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NON-HOMOGENEQUS KAHLER-EINSTEIN METRICS
ON COMPACT COMPLEX MANIFOLDS 11

Norihito KOISO and Yusuke SAKANE

In previous paper K-S [12] we have considered Pl(C)-bundles
over compact Kahler-Einstein manifolds to obtain non-homogeneous
Kahler-Einstein manifolds with positive Ricci tensor. The purpose
of this paper is to give more examples of non-homogeneous compacg '
Kahler-Einstein manifolds, more precise]y, compact almost
homogeneous Kahler-Einstein manifolds with disconnected
exceptional set. By [1] and [8], the structure of orbits of almost
homogeneous projective algebraic manifolds with disconnected
exceptional set have been investigated, but no explicit examples
were given in {1] and [8] exqept complex projective spaces. To
construct these examplies, we start again with P1(C)—bundles over
Kahler C-spaces and consider compact complex manifoldsrobtained
from these P.(C)-bundles by blowing down. Note that compact
compiex manifolds obtained from projective algebraic manifolds by
blowing.down are not Kahler in general as an example of Moisezon
[14] Chap. 3, section 3 shows. We construct our compact complex
manifolds in section 3 and prove that our compact almost
homogeneous complex manifolds are Kahler and have positive first
Cpern class (Theorem 4.1). But in general these almost homogeneous
manifolds may be homogeneous. We give a sufficient condition-for
these Kahler manifolds being non-homogeneous (Theorem 5.1). In

section 6 we show that for each positive integer d there are



compact Kahler-Einstein manifolds which have cohomogeneity d. We
follow the notation in Kobayashi-Nomizu [11] which is slightly

different from the one in .[121].
1. Kahler C-spaces and Dynkin diagrams

We recall known facts on compact simply connected homogeneous
Kahler manifolds, called Kahler C-spaces (cf. Takeuchi [18]).

Let T be a Dynkin diagram and “0 a subdiagram of TW. The
pair (n,no) is said to be effective if UO does not contain any
irreducible component of W. Let Z be the root system with the
fundamental root system H. Choose a lexicographic order > on
Z such that the set of simple roots with respect to >
coincides with TUW. Take a compact semi-simple Lie algebra 8,
with the root system X and let t be a maximal abelian
subalgebra of gul Denote by g and b the complexification of

84 and ! respectively. We identify a weight of g relative
to the Cartan subalgebra f with an element of J=1t by the
auality defined by the Killing form ( , ) of g. In particular,
the root system X of g relative to bh 1is a subset of J=1t.
Let {Aa)aen' c J-1t be the fundamental weights of g
corresponding to W &

(1.1)

2(Ay,8) 1 if o= 8
(8,8) =

Let Zf be the set of all positive roots and {ﬂo}z the subgroup

of J/-1t gZenerated by ."0' Put EO = Zf\{ﬂo)z. We define a

subalgebra u of g by



(1.2) u

L]
o
+

>

anO\JZ+

where Qa is the root space of g for o € . Let G be a
simply connected complex Lie group whose Lie algebra is g , and
let U be the connected (closed) complex subgroup of G
generated by u. Put M = G/U. Then it is known that the
comﬁlex manifold M = G/U is compact, simply connected and
admits a homogeneous Kahler metric. Let G, be the compact
connected subgroup of G generated by g . Put K = Guf\U.
Then K 1is connected, Gu acts on M transitively and M =

G/U = Gu/K as a smooth manifold. This homogeneous complex

manifold M is said to be assoctitated to the pair (W, W ) of

0
Dynkin diagrams.

We define a subspace ¢ of /-1t by

S o,

n-n
o€ 0

(1.3 c

Then J-1lc¢ coincides with the center of the Lie algebra { of

K. We also define lattices Z of J-1t and z, of ¢ by

(1.4) Z = (xe/-1t] 2(0,)/(¢,) is an integer for each o€X)

and

(1.5) ZC = ZNc.

Let m be the orthogonal complement of [ in 3, with
respect to the Killing form ¢, ) ; g = | + m. The subspace

u
mM is K-invariant under the adjoint action and identified with

the tangent space TO(M) of M at the originL 0o € M. Put



n
™M
'
™M
™M
n
'
™M

+
(1.6) Zm

We define K-invariant subspaces mn of g by

t
(1.7) m- = E 9 _q

+
aEZm
Then fhe complexification mc- of m is the direct sum
mt = " o+ m

We denote by X - X the complex conjugation of g with respect

T
to the real form S Then m* = m%. We choose Eaega for

¢ €Z with the following properties and fix them from now on :

(1.8) [Ey,E_ 1 = -«, (E,E ) =-1, E = E_  for o€ I

04

Let {0} be the linear forms on g dual to {Ea that

xES Yaeg

is, linear forms defined by

%)y = (0)

(1.9 o 1 ifa=8
o (EB) = {

0 if o = 8

Let T be the toral subgroup of Gu generated by t. The
tangent space Te(T) of T at the identity element e |is

identified with t. Let ﬁl(T) denote the space of T-invariant

real 1-forms on T. Then we have natural linear isomorphisms:

1

(1.10) t — t*= THr) — #1(1y — uler.R)

1

We identify t with H (T,R). Then we have

(1.11) Z = Hl(T,Z).

2rn/-1



It is known that the inclusion ¢ : T — K induces an injective
linear map = : Hl(x,R) — HI(T.R) with

z*Hl(K.R) = (1/2n/-1)c and t*Hl(K.Z) = (I/ZRJ:T)ZC. and that the
transgression for the principal bundle K— G— M defines a
linear isomorphism T : H'(K,R) — H>M,R) with tH (X,Z)) =

HZ(M,Z). We define a linear map T:C— H2

M, R by
TX) = -t/ e2en/-1)) for A€c ,
where HI(K.R) is identified with 1/(2rn/-1)c through t*. Then

T(z,) coincides with H’(M,Z) (cf.Borel-Hirzebruch [41).

+
We define a cone ¢ in ¢ by

(1.12) ¢ = (x€cl (A, a) > 0 for each aQ€N-W_ }

0

and put yA = Z N ¢ .

Then we have

(1.13) ¢” E R+Aa ,

m-mn
xE€ 0

SR

ETT-T0
oem-m,

(1.14) Z

+ .
Moreover, the cone ¢ is characterized by

¢t = (xec| (a,a) >0 for each aez; ).

Lemma 1.1 (Takeuchi ([181). Let ﬁé'(M) be the space of
u

closed Gu-invarinat real 2-forms on M and kz(M,g) the space

of real harmonic 2-forms on M with respect to a Gu—invariant



Riemannian metric g on M. Then }é (M) = RZ(M,g).
u

Let X€c. Regarding each ma a Gu-invariant C~-valued 1-form
on Gu’ we define a Gu-invariant C-valued 2-form na(x) on G

u
by

(1.15) n() = 1 E e 0% o™
2n/-1 +
aezm

We define a compleX linear form k on gu by

X(X) = (A,X) for Xea, .

and regard X as a Gu-invariant C-valued 1-form on Gu
Thus 1/ 2n/~1)X is regarded as a Gu—invariant R-valued

l1-form on Gu’ Then we have
N = -d(i/2r/cDX ),

and n{xX) <c¢an be pulled down to a unique form in !é (M>. Thus
u

the correspondence A — n(A) defines a linear map

n e o— fé (M.
u

Lemma 1.2 (Takeuchill181). Let ¥ be the natural map

assigning to o Efé (M) the de Rham class {w] in H2

u

(M,R). Then

we have the following commutative diagram consisting of linear

isomorphisms :



(1.16) ¢ ——— H"WUM,R)
N,
fG (M)
u

We define elements &

(1.17) b= 3 2L o« , 8= 3 T o
oze}:; aes’

respectively. It is known that 25 € z and 5= Y A

Now we recall the following facts.

