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1) Introduction

Let V be a' real vectorsp~ce of finite dimension n. We write

~(V) for the affine space associated to V and ~ff(V) for

the group of affine motions on ~(V). Choosing a basis in V we

may make the following identifications:

Ot.(lR
n

) = {(~t) I

Aff ( IRn ) = {(: : t) I gE GL (IR), W EIR
n}

n

The ac t ion 0 f ~ f f (IR n ) 0 n O't. ( IR n ) istheng i ve n by t heu 5 ua1

matrix product. At stands for the transpose of a matrix A.

A subgroup r < viff(V) is said to act discontinuousl~ on Ot(V)

if for every compact set K < Ol(V) the set

{y E r yK n K "f 0}

is finite. A group which acts discontinuously is discrete in

J'tf f ( V) , but t he co nver 5 e d0 es not hol d i n gen e ra 1. .

The group r 2 fiff(V) is said to act quasitransitively on ~(V),

if there is a compact set K~ ~(V) so that

ot( V) = u y • K.
yEr

The simplest examples of groups that act discontinuously and quasi-

transitively on ~(V) are

{c :t) I v E n}
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where n < rn n iso a full lattice. It is easy to see that a·group

r ~ Jtff(V) that acts discontinuously and quasitransitivelyon

cn.(V) is finitely generated. The following is a long standing

problem:

Co,njecture 1.1 :

Let V be a finite dimensional real vectorspace and r < ~ff(V)

a subgroup which acts discontinuously·and quasitransitivelyon

t1t(V). Then r is virtually polycyclic.

I f .". isa pro pe rty 0 f 9 r 0 ups, t he n t he 9r 0 up G ;-5 call e d vi r t uall.l

Je. if G has a subgroup of finite index satisfying 'P . A

group G is called polycyclic if it has a serjes of subgroups:

so that G. 1/G.
1 + 1

is cyclic for all o < i < ~i- 1 ~

Originally conjecture 1.1 was posed even without the assumption

that r acts quasitransitively [18]. In [ 17 ] the second author

gave a. counterexample to this stronger conje,cture. Conjecture 1.1

has been solved affirmatively in case the dimension of V is

1,2,3, see [9].

Let r.::. Aff(V) be a subgroup that acts discontinuously, quasi-

transitively and without fixed ·points on . Ol(V). The latter means

yP = P for y E rand P E cJt(V) implies y = 1. In this case

the set of orbits

r' Ol( V) /._.

inherits from Ct(V) the structure of a complete, affinely flat
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compact lllanifold. It is easy te see that every such mani feld

arises as such a quotient. By a theorem of Selberg every finitely

generated linear group contains a torsionfree subgroup of finite

index. Lt follows that conjecture 1.1 can be given the equivalent

form:

Conjecture 1.1' :

Let M be a complete, affinely flat,compact manifold. Then its

fundamental group TI 1(M) is virtually polycyclic.

Given a finite dimensional vectorspace V we denote by

A: fiff(V) -* GL(V)

the canonical homomorphism which assigns to an affine motion its

linear part. The kernel af A consists -af the pure translations.

In coordinates A is given by:

A: G:t) 9 .

Fo r a subgroup r 2. fiff (V) we introduce i ts 9ro up of translations:

J r = r n { (~ :t) IW E V}, Ur = {v E V I C:t) E r}

Definition 1.2
Let V be a finite dimensional real vectorspace and G 2. GL(V)

a closed subgroup with finitely many.connected components. A group

r< \l9-ff(Y) is called G-linear if A(r) < G.

The following are important special cases of the above concept.

Let V have dimension n,' take a basis, and write O(n) for the
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orthogonal group of the quadratic form

on the chosen basis. The G = O(n)-linear groups are the groups

of euclidean motions". The orthogonal group of the quadratic form

... +

which is of sipnature (n-1,1) is denoted by Q(n-l,1). The

G = 0 (n-1, l)-linear groups are the groups of Lorentz-moti ons.

Let G 2 GL(V) be a closed subgroup. The real rank of G is

denoted by

r~RG .

This is the maximal dimension of a subgroup of G isomorphie to

an IR - s pli t t 0 ru 5, t hat i s .( IR *) d . See Hel gas 0 n [ 14] f 0 r t he

details in the theory of Lie groups. We prove here:

Theorem 1.3 :
Let V be a finite dimensional real vectorspace. Let G 2 GL(V)

be a closed subgroup with finitely rnany connected cOlllponents which

is reducti ve and satisfies rk IR G .5.. 1. Then' any G-linear subgroup

r 2 vqff(V) which acts discontinuously and quasi transitivelyon

cn(V) is virtually polycyclic.

Theorem 1.3 has two predecessors. If G = K ~ GL(V)' is compact,

that is rkIRG = 0 then aG-linear group is conjugate to an

o (n)-linear group. The theorem of Bieberbach [4] may be applied

and proves that r is even virtually abelian. If r is a group
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of Lorentz-motions, that is A(r) < 0 (n -1,~), (n = dim lR V), then

Goldman and Kamishima [ 11] have proved the above result. Dur

proof is similar to that of Goldman and Kamishima. We use induc-

tion on the dimension of V. We distinguish the cases that

~(r) is discrete or not. In the first instance we use the same

cohomological argument as [11]. In the second case our argument

differs from that in [11]. We use a general description of the

'closed subgroups of the reductive groups of. real rank 1.

We mention that a reductive real group of rank 1 is isogenous

to one of the following types ..

1 ) IR* x K , K compact

2 ) D(m,l) x K , K compact, m > 1

3 ) U(m,l) x K , K compact, m > 1

4) Sp(m,l) x K, K compact, m > 1

5 ) F4 II x K , K compact.

We use here the terminology of Helgason [14]. The symbol x

stands for almost direct product. If the group G mentioned in

theorem 1.3 is even semisimple then it is Zariski-closed. If
then

not / Gis iso gen u0 us t 0 IR* x K where K i s c 0 mpa ct . I n t he

latter case Lem~a 2.4 implies the statement of t~eorem 1.3.

Hence we can,' without loss of generality, assume that G is an

algebraic subgroup of GL(V).

We proceed by investigating the following a bit vaguely stated

proolem.
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Problem 1.4 :

What-can one say about the isomorphism and conjugacy classes of

virtually polycyclic groups that act discontinuously and quasi-
. .,

transitivelyon affine spaces?

The following is easily dedueed from theorem 1.1 It shows that

the strueture of the virtually polycyclie groups arising in

theorem 1.3 is quite restricted.

Co ro 11a ry 1. 5 :

Let V be a f i ni ted i me n5 ion a 1 re a1 ve eta r 5 paee . Let

G < GL(V) be a elosed subgroup with finitely many cennected

eomponents whieh is reductive and satisfies rk
IR

G < 1. Then any

G-l i near subgroup f.::. ~ff( V) whi eh acts di sconti nuous ly and

quasi transi ti vely on C1"\..(V) has a seri es of subgroups

wi th

( i ) f O i s abelian,

( i i ) f l /f O i s ni 1potent of class < 2 ,

( i i i ) fZ/f l i s abelian,

( i v ) f 3 /f Z i s abelian,

( v ) f4/f 3 i 5 finite.

Note that any subgroup of a virtually polycyclic group is finitely
generated, so that we have a little more information about the
subquotients occurring in Corollary 1.5.

The main tael in the finer investigation of problem 1.4 is a

theorem proved by Fried and Gel dman [ 9 J.
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Theorem 1.5

Let V be a finite dimensional real vectorspace and G < GL(V) a

2.ari.;ki clos20 sllhgroup. Let

r ~ ~ff(V) be aG-linear virtually polycyclic group that acts dis­

continuously and quasi transi tively on O1(V). Then there is a

subgroup H ~ ~ff.(V) which is G-linear with:

(i )

( i i )

( i i i )

H acts simply transitivelyon O\(V)

H n r has finite index in r

H n r is a lattice in H, i.e. H n r

cocompact in H.

i s di sc rete and

Theorem 1.5 splits Problem 1.4 virtually into two seperate questions.

Problem 1.4-

Let V be a finite dimensional vectorspace G ~ GL(V) a closed

subgroup with finitely many connected components.

(i) Classify the subgroups H < ~ff(V) which are G-linear and

act simply transitively on ~(V).

(ii) Für each group which occurs in (i) classify the lattices in H.

80th parts are usually very difficult. A guiding line is given by

the Bieberbach theorems (G = orthogonal group). Of course any

group H < Aff(V) that acts simpli transitivelyon ct(V) is a
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connected, s;mply connected L;e-subgroup of ~ff(V). Auslander [1]

has furthermore shown. that H must be soluble. At the moment

there ;s no soluble connected s;mply canneeted group wh;ch ;s known

not to °aet simply transitivelyon some affine spaee. The first
stages of

part of problem 1.4 1 ean be put in/increasing difficulty. One

might ask for a classifieation of the groups up to isomorphism or

up to conjugacy in ~ff(V).

