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ABSTRACT

In 1956, Rankin described which polynomials in the derivatives of modular forms are again modular
forms, and in 1977, H. Cohen defined for each n :2: 0 a bilinear operation which assigns to two modular
forms fand 9 of weight k and 1 a modular form [f,g]n of weight k + 1+ 2n. In the present paper
we study these "Rankin-Cohen brackets" from two points of view. On the one hand we give various
explanations of their modularity and various algebraic relations among them by relating the modular
form theory to the theories of theta series, of Jacobi forms, and of pseudodifferential operators. In a
different direction, we study the abstract algebraic structure ("RC algebra") consisting of a graded
vector space togcther with a collcction of bilinear operations [ , ]n of degrce +2n satisfying all of the
axioms of the Rankin-Cohen brackets. Under certain hypotheses, these turn out to be equivalent to
commutative graded algcbras together with a derivation aof degree 2 and an element <Jl of degree 4,
up to the equivalence relation (D, cI» rv (D - 4>E, cI> - 4>2 +D(4))) where 4> is an element of degree 2 and
E is the Euler operator (= multiplication by the degree).
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MODULAR FORMS AND DIFFERENTIAL OPERATORS

DON ZAGIER

The derivative of a modular form is not a modular form. Nevertheless, there are many interesting
connections between differential operators and the theory of moel ular forms. For instance} every
modular form (by which we shall always mcan a holomorphic modular form in one variable of integral
weight) satisfies a non-linear third order differential equation with constant coefficientsj in another
direction, if such a form f(r) is expressed as apower series rp(t(r)) in a local parameter t(r) which is
a meromorphic modular function of r} then the power süries rp(t) satisfies a linear differential equation
of order k + 1 with algebraic coefficients, whcre k is the weight of I. This latter fact, which leads
to many connections between the theory of modular forms and the theory of hypergeometric and
other special differential eqllations, playeel an important role in the elevelopment of both theories in
the 19th century and up to the work of Frickc and Klein, but surprisingly little role in more modern
investigations.

In 1956} R.A. Rankin [Ra] gave a general description of the differ~ntial operators which send
modular forms to modular forms. A very interesting special case of this general setup are certain
bilinear operators on the graded ring M.(r) of modular forms on a fixed group r c PSL(2, R) which
were introduced by H. Cohen [Co] alld which have had many applications since then. These operators,
which we call the Rankin-Cohen brackets, will be the main object of study in the present paper. On
the one hand, we will be interested in understanding from variol1s points of view "Why" these operators
on modular forms have to exist. The..se different approaches (in particlilar, via J acobi forms and via
pselldodifferential operators) give different explanations anel even different definitions of the operators,
and although these definitions differ only by constants, the constants turn out to depend in a. subtle
way on the parameters involved and to lead to quite complicated combina.torial problems. On the
other hand, we will tl'Y to ullelerstand what kind of an additional algebraic structure these operators
give to the ring .tVf.(r) and what other examples of the same algebraic structure can be found in
(mathematical) nature. We will give a partial structure theorem showing that the algebraic structure
in question is more Of less equivalent to that of a graded algebra together with a derivation of degree 2
and an element of degree 4. The rcstdts will be far from definitive, our main object being to formulate
certain questions a.nd perhaps arouse some interest in thern.

§1. The Rankin~Cohen bilinear operators. Let /(r) anel g(r) denote two modular forms of

weight k anel Ion some gl'OllP r c PSL(2, R). We dcnote by D the differential operator~ dd =q dd
27rt r q

(where q = e2
11'iT as lIsllal) anel use f' t I", ... , /(n) freely instead of Df, D 2I, ... , Dn f. The nth

Ra.nkin-Cohen bracket of I allel 9 is defined by the forlllltia

(1)

(The normalization here is different from that in [Co] and has been chosen so that [/,9]n is in Z[[q]]
if fand gare.) The basic fact is that this is a modular form of weight k + I + 211 on r, so that
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(2)

the graded vector spaee M. (r) possesses not only thc well-known structure aB a eomrnutative graded
ring, eorresponding to the Oth bracket, but also an infinite set of flIrther bilinear operations [ , ]n :
M. 0 M. ~ M.+.+2n. We shall be interested in seeing what kind of an algebraic structure this is
and where other examples of such a structure arisc. Let us start by l'ecalling why [I, g]n is a modular
form. There are at least two ways to sec this.

The first is to assoeiate to the modular form I(r) the formal power series

_ 00 J(n)(r) . n

f(r, X) = L: '( k )' (21n.X)n. n+ -1.
n;O

introduced by Kuznetsov [Ku] ami Cohcn [Co]. Then the higher bra.ckets of / and gare given by

/-( V) -( V) ~ [I, g]n(r) (2 .v)n
7, -..I\. 9 7,..I\. = LJ ( k ) I ( / ) I 1rl..1\.

n;O n + ~ - 1 . n + - 1 .
(3)

(n ;:: 0) ,

On the other hand, j satisfies thc transformation law ([Ku]' Theorem 1, [Co], Theorem 7.1a)

j(1'(r), (cr ~ d)2) = (cr +d)k coX/lor+d) i(r, X) (1' = (: ~) Er, 1'(r):=;;: :) . (4)

Indeed, this idcntity is eq uivalen t by eOlu parison of coefficicnts to the se<plCllce of identities

I(n) (,(7)) n (21ric)n-m (er + d)k+n+m j{m) (7)
n! (n + k - 1)! = L: (n - 7n)! 7n! (7n + k - 1)!

11\;0

aod these are easily proved by induction on n. [For a non-inductive proof of (4), observe that (2)

is the unique power scries solution of the differcntial C<luation (:r -k ä: - X ä~2) j = 0 with

initial conditions j(r, 0) = (k - 1)!-1 1(7), aod verify that (C7 +d)-ke-cX/(c.+d) j(,(7), X/(C7 +d)2)
satisfies the same conditions.] Now identity (4) and the corresponding formuta for 9 imply that the
product occurring on the Ieft-halld side of (3) is multiplied by (C7 + ll)k+l nuder the transformation
(7, .Iy) I--t (1' (7), (e7 +d) -2 .IY) (the exponen tial factors drop on t beeause of the min us sign in (3)), and
this sa.ys that the coefficient of ..Iyn in this prod 1Iet transforms like a modular form of weight k +1+2n
for aB n. Since the hololllorphy at the CtlSPS is also easy to check, this proves the assertion.

