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Abstract

We prove a. relative index theorem for Dirac operators with C··coefficienta.
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1 Introduction

Let D : COO(M, E) --+- COO(M, E) be a generalized Dirac operator acting on seetions
of a ZTgraded bundle E over a complete Riemannian manifold. If 0 is not in the
essential spectrum of D then the index

ind D = dirn ker D+ - dirn ker D-

is wen defined. 0 is not in the essential spectrum if e.g. D is positive at infinity,
Le. there is a constant c > 0 and a compact set K c M such that TIM\K ~ c where
r := D'l - 6. is the endomorphism occuring in the Weizenboeck formula.

The original version of the relative index theorem due to Gromov/Lawson [8]
computes ind D 1 - ind D2 for two Dirac operators which are positive at infinity and
which coincide outside of compact sets, i.e. Di live on manifolds Mi, i = 1,2 and
there are open cocompact sets Ui C Mi with smooth boundary such that D11Ut ~

D21u2 and TilUj ~ c > O. Let M~ := MI \ U1 Uau M2 \ U2 and glue the bundles using
the odd morphism given by Clifford multiplication with the unit normal vector at
au with grading induced from EM1 \Ul' Let D~ be the associated Dirac operator.

-Max Planck Institut für Mathematik, Gottfried Claren 8tr. 26, W·5300 Bonn 3
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1 INTRODUCTION

Theorem 1.1 (Gromov/Lawson)

ind D1 - ind D'J = ind D~

2

Another way to look upon this theorem is as follows. Consider M = M] UM';J and
the opposite grading of the Clifford bundle over M'J. Let D be the Dirac operator
over M. Obviously ind D = ind D] - ind D'J' We can now cut M at au] U au'J
and glue together again using the diffeomorphism interchanging the two boundary
components obtaining M together with a new Clifford bundle and a Dirac operator
iJ. In fact M = M~ U (U] Uau U'J) and iJ is invertible over U] Uau U';J (here we
assurne for simplicity a product collar at aUi in order to glue smoothly). Hence
ind iJ = ind D~. The relative index theorem states that cutting and glueing as
decribed above does not change the index:

ind D = ind iJ.

There are several generalizations of the relative index theorem [7],[5], [6],[1],[2] ,[4].
The aim of this paper is to give a K-theoretic variant of this theorem which

applies also for operators acting on C·-Hilbert-bundles over the base field k, which
is R or C. Such opertors have been considered first by Miscenko/Fomenko [9].
Let M be a complete Riemannian manifold and A be a Z'J-graded C·-algebra. A
C·-Clifford bundle S is a bundle of projective finitely generated graded A-C·-right­
Hilbert modules together with ametrie connection and a Clifford multiplication
satifying Leibnitz rule and compatibility with the scalar products of the fibres. We
think the tangent vectors and the connection acting from the left. Let D be the
associated Dirac operator. We define Sobolev spaces BI, 1~ 0 using scalar products
defined with D as usual (see [9]). In fact the B' are A-C·-right-Hilbert modules.
We have D E B(Ht, HO). Dur basic assumption is

Assumption 1 There is aSE K(HO) such that D + S is invertible and S E
B(HO, H 1 ), DS E K(HO), SD E K(H1 ).

Note that K stands for compact operators between A-C·-right-Hilbert modules
(see [3], [9]). In general S fails to be ocid or selfadjoint. We can now construct a
Kasparov module (see [3]) representing the index of D. Let A := D +Sand F :=
[D(AA·)-l/'J]odd where Dodd is the projection onto the odd part. We have F E B(HO)
and deg F = 1. Let Cg(M) be the C·-algebra generated by the bounded functions
f E COO(M) with vanishing gradient at infinity equipped with the supremum norm.
There is a *-homomorphism Cg(M) -4 B(HO) given by multiplication.

Proposition 1.2 (HO, F) is a Kasparov modul over the pair 0/ C·-algebras
(Cg(M), A)

Let us think of a11 structures over M be compressed in the symbol M. Then we
let [M] E K K(Cg(M), A) be the dass represented by (HO, F) (in fact [M] does not
depend on the choice of S since the difference of the F's for different S's is compact).
Note that we work with K K-groups over the base field k. The equivalence relation
used here is compact perturbation (see Blackadar [3] for details).
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Let N C M be a compact hypersurface cutting anormal neighbourhood U(N)
in two pieces U(N)±. Assurne that there is a diagram

r

intertwining aU structures. Then we can form a new manifold M cutting at N
and glueing together using 1 and a new bundle S using r with associated Dirac
operator iJ. Suppose that D and iJ satisfy Assumption 1. Then we can form
[M] E K K(Cg(M), A) and [M] E K K(Cg(M), A). Restricting to constant functions
we have elements {M}, {M} E K K(k, A). The main theorem in this paper is

Theorem 1.3 (K-theoretic relative index theorem) {M} = {M}

This theorem ean be interpreted in special eases a relative index theorem for families
or as equivariant relative index theorem.