Sections 3,4,5,6 of our paper contain a treatment of problem 1.4 1

.in ease of Lorentz-lIlot;ons that is G =0(n-1,1). Our classifica-

tions contain the results of Auslander and Markus [3 ] (n = 3) and

Fried [10] (n :::: 4) as special Ctlses.

Wes nall des c r i be 0 ur res u1 t s n0 w i n tii 0 redeta 11. '1-"' 0 r t his 1e t

\~ :::: IR n-l be an ( n- 1) - di tlle n5 ion a 1 vectorspace with.basis. On th e

v2ctorspace of'dimension n+ 1

IR x W x IR

we eonsi der the quadratic fo rrll

q(x,v,y) :::: 2xy + vv t

of signature (n,1). The group:

E(n,1) :: {(~ :t) I gE O(q,IR), w.E IR x W x IR}

i s called the 9 ro up of affine Lorentz-moti ans. O(q,IR) i s the
I

real orthogonal group of the quadratic form q.
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First of all we describe ou~ classifieation of the isomorphism

types of unipotent subgroups U < E(n,l) whi eh aet simply transi-

t i ve 1y 0 n a f f i ne s pace . F0 r e ach d i me ns ion .t; I 2 S e 9r 0 ups f a 1'I i i'i t 0

\

f {n i te Jy man y ; s 0 m0 r p~ ; Sir.' tyP es. Wes hall ßi ve p r e.sen tat ion s

für the Lie alg~bras of th~ possible u.

Definition 1.7

n- 1Let n > 1, 0 < k .::. -2- be; ntegers. Let lT be areal veetor-

spaee of dimension n+1 with basis

r.;,e l ,··· ,e k ,f l ,··· ,fk,eZk +l '··· ,en_l,T

On 1] de fi ne the of Lie algebras i bywe strueture ';l. (n+l,k)
,',

Illul ti pl i ca ti Oll i n table 1 i s defined fo rthe tables 1 . ':t. (n+1,k)

0 k n- 1 2 fo r k f
n-1

wri t2 iany < < -2 ~ (n-1,k) -2- We L (n+1,k)- -

for the eonneeted, simply eonneeted Lie gr'oup with Lie algebra
; .

!;t, (n+l,k).

The Lie algebras i
~ (n+1,k) are all nilpotent of nilpoteney

elass < 3. They are mutually nonisolllorphie.

Theorem 1.8

Let n > 1 be an integer and H a eonneeted, simply eonneeted

nilpotent Lie-group of dimension n+1. Then the following two

statements are equivalent.

( i ) There is a subgroup U < E(n,1)
\

whi eh aets simply transi ti ve-

lyon affine spaee and is isomorphie to H

(ii) H is isomorphie to one of the Li (n+1,k).'·
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This result is proved in section 3. We also give a set of repre­

sentatives for the E(n,l) conjugacy classes of the simply transi­

tive unipotent subgroups H< E(n,l).

Th~ case of a general group H < E(n,l) acting simply transitively

is treated in section 4. Such a group is necessarily connected,

simply connected and soluble. In section 4 we give a detailed

description of these groups which implies the following result.

Theorem 1.9

Let n > 1 be an integer and H ~ E(n,l) a subgroup that acts

simply transitivelyon affine space. Then H is of one of the

following types

where a+b = n+1 and

whcrc u.+lJ = 1l+1 tlnd

a > Z, and rn b acts through a homomorphism

( i ) H i s uni potent,

( i i ) H i s a split extension IR a ,.4 IR b

IR b ac ts orthogonally on IR a .

( i i i ) H i 5 i1 S ~ 1 i t extension IR a ,-:1 IR b

on IR a wh e re
J

rn a acts trivially up to one dimensional eigen-

spaces for the identical character and its inverse.

(iv) H is a sequence of split extensions

H1 = !Ra HZ = IRb , H3 = IR and a+b+1 = n+ 1. He re H1,

i s normal i n H and H ac ts orthogonally on H1 . The 9 roup

H3 ac ts trivially on the quotient (H 1 )4 HZ)/H 1 ·
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(v) H is.a sequence of sp1it extensions

H
1

= IR a , H
2

is an uni potent group with at most one dimen-
. c

siona1 commutator subgroup and of dimension b, H3 = IR J

H
4

= IR and a+b+e+1 = n+1. Here H1 and H1XHZ are

n0 r ma .1 i n H a nd H a c t s 0 r t h0 gon all y 0 n H1 a nd H2 •

H
3

also norma1izes HZ and H4 acts triviallyon

(( H1x H
Z ))4 H3 )/H 1xH 2 ·

In fact it is c1ear from section 5 that every group of type (ii),

(iii), (iv) ean be embedded into E(n,1) as a simp1y transitive

group of affine motions. The type (v) has to be further restric-

ted so that this is possible. We shall not discuss this here.

Next we want to explain our results on groups r ~ E(n,1) that

act di sconti nuously and quasi trans; ti vely on affi nc space. Dur

aim is to describe up to(finite index)the isomorphism types of

these groups. Remember that one of the ßieberbach theorems says

that a quasitransitiv and discontinuous group of euc1idean motions

contains anormal subgroup of finite index which is isomorphie to

71 n .
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Theorem 1.10·:

Let n> l' be an integer, and r -::. E(n,l) a subgroup that acts

discontinuously and quasitransitivelyon affine space. Then

r ; s o,f one of the follow; ng two types:

( ; ) fis vi r tu all y n; 1po te n t ,

(ii) r ·is virtually(abelian by cyclic).

Le t v:- 0 ' 6: 1 be two properties of groups. A 9 ro up G i 5 called

31
0

by ~ 1 i f G contains a no rma 1 subgroup H with prope rty

lfl O so that the quotient G/H has property l)t 1 .

Theorem 1.10 can be considerably sharpened. The groups arising

under (i) and (ii) can be further restricted. ~~e first of all

discuss the vi rtually ni 1potent cases.

Theorem 1.11 :

Let n> 1 be an integer, and f.::.. E(n,l) a virtually nilpotent

subgroup that acts disconti nuously and quasitransi tively on affine

space. Then f contai ns a subgroup f 1 of fi ni te index wi th

the following properties:

(i) f 1 is nilpotent of nilpotency class < 3.

(ii) f 1 contains anormal subgroup f 2 which has cyclic

commutator subgroup and so that f 1/f Z == ?l .
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It is a simple matter to classify finitely generated nilpotent

groups with cyclic commutator subgroups [13]. It so happens that

not every cyclic extension of these groups occurs as a group

r< E(n,l) that acts discontinuously and quasitransitivelyon

affine space. To clarify' this point we introduce the following

no ti 0 n .

Definition 1.12 :

Let f
O

,f
1

be groups. They are said to be abstractly commensurable

if there are subgroups GO < t o and 8 1 ~ f 1 with:

(i) the indices I f . : e . I
1 1

are finite,

( i i) e 1 an d e2 a re iso mo r phi c .

For example f O and f 1 might lie in a common overgrüup and

i nt er sec tin a sub 9 r üup 'w tl ich iso f f i ni te i nc:; x i n bot h .

Let fO,f 1 be two finitely generated torsionfree nilpotent groups.

We \~ r i 't e Mm( f i ) , f 0 r t he irra t ion alM a 1ce v- C 0 mp 1e t ion s . The

Mm(r i ) are m poi nts of uni potent al gebrai c groups defi ned over

m. r 0 ' r 1 are abs t ra c t 1Y C 0 mme ns ur ab1e i fan don 1y i f i'~ m( r 0 )

and ~lm(rl) are isomorphie as m-groups. This is the ease if

and only if their Lie algebras are isomorphie. Für all of this

see [ 13].

Let H be a connected, simply connected nilpotent Lie group.

Then it is in general quite difficult to elassify the abstract

commensurability classes of lattices (i .e. coeompaet discrete sub-

9r 0 ups) i· n H. I f H ha 5 a 1a t t i ce t he n t heL i e a 1ge b ra 'J..t 0 f

H is defined over m. It can be proved [13] that the abstract

commensurability classes of lattices in H eorrespond to the
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e 1e Il~ e nt s 0 f t he tri via 1 f i b re 0 f t he na t u r a 1 rn apo f Ga 1~ i s. c. ~ h0 mol 0 gy ­

'g ro up s

H
1

((Q ,Autu}(~)) + H1( IR ,Autm('IO).

where AutmCX) is the a.utomorphism group of ')L considered as

an algebraic m-group.

We are here able to classify the abstract commensurability

classes of the groups arising in Theorem 1.11 by equivalence

classes of quadratic forms.

