
NON-HOMOGENEOUS· KÄHLER-EINSTEIN METRICS

ON COMPACT COMPLEX MANIFOLDS II

*) **)Norihito KOISO and Yusuke SAKANE

*) Max-Planck-Institut
für Mathematik
Gottfried-Claren-Str. 26
5300 Bonn 3
Federal Republic of Gerrnany .

Department of Mathematics
College of general education
Osaka University
Toyonaka, Osaka 560
Japan

MPI/88- 13

**) Department of Mathematics
Faculty of Science
Osaka University
Toyonaka, Osaka 560
Japan





NON-HOMOGENEOUS KÄHLER-EINSTEIN METRICS

ON COMPACT COMPLEX MANIFOLDS 11

Norihito KOISO and Yusuke SAKANE

In previous paper K-S [12] we have considered p1 «()-bundles

over compact Kähler-Einstein manifolds to obtain non-homogeneous

Kähler-Einstein manifolds with positive Ricci tensor. The purpose
I,

of this paper is to give more examples· of non-homogeneous compact

Kähler-Einstein manifolds, more precisely, compact almost

homogeneous Kähler-Einstein manifolds with disconnected

exceptional set. By [1] and [8], the structure of orbits of almost

homogeneous projective algebraic manifolds with disconnected

exceptional set have been investigated, but no explicit examples

were given 1n [1] and [8] except camplex projective spaces. Ta

.construct these examples, we start again with p1«(l-bundles over

Kähler C-spaces and consider compact complex manifolds obtained

from these pl«(l-bundles by blowing down. Note that compact

complex manifolds obtained from projective algebraic manifolds by

blowing_dow~a~e' nol Kähler in general as an example of Moisezon

[14] Chap. 3, section 3' shows. We construct our compact complex

manifolds ln sectian 3 and prave that auf' compact almost

homogeneous complex manifolds are Kähler and.have positive first

~~ern class (Theorem 4.1). Hut in general these almost homogeneous

manifolds may be homogeneous. We give a sufficient condition for

these Kähler manifolds belng non-homogeneous (Theorem 5.1). In

section 6 we show· that for each positive integer d there are
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compact Kähler-Einstein manifolds which have cohomogeneity d. We

follow the notation in Kobayashi-Nomizu [11] which is slightly

different from the one in ·[12].

1. Kähler C-spaces and Dynkin diagrams

We recall known facts on compact simply connected homogeneous

Kähler manifolds. called Kähler C-spaces (cf. Takeuchi [18]).

Let IT be a Dynkin diagram and ITO a subdiagram of w. The

pair (n,no) is sald to be effeative if no da es not contain any

irreducible component of w. Let ! be the root system with the

fundamental reet system rr. Choose a lexicographic order > on

L such that the set of simple reets with respect to >

coincides with IT. Take a compact semi-simple Lie algebra Su

with the root system Land let t be a maximal abelian

subalgebra of 9 u ' Denote by 9 and b the complexification of

9u and t respectively. We identify a weight of 9 relative

to the Cartan subalgebra' b with an element of /-lt by the

duality defined by the Killing form ( , ) of 9. In particular,

the root system r of 9 relative to b 19 a subset of At.

Let (Aa}aerr' c At be the fundamental weights of 9

corresponding to rr ..-

(1 .1) =
i f ce· = 8

if a ~ B

~+.Let ~ be the set of all positive roots and {ITO}Z

of Rt generated by TT
O

' Put L
O

= r(\ {lTo}Z.

subalgebra U of 9 by
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( 1 .2) u

where 9a 19 the raat space of 9 for a e L. Let G be a

simply connected complex Lie group whose Lie algebra 15 9, and

let U be the connected (closed) complex subgroup of G

genera ted by u. Pu t M = G/U. Then i t i s known" tha t the

complex manifold M = G/U Is campact, simply connected and

admits a homogeneous Kähler metric. Let G be the compact
u

connected subgroup of G generated by Su. Put K = G ()U.u

Then K i5 connected, Gu aets on M transitivelyand M =
G/U = Gu/K as a srnooth manifold. This homogeneous complex

manifold M i5 said to be associated to the pair (IT,ITo) 0/

Dynkin diagra711s.

We define a subspace c of ~t by

( 1 .3) c =

Then ~c coincides with the center of the Lie algebra of

K. We also define lattices Z of /=Tt and Zc of c by

and

( 1 .4)

(1 .5)

z = (Ae~tl 2(A,a)/(a,a) is an integer ior each aer}

Let m be the orthogonal complement of in 9u with

respec1 10 the Killing form , ) ; = + 11. The subspace

m 15 K-invariant under the adjoint action and identified with

the tangent space To(M) of M at the origin 0 e M. Put
l
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( 1 .6) = =

We define K-invariant subspaces ±m of 9 by

±
m =(1 .7) L 9_a

IXEr:

Then the complexification mC
' of m is the direct surn

+= m + m

We denote by X ~ X the complex conjugation of 9 with respect

Then '+ ± We choose Ea E9C( forto the real form 9u · m = m .
(X Er wi th the following properties and fix· them from now on ..

(1.8) [EcxtE_ccJ = -a, (Ea,E_a ) = -1, Ea = E_a for a E L.

Let a{oo }aEL be the linear farms on 9 dual to (Ea}cxer' that

is, linear farms defined by

[ c.oa{b) = (O)

( 1 .9)

{ 1 if Ct = 8
OOcx eE8 ) =

0 i f ce ~ 8 .
Let T be the toral subgroup of G genera ted by

u
t. The

tangen t space'

identified with

T eT)
e

t .

of

Let

T at the identity element e is

Jl(T> denote the space of T-invariant

real I-forms on T. Then we' have na tural 1 i near isomorph i sms:

(1.10)

We identifY t with 1H(T,R) .. Then we have

27tH
( 1 • 11) 1 z = IH er,l).
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It is known that the inclusion l : T ~ K induces an injective

linear map l* H1 (K,R) ~ Hl(T,~) with

*1 - *1 -l H (K.~) = (1/2nj-1)C and l H (K.l) = (1/2nJ-l)Zc. and that the

transgression for the principal bundle K ~ G ~ M defines a

linear isomorphism ~ : Hl(K.R> ~ H2 (M,R? with T(H1(K.Z» =
H2 (M,Z). We define a linear map ~: c ~ H2 (M,R) by

for ÄEc •

where Hl(K,R> is identified with 1/(2nj~)c through l*, Then

~(Zc> coincides with H2 (M.Z) (cf.Borel-Hirzebruch (4]).

We define a cone +c in c by

( 1 . 12) +
e = ..:lEe I (A, cx) > 0 for each CXen-TTo }

and put

Then we have

(1.13)

(1.14)

+ L R+Ac = ce
ceETT-TT

O

z+ = L Z+A .c ce
ceETT-TTO

Moreover, the cone +
c i5 characterized by

+
C = (.~ec I C\.,CX) > 0 for eaeh

Lemma 1.1 (Takeuchi C18]). Let 1~' (M) be the space of
u

closed Gu-invarinat real 2-forms on M and ~2(M,g) the space

of real harmonie 2-forms on M with respect to a Gu-invariant
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Riemannian metric g on M. Then J~ (M) =
u

2H. (M,g).