One of our main motivations comes from the following situation. Let k := R,
Mn be spin, E be the real Clifford bundle with fibres isomorphie to the Clifford
algebra Cn and V be a Hat bundle of A-C·-right-Hilbert modules. Set S := E ~ V.
Assume that there is a compaet set K C M and a constant c > 0 such that for the
scalar curvature s we have the estimate SIM\K ~ c. Then D is invertible at infinity,
i.e. there is a f E C~(M) such that D'J + f is invertible. We want to know wether
D satisfies Assumption 1. In fact

Theorem 1.4 If D is invertible at infinity then D satisfies Assumption 1.

As an application we construct for any discrete group 'Ir a group homomorphism

fln('Ir) -t KKn(R,C;('Ir))

where Rn('Ir) is a group of n-dimensional bordisms M with prescribed positive sealar
curvature metric at 8M. (see section 5 for details).

The author thanks Stefan Stolz for the very stimulating discussion.

2 Commutator estimates

Let M be a eomplete Riemannian manifold and S be a Clifford-C·-bundle with
associated Dirac operator D. We form the completitions BI, 1 ~ 0, of C~(M, S)
with respect to the Dorms

I

IIrpllf = EJM II Dk rp(x)1I 2
, rp E C':(M, S)

where the norm of the right hand side is the point wise norm coming from the A­
C·-Hilhert module strueture of the fihres. Note that the H' are A-C·~right-Hilhert

modules with scalar product
I

< rjJ, t/J >,= L 1 < DktP(x), Dkt/J(x) > .
k::;;;D M

There is an analog of Rellich's theorem
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Proposition 2.1 (Mi~~enko/Fomenko,[9]) For any / E C~(M) the multiplica­
tion / : H1~ Hk is compact for k < 1.

D extends to an operator D E B(Hl, H1- 1), VI E N. Suppose that D satisfies As­
sumption 1 and form A := D+S. Then we have (AAljI)-ln, (AljIA)-1/2 E B(HO, BI).
Note the integral representation

(AljI A)-1/2 = ~ fco (AljI A + -X2)-ld-X
'Ir Jo

where the integral converges in B(HO). For a bounded function f we have

f(AljI A)AljI = AljI f(AAljI)

Af(AljIA) = f(AAljI)A.

Since we want to commute A and (AljI A)-1/2 we need

Lemma 2.2 (AljI A)-1/2 - (AAljI)-1/2 E K(HO, H 2)

Proof: We have

(AljIA)-I/2 - (AAljI)-1/2

_ ~ fco «AljIA + -X2)-1 - (AAljI + -X2)-1 )d-X
'Ir Jo

_ ~ fco{A-A + .x2)-1(AAljI _ A-A)(AA- + .\2)-ld-X
1r Jo

= ~ fco (A- A + )..2)-I(SD +DSljI + SSljI - DS - S-D - SljIS)(A"AljI + -X2)-ld.x.
1r Jo

By the following decomposition we see that every term is bounded in B(JIO, H2
) by

C(l + Xl )-1 and compact:

(AA'+>.1)-1 SS'+SS'+DS'+DS (A' A+>.1)-1HO -. HO ~ HO -. H 2 E K(HO,H2 )

HO (AA~2)-1 H1 SD+S;D BI (A'~2)-1 H 2 E K(HO,H2)

o
Also we need a commutator estimate for (AAljI)-1/2 with functions in Cg(M).

Lemma 2.3 For f E Cg(M) we haue

[f, (AA-)-1/2] E K(HO, H1)

Proof: W.l.o.g we can assurne that f E CCO(M) is bounded with grad f E
Co(M, TM). Using the integral representation for (AAljI)-1/2 we have

[f, (AAljI)-ln] _ ~ fco[f, (AA- + -X2)-I]d-X
1r Jo

_ ~ fco(AA- + -X2)-1[J,D2+ SD +DS- + SS-](AAljI + )..2)-ld-X
'Ir Jo

Note that [I, D 2
] = -Dgrad f - grad f D is of first order. By the decomposition

no (AA~2)-1 H 1 {j~'] HO (AA~2)-1 H 1 E K(HO, BI)

we see that the integrand is bounded by C(l + -X2)-1. Compactness follows from
Proposition 2.1. 0
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Let M be a complete Riemannian manifold and S be a Z2-graded Clifford-C·­
bundle with a.ssoeiated Dirac operator D. Suppose Assumption 1. Set F :=
[D(AA·)-1/2]odd.