To do this we introduce the following groups.

Definition 1 . 13

Let n , k be integers th at 0 k n- 1 Fo rso < ::'-r

m ;;;; (m1 ' ... , mk ) E IN
k we define Im';;;; (1iil1 ,···,!nik) and

- -

We also define the positive definite quadratic fo rms

2 2
qm ;;;;

m1Y1 + ... + Ill kYk

We furthermore . put :

1 0 0
1 t-x --xx r2

0 E 0 0 0 zt

r o(n+l,k,!!!)={
0 0 E 0 0 xt

xt yt
Ir, S Ell ; x, Y E L ( 1=-ii1); J

0 0 0 E n-1-2k
zEll.

° 0 0 1 5

° 0 ° 0 1

n 1 n-1-2k
If k < T we write e

1
;;;; (1,0, ... ,0) E ?l and put
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0 1 2 t-se -x -2(5 +xx ) r1
E 0 0 t ztse 1

r 1(n+l,k,!l!.)= {
0 0 E 0 0 xt

Jt r,sEll
0 0 0 E x x,y~L (n);

0 0 0 1 n-1-2k
5 zEll

0 0 0 0 1

The symbol E stands for the unit matrix of the appropriäte dimen~

.S .i 0 n. The 5 e ts ri ( n+1 , k , ~) are f i ni tel y gen e rat e d tor s ion f re e
nilpotent groups that act discontinuously and quasitransitivelyon
affi ne space. The gra ups r· (n+ 1, k,l11) ure tlll extens i ans

. l-

1 -r Hk x il n-1-2k -r r.(n+l,k,m) -r ?l -r 1
1 -

where Hk is the discrete Heisenberg-group of rank 2k+l.

Theorem 1.14 :

Let n > 1 be an integer.

(i) Let r.::. E(n,l) be a virtually nilpotent group that acts

discontinuous1y and quasitransitivelyon affine space then

r is abstract1y commensurable to one af the groups

r.(n+l,k,m).
1 -

(ii) The groups r.(n+l,k,m) and r.(n l +l,k l ,m l
) are abstractly

1 - J -

commensurable if and on1y if the follovJing hold: i=j, n=n l
,

k = k I , and there is an *a E ~ so that the quadratic forms

and a-q
ml are equi val ent over ~.

The equiva1ence classes of nandegenerate quadratic forms over ~

by the
can be describedjHasse-Ninkowski theorem. The invariants of an

equivalence are: dimension, determinant and the vector of Hasse

5 Ymb 0 1s [8]. I n The 0 re m 1. 14 a slightly stronger equi-
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quadratic forms arises. We have described

in Proposition 6.3 the modifications which have to be made to

obtain invariants for this relation ..

We shall now give a d~scription of the virtually abelian by cyclic

9 r 0 ups which a r i 5 e -.. i n The 0 rem 1. 10, (i i ) .

Definition 1.15 :

Let n > 1 be a n i nte ger a n·d A E GLn ( tz. )

Let the cyclic group 71 act on 71 n by

an invertible matrix.

We write

1- v t= A-v ~

nr ( n+ 1 , A) = 71 ;0( All

for the corresponding split extension.
Let n > 2. We call a matrix A E GL n(71). of Lorentz type if

it is diagonalizable and its eigenvalues are

where A is posi.tive real and all a·1 s ati s fy la·1 = 1.1
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Nonuni potent ma tri ces A E SL Z(71.) wi th posi ti ve ei genva 1ues

are of Lorentz type. Any matrix A E GL
4

(71.) with eharacteristic

polynomial x4-4x 3+4x Z-4x+l is of Lorentz type.

We have the fol1owing obvious result deseribing the elassification

of the r(n~~A).

Proposition 1.16 :

Al or

GL (~,)n

Theorem 1.17

A' -1
)

Let n > 1 pe an in:~qer. Then the followi ng hol d:

(i) If r < E('n,l) is a subgroup that aets diseontinuously and

quasitransitivelyon affine space and r is not nilpotent

by finite then

so that f O

A E GL (ZZ)
n

f eontains a subgroup f O of finite index

is isomorphie to a group r(n+l,A) where

is of Lorentz type.

(ii) Every f(n+l,A),where A is of Lorentz type ean be embedded

into E(n,l) as a discontinuous quasitransitive group of

affine transformations.
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Proposi ti on 1.16 and Theorem 1.17 gi ve a descri pti on of the ab-

stract c01lltllensurability classes of groups r< E(n,l) which act

discontinuously and quasitransitivelyon affine space and that

are abelian by cyclic, relative to the GL (m) conjugacy classesn
of certain matrices in GL (71) .n

The groups r. (n+1,k,m) and r(n+1,A) are all torsionfree}so
1 -

they are al'l fundamental groups of n+1-dimensional complete compact
aff; ne Lorentz-mani fol ds. (space-ti mes). Dur resul ts ; mply that
every fundamental group of a manifold of this type is abstraetly

commensurable with some r,(n+1,k,~) or r(n+l,A).

The Bieberbach theorems say that in each dimension there are only

finitely many isomorphism types of discontinuous, quasitransitive

groups of euclidean affine motions and they are all abstractly

commensurable. In addition to the above elassification of the

abs traet commens urabi 1 i ty cl asses of di s conti nuous, quas i trans i­

tive groups of Lorentz affine motions we can add the following

result on the possible isomorphism types.

Th e 0 re m 1. 18 :

Let n> 1 be an integer, H ~ E(n,l) be a subgroup that acts

simply transitivelyon affine space. Fix a subgroup r < H that

a.cts di seonti nuous ly and quasi transi ti vely. Then the foll owi ng

set of groups which act discontinuously and quasitransitively

{6.::. E(n,l)1 (i) 6 n H = r,

falls into finitely many isomorphism classes.

(ii) 16:rj < co}

Theorem 1.la is proved in [12 ]. The proof uses methods from

[ 23 ].

We thank Dan Segal for Illany helpful diseussions.
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2. Groups acting discontinuously and quasitransitivelyon

affine space

In this section we shall give a proof of Theorem 1.3. We start

off by establ ishi ng some techni cal resu1 ts. Dur proof wi 11 work

by induction on the dimension of V. First of·all we describe a

device to divide out subspaces from V.

If the group H acts on the set. S .and. SI < S is a subset we

wri te

StabH(SI) == {h EH I hS I C·S I}

for the stabilizer of SI in H. Suppose now that V is a

finite dimensional real vectorspace and Va < V a subspace.

By r V we denote the natural homomorphism
o

We also have the homomorphism

The kernel of

Pv o

clearly is

==

-+ ~ff(V/VO)

CO+9:t+wt)

ke r Pv
o

-1
== Stab (OJ.(V O)) (J A (ker r V ).

vfff(V) 0
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Lemma 2. 1 :

Let V be a finite dimensional real vectorspace, r < vf-ff(V)

a subgroup that acts discontinuously and quasitransitivelyon

0\.( V) •

( i )

Assume that Vo 2 V

A(r) ~ StabGL(V)(V O)'

is a subspace with

(ii) ker PV n r acts quasitransitively on ~(VO).

o
Then Pv (r) acts discontinuously and quasitransitivelyon

.0
Ol( V/ V0) •

Proof :

acts dis-

has then an

p V (r)
o

Hence

under ker Pv
o

with K n eK f ß

K n o-t(V O)

e E P v (r)
o

yK I n Kif 0.with

Every caset

that the translates of

Clearly Pv (r) acts quasi transi ti vely on vt.(V/V O)'
o

Let K be a compact set in ~(V/VO). Choose a compact set

KI < 01.( V) S 0 t hat t he i mag e 0 f KI i n CJl ( V/ V0) i s K and s 0

n rexhaust

element' y E e

continuously.

The abvious spaces Va to which Lemma 2 .1 can be applied are the

spaces generated by the translations i n r:

IR·{w E V I (~ :) E r}

Returning to the situation descri bed in Theorem 1.3 we have

fixed a type of G2 GL(V) and we are considering G-linear groups

r ~ Aff(V). Let Vo < V be a subspace with
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For inductive purposes it is then necessary to describe some

properties of the group

Or rather its'image in GL(V/V O)' Für this we need a theorem of

Morozov and Platonov [ 20] [21 ]. See also [ 6 ].

Proposition 2.2 :

Let G be a 1 i ne ara 19e b ra i c red uc t i ve 9 rau p 0 ver IR . Let H < G

be a Zariski closed subgroup. Assume that the unipotent radical

of H is nontrivial. Then the norlJ1(1lizcr NG(H) of H in G

is contained in a (proper) parabolic subgroup of G.

The following is an obvious eonsequence of the above result.

Corollary 2.3 :

Let G be a 1i ne a r red uc t i ve a 19e b r a i c 9 r 0 up 0 ver IR wi t h

rk IR G ..2. 1. If H is a Zariski elosed subgroup then only the

following two cases are possible.