Let )..EC. Regarding each cxCD aG-invariant ~-valued I-formu
on Gu ' we define a Gu-invariant (-valued 2-form n()..) on Gu
by

(1.15) n()..) = 1

27tA

We define a complex linear form on by

for XEg ,u

and regard G -invariant (-valued I-form onu

Thus

as a

1/(27tA>): is regarded as a G -invariant
u

G .
u

~-valued

I-form on Gu ' Then we have

n(A) = -d(1/(21tA>): ),

and n()..) can be pulled down to a unique form in 2Ja (M). Thus
u

the correspondence A ~ n(A)

2n : c -+ J;G <M).
u

defines a linear map

Lemma 1.2 (Takeuchi[18]). Let ~ be the natural map

assigning to ~ E1~ (M) the de Rham class [CDJ in H2 CM,R). Then
u

we have' the following commutative diagram consisting of linear

isomorphisms :
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( 1 . 16) c

We define elements .5 m' .5 of Frt by

(1.17) &Sm
1 L a eS 1 L ex= =2 2+ +exerm aEr

respectivel.y. I t is known tha t 2ö m e z+ and Ö = L Acx •C flETT

Now we reeall the following facts.

Fact 1 (cf. Borel-Hirzebruch [4], Takeuchi [18l).

Let M =G/U = G /K be the campact homogeneous campl"exu

I) For A E c,

(1.18) g(J..) = 1
2n

defines a Gu-invariant real eovariant symmetrie tensor field of

degree 2 on M, and the correspondence J.. ~ g(J..) gives a

bijection from

M.

+c to the set of GU-invariant Kähler metries on

2) The first ehern class c 1 {M) of M· is given by

Cl (M) = ~(-2&Sm). For the Kähler metric g corresponding to
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+A E C , the Kähler form 00 (defined by w(X,Y) = g(X,JY). where

J is the almost complex structure of M), the Ricci tensor r

and the Ricci form p are given by

( 1 .19 )

(1.20) r = 2 L
+(XeL
m

-0: -(X
(0 • Cl)

(1.21) p = =

Fac t 2 (cf. I's e [9 ] ) .

For each AEZc ' there is a unique· holomorphic character XA

of U such that

for each HEh.

Let LA denote the holomorphic line bundle on M' associated to

the principal bundle U ~G~ M by the character XAo The

correspondence A-+ LA induces an isomorphism from Zc onto the

1 * o f-" a:ll· holomorphic 1 i ne bundles Moreover,group H' (M··.9;· ) on Mo

under this isomorphism the subset -z~ corresponds to the set of

all very ample holamorphie ·line bundles on M. The first ehern

of LA contains a unique Gu-invariant 2-form

(1.22) n (A> = Fr
- 2n <A,lX> -(X -IX

CD 1\ co
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on M.

2. Kähler C-spaces as projective bundles

Let E be a holomorphic vector bundle of rank r over a

complex manifold N. The cemlpex projective bundle P(E)

associated to E is defined as fellows. Let (* act freely on

E-(O-section) by scalar multiplication. Then peE) i5 the

quotient complex manifold

P(E) = E-(O-section)/~*.

Thus a point of P(E) over xEN represents a complex line in the

fiber Ex of E at x. We organize various spaces and maps by

the following diagram:

(2 • 1 )

7r
P ( E) ----+, E- ( 0 - sec t ion) c:::; E

~ ~
N

Using the projection ~ : peE) ~ Nt we pull back the bundle E

to obtain the vector bundle <P*E of rank r over peE). We

define the tautological line bundle L(E) over peE) as a

subbund I e· of ~*E as foliows. The fiber L(E)l; at l;ep(E) is

the complex line in Ec:p(!;> represented by ~. Note also tha t i f

L is a holomorphic line bundle over N t then PeE) i5

canonically identified with peE9L) as complex manifolds and

L(E9L) = L(E)e~*L as holomorphic line bundles.
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Let Tl be a Dynkin diagram and Tl o a subdiagram of Tl such

tha t TT
O

is of type A (TlO = t/J i f .2.=1). Consider also a.2.-1

subdiagram Tl
l

such tha t Tl
l

contains TT O as a subdiagram and

Tl} i s of type Al· Put LI = L(\ (lTI}Z. We define a Lie

subalgebra . P of 9 by

(2.2) P = b + ~ g~

ctE:I:
1
"V r+

as in section 1 . We denote by G/U • G/P

associated to the pairs (Tl,TT
O

) • (TT,TT
I

)

respectively. Put {(Xa) = TT
1

-TT
O and Ao

subalgebra 9 ( 1 ) of P by

the Kähler C-spaces

of Dynkin diagrams

= Acx E Z. We define a
o

(2 .3) g(l) = b + g"a

and let G(l) be the complex subgroup of G generated by g(l).

Then there is an irreducible repres~ntation

PA : G(l) ~ GL(VA ) of G(l) with the highest weight AO.
o 0

The' representation" PA can be uniquely extended to an
o

irreducible representation of P. which 15 also denoted by .

the homogeneus vector bundle

Note also that diffiCVA = 1+1.
o

PA :P ~ GL(VA ).
o 0

We denote by EAo
defined by the representation

- IO -
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peE,,) the complex projective hundle over G/P associated to
o

the vector bundle EA . Then G acts on E" and peE,,) in
000

natura'l ways. We denote by [g,v] the element of EA defined by
o

(g,V)EGXVA and let p: EA -eO-section) ~ P(EA ) be the
o 0 0

projection. Take a highest weight vector vA of
o

PA : P --+ GLeVA ), that iSt vA is a non-zero vector of VA
000 0

such that

1PA (H)vA = (AO,H)vA for HEb
(2.4) o 0 0

0
+PA (Ecx)vA = for Ea E9a ctEL

o 0

and fix i t .

Lemma, 2. 1 . We have an identification peE,,) = G/U.
o

Proof. At first note that G acts on P(E,,) transitively,
o

since G(l) acts on peVA } transitively. Put. 0 = p([e,vA ]).
o 0

Consider the isotropy subgroup Go of G at OEPCEA ). Then we
0

have Go = (gEGI gEP, PA (g)VA = )..(g)vJ\ for some ..\(gJE(-CO)} •
o 0 0

Thus the Lie algebra 9 0
of Go is given by

(2.5) So = {XEPiPA (X)V" e <CvA )
o 0 0
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Hence 9
0

= u. Since the normalizer of the parabolic subgroup. U

coincides with U. we see that u = ao and P(EA ) = GIGo = alu.
o

q.e.d.

Now we consider the homogeneous vector bundle

Then EA -(Q-section)
Q

is a *C -bundle over

over G/P.

Let

L(EA ) be the tautological line bundle over P(EA ) associated
o 0

to the vector bundle EA over G/P. Then we have an
o

identification : EA -(O-section) = L(EA )-(Q-section).
o 0

Lemma 2.2. The tautological line bundle L(EA ) is the
o

holomorphic line bundle LA over P(EA ) = G/U associated ta
Q 0

t he pr i nc i pa 1 bund 1e U --+- G --+ GI U by t he eharac t er XA 0 f U.
o

Praaf.

far each aELo. Thus induces a representation

identified with the character

exp(AO·H)VA for Heb. Note that
0

LCEA ) can be written as [g. J.. v'A ]
0 0

[g ~ dlVA ] be elements of L(E
A

).
0 0

LeE" ) i f and only i f g' = gu
0

=U. si nce

u ~ GL«(vA ). which i8
o

PA (expH)vAo 0

by Lemma 2.1 each element of

of

(gEG, AEC). Now let [g.AVA ].
a

Then [g.AVA ] = [g' tllV/\ J in
o 0

( uEU) and PA (U)~VA = ).,vA Thus we get aur claim.
000

q.e.d.
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Now we recall the following general formula for the canonical

line bundle of a projective bundle. Let ~ E --+ N be a

holamorphie vector bundle of rank r over a complex manifold N

and let KpCE ) , KN denote the canonical line bundle on P(E) t

N respectively. Then

(2.7)

where detE* denotes the holomorphic line bundle ~E*.