Fact 1 (cf. Borel-Hirzebruch (4], Takeuchi [181).
Let M =G/U = Gu/K be the compact homogeneous complex

manifold associated to an effective pair (n,m.) of D?nkin

0
diagrams. Then we have the followings.

1) For A € c,

?L > (A,a)m_a- "k
R +
aezm

(1.18) g{x)

defines a Gu-invariant real covariant symmetric tensor field of
degree 2 on M, and the correspondence A — g(x) gives a
bijection from ¢” to the set of Gu-invariant Kihler metrics on
M.

2) The first Chern class CI(M) of M is given by

¢, (M) = 3(-25m). For the Kahler metric g corresponding to



A € c+. the Kahler form « (defined by w(X,Y) = g(X,JY), where
J is the almost complex structure of M ), the Ricci tensor r

and the Ricci form p are given by

(1.19) 0 = o) = -(~I/@m) T a0 o %, o %
+ ?

aezm

(1.20) r = 4mg2s) = 2 3 (25,0 o % ™%
+ ’

aEEm

(1.21)  p = 4m(2s ) = -2/71 3 25 ,@ o %, o %,

a62;

Fact 2 (cf. Ise [91).
For each AEZC. there is a unique holomorphic character xA
of U such that

XA(epo) = exp(A,H) for each Heh.,

Let I..A denote the holomorphic line bundle on M associated to
the principal bundle U — G — M by the character Xy The
correspondence A — LA induces an isomorphism from Zc onto the
group H}(Maef) of all holomorphic line bundles on M. Moreover,
under this isomorphism the subset -Z; corresponds to the set of
all very ample holomorphic -line bundles on M. The first Chern

class cl(LA) of LA contains a unique Gu-invariant 2-form

_ /-1 -a -w
(1.22) nA) = = Z:+ Ao) 07 o
aezm

- 8§ -



on M.

2. Kahler C-spaces as projective bundles

Let E be a holomorphic vector bundle of rank r over a
complex manifold N. The comlpex projective bundle P(E)
associated to E is defined as follows. Let C* act freely on

E-(0-section) by scalar multiplication. Then P(E) 1is the

quotient complex manifold
P(E) = E-(0-section)/C*

Thus a point of P(E) over xX€N represents a complex line in the

fiber Ex cf E at X. We organize various spaces and maps by

the following diagram:

P(EY — E-(0-section)

(2.1) \\\&\\‘*9 k///,//’

Using the projection ¢ : P(E) — N, we pull back the bundle E
to obtain the vector bundle w*E of rank r over P(E). We
define the tautological line bundle L(E) over P(E) as a

subbundle of ¢*E as follows. The fiber L(E)E at E€EP(E) is

the complex line in E@(ﬁ) represented by E£. Note also that if

L 1is a holomorphic line bundle over N , then P(E) is
canonically identified with P(E®L) as complex manifolds and

L(E®L) = L(E)Gw*L as holomorphic line bundles.



Let T be a Dynkin diagram and "0 a subdiagram of T such

that W, is of type A, , (W, = ¢ if L=1). Consider also a

subdiagram “1 such that nl contains "0 as a subdiagram and

Ul is of type Ag - Put 21 = 2f\‘“1’2' We define a Lie

subalgebra p of g by
(2.2) p = b+ z 8y
aGEI'UZ+

as in section 1. We denote by G/U , G/P the Kahler C-spaces

associated to the pairs (W, m ) , (W, T ) of Dynkin diagrams

0 1
respectively. Put (ao) = ﬂl—no and AO = Aao € Z. We define a
subalgebra g{(l1) of P by
(2.3) 8(l) = b+ 2 8.
aezl :

and let G(l1) be the complex subgroup of G generated by g(l).

Then there is an irreducible representation

PA G(l) — GL(VA ) of G(l1) with the highest weight A
0

0 0

The representation PA can be uniquely extended to an
0

irreducible representation of P , which is also denoted by .

pAO ‘P — GL(VAO)' Note also that dichAO = Q+1,

We denote by EA the homogeneus vector bundle over G/P
0

defined by the representation pA : P — GL(VA ) and by
0 0



) the complex projective bundle over G/P associated to
0

the vector bundle EA . Then G acts on EA and P(EA ) in
0 0 0

P(EA

natural ways: We denote by ([g,v] the element of EA defined by

0
(g,v)EGXY and let p : E, -(0-section) — P(E, ) be the
A A A
0 0 0
projection. Take a highest weight vector vA of
' 0
pA P — GL(VA ), that is, VA is a non-zero vector of VA
0 0 0 0
such that
p, (Hv = (A,,H)v for HEbD
(2.4) Ao Ay 0" A
+
PA (Ea)VA = 0 for Ea€ga , OEX
0 0
and fix it.
Lemma 2.1. We have an identification : P(EA ) = G/U.
) 0

Proof. At first note that G acts on P(EA ) transitively,
0

since G(l) acts on P(VA ) transitively. Put. o = p([e,vA 1),
: 0

0
Consider the isotropy subgroup Go of G at OEP(EA ). Then we
' 0
have G_. = (g€G| g€P, p, (g)V = A(g)v for some A(g)el-(0)}.
0 AO AO Ao

Thus the Lie algebra go of G0 is given by

(2.5) g = {Xeplp, (XOv € Cv, )

0 AO AO AO
= b + E ga = H + E ga
(Ao.a)zo.aezluz" aezouz*



Hence go = uU. Since the normalizer of the parabolic subgroup U

coincides with U, we see that U = Go and P(EA ) = G/Go = G/U.
0
qg.e.d.

Now we consider the homogeneous vector bundle EA- over G/P.
0

Then E, -(0-section) is a C'-bundle over P(E, ). Let
Ao Ay
L(EA )} be the tautological line bundle over P(EA ) associated
0 0 )
to the vector bundle EA over G/P. Then we have an
0
identification : E, -(0-section) = L(E, )-(0~-section).
AO A0

Lemma 2.2. The tautological line bundle L(EA ) is the
0

holomorphic line bundle LA over P(EA ) = G/U associated to
0] 0

the principal bundle U — G — G/U by the character XA ~of U.
0

Proof. Since (Ao.a) = 0 for each aEZO, pAo(Ea)vAO = 0

pA induces a representation
0

p : U — GL(Cv, ), which is identified with the character X
AO A0 AO

of U, since p, (expH)v, = exp(A,,H)v, for Heh, Note that
0 0 0

by Lemma 2.1 each eiement of L(EA ) can be written as [g.AvA ]
0 0

for each o€ZX Thus

On

(ge€G, 1€0). Now let [g,av, 1, [g',uvy 1 be elements of L(E, ).
. 4} 0 0
Then [g.AvA l = [g?,nvA ] in L(EA } if and only if g' = gu
0 0 0

( uélU > and pA (u)uvA = AvA . Thus we get our claim.
0

0 0
qg.e.d.



Now we recall the following general formula for the canonical
line bundle of a projective_bundle. Let ¢ : E— N be a
holomorphic vector bundle of rank r over a complex manifold N
K

and let K denote the canonical line bundle on P(E) ,

P(E) ' N
N respectively. Then

2.7) e* (K ®detE¥)®L(E)T

Kp(E) N

where detE* denotes the holomqrphic line bundle XE*.
We apply this formula to compute the first Chern class of

P(EAO) = G/U.