(i) The connected eomponent of His redueti ve, wi th rkRH < 1,

( i i) NG( H) isa s u,b q r 0 U P 0 f .a 9 r 0 U P

semidirect product P ~ S ~ K
is compact.

Proof:

P which is isomorphie to a

where S is soluble and K

The parabolic subgroup; of Gare of the type mentioned in (ii).

o

The followi ng proves for some groups G that a G-l i near group

is virtually polycyclic. The result is contained in Raghunathan

[ 22 ].
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Lemma 2.4 :

Let H be a connected Lie-group which is a senlidirect product

H = S.><I K

of a compact group K over a soluble normal group S. Then any

discrete subgroup of H is virtually polycyclic.

Another result needed is the following special case of a theorem

by Aus 1an de r [ 2 ].

Proposition 2.5 :

Let V be a finite dimensional vectorspace. r < ~ff(V) a

discrete subgroup. Then

~~)o

is soluble.

Here -0H stands for the connected component of the topological

closure of the subgroup H < GL(V). If G is a linear semisimple

Lie-group with finitely many connected components and so that

rk IR G = 1, we put

where K < GO is a maximal compact subgroup. XG is called the

5 y mmet r; c 5 pace a t t ach e d t 0 G. I t ; 5 h0 me 0 mo r phi c t 0 IR d f 0 r

5 0 me d . F0 r t h e a1 Jll 0 s t IR - 5 i 111 P1e

dimensions of XG from [14 ] :

rea 1 groups we 1ist the
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G dirn XG

O( n , 1 ) n

U(n,1) 2n

Sp(n,l) 4n

F4 II 16

\-Je prove:

Proposition 2.6 :

Let G be a semisimple real Lie-group with finitely many connected

components and of real rank 1. Assurne further that G is not

isogenous to an almost d;rect product K x 0(2,1) where K is

compact. Let

p": G -+ GL(V)

be a faithful representation (i.e. ker p ::: 1). Then

dirn V > dim XG

Proof:

G is an almost direct product G::: KXH, where H is almost

IR -simple w;th rk (H) ::: 1 and R is compact.
n

p defines a

faithful representat;on of Hand hence a nontriv;al represen­

tation of the complexi fi cation ~[ of the Lie algebra of H.

Note that ~[ ;s simple except for H isogeno.us to 0 (3,1),

i n t his case '){ [ ::: 41.. 2 ( a:) $ ~ ( [ ) . From t heta b1es i n [2 5 ]

we see which irreduzible representations of 0([ are real. On the
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other hand we get from Wey.l s dimension formula [15] a lower bound

for the minimal dimension of an irreducible representation of

~[' The combination gives the··following table of minimal dimen­

sions of irreducible nontrivial modules V for the various groups H.

H isogenous to . '_<-~'. di m V ij

O(n,1) n+1 fo r n f 2

U(n,1) 2n+2

St)(n,1) 4n+4

F4Ir 26

Note that Spin(2,1) has a two-dimensional representation via

the exceptional isomorphism

Spin(2,1)

D.

Proof of Theorem 1.3 :

As mentioned before we proceed by· induction ·on the dimension of

V. The result is known in dimensions 1, 2, 3. See [ 9]. In

fact in dimensions 1 and 2 our claim is more or less obvious.

di mens i ona1
Let now V be an n :.. 3 / vectorspace and r 2 J9ff(V) a subgroup

that acts di 5 conti nuous ly and quasi transi ti vely on ot (V). I f the

group of translations Tr is nontrivial then we use Lemma 2.1,

Corollary.2.3, Lemma 2.4 and· the induction hypothesis to finish.

We assume now that J r = <1>. We now distinguish two cases:
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-1) A(r) is discrete in G.

Since r is a finitely generated linear group, we may replace

r by a torsionfree subgroup of finite index (Selbergs theorem

[22]). Then r acts without fixed points on Ot(V). It follows

that

r\01.(V)

is a compact manifold of dimension n = dirn V. By Poincare-duality

we see that

Hn ( r , IR ) ~ Hn( TI {r \ CJ.( V-! ) , IR ) -= Hn(r\ .,. ( V) , IR ) -= IR .

On the other hand A(r) ~ G being discrete and torsionfree it·

is well known that A(r) = r acts discontinuously and without

fixed points on XG. By Proposition 2.6 r is also the fundamen­

tal group of the manifold

which is of dimension< n. This implies that the cohomological

dimension of r is strictly less than n. This is a contradic-

tion. Note that since the dimension of V is > 3 the exceptional

case in Proposition- 2.6 cannot occur.

2) A(r) is not discrete.

Then the group

S ::: r(r)0

is a nontrivial connected solvable group by Auslanders theorem

(2.5 ). We write S for its Zariski-closure. If S contains uni-
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.....
potent elements, that i5 if the unipotent radical of 5 is non-

trivial then by Corollary 2.3 ' and Lemma 2.4 we are finished.

If S contains no unipotent elements it is a torus. Then the

centralizer C
G

(S) of S i n G has f i ni te index i n the

normalizer N
G

(S ) . Le t f O be a subgroup of fi ni te index i n f

so tha t f O centra 1i zes 5 . Put

f 1
;;;; )..-1(5) n f02 f

Since f O centralizes )..(f 1) the commutator

i s c0 nt a i ne d i n t he 9 r 0 up, 0 f ,t ra ns 1a t ion s J r . .50 f 1 1 i e s i n

the centre of ~. Take a nontrivial element

Let V be the eigenspace for the eigenvalue lof )..(y).
y

is left invariant by Y~dThe space V
y

f O' We prove' now:

si n ce y i see nt ra 1 ' i n

There is a unique coset v +zy so that the affine subspace

is left invariant by y.

This foll~ws easily fram the fact that A(y) is semisimple and

hence l-A(y) is invertible on V/V.y
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By conjugating the group f O we may assume that z; O. The group

fO then also leaves invariant 'the affine space Ol(Vy )' It follows

that f O acts discontinuously and quasitransitively on ~ (V
y

).

We replace now f O by. a torsionfree subgroup of finite index.

The manifolds

are compact and have distinct dimensions. Since f o is the

fundamental group of both, the argument using the cohomological

dimension of f O produces a contradiction.

Proof of Corollary 1.5 :

We may assume that G ~ GL(V) is an algebraic group since the

result is clearly true ,of G is not algebraic. We have already

o

proved that r is virtually polycyclic. Let ~ be a torsionfree

soluble subgroup of finite index in f. ~ is an extension of an

-abelian kernel by A(~). We write A(~) for the Zariski closure
-..."

of A(~) in G. A(~) is either a torus in wh·ich case A(~) is

--abelian or contains unipotent elements. If A(~) contains uni-

potent elements then )..(~) is contained in a, parabolic P sub­

group of G (Proposition 2.2). P is an almost semidirect product~

P ; K x S where K is compact and S is a split extension

S;UJ4!R where U is uni potent of class < 2. We now use the

fact that the image of )..(~) in KIF (F = Kn S) is abelian.

o
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3. Unipotent simply transitive groups of affine Lorentz-motions

In this section we shall analyse unipotent groups of affine Lorentz-

motions that act simply transitivelyon affine space. We start

off by constructing. some examples.

Let n > 1 be an integer. We fix an n-l-dimensional real vector

space with basis W::: IR n- 1 • ·On the vector space

IRx wx:rn

we consider the quadratic form

q ( x, w, y) ::: 2xy + ww t

which is of signature (n,l). As in the introduction we define

o (n,l) ::: O(q,IR)

o (n-1) ::: {a: W + W I a
tis linear and 00 = EI}'n-

-- {(goE(n,l) W

1

t
) jgE O(n,l), W6 IR x W x IR} ,

Un(h,l) -

-v

En-1

o

I vEW} < O( n , 1 ) .

-v

o

o

1 - r t- 2A vv

A- 10' V t I AE IR*, vEW, 0' E 0( n- 1 ) }

>,.-1
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He re En-1 i 5 th e (n-1)x(n-1) identity matrix.

Un(n,1) is a maximal unipotent subgroup of O(n,1). P(n,1) is

a minimal parabolic subgroup of O(n,1). For u,V E W, r,s E IR

we introduce the following elements of E(n,1) which have their

linear· parts in Un(n,1).

1 -y - l vv t r2

0 E vt t
n-1 u

L(v;r,u,s): = E E(n,1)
0 0 1 s

0 0 ° 1

The following is a simple computation.