We apply this farmula to compute the first ehern class of

PCE
A

} = G/U.
o

Lemma 2.3. The element corresponding to the

first ehern class Cl (P(EA » of P(EA ) = G/U i5 given by
o 0

<2.8) -n A
ct ce

cxETT-TT 1

for same ncxEN.

Proof. Since it 15 af the form

2ö m = 2:: naA~
ae TT- TTO

*Si nce KG/p8de tEA isa ha 1amorph i c 1 i ne' bund 1e over GIP, the
o
* *ehern class of ~ (KG/p9detEA ) contains a unique Gu-invariant

o
2-form n<A1 ) with
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= ( mC( E Z ).

is a holomorphic vector bundle of rank

contains a unique

.2.+1,

of

we see that

Cl <LCEA »)
o

n<A O). Since

the first Chern class

GU-invariant 2-form

Fac t 2,andBy Lemma 2.2

by the formula (2.7) and Fact 2, and hence we get our claim.

q.e.d.

Remark. We may prove Lemma 2.3 by a computation on root

systems as foliows. Put Tl -o - cx. , ••• ,cx. }.
1 1 1.2,_1

Since TT O ia

of type Ai-I' we have

cx· = (!-l)C(i + ••• +
1

j(.Q.-j)CC. + ••• +
1 .

J

(1-1)c(,
1 1_1 '

where "t"'+ "t"'+ "t'"
Lo O = Lo (\ LoO•

Since lT
l

that

2(CC O'CX' )
1 1

(CCo,CC o )

Thus we see that

= -1 ,

2<CX O'CX. )
1 .

J = 0 for 2 ~ j ~ 1-1.

-(l-l)AO + L: rncxAC(
cxETT- {CXa}

Hence we have

25 =11t 2& - L a =
+cxEIo

+ (!-I)AO - I: rnceAa
ceETT- {CX a}
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= C!+l)AO + ~ n~A~ = C!+l)A O + 2: n~A~,

~err-{aO) ~err-rrl

where n eJN
C(

for each aerr-rr1, since

3. pIC()-bundles over Kähler C-spaces and blowing down

Let NI' N2 be compact complex manifolds and consider

holomorphic vector bundles EI of "rank .Q.+l ~ 2 over NI' E2 of

rank k+l ~ 2 over N2 . We also assume that the total spaces

PCEl) and PCEz) of projective bundles coincide as complex

manifolds, which is denoted by M, and that there are holomorphic

tautological line bundles LCE aL,-I)
1 1

LeE 8L,-I) over P(E eL,-I) satisfy
2 2 2 2

line bundles L'1
over and L'2

over NZ such that the

over PCE eL,-I) and
1 1

LeE 8L,-I)-1 = LCE eL,-I)
1 1 2 2 '

more precisely, there is a holomorphic bundle isomorphism

LeE 8L,-l)-1~ LeE eL,-I) compatible with the identification
1 1 2 2

-1 - - - -1P(E18L i ) = P(El) = P(E2 ) = P(E28L2 ). We also consider the

pl«)-bundle P(1$L(E18Li-I» = P(L(E29L2-1 )$1) over M =

P(E19Li-l). =-P(E28L2-
l ), whose total space is denoted by X.

are

respectively.

defined by thex
L(E eLt-l)

2 2

M =" peE eL,-I)
2 2

Not e t hat" co mp 1- ex' subman i f 0 1ds MIt M2 0 f

O-section of LeE eL,-I) and O-section of
1 1

identified with M = P(E 9L,- I ) and
1 1

We organize various spaces and maps by the following diagram:
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(3 • 1 )

x = =

=

Now the following lemma 15 a special case of Nakano [16),

Fujiki-Nakano (6) (cf. Moisezon [14]).

Lemma 3.1. There exists a complex manifold Y containing

NI' Nz as complex submanifolds and a holomorphic map ~: X~ Y

in such a way that (X,~) is a composition of monoidal transforms

from Y with centers NI' NZ and ,-1
M = -1

MI = ~ (NI)' Z
~ (Nz) ,

tha t i s , Y is a complex manifold obtained from X by blowing

down MI = P(E 9L,- 1 ) to NI and MZ = P(E 8L,-I) to NZ '1 1, 2 Z

Proo f . Note that the normal bundle of P(E eL,- 1 )
1 1 i 5 the

line bundle Thus the condition in Fujiki-Nakano [6]

i5 satisfied.

q.e.d.

Remark. Note that the tautological line bundle LeE> Qver a

projective bundle peE) is obtained from E by blowing up the

Q-section of E to peE). Note also that P(1$L(E19Li-1» is a

union of complex submanifolds LeE 9L t
-

I ) and L(E 8L,- I ) with
I I 2 2

-1 -1 -1
the intersection LeE1eLi ) ALCE29Li ) = LeEl9Li )-(Q-section)

= LeE29L2-
1)-<o-section>. Thus Y 1s a union of the canonically

imbedded' complex submanifolds E 9L,-1
1 1

- 16 -
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intersection -1 -1 -1
E1

8Li "E29Li :: E19Li -(O-section) =

-1which is also L(E1SLi )-(O-section) ::

Now we consider the tripies

diagrams which are one of the followings.

( a) The Dynkin diagram Tl i s connected, Tl
O i5 a subdiagram

of Tl and of type A.Q._I' and 5ubdiagrams 1 2 of Tl oflT
1

,Tl
1 are

type Ai and contain Tl
O as a subdiagram.

(b) The Dynkin diagram tT has two connected components

lT(1) and lT(2), and Tl O is a subdiagram of Tl which has also

two connected components TlO(l) of type A.Q._1 and tT
O

(2) of

type Ak - 1 · Subdiagrams 1 JT2 of TT have also two connectedTl!, 1

components Tli(1) and 1 Tli(1) and lTi(2) respectively,Tl! (2),

and we assume they satisfY the following conditions:

( 1 ) ni(1) i5 a subdiagram of TT ( 1 ) , of . type AQ. and

contains TIO(!) as a subdiagram, and TT~(2) coincides with

Tl O(2).

(2) rri<z) i5 a subdiagram of TT(2) , of type Ak and

contains TT
O

(2) as a subdiagram, and rri e!) coincides with

TTO(!) •

Examples 3.1. The vertices contained in TTO'

of a Dynkin diagram Tl are denoted by 0, c, x for i = 1, 2

respectively.
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x-O-O-O-,-o-o-x-x

x-x-o-o-o-o-O-X

X-[J-o-o-X

x-x-o-o-x

x-o-o-o-x-x

x-o-o-o-O-x

Put ( ((0 ( i) } = Tl i_Tl
1 0

and for i = l, 2.

We consider Kähler C-spaces associated to pairs of Dynkin"

diagrams and pl«()-bundles over Kähler C-spaces.