Lemma 3.1 The even part 0/ D(AA·)-1/2 is compact.

Proof: Let € be the Z2-grading of HO aod f"'o.; denote equality modulo K(HO).

2[D(AA·)-1/2]ev = €D(AA·)-1/2€ +D(AA·)-1/2

= D€[€, (AA·)-1/2]

_ D€~ f
oo

[€,(AA·+A2)-1]d.\
1r Jo

_ Df~ foo (AA· + .,\2)-1[f, AA·](AA· + .,\2)-ld"\
1r Jo

_ Df~ foo (AA· + Xl)-l[f, SS· + DS· + SD](AA· + .,\2)-ld"\
1r Jo

f"'o.; 0

o

Proposition 3.2 (HO, F) JS a !(asparov module over the paJr 0/ C·-algebras
(Cg(M), A).

Proof: We have to verify

F - F· E K(JfJ)
F 2

- 1 E K(HO)

[I, F] E K(HO) VI E Cg(M)

Then

P·-F

F 2 -1

Lemma 3.1
f"'o.;

Lemma 2.2
f"'o.;

=

Lemma3.1
f"'o.;

=
Lemma 2.2

f"'o.;

{AA*)-1/2 D - D(AA·)-1/2

(AA*)-I/2 A - D(AA·)-1/2

A(A·A)-l/2 - D(AA·)-1/2

A(AA·)-1/2 - D(AA·)-1/2

D(AA·)-1/2 - D(AA·)-1/2

o

D(AA·)-1/2D(AA·)-1/2 - 1

A·(AA·)-l/2A(AA·)-1/2 - 1

A·A(A·A)-1/2(AA·)-1/2 - 1

A·A(A·A)-1/2(A·A)-I/2 - 1

o



3 THE RELATNE INDEX THEOREM

W.l.o.g. we can assurne f to be smooth and grad / E Co(M, TM).
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[I, F] Lemml13.1
I"V

Lemm112.3
I"V

Prop.2.1
I"V

[I, D(AA*)-1/2]

[I, D](AA*)-1/2 + D[J, (AA*)-1/2]

-grad f(AA*)-1/2

O.

o
Let [M] E K K(Cg(M), A) denote the dass represented by (HO, F) (as above we
compress all structures in the symbol M) and {M} E K j«k, A) be the dass ob­
tained from [M] restricting to the constant functions in Cg(M). Clearly {M} is
represented by (HO, F) too.

Let N C M be a compact hypersurface cutting anormal neighbourhood U(N)
in two pieces U(N)±. Assurne that there is a diagram

r

intertwining all structures. We form a new manifold M cutting at N and glueing
together using ,and a new bundle S using r with associated Dirac operator iJ.
Suppose tp.at iJ also satisfies Assumption 1. Let {M} E K K(k, A) be the dass
given by D.

Theorem 3.3 (K-theoretic relative index theorem) {M} = {M}

Proof: Note that HO = HO in a canonical way. Thus it is enough to show that

6. := F - F E K(HO
).

Reca.ll that we use the compact perturbation as equivalence relation in the KK­
groups. Let t/;, ljJ E COO(M), ljJ =1 outside of some small neighbourhood of N
and t/J, ljJ = 0 inside a smaller one such that 1/1 cP = ljJ. Set X := (1 - ljJ) and let
p E C~(U(N)) such that PX = x. Let Li := t/J6.4> + p6.X. Then

=

Lemma 2.3
I"V

t/J6.4> +p6.X - 6.
(1 - t/J)ßX + (1 - p)6.X

(1 -1/1)4>6. + (1 - P)X6.
o

Thus it is enough to show the compactness of Li. Let us consider e.g. t/J6.lj>.

t/;ßfjJ

Lem~113.1 ~ {OO t/J[D(AA* + ,\2)-1 -D(ÄA* + ,\2)-1]lj>d'\
1r Jo

Pro,e;2.1 ~ {OO D1/1[(AA* +>?)-1 _ (ÄÄ* + ,\2)-1]ljJd'\
1r Ja
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Prop.2.1,...,.,

~ {CO D(AA. + ,\2)-I{AA. + ,\2)1jJ[{AA* + ,\2)-1 _ {AA$ + ,\2)-I]tjJd'\
'Ir Jo
~ {CO D(AA. + ,\2)-1
1r Jo

[(AA· + ,\2)1jJ(AA· + ,\2)-ltjJ - (AÄ.* + ,\2)t/J(ÄÄ* + ,\2)-ltjJ]d'\

~ {CO D(AA* + ,\2)-1 [,pcP - ,p</J]d'\
'Ir Jo
o

Analogously we handle pßX. Thus Li E K(HO) and also ß E K(HO). 0

4 Invertibility at infinity

Let M be a complete Riemannian manifold and S be a Z2·gra.ded Clifford-C*-bundle
with associated Dirac operator D. We say that D is invertible at infinity if there is
some / E C;o(M) such that D2 + f is invertible a.s operator in B{H1 , HO).