For the second prooe whieh will also male it clear that the operator [', ']n is the only bilinear
differential operator of degree 2n sendillg modular fonns to modular fonns-a fact which can be seen
in many other ways-is to look at the effcct of this operator on theta series. Recall that if Q : zm ~ Z
is a positive definite quadratic form in 1n variables and P : zm ~ C a spherical function of even degree
d with respect to Q (i.e. a homogeneolls polynomial of degree cl in 711 variables which is annihilated
by the Lapla.cian D.Q a&<;jociated to Q), then the theta series /(7) = 8Q,p(7) = Z=xezm P(x) qQ(x) is a
modular form of weight k = (1 + 111,/2 on some stlhgroup r C PSL(2, Z) of finite index. If 9 = 8QI,p,

is a secood such theta series of weight I = tl' +1U'/2, then the fun~tion

h(r) = L: cr,.f(r)(r)g(·)(r) = L (P(X)P'(X') L cr,.Q(X)'Q'(x')') qQ(x)+Q'(x')

r+8;n (x,x')ezm+m' r+,,;n

will be a modular forlll (of weight k + 1+ 2n) if ami only if the homogeneous polynomial of weight
d + d' + 2n appearing in parentheses is spherical with respect to thc combined Laplacian D.Q +D.QI.
But a short calculation, fa.cilitatcd by choosing coordinates in which Q(x) = Z=:1 xl, shows that
D.Q(P(x)Q(xY) equals 4r(r + k - 1)P(x)Q(xy-1

, so this will happen if alld only if r(r + k - l)cr ,8 +
(8+ 1)(8+1)Cr-l,8+1 vallishes fol' aB rand 8, i.e., if the Cr,,, are proportional to (-Ir (n+:-l) (n+;-I).
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§2. Algebraic properties of the Rankin-Cohen brackets. The brackets introduced in §1 satisfy
a number of algebraic identities. First, we have the obviollS (anti-)commutativity property

for all n. The Oth bracket, as already mentioned, is usual multiplication, so satisfies the identities

[[f, g]o, h]o = [f, [g, h]o]o

making (M., [ , ]0) into a commutative alld associative algebra. Wc also have the formltlas

(5)

(6)

[f, 1]0 = [1, f]o = f , [f, 1] n = [1, J] n =0 (n > 0) (7)

(because the binomial coefficient (n~ I) in (1) is zero), wh ich say that the unit of this algebra structure
has trivial higher brackets with all of M*. The 1st bracket, given by

[I, g]1 = -[g, Jh = k Jg' - I/'g E M k+l+ 2 (I E M k, 9 E MI) ,

satisfies the Jacobi identity
[[Ighhh + [[ghh/h + [[1~/hg]1 = 0, (8)

giving M.- 2 the structure of a graded Lie algebra. (From now on, we often drop the comma in the
notation for the brackets.) The double brackets [[ . ]0 hand [[ . h ]0 satisfy the identities

and

[[!g]ohh + [[gh]o!h + [[h/]og] I = 0 (9)

11l [{!g]lh]O + 1[{ghh!]o + k [[h/hg]o = 0 (J E M k , 9 E MI, h E M TTl ) , (10)

(the first oue in which the weights playa role) as weil as the mixed relations

{[!g]ohh = [[ghhf]o - [[hf]lg]O, (k + rn + I) [[!g]lh]o =k [[hf]ogh - I [[gh]ofh , (11)

the first of which says that the Lie bracket with a fixed element of M* acts as a derivation with
respect to the associative algebra structure [, ]0. (A space having simultaneously the structures of an
associative and a Lie algebra, with thc latter acting via derivations on the former, is called a Poisson
algebra.) The relations (6)-(11), which are not all independent, describe all identities relating the Oth
and 1st brackets. At the next level, the relations involving the second bracket

[ ] ( k + 1) "( )(I I I (I +1) "!, 9 2 = 2 Jg - k + 1 + 1) f 9 + 2 ! 9 E Mk+I+4

are alrcady quite complicated. Starting with f ® 9 ® h E Alk ® All ® Mm we can alreacly make nine
trilinear expressions of weight k + I + m + 4, namely [[fg]ohh, [[fghhh, [[Jghh]o and their cyclic
permutations. (The non-cyclic permutations give the same elements up to sign by (5).) The space
they span has dimension 3, a basis being given by the first or the last group, which are lIlutually
related by

(k + 1)(/ + 1) [[Jg]ohh = - 7n(rn +1) [[fghh]o

+ (k + l)(k +1+ 1) [[ghhf]o + (l + 1)(k + 1+ 1) [[hfhg]o (12a)

(k + 1+ 111 + l)(k +1+1n +2) [{fghh]o = (k + 1)(/ + 1) [{fg]ohh

- (k + l)(k +1+ 1) [[gh]ofh - (l + l)(k + 1+ 1) [[hf]ogh , (12b)
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while the second groHp (which is lincarly depelldent by virtue of the Jacobi identity (8)) is expressed
in terms of these by

[[Ighh] 1 = [[gh]o/h - [[h/]ogh + [[ghh/]o - [[hlhg]o. (13)

Of course we could go on in this way, giving more and more axioms for the bracket operations of
various degrees. However, it is not obviotls how the whole set of relations looks, or even when we
have a complete defining set for a bracket of given order. For instance, although the bracket [. h
satisfies no tri linear relations like (6) or (8), a simple dimension count shows that the permutations
of the r-fold 2- brackets [... [[I9hhh ...h are li nearly dependent for all sufficiently large r, but it is
not clear how far wc would have to go to get the first relation or how much further to ensure that
all Subse<luent relations obtained would be consequellces of ones already found. In §3 we will give an
infinite collection of trilinear relatiolls aIllong thc Rankin-Cohen brackets which possibly may generate
all relations, though we do not know this.

However, even not knowing a complete (let alone minimal) collection of universal identities satisfied
by the Rankin-Cohen brackets, one can investigate thc class of graded vector spaces having bracket
operations which satisfy these ideutities and try to elucidate their structure. This will be done in §5.
First, however, we look at two other structures on modular forms which give new explanations of the
existence of thc bracket operations (1) aud shed further light on their algebl'aic nature.