Gase (a). We denote by GIU, G/P l , G/P2 the Kähler C-spaces

1 2associated to the pairs (TT,tTO)' (TT,lT 1 ), (TT,TT 1 ) respectively, and

by EI' E2 the homogeneous vector bundles EAo (1)' E
Ao

(2) over

G/P!, G/P2 respectively. By Lemma 2.1, we have M = peEr) =

P(E2 ) = GIU, and L(E!) = L
Ao

(!)' L(Ez ) = LAo(Z) by Lemma 2.2.

Pu t L1 = LA (1) and L2 = LA ( 2 )' Not e t hat t hereis a
o 0

holomorphic line bundle Li (resp. L2 ) over N! = GIP
I

(resp. over

* *"N2 = G/P2) such that ~1Li = L Z (resp. ~2L2 = L l ), where

~1: M = GIU ~ NI = G/P! (resp. ~2: M = G/U ~ N2 = G/Pz) i5 the
-1 -1 -1 -1

projection. We thus have L(E I 8L i ) = L18L2 = L(E28Li ) .
1 -1Note also that the P «()-bundle X i3 given by p(!eL19LZ ).

ease (b). We denote by GI /U 1 , GI/PI' Gz/U z , Gz/P z the

Kähler C-spaces associated to the pairs (lT(l),TTO(l»,

(TT(I),TT~(I»t (TT(Z),TTO<Z», (lT(Z), lT i<2»

EI' E2 the homogeneous vector bundles

- 18 -
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Note that there is

= peEr) = P(Ez } =

= LAo(Z) byLAO~I) and LCEZ)

and LZ = LA (2)'
o

Gz/Pz respectively. We regard the vector bundle EI Qver

( resp. Ez over Gz/Pz ) as a vector bundle over NI =
GZ/U 2 (resp. NZ = Gl/UIx GZ/PZ )t which is also denoted

( resp. EZ )' Br Lemma 2.1, we have M

GI/PI'

GI/PI

GI /P1X

by Er

G1/UIX

Lemma 2.2. Put

a holomorphic line bundle LI (resp. LI ) Qver NI (resp. over1 2

N2 ) such that ~;Li = LZ (resp. ~;L2 = LI ), where ~l: M~ NI

(resp. ~2: M~ N2 ) is the natural projeclion. We thus have

LCEr9Li-1) = L19L;1 = L(E28L2-
1)-I. Note also that the

1 -1P (~)-bundle X is given by p(!eL18LZ )' Put G = G1x GZ and

U = UIx UZ'

In case (a) and eb), we call X the pIc()-bundLe assoaiated
I 2to the tripLes (IT,IT1,·IT O), (IT,IT1,ITO) 01 Dynkin diagrams. We also

call Y obtained as in Lemma 3.1 the compaot compLex maniloLd

obtained from X by bLo~ing do~n associatd to the tripLes
1 2(rr,ITI,Ro)' (n,n1 ,ITO) 0/ Dynkin diagrams. Note that in this case

y

G,

is almost hemogeneous with respect lo the complex Lie group

-1 -1since E18Li -(O-section) = L18L2 -(O-section) 1s an open

G-orbit in Y, and Y has a disconnected exceptional set which

consists of two G-orbits Nl , Nz • Note also that

Kähler C-spaces associated to the pairs

are

respectively.

4. Almost homogeneous Fane manifolds.
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A eompaet complex manifold is called Fano if its first Chern

class is positive. In this seetlen we prove the following.

Dynkin diagrams, as in 5eetion 3,

Theorem 4.1. Let and

x

2
(IT.IT1,IT

O
) be tripies of

the pl«()-bundle associated

to these tripies of Dynkin diagrams and Y the compact complex

manifold obtained from X by blowing down associated these

tripies of Dynkin diagrams. Then Y 15 a Kähler manifold with

positive first Chern class.

First we recall the notation of K-S [12]. Let 7t : L -+ M be a

holamorphie line bundle Qver a compact Kähler manifold M with a

hermitian metric h. Denote by L the open set L-(O-seetion) of
o

L. Let t be· a. funetion on L which depends only on the norm

s of hand increases for the norm. Then the horizontal lift

X of a vector fleld X of M
o

to L with respect to the

canonlcal hermitian connection of L is characterized by

(4.1)

where J i8 the almost complex structure of the total space of L.

We decompose the group (* into Sl xR + and define holomorphic
o

vector flelds S, H on L

respectively so that

generated by sI-action, R+-action

(4.2)
.....

exp2nS = id. H = -JS H[t] > 0 •

If we denote by PL the Ricci form of L. then we have
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( 4 • 3 ) [}C, YJ - [X, YJ = -PL(X,Y)S.

Define a hermi tian 2-form B on M, the Ricci tensor of L, by

(4.4)

where. J 1s the almost compex structure of M.

We also consider a riemannian metric g on L of the form

(4.5)

where {gt} is a one-parameter family of riernannian metries on M.

Define a positive functlon u on L depending onIy on t by

(4.6)

..... 0

Then, by Lemma 1.1 of K-S [12], the metric g on L is a Kähler

metric if and onIy if each gt is a Kähler metric on M and

ddTgt = -u·(t)B. We also assume that the range of t contains o.

Put

(4.7)

then we have

(4.8)

We put

(4.9)

t
U(t> = J u(t)dt ,

o

tu(t) = a cos a with for a > 0,

and deflne Uet) by (4.7). Take a Kähler metric go on M and

assurne that each gt defined by (4.8) 1s positive definite. We

consider the Kähler metric
.....
g on i.. of the" form (4.5) satisfying
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(4.6). Then we have

(4.10)

We may assume that the range of U is (-(1+1), k+1) far given

positive integers k and 1, by ehanging the origin of U and

a)O if necessary. Thus we have

(4.11) 1
b = '2(k-Q.).

Lemma 4.2. Let s be the norm of the hermitian line bundle

1t : L --+ M. Then on
o
L

(4.12) U( t) :: (a 2 +b)s2 + (b-a2 )

52 + 1

by replacing l(s) by tees) for a positive constant c if

necessary.

Praof. Note that, in terms of polar coordinates (r,9> on

Jthe natural complex structure on is given by

..... Cl
J 8r

1 a= r ae '
....J 8ae= a-rar

and that if s = er for a constant
.....
c ) 0 = - a

s as ·

Note also that the restrietion to a fiber (* of the (*-action

on L coincides with the group action of ~*. Thus the vector

field H restricted to a fiber (* satisfies

.... a dt Cl
H = -JS = sas = sds ät

and thus

t= a cos a
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Sinee Jsee x dx = IOgltan(~ + ~)IJ we see that

es = ta n (~ + _t_) =
4 2a

1 + tan Ct/2a)
1 - tan Ct/2a)

for some positive constant e, and

Thus we have

tan(t/2a) = (es-1)/Ces+!).

uCt) = a 2 sin t + b
a

= a 2 2tan(t/2a) + b
1 + tan 2 Ct/2a)

2
a

2 (es) -1= 2 + b.
(es) +1

q.e.d.

In general, let p: E --+ N be a holomorphic veetor buJidle

over a compact eomplex manifold Nt ~: P(E) --+ N the

associated projeetive bundle over N and n : LeE) --+ P(E) the
o

tautological line bundle over P(E). Denote by E the open set

E-(O-section) of E. Let h1 be a hermitian metrie on E.
0 0

Since E = LeE) = LeE)-(O-section), a metric h
1 on E defines a

hermitian h LeE) xEP(E)
0 Emetric on . for and VtW E LeE) =.

with n(v) = n(w) = X, hx(V'w) = (hl)~(X) ev,w).

