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1) Introduction

Let V be a real vectorspace of finite dimension n. MWe write
o (V) for the affine space associated to V and w&Fff(V) for
the group of affine motions on oy{V). Choosing a basis in V we

may make the following identifications:
n t n
ot (R") ={(V)|v€IR}
1
n g "t- n
AFf(R) = { ]gEGLn(]R),weIR}
0 1

The action of sFPff(mn) on 01(Rn) is then given by the usual

t

matrix product. A stands for the transpose of a matrix A.

A subgroup T < Aff(V) is said to act discontinuously on o (V)

if for every compact set K < o&(V) the set
{y e | YK n K # 9}

is finite. A group which acts discontinuously is discrete in

SAff(V), but the converse does not hold in general.

The group T < WAff(V) 1is said to act quasitransitively on (V),

if there is a compact set K < ogV) so that

(V) = U y-K.
YET

The simplest examples of groups that act discontinuously and quasi-

transitively on oeot(V) are

1 W
{( ) | v e q}
0 1



where Q iIRn is a full lattice. It is easy to see that a-group
r < wff(v) that acts discontinuously and quasitransitively on
(V) 1is finitely generated. The following is a long standing

problem:

Conjecture 1.1 .
Let V be a finite dimensional real vectorspace and T < SARFF(V)

a subgroup which acts discontihuous]y-and guasitransitively on

ot(V). Then T is virtually polycyclic.

If ® 1is a property of groups, then the group G 1is called virtually
& if G has a subgroup of finite index satisfying ® . A

group G 1is called polycyclic if it has a series of subgroups:

<l> = G0 9 Glé QGm = G

so that Gi+1/Gi is cyclic for all 0 < i < -1,

Originally conjecture 1.1 was posed even without the assumption
that T acts quasitransitively [ 18]. In [ 17 ] the second author
gave a. counterexample to this stronger conjecture. Conjecture 1.1
has been solved affirmatively in case the dimension of V s

1,2,3, see [9].

Let T < Wff(V) be a subgroup that acts discontinuously, quasi-
transitively and without fixed points on _ou(V). The latter means
YyP =P for y €T and P € oa(V) implies vy = 1. In this case

the set of orbits

pNou(v)

inherits from o (V) the structure of a complete, affinely flat



cdmpact manifold. It is easy to see that every such ménifo]d
arises as such a quotient. By a theorem of Selberg every finitely
generated linear group contains a torsionfree subgroup of finite
index. It follows that conjecture 1.1 can be given the equivalent

form:

Conjecture 1.1°'

Let M be a complete, affinely f]at,compact manifold. Then its

fundamental group ﬂl(M) is virtually polycyclic.
Given a finite dimensional vectorspace V we denote by

At AFF(V) > GL(V)

the canonical homomorphism which assigns to an affine motion its
linear part. The kernel of X consists of the pure translations.

In coordinates A is given by:

g Wt
A ( ) — g.
0 1

For a subgroup T <Aff(V) we introduce its group of translations:

1 wt ' 1 vt
3‘F=rn{ lw € V1, UF={veV|( )er}
0 1 0 1 _

Definition 1.2

Let V be a finite dimensional real vectorspace and G < GL(V)
a closed subgroup with finitely many connected components. A group

r < v#ff(V) s called G-linear if X(I') < G.

The following are important special cases of the above concept.

Let V have dimension n, = take a basis, and write O(n) for the



orthogonal group of the quadratic form

2 2
X] e Xy
on the chosen basis. The G = 0O(n)-linear groups are the groups

of euclidean motions. The orthogonal group of the quadratic form
, 2 2
2x1xn_1 ToXp ot oot X s

which is of signature (n-1,1) is denoted by {(n-1,1). The

G = O(n-1,1)-linear groups are the groups of Lorentz-motions.

Let G < GL(V) be a closed subgroup. The real rank of G 1is

denoted by
rHRG

This is the maximal dimension of a subgroup of G isomorphic to

an R-split torus, that is '(HQ*)d. See Helgason [ 14] for the

details in the theory of Lie groups. We prove here:

Theorem 1.3
Let V be a finite dimensional real vectorspace. Let G < GL(V)

be a closed subgroup with finitely many connected components which
is reductive and satisfies rkHQG < 1. ‘Then- any G-linear subgroup
r < WHff(V) which acts discontinuously and quasitransitively on

(V) is virtually polycyclic.