Lemma 2.3, The element —2ame —Z; corresponding to the

first Chern class ¢ (P(EA )Y of P(EA ) = G/U is given by

1 0 0
(2.8) —26m = -(ﬂ+1)Ao + E -naAa for some naeN.
xem-m
1
Proof. Since 25 € z;. it is of the form
26m = E naAa (naEN).
-1
e "0
Since K edetE* is a holomorphic line bundle over G/P, the
G/P AO

Chern class of m*(KG/PGdetEX } contains a unique Gu-invariant
0

2~form n(Al) with



n-n
(s 45 1

By Lemma 2.2 and Fact 2, the first Chern class c;(L(Ey ) of
0
L(EA ) contains a unique Gu-invariant 2-form n(AO). Since
0

EA is a holomorphic vector bundle of rank £+1, we see that

0

26m = ’Al + (l+1)AO

by the formula (2.7) and Fact 2, and hence we get our claim.

q.e.d.

Remark. We may prove Lemma 2.3 by a computation on root

systems as follows. Put T = (a, ,...,x. }). Since W is
0 i i 0
1 2-1
of type Aﬂ-l’ we have '
2 oa = (A-a, o+ ...+ jl-jda, o+ ... o+ (2-Da,
e 11 i lg_y o
*€20
+ Tt |
where EO = X (\ZO.
Since T, is of type A!-l and ﬂl-ﬂo = (aO}. we may assume
that
2(a0.ai1) 2(ay,0; )
—_——— = -], —_d 29 for 2 < j £ Q-1.
Thus we see that
2:+ @ = =(L-DAy+ 3 Myl (m, €Z)
xEL, a€M-(at )
Hence we have
28, = 25 - 2:+ @ = 203 A o+ @-DA, - 3 m Ay
a€Z, a€emn Q€M- (ot )

- 14 =~



= (LA, v+ > n A, = (L+1)A, + > n A,

oo 0
XEMT-{a.) QEM-T

0

. +
where naew for each o€nm-T since 26m € Zc

l’

3. PI(C)-bundles over Kahler C-spaces and blowing down

Let Nl' N2 be compact complex manifolds and consider
holomorphic vector bundles E1 of rank 2+1 =2 2 over Nl’ E2 of
rank k+1 2 2 over N,. We also assume that the total spaces

2
P(El) and P(Ez) of projective bundles coincide as compleXx

manifolds, which is denoted by M, and that there are holomorphic

line bundles L. over N

1 1 2 2

=1
1

and L! over N such that the

) over P(E.®L'"Y) and

1771

|-1 ' < . '-1 -1 - f
2 ) over P(E2®L2 }) satisfy L(E18L1 ) = L(E2®L2

more precisely, there is a holomorphic bundle isomorphism

,=1.-1 v =1
1 ) T L(E @Lz

2
P(E.®L: 1) T pEY T

1771 1

tautological line bundles L(ElsL

-1 -1

L(E2®L ),

) compatible with the identification :

"1y We also consider the

L(E1®L

P(Ez) = P(E29Lé

PL(C)-bundle P(leL(EleL"l -1

1 )) = P(L(E

29L2 )8l) over M =

P(EIGL'-IY ="P(E29Lé-l). whose total space is denoted by X.

1
Note that complex submanifolds M
-1

M, of X defined by the

"1y are

1 2

) and O-section of L(EzeLé

) and M = P(EzeLéﬁl) respectively.

O-section of L(EleLi

identified with M = P(EleLi'l

We organize various spaces and maps by the following diagram:



1 -1

X = PUSL(ESL; 1)) = P(L(E,8L; hel
| | n
- 1-1 - ,-1
(3.1) M = P(E@®L;TH) = P(ESELH
| o l o,
Ny Ny

Now the following lemma is a special case of Nakano [161],

Fujiki-Nakano [6] (c¢cf. Moisezon [14]).

Lemma 3.1. There exists a complex manifold Y containing
Nl' N2 as complex submanifolds and a holomorphic map ¢ : X — Y

in such a way that (X,®) 1is a composition of monoidal transforms
-1 1

from Y with centers Nl' N2 and M1= ] (Nl), M2= o (Nz).
that is, Y 1is a complex manifold obtained from X by blowing
- -1 - =1

down Ml = P(E1®L1I ) to N1 and M2 = P(E29L2 ) to N2.

Proof. Note that the normal bundle of P(EleLi-l) is the
line bundle L(EleLi-l). Thus the condition in Fujiki-Nakano [6]
'is satisfied.

g.e.d

Remark. Note that the tautological line bundle L(E) over a

projective bundle P(E) is obtained from E by blowing up the

0-section of E to P(E). Note also that P(I®L(E.®L! 1)) is a

171
union of complex submanifolds L(EleLi"I) and L(EzeLé-l) with

i i v-l g-l - .—1 - - .
the intersection L(E18L1 )(\L(E29L2 ) = L(EIBL1 }-(0-section)

= L(EzeLé—l)-(O-section). Thus Y 1is a union of the canonically

1 and E.@L:7!

8L, with the

imbedded complex submanifolds El@Li-

_16-



, . -1 . 1o : _
intersection E1®L1 (\EzﬁLz = E1®L1 (0O-section) =
E2®Lé—1-(0-section), which is also L(E1®Li_1)-(0-section) =
e .
L(E2®L2 )-(0-section).
Now we consider the triples (U,Hi,ﬂo). (".ﬂf.ﬁo) of Dynkin

diagrams which are one of the followings.

(a) The Dynkin diagram T is connected, "0 is a subdiagram
of W and of type Al—l’ and subdiagrams ni,ng

1 of T are of

type Aﬂ and contain "0 as a subdiagram.
(b) The Dynkin diagram 1T has two connected components
m(1) and U(Z), and "0 is a subdiagram of W which has also

two connected components T (1) of type Al-l and TW_.(2) of

0 0
type Ak-l' Subdiagrams Hi. ﬂ% of T have also two connected
1 1 2 2 .

components "1(1) and "1(2). Wl(l) and U1(2) respectively,
and we assume they satisfy the following conditions:

(1) ﬂi(l) is a subdiagram of WU(l) , of type Al and
contains W (1) as a subdiagram, and nicz) coincides with
no(z).

(2) nfcz) is a subdiagram of T(2) , of type A_ and

contains HO(Z) as a subdiagram, and ﬂf(l) coincides with
no(l).

Examples 3.1. The vertices contained in "0' m

of a Dynkin diagram T are denoted by o, 2, x for i =1, 2

respectively.

- 17 -



(a) (",WI.WO) X—0—0=——0=—Q=—Q——X—X
2 e
(“,ﬂl,ﬂo) X—X—0—0——0—0—0—xXx
(b) (ﬂ,ni,no) X—O0—0—0—X X—0—0—0—X—X
(ﬂ.ﬂf,ﬂo) X—X—0—0—X X—Q—0—0—0—3X
. _ gl _ Cy o .
Put aocl) ) = Hl "0 and Ao(l) Auo(i) for i 1, 2.

We consider Kahler C-spaces associated to pairs of Dynkin
diagrams and Pl(C)-bundles over Kahler C-spaces.