Remark. In general a fiber metric on LeE) does not define a

hermitian metric on E. There is a natural one-ta-one

correspondenee between complex Finsler struetures in E and

hermitian structures in LeE). See Kobayashi [10].

Corollary 4.3.

with M Kähler. Assurne that there are hermitian metries h1 on

E 8L t -
1

1 . 1 on E 8L,-1
2 2

with the following properety : If we
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denote the hermitian metric on L = L(E SL,-t) _induced from
1 1

by

hand the norm of h by 5, the norm 52 of the hermitian metric

construct a Kähler metric

on L(E 8LI- I )
2 2

induced from hZ depends only on S, under the
o -1
LCE28Li ). Assume further that we can

on i. in the above way, that is, each

gt in (4.8) is positive definite. We choose the function t in

such a way tha t the range (-(Q.+l),k+l) of- U is .Q.+! = rank EI =
codimension Nt in Y and k+l = rank Ez = codimension N

2
in Y.

0

Then the function U on the open set L of the compact camp 1ex

manifold Y i5 extended to a smooth function U on y such tha t

the range of U on the complex submanifold E 9L 1-
1 is

1 1
[-(1+1) ,k+l) and the range of U on E 8L,-l is (-(!+!),k+lJ.2 2

In general, for a Kähler metric g the corresponding Kähler

form Is denoted by C4 g ' We now seek the condition tha t the metric

-- 0 LCE eL,-I) LCE 9L,-I)g on L = = can be written as1 1 2 2

where ~i 18 ~ Kähler form of a Kähler metric 4.
1

on N.
1

for
o

i=I,2 and f o ' f~ are smooth functions on L depending only on

t •

Lemma 4.4. Under t he ass ump t ions in Corollary 4.3, i f the

Kähler metric M P(E eLt- 1 ) -1 and the hermitiango on = = P(E2~L2 )1 1

form B satisfy that *on M go + (.Q.+l)B = 'P l KI where Kl 15 a
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Kähler metric NI and (k+l)B * where is Kähleron go - = <PZKZ KZ a

metric on N
2

, then there are smooth functions f o : E 8L,-1 -+lR.
1 1

E 8L,-1 -+IR
~

and f . such tha t on L(1)' 2 2

(4.13) lJ) ..... = (<Pl°7t)*~1 - 2/::rd'd"f o = (<PZo]'()*~2 - 2/=T"d'd"f
ext

g

K-S (12]. We may assurne that ~at

First we consider a function f

Praof. We use the notation ~~'~ä (0 ~ IX ~ n) used in

= ~-t = 0 (1 ~ ~ ~ n) at a point.
IX

on L satisfying

lJ) ..... = (<Pi On )*!.1 - 2/-=Td'd tt f. Since göo = ~Ö~Of, we have
g

(4.14)

by Lemmas 1.2 and 1.3 of K-S (12]. As (2.15) in K-S (12], we put

q1(U) = u2 . Then the equation (4.14) is given by

(4. 15) since d d
dt = U dU •

By solving this equation. we have

(4.16) df 2U + C
dU _. <p (U) for some constant CeR.

Now ~(U) = u2 = a~cos2~ = a 2 (1-Sin 2(:». By (4.10) and (4.11),

we see that

(4.17) 122
<p ( U) =" 2 (a + b - U) (a - b + U) =

a
~(k+l-U)(l+l+U).
a

Let f o denote a solution of (4.16) wi th C = 2(.Q.+1). Then the

equation (4.16) 18 given by

(4.18)
df o 2a2

dU = k+1-U
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and hence f
O

= -2a2 10g(k+1-U)+C' C eiE R ) and f o is extended

-1to a smooth function on E18Li . Similarly we have a solution

f = -2a2 10g(.Q.+l+U) + Cu ( eilE IR )
CD

of (4.16) with C = -2(k+!), which is a smooth function on

-1 By K-S [12] Lemma 1 . 3 , haveE2
9Li · we

~Ö~Bf = 0

(4.19)

~ä~8f
1 df

BeiB 4<,ocU)M Bä8= - -u- =2 dt 2 dU .

Since
1 df a
~(U)dU = U+~+l by (4.17) and (4.18), we have

Thus (0_ = (CP1°1t)*~1 - 2Ad'd"fog
on L. Similarly, co =.....

g

o
L.

q.e.d.

Corollary 4.5. Under the same assumption of Corollary 4.3 and

Lemma 4.4, the Kähler metric
.....
g on

o
L can be extended to a

Kähler metric on the complex manifold Y.

Proof. Note that by (4.11) and (4.12) we have

where 52 i5 the square of the norm of the hermitian metric h1
on

(4.20)

Thus we have
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Let Pl:E19Li-1 ~ NI be the projection. It is easy to see that

(4.21) P~~l - 4a
2 j=Td'd"lOgel+s 2

)

is the Kähler form af a Kähler metric on a neighborhood of

-1
O-section of PI: E18Li ~ NI' Since

E18Li-l_eO-sectiOn> = L, the metric g
a Kähler metric

o
on L can be extended to

on
...... 0

Similarly the metric g on L can be extended to a

Kähler metric on and hence to a Kähler metric on

q.e.d.

Y.

Corollary 4.6. Under the same assumption of Theorem 4.1, the

compact complex manlfold Y is Kähler. More precisely a Kähler
...... 0) -1metric g on L = L18L2 -eO-section) can be extended to a

Kähler
......

metric on Y, which is also denoted by g.

Praof. Let go be the Gu-invariant Kähler metric on M =
G/U = PCE 8L,-I) = PCE 9L,-1) corresponding to 8no m as In Fact 11 1 2 2'

in section 1 and h a Gu-invariant hermitian metric on the

homogeneous 1 i ne bundle L = LCE 9L,-1) = LCE 8L,-1)-1 over M.
1 1 2 2

Since we are in Gu-invariant situation, the first assumption In

Corollary 4.3 Is satisfied. And the hermitian form B on M is

GU-invariant and corresponds to 4nC-AO(1)+A OC2» e c by Fact 2

section 2. Thus gt is Gu-invariant and corresponds to

+4n{2ö m+UCt)(A OCl)-AO(2»}, which belangs to c by Lemma 2.3. So

the second assumptlon in Corollary 4.3 is satisfied. In the same

way we see that *go + (!+l)B = ~1~1 where Kl

- 27 -
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Kähler metric on the Kähler C-space NI associated to the pair

and where .ß:2 is a Gu-invariant

Kähler metric on the Kähler C-space NZ associated to the pair

2 Kähler "'" 0

(Tl.Tl
1
)· Thus the metric g on L can be extended to a

Kähler metric on Y.

q.e.d.

From now on we assume further that the eigenvalues of B,

regarded as a hermitian form on a holomorphic·tangent space of M,

with respect to go are constant on M. Note that the assumption

-1 1
in Lemma 4.4 implies that 1+1 (resp. k+!) is an eigenvalue of

B with respect to go with multiplicity ! (resp. k ) because

*(resp. ~Zß2 ) is a positive semi-definite hermitian form of
r -1 0

~ (resp. k ). Thus the function det(go gt) ="Q(U) on L

Is given by

(4.22) Q(U) = det(I-Ug~lB) (1+ t~l)t(l- U ) k= k+l Ql CU)

where Q1(U) is a polynomial of U such that Ql (U) ~ 0 on

[-(.2.+1).k+lJ. Here also -1 and" g-lB are regardedgo gt 0
as

endomorphisms on holomorphic tangent spaces of M.

