is just one (-n)-curve, so e(C?TG) = 2 equals ¢(C?,G) =n
only if n =2, i.e. GC SU(2).

In highef dimensions the same phenomenon occurs: If G C SU(n) is generated by a diagonal
matrix diag(¢,...,{) for ¢ a primitive n-th root of unity, then a resolution of (C"/G) con-
sists of a single P"~! with normal bundle O(—n) and we have ¢(C"/G) = n = ¢(C",G).

Kummer surfaces: The quotient of an abelian surface (two-dimensional complex torus)
X by the involution 7 : 2 — —z has 16 singularities corresponding to the 16 fixed points of
r. Each singularity can be resolved by a single (-2)-curve. This minimal resolution X—F’)
is called the Kummer surface of X. It is a K3-surface with Euler characteristic 24. On the

other hand (X, (r)) = 3 (e(X)+3-¢(X7))=1(0+3-16) = 24.

A Calabi-Yau manifold: This is a corresponding example in dimension three. If C is
the elliptic curve with complex multiplication of order 3, the cyclic group G = (p) of order
3 operates also on X = C x C x C with 27 fixed points. As described above, each of the

corresponding singularities is resolved by a P?, and we get

e(X,G) = 3(e(X)+8-¢(X?) = $(0+8-27) = 72

i

e(X/G) = e(X/G) — 2T +27-¢(P?) = %(C(X)+2-e(x9))+54 = 2.
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These global results are not too surprising if one has the local results for quotient singular-
ities, since ¢(X,G) = ¢(X1,G) + ¢(X3, G) for reasonable disjoint unions X = X; U X3 of

G-invariant subsets for which the Euler characteristic is defined.

Gottsche’s Formula [G8;,2]:  One important class of examples consists in the symmetric
powers S(™) of a smooth (complex-)algebraic surface S. The symmetric power is a quotient
of the cartesian power S™ by the obvious action of the symmetric group S,. Algebraic

Geometry provides a canonical resolution
Hily®(S) =: s L st

by the Hilbert scheme of finite subschemes of length n. The action leaves the canonical
divisor of S™ invariant, so it descends to a canonical divisor on $(*). This divisor is not
affected by the resolution, i.e. f*Kg» = Kg. If in particular § has trivial canonical
divisor then so does 51"l but we will see that e(S"]) = ¢(5",S,) holds in general.

In his Diplom thesis Lothar Gottsche computed the Betti numbers of S(®] for an algebraic
surface S. His main result is

(=] - oG k et .k

SoP(stz) .t = exp ( £ PG ))

Y _ S2kk
fopurd e=1k 1— 2%%¢

where }5(,‘{',:) denotes the modified Poincaré polynomial ﬁ’(X,z) = P(X,-z) =
Y (—1)°b;(X)z*. For the Euler characteristic ¢(X) = P(X,1) this simplifies to

(il g =1 _t
doe(stly.n = exp(e(S) ;1—_7)

n=0 i=1

= exp (e(S) i % i t“‘)

=1 k=1

= exp (c(S) i —log(1 — t"))

k=1

= [[a-#)o.

k=1

Compare these formulae to those obtained for symmetric powers by I.M. Macdonald ({Ma],

[Za]}, for example:
o

Soe(s™My-tn = (1-t)

n=0

Verification of ¢(5"l) = ¢(S", S,) for symmetric powers of algebraic surfaces: Let
M(n) denote the set of all series (@) = (a1, az,...) of nonnegative integers with ¥, ia; = n,
and M := |JM(n). The conjugacy class of a permutation ¢ € S, is determined by its
type (a} = (a1, a3,...) € M(n) where a; denotes the number of icycles in o, Its fixed



111

point set in S™ consists of all n-tuples (zi,...,z,) with z,, = ... = z,, for any tcycle
(v1...v) in o and is therefore isomorphic to []; S*'. Any element 7 in the centralizer
C(o) permutes the cycles of o respecting their length, i.e. it induces permutations m; of o;
elements. Thus C(o) maps onto []; S,;, the kernel acting trivially on []; S*¢. Therefore
(§™)° /C(e) = [1; S¢@) is a product of symmetric powers. We can compute ¢(S", S,) using
the formulae of Macdonald and Gottsche:

=)

> e(8™,Sa) -t 2 2 Sy /C) v

n=0 n=0 [¢]CSa

£ 5 1)

n=0 (a)eM(n)

> I (est@y-ve)

(a)eMm 21

NCCRR

1 a;=0

= H ts)e(S)

0
::]3

[}

= i C(S[n]) "

n=al

Graeme Segal’s interpretation (Equivariant K-theory): Equivariant K-theory of
{X,G) and ordinary K-theory of the fixed point sets are related by an isomorphism of complex
vector spaces [Se]
Ke(X)®C = (PK(X/C(g))®C.
ta]
The image of an equivariant vector bundle £ on X is defined as follows: On E|xs the

element g stiil acts, leaving the base points fixed. Thus E|xs splits into a direct sum of
vector bundles consisting of the eigenspaces of g in every fibre. We put the corresponding
eigenvalue in the second factor and get an element in K(X?)® C. Now as C(g) still acts on
X7, we can take the invariants and get something in K (X9)°¥) @ C = K(X?/C(g))® C.
The same also holds for K%(X), and by the standard fact that the Euler characteristic of
the complex K*(X) equals the topological Euler characteristic we can deduce

(KH{X)®C) = dimgKE(X)®C - dimgchi(X)®C

= Y e(X?7/C(g))
(gl

= ¢X,G).
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However, since the isomorphism does not commute with Adams operations, we cannot say

anything abo

ut the single Betti numbers.
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