Case (a). We denote by G/U, G/Pl, G/P2 the Kahler C-spaces

1 2

associated to the pairs (ﬂ,ﬂo), (“,Ul), ("."1) respectively, and

by El’ E2 the homogeneous vector bundles EAO(I)’ EA0(2) over

G/P

1’ G/P2 respectively. By Lemma 2.1, we have M = P(El)

P(Ez) = G/U, and L(El) = LAO(I)’ L(Ez) = LAO(Z) by Lemma 2.2.
Put L1 = LAO(I) and L2 = LAO(Z)' Note that there is a

holomorphic line bundle Li (resp. Lé ) aver N1 = G/P, (resp. over

1
- * * - * ' - '
N2 = G/Pz) such that ?lLl = L2 (resp. ¢2L2 = Ll), where
¢,: M= G/U— N, = G/P, (resp. @,: M = G/U — N, = G/P,) is the
. -1, -1 -1.-1
projection. We thus have L(E;8L;™') = L 8L,' = L(E,8L; )
Note also that the PY(C)-bundle X is given by P(10L18L;1).

Case (b). We denote by Gl/ul’ Gl/Pl’ G2/U2, 62/P2 the

Kahler C-spaces associated to the pairs (W(1),m

0
i(l)}. (M(2), M (2)), <n<2>,n§(z)) respectively and by

(1),
(m¢1y,mw

El’ E2 the homogeneous vector bundles EAO(I)' EAO(Z) ’over

- 18 -



Gl/Pl’ Gz/P2 respectively. We regard the vector bundle E1 over
GI/PI ( resp. E2 over G2/P2 ) as a vector bundle over N1 =
GI/PIX G2/U2 ( resp. N, = G1/U1x G2/P2 ), which is also denoted
by E1 ( resp. E2 ).‘ By Lemma 2.1, we have M = P(El) = P(Ez) =
Gl/le GZ/UZ’ and L(El) = LAogl) and L(Ez) = LA0(2) by

Lemma 2.2. Put L1 = LAo(l) and L2 = LAO(Z)' Note that there is

a holomorphic line bundle Li (resp. Lé ) over N1 (resp. over

N,) such that ¢*L' = L, (resp. m*L' = L, )}, where ¢1: M — N

2 171 2 272 1 1
(resp. sz M — N2) is the natural projection. We thus have
-1, -1 _ ,=1.-1
L(EIGL1 ) = LleL2 = L(E2®L2 ) . Note also that the
PL(C)-bundle X is given by P(10L19L;1). Put G = Gx G, and
U = le U2.

In case (a) and (b), we call X the PL(C)-bundie associated

PR 1 2
to the triples (n,nl,ﬂo). (U,nl,no

call Y obtained as in Lemma 3.1 the compact complezr manifold

) of Dynkin diagramgs. We also

obtained from X by blowing douwn agsociatd to the triples

' (n,ni,no), (n,nf.no) of Dynkin diagrams. Note that in this case

Y is almost homogeneous with respect to the complex Lie group

G, since EleLi-l-(O-section) = LleLgl—(O—section) is an open

G-orbit in Y , and Y has a disconnected exceptional set which

consists of twa G-orbits N N Note also that Nl’ N are

1* 2!
Kahler C-spaces associated to the pairs (n,ni), (n;ni)

2

respectively.

4. Almost homogeneous Fano manifolds.



A compact complex manifold is called Fano if its first Chern
class is positive. In this section we prove the following.

Theorem 4.1. Let (7,7m1,M) and (T,1%,1) be triples of
Dynkin diagrams, as in section 3, X the PI(C)-bundle associated
to these triples of Dynkin diagrams and Y the compact complex
manifold obtained from X by blowing down associated these

triples 6f Dynkin diagrams. Then Y 1is a Kahler manifold with

positive first Chern class.

First we recall the notation of K-S [12]. Let m : L — M be a
holomorphic line bundle over a compact Kahler manifold M with a
hermitian metric h. Denote by L the open set L-(0O-section) of

L. Let t be a function on L which depends only on the norm
s of h and increases for the norm. Then the horizontal-lift
X of a vector field X of M to L with réspect to the

canonical hermitian connection of L 1is characterized by
4.1 mX=x, Xrtl = dN0t1 = 0

where J is the almost complex structure of the total space of L.
We decompose the group C* into SlxR+ and define holomorphic
vector fields S, H on L Zenerated by Sl-action. R*-action

respectively so that
(4.2) exp2nS = id , H = -JS , HLtl > O .

If we denote by pL the Ricci form of L, then we have



(4.3) tX, Y1 - X, Y1 = (X,Y)S.

Define a hermitian 2-form B on M, the Ricci tensor of L, by

(4.4) B(X,Y) = X,JY>,

where. J is the almost compex structure of M.

~ Q
We also consider a riemannian metric g on L of the form

2 2

(4.5) g = dt® + dteD® + n'g,

where {gt} is a ane-parameter family of riemannian metrics on M.
Define a positive function u on i depending only on t by

(4.6) w(t)2 = Z(H,H).

Ar

" Then, by Lemma 1.1 of K-S [12], the metric & on L 1is a Kahler

metric if and only if each gt is a Kahler metric on M and

E%gt = -u(t)B. We also assume that the range of t contains @.
Put
t
(4.7) uet) = f u(t)dt ,
0

then we have

(4.8) g, = & - U(t)B.
Ve put
(4.9) ult) = a cos é with t € (- gh , %a) for a > 0,

and define U(t) by (4.7). Take a Kahler metric &, on M and
assume that each g, defined by (4.8) is positive definite. We
consider the Kahler metric g on L of the form (4.5) satisfying
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(4.6). Then we have

(4.10) UCt) = a®sin é + b.
We may assume that the range of U is (-(2+1), k+1) for given
positive integers k and &, by changing the origin of U and
a>0 if necessary. Thus we have

(4.11) a2 =

(8+k+2) , b = F(k-2).

S
LT

Lemma 4.2. Let s be the norm of the hermitian line bundle
n: L -— M. Then an ﬁ

2 2 2
(4.12) Uty = L8 *b;s r (b-a) |
s + 1

by replacing t(s) Dby t(cs) for a positive constant ¢ if

necessary.

Proof. Note that, in terms of polar coordinates. (r,8) on

C*. the natural complex structure 3 on C* is given by

y9_ .18 y9_ _ _.8

Y 3r = rae Y3 TAr
and that if s = cr for a constant ¢ >0 T 8_ = -8 9_
L] ds

Note also that the restriciion to a fiber C€* of the C*-action
on [ coincides with the group action of C*. Thus the vector

field H restricted to a fiber C* satisfies

- _¥q = <9 - 4t 9
H = -JS = s35 = S35 3¢
and thus
dt _ _ t
st' = u(t) = a cos a °

-22_



n,X

Since Isec X dx = 1og|tan(4 E)l’ we see that

_ n ,t ) _ 1 + tan(t/2a) _ na Ra
cs = ta“(4 * Za) = 1< tan(t/Za) ( 2 ¢ b« )

for some positive constant ¢, and tan(t/2a) (es=1)/(cs+1).,

Thus we have

| 2
UCt = al sin e p = gPRtaNCH2a) L 2 Les)ool
1 + tan"(t/2a) (cs)“+1

q.e.d.

In general,let p : E - N be a holomorphic vector bundle
over a compact complex manifold N, ¢ : P(E) — N the
associated projective bundle over N and n : L(E) — P(E) the
tautolog;cal line bundle over P(E). Denote by E the open set

E-(0-section) of E. Let h1 be a hermitian metric on E.

Since ﬁ = ﬁ(E) = L(EY-{(Q0-section), a metric h1 on E defines a

hermitian metric h on L(E) : for X€P(E) and v,w € L(E) = E

‘with m(v) = m(w) = x, hx(v,w) = ( (v,w).

h1)¢(x)

Remark. In general a fiber metric on L(E) does not define a
hermitian metric on E. There is a natural one-to-one
correspondence between complex Finsler structures in E and

hermitian structures in L(E). See Kobayashi [10].