Theorem 4.7. Under the assumption above, together with

assumptions in Corollary 4.3 and Lemma4.4. if the Ricci tensor

r O of the Kähler metrie go on M is equal to go' then the

first Chern class cl (Y) of y is positive. More precisely, let

- "'"p be the Ricci form of the Kähler metric g on Y. then there
CD

is a C function F(U) of U on [-(!+l),k+IJ such that
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(4.23)

Praof. By Lemmas 1.2, 1.3 and 1.4 in K-S [12], we see that

the equation (4.23) is equivalent to the equation

(4.24) d dF
~ dUlog(~Q) + 2U + ~ dU = O.

By solving this equation,

(4.25) F = - 10g(~Q) - 2 J~ dU.

By (4.17) and (4.22),

-(4.26) log(~Q) = (!+1)log(!+1+U)+(k+1)log(k+l-U)+10g Ql+Cl

where Cl e R.

By (4. 11) and (4. 17) ,

2 U 2 2 U k+1
~ = a (k+1-U)(.Q.+l+U) = k+1-U

and hence

.0..+1
Q.+l+U

(4.27) 2 J; dU = -(k+l)log(k+!-U)-(!+!)log(!+!+U).

Thus F = -log Ql + C2 (C2 E. ~ ).

Since Qt(U) ~ 0 on [-(l+1),k+lJ, F i5 a smooth function on

[-(i+l) ,k+ll and hence , i t is smooth on Y.

q.e.d.

Proof of Theorem 4.1. Since go and B in Corollary 4.6

are Gu-invariant, the eigenvalues of B with respect to go are

constant. By (1.20) we have r O = gO' Note that the assumptions

in Corollary 4.3 and Lemma 4.4 are satisfied as in the proof of
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Corollary 4.6.

Remark.

Thus our theorem follows from Theorem 4.7.

q.e.d.

Note that, under the assumption in Theorem 4.1, by

taking L
-1 t Y, M P(E

1
) P(E

2
) G/U and the= L 18L2 ' = = = =

.....
metric g on Y as in Corollray 4.6. the following assumptions A)

a Kähler
...... 0

and B) in K-S (12] are satisfied for metric g on L of

the form (4.5) .

Assumption A). Let (min t, max t) be the range of t. The

function textends to a continuous function on t with range

(min t, max tl, and the subset M .mln (resp. M ) of t defined
max

by t = min t (resp. t = max t) 15 a complex submanifold of t
with codimension Dmin (resp. Dmax )' Moreover the Kähler metric

g extends ta a Kähler metric on t. which is also denoted by
......
g.

Assumption B). (1) The Kähler form of the metric g on t i5
......

cohomologous to the Ricci form p of g. (2) The eigenvalues of

the Ricci tensor r O of go with respect to go are constant on

M.

5~ Non-homogeneous Kähler-Einstein metries

Let n : L ~ M be a hermitian holomorphic line bundle over a

compact Kähler manifold Mo. As above we consider a Kähler metric

g on t of the form (4.5). We also assume that the eigenvalues

of B with respect to a Kähler metric go on Mare constant

and a compactificationt of
o
L satisfies the assumptions A) and
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i5

B). By Lemma 2.2 of K-S [12J, we may assume that the range of U

[-D. ,D ].mln max

Now we give a necessary condition for a Kähler-Einstein metric

on t of the form (4.5) being homogeneous.

Under the above situation, assume further thatTheorem 5.1.
....

the Ricci tensor r of the Kähler metric
.....
g of t of the form

(4.5) i5 equal to g. If g 15 riemannian homogeneous, the

followings hold.

(1) If the codimensions Dmin = Dmax = 1, then B = O.

(2) If one of the codimensions Dmin , Dmax i5 equal to 1 and

the other > 1 , then the non-zero eigenvalues of g-lB are all0

equa 1 •

(3) I f both codimensions Dmin , Dmax > 1 , then the number of

distinct non-zero eigenvalues of g-lB are 2 .0

First we recall the following.

Lemma 5.2. Every complete totally geodes1c submanifold of a

homogeneous riemannian manifold 15 homogeneous.

Proof. See K-N [llJ- Chap.7, Corollary 8.10.

Proof of Theorem 5.1. Since the closure 52 of each fiber

Jf'* f~ is a totally geodesie submanifold 0 (t" g) .....
and gig·

homogeneous. it 15 a riemannian homogeneous manifold by Lemma 5.2.

We use the notations in K-S [12]. Note that the induced metric

= is an Einstein metric on

- 31 -
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2-dimensional. Thus we have

(5 . 1 ) 2c· 2u where c is a constant.

Note that u2 = ~, u ~t = ~ ~U. By Lemma 1.3 of K-S [12], we see

that the equation (5.1) i8 given by

(5.2)

and hence

(5.3)

d d"
~dU(~dU(log ~» = c·~

~ = - cU + a constant.dU

Thus ~ is a quadric polynomial of U. On the other hand ~

vanishes at U = - Dmin , Dmax . Therefore ~ is of the form

for same Cf E R.

By (4.1.5) in K-S [12], the first term of Taylar expansion of

cp(U) at U =
given by

D. i8 given bymln 2(U +. Dmin ). Thus ~ is

(5 .4) -2
<P = D +D (U+D. )(U-D ).

min max mln max

....
Since r = g. the polynomial Q of U satisfies the equation

(5.5) LI' + 2U + ~.dQ = 0
dU't" Q dU

by Lemma 2.2 in K-S [12]. By (5.4) and (5.5), we have

d 1 Q"dU og =
(2U+D . -D ax) - U(D +D i )mln m max m n

=
1 - Dmin
U + D .mln

1 - Dmax
U - Dmax
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Thus we have

log Q = -(l-D . )log(U+D . ) - (l-D )logIU-D I + eHmin min max max

and thus we have

(5.6)
D . -1 D-1

Q = C(U+D . ) min (D -U) max
min max

Since -1Q = det(l-Ugo B), we get our claim.

q.e.d.

Now we recall the following theorem in K-S [12].

Theorem 5.3 (Theorem 4.2 in K-S (12]). Let M be a compact

Kähler-Einstein manifold whoes Kähler form represents the first

Chern class c 1 (M) and L a hermitian holamorphie line bundle

over "M. Assume that there is a Kähler metric -g on a

compactification t of
o
L of the form (4.5) with go

Kähler-Einstein, whose Kähler form is cohomologous La the Ricci

"form of t and that the eigenvalues of the Ricci form B of L

with respect to go are constant. Then the complex manifold t
admi t8' a Kähler-Einstein metric i f and only if lhe integral

(5.7)

vanishes.

Fet)
Dmax

=r UQ(U)dU
-D .mln

Now let (Tl,TTO) be an' effective pair of Dynkin diagrams as in

section 1 and M· = G/U the Kähler C-space associated to (Tl, TT O)'
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Consider the Kähler-Eins~ein metric go on G/U corresponding to

with r - g0-0 and a holomorphic line bundle LA on

G/U for A e Z with aG-invariant hermitian metric. Note that ac u

unique Gu-invariant form in the first Chern class cl (LA) i5 given

by 11(A> of (1.22). Let B be the Ricci tensor of LA which is the

Gu-invariant hermitian form on M corresponding to -4nA E c .