§3. Rankin-Cohen operators and Jacobi-like farms. We fix a subgroup r of P8L(2, R). For
each integer k > 0 let Jk = Jk(r) be the set of all holomorphic functions 4>(r , X) on 1l X C (1l =
upper half-plane) satisfying

(14)

(Le" equation (4) with 4> in place of f) as weil as the nsual holomorphy conditions at the cusps. We call
the elements of J k Jacobi~like 01 weight k because they satisfy one of the two characteristic fnnctional
equations of Jacobi forms. (The other one, which does not concern us here, involves translations of z
by elements of the lattice Z T + Z, where J'Y is proportional to z2. See [EZ] for the theory of Jacobi
forms, and in particular §:3 of (EZ] for many calculations related to thc ones here.)

Clearly the restl'iction of a Jacobi-like forHl to J'Y = 0 is a modular form of weight k on r, and
the kernel of this ma.p Jk --+ M k = Alk(r) is jl1st X times Jk+2(r). The Kuznetsov-Cohen functional

e<lllation (4) says that we have a callollical sectiOll 1 --+ (k - I)! j of Jk --+ Mk , so that the sequence

is exact and splits canonically. This imrlies that thcre is a. bijcction between Jacobi-like forms of
weight k and sequences of modular forms of weight k + 2n (n ~ 0). Then the multiplication of
Jacobi-like forms induces bilinear pairings Al. 0 M. --+ M.+*+2n, and these must be multiples of the
Rankin-Cohen brackets. \Ve now look at the details.

If we write <p(r, )() E .h(r) as L~=o 4>n(r) (21T"iJ'Y)'\ t.hen comparillg coefficients of J'yn in the
defining functional cqnation (14) gives the functional equations

-k-2n ( ) Ln 1(1 c)m(cr +(1) <Pn ,(r) = -, -2. -+1 4>n-m(r)
1n. 1T"t cr (

m=O

4

(n ~ 0, 1= (: ~) Er), (15)



and conversely any scqllence of holomorphic functiolls 4>n (r) satisfying (15) and a growth condition
at cusps defines an element of Jk(r). Equations (15) are in turn e<luivalent to thc sequence of
transformation laws

and in general

h "= ~ (_ )m (2n-ln+k-2)! rI-(m)
n' L...J 1 ,'f'n-mm.

m:;;O

(n ~ 0) . (17)

This can be proved from (15) by indllctioll on 1L just a.s (4) was proved, or alternatively deduced from
(4Lsince a sim pie binomial coefficient identity lets HS i11 vert (17) to write

or equivalently as

4>n(r) = '"' 2m. + k - 1 h(r)(r)
L...J r!(1'+27n+k-l)! mr+m:;;n

00

4>(r,4'Y) = L (2n + k - 1) il,n(r, X) (27ri4'y)n
n:;;O

(18)

(19)

and then the modularity of hn follows inductively frOlIl (4) (applied to hnl, n' < n) and the Jacobi
like property of 4>. Equations (17) and (18) realize the afore-mentioned bijection between Jk(r)
and TIn Mk+2n(r). Now 1.0 get the bracket operations we considcr the Cohen-Kuznetsov lifts of
two modular fonus f E Mk, 9 E All. If Q' alld ß are two complex numbers, then the product
4>(T) = j(T, Q'X)fj(T, ß)() will be Jacabi-like with respect to the variable (O'+ß)X, since the expancntial
factors in (14) multiply. The case 0' +ß = 0 (when wo can normalize to ß = -Q' = 1) was the case
used 1.0 obtaill the Rankin-Cohen brackcts in §1. If Q' + ß is different f1'om 0, we can normalize it 1.0

be equal 1.0 1 by rescaling .X. Thcn 4> belongs to Jk+l and has an expansion of the form (19). The
coefficient of (21riXr~ in 4> is givcll by

rß~

A-. ( ) _ '" Q' (r) ( ) (~)( )
'f'n r - L...J r!s! (r + k _ I)! (s + 1_ I)! f T 9 T,

r+8:;;n

so by Leibniz's rule 1.he modular fal'llls hn defined by (17) (with k +1 in pla.ce of k) are given by

(n ~ 0) , (20)

This is a combination of prodllcts of derivatives of fand gwhich is modular of weight k + 1+ 2n
and hence must be a multiple K'n = K-n(k,l; 0', ß) of the Rankin-Cohen bracket [/,9]n, so as Q' and
ß = 1 - 0' vary we geL infinitely ma.ny explanations of the existence of these brackets. Dur next job
is to cam pu te the sealar K. n .

We defi ne fol' each 11, a polynamial 11n of fOllr variables, of degl'ee n in the fi l'st two and homogeneous
of degree n in the last two, by

(21)
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so that equation (1) ean be rewrittell as

(22)

The polynomials H n , whose definition can also be written

( . ) 1 ( v iJ y iJ) n (e k+ n -1 l+ n -1 ) IH n k,L, ....Y,y = I' - ....l. ~+ oe "- 1] ,
n. vI} "- {='1=1

satisfy many algebraic identities. V-le mention in partictllar

H n(k, Li X, Y) = (-1) n [in (L, k; Y, ....Y) ,

Hn(k, L; ....Y, Y) = lln(L, -k -I - 2n + 2j Y, - ....Y - y),

n1(n+k+I-2)!
(n + k _ 1)!(11 + 1_ 1)! Hn(k, L; ....\'", Y) Hn(k,I; 0', ß)

= ~ (2r + 2s + t + k + L- 2)! (a ....Yt(ßY) " (_,Z)t
L..J r!s!t!(r +k - 1)!(8 +1- I)!r+,,+t=n

The first two of these say that the 6-argl1ll1ent fllnetiOIl

(23)

(24)

(25)

(0' + ß+, = X + Y + Z = 0).