Theorem 1.3 has two predecessors. If G = K < GL(V) 1is compact,

that is rka = 0 then a G-linear group is conjugate to an
0 (n)-linear group. The theorem of Bieberbach [4] may be applied

and proves that T is even virtually abelian. If T is a group



of Lorentz-motions, that is A(T) <

0(n-1,1), (n= dimg V), then

R
Goldman and Kamishima [ 11] have proved the above result. Our
proof is similar to that of Goldman and Kamishima. We use induc-
tion on the dimension of V. We distinguish the - cases that
X(T) 1is discrete or not. In the first instance we use the same
cohomological argument as [11]. In the second case our argument

differs from that in [11]. We use a general description of the

‘closed subgroups of the reductive groups of real rank 1.

We mention that a reductive real group of rank 1 is isogenous

to one of the following types.

1) R* x K, K compact
2) 0{(m,1) x K , K compact, m > 1
3) U(m,1l) x K , K compact, m > 1
4) Sp(m,1l) x K, K compact, m > 1
5) F4H x K, K compact.

We use here the terminology of Helgason [14]. The symbol x
stands for almost direct product. 1If the group G mentioned in
theorem 1.3 is even semisimple then it is Zariski-closed. If
nott?%r is isogenuous to R* x K where K is compact. In the
latter case Lemma 2.4 implies the statement of thecrem 1.3.

Hence we can, without loss of generality, assume that G is an

algebraic subgroup of GL{(V). Com v

We proceed by investigating the following a bit vaguely stated

propolem,



Problem 1.4

What can one say about the isomorphism and conjugacy classes of
virtually polycyclic groups that act discontinuously and quasi-

transitively on affine spaces?

The following is easily deduced from theorem 1.3 . It shows that
the structure of the virtually polycyclic groups arising in

theorem 1.3 is quite restricted.

Corollary 1.5

Let V be a finite dimensional real vector space. Let

G < GL(V) be a closed subgroup with finitely many connected
components which is reductive and satisfies rkIRG < 1. Then any .
G-Tinear subgroup T f_c@ff(V) which acts discontinuously and

quasitransitively on ou(V) has a series of subgroups

<l><Tly4ar,er,Q@r,aqr, =7

2 3 4

with

(1) Ty is abelian,

(11) 1‘1/1“0 is nilpotent of class < 2,
(111) /Ty s abelian, |

(iv) T3/T, s abelian,

(v) Iﬁ/r3 is finite.

Note that any subgroup of a virtually polycyclic group is finitely
generated, so that we have a little more information about the
subguotients occurring in Corollary 1.5.

The main tool in the finer investigation of problem 1.4 is a

theorem proved by Fried and Goldman [ 9 ].



Theorem 1.5

Let V be a finite dimensional real vectorspace and G < GL(V) a
Zariski closed suhgroup. Let

I < Aff(V) be a G-linear virtually polycyclic group that acts dis-
continuously and quasitransitively on e@(V). Then there is a

subgroup H < Wff(V) which is G-linear with:

(i) H acts simply transitively on o (V)
(1) HnNnT has finite index in T
(iii) HNnT dis a lattice in H, di.e. HNT 1is discrete and

cocompact in H.

Theorem 1.5 splits Problem 1.4 virtually into two seperate questions.

Problem 1.4

Let V be a finite dimensional vectorspace G < GL(V) a closed

subgroup with finitely many connected components.

(i) Classify the subgroups H < V&ff(V) which are G-linear and
act simply transitively on &(V).

(ii) For each group which occurs in (i) classify the lattices in H.

Both parts are usually very difficult. A guiding line is given by
the Bieberbach theorems (G = orthogonal group). Of course any

group H < Aff(V) that acts simply transitively on (V) 1is a



connected, simply connected Lie-subgroup of @ff(V). Auslander [1]
has furthermore shown. that H wmust be soluble. At the moment
there is no soluble connected simply connected group which is known
not to act simply transitively on some affine space. The first

. stages of
part of problem 1.4' can be put in/increasing difficulty. One

might ask for a classification of the groups up to isomorphism or

up to conjugacy in Wff(V).

Sections 3,4,5,6 of our paper contain a treatment of problem 1.4'
.in case of Lorentz-motions that is G =0(n-1,1). Our classifica-
tions contain the results of Auslander and Markus (3] (n = 3) and
Fried [10 ) (n = 4) as special cases.

We snall describe our results now in rore detail. 'For this let

R h-l be an (n-1)-dimensional vectorspace with.basis. On the

W =

" vactorspace of dimension n+l
R x W x IR

we consider the quadratic form

q(x,v,y) = 2xy + vyt

of signature (n,1). The group:
t

g W
E(n,1) = {(0 l ) | g € 0(q,R), w-€IR x W x R}

is called the group of affine Lorentz-motions. QO(q,R) is the

real orthogonal group of the quadratic form gq.