Lemma 3.1 :

Let W = rn n- 1 be an n-1 dimensiona.l real vector space,

U,UI,V,V I E W; r,s,rl,sl E IR. Then:

( i )

( i i )

L(v;r,u,s)-L(Y' ;rl,ul,sl) =

L(v+vl;r+r l - vu 1t - ~slvvt,U+Ul+SIV, 5+S I
),

-1 t 1 tL(v;r,u,s) = L(-v;-r-vu. +2sVV , -u+sv,-s)

(iii) [L(v;r,u,s), L(Y';rl,ul,sl)J

= L((1;v 1ut - vu,t + ~SVlv,t - !s'v-v t SIV-SV ' ,O).

We normalise commutators of elements g,h of a greup Gas:

-1 -1[g,h] = ghg h .

.
Lemma 3.1 will often be used without further mention ~n the proofs

to fellow.
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For elements w E Wand SEm we also define:

9 (s): ::=
W

1 2 t 1 2L(sw; - ~ s ww , ~ s w, 5).

We have defi ned gw(s) to satisfy:

0 -w 0 0

0 0
t

0w
9w(s ) :;;; e xp (5

0 0 0 1

0 0 0 0

This shows that the 9w(S) define a unipotent I-parameter sub­

group. We are ready to introduce our groups.

Definition 3.2

Le t W -- IR n - 1 b 1 d' . 1 te an" n- - lmenSlona vec or space.

a linear map

1JJ: W-+ W

satisfying 1JJ2 = 0 and an element

w E W.

~J e also fix

G(1JJ): = {L(1JJ(u);r,u,O) u E W, r E IR}

G(tjJ , w): = {G (tjJ ) , G(tjJ ) • 9w(s) J s E IR} .
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The following elementary proposition describes the group theoretic

structure of the G(~,w).

Proposition 3.3

Let W = IR n-1 be an n-1-dimensional real vector space, VJ: W -)0- W

a linear map with ~2 = 0 and w E W. Then we have:

( i ) G(~ ) and G(~,w) are uni potent subgroups of E(n,l).

( i i ) G(w ) i s no rma.l i n G(~,w)

( i i i ) The re i 5 an exact diagram of groups

1 ,"
~..-

8 1
o -)0- IR -)0- G(1JJ) -)0- W -)0- 0

J
G(1Jl , \'! )

1
IR

J
0

whe re 8 ( r) = L(O;r,O,O).

( i v) 8 (IR) i s central i n G(1J1,w).

The following explains why we have i ntroduced the G(w,w).

Proposition 3.4

Let W = ·IR n-1 be an n-1-dimensionan real vector space w: W -)0- W

a linear map with 1J12 = 0 and w E W. Then:

( i ) G(w ,w) ac t 5 5 i mp1Y t ra n5 i t i ve 1y 0 n Ol (IR x W x IR) .

(ii) every subgroup U of ~(n,l) with A(U) < Un(n,l) that
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acts simply transitivelyon ot(lR x W x IR) is equal to

one of the G($,w).

(iii) every unipotent subgroup of E(n,l) that acts simply

Pro 0 f:

transitivelyon cn(lR x W x lR)

a group G($,w).

is E(n,l) conjugate to

(i) Follows since G($,w) is transitive and the stabiliser of

(~) is trivial.

(ii) We only sketch a proof here. For a point P E m(lR x WxIR)

there is a unique y E U with

Writing down the conditions for the possible y to have a

fixed point, we arrive at the required result.

(iii) Any unipotent subgroup of. O(n,l) is conjugate to a sub­

group of Un{n,l).

The classification of the G{$,w) up to conjugacy in E{n,l)

is described by:

o

Proposition 3.5

Let W-;;: IR n-l be an n-l-dimensi onal real vector space $,$.: W -+ W

two linear maps with $2;;: $,2 ;;: 0 and w,w· E·W. Then the

following are equivalent:
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(i ) the re i 5 a 9 E E(n,l) with

-1 G(1jJI,W I
)9 G(W,w)g =

( i i ) the re i 5 a A E IR* and a a E 0(n-1) wi th

Wl AoW a -1 ).. 2wa t = w I= ,

Proof:

Observe that if h E Un(n,l)

element with' gh9- 1 E Un(n,l)

After this apply Lemma 3.6 .

is nontrivial and 9 E O(n,l) is an

then it follows that 9 E P(n,l).

o

Lemma 3.6 :

Let W = IR n-1 be an n-l-dimensiona.l real vector space 1jJ: W + W

a 1i ne a r map and w E W. Le t furthermore

-).. 1 -1 t-v - 2 ).. vv r

0
- 1 t .t

a A av u
9 = )..-10 0 s

0 0 0 1

be an element from P(n,l). Then:

Lemma' 3.6 is praved by a simple camputatian. Note that an endo­

morphism t!J: IR n-1 + IR n- 1 with t!J2 = 0 can by a conjugatian fram

O(n-1) be put inta the form
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° ~ 1

0 0...
0 ~k

0 0

o.....
o

wi th the 1~·I1 uniqu2ly determined up to order. This makes it

then easy to derive a normal form for the conjugacy classes of

the G(tlJ,w).

Ta classify the G(tlJ,w) up to isomorphism we ·introduce the Lie

algebras of these groups.

De f i ni ti 0 n 3. 7"0": .

Let .L be a field and let W = Ln- 1 be an n-l-dimensional

L-vectorspace. For an endomorphism tlJ: V + V and an element

w E V we introduce the following product .on the vectorspace

L x W x L

[(r,v,s), (rl,vl,s')] =

= (tlJ(vt)v t - tlJ(v)v,t - swv,t + s'wv t , stlJ(v') - s'tlJ(v),O).

We call the.so defined algebra "JL(tlJ,w).

The product , ] on ~~tlJ,w) is antisymmetric, it is a Lie

algebra structure if and only if the map
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w x W -+ L

-(u,v) -+ tk 2 (v)-v· t

is symmetrie. This is always so in the eases which interest

U5 he re (1JJ
2 ;;;; 0).

I f L;;;; IR a nd 1J;: W -+ W i 5 an end 0 mo r phi 5 m wi t h 1JJ 2 = 0 a n cl

if w E V then Oh.(lJI,w-) -is the Lie- algebra of G(1JJ,w). For

this eonsider the representation

8: t7lt( 1JJ , w) -+ End-(IR x W x IR x IR)

8: (r,u,s) -+

We have

-1JJ(U)-sw

o

o

o

r

u t

5

o

over a ny f i e 1d L t he a 1ge bras ">L(1JJ , w) e a n be e 1ass i f i e d up t 0

L-isomorphism. We give only a partial answer here.
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Definition 3.8

Let n > 1, k be integers with 0 < k < ~l For a field L- - 2

let Wk be a vectorspace of dimension n-1 with basis

Let ~k be the endomorphism üf Wk defined by

= e. ,
1

i.= 1, ... , k .

Für any o < k < n-1-2- we define the Lie-algebra,

for k -/. n-1
r -2- put:

It is easy to prove the following elassification result. See also

Proposition 6.2.

Proposition 3.9 :

Let L be a field and W = Ln- 1 an n-1-dimensional k-vector-

space. Let ~: W~ W be an endomorphism and w E W. Then the

Lie algebra ~0~'w) is isomorphie to exactly one üf the above

idefined ~ (n+l,k).
L

In table 1 we have eomputed a multiplieation table for the Lie

algebras
i

~IR(n+1,k). Proposition 3.9 and Proposition 3.4

then imply Theorem 1.8.
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4) Simply transitive groups of euclidean motions

We shall describe here the simply transitive groups of euclidean

motions in a way which will be convenient for us in the next

chapter.

Let V = IR n be a rea 1 vector space wi th basi s. On the chosen

basis we consider the quadratic form

2 2
q = xl + ... + xn

We wri te o(n) fo r i ts o-r t h0 gon a1 group. We let furthermore

~ ( n) = { (~ : t ) I 9 E O(n), v E V}

be the group of euclidean motions on O't(V) .

We shall now define some subgroups of ~:(n) which act simply

transitivelyon Ol(V).

Definition 4.1

Let 0< d< n> 1 be integers. We put

Vd = { ( Xl' . · . , xn) E V x 1 = ... =

Vd = {(x 1,···,xn ) E V xd+1 =

Xd = O},

= xn = O}.

e::: V
d

-+ (j (d) ..

be a continuous homomorphism with discrete kernel. We define the

group
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E(e:,d) = {

o

E

o

The set f ( e: "d) isa sub 9r 0 up 0 f E( n ) . Not e t hat f 0 r a n e: t 0

exist it is necessary that [~] ~ d. Here [x] is the biggest

integer smaller than the real number x.·

Proposition 4.1 :

Let 0.::.. d,d ' < n > 0 be integers.

(i) The groups E(E:,d) for homomorphisms

e:: Vd -+ .0 (d)

act simply transitivelyon cn(V).