(k + 1+ 1n =2 - 2n, X + Y + Z = 0)

is symmetrie under even and (-1 )n_symmetrie 1lllder odd permutations of its three columns, a.nd the
third (for k +1 rt Z) ean then be rewrittell more symmetrically a.s

[X Y Z][a ß ']
(a ....Yr(ßY)"(,Z)t k 1 m k 1 m

L r!s!t!(7' + k - l)'(s + 1- l)!(t + 111 - I)! = (n + k - 1)!(11 + 1- 1)1(n + m - I)! 'r+,,+t;n

where x! denotes r(x +1) for x rt Z.
Identity (23) is trivia.l. 1'0 prove (24) allel (25), we observe that H n = Hn(k, lj X, Y) satisfies the

differential equations

(26)

(the first is Euler's equatioll saying that H n is homogeneous of degree 11, in ....Y and Y, alld the second
was already used im plieitly in the proof of moel ulari ty of [8P,Q, epi ,Q']n in §1) I allel these eharaeterize
H n uniquely Hp to a scaJar fa.etor a.s a ftlllction of ....Y aud Y. Thus to prove (24) we verify, using (26),
that the right-hand siele also satisfies (2G), and then fix the Ilormalizations by taking Y = 0 and
using (23). Similarly, to prove (25) we verify that the expression on the right satisfies (26) alld henee
is a multiple (depending on 0' alld ß) of [in(k,lj ....Y, Y)i by the symmetry in (X, Y, Z) a.nd (0', ß"L
this multiple must be a sealar Illultiple A1l (k,l) of Hn(k,ljO',ß), anel the value of An(k,l) is fixed by
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specia.lizing to 0' =Y = O. One call also pl'ove both idcntities using generating functions; for instance,
we have

and hence Hn(k - n + 1,1; X, Y) = (-1r~Hn(-k - 1- n + 1, Ij Z, Y), which is equivalent to (24).
Now returning to (20), where 0' + ß = 1, we sec from (25) alld (21) that

n!(n+k+I-2)!
hn(T) = ( k . )I( I )' IIn(k, Ij 0', ß) [I, g]n(T) .n+ -l.n+ -1.

(This actually gives another proof of (25), since we already knew that h o had to be a multiple of [I, g]o,
so the right-hand side of (25) must be a multiple of Hn(k, Ij X, Y).) Changing to the inhomogeneous
notation, we can summarize what we have proved as

Proposition. For I E Mk(r), 9 E M,(r) (k, I > 0) and 0', ß E C we have the identity

00 __

1(T, aX) lJ(T, ß.-Y) =L cn(k, I; 0', ß) [I, 9]0(T, (0' + ß)X) (21l"ix)n
n:;::;O

with
1l!(n+k+I-2)!

cn =(2n+k-l)( )I( I ) Hn(k,I;O',ß).
7L + k - 1 . n+ - 1 !

(27)

(28)

Applying this proposition twiee, we find that, if h E Mm(r) is a third modular form on r, theo

I(T, O'X)g{T, ß.-Y)h(T, IX) = L cn(k, I; 0', ß)cp (k+I+27L, nlj O'+ß, I) Fn,p(T , (O'+ß+,)X) (21l"ix)n+ p

n,p~O

with Fn,p(T) =[[I, g]nh]p. Since the expression Oll the left is symmetrie in its arguments, we get:

Corollary. For j E Mk(r), 9 E M,(r) und h E Mm(r) und 0', ß, I E C, the expression

r

L cn(k, I; 0', ß) cr-n(k + I + 2u,1n; 0' + ß,....,) [[I, 9]0' h]r-n E Mk+l+m+2r{r)
0::0

(rEZ~o),

with Cn given by (28), is symmetr-ic undc7' all pC7'711utations 0/ (I, k, a), (9, I, ß), (h, m, 1)'

Varying rand eOlllparing coefficients of the various mooomials in (v, ß aod I, we systematically
obtain in this way universal identities satisfied by the Rankin-Cohen brackets of the sort studied in
§2. For instance, the tri pie brackets [[19] ..h]* can always be expressed (in general, in many ways) as
linear combinations of the tripIe brackets [[jh] ..g]*.

Finally, we mention that combinatorial identities similar to (24) a.nd (25) occur, in a somewhat
related context, in the paper [IZ].
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§4. The Rankin·Cohen operators and pseudodifferential operators. This connection was
suggested to the author by Yu. Manin and will be treated in detail in the joint paper [MZ], so we give
only a few indications.

Let D as before be the differential operator (21ri)-1 d/dr, (The factor 21ri, introduced earlier for
convenience, is more of a nuisance now, but we will let it be.) Then by a formal pseudodifferential
oPerator we mean a formal power series L~=o Yn(T) n-n where the Yn are holomorphic functions in
the upper half-plane. We can multiply two such series by Leibniz's rule

and the pseudodifferential operators in this way form an associative, but of course not commutative,
ring.

Now if we consider some modular graup f acting on the upper half-plane, then falsa acts on D via
D ~ (er + d)2 D , so it makes sense to speak of a pseudodifferential operator L~=o 9n(r) D-n being
f -invariant. If Uo > 0 is the smallest index with 9no 1=. 0 for such an operator 1 then it is easily seen
that 9n o is a modular form of weight k = 2110, 9n o+l + t(no + 1) 9~0 is a modular form of weight
k + 2, etc. This is reminiscent of the e<:luations (15), and indeed , a calculation shows that the power
series

~ 9n(T) (-2rrix)n-no
n~o n!(n - 1)!

belongs to J k (r), setting up a 1:1 correspondence between invariant pseudodifferential operators of
the form Ln>no 9nD-n and Ja.cobi-like forms of weight k. Combining this with the Kuznetsov-Cohen
lifting (4), we find that there is a canonicallifting

I(T) V[f] = ~ (-Ir (r + k/2)! (r + k/2 - I)! f(r) (r) D-r-k/2
LJ r! (7'+ k - 1)!
r=O

(I E M Ie , k > 0 even)

from modular farms to pseudodifferential operators, and that conversely any f-invariant pseudodif
ferential operator can be expanded as a sum of such lifts. In particular l since the product of two f
invariant pseudodifferential operators is another one, we can associate to two modular forms f E MIe,
9 E MI a sequence of modular forms {hn}n~o via

00

V[f] ,V[y] =L 1J[hn ]