Proposition 4.1 1/ D i8 invertible at infinity then D E B{H1 , HO) is Fredholm.

Proof; We construct a parametrix R E B(HO, H1 ) such that DR ,...,., 1 and RD r'V 1.
Let ,p, cP E C~ (M) such that t/J == 1 on supp / and such that ,p</J = fjJ. Moreover
let X E CCO{M) such that X =0 on supp / and X(l - </J) = 1 - </J. Let Ru :=
D{D2 + /)-1 and R K be a parametrix of D with support on some compact set
containing supp,p. RK can be constructed using pseudodifferential calculus as in
[9]. Set R = XRu{l - </J) + ,pRKcP. Then we have RE B{HO,H1

). Apply now D.

DR

Prop.2.1
r'V

=

DxRu(l - 4» + D1jJRK<P
grad XRu(1 - </J) +grad t/JRK</J + xDRu(1 - </J) + t/JDRK</J

XD2 (D2+/)-1(1 - 4» + t/J4>
X(D 2 + f)(D 2 +/)-1(1 - 4» + t/J4>

X(l - 4» + t/J4>
1

RD
Pro)?,; 2.1

XRu(l - 4»D +1/JRKcP D

XRuD(l - cP) + 1/JRKD4>
XD(D2 + /)-1 D(1 - 4» +,pcP

x(D'l +/)-1D'l(l - 4» - X(D2+ f)-1 grad / (D2+ /)-1{1 - 4» + t/JcP

X(l- 4» + t/J4>
1

o
Note that RD, DR E B{Hk) for any k ~ 1 and DR - 1, RD - 1 E K(H k

) by the
same proof. Assurne now that the fibre V of S is a free A-C·-Hilbert module.



4 INVERTIBILITY AT INFINITY 8

Theorem 4.2 Let D E B(Ht, HO) be invertible at infinity. Then there is an oper­
ator S such that D + S is invertible and S E K(HO, Hk) for any given k E N.

Proof: We construct first isomorphisms H' ~ fJ ® V. Let M = UaKa be a.
countable triangula.tion such that SIKa ~ K x V. For every a fix an orthonormal
basis {,p~}iEN in L'J(Ka) where t/J~ E C~(int(Ka))' With respect to this basis we
have

L'J(Ka, SIKa) ~ I'J ® V.

Fix an enumeration of the t/J~. Then we get also

For v E V let Vi = (0, ... ,v, 0, ...) with v at the i'th entry and Ln C HO be tbe
subspace generated by tbe Vi with i :::; n. Hy construction we have in fact far any
n, k E N that Ln C Hk compactly embedded. For 1~ °we use the identification

in order to construct tbe desired isomorphism. Define the subspaces Ln C H' as
above. Again Ln E Hk for any k, n compactly embedded (do not confuse the Ln in
different H ' ).

We construct now decompositions H 1 = U1 ffi W., HO = U'J ffi W2 such that

and D1 is invertible, Wb W'J C Hk compactly for any given k E N (this construction
is essentia11y due to Miscenko/Fomenko [9]). Let DR = 1 + K1 where R is the
parametrix obtained above. We construct decompositions HO = Mi EB Ni, i = 1,2
such that Ni C Hk compactly for any k and

(
1+KlO)

1 +K 1 = 0 *'

Since K 1 is compact we can find by definition (see [9]) a no such that for a11 n ~ "0
we have IIKllLk 11 < 1. Let

with respect to HO = L; EB Ln for some n ;::: no. Then 1+K 1 is invertible. Set

Then
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Set M} ffiN} := X 1(L; ffiLn ) and M'JffiN2 := X;I(L; ffiLn ). Note that K i E K(Bk)
for auy k ;::: O. Thus choosing n large enough we have (1 + K 1)-1 E B(H k ). Then
Ni c Bk, i = 1,2. Let P : HO ---+ N'J be the projectiou outo N 2 along M'J and set
D1 := (1 - P)D. Then DIR = 1+K1 and RD1 = 1+ K2 with K1 = (1- P)K1 - P
and K'J = 1 + K'J - RPD. We construct decompositions BI = Mi ffi Ni, i = 1,2
such that