Corollary 4.3. Let N N E E L! and L! be as in (3.1)

1* 72 1 T2 1 2
with M Kahler. Assume that there are hermitian metrics h on

1
EIQLi-l‘ and h2 on EZBLé—l with the following properety : If we
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denote the hermitian metric on L = L(EIGL'“I) _induced from_ h1 by

1

h and the norm of h by s, the norm s2 of the hermitian metric
on L(E2®Lé_l) induced from h, depends only on s, under the
identification : L(E,®L: 1) = i(EzeLé_l). Assume further that we can

1771
construct a Kahler metric E on . in the above way, that is, each
gt in (4.8) is positive definite. We choose the function t in
such a way that the range (-(4+1),k+1) of U 1is 2+1 = rank E1 =

codimension N1 in Y and k+1 = rank E2 = codimension N2 in Y.

Then the function U on the open set L of the compact complex

manifold Y 1is extended to a smooth function U on Y such that

the range of U on the complex submanifold Elel..'-1 is

1
(-(2+1),k+1) and the range of U on E2®Lé-1 is  (-(L+1),k+17.

In general, for a Kahler metric g the corresponding Kahler

form is denoted by Q-
g on L = i(EleLi‘l) - i(EZGLé-l) can be written as

We now seek the condition that the metric

o = (9,1 %, - 2/71d'd"f. = (9,°m) e, - 2/°1d'd"f
y 1 1 0 2°T) 8y o

where @ is a Kahler form of a Kahler metric . on N, for
i -&1 i

i=1,2 and f f are smooth functions on i depending only on

0’ o
t.

Lemma 4.4. Under the assumptions in Corollary 4.3, if the

-1 -1 Ly
1 29L2 ) and the hermitian

form B on M satisfy that g. + (£+1)B = w* where is a
0 1§ &

Kahler metric g, on M = P(EIGL ) = P(E
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Kahler metric on Nl and &y ~ (k+1)B = ¢;32 where &, is a Kahler

metric on N2, then there are smooth functions fo: ElaLl'-1 — R
-1

and f_: E.®L!. — R such that on L

o' Ep%Ly
(4.13) 6 = (@,°T)Fa, - 2/71d'd"f_ = (@ °m) e, - 2/-1d'd"f
5 1 2, 0 2 @, ®

Proof. We use the notation éa’é& (0 £ o0 £ n) used in
K-5 [12]. We may assume that éat = é&t = 0 (1l £ £ n) at a point.

First we consider a function £f on ﬁ satisfying

* 1A an s — - -
mg = (¢1°n) 91 - 2/-1d'd"f. Since gOO'- éoéof, we have
2 _ d df
(4.14) 2u- = uET(“ET)

by Lemmas 1.2 and 1.3 of K-S [12]. As (2.158) in K-S [121, we put
2

@o(U) = u~, Then the equation (4.14) is given by
, . _d_ daf ; - S -
(4.15) 2 = dU(w(U)dU)‘ since at ° udU.
By solving this egquation, we have
df _ 2U + C
(4.16) U= “eduy for some constant C € R.

Now ¢@(U) = u2 = azcoszé = a2(1-sin2(§)). By (4.10) and (4.11),

we see that

2

(4.17) @) =-15(a +b-U) (a2-b+U) = l§<k+1-U)(1+1+U).
a a

Let fo denote a solution of (4.16) with C = 2(£+1). Then the

equation (4.16) is given by

4.18) iy _ _2a%
* du k+1-U
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2

and hence fo = -2a“log(k+1-U)+C' ( ¢'€¢ R ) and fo is extended
to a smooth function on EleLi-l. Similarly we have a solution
£f_ = ~2a210g(2+1fp) + C" ( C"e R)

of (4.16) with C = -2(k+1), which is a smooth function on

EzeLé_l. By K-S {121 Lemma 1.3, we have
9698f =0
(4.19)
- . rdf o _ 1 df o
95951 = - 7u3t Bgg 29 W0 Bas .
, 1 dfo 4
Since 5¢(U)Eﬁ = U+L2+1 by (4.17) and (4.18), we have
df

_ 1 _o - %
(go UuB) + 5¢(U)du B =g, + (2+1)B = ®,181"

Thus e_ = (¢,°m % - 2/~Td'd"f, on L. Similarly, o_ =
g g
* ] " 4

@,om>*e, - 2/~Td'd"f, on L.

g.e.d.
Corollary 4.5. Under the same assumption of Corollary 4.3 and

Lemma 4.4, the Kahler metric g on I can be extended to a

Kahler metric on the complex manifold Y.

Proof. Note that by (4.11) and (4.12) we have k+l-U = 1;k+2
: s +1
where 32 is the square of the norm of the hermitian metric h1
on EleLi-l. Thus we have
_ 2 2 2 '
(4.20) fo- 2a”log(l+s”) - 2a"log(k+8+2) + C'.
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1

Let pleleLi- — N1 be the projection. It is easy to see that

(4.21) pTgl - 4a®/7Td'd"10g(1+s%)

is the Kahler form of a Kahler metric on a neighborhood of

. . ! . - .
O-section of pl.EleL1 — Nl' Since pl = wl.n on
EIGLi_l-(O-section) = i, the metric E on L can be extended to

a Kahler metric

plo; - 4a®/TTd d"1og(1+s%)
on EleLi_l. Similarly the metric g on L can be extended to a
Kahler metric on EzeLé-l and hence to a Kahler metric on Y.
qg.e.d.
Corollary 4.6. Under the same assumption of Theorem 4.1, the

compact complex manifold Y is Kahler. More precisely a Kahler

metric g on L = LIGLQI-(O-section) can be extended to a

Kahler metric on Y, which is also denoted by E.

Proof. Let go be the ‘Gu-invariant Kahler metric on M =
G/U = P(EleLi-l) = P(E2®L2-;) corresponding to 8ns ~ as in Fact 1

in section 1 and h a Gu-invariant hermitian metric on the

homogeneous line bundle L = L(EleLi-l) = L(EzeLé_J‘)-1 over M.
Since we are in Gu—invariant situation, the first assumption in
Corollary 4.3 is satisfied. And the hermitian form B on M 1is

G,-invariant and corresponds to 4n(-A0(1)+A0(2)) € ¢ by Fact 2

section 2. Thus gy is Gu-invariant and corresponds to
4n(25m+U(t)(Ao(l)-AO(Z))}, which belongs to ¢’ by Lemma 2.3. So
the second assumption in Corollary 4.3 is satisfied. In the same

way we see that g, + (&+1)B = ¢T51 where g, is a G -invariant
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Kahler metric on the Kahler C-space N1 associated to the pair
1 L% . .
(ﬁ.ﬂl) and g, - (k+1)B = $,89 where g, 1is a Gu invariant
Kahler metric on the Kahler C-space N2 associated to the pair

(H,ﬁf). Thus the Kahler metric & on L can be extended to a

Kahler metric on Y.

From now on we assume further that the eigenvalues of B,
regarded as a hermitian form on & holomorphic tangent space of M,
with respect to &g are constant on M. Note that the assumption

. . . -1 1 . .
in Lemma 4.4 implies that T+l (resp. K:T) is an eigenvalue of

B with respect to & with multiplicity 2 (resp. k ) because

¢Tgl (resp. ¢;52 ) is a positive semi-definite hermitian form of

nullity £ (resp. k ). Thus the function det(galgt) = Q) on L

is given by

(4.22) Q) = det(1-Ugy'B) = (1+'E%T)2(1° Rfljkql(U)

where QI(U) is a polynomial of U such that Ql(U) # 0 on
[-(8+1),k+1). Here also galgt and galB are regarded as

endomorphisms on holomorphic tangent spaces of M.