n=O

Then, just as in §3, the uniqlleness of the Rankin-Cohen bra.ckets implies that hn must be some
universal factar tn = tn(k,l) of [I, Y]n. Since, unlike the situation in §3 where the definition of
the modular forms h n depended on an arbitrary parameter G'l the present operation is completely
canonical, one would expect the scalar factor occurring to be very simple. Surprisingly, it is not: the
combinatarial calculations needed here are far worse than the already complicated ones in §3. The
formula for t n (k, 1), as weil as other aspects of the connection between pseudodifferential operators and
modular forms (including a connectioll with sllpcr-pseudodifferential operators in the case of modular
[orms of odd weight) I will be discussed in [MZ].
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§5. Definition and examples of Rankin·Cohen algebras. We define a Ra71kin-Cohen ulgebra (ar
RC a.lgebra for short) over a field [( as a graded [(-vector space M. = El1k>O Mk (with Mo = !( ·1 and
dimKMk finite far all k) togethel' with bilinear operations [, ]n: Mk0M,--t Mk+I+2n (k, I, n ;::: 0)
which satisfy (5)-(13) and all tlle other algebl'aic identities satisfied by the Rankin-Cohen brackets.
In view of the remarks at the end of §2, this may seem like a strange definition, since we do not
know how to give a complete set ofaxioms. Nevertheless, we will be able to construct examples
and, to a large extent, to clarify the strncture of these objects. The situation should be thought
of as analogous to building up the theory of Lie algebras starting with the observation that the
operation [X, Y] = XY - Y X in an associative algebra seems to have interesting properties. One
could then define Lie algebras as algebras with a bracket satisfying all algebraic identities universally
satisfied by this standard bracket in any associative algebra, and a good many resnlts could be proved
without knowing a complete gencrating set for these identities. Olle would initially be forced to look
at sn bspaces of associative aJgebras c10sed under the standard bracket, but wOlild eventually prove
that all Lie algchras al'ise this way (existencc of t.he universal enveloping algebra) and also that all
universal identities satisfied by the bracket are in fact conse<fllences of anticommutativity and the
Jacobi identity. In the same way, we will start by considering RC algebras which are sllbspaccs closed
under all bracket operations of some standard examples, and then show that, under some general
hypotheses, all RC algebras in fact arise in tlds way.

We will suppose the ground field !( to be of characteristic 0 (in our examples it is usually Q or C)
although it is dear that the theory makes sense in any chara.cteristic or, for that matter, even if we
work over Z rather than a field.
Example 1. Since modular forms and their derivatives do not satisfy any universal relation, the only
identities satisfied by the Rankin-Cohen bra.ckets on M. (r) are those following from the formula (1)
and Leibniz 's rule. The basic exalIl pIe of an RC algebra is therefore given by

Definition Let R. be a commutative graded algebra with unit over !( together with a derivation
D : R. -t R. of degree 2 (i.e. D(Rk ) ~ R k+2 for all k and (/g)' = f'g + f9', where as before
f', /n, ... , f(r) denote D f, D'J f, ... , Dr f), a.lld define [ , ]D,n by

[] '"' ( )r (11 +k - 1) (n + 1- 1) (r) (8)/,g D,n = L-J -1 sr/ g E Rk+l+2n
r+":;;;n

Then (R., [ , ]D,n) is an RC algebra which we will call the stcuulard Re algebra on (R., D).

Since a subspace of an RC algebra which cOlltains 1 alld is closed under all the bracket operations
is obviously agaill an RC algebra, this gives U8 a large further cla..~ of exarnples, the sub-RC algebras
of the standard ones. Abasie question (thc analogue of the question of the existence of universal
enveloping algebras in the Lie algebra case) is whether every RC algebra can in fact be realized in
this way. We will give an affirmative answer under a weak additional hypothesis beIow.
Example 2. Gur original example of an RC algebra, M.(r) with the brackets defined by (1), is not
a standard algebra, since M. (r) is not c10sed uneler D = (27ri) -1 (1/flr. Of cou rse it is a sn balgebra
of a standard RC-algebra in a variety of ways, sincc we can take R. to be any algebra of functions
on the upper half-plane which contains M. (r) and is closed under differentiation (e.g. the space of
all C OO or of all hololllorphic functions). Howcver, we would like an R. which is not too big. Let us
look in more detail at the case r = PSL(2, Z). Here M.(r) = C[Q, R], where Q = 1 + 240q +...
and R = 1 - 504q - ... are the normalized Eisenstein series of weights 4 and 6 (in Rarnanujan's
notation). As is well-kllowll, their derivatives are given by Q' = ~(PQ - R) and R' = !(PR - Q2),
where P = 1 - 24q - ... is the Ilormalized Eisenstein series of weight 2, and since we also have
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P' = /2 (P2 - Q) this says that M ... (r) is contained in the standard RC algebra on (C[P,Q, R], D).
Now, forgetting modular forms anel thc interpretation of P, Q allel R as fllllctions, we can express
this example purely algebraica.lly: let J.... be a field of characteristic 0 anel define a deriva.tion on the
polynomial algebra. over J< on three graded generators P, Q, R of degrees 2, 4 and 6 by

p2 _ Q 8 PQ - R D PR - Q2 a .
D = 12 DP + :3 DQ + 2 DR: [<[P, Q, R] ... -7 [{ [P, Q, R] ...+2 j (30)

then the sllbalgebra generated by Q allel R is closed under the bracket operations [ ]n = [ ]V,n
defined by (29) for all n ~ O. From an algebraic point of view this is not at all obvious (except for
n = 0), although one can easily check a few examplcs, e.g. (with 1728ß = Q3 - R2 )

[Q, Rh = -3456 ß, [Q,6h = 4 R6, [R,6h = 6 Q2 6,

[Q, Qh =4800 ß, [Q, Rh =0, [R,Rh = -21168Qß, [6,6b = -13Qß2
•

(31)

Example 3. We try to llllderstand the last example by obsel'ving that we also have a derivation D of
degree 2 on the subalgebra. M ... = J.... [Q, R] of R... = J<[P, Q, R], defilled in terms of D by

or directly by

k
81 = DI - 12 PIE Mk+2 (32)

(33)

(this is a well-known fact abollt derivatives of modular forms, hut is also clear algebraically from (30)).
Of course the standa.rd RC algebra strllcture on 111... associatcel to D is completely different from the
one inherited from (R ... , D). But we now see that wc call rcconstrtlct (R ... , D) from (R ... ,8) by using
(32) to define D f for I E A1k and defining D{P) as 112 (P2

- Q). \Ve generalize this example in the
following result.

Proposition 1. Let M. be Cl commutative lJ7ul ussociative 9,uded J.... -algebra with Mo = [<.1 together
with a derivation a:M... -7 M.+2 0/ dcg,-ee 2, anellet ~ E M 4 • Define bro,ckets [ ]8,11l,n (n ~ 0) on
M ... by

Ir+l = iJlr + "(r + k - 1) Cb Ir-I, (35)

with initial conditions 10 = I, 90 = g (so 11 = 81, 12 = 821+ kipland similarly /or 98)' Then
(M... , [ ]8,41, ... ) is an Re algebra.

