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Abstract. We give a complete classi�cation of Levi-degenerate hyper-
surfaces of �nite type in C2 with two-dimensional symmetry groups. Our
analysis is based on the classi�cation of two-dimensional Lie algebras
and an explicit description of isotropy groups for such hypersurfaces,
which follows from the construction of Chern-Moser type normal forms
at points of �nite type, developed in [11].

1. Introduction

Automorphism groups are important geometric invariants, providing a
natural way to classify various geometric structures. The problem of clas-
sifying real hypersurfaces in complex space according to the dimensions of
their symmetry groups can be traced back to �E. Cartan, who in [4] listed
all homogeneous hypersurfaces in C2. At the same time, he determined the
dimensions of their symmetry groups.

Cartan excluded Levi 
at manifolds, which have no local invariants. Ow-
ing to their homogeneity, Cartan's hypersurfaces are necessarily Levi-non-
degenerate everywhere. In the non-homogeneous case the hypersurface may
contain Levi degenerate points, which may be of �nite or in�nite type.

The notion of �nite type plays an important role in the study of bounded
domains in complex space and their holomorphic mappings. We note that,
if the boundary of a bounded domain is real-analytic, then all boundary
points are of �nite type. Thus, any such domain, which is not strictly
pseudoconvex, necessarily contains Levi degenerate points of �nite type.

There are numerous results on extension of holomorphic mappings from
a domain of �nite type to its boundary and from (parts of) the boundary to
the domain. This allows one to pass between domains and their boundaries
back and forth (e.g. [2], [6], [14]).

The local geometry at Levi non-degenerate points was studied by Chern
and Moser [5]. Their results provided the crucial step towards a complete
classi�cation of local symmetry groups, which was achieved by Beloshapka
[3] and Kruzhilin and Loboda [13]. For Levi degenerate hypersurfaces of
�nite type in C2 the corresponding results were derived in [11], [12].
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Our aim is to use those tools alongside with the classical methods of Lie
and Cartan to understand global symmetries of bounded domains in C2.

In recent years variations of this problem have been studied intensively.
In complex dimension two, the works of Isaev-Krantz and Isaev ([7], [8], [9])
give a complete description of hyperbolic manifolds with symmetry groups of
dimension three or higher. Note that dealing with 1-dimensional symmetry
groups presents no di�culty, so the only remaining interesting case would
be to classify hypersurfaces with 2-dimensional symmetry groups. This is
the problem that we study in this paper.

Acknowledgment. The authors are grateful to Michael Eastwood and
Andrea Spiro for useful discussions.

2. Preliminaries

In this section, we consider a real-analytic hypersurface M � C2 and a
point p 2M of �nite type k.

For local description of M in a neighbourhood of p, we will use local
holomorphic coordinates (z; w) centered at p, where z = x+i y; w = u+i v,
and such that the hyperplane fv = 0g is tangent to M at p. M is then
described near p as the graph of a uniquely determined real valued function

v = �(z; �z; u):

Recall that p 2 M is a point of �nite type if and only if there exist local
holomorphic coordinates such that M is given by

(1) v = Pk(z; �z) + o(jzjk + juj);

where

(2) Pk(z; �z) =
k�1X

j=1

ajz
j�zk�j

is a nonzero real-valued homogeneous polynomial of degree k without har-
monic terms.

For k = 2,M is Levi-nondegenerate in a neighbourhood of p, and P2(z; �z) =
jzj2. The classical work of Chern and Moser provides a complete normal form
for this class of hypersurfaces (see [5]). As an immediate consequence, this
gives an estimate of the dimension of the local isotropy group, but not its
exact value.

Let Aut(M;p) denote the local isotropy group of a hypersurface M at
a point p. The analysis of such groups in the non-degenerate case was
completed by Beloshapka [3] and by Kruzhilin and Loboda [13].

Throughout this paper we consider the degenerate case, and assume that
k > 2. We use the equation (2) to de�ne two important integer-valued
invariants. The �rst one, denoted by e, is the smallest integer such that
ae 6= 0.
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For e < k
2
, we de�ne the second invariant as follows. Let e = m0 <

m1 < � � � < ms <
k
2
be the indices in (2) for which ami

6= 0. The second
invariant, denoted by d, is the greatest common divisor of the numbers
k � 2m0; k � 2m1; : : : ; k � 2ms.