Lemma 5.4. Under the assurnption above, we have

(5.8) Q(x) = -1det(l-xgo B) = n (1 +
+eterm

Proo f . Straightforwards by (1.18).

Let p be an autornorphism of Dynkin diagram Tl such .that p2

= id and p ~ id. It is known that if Tl is irreducible and it

admi ts such an automorphism P. then Tl 18 of type A (n~2) •
n

Dn (n~4) or ES (cf.[5]). Note al so· tha t if .ll has two connected

components 1T(1) = <1l 1 '····lln }· Tl(2) = {8 1 ····,8 n } and TT(l).1T(Z)

are isomorphie by the map Il. -+ 8.• then the rnap
1 1

p: TT~Tl

defined by P(ll i ) = 8
i

, p(8
i

) = a i (for each i) 1s such an

automorphism of Tl, and from now on we consider this automorphism

p exclusively in the case when a Dynkin diagram Tl is reducible.

A pair (IT.TlO) of Dynkin diagram is said to be admissibte for p

if P(TTO> = TT O'

Lemma 5.5. Let (Tl,ITO) be an admissible pair of Dynkin

diagrams for an automorphism p and assume that A E Zc
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satisfies p(A) = -A. Then

Q(x) =

is an even function of x.

Praof. We use notation in section 1. Since.p induces the

bijections and
+ +

P : LO ~ LO ' i t also induces the

. ~+ ~+ ~b i j ec t ion p: ~m -. "'"m. Si nc e 2Öm = L- a , weh ave p ( 2Öm) =
aei:+

m

20 m• Note that (A,p(a» = (p(A),a) = -CA,lX). Thus if p(a) = a,

(A,a) = o. For

CA,pCet») ( CA a»)2 2
(2Ö

m
,p(a» x = 1 - (2s:,a) ·x.

Thus we get our claim.

q.e.d.

Corollary 5.6. Let G/U be a Kähler C-space assaciated ta an

admissible pair (lT,TTO) for an automorphism p. Put 26 m =

L... aa"'a: Let LA be a hol amorphie line bundle over G/U

aerr-TTO

such that p(A) = -A and A = L baAex with Ibexl < aex for
exETT-TTO

each aErr-TTO• Then the pl«()-bundle P(lEBL
A

) over G/U adm i t s

an Kähler-Einstein metric.

Proof. Note that by the assumption far A the absolute
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values of eigenvalues of Bare less than 1. By Theorem 5.4 in

K- S [12], i t issu f f i eie n t tos e e t hat t hein tegral

1J UQ(U)dU
-1

vanishes. Since ·-1
det(1 - Ugo B) is an even funetion of U by

Lemma 5.5, we get our claim.

q.e.d.

Examples 5.1. In the following cases the p 1 «()-bundle

P(l$LA) over a Kähler C-space G/U admits an Kähler-Einstein

metric. The vertices contained in nO,n-nO of a Dynkin diagram

rr are denoted by 0 ,x respectively.

2ö m = 2(A + Aa ).
(Xl 2

In this case the assoeiated

5.10 in K-S [12].

Put A = Aa - A(X • Then
1 2

p 1 «()-bundle P(l$LA)

p(A) = - A.

is the Example

Put A
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Then p(A) = - A. In this case G = SLC7.1.C) and U is given by

* * * * * * *0 * * * * * *0 0 * * * * *U = 0 0 * * * * *0 0 * * * * *0 0 0 0 0 * *0 0 0 0 0 0 *

C(4

(3) (11, 11
0

) a 1 a Z <:::
J p0--0--

C(s

p

Put A = A - AC( • Then
CX 4 5

p (A) = -A.

~~ ~
IX l CX 3 CX 4 IX S IX 6
X--.X--I--X--X

CX 2

25 . = 2/\ + 4/\ + 4/\ + 2Acx •m IX l CX 3 CX s 6

p(A.> = - A.

Put A

IX l 0: 2
CI >l{

(S) (Tr, Tl' ) LJ p
0

81 82

2ö = 4/\ + 4Ao: Put A = A - Aa · Then p (1\) = - A.
Ul· IX 1 2 (Xl 2

NO\ll we consider triples (TT,lTi.rro)' (TT,rri,TTo >' of Dynkin
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diagrams as in section 3. These tripies are said to be admissibLe

for an automorphism p of Dynkin diagram TT if P(ITO) =

p(a O(l» = aO(Z). Note that the holomorphic line bundle

= L(E18Li-1) = L(E
2
8LZ-1 )-1 over M = G/U is given by

where '" = "'0(1) - "'0(2) and thus p(A) = -A. By Lemma

satisfies the assumption in Corollary 5.6. Recall that the

pl«()-bundle X is given by X = P(l$L",).

TT O' and
-1

L
1
9L

2

LA'

2.4 A

1 2Corollary 5'.7. Let (TT,lT1,TT
O
)' (TT,TT

1
,TT

O
) be admissible

tripies of Dynkin diagrams for p. Then both the pl«()-bundle X

associated to these tripies of Dynkin diagrams and the compact

complex manifold Y obtained from X by blowing down associated

to these tripies of Dynkin diagrams admit Kähler-Einstein metries.

ProD f . By the last Remark in sect~on 4 and Theorem 5.3, it

i5 enough to see that the integral (5.7) vanishes. Since D =max

D. and Q(U) i5 an even function of U by Lemma 5.5, we getmln
aur claim.

q.e.d.

Remark. As in K-S [12J, X and Y admit a Kähler-Einstein

metric if- and' on'ly' if Futaki t s integral F(H) of the holomorphic

vector fleld H vanishes. We can explain Corqllaries 5.6 and 5.7

as foliows. The automorphism p of the Dynkin diagrm induces

automorphisms YX and- Yy of the complex manifolds X and Y

respectively, such that y H = - H. Thus Futakifs integral
*

F(H)

vanishes, because it i5 invariant under complex automorphisIDs

(cf.Futaki(7] Theorem 2.1). However the existence of such an
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automorphi5m y i5 not necessary to the existence of a

Kähler-Einstein metric. See Example 5.3 (2) and Example 6.4 in

(17).

Corollary 5.8. Under the same notation as in Corollary 5.7.

if the number of elements in rr-nO ~ 3, then the Kähler-Einstein

metric on Y is non-homogeneous.

Proof. Since rr-(TT~vrri) ~ t/1 by our assumption, we can take

an element cx e TT-(n~VTTi). Note that TT~ = lTOV (lla(l)} and rri

= TTOV (C(O(2)}. We may assume that there is a connected subdiagram

n' of 1T such that ~ and a O(1) are terminal vertices of

TI' and (XO( 2) i s no t a ver tex 0 f TI I, t ak i ng p (a) instead of

IX if necessary. Note that y = I: B is a positive root (cf.
BETT'

Bourbaki [5J Chap.6, Prop. 19 Cor.3 b» and hence +y e Lm. Put A

= AO::
O

(1)-' A
CXo

(2). Since (A,Y) = (A,eca(l»

(25 m,y) > (25 m,CX O(l». we see that

and

and hence the number of distinct non-zero eigenvalues of

are grea,ter than or equal to 3. by Lemma 5.4. Thus we get our

claim by Theorem 5.1.

q.e.d.