Definition. An Re algebra will be ca.lled caTwnical if its brackets are given as in Proposition 1 for
sorne derivation iJ : M. , M... of degree +2 and some element <I> E M4 •

10



Proof. As already observed, our only way to verify that something is an Re algebra is to embed it
into a. standard RC algebra (R., [ , ]D .• ) for same larger graded ring R. with derivation D. We take
R. = M[4>] ... := M", 0K [([4>], where 4> has dcgl'ee 2, and define D by

D(f) = 8(f) + k 4> 1 E R k +2 (1 E Mk ) , D(4)) = 4> + 4>~ E R~ . (36)

(This defines D on generators of R"" a.n<! we extend D uniquely as a derivation.) Ir we show that
[1, g]D.n = [1, g]a,eJl,tL for f aBd 9 iu M. thcn wc are done, since M. is obviously closcd under the
brackets [. ]a,~,n' To this end, we observe that thc brackets [ . ]D,n, just as in §1, can be described by
the generating fllnctiolL

~ (n + k ~~~l(,:~ /_ I)! X
n

= j(-X) g(X) E R.[[X]]

where
_ 00 I(n) 00 (n)

fCY,) = L:: '( k )' ~Y7L , g(.Y) = L:: '( 9 I )' .-yn .n. n + ,- 1 . n. n + - 1 .
n;O n;O

(These make sense only for k and I strictly positive, but since Mo = 1(.1 and the brackets (34) clearly
satisfy (7), there is no hann in asSUll1illg this.) We claim that

-tjJX 1-( V) _ ~ Ir vr
e .-l. - L.-J '( k _ ),'-l.r. r + 1 .r;Q

(37)

with Ir defined by (35), and similarly of course for gj the assertion follows immediately since the
exponentia.l terms e±tjJx drop out in the prodllct j( -.-Y)fj(.-Y).

To prove (37), we define fr by the generating function (37) and prove the recursion (35) by induction
(the initial condition 10 = 1 is obvious). Clearly (37) is eqllivaJent to the c10sed formula.

1 - L::r
(-1) r- Tl r! (r + k - I)! A,r - n f( n) R

r - ( ~ E k+2r·u;on! n+k-l)!(r-n)!

Assume inductively t.hat we have proved that Ir E Mk+2r for some r. Then

81r = 1~ - (k + 27') </> Ir

= ~ (_I)r-n r! (r + k - 1)! [4>r-n l(n+1) + (r _ n) 4>r-n-l (4)2 + <1» f(n) _ (k + 2r) 4>r-n+l l(n)]

~ n!(n+k-l)!(r-n)!

r+ I (_1) r+ I - n 7'! (r + k - I)!
= L:: I ( k )' ( ) I [u (n + k - 1) - (r - n)( r + 1 - n)n. 11 + - 1 . r + 1 - n .

n;O

r-l (1)r-n I ( k 1)'+ (k +2r)(r +1 - 11.)) cP"-n+l f(1I) + 4> ~ - r. 7' + ~ - . 4>r-n- 1 l(n)
~ 11! (n + k - 1)! (r - n - 1)!

and this simultaueously proves the I'ccul'sion (35) aud the iudnctivcly used assumption Ir E M k+2r . 0
We observe that the definition (36) is motivated by (32) in the special case M. = [([Q, RL 4> = 112 P,

«I> = 14~ Q, a.nd that the proof just given is merely the algebraic abstraction of thc proposition on page
94 of [VZ] in that case (compare also iv) and v) Oll page 95 of [VZ] for the case when M ... is the ring
of modular forms on some other grollp rother than PSL(2, Z)).
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§6. A structure theorem for Rankin-Cohen algebras. A pl'iori olle would not expect that
a subring of a ring R. with derivative would ever be dosed under all the infinitely many bracket
operations [ . ]D,n unle..c;s it were already c10sed under D. The only non-trivia.l example which we had
where this happened, the rings of modular forms on subgrollps of PSL(2, RL has just been explained
by the construction given in the Proposition above. It is then natural to expect that this construction
may suflice to yield aH exarnples of RC algebl'as. In this section we will show that this is "almost"
true, and write down conditions nnder which it is exactly true.

We therefore asstllne given an Re algebra M. over a field [(, and want to realize its brackets as
the brackets [. ]8,~,n for sorne derivation a of degl'ee 2 and some element ~ of degree 4. Since the
Oth bracket makes M., into an ordinary commlltative algebra (by virtue of equations (5)-(7)L we
already have a ring structure, which wo will denote from now on in the lIsual way by juxtaposition
(i.e. I 9 instead of [/,9]0). Let lIS assullle that tllis ring is an integral domain, or at least that.!.here

is one homogeneolls element F of some positive degree N which is not a zero-divisor, and let M. be
the quotient field of M. 01' the ring M[l/F]., respcctivcly. (It has elements of positive and negative
grading anel hence is not quite the kind of object considered up to now.) The compatibility of aH the
brackets in the case of a standard RC algebra now implies that we call canonically extend thc bracket
operations to M.,. For instancc , the first equat.ion in (11), which says that the Lie bracket [-, h]l with
a. fixed element h acts as a derivatioll with respect to the ring structure, forces HS to define [//F, hh
as [I, hh/F - I [F, hh/F2. We now denne a. derivation a:M. --t M.+2 and an element ~ E M4 by

D(/) = [F,/lt (I M ) cI» = [F, Fh (38)
N FE. , N2 (N + 1) p2

We claim that the bracket.s [. ]8,<1I,n aBsociated to a and ~ agree with the given brackets on M•.
Indeed, since aB formal identities among brackets which are satisfied by standard RC algebras are
by definition satisfied in alt RC algebras, it is enough to check this for (M., [. ].) a subalgebra of a

standard Re algebra (R." [. ]D,.). The bracket [. ]D,. extends to R. = R. 0M. M. for the same reason

as before. Define 4> E R2 by
pI

4>=f\lF (F' = D(F) E RN +2) •

Then for I E R k we havc

D(/) - kepl - D(/) = N1F (N F I' - k I F' - [F, I]d = 0

by (29) with 11, = 1 and

(~)'_(~)2 _N(N+l)FP"-(N+l)2F,2 __
D(ep) - ep2 - cI» = NF !'lF N2(N + 1) p2 0

by (29) with n = 2, so D and Dare indeed related by (3G) and conseqllently [ . ].=[ .]D,.IM. = [ . ]8,4',.

by the calculation already given in the proof of Proposition 1. This shows that uny RC algebra M.
which contains at least oue Iwmogeneolls elemcnt F 01 ]JOsitive dcgree which is not a zero-divisor is a
subalgebra 01 a cilrwniclll RC algebril (lIalllely, (M., [.]8,~,.) with M. = M.[l/F) anel {), ~ given by