The polynomial Pk need not be determined uniquely by the form (2). In
order to make it unique, we impose the following normalization conditions.
We require that ae = 1, and

(3) arg ami+1
2 [0;

2�

qi
)

for 0 � i � s� 1, where

qi =
gcd(k � 2m0; k � 2m1; : : : ; k � 2mi)

gcd(k � 2m0; k � 2m1; : : : ; k � 2mi+1)
:

This determines Pk uniquely.
The model hypersurface MH associated with M at p is de�ned using the

normalized leading homogeneous polynomial,

(4) MH = f(z; w) 2 C2 j v =
k�1X

j=1

ajz
j�zk�jg:

In particular, when the leading polynomial is of circular form, we denote
the model by

(5) Ok = f(z; w) 2 C2 j v = jzjkg:

Another exceptional model is the tubular hypersurface

(6) Tk = f(z; w) 2 C2 j v =
1

k
(z + �z)kg:

It was proved in [11] that if e < k
2
, the local isotropy group of MH is

generated by weighted dilations and rotations in the complex tangential
variable. Hence the elements of Aut(MH ; p) are of the form

z� = � ei � z; w� = �kw;

where ei � is a d-th root of unity and � > 0 for k even or � 2 Rnf0g for k odd.
It follows that Aut(MH ; p) = R+�Zd for k even and Aut(MH ; p) = R��Zd
for k odd.

The local isotropy group of Ok is three dimensional, consisting of trans-
formations of the form

(7) f(z; w) =
� ei � z

(1 + �w)
1

e

; g(z; w) =
�kw

1 + �w
;

with � > 0; and �; � 2 R.
We write

�(z; �z; u) = Pk(z; �z) + F (z; �z; u);
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where

F (z; �z; u) =
X

j;l

Fjl(u)z
j�zl;

with Fjl(u) =
P

m ajlmu
m:

In [11], three di�erent complete normal forms are constructed, depending
on the model. Two for the exceptional models, Ok and Tk, and the third
one for the generic model, covering all remaining cases.

An important di�erence between the Chern-Moser normal form and nor-
mal forms for Levi-degenerate hypersurfaces, is that normal forms and trans-
formations to these forms are given by formal power series which not nec-
essarily converge. The fact that a normal form construction solves the
local equivalence problem is due to the essential result of M.S.Baouendi,
P.Ebenfelt and L.P.Rothschild ([BER]), that any formal equivalence between
two �nite type hypersurfaces has to converge.

We subject the hypersurface to a general formal power series transforma-
tion,

(8) z� = z + f(z; w); w� = w + g(z; w);

preserving the above form of M , and denote v� = F �(z�; �z�; u�) the de�ning
equation in the new coordinates. As usual, when there is no danger of
confusion, stars will be dropped immediately after the transformation.

Theorem 1 ([11]). If e = k
2
, there exists a transformation of the form (8),

such that in the new coordinates the de�ning equation satis�es the following
normal form conditions

(9)

Fj0 = 0; j = 0; 1; : : : ;
Fe;e+j = 0; j = 0; 1; : : : ;
F2e;2e = 0;
F3e;3e = 0;

F2e;2e�1 = 0:

Normal coordinates, i.e. those in which the conditions (9) hold, are de-
termined uniquely up to the action of the local isotropy group (7).

When MH = Tk, we have the same result with the following normal form
conditions:

(10)
Fj0 = 0; j = 1; 2; : : : ;

Fk�1+j;1 = 0; j = 0; 1; : : : ;

and

(11) F2k�2;2 = Re Fk�2;1 = Re Fk;k�1 = 0:

Again, normal coordinates are determined uniquely up to the action of
the group Aut(Tk; 0).

Now, let MH be a generic model, i.e. e < k
2
and MH is di�erent from

Tk. Denote Fk�1(u) = (F1;k�2(u); F2;k�3(u); : : : ; Fk�2;1(u)). In this case the
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normal form conditions are:

(12)
Fj0 = 0; j = 1; 2; : : : ;

Fk�e+j;e = 0; j = 0; 1; : : : ;
F2k�2e;2e = (Fk�1; Pz) = 0;

where

(13) (Fk�1; Pz) =
k�2X

j=1

(j + 1)Fj;k�1�j�aj+1:

The corresponding normal coordinates are unique up to the action of the
group Aut(MH ; 0).

The normal form construction is used to obtain the following full classi-
�cation of local isotropy groups for Levi-degenerate hypersurfaces of �nite
type.

Theorem 2 ([12]). For a given hypersurface exactly one of the following
possibilities occurs.