First of all we describe our classification of the isomorphism
types of unipotent subgroups U < E(n,1) which act simply transi-
tively on affine space. For each dimension tnase groups fall 1nto
f{nite]y many 1somorphism'typesf We shall givé presentatiéns

for the Lie alg2bras of the possible V.

Definition 1.7

n-1
2

space of dimension n+l with basis

Let n>1, 0 <k <

be integers. Let U be a real vector-

g!elat--)ek)fls-o-;fk,82k+1,.-.,en_1,"f

On 1{‘we define the structure of Lie algebras 1.1(n+1,k) by
the multiplication tables in table 1. il(n+1,k) is defined for
any 0 <k < 0L wf -1k for ko2 L we write LM(nvlk)

for the connected, simply connected Lie group with Lie algebra

Y (n+1,k).

The Lie algebras iﬁ(n+1,k) are all nilpotent of nilpotency

class < 3. They are mutually nonisomorphic.

Theorem 1.8

Let n > 1 be an integer and H a connected, simply connected
nilpotent Lie-group of dimension n+l. Then the following two

statements are equivalent.

R \
(i) There is a subgroup U < E(n,l) which acts simply transitive-

ly on affine space and is isomorphic to H

(i) H ds isomorphic to one of the L' (n+l,k).



This result is proved in section 3. We also give a set of repre-
sentatives for the E(n,l1) conjugacy classes of the simply transi-
tive unipotent subgroups H < E(n,1).

The case of a general group H < E(n,1) acting simply transitively
is treated in section 4. Such a group is necessarily connected,

simply connected and soluble. In section 4 we give a detailed
description of these groups which implies the following result.

Theorem 1.9

Let n > 1 be an integer and H < E{(n,1) a subgroup that acts
simply transitively on affine space. Then H 1is of one of the

following types

(1) H dis unipotent,

(11} H is a split extension R® » IRb where at+b = n+l and

mb acts orthogonally on Rr®

(i1i) H is a split extension R® >4 mb where a+b = nt+tl and

a > 2, and mb acts through a homomorphism

b

R® » R* x O (a-2) » GL,(R)

a

on IR", where R* acts trivially up to one dimensional eigen-

spaces for the identical character and its inverse.
(iv) H 1is a sequence of split extensions
H = (H1 b H2) < H3.

-} _ b _ _
H1 = R™, H2 = IR™ , H3 = R and a+b+l = n+l. Here H1

is normal in H and H acts orthogonally on Hl' The group

H3 acts trivially on the quotient (H1>4 H2)/H1.
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(v) H is.a sequence of split extensions

Ho= ((HyxHy) = Hy) % Hy,

H1 = Rr® , H2 is an unipotent group with at most one dimen-
sional commutator subgroup and of dimension b, H3 =" R,
H4 = R and a+b+c+l = n+l. Here H1 and H1><H2 are

normal in H and H acts orthogonally on H1 and H2.

H also normalizes H2 and H4 acts trivially on

3
((HpxHy)d Hg)/H xH,.

In fact it is clear from section 5 that every group of type (ii),
(1i11), (iv) can be embedded into E(n,1) as a simply transitive
group of affine motions. The type (v) has to be further restric-

ted so that this is possible. We shal] not discuss this here.

Next we want to explain our results on groups T < E(n,1) that
act discontinuously and quasitransitively on affine space. OQOur
aim is to describe up to(finite index)the isomorphism types of
these groups. Remember that one of the Bieberbach theorems says
that a quasitransitiv and discontinuous group of euclidean motions
contains a normal subgroup of finite index which is isomorphic to

z" .
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Theorem 1.10 -:

Let n > 1 be an integer, and T < E(n,1) a subgroup that acts
discontinuously and quasitransitively on affine space. Tﬁen

I is of one of the following two types:
(1) I' is virtually nilpotent,

(ii) T ~1is virtually(abelian by cyclic ).

Let BO, &1 be two properties of groups. A group G is called
PO by PI if G contains a normal subgroup H with property

o SO that the quotient 'G/H has property 0‘1.

-

Theorem 1.10 can be considerably sharpened. The groups arising
under (i) and (ii) can be further restricted. We first of all

discuss the virtually nilpotent cases.

Theorem 1.11

Let n > 1 be an integer, and T < E(n,l) a virtually nilpotent
subgroup that acts discontinuously and quasitransitively on affine
space. Then T contains a subgroup 'y of finite index with

the following properties:

(1) ry is nilpotent of nifpotency class < 3.