(38)) und hence also II sub RC algeb1'a 01 a stmlllan/lllgcbra (namcly (M.[ep], [. ]D,.) with tP of degree

2 and D : M[4>]. --t M[ep].+2 defined by (36)). Note that if M. is already embedded as a sub Re
algebra of a standard RC algebra (R., [. ]D,.), then this ernbedding extcnds to an embedding of M.[ep]
into R. = R[l/F]. by 4> H D(F)/N Fand this extension is compatible with the differentials by the
calculations just done. We state thc special case when M. is closed Ulaler aand contains ~ as:
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Proposition 2. Let M. bc an RC algeblYl (md stl]J]Jose that M. cOlltains a homogeneotls element F
01 some degree N > 0 such that

(i) F is not a zelv~divis01';

(ii) [F, M.]t ~ (F) = M•. F j

(iii) [F, Fh E (P2
) •

Then [.]. = [. ]&,<fl,n jor {) : M .. -t M .. +2 and tI- E A14 as in (38), so M. is a canonical Re algebm.

Examples of RC algebras which satisfy the conditions of Proposition 2 are the rings of modular
forms M.(r) with r c PSL(2, R) commensurable with r t = PSL(2, Z) and the RC bracket defined
by (1). Indced, on stich a group we can define a modular form P(T) = rr ..6.1 11,(T), where , runs

üver the set üf left cüsets (r n rd\r1 ami flk1'(r) = (er + d)k f(-yr) für -y = (: ~) as usual. This

is a modular form of weight N = 12 [r t : r t n r] which has no zeros in the tipper half-plane. Thus
[F, IhlF (I E Mk(r)) and [F, Fhl F2 are certainly holomorphic in the upper half-pla.ne, and of course
they transform with respect to r t like mod ular forms (of weights k + 2 and 4, respectively). To see
that they actually belong to M.. (r), we must check that they are holomorphic at the cusps, but this
is clear because it is obviotls fraIlI (1) that ordoo([f,g]n) 2: ordoo(f)+ordoo(g) for any f, 9 E M.(rd
and the identity [flk" gl,,]o = [f, g]nlk+I+20'Y shows that the same inequality is true at any cusp.

I do not know whether it is tl'ue that any RC algebra which is finitely generated (over the ground
field ]() and an integral domain satisfies the conditions of Proposition 2 for same F. (The statcd
hypotheses are casily seen to be necessary.) But evcn apart from this, Proposition 2 is not really
a satisfactory chal'acterization, since there is HO obvious way to pick F, which apriori could have
arbitrarily high degree. The following sharpenillg of Proposition 2 gives a criterion for an RC a.lgebra
to be canonical which can be checke<! in a finite amount of time.

Theorem. Let (1\1., [ . ]..) be an RC algebra which is finitely genemtcd ovcr a field oj chamcteristic O.
Then the fol/owing are equivalenl:

(a) (M., [. ].) is cmwllical.
(b) for every Iwmogeneotls elemen t F E M. there is an ele Inen t G E M _+ 2 stich thn t

(i) [F,fh == kfG (mod F) for all k 2: 0 and ull fE M k •

(ii) [PI Fh == (N + 1) G2 - (N + 1) [F, Gh (rnod F 2) .
(c) Propcrty (b) Iw/ds for some homogeneofls F E M. which is not u divisor 01 zero.

Specifical/y, if (F, G) ure a pllir of elements sutisfying (i) and (ii), and lOith F E MN not a divisor 01
zero, then the bracket on M. llgrees with the cfHlOniclll b1YJCket associale(l to

{) (/)'= (P, flt - kfG
F,G' NP

«I> ._ (F, Fh + (N + 1)((F, Gh - G2)
F,G .- N2(N + 1)F2 . (39)

Remarks. The special case whcll F can be chosen in (c) with G = 0 is Proposition 2, but because
of our freedom to pick anyelemcnt (holllogeneous alld not a divisor of 0) to verify (c), we now get
an effective criterion to check whether a givcn RC algebra is canonical. Indccd, pick any F, say of
weight N, and check whether the elements [F, fi] are proportional to kifi modulo thc ideal (F), where
fi (i = 1, ... ,1) are hOlIlogelleolls generators of M", of wcight ki . If this is not the case, then M. is
not canonical by the illlplication (a)::} (b). Ir it is, then pick an element G of Mn+2 satisfying (i) and
verify whether (ii) is true. If it is, thcn M. is callonical by the ill1plication (c):::} (a) of the theorem. If
it is not, then M.. is not canonica.I, because of thc implication (a) => (b) a.nd the fact that the truth of
(ii) is independent of the choice of G. (Any two choices differ by a multiple of F, and if GI =G +F</>
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with cP E M2 then [F, Gdt - Gi - [F, Gh + (;2 = F([F, cPh - 2G</» - 4>2 F2 belongs to (p2) by the
defining property of G.)
Example. Let M", = Nl.(PSL(2, Z)) = qQ, R] with the original Rankin-Cohen bracket (1). Of
course we already know that this satisfies the conditions of Proposition 2 with F = .6 = Q:.;;:~,
giving M .. the canonical structure associated to the derivation (33) a.nd the element ~ = -Q/144.
But slIppose that we had not noticed this nice element .6 and instead wanted to check the canonicaJness
of M. starting with F = Q, the homogeneous element of lowest positive weight in M ... According to
the theorem, we must find an element G E A16 satisfying (i) and (ii). Since M .. has only two generators
Q and R, and by the derivation propert.y of [ 'll, it is enough to check (i) for f = Q and f = R. Using
(31) we find

[F,Qlt=O==4Q.~ (modQ),
3 2 R[F,Rh = -2Q +2R == 6R'"3 (mod Q)

and hence (i) holds with G = R/3. Then, using (31) again, we find

[
2 25 3 2 10 3 2 5 2 . 5 3

[F, F]2 - (N +1) F, G] t - (N + I)G = - (Q - n. )- - (Q - R ) - - R = - -Q == 0
9 3 9 9

and- hence (ii) also holds, proving that M .. is canonical with respect to the derivation a and element
~ given by 8(Q) = 0, 8(R) = _Q2/2, cI> = -Q/36.
Proof of the theorem. The statement of the theorem indicates the proof. Assurne first that M.. is
canonical with respect to some 8 : M ... ~ M.+2 and <I- E A141 and choose any homogeneous element
F E MN, N > O. Then pl'operties (i) and (ii) in (b) hold with G = -8(F) because of the identities

[F, fh - k 1G = [F, !le,!),t + k 1D(F) = N D(/) F (I E Mk , k ~ 0) ,

[F, F]2 + (N + 1) [F, C] I - (N + 1)G2 = (N (N +1) Fa2(F) - (Ar +1) '2 a(F) 2 +N 2(N +1)~ p2)

- (N + 1)(N8(F)F - (N + I)FD 2 (F)) - (N +1) (8(F))'2 = N'J(N + 1) cI> F'J.