(1) Aut(M;p) has real dimension 3. This occurs if and only if M is
equivalent to Ok.

(2) Aut(M;p) is noncompact of real dimension 1, isomorphic to R+ �
Zm: This occurs if and only if M is a model hypersurface with l < k

2

and m = d.
(3) Aut(M;p) is compact of real dimension 1, isomorphic to S1. This

occurs if and only if the de�ning equation ofM in normal coordinates
has form

v = G(jzj2; u):

(4) Aut(M;p) is �nite, isomorphic to Zm for some m 2 Z. This occurs
in all remaining cases.

3. Two non-singular vector fields

Now we consider Levi-degenerate hypersurfaces of �nite type with two-
dimensional symmetry groups.

Let X;Y be two holomorphic vector �elds such that ReX and ReY gen-
erate a two-parametric group of automorphisms. We assume that X(0) and
Y (0) are linearly independent (over R). Otherwise we could replace one of
the vector �elds by a singular one.

We call a vector �eld non-contact at 0 if X(0) 62 T
1;0
0 M . Now, if both

X;Y were non-contact at 0 we could replace one of them by a contact vector
�eld. On the other hand, X;Y can't be both contact as a consequence of
the �nite type condition. In fact, we have

Lemma 1. If X;Y generate a two-parametric family of in�nitesimal auto-
morphisms of a �nite type hypersurface at 0 then they can't be both contact
at 0.
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Proof. Let M be of �nite type at 0 and X;Y be two holomorphic contact
at 0 vector �elds with

[X;Y ] = �X + �Y

such that ReX and ReY annihilate the de�ning equation of M . Without
loss of generality we may assume that TC

0 M = fw = 0g, X = @
@z

and

Y = f @
@z

+ g @
@w

where f(0) = i and g(0) = 0. Then the de�ning function of
M takes the form

v = G(y; u)

where w = u+ i v and z = x+ i y and G(0) = 0, dG(0) = 0.
If � = 0 the commutator relation between X and Y yields

f = �z + c(w); g = d(w)

with c(0) = i and d(0) = 0.
Let yk be the lowest order pure term in y in the expansion of G. Such

term must exist, since otherwiseM would contain the complex line fw = 0g.
From dG(0) = 0 it follows that k > 1. Then

ReY (v �G(y; u))

contains a term kyk�1 that cannot be compensated by any other term, thus
contradicting to Y being an in�nitesimal automorphism.

If � 6= 0 then after replacing Y by Y + �X the commutator relation
becomes [X;Y ] = �Y and

f = c(w) e�z; g = d(w) e�z

with c(0) = i and d(0) = 0.
Aa before, consider the lowest order pure term yk in the expansion of G.

Again, in
ReY (v �G(y; u))

a term kyk�1 is produced and cannot be compensated, thus contradicting
to Y being an in�nitesimal automorphism. �

Now we will assume that X is non-contact and Y is contact at 0. Hence
X(0) and Y (0) are linearly independent over C.

By choosing a suitable basis of the two dimensional Lie algebra spanned
by X;Y we may reduce the problem to the 3 cases

(1) [X;Y ] = 0
(2) [X;Y ] = X

(3) [Y;X] = Y .

We have

Theorem 3. If M is a germ of a real-analytic hypersurface at 0 in C2 and
X;Y are two holomorphic vector �elds that generate a 2-dimensional Lie
algebra (over R) of in�nitesimal automorphisms of M and such that X is
non-contact and Y is contact at 0 then there exist local coordinates such that
one of the following is true
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(1) X =
@

@w
, Y =

@

@z
and M has a de�ning equation of the form

v = g(y);

i.e. M is tubular.

(2) X =
@

@w
, Y =

@

@z
+ w

@

@w
and M has a de�ning equation of the

form

v = ex g(y):

(3) X = z
@

@z
+

@

@w
, Y =

@

@z
and M has a de�ning equation of the form

v = g(e�u y):

Proof. If [X;Y ] = 0 then there are coordinates such that X =
@

@w
,

Y =
@

@z
. It follows that the de�ning equation

v = G(x; y; u)

is invariant with respect to the 
ow of ReX =
@

@u
and ReY =

@

@x
and

therefore does not depend on x and u.
If [X;Y ] = X then, by the Lemma 2 below there are coordinates such

that X =
@

@w
, Y =

@

@z
+ w

@

@w
. It follows that the de�ning equation does

not depend on u and is invariant with respect to the 
ow of Y

z 7! z + t

w 7! etw;

hence it satis�es

e�tG(x+ t; y) = G(x; y):