( i i) I f E(E:, d) ,E(E:', d I) are t wog r 0 ups a t t ach e d t 0 h0 mo m0 r phi s ms

wi th discrete kernels:

E:: V
d

-+ O(d)

then E(E:,d) is E(n) conjugate to E(E:I]Ö I) i fand only if:

d = dl and 3 9 E 0 (d) .. hE O(n-d)

with -1gE:(u)g

The proof of Proposition 4.1 is easy. The following result shows

that the E(E:,d) are essentially a'll simply transitive subgroups

of E(n).



- 39 -

Proposition 4.2 :

Let n > 0 be an integer. Suppose that H.:. €(n) is a group

that acts simply transitivelyon affine space. Then there is an

o !5 d < n and a homomorphism with discrete kernel s: Vd + O(d)

so that H is conjugate in E(n) to E(e:,d).

To prove Proposition 4.2 we need:

Lemma 4.3 :

Let n..:. 0 be an integer. Suppose that H < [(n) is a compu-

tative group that acts simply transitivelyon affine space. Then

H ;;;; .'1E( n ) , t hat i s His t he f u11 9 r 0 up 0 f t ra ns 1a t ion s .

Proof:

We proceed by induction on n. The result ;s clear for n;;;; 1.

Suppose now that n > 2. The group H acts by conjugation on

j E'( n ) and hence on V = VE(n)' It leaves i nva ri ant the spaces

\10 and lttl-.L ·Note that since H i s commutative I H
H H

tr;vi a lly
0

acts - on lJ H'

"

The· group A(H) is a commutative connected subgroup of 0 (n),

hen·ce we have

dim(A(H)) < [~]

-I t follows that

0-..1.
dirn ("H)'; n.
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The stabilizer

acts simply transitivelyon

induction.

The result fo1lows by

o

Proof of Proposition 4.Z :

The group H acts by conjugation on the space of all translations

:tE( n) , a nd he nce 0 n V = IIE( n ) . I t - 1e ave s t he s pace s \1 HO a nd

"H·.l. invariant. We put

H
1

acts simp1y transitivelyon 0\. (tJ~~). By a theorem of

Aus1ander [ 1] H
1

is a connected soluble group. Hence

:\(H 1 ) .::.O(n) is commutative. The kernel

HZ = ker(:\: H1 -+ O(n))

i s subgroup of translations i n V" oL hence HZ i s dis c re te .H '

HZ acts by conjugation on the discrete group HZ' Since :\(H 1)

i s compact H1 has to centralize HZ' For a gi ve n gEH 1 we

consider the map

[g, ]: H
1

-+ H
2

[ g, ]: h -+ [g, h ] .

The commutator subgroup of H
1

being central, the map [g, ]

is a homomorphism of the connected group H, into the discrete

group H2. It follows that H1 is commutative. By Lemma 4.3
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We consider the

-+ o(n)

and

1'1'0 UD.\..The image of E stabilizes v H and leaves H pointwise

lT o
fixed. Finally we conjugate the pai,r of subspaces H

o~J. by an orthogonal matri.x into the standard pair.
o

The above shows that ·the groups H < E(n) that act simply transi­

tively on affine space are all split extensions

a b
~-+IR -+H-+IR +0

wi th a+b = n and !Rb acts orthogona lly on IR a·. Conversely, i t

is clear that every s.plit extension of this type can be embedded

into E(n) as a simply transitive group of euclidean motions-.
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5) Nonunipotent simply transitive groups of affine Lorentz­

motions

Here we shall describe the simply transitive groups of affine

Lorentz-motions which contain nonunipotent elements. Ta do this

we introduce the following subgroups of P0~,1). Here W= rn n- 1

is an (n~1)-dimensional real vector space with chosen basis.

0(n,1) = {(: : : ) I A E IR* , a E q (n-1) ~
o 0 >.. -1

~(n,l) = {

Proposi ti on 5.1 :

1

o

o

-v

(j

o

jo E 0(n-1), V E W}.

Le t n > 1 be an i nte ge r.

( i ) Le t H 2. E(n,1) be a subgroup that acts simply transitively

on affine space. Then H i s E( n, 1) C 0 nj u9a te to a group

H1 wi th i\(H 1) 2. P(n,1).

( i i ) Le t H < E(n,1) be a subgroup that acts simply transitively

on affine space. If H s,atisfies >"(H) 2. P(n,1), then
'"

either i\(H) 2. E(n,1) or i\(H) is P(n,1) conjugate to

a subgroup of 0(n,1).
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Proof:

(i) Since H is a soluble group the Zariski closure >"(H) of

>"(H) is also soluble. It is then conjugate to a subgroup

of the minimal parabolic P(n,l) of O(n,l).

( i i ) Le t U be the uni po te nt radical of the Zariski cl 0 sure of

H. By [ 1 ] U also ac ts simply transi ti vely on a f fi ne space.

So by propos i ti on 3.4 i t i s eq ua 1 to a G(1JJ,w). H normalizes

U and hence by lemma 3.6 i t follows th a t H < ((n)l), unless

1f! - 0 and w = o. This being the case >.. ( H) i s a to rus

and as such P(n,l) -conjugate ta a subgroup of O(n,l).

o

We shall now seperately discuss the two cases (>"(H) < E(n,l) or

O(n,l)) which have came up in Proposition 5.1.
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A) Groups with A(H) f D(n,l)

We keep here the conventions of section 4 concerning the coordi­

nate subspaces Wd and Wd of the vectorspace W;;; mn-l.

Oe fi ni ti 0 n 5. 2

Let 0< d< n-l > 0 be integers, and W;;;IR n- l areal vector-

space. Let

n: IR x Wd x IR -+- 0 ( d )

be a homomorphism so that ·n restricted to (O,Wd,O) 'has discrete

kernel. Oefi ne

1 0 0 0 r

0 n(r,w,s) 0 0 v't,
Ir, SE IR , WE Wd ' VE Wd }.Dl(d,h) ;;; { t

0 0 E 0 w

0 0 0 1 s

0 0 0 0 1

Let 0.::. d 2 .::. d 1 < n- 1 > 1 bei nt e ger s, and W;;; IR n- 1 are a1

vectorspace. Let

be a homomorphism with discrete ,kernel so that the eigenspace for

the trivial character of the torus
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o \
)

I. W E Wd } < 0 (n - 1 )
E 1

is Wd . Let furthermore
2

T: Wd -)- IR
2

be a homomorphism. Define

eT((w2 ,W 1 )} 0 0 0 0 r

0 0 0 vt

0
~ (w 1 )

0 0 tw2

D2(dl,~,T) ={ 0 0 0 1 0
t

Ir, sr: ~, W1EW d ' (w2 ' W1)EW d 'w1

0 0 0 0 e- T( (w2 ' w1)) s
d2 1 2

vEW } .

0 0 0 0 0 1

The following is the reason for the above definitions.
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Pro pos i ti on 5. 3

Let n > 1 be an integer.

(i) The sets D1(d,n) and D2(dl,~,.r) attached to data d,n

as in definition 5.2 are subgroups of E(n,l)

that act simply transitivelyon n+l-dimensional affine spaee.

(ii) Let n> 1 be an integer. Let H ~ E(n,l) be a subgroup

that aets simply transitivelyon affine spaee and that

satisfies A(H) ~ D(n,l). Then H is f(n,l)-eonjugate to

one of th~ groups D1(d,n) or D2(dl'~'~) witn appropriate

da ta .

Proof:

The group H may be parametrized as

eT(r,w,s) 0 0 r

0 o(r,w,s) 0
tw

H = { !r,s EIR, wE W} ,
0 0 e-T(r,w,s) s

0 ° ° 1

wi th funeti ons

T:IRX WxIR -)- IR

0: R x W x IR -)- 0 (n - 1 ) .

~,a have to satisfy certain functional equations coming from the

fact that" H is a group. These equations together with the fixed

point freeness of H imply ~(r,w,s) ~ T(O,wo(r,O,s),O). This
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implies that H i s the product of the following two of i ts ~"UPs:

1 0 0 r

{ 0 a(r,O~s) 0 0

JH
1

= Ir, s EIR
0 0 1 s

0 0 0 1

{
o

o

o

o

a CO, w,0)

o
o

o
o

-T(O,W,O)
e

o
°
1

Iw E wj.

H2 acts as a simply transitive group of euclidean motions on

0\(0 x W x 0).::. O\(IRx W x IR). We use section 4 to find d and

the homomorphism E with discrete kernel.

Assume then T(O,W,O) = 0 for all w E W. The computation of the

commutators [H 1,H Z] shows that H- has to conjugate to a group

of type D1(d,n).