Theorem 4.7. Under the assumption above, together with
assumptions in Corollary 4.3 and Lemma4.4, if the Ricci tensor
To of the Kahler metric go on M is equal to go, then the
first Chern class cl(Y) of Y is positive. More precisely, let‘
p be the Ricci form of the Kahler metric g on Y, then there

is a C  function F(U) of U on [-(&+1),k+l] such that
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(4.23) o - wy = -2/<1d'd"F.

Proof. By Lemmas 1.2, 1.3 and 1.4 in K-S [12], we see that

the equation (4.23) 1is equivalent to the equation

d ' aF _
(4.24) ® dUlog((pQ) + 2U + o U = 0
By solving this equation,
(4.25) F = - log(eQ) - 2 I % du.

By (4.17) and (4.22),

(4.26) log(eQ) = (L+1)log(l+1+U)+(k+1)log(k+1-U)+log Q1+C1

where C1 € R.

By (4.11) and (4.17),

2 U . _k+l _ _0+]
(k+1-U) (L+1+U) ~ k+1-U 2+1+U

U _
2 ° - 2a

and hence

y

(4.27) 2 I ° dU = -(k+1)log(k+1-U)-(L2+1)log(L+1+U).

Thus F = -log Ql + C2 ( 02 € R .
Since QI(U) #Z 0 on [-(4+1),k+11], F is a smooth function on
[~(g+1),k+1] and hence , it is smooth on Y.

q.e.d.

Proof of Theorem 4.1. Since go and B in Corollary 4.6
are Gu-invariant, the eigenvalues of B with respect to go are
constant., By (1.20) we have Ty = &g Note that the assumptions

in Corollary 4.3 and Lemma 4.4 are satisfied as in the proof of
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Corollary 4.6. Thus our theorem follows from Theorem 4.7.

q.e.d.
Remark. Note that, under the assumption in Theorem 4.1, by
taking L = LIGLEI. £ = v, M=PE) =P@E) = G/U and the

metric g on Y as in Corollray 4.6, the following assumptions A)
and B) in K-S [12] are satisfied for a Kahler metric & on L of
the form (4.5).

Assumption A). Let (min t, max t) be the range of t. The
function t extends to a continuous function on ﬁ with range

[min t, max t], and the sﬁbset M (resp. Mm

min ) of ﬁ defined

ax

by t = min t (resp. t = max t) is a complex submanifold of ﬁ

with codimension D (resp. D ). Moreover the Kahler metric

. min max
g extends to a Kahler metric on ﬂ, wvhich is also denoted by
g

Assumption B). (1) The Kahler form of the metric g on £ is
cohomologous to the Ricci form P of &. (2) The eigenvalues of
the Ricci tensor ry of &, with respect to g, are constant on

M.

5. Non-homogeneous Kahler-Einstein metrics

Let ® : L— M be a hermitian holomorphic line bundle over a

compact Kahler manifold M. As above we consider a Kahler metric

& on L of the form (4.5). We also assume that the eigenvalues
.of B with respect to a Kahler metric go on M are constant

and a compactification ‘ﬁ of L satisfies the assumptions A) and
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B). By Lemma 2.2 of K-S [12], we may assume that the range of U

is (-D 1.

min’Dmax

Now we give a necessary condition for a Kahler-Einstein metric

on ﬁ of the form (4.5) being homogeneous.

Theorem 5.1. Under the above situation, assume further that

the Ricci tensor ? of the Kahler metric E of ﬂ of the form

~

(4.5) is equal to E. If g 1is riemannian homogeneous, the
followings hold.

(1) If the codimensions D =1, then B = @,

min ~ Dmax

(2) If one of the codimensions D D is equal to 1 and

min’' “max
the other > 1, then the non-zero eigenvalues of galB are all
equal.

(3) If both codimensions D D > 1, then the number of

min’ “max
distinct non-zero eigenvalues of galB are 2.

First we recall the following.

Lemma 5.2. Every complete totally geodesic submanifold of a

homogeneous riemannian manifold is homogeneous.

Proof. See K-N [11) Chap.7, Corollary 8.10.

Proof of Theorem 5.1. Since the closure 52 of each fiber
€* is a totally geodesic submanifold of (£, ) and & is
homogeneous, it is a riemannian homogeneous manifold by Lemma 5.2.
We use the notations in K-S [12]). Note that the induced metric

2

an = 2u2 is an Einstein metric on Sz, since § is
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2-dimensional. Thus we have

(5.1) -éaéo(log(Zuz)) = c-2u2 where ¢ 1is a constant.
2 _ d d
Note that u~ = ¢, u it - ® FTTE By Lemma 1.3 of K-S [12], we see

that the equation (5.1) is given by

(5.2) - ¢§E<¢%3(iog ®)) = ¢c-@

and hence

(5.3) %% = - ¢U + a constant.

Thus ¢ 1is a quadric polynomial of U. On the other hand ¢

vanishes at U f - Dmin' Dmax' Therefore ¢ is of the form

® = ¢c'(U + Dmin)(u - Dmax) for some c¢' € R.

By (4.1.5) in K-S [12], the first term of Taylar expansion of

o(U) at U = - Dmin is given by 2(U + Dmin)' Thus ¢ is
given by
(5.4) @ = >——2=——(U+D_. ICU-D__ ).
min "max

Since r = g, the polynomial Q of U satisfies the equation

Q.
(5.8) + 2U + Q

eIL
(e
n-la-
clo
"
=

by Lemma 2.2 in K-S {12]1. By (5.4) and (5.5), we have

(2U+D D ) = U D )

.- +
qoloe @ = O S (T s
min max
. - L = Duin 1~ Dpax
U*Dpin Y~ Dpax
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Thus we have

log Q = -(I-Dmin)log(U+Dmin) - (l-Dmax)logIU-Dmaxl + ¢’

and thus we have

D . -1 D -1

- _1y Mmax
(5.6) Q = C(U+Dmin) (Dmax u

Since Q = det(l-UgalB). we get our claim.

Now we recall the following theorem in K-S [12].

Theorem 5.3 (Theorem 4.2 in K-8 [121). Let M be a compact

Kahler-Einstein manifold whoes Kahler form represents the first
Chern class CI(M) and L a hermitian holomorphic line bundle
over M. Assume that there is a Kahler metric g on a
compactification £ of L of the form (4.5) with g,
Kahler-Einstein, whose Kahler form is‘cohomologous to the Ricci
form of £ and that the eigenvalues of the Ricci form B of L
with respect to g, are_constant. Then the complex manifold £
admits a Kahler-Einstein metric if and only if the integral

D

max
(5.7) F) = f UQU)dU

-Dmin

vanishes.

Now let (ﬂ;ﬂo) be an effective pair of Dynkin diagrams as

section 1 and M = G/U the Kahler C-space associated to (TW,T
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Consider the Kahler-Einstein metric gy oOn G/U corresponding to

+ s -—
Sném € ¢ with ro = gO

G/U for A € Zc with a Gu-invariant hermitian metric. Note that a

and a holomorphic line bundle LA on

unique Gu-invariant form in the first Chern class CL(LA) is given

by n(AY of (1.22). Let B be the Ricci tensor of L which is the

A
Gu-invariant hermitian form on M <corresponding to -4nA € c¢.