Therefore the de�ning equation is

v = ex g(y)

where g is a smooth function with g(0) = 0.
If [Y;X] = Y , by the Lemma 2 below there are coordinates such that

X = z
@

@z
+

@

@w
, Y =

@

@z
. Then the de�ning equation becomes

v = g(e�u y);

where g is a smooth function with g(0) = 0. �

Lemma 2. If X;Y are germs of holomorphic vector �elds as above with
[X;Y ] = X, then there exist local coordinates such that

X =
@

@w
; Y =

@

@z
+ w

@

@w
:
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Proof. [X;Y ] = X. First we choose coordinates such that X =
@

@w
: Then

in Y = A
@

@z
+ B

@

@w
the function A depends only on z and B = w + b(z)

where b depends only on z. Using the transformations

z 7! �(z)

w 7! w +  (z)

that preserve X =
@

@w
we may achieve Y =

@

@z
+ w

@

@w
: �

4. Transitive automorphism and rotation

Lemma 3. If X = i z
@

@z
and Y is a germ of a non-singular, holomorphic

vector �eld, such that X;Y span a 2-dimensional Lie algebra then [X;Y ] = 0

and there exist local coordinates such that Y =
@

@w
:

Proof. Let Y = f
@

@z
+ g

@

@w
.

[X;Y ] = X requires z
@f

@z
� f = z, which is impossible.

[X;Y ] = �Y requires i z
@f

@z
� i f = �f with real �, which is impossible

unless f � 0.
Hence [X;Y ] = 0. Then

Y = zh(w)
@

@z
+ g(w)

@

@w
:

Now, g(0) 6= 0 (otherwise Y would be singular) and after a coordinate change
that preserves X we obtain Y = @

@w
: �

As an immediate corollary we get the following result.

Theorem 4. IfM is a germ of a real hypersurface in C2 and X = i z
@

@z
and

Y is a germ of a non-singular, holomorphic vector �eld, such that X;Y span
a 2-dimensional Lie algebra then in suitable coordinates M has the equation

v = G(jzj2):

5. Transitive automorphism and dilation

A hypersurface M admits a weighted dilation

X = z
@

@z
+ kw

@

@w

only if it is a model hypersurface with the equation

v =
kX

j=0

�jz
j�zk�j :
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Such hypersurfaces admit an additional translation
@

@w
in the u-direction.

Lemma 4. If X = z
@

@z
+ kw

@

@w
and Y is a germ of a non-singular, holo-

morphic vector �eld, such that X;Y span a 2-dimensional Lie algebra then
[X;Y ] = �Y with � = �1 or � = �k and there exist local coordinates such

that Y =
@

@z
or Y =

@

@w
.

Proof. Let Y = f
@

@z
+g

@

@w
. Then [X;Y ] = X requires z

@f

@z
+kw

@f

@w
�f =

z, which is impossible.
[X;Y ] = 0 implies that f is a weighted homogeneous polynomial of de-

gree 1 and g is a weighted homogeneous polynomial of degree k which is
impossible if Y is non-singular.

[X;Y ] = �Y requires

z
@f

@z
+ kw

@f

@w
= (� + 1)f and z

@g

@z
+ kw

@g

@w
= (� + k)g;

i.e. f is a monomial of weighted degree �+1 and g is a monomial of weighted
degree �+k. Since one of f and g contains a weight zero term we have either
� = �1 or � = �k. For � = �k the only option is f = 0; g = 1, which is the
translation in u-direction.

For � = �1 we get (after rescaling z) f = 1; g = azk�1, and after a further
transformation

z 7! z

w 7! w � azk

we get Y =
@

@z
: �

It follows that for Y =
@

@z
the equation of M is v = yk: Hence we have

established the following result.

Theorem 5. If M is a germ of a degenerate �nite type real hypersurface in

C2 and X = z
@

@z
+ kw

@

@w
and Y is a germ of a non-singular, holomorphic

vector �eld, such that X;Y span a 2-dimensional Lie algebra then in suitable
coordinates M has one of the following equations

v = yk (k > 2)

v = yk +
k�1X

j=1

�jz
j�zk�j (k > 2; �n�j = ��j ; 9�j 6= 0):

In the �rst caseM has a 3-parametric family of in�nitesimal automorphisms
generated by X, @

@z
, @
@w

and in the second case M has a 2-parametric family

of in�nitesimal automorphisms generated by X, @
@w

.
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