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Abstract
We prove a relative index theorem for Dirac operators with C*-coefficients.
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1 Introduction

Let D : C*(M,E) — C*®(M, E) be a generalized Dirac operator acting on sections
of a Zz-graded bundle £ over a complete Riemannian manifold. If 0 is not in the
essential spectrum of D then the index

ind D = dim ker DY — dim ker D~

is well defined. 0 is not in the essential spectrum if e.g. D is positive at infinity,
l.e. there is a constant ¢ > 0 and a compact set K C M such that rang > ¢ where
r:= D? - A is the endomorphism occuring in the Weizenboeck formula.

The original version of the relative index theorem due to Gromov/Lawson 8]
computes ind D, — ind D, for two Dirac operators which are positive at infinity and
which coincide outside of compact sets, i.e. D; live on manifolds M;, 1 = 1,2 and
there are open cocompact sets U; C M; with smooth boundary such that Dy, =
Dyy, and ryyy; > ¢ > 0. Let MY = M, \ U, Usy M2\ U; and glue the bundles using
the odd morphism given by Clifford multiplication with the unit normal vector at
AU with grading induced from Eay\y,. Let D! be the associated Dirac operator.
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Theorem 1.1 (Gromov/Lawson)
ind Dy — ind D; = ind D"

Another way to look upon this theorem is as follows. Consider M = M, UM; and
the opposite grading of the Clifford bundle over M;. Let D be the Dirac operator
over M. Obviously ind D = ind D; — ind D,. We can now cut M at 9U; U oU,
and glue together again using the diffeomorphism interchanging the two boundary
components obtaining M together with a new Clifford bundle and a Dirac operator
D. Infact M = MU (U, Usy U,) and D is invertible over U; Uy U, (here we
assume for simplicity a product collar at 9U; in order to glue smoothly). Hence
ind D = ind D!. The relative index theorem states that cutting and glueing as
decribed above does not change the index:

ind D = ind D.

There are several generalizations of the relative index theorem [7],[5], [6],[1],[2],[4].

The aim of this paper is to give a K-theoretic variant of this theorem which
applies also for operators acting on C*-Hilbert-bundles over the base field k, which
is R or C. Such opertors have been considered first by Miséenko/Fomenko [9].
Let M be a complete Riemannian manifold and A be a Z;-graded C*-algebra. A
C*-Clifford bundle S is a bundle of projective finitely generated graded A-C*-right-
Hilbert modules together with a metric connection and a Clifford multiplication
satifying Leibnitz rule and compatibility with the scalar products of the fibres. We
think the tangent vectors and the connection acting from the left. Let D be the
associated Dirac operator. We define Sobolev spaces H', I > 0 using scalar products
defined with D as usual (see [9]). In fact the H' are A-C*-right-Hilbert modules.
We have D € B(H!, H°). Our basic assumption is

Assumption 1 There is a S € K(H®) such that D + S is invertible and S €
B(H® H"Y), DS € K(H®), SD € K(H").

Note that K stands for compact operators between A-C*-right-Hilbert modules
(see [3], [9]). In general S fails to be odd or selfadjoint. We can now construct a
Kasparov module (see [3]) representing the index of D. Let A:= D+ S and F :=
[D(AA*)~1/3]°4d where [|°4 is the projection onto the odd part. We have F € B{H°)
and deg F = 1. Let Cy(M) be the C*-algebra generated by the bounded functions
f € C*°(M) with vanishing gradient at infinity equipped with the supremum norm.
There is a *-homomorphism C,(M) — B(H®) given by multiplication.

Proposition 1.2 (H° F) is a Kasparov modul over the pair of C*-algebras
(Co(M), A)

Let us think of all structures over M be compressed in the symbol M. Then we
let [M] € KK(C,(M), A) be the class represented by (H, F) (in fact [M] does not
depend on the choice of S since the difference of the F’s for different S’s is compact).
Note that we work with K K-groups over the base field k. The equivalence relation
used here is compact perturbation (see Blackadar [3] for details).
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Let N C M be a compact hypersurface cutting a normal neighbourhood U(N)
in two pieces U(N)i. Assume that there is a diagram

r : S|U(N)_ — Suw)-

l l
v : U(N)- — U(N)-

intertwining all structures. Then we can form a new manifold M cutting at N
and glueing together using 7 and a new bundle S using T with associated Dirac
operator D. Suppose that D and D satisfy Assumption 1. Then we can form
[M] € KK(C,(M), A) and [M] € KK(C,(M), A). Restricting to constant functions
we have elements {M}, {M} € KK(k, A). The main theorem in this paper is

Theorem 1.3 (K-theoretic relative index theorem) {M} = {M}

This theorem can be interpreted in special cases a relative index theorem for families
or as equivariant relative index theorem.