1+ ](2 = (1+/2

~)

and Ni C Bk compactly for k as above. Consider the composition

RD1M1 : MI ---+ M2 is an isomorphism. Hence D1(MI) C M 2 is a closed subspace.
Since D1 (BI) = M2 we have the factorization

Let II : BI -fo NI be the projection onto NI anlong MI and Q : HO ---+ D1eNd EB N2

be the project ion along D1(MI)' Then (1 - Q)D (1 - II) : MI ---+ DI ( MI) is invertible.
Let VI := (1 - Q)H\ W1 := QBl, V'J := (1 - II)HO, W2 := IIHo. Then we have

Note that D1(N1)ffiN'J C D1H k+Hk C Hk-I. Thus Wi c Hk-I, i = 1,2 compactly.
The formal difference of projective finitely generated A-modules

is the index of D. Since D is selfadjoint we have {WI ] = {W2] in Ko(A). Thus there
is a number r ;::: 0 such that W1 EB Ar ~ W2 ffi Ar. Choosing our n large enough we
can assume that W1 = W'J. It is here where the assumption on the fibre of S enters.
Choose an isomorphism I : WI ---+ W2 and set

iJ := (1 - Q)D(l - II) + QIII.

iJ is invertible and S := iJ - D is in K(HO, H' ) for any given I ~ o. This proves
the theorem. 0

If the fibre of S is not free we can circumvent the stabilization problem as follows.
We consider instead of H' the spaces H' := H ' ffi Ar for some large rand extend
the action of D and Cg(M) by zero. Then Theorem 4.2 holds on these spaces. The
resulting classes {M] E K K(Cg(M), A) represented by (HO, F) do not depend on T.

There is also a corresponding modification of the relative index theorem 3.3.



5 AN APPLICATION

5 An application

10

Fix a finitely generated group 1r. Any spin manifold N with 'Trt (N) = 'Tr gives rise to
a B := BSpin x B1l'"-manifold (see [11]). The B structure

f:N-+B

is given by the product of the dassifying maps of the spin structure and of the
o universal cover of N. Consider the set Sn (1r) of tupIes (Mn, N, F, h) where (M, N, F)

is an-dimensional B-bordism, N = 8M and h is a positive scalar curvature metric
on N. S is a semigroup under disjoint union. Let I'V be the equivalence relation given
by B-bordism. A B-bordism of (M, N, F, h) and (Mt, Nb Ft, h I ) consists of a B·
bordism (W,N,Nt,cI» between (N,F1N) and (Nt, FtIN1 ), a positive scalar curvature
metric 9 on W which is product near aw and restricts to h, ht at N, NI and a zero­
B-bordism (V, \lf) of (MUN WUN1 Mt, (F, cI> , Ft )). Note that Rn(1l'"):= Sn(1l'")/ rooJ is
a goup. A similar group has been considered by B.Hajduk. It is a special case of a
construction due to S.Stolz [10].

Theorem 5.1 The re is a canonical homomorphism Rn (7r) -+ K K n (R, C;(7r ) ) •

Proof: Let (M, N, F, h) E Sn(1r). Choose a metric on M such that it is product
near N and restricts to h. Glue a metric cylinder [0,00) x N at the boundary of M
obtaining the complete manifold M and extend F constantly. F· E1r is a 1r·principal
fibre bundle. Associate C;('Tr) and obtain a flat bundle with fibre 0;(1r) using the
canonical action of 7r on C;(1r) from the left. Let E be the real Clifford bundle
with fibre en associated to the spin structure and form S := E ® V. S is a C··
Clifford bundle over Cn @ C;(1r). Let D be the associated Dirac operator. Since the
scalar curvature is positive at infinity, D is invertible at infinity and we can form
{M} E K K(R, Cn®C;(7r)). Clearly the map associating to (M, N, F, h) E Sn(1r) the
dass {M} is additive. We must show that it factors through Rn(1l'"). Let (W, N, cI»
be a zero-B-bordism of (N, FN ), 9 be a positive scalar curvature metric on W which
is product near aw and restriets to h on N and (V, \lI) be a zero-B-bordism of
(MUN W, (F, cI»). Let L:= MU IV and L:= WUN MU R x N. Then {L} = {M}
and {t} = {W UN M} since on the remaining components there are positive scalar
curvature metries and the Dirac operator is invertible there. By the relative index
theorem {L} = {tl. But {t} = 0 since the Dirac operator is zero-bordant. Hence
{M} = O. This proves the theorem. 0

The idea of this construction is due to Stefan Stolz.
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