Lemma 5.4. Under the assumption above, we have

= -‘1-T—T _(A_,_og_)
(5.8) Q(x) = det(l xgo B) = +(1 + (26m.a) X .
anm

Proof. Straightforwards by (1.18).

Let p be an automorphism of Dynkin diagram T such .that p2
= id and p # id. It is known that if T is irreducible and it
admits such an automorphism p, then W 1is of type An (nz22),

Drl (nz4) or E6 (cf.[5]). Note also that if - T has two connected

components TNW(l) = (c .,an), m(2) = (8B ....,Bn} and TW(1),mW(2)

1'°° 1

are isomorphic by the map «, - Bi , then the map p : T — T

defined by p(x.) = Bi. p(8i) = a, (for each i) is such an
automorphism of W, and from now on we consider this automorphism
p exclusively in the case when a Dynkin diagram T is reducible.

A pair r(ﬂ,ﬂo) of Dynkin diagram is said to be admissible for p

if p("o) = ﬂo.

Lemma 5.5. Let (",ﬂo) be an admissible pair of Dynkin

diagrams for an automorphism p and assume that A € Zc
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satisfies p(A) = -A. Then
Q) = . (1 + (26m,a) X
aezm

is an even function of Xx.

Proof. We use notation in section 1. Since .p induces the
+ +

bijections p : ¥ — Z and p : 26 — 28 , it also induces the

bijection p : 2; — Z;. Since 25, = 2« , we have p(28 ) =
+
aezm
26, . Note that (A,p(a)) = (p(A),a) = -(A,&t). Thus if p(a) = o,

(A, ) = 0. For aGZ;, o 2 p(a),

2
(A, Q) )( (A, p(a)) ) ( (A, o) ) 2
2 ] = - . LAR L. AN .
(1 * 23, XL+ (25, ,p(a)) x| =1 28,0 X .

Thus we get our claim.

Corollary 5.6. Let G/U be a Kahler C-space associated to an

admissible pair (W,HO) for an automorphism p. Put 26m =

> aaAm' Let LA be a holomorphic line bundle over G/U

n-n
oE 0

such that p(A) = -A and A = Z baAa with Ibal { a for

m=-7
o€ 0

each «€M-T . Then the pl(C)-bundle P(18L,) over G/U admits

an Kahler-Einstein metric.

Proof. Note»that by the assumption for A the absolute

- 35 -



values 0f eigenvalues of B are less than 1. By Theorem 5.4 in

K-S {1231, it is sufficient to see that the integral

1 1 L
I UQ(U)dU = I U-det(l - UgolB)dU
-1 -1

1B) ié an even function of U by

vanishes. Since det¢l - ugg
Lemma 5.5, we get our claim.

q.e.d.

Examples 5.1. In the following cases the P1(€)-bundle

P(IGLA) over a Kahler C-space G/U admits an Kahler-Einstein

metric. The vertices contained in "O'"-"O of a Dynkin diagram

M are denoted by o0 , X respectively.

o o
(1) (m, m.) X X

p

26m = Z(Aa + Aa ). Put A = Aa - Aa . Then pC(A) = - A.
1 2 1 2
In this case the associated Pl(C)-bundle P(1®L

5.10 in K-S [12].

o o o o o o
(2) (1, TTO) xl—xz—t:)3—05-'--—x5—x6
Nk\Ht::::;::::i,,/ﬂ
26 = 2A_ + 4A_ + 4A_ + 2A_ . Put A =A_ + A - A - A
m ay x, g e 3 , xg
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Then pfA) = - A. In this case G = SL(7,L) and U 1is given by

* ok Kk ok ok ok ok
0 % % % % & *k
0 0 % % % % %
u = 0 O % % % % %
0 O * * % * %
00000 * %
000000 %

28, = 4A, + 2A, + 2A, . Put A=A, - A, . Then pfA) = -A.

3 4 5 gy %
P
/‘;—.—-—\_}\
&« a3 &, &g Qg

26m = ZAa + 4Aa-* 4Ad + 2A. . Put A = A_ - A_ . Then

o

1 3 5 6 3 5
plA) = - A.
[s 4 o
m&ﬁ:xa
gy m, wy L 1 o
8, 8,
28, = 4Aa + 4Aa Put A = Aa - A Then pfA) = - A
1 2 1 2
Now we consider triples (n,ni.no). <n,nf,n0)' of Dynkin
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diagrams as in section 3. These triples are said to be admissible
for an automorphism p of Dynkin diagram W if D(ﬂo) = "0' and

p(0y(1)) = @ (2). Note that the holomorphic line bundle L oL !

0 1772
—1) y—1.-1

= L(E,8L; = L(E29L2 ) over M = G/U is given by LA’

1°71
where A = Ao(l) - AO(Z) and thus p(A) = -A. By Lemma 2.4 A

satisfies the assumption in Corollary 5.6. Recall that the

Pl(C)-bundle X 1is given by X = P(I®L,).

A

: 1 2

triptes of Dynkin diagrams for p. Then both the Pl(C)-bundle X

) be admissible

associated to these triples of Dynkin diagrams and the compact
complex manifoid Y obtained from X by blowing down associated

to these triples of Dynkin diagrams admit Kahler-Einstein metrics.

Proof. By the last Remark in section 4 and Theorem 5.3; it
is enough to see that the integral (5.7) vanishes. Since Dmax =
Dmin and Q(U) 1is an even function of U by Lemma 5.5, we get
our claim.

g.e.d.

Remark. As in K-S [12], X and Y admit a Kahler-Einstein
metric if and only if Futaki's integral F(H) of the holomorphic
vector field H vanishes. We can explain Corollaries 5.6 and 5.7
as follows. The automorphism p of the Dynkin diagrm induces
automorphisms Yy and Yy of the complex manifolds X and Y
respectively, such that v H =~ H. Thus Futaki's integral F(H)
vanishes, because it is invariant under complex automorphisms

(cf.Futakil7] Theorem 2.1). However the existence of such an
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automorphism Y is not necessary to the existence of a
Kahler-Einstein metric. See Example 5.3 (2) and Example 6.4 in

(171.

Corollary 5.8. Under the same notation as in Corollary 5.7,

if the number of elements in n-no > 3, then the Kahler-Einstein

metric on Y is non-homogeneous.

Proof. Since ﬂ-(“ik}ﬁf) # ¢ by our assumption, we can take
: 1 2 1 _ 2
an element o € 1T (nlkjﬂl). Note that ﬂl = ﬂokj{ao(l)) and Nl

= Hokj(aO(Z)}. We may assume that there is a connected subdiagram
m* of T such that o and ao(l) are terminal vertices of

m' and a0(2) is not a vertex of W', taking p(x¢) instead of

o« if necessary. Note that vy = B%;'B is a positive root (cf.
Bourbaki (5] Chap.6, Prop. 19 Cor.3 b)) and hence vy € 2;. Put A
= Aao(l)“'Aao(Z)' Since (A,y) = (A.aOCL)) and

(Zam.y) > (26m,a0(1)). we see that

(A,do(l)) S (A7) S o s (A,uO(Z))
(Zém,ao(l)) (25m.Y) (26m.a0(2))_'

1

and hence the number of distinct non-zero eigenvalues of ga B

are greater than or equal to 3, by Lemma 5.4. Thus we get our

claim by Theorem 5.1.