If T.(O,W.,O)! 0 for some w E W, the computation of the commu-

tators [H
1

,H Z] shows that o(r,O,s) = 1 for all r,s E IR. After

this the same analysis of commutators shows' that H is conjugate

to a group of type DZ(dl,~,T). Note that there' is an element

w E W so that o(O,w,O) - En- 1 is invertible on' the orthogonal

complement of the eigenspace of the trivial character' of the torus

{o(O,w,O) [ W E wJ.
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Note that there is a certain obvious overlap amongst the groups of

type D1(d,n) and D2(dl,~,l). We have not included the classi­

fication of the E(n,l) conjugacy classes of the above groups.

This can be done by elementary means but is rather messy.and

includes the introduction of finer invariants (such as the eigen­

spaces) of the homomorphisms ~ and n,T.

Note that the Lie groups H of type D1(d,n) are all split

extensions

o -+ IR a -+ H -+ IRb -+ 1

such that the dimension of the connected component

where b > 2

s: IRb
-+ 0 (a)

acts on IR a through a homomorphism

nf the kernel of ~ does not exceed 2. The groups H of type

D2 (d 1 ,lJ ,T) are split extension

a bo -+ IR -+ H -+ IR -+ 1

wher e a > 2 a nd IR b a c t s 0 n IR a t hr 0 u9h a h0 mo mo r phi 5 m

s: IR b -+ IR* x 0 (a- 2) -+ GLa ( IP. ) where IR * a c t s tri'via 11y a par t f rom

'1 - di "m'e ns fon ale rgen s pace s "f 0r t he f den t i cale hara c te r' a nd i t s i nver 5 e .

All these groups can"easily be classified up to isomorphism.
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B) Groups with ;\(H) ~ ((n,l)

We introduce the following subspaces of our real vectorspace

lR x W x IR:

w = {( r , 0 , 0 ) IrE IR ~ , w = {( r , w , 0 ) 1 r E IR, w E W},

together with the groups:

.1\ = {G:t) I v E W },

t

H = {(g v )lgEE(n,l), v E ~}.
01-

We start o,ff with a group H< E(n,l) that acts simply transiti'.vely

on affine space and satisfies ;\(H) ~ E(n,l). Note that the groups

HO = H n R is normal in Hand satisfies H/H O :: IR .

We write H for the Zariski-closure of Hand UH for its uni­

potent radical. By a theorem of Auslander UH also acts simply

transitivelyon affine space. Since A(U
Il

) < Un(n,l) by section

3 we find UH = G(~H,wH) for appropriate $H and wH' The

following gives a normal form for the subgroups HO'::' H which

are of codimension 1 :
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Pro,position 5.4 :

Let H be a group with H ~ E(n,l) that acts simply transitively

on affine space and satisfies A(H) < t(n,l). H can be conjugated

by an element of E(n,l) so that HO = H n R is of one of the

following shapes:

( a )

1 0 - tP( w2 ' w3 ) 0 1 t-ztP(w 2 ,w 3 )-tP(w 2 ,w 3 ) r

0 €(w 3 ) 0 0 0 tw1

0 0 E 0 t wt
d1

{ w(w Z,w 3 ) 2 W1EW ,

}0 0 0 E 0 t I (w2 'w3)EW d 'w3 1
0 0 0 0 1 0 w EW d '

~

0 0 0 0 0 1 rEm

He re E:: Wd -+ 0 (d 1 ) i s a homomorphism with discrete kernel and
Z ot

i 5 a homomorphism with 1J12 0 and for1J1: Wd -+W d nW· =
1 1

appropriate i ntegers d
1

,d
2

with d 1 .::. d2 ·

(b )

1 0 0 0 r
t

0 E:(w 2 ,r) 0 0 w1

{ 0 0 E 0 t
IW1EW d '

d 1
w

2
W

2
EW ,rElR}

1
0 0 0 1 0

0 0 0 0 1

Here
d1€: IR x W -+ 0 (d 1 ) is a homomorphism and is an

appropriate integer.
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Proof:
o

We define H1 = (H n G(~H))' H1 is a connected group hence

there is a subvectorspace V <:W so that

1 -~ (v ) 1 t
-2~(v)~(v) r

0 E ~(v)t
Hl~ = { ! r(IR , v E Vj

0 0 1 0
.I

0 0 0 1

The group

acts simply transitivelyon Ot(VJ. n~) and satisfies

An a na1ys isa na log 0 us tothat ins e c t ion 3 t 0 9ett her wi t h. s 0 me

commutator computations finishes the result.
o

Note tha t 9r 0 ups 0 f typ e (a), (b) i n t he abo ve pro pos i t ion all ac t

simply transitivelyon the affine subspace O\(~).

Proof of Theorem 1.9 :

This result can now be read of from the normal forms in Proposition

5.3 and 5.4. Under (ii) we have given an internal description of

the groups D1(d,n). (iii) corr·esponds to the groups D2(d,lJ,T).

(iv), (v)' corresponds to the cases (a), (b) in Proposition 5.4

o

respectively. Here a commutator computation shows how the quotient

H/H O = IR acts on Ho'
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6) Groups acting discontinuously and quasitransitivelyon

Lorentz space

We shall prove here our"results on the abstract commensurability

cl"asses" of groups that act discontinuously and quasitransitively

on Lorentz space. The theorem of Fried and Goldman (1.5) reduces

this p"roblem to the "study of the abstract commensurability

classes of lattices in groups of affine Lorentz transformations

that act simply transitivelyon affine space.

We first treat the case of uni"potent groups. Let U < E(n,l) be

a unipotent group acting simply transitivelyon affine space and

let U be its Lie algebra. Let r < U be a subgroup that acts

discontinuously and quasitransitivelyon affine space. We write

for the Malcev completion of r. M~(r) can be described as the

radicable hull of r, [16], [24]. We put

vt{"~(r) is a" rational Lie subalgebra of 1.A.. with the property that

the map

is an isomorphism. That is ~~(r) is a ~-form of the real Lie

algebra u..
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Given a Lie algebra vtt over ~
,

and an isomorphism of Lie algebras

we may construct a group r < U in the following way .. Choose,

as is always possible, a Tl. -lattice ·vU
ZZ

.::. c.M. invariant under

the brack~t and define

r = <exp(6( vtl ZZ) >

to be the group generated' by the set exp(6( vUTl.)). r acts dis­

continuously and quasitransitivelyon affine space and has the

property vt{~(f) = 8(vC(). The set exp(8( v41 ?l)) is enclosed as

between the groups f 1 ,f 2 that act discontinuously and quasitransi­

tively on affine space and sa'tisfy If2/f11 < 00, [19].

It is well known that two torsionfree finitely generated nilpotent

groups are abstractly commensurable if and only if the Lie algebras

vi(Q( r 1), vtt m( f 1 ) 0 f t he; r r a· t ion a1 r~ alee v e0 mp1e t ion s are

isomorphie, [13]. So, to deseribe the abstract commensurability

elasses of the groups f we have to find the ~-forms of the real

Lie algebras ~ l(n+l,k) and ~2(n+l,k). To do this we introduce

a class of Lie algebras whieh might be of independent interest.
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Oe fi ni ti 0 n 6. 1

Let L be a field and let k,m> 0 be integers. Let

E == Lk,

be L-vectorspaces of the indicated'dimensions. We wri te e.,f.,g.
111

for the canonical 'basis elements of E,F,G respectively and

define the linear isomorphism

F -+ E

Put

W = E EB F EB G.

Le t

f. == e.,
1 1

= 1,..., k .

be a linear map.

W = E tB F c9 G +. L

Let furthermore S E Sym k (L) be a symmetri c kxk ma tri x wi th

entries in Land det(S) f O. On the L' vectorspace of

dimension 2k+m+2

L tB WEB L

we define the product.

[(r,u,s),(r' ,ur ,s·) ,] er

= (f' set fSe 1t + Slcp(U) - scp(u'), sl-F
'"

- S fl,O)

wh e re r , s , r I ,s I E L, U = e+f +g, U I = e I +f I +9 lEW .
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We wr i te C? L( k , m, <p , S ) f 0 r t he ve c tor s pace L tB W IB L wi t h t he

product [ , ].

~(k,m,(j),S) is always a nilpotent Lie algebra of nilpotency

class ~ 3. Writing z = (1.,0,0) and T = (0,0,1), we find the

following defining relations for '?L(k,m.<p,(sij))'

[T ,ei] = -<PE(e i )-z 1, ... , k ,=
[T,f i ] = -e.-<PF(f. )-z i 1, ... ,k,1 1 =
[ T , g. ] = -'PG(gi )-z 1, ... ,m,1 =

(11) [e.,e.] = 0 [f.,f.] = ° i , j = 1, ... ,k,
1 J 1 J

[e.,g.] = 0 [f.,g.] = 0 i=l, ... ,k;j = 1 , ... , m,
1 J 1 J

[g.,g.] = 0 i , j = 1, ... ,m,
1 J

[e.,f.] = s. . • z i ,j = 1, ... , k .
1 J 1 J

No te th at

where ~J$,m) is one of the Lie algebras defined in section 3

and k,m,~ are appropriately chosen. Similarly

':J... ~,2(n+l,k,S) = C1~(k,n-1-2k'<Pl,2'S)

for appropriate ~1,2'
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Proposition 6.2

Let L be a field and let O)L(k,m,r.p,5) and GjL.,(k' ,mi ,r.pl ,SI) be

two of the Lie algebras defined in 6.1. Then the following are

equivalent:

(i) O)L(k,m,r.p,S) is isomorphie to O)L(kl,ml,r.pI,SI).