Conversely, suppose that M ... contains elements F E A1N, G E A1N +2 for some N > 0 satisfying (i)
and ,(ii) (and with F not a zero-divisor), and define 8 alld 4> by (an). Then we claim that the brackets
[ . ]a,4I .... induced by aand <I- agree with the given bracket. As in earlier proofs, we can assume here that
(M.. , [. ]"') is a sub RC algebra of a standard RC algebra (R ... , [. ]D, ... ), since the assertion ta be proved
is equivalent to a collectian of universal identities for the brackets af RC algebras anel such identities
a.re true by definition if they are tl'ue for standard algebras. Now the larger algebra (R .. , [. ]D, ..) is
canonical, with derivation D anel weight 4 element 0, so we have ta show that in a ring with more
than one choice of (F, G) as in (b) of the theorem, the induced bracket operations agree.

In fact, a little reßection shows that the key thing to check is that the property (b) in the theorem
in a given RC algebra is independent of the choice af PI corresponding ta the equivalence of (b) with
the apparently much weaker (c). So now suppose that (F, G) satisfy (i) and (ii) anel let F E MN be

an arbitrary homogeneolls element of M",. \Ve mllst show that there is an element GE MN+'2 so that

(F, G) also satisfy (ii). \Ve may start by choosing any Gwhich satisfies (ii), since we have already
seen (in the "Remarks" above) that the trnth or falsity of propcrty (ii) is independent of the choice
of G given F. We set

G= NGF-[F,Flt I

NF
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which belongs to M N+2 by propel'ty (i) of (F, G). Thon for I E Mk we find

NP [f, F] 1 + N F [p, f] 1 + k [p, F] 1
DF,G(f) - Dp,ö(f) = N N F F = 0

by the identity (10) of §2, and similarly cI>F,G - cI> P,G = 0 by virtue of the more complicated identity

N 2 (N +1)F2 [F, F]2 = N2(N +1)F2 [F, F]2 - (N + l)(N +1) [F, i'Ji +N(N +1) F [[F, i'Jl' F]1 (41)

which could have beeil (but was not) illcilldcd in the list of universal identities in RC algebras give~

in §2. Thus the brackets constructcd with DF,G a.lld «}> F,G are the same as those constructed from F
and G chosen aB in (40), alld thercfore the same as those cOllstructed from any pair (p, C) satisfying
(i)-(ii) at all. (Changing G to G + 4>F changes D(f) (f E Mk ) to D(/) + krjJf and cI> to cI> +</>2 - 8(</»
but does not change the associated brackets, by the proof of Proposition 1.) 0

We remark that the reason for the truth of the theorem is that we have the identities (10) and
(41). The former says that, Ollce we have fixed thc ffiultiplicatioll (Oth bracket) on an RC algebra, the
first bracket for any two elements I, 9 E M", is determined once we have given the first brackets of f
and 9 with a fixed homogeneous element F of M", which is not a zero divisor. Similarly, the identity
(41) teils us how Lo compute the second bracket [F, Fh for any homogeneolls P E M. (and hence
also how to compute the second bracket [g, hh for any elements 9, h E M., by the usual polarization
procedure for rccovering a bilillear form [1'0111 its a....'5ociated quadratic form) knowing only the Oth and
1st brackets and the second bracket of F with itself. 111 other words, to specify the brackets in an Re
algebra (assumcd to contain olle homogeneolls Iloll-zero divisor F), we need to know only

1. The Oth bracket [/,9]0 for arbitrary 1 and 9, which is arbitrary sllbject only to the conditions
of bilinearity, associativity, alld commutativity,

2. The 1st bracket of arbitrary elements f with the fixed element F, i.e. the derivation f H [I, Ph,
and

3. The 2nd bracket of F with itself, Le. a siugle further element of M•.

§7. Other occurrences of Rankin-Cohen algebras. We end by l'aising the question where
else RC algebras arise naturally in mathematics. üue possible candidate, pointed out to me by T.
Springer, is in invariant. t.heory, where the algebra.., of invariants have natural bilinear operations
called the "transvectant" or "Überschiebung" (cf. [Sp], p. 66). These operations are indexed by
integers n '2: 0 and satisfy some universal identities of the general form of those occurring in §2,
hut they decrease rather than increasing the total weight (i.e., they send Mk 0 MI to Mk+1-2n
rather than Mk+l+2n). The relatiollship betweell the two types of algebraic structllres rcmains to he
determined. Another possibility are the so-called Moyal hrackets in qllanttull theory, which are related
to symplectic structures alld seem to have similar algebraic properties to the ora.ckets considered in
this paper. Finally, the most natural sOlll'ce of intcresting algcbras with an infinite number of bilinear
operations seems to be conformal field t.heories and more specifically vertex operator algebras. Thc
axioms for vertex operator algebras as givcll in [Ba] or thc appendix of [Ge] are different from ours,
hut discussions with Yu. Manin alld \V. Eholzer suggest that there may be a reformlllation of the
axioms of vertex operator algebl'as which is lIluch eloser to the RC algebras studied here. We hope to
discuss this in a future pllblication.
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Note added in proof. Followillg a relIlal'k of W. Eholzer, it transpired that tllere is a further
universal identity satisfied by the brackets in RC-algebras which is particularly simple and appealing:
the multiplication on €Bk Mk defincd by f * 9 = 2:n>O[/' g]n is associativc. That itnplies in turn
infinitely many identities ofthe sort considered in §2 (poSsibly including all identities whose coefficients
are independent of the weights, like (6), (8), (9), (lla) and (13)). Moreover, this multiplication turns
out to be one of a whole I-parameter family of associative multiplications, all the rest of which do
explicitly involve the weights of the forms involved, and one of which is the one arising from the
correspondence with pseudodifferelltial operators discllssed in §4. Details will be included in the
paper [MZ].
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