One of our main motivations comes from the following situation. Let k := R,
M™ be spin, E be the real Clifford bundle with fibres isomorphic to the Clifford
algebra C, and V be a flat bundle of A-C*-right-Hilbert modules. Set S:= EQ® V.
Assume that there is a compact set K C M and a constant ¢ > 0 such that for the
scalar curvature s we have the estimate sps\x > c. Then D is invertible at infinity,
i.e. there is a f € C°(M) such that D? 4 f is invertible. We want to know wether
D satisfies Assumption 1. In fact

Theorem 1.4 If D is invertible at infinity then D satisfies Assumption 1.
As an application we construct for any discrete group 7 a group homomorphism
Rn(r) > KKq(R,C;(r))

where R,(7) is a group of n-dimensional bordisms M with prescribed positive scalar
curvature metric at M. (see section 5 for details).
The author thanks Stefan Stolz for the very stimulating discussion.

2 Commutator estimates

Let M be a complete Riemannian manifold and S be a Clifford-C*-bundle with
associated Dirac operator D. We form the completitions H', I > 0, of C®(M, S)
with respect to the norms

!
2 _ k 0o
81 =3 [, ID*@IP, € C(M,5)

where the norm of the right hand side is the point wise norm coming from the A-
C*-Hilbert module structure of the fibres. Note that the H' are A-C*-right-Hilbert
modules with scalar product

< ¢ >= Z/ < D*¢(z), D*¢(z) >

k=0
There is an analog of Rellich’s theorem
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Proposition 2.1 (Mi¥¢enko/Fomenko,[9]) For any f € C®(M) the multiplica-
tion f: H' — HF* is compact for k < 1.

D extends to an operator D € B(H', H'"'), VIl € N. Suppose that D satisfies As-
sumption 1 and form A := D+S. Then we have (AA*)"1/2,(A*A)~"/? € B(H®, H").
Note the integral representation
2 -]
- AN—=1/2 == » A? -1
(A*A) W/O(AA+ )~1d)
where the integral converges in B(H®). For a bounded function f we have
f(ATA)A* = A"f(AA")
Af(A"A) = f(AAMA.
Since we want to commute A and (A*A4)~'/? we need
Lemma 2.2 (A*A)"Y? — (AA*)"Y/? € K(H®, H?)
Proof: We have
(AtA)—l,/'Z _ (AAn)—I/'?
2 -]
= = A*A+ 211 = (A4 + 23" N)dA
= [T(ara T — (a4 449

- %/om(A'A + A THAAT - ATA)(AA" + M)A
= % /Ow(A"A + A1)} (SD + DS* + S§* — DS — §*D — §*S)(AA" + N*)7'd\.

By the following decomposition we see that every term is bounded in B(H?, H?) by
C(1+ A*)~! and compact:

o AT go SSHSSaDSDS po WABD™ pn o gipo gy

. 23— . . -

HO (AALA’) 1 H! SD_-tiD H v aﬂ:) ! H? € K(HO,Hz)
O
Also we need a commutator estimate for (AA*)~1/2 with functions in C,(M).

g

Lemma 2.3 For f € Cy,(M) we have
[£,(AA%)7* € K(H®, H')

Proof: W.lo.g we can assume that f € C®(M) is bounded with grad f €
Co(M,TM). Using the integral representation for (AA*)~!/? we have

(A8 = 2 [717, (A4 + 3 Jap
= 2 [T(AA" + X7, D2 4 8D+ DS* + SSY(AA" + X))
Note that [f, D?] = —Dgrad f — grad fD is of first order. By the decomposition
H® {AA"_+,_\:)" H! ,A4°] H° (AA°+AH)™ H' € K(H°, HY)

we see that the integrand is bounded by C(1 4+ A?)~!. Compactness follows from
Proposition 2.1. O
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3 The relative index theorem

Let M be a complete Riemannian manifold and S be a Zj;-graded Clifford-C*-
bundle with associated Dirac operator D. Suppose Assumption 1. Set F :=
[D(AAt)—l,Q]odd.