Examples 5.2. In the following cases the blowing down Y
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admits a non-homogeneous Kähler-Einstein metric. The vertices

of a Dynkin diagram IT are denoted

by o. o. x for i = 1,2 respectively as in section 3.

(1)
(Xl C(2 cc 3O--x--x
~

p

C(1 C(2 (;(3
x--x--O
~ .--:l

P

Note that A = AC( -Acx .
1 3

Note that A = Aa -Aa .
4 5

(3)

p

~1 cx l tt 3 Ct 4 0: 5 Ct 6
(IT,IT1,ITO) x---c---r---x---x

0: 2

p

~~ ~~
2 Ct 1 ((3 Ct4 Ct s Ct s

(U,ITt,Uo) X---X---l~X

Ct2

Note that
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(4)

p

~~ ~
1 (Xl (;(3 (X4 a S rJ. 6

(IT,IT1,ITO) O---O---l---O---X
(;(2

p

~i:.~
2 (Xl (;(3 (;(4 a S (;(6

(TT,n 1 ,TTo) X---O---I---O~

(;(2

Note that

(5) p p

Note that A = A - AB
cx 2 2

Now we gi ve examp 1es, 0 f Y be i ng homogeneo.us.

Examples 5,.3. ( 1 ) (n, 1 n
O

)
(Xl 0: 2 (n, 2 TT

O
)

(Xl ct 2
TT
1

, c-=---x IT
1

, x---c
~ f'<---»

P P

In' this case A = Aa - Aa ' compact Kähler manifolds NI' NZ are
1 2.

p2 (<C) , M is the flag manifold SL(3,()/B where B

subgroup of SL(3,<L), X is the p1«)-bundle P(llBLA
)

and Y is the complex quadric Q4 «() .
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(2)

In this case A = A~ - AB ' compact Kähler manifolds NI' N2 are
1 1

pm«(), pn«() respectively,

pl«()-bundle P(l$LA) over

space pn+m+l(~).

6. Remarks

M i s

M and

X is the

Y is the complex projective

A riemannian manifold N is said to have cohomogeneity d if

the codimension of the principal orbits for the action.af the

isometry group is d, and d i5 denoted by cohomg(N). For a given

positive integer d we give examples of Kähler-Einstein manifolds

which have cohomogeneity d.

Lemma· 6. 1 • Let MI' M2 be Fano manifolds of nI-dimension

and n2-dimension (nl,n2~2) and let FI , F2 be holomorphic line

bundles on MI' M2 respectively such that c1(F1 ) > 0 and cl (Fz)
1 -1> o. Then H (M 1XM 2 , End(1 e F1SFz » = (0).

Proof. By Künneth farmula, H1(M XM z' -1F18F2 ) =1

L i l-i-1 Since -1
O.

j -1H (MI,F1)SH (M2 ,F2 ). Cl (Fz ) < H (M2,F2 ) =
i=O,l

(0) far j < Thus 1 -1
(0) • Also getn2 • H (MIXMZ' F

1
9F

2
)= we
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1 -1 -1H (M1XMZ' F1 8FZ) ; (0) by the same way. Since End(leF18FZ );

1$(F18F;1)e(F~18Fz~el and MI' MZ are simply conected, we.get our

claim.

q. e. d.

In general, for a compact complex manifold X let AutO(X)

denote the identity component of the group of all holomorphic

automorphisms of X. Let E be a holomorphic vector bundle of

rank r over a compact complex manifold M and P(E) the

associated projective bundle over M. By a theorem of Blanchard

[3J, we see that AutO(P(E» coincides with the identity

component of all fiber preservi'ng autmorphisms of P(E). Thus the

projection n : P(E) ~ M induces a homomorphism

Il : AutoCPCE» -.,. AutoCM). Note also that the group of all fiber

preserving holomorphic automorphisms of P(E) i8 naturally

isomorphie to the group of all fiber preserving holamorphie

au tom 0 r phi smS 0 f t h e pr i nc i pa 1 f i be r bund 1e P (M, PGL( r , t.C) ,71:")

associated to the bundle· 1t : P(E) --+ M..

Lemma 6.2.

hompomorphism 1t

Under the assumption as in Lemma 6 .. 1. the

Aut O(PCl$FI8F;1» ~ Aut OCM1XM2 ) is surjective.

Proof. By Proposition 2 in (15] and Proposition 9 in [2],

it Is enough to show that H1 (M 1XM2 , End(l$F18F;1» = (0). Thus we

get our claim by Lemma 6.1.

q.e.d.

We consider a holamorphie line bundle L Qver a compact
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complex manifold M and the pIC()-bundle P(l~L) over M. We

assume that M has a Kähler-Einstein metric go with r O = go

and tha·t L has a hermitian fiber metric such that the

eigenvalues of the Ricci tensor Bare constant on M and their

absolute values are less than 1. We also assume that

IJ U'det(l - Ug~lB)dU = O.
-1

Thus p(leL) admits a Kähler-Einstein metric by Theorem 5.4 in

K-S [12].

Now we recall the following.

Proposition 6.3. In the above situation, if the

homomorphism rr AutO(P(I$L» ~ AutoCM) is surjective and B

is non-trivial on each irredueible faetor of the Kähler manifold

M t then the Kähler-Ein~tein manifold p(leL) ia irreducible and

cohomg(P(I$L» = cohomg(M) + 1.

Proof. See K-S [12J Proposition 5.6. Note that the

homomorphism n : IsomO(P(I$L» ~ IsomOCM) is surjective by a

theorem of Matsushima [13].

q.e.d.

Let NO = pneC), H the holomorhic line bundle over pn«()

corresponding to a hyperplane and La = Hm for 1 ~ m ~ n. Then we

'have Cl (La) = (m/(n+l»c l (NO) and we get an almost homogeneaus

Kähler-Einstein manifold P(Lo$Lo) of cohomogeneity one. Let

NI = P(LO$LO> , n : NI ~ NOxN O the projection and ~ = L(LO$LO)
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the tau to 1ogi cal 1 i ne bundl e over N'. Then we have

Thus, if n+l-m Is even, there exists a holmorphic line bundle

L' Qver N' such that Cl (L') = -(!/2)c
1
(NI).

Now we construct a Kähler-Eintein manifold of cohomogeneity

d for each given positive integer d. If d is even, put d =
2k, and if d Is odd, put d = 2k+l (we may assume d ~ 2).

Consider the product MI = Ntx···xN' of d-l copies of Nt and

the product F1 = L'e···9Lt of d-1 holomorphic line bundles on

MI induced from L' on Nt. Then Cl (F!) = (1/Z)c 1 (MI)' Ii d

Is even, consider the complex projective space MZ of (Zn+l)(d-l)

dimension. Then cICMZ) = «2n+I)(d-I)+I)c1 (H). Put FZ = Hi where

! = «Zn+l)(d-1)+1)/Z. If d is odd, consider the complex

quadric M~ of (2n+l)(d-I) dimension. Then C1CMz) =
(2n+I)(d-l)c1 (H') for a holomorphic line bundle H' over MZ. Put

F2 = H,t where 1 = «2n+I)(d-l»/Z. Consider the pl«()-bundle

P(I$F19F;1) over MixM2. Then, by Lemma 6.2 and Proposition 6.3,

-1we see that P(1$F19FZ ) has cohomogeneity d.
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