(i1) 'y contains a normal subgroup Ty which has cyclic

commutator subgroup and so that 1“1/1‘2 = Z.
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It is a simple matter to classify finitely generated nilpotent
groups with cyclic commutator subgroups (13 ]. It so happens that
not every cyclic extension of these groups occurs as a group

' < E(n,1) that acts discontinuously and quasitransitively on
affine space. To clarify this point we introduce the foj]owing

notion.

Definition 1.12

Let FO,Fl be groups. They are said to be abstractly commensurable

if there are subgroups 65 < FO and 0, < T, with:

(i) the indices [T,

1:ei| are finite,

(11) 01 and 92 are isomorphic.

For example FO and Fl might 1ie in a common overgroup and

intersect in a subgroup which is of finite ind2x in both.

Let FO’rl be two finitely generated torsionfree nilpotent groups.
We write Mm(ri)' for their rational Malcev-complietions. The
Mm(ri) are 0 points of unipotent algebraic groups defined over

Q. rg»Tp are abstractly commensurable if and only if MQ(FO)

and MQ(P are isomorphic as Q-groups. This is the case if

1)
and only if their Lie algebras are isomorphic. For all of this

see [ 13].

Let H be a connected, simply connected nilpotent Lie group.

Then it is in general quite difficult to classify the abstract
commensurability classes of lattices (i.e. cocompact discrete sub-
groups) in H. If H has a lattice then the Lie algebra ‘W of

H is defined over Q. It can be proved [13] that the abstract

commensurability classes of lattices in H correspond to the



-ele&ents of the trivial fibre of the natural map of Ga]gi;qqhomo]ogy~

groups

Hl(CD,Ath(’}L)) + HY(R Auty (H).

where Autw(?() is the automorphism group of " considered as
an algebraic Q-group.

We are here able to classify the abstract commensurability

classes of the groups arising in Theorem 1.11 by equivalence

classes of quadratic forms.

To do this we introduce the following groups.

Definition 1.13

Let n,k be integers so that O
3

K <o For

<
m= (mp,....m) €N we define J/m o= (/i .,/mp)  and

1’77
L(/) = {(x/m]se o uxp/Mp)[Xyseonx € Z).
We also define the positive definite quadratic forms

2 2
Ay = MY o P Yk

We furthermore put:

1 0 0 - X --lext r
o E 0 0 ozt

| o 0 E O 0o x -
Fo(n+l,k,m)={ ¢ ¢ |r,s€Z; x,y €L{Y-m);
- 0 0 O E X y n-1-2k
z € 4
0 0 0 0 1 3
0 0 0 0 0 1
If k < nél we write e, = (1,0,...,0) € Z n-1-2k  and put



- 1, 2
1 -sey 0 - X "2(5 +xxt) r
0 E 0 0 se} zt
0 0 E 0 0 x
Flﬁﬁd,k,ﬂ)={ : ¢ rySEZ ;
0 0 0 E X y
X,yEL(V-m);
0 0 0o 0 1 s sz NT1-2k
0 0 0 0] 0 1

-

The symbol E  stands for the unit matrix of the appropriate dimen-

sion. The sets [}(n+l,k,m) are finitely generated torsionfree

nilpotent groups that act discontinuously and quasitransitively on
affine space. The groups Fi(n+1,k,m) are all extensions

n-1-2k ;

1+Hk><22 +1"_i(n+1,k,m)+zz > 1

where Hk is the discrete Heisenberg-group of rank 2k+1.

" Theorem 1.14

Let n > 1 be an integer.

(i) Le

(o

I < E{(n,1) be a virtually nilpotent group that acts
discontinuously and quasitransitively on affine space then
I' is abstractly commensurable to one of the groups
To(n+1,k,m).

(ii) The groups Fi(n+1,k,m) and rj(n'+1,k',m') are abstractly
commensurable if and only if the following hold: i=j, n=n',

k = k', and there is an ¢ € w* so that the quadratic forms

qp and aeq ., are equivalent over Q.

The equivalence classes of nondegenerate quadratic forms over
by the

can be described/Hasse-Minkowski theorem. The invariants of an
equivalence are: dimension, determinant and the vector of Hasse

symbols [ 81. In Theorem 1.14 a slightly stronger equi-
e



valence relation among quadratic forms arises. We have described
in Proposition 6.3 the modifications which have to be made to

obtain invariants for this relation.

We shall now give a déscripfion of the virtually abelian by cyclic

groupswhich arise- in Theorem 1.10, (