(ii) k = k l
, m = ml , and there are XE GLk(L) and

and 0(. E L' {O} so that:

Y E GL (L),m

51 = o:.X 5 Xt

F.'roof:

The proof is obtained by writing down a.linear isomorphism e

on the natural basis given in definition 6.1. eis. a Lie algebra

isomorphism if certain relations between the entries of 8 hold.

An elementary analysis of these relations implies proposition 6.2.

Cl

Proposition 6.2 can be used to c,lassify the Lie algebras

0') L( k , m, r.p , S ) . F0 r t hel i nearm ap r.p weh ave '0 nly, t 0 C0 ns i der t he

two possibilities r.p = 0, r.pn = O. Next, we have to classify

symmetrie nondegenerate kxk matriees 5 up to the equivalence

relation:
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t *SI :::: a.-XSX with a. E L , XE GLk(L).

Over the field L of real numbers Sand SI are equivalent if

they have the same or opposite signatures. Two symmetrie matriees

S,SIE Symk(~) can only be equivalent over L:::: ~ if they have

the same or o~posite signatures .. We note here the following

obvious consequence of the theorem of Hasse and Minkowski

Proposi ti on 6.3

Let "k > 1 be an integer and let S,SI E Symk(~) be positive

definite symmetrie matriees. The following are equivalent

( i) S 1 ~ 5 0 ve r ~,

(ii) :3 aE~ with a. > 0 sueh that

(ak.det S)(det 5 1 )-1 E ~*2

k(k-1)
C (S) _ ( de t ( S ) ,a ) (Cl ,a ):'"""" Z

p p p

and

for all primes.p.

(a,b) are the usual Hasse symbols at p.
p
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Proposition'6.3

Let K < L be fields. Let ~L(k,m,cp,S) be a Lie algebra as

defined in 6.1. Let 'j(.::, ~L(k,m,cp,S) be a K'-...Lie algebra so

that the natural map

is an isomorphism. Then there is a K - linear map

SI E Symk(K) so that

'J{ - l}K(k,m,cpl,SI)

as K - Lie algebras.

Proof:

<pI and an

The result is clear for k = O. So we assurne that k > 1. We

choose in ~L(k,m,~,S) its natural basis z,e.,f.,g.,T which
1 1 1

satisfy the relations (*). We shall construct now in '"j{ a

K-basis which also satisfies our relations (*).

We ha ve

["1(,[~, ')<..] = K·z

'"with z = nz for same n E L. This fallows since the Lie algebra

~(k,m,cp,S) has a similar property. Furthermore the commutator

algebra

has dimension k+1 and;s contained;n L.<z,e
1

, .•• ,e k>. We

choase e. basis of The elements e·1
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[e.,e.] :: 0 for i,j:: 1, ... ,k since
1 J

[['X,~], [r;)t,'XJ] =.0.

The ce nte r 0 f t heL i e a.1 ge b r a 'i( / [ [~ , -X ] , ')<] ha s di me ns ion k+m

and its preimage in "J.( is contai,ned.in L.<z,e 1 , ... ,e k ,gl, ... ,9k>'

We add e~lements to obtai n a basi s·:

'" '" '"z,e 1,·· .,e k ,gl'··· ,9k

of this space.

We choose

C1ear1y the '" '"e . , 9 .
1 J

all commute with each other.

'" '"T :: V + TI 0T0

f 1
'":: vI + TI 1T

•

'" '"f
k

:: v
k + TIkT

'"with TI i E L~ TI O f 0, vi E L <z,e 1 , ... ,e k ,91, ... ,9 m> so that

:z,e, ... ,ek ,f
1

, ... ,fk ,9i"" ,9m,T' is a basis of ')(.

By a simple computation we find

'" '" -1 '" '" -1 '" '"[f.,f.] :: TI.TI
O

([T,f.]) - TI.TI
O

([-r,f.]).
1 J 1 1 J J

This shows that the [i,f 1 ], . .. ,[i,fk ] are L-linearly independent·

and that for i = 1, ... ,k.

We change our basis so that TI
1

:: :: TI
k

:: 0 and so that

(+ )

with Ai E K.

[i,f.] = -e. + A.Z
1 1 1

i:: 1, ... ,k.
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'" '"We now show how to e nf 0 r ce [ f . , f .] = 0 f 0 r i, j, = 1, ... , k .
1 J

Consider the follow;ng bilinear-map which is induced by the

commutator

He re '"E = K <z,e1, ... ,e k>.

B ;s nondegenerate, since- this ;s true oVer L. It follows that

Note that a s.imple comp.utation using the Jacob;

by elements from E so that they satisfywe can change the

[f-,f.] = 0 for
1 J

(~) ;s satisf;ed.

f.
1

i,j = l, ... ,k. We then change the '"e.
1

so th at

identity shows that the matrix

[e.,f.] =
1 J

is symmetrie.

( s .. )
1 J

'" '"s .. Z
1 J

defi ned by

o



- 61 -

Proof of Theorem 1.10, 1.11, 1.14, 1.17

Let r < E(n,l) be a subgroup that acts discontinuously and

quasitransitivelyon affine space.' Let H be its kristal"lographic

hull (Theorem 1.5). H ~ E(n,l) acts simply transitivelyon

affine space and ~ = H.f"\ r is of finite index in r. H can

be conjugated to one of the types of groups deseribed in seetions

3 and 5.

A) H is uni potent

By section 3 H is eonjugate to G(IJI,w,) for suitable IJI and

w. The Lie algebra .Am(~) i s isomorphie over m to same Lie

algebra ~m(k,m,cp,S). I t i s a simple ma t te r to see that 6

has tobe ni lpotent of ni 1potency cl a,s s < 3 and h as to satisfy ( i i )

of Theorem 1.11. In Theorem 1.14 we have for every isomorphism

e 1a-s-s' ,0 f' OJ m('k , m, cp , 5) co n5 t ru e t~ d a par ti cu 1ar ly nie e 9 ro. uR

I'; (n+I"k,~) that aels diseontinuous'ly and quasitransiti,vel'y ,on

a f f i ne s pa ce a nd s a t f s f i e s v4'~ (r i ( n+1 , k ,~) ":: ~ ~ ( k , m, cp , 5 ) • I t ; 5

elear from the results of this seetion that Theorem 1.14 is valid.

B) H satisfies r(H) ~ D(nt11

We eonjugate H so that H::; D1(d,n) or D2 (d 1 ,p,T). The group

of all translations J< E(n,l) is the unipotent radieal of H.

~ * A

By [2] >-(~) is diserete in ((n,l) or IR x ~(n,l). In the

first ease ~ is virtually abelian. In the seeond the image of,

A(~) in rn* has to be diserete and hence eyelie. So in this

ca 5 e ~ i s vi r t uall y ab e 1i a n by cy c 1,i ~ ., This pro ve s The 0 rem 1. 10 .

In case ~ is not virtually abelian take a subgroup ~O ~ 6

of finite index with' >-(6 0 ) n t(n,l) ~ <1>. 6 0 has 6 0 n ~ as

abelian normal subgroup. It is elear that a generator of the
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cyclic group 6 0/ß O n 0 acts by a Lorentz type matrix on the

discrete group ß O n J"~ j. This proves Theore"m 1.15 (i). It

iso b vi 0 us t hat e very 9rau p 0 f t he typ e des c r i b" e d i n (i i) isa

lattice in a simply transitive group H < E(n,l) with

A(H) 2D(n,1).

C) H satisfies A(H) 2 E(n,l)

In this case [2,,] implies that r is v.irtually nilpotent.
o



[L,fj.]

:::

:::

:::

;t.,l(n+l,k)

o

o

- e·
t
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Table 1

.:z:.2(n+1,k)

o

- e·
~

fo r

all

1.:: i-:5.. k

[e.,e.] :::
1 J o o all i, j

[e.,f.] = o..• l; o..• l; 1 < } < k1 J 1 J 1 J -

[f.,f.J ::: 0 0 1 < i , j < k .. 1 J -

[l; ,ei] ::: 0 0 all i

[',f.] :::
}

ö.. =
1 J

o

fo r

for

o

::: j

f j

1 < j. < k.
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