Examples 5.2. In the following cases the blowing down Y
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admits a non-homogeneous Kahler-Einstein metric. The vertices

contained in “0’ Wi-no, ﬂ-ﬂi of a Dynkin diagram T are denoted

by o, O, x for i = 1,2 respectively as in section 3.

’ [s4 04 (04 04 (04 o
1y qm,nlmy el—x2 3 n,m2,my  xi——xZ—gl
1' Mo 1'"0 - ;
p p
Note that A = Aa -Aa .
1 %3
[»4 [0 4
4 4
[0 [»4 o 84 o o
1 1 % 2 1 %
2y (mmp My xi— 0—0<Ip 2w x—o——<§p
as (15
Note that A = A_ -A_ .
Xy g
p
>
o o [»4 o o
(3) m,mlmy xi—pd i 3 6
1' "o I
%
p
(/__m")
2 ) %5 &, &g &g
(IT,TTI,TI'O) x—x—z——ﬂ——-x
%y
Note that A = A_ - A_ .
aa Cls



4y iy al—gd—gd o5 46
1’0 1
%y
' 2]
m
2 %y Gg &y &g &g

Note that A = A_ - A

o o o o] o o
ol a3 o— 3
1 2
(5) (m,mo, Myt T T p (r,mé,my ¢ 3 T p
1’0 1’ 0
O—— XX _ o—
By By By B, B, 84
Note that A = A_ - A
2, "8,
Now we give examples of Y being homogeneous.
o o o o
Examples 5.3. (1) «(m, %, m) ob—x?® (n, n?, w) xi—o?
1" 0 R_A 1' 70 <
p [

In this case A = A_ - A_ , compact Kahler manifolds N,, N are
o, ¢y 1 2

PZ(C). M is the flag manifold SL(3,C)/B where B 1is a Borel

subgroup of SL(3,C), X is the PI(C)-bundle P(18L,) over M

and Y is the complex quadric Q4(C).
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o o o 8 g 8

(2) «(m, ni. Ty ol—o2—g- - gm0 xt—0Z—g. .- o—0"
o o o 8 B

(m, ﬂ%. UO) x1 02 0°***0 on Dl——og——o---o———om

In this case A = A_ - A, , compact Kahler manifolds N,, N are
) 81 1 2
m n . . n m .

P(C), P () respectively, M is P (CO)xp ' (C), X is the

Pl(C)—bundle P(lGLA) over M and Y is the complex projective

space Pn+m+1(€)'

6. Remarks

A riemannian manifold N is said to have cohomogengity d if
the codimension of the principal orbits for the action.of the
isometry group is d, and d is denoted by cohomg(N). For a given
positive integer d we give examples of Kahler-Einstein manifolds

which have cohomogeneity d.

Lemma 6.1. Let Ml. M2 be Fano manifolds of nl-dimension

and nz-dimension (nl,nzzz) and let Fl, F2 be holomorphic line

bundles on Ml' M2 respectively such that c1(F1) > 0 and cl(Fz)
1 -1 _
> 0. Then H™ (M xM,, End(1®F 8F,")) = (0).
Proof. By Kinneth formula, Hl(MIXMZ, F19F51> =
i 1-i -1 . -1 j -1, .
> H (M, ,F)8H" "(M,,F,"). Since ¢ (F,7) < 0, H(M,,F,") =

i=0,1 -

(0) for j < n.. Thus Hl(“lx“z' F19F51>= (0). Also we get

X
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1 1 1

H™ (M) XM, , FI ®F,) = (0) by the same way. Since End(1$F1®F; ) =
1e(FleF;1)a<F;19F2)el and M, M, are simply conected, we.get our
claim.

q.e.d.

In general, for a compact complex manifold X let AutO(X)
denote the identity component of the group of all holomorphic
automorphisms of X. Let E be a holomorphic vector bundle of
rank r over a compact complex manifold M and P(E) the
associated projective bundle over M. By a theorem of Blanchard
[3], we see that AutO(P(E)) coincides with the identity
component of all fiber preserving autmorphisms of P(E). Thus the
projection m : P(E) — M induces a homomorphism
.n.: Auto(P(E)) —»>Aut0(M). Note also that the group of all fiber
preserving holomorphic automorphisms of P(E) is naturally
isomorphic to the group of all fiber preserving holomorphic
automorphisms of the prinéipal fiber bundle P(M,PGL(r,L),m

associated to the bundle =® : P(E) — M,

Lemma 6.2. Under the assumption as in Lemma 6.1, the
1

hompomorphism m : AutO(P(leFISFE )) — Auto(MlxMz) is surjective.
Proof. By Proposition 2 in (151 and Proposition 9 in [21,
it is enough to show that Hl(MlxMZ, End(lGFlngl)) = (0). Thus we

get our claim by Lemma 6.1.

We consider a'holomorphic line bundle L over a compact
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complex manifold M and the Pl(ﬁ)—bundle P(1®L) over M. We
assume that M has a Kihler-Einstein metric g, with rg = g
and that L has a hermitian fiber metric such that the
eigenvalues of the Ricci tensor B are constant on M and their

absolute values are less than 1. We also assume that
. -1
I U-det(l - Ug, B)dU = 0.
-1

Thus P(1®L) admits a Kahler-Einstein metric by Theorem 5.4 in
K-S [121].

Now we recali the following.

Proposition 6.3. In the above situation, if the

homomorphism =X« : AutO(P(leL)) — AutO(M) is surjective and B

is non-trivial on each irreducible factor of the Kahler manifold
M , then the Kahler-Einstein manifold P(I1®8L) 1is irreducible and

cohomg(P(1®L)) = cohomg(M) + 1.

Proof. See K-S [121 Proposition 5.6. Note that the
homomorphism m : Isomo(P(IQL)) — IsomOCM) is surjective by a

theorem of Matsushima [13].

Let N, = P"(C), H the holomorhic line bundle over P"(()

0
corresponding to a hyperplane and Lo = Hm for 1 £ m < n. Then we

"have cl(Lo) = (m/(n+1))cl(N0) and we get an almost homogeneous

Kahler-Einstein manifold P(LOOLO) of cohomogeneity one. Let

N' = P(L.®L

0 0). nx : N' — N.xN

0*No the projection and &€ = L(L.®L.)

0 —0
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the tautological line bundle over N'. Then we have

c,(N') = (n*l-m)n*(cl(H)Oc

1 (H))+201(E).

1
Thus, if n+i-m is even, there exists a holmorphic line bundle
L* over N' such that cl(L') =-(1/2)¢1(N’).

Now we construct a Kahler-Eintein manifold of cohomogeneity
d for each given positive integer d. If d is even, put d =
2k, and if d is odd, put d = 2k+1 (we may assume d 2 2).
Consider the product M, = N'x-+*XN' of d-1 copies of N' and

1
L'®--+®8L' of d-1 holomorphic line bundles on

n

the product Fl

1 induced from L' on N’'. Then cl(Fl) = (1/2)c1(M1). If d

is even, consider the complex projective space M2 of (2n+1)({d-1)
dimension. Then cl(Mz) = ((2n+1)(d-1)+1)c1(H). Put F2 = HQ where

0 = ((2n+1)(d-1)+1)/2. If d is odd, consider the complex

M

quadric M2 of (2n+1)(d-1) dimension. Then cl(Mz) =

(2n+1)(d-1)c1(H') for a holomorphic line bundle H' over M2'
F, = H'? where £ = ((2n+1)(d-1))/2. Consider the Pl(C)-bundle
P(1®F1@F£1) over MixMz. Then, by Lemma 6.2 and Proposition 6.3,

Put

we see that P(leFlngl) has cohomogeneity d.
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