Lemma 3.1 The even part of D(AA*)™/? is compact.
Proof: Let ¢ be the Z;-grading of H® and ~ denote equality modulo K (H®).
2[D(AA™)™VA™ = eD(AA") e+ D(AAT)?
= Dele,(AA7) /7
- D2 [Tl (Ad" +22)71ax
rJo

= De% / T (AA" 4 23 e, AA|(AA" + A))"1dA
1)

= DC% f T(AA* 4+ X3)71[¢, $S* + DS* + SD|(AA* + X3)~1d\
0

~ 0
a
Proposition 3.2 (H° F) is a Kasparov module over the pair of C*-algebras
(Co(M), A).
Proof: We have to verify
F—-F* € K(H°
F*—1 € K(H"
[f,F] € K(H®°) YfeCy(M)
Then
F*—F "R (AAT)TVAD — D(AAT)TV?
~  (AATYPA - D(AAT)T
= A(ATA)TVP - D(AAT)T?
Lemma 2.2 A(AAt)_llg _D(AA.)_I/Q
~ D(AA*)™Y? — D(AA*)"1/?
= 0

F? -1 Lemma 3.1 D(AA.-)-UQD(AA-‘)-—IH -1
~ A—(AA-)—IIQA(AA-')-I/2 -1
= A-A(AtA)—lfﬂ(AAt)-]/'? -1
Lemma 2.2 A-A(A-A)—I/‘Z(A‘A)—l/? -1
= 0
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W.l.o.g. we can assume f to be smooth and grad f € Co(M,TM).

£, F) PR3 {f, D(AAT)T)
= 1f,DI(AA)T 4 DIf, (AA7) V1]

Lemma 2.3 —grad f(AA-)—1/2
Prozj 2.1 0

O
Let [M] € KK(Cy(M), A) denote the class represented by (H®, F) (as above we
compress all structures in the symbol M) and {M} € KK(k, A) be the class ob-
tained from [M] restricting to the constant functions in Cy(M). Clearly {M} is
represented by (H?, F) too.

Let N C M be a compact hypersurface cutting a normal neighbourhood U(N)
in two pieces U(N)4. Assume that there is a diagram

I' s Spwy- — Sww)-

l !
v : UN)- — U(N)-

mtertwmlng all structures. We form a new manifold M cutting at N and glueing
together using 7 and a new bundle S using T with associated Dirac operator D.
Suppose that D also satisfies Assumption 1. Let {M} € KK(k,A) be the class

given by D.

Theorem 3.3 (K-theoretic relative index theorem) {M} = {M}

Proof: Note that H® = H? in a canonical way. Thus it is enough to show that
A:=F - Fe K(H.

Recall that we use the compact perturbation as equivalence relation in the KK-
groups. Let 1/) ¢ € C°(M), ¢ = 1 outside of some small neighbourhood of N
and 9¥,¢ = 0 inside a smaller one such that ¢ = ¢. Set x := (1 — ¢) and let
p e CP(UN )) such that px = x. Let A := 9pA¢ + pAx. Then
A-A = PAs+pAx-A
= (I-¥)Ax+(1-p)Ax
RS (L= 9)a+ (1 - p)xA

= 0

Thus it is enough to show the compactness of A. Let us consider e.g. YA

YA
Lemza 31 %/ ¢[D(AA‘ + Az)_l - b(/‘i/‘i‘ + A2)—1]§!'l’dA
0

Pro’&ll %/w D’I,b[(AA* + Xl)-l _ (A'A- + AZ)—l]quA
0
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= = j D(AA™ 4+ N2)"(AA" + A)P[(AA" + A1) — (AA" + 2?)7]gdA

~  Z f D(AA* + )3)"
[(AA* + A)P(AA" + X)) 71g — (AA" + A} P(AA* + 2%)"1g)dA
Propa1 2 j D(AA* + 2?7 ¢ — p|dA

Analogously we handle pAy. Thus A € K(H®) and also A € K(H®). O

4 Invertibility at infinity

Let M be a complete Riemannian manifold and S be a Z,-graded Clifford-C*-bundle
with associated Dirac operator D. We say that D is invertible at infinity if there is
some f € C®(M) such that D? + f is invertible as operator in B(H', H°).

Proposition 4.1 If D is invertible at infinity then D € B(H!, H®) is Fredholm.

Proof: We construct a parametrix R € B(H®, H') such that DR ~ 1 and RD ~ 1.
Let ¢,¢ € C(M) such that ¢ = 1 on supp f and such that )¢ = ¢. Moreover
let x € C°(M) such that x = 0 on supp f and x(1 — ¢) = 1 — ¢. Let Ry =
D(D? + f)™! and Rk be a parametrix of D with support on some compact set
containing supp . Rk can be constructed using pseudodifferential calculus as in

[9]. Set R = xRuy(1l — ¢) + Yy Rk¢. Then we have R € B(H®, H'). Apply now D.

DR = DxRuy(l-¢)+ DyRi¢
= gradxRy(l - ¢) + grad YRk ¢ + xDRy(1 — ¢) + $DRx¢
PRI XDHD? + f)TI(1 - ¢) + ¥é
=  x(D*+ f)(D*+ )71~ ¢) + ¥¢
=  x(1-4¢)+v¢
= 1

RD =  xRu(1-¢)D+$RxeD
Pra’&'z.l XRuD(1—¢)+1,bRKD¢
~  XxD(D*+ ) D(1 - §) + ¥4
= X(D*+ f)'D¥(1 - ¢) — x(D* + f)'grad f (D* + )71 — ¢) + ¥¢
~  x(1-¢)+ ¢
= 1

|
Note that RD, DR € B(H*) for any k > 1 and DR —1,RD — 1 € K(H*) by the
same proof. Assume now that the fibre V of S is a free A-C*-Hilbert module.
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Theorem 4.2 Let D € B(H*, H®) be invertible at infinity. Then there is an oper-
ator S such that D + S is invertible and S € K(H®, H*) for any given k € N.

Proof: We construct first isomorphisms H' = ? @ V. Let M = U,K, be a
countable triangulation such that S|k, = K x V. For every a fix an orthonormal
basis {!}ieN in L}(K,) where ¢! € C®(int(K,)). With respect to this basis we
have

L (Ko, Sik) = P ® V.

Fix an enumeration of the 1’ . Then we get also
H° 2 @, L* (K, Sik.) = @’®@V =@ V.

For v € V let v; = (0,...,v,0,...) with v at the i’th entry and L, C H° be the
subspace generated by the v; with ¢ < n. By construction we have in fact for any
n,k € N that L, C H* compactly embedded. For | > 0 we use the identification

1/2

rev e e IS g

in order to construct the desired isomorphism. Define the subspaces L, C H' as
above. Again L, € H* for any k,n compactly embedded (do not confuse the L, in
different H').

We construct now decompositions A = U, @ W), H® = U, ® W, such that

D' 0
2=(% )
and D! is invertible, W;, Wy C H* compactly for any given k € N (this construction
is essentially due to Mis¢enko/Fomenko [9]). Let DR = 1 4 K; where R is the

parametrix obtained above. We construct decompositions H® = M; ® N;, 1 = 1,2
such that N; C H* compactly for any k and

14+ K! 0)

1+K1=( 0 .

Since K is compact we can find by definition (see [9]) a ng such that for all n > ng

we have || K] < 1. Let
K' K?
#= (ko &)

with respect to H® = Lt @ L, for some n > ng. Then 1 + K is invertible. Set

X2:=(_ 1 0) X1:=((1) —(1+Il(‘)'1K’)'

Then

L+ K 0
X2(1+K1)X1=( 0 1+K“—K3(1+K’)“K2)
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Set M1 @N[ = X](L,J.: @Lﬂ) and Mg@Nz = X;I(Li EBL,;) Note that K,' (& K(H")
for any k > 0. Thus choosing n large enough we have (1 + K')~! € B(H*). Then
N; C H*, i =1,2. Let P : H® = N, be the projection onto N; along M, and set
D, :=(1—=P)D. Then D;R =1+ K, and RD, =1+ K, with K; = (1- P)K; - P
and K; = 1+ K; — RPD. We construct decompositions H' = M; ® N;, i = 1,2
such that

- 7]
1+K2=(1+0K 2)

and N; C H* compactly for k as above. Consider the composition
H'=MoM 2“Mzﬁl';‘]'\"zf’ M, o N, = H'.

RDyy, : M, — M, is an isomorphism. Hence DI(MI) C M, is a closed subspace.
Since Dy (H') = M; we have the factorization

M, @ Ny — Dy(My) @ [D1(N1) @ No) = My & N, = H°.

Let IT: H! — N, be the projection onto N, anlong M, and Q) : H° - Di(N))® N,
be the projection along D:1{M;). Then (1-Q)D(1-1I) : M; — D,(M,) is invertible.
Let Uy := (1 - Q)H', W, := QH', U; := (1 — II)H®, W, := I1H®. Then we have

D=((1~Q)109(1—H) 2)_

Note that Dy(N,)® N, C D\H*+ H* ¢ H*'. Thus W; C H*', i = 1,2 compactly.
The formal difference of projective finitely generated A-modules

[W1] — [Wa] € Ko(A)

is the index of D. Since D is selfadjoint we have (W] = [W;] in Ko(A). Thus there
is a number r > 0 such that W; @ A™ = W, @ A". Choosing our n large enough we
can assume that Wy = W;. 1t is here where the assumption on the fibre of S enters.
Choose an isomorphism I : W; — W, and set

D:=(1-Q)D(1 - + QIIL

D is invertible and S := D — D is in K(H®, H') for any given [ > 0. This proves
the theorem. O

If the fibre of S is not free we can circumvent the stabilization problem as follows.
We consider instead of H' the spaces H' := H' @ A" for some large r and extend
the action of D and C,(M) by zero. Then Theorem 4.2 holds on these spaces. The
resulting classes [M] € K K(C,(M), A) represented by (H°, F) do not depend on r.
There is also a corresponding modification of the relative index theorem 3.3.
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5 An application

Fix a finitely generated group 7. Any spin manifold N with = (N) = 7 gives rise to
a B := BSpin x Br-manifold (see [11]). The B structure

f:N—-B

is given by the product of the classifying maps of the spin structure and of the
universal cover of N. Consider the set S, (x) of tuples (M", N, F, h) where (M, N, F)
is a n-dimensional B-bordism, N = M and A is a positive scalar curvature metric
on N. S is asemigroup under disjoint union. Let ~ be the equivalence relation given
by B-bordism. A B-bordism of (M, N, F,k) and (M, Ny, F1, k) consists of a B-
bordism (W, N, Ny, ®) between (N, Fly) and (Ny, Fi|n, ), a positive scalar curvature
metric ¢ on W which is product near 3W and restricts to h, h; at N, N, and a zero-
B-bordism (V, ¥) of (M Uy W Un, M, (F,®, F1)). Note that R,(7) := Sa.(x)/ ~ is
a goup. A similar group has been considered by B.Hajduk. It is a special case of a
construction due to S.Stolz [10].

Theorem 5.1 There is a canonical homomorphism R,(7) — KK,(R,C;(r)).

Proof: Let (M, N, F,k) € S,(r). Choose a metric on M such that it is product
near N and restricts to k. Glue a metric cylinder [0,00) x N at the boundary of M
obtaining the complete manifold M and extend F constantly. F*Er is a w-principal
fibre bundle. Associate C}(w) and obtain a flat bundle with fibre C?(7) using the
canonical action of m on C}(7) from the left. Let E be the real Clifford bundle
with fibre C, associated to the spin structure and form § := EQ V. Sis a C*-
Clifford bundle over C, @ C; (7). Let D be the associated Dirac operator. Since the
scalar curvature is positive at infinity, D is invertible at infinity and we can form
{M} € KK(R,C,®C:(r)). Clearly the map associating to (M, N, F, h) € S,(r) the
class {M} is additive. We must show that it factors through R,(x). Let (W, N, ®)
be a zero- B-bordism of (N, Fy), ¢ be a positive scalar curvature metric on W which
is product near OW and restricts to h on N and (V,¥) be a zero-B-bordism of
(MUN W, (F,®)). Let L:= MUW and L := WUy MUR x N. Then {L} = {M}
and {L} = {W Ux M} since on the remaining components there are positive scalar
curvature metrics and the Dirac operator is invertible there. By the relative index
theorem {L} = {L}. But {L} = 0 since the Dirac operator is zero-bordant. Hence
{M} = 0. This proves the theorem. O

The idea of this construction is due to Stefan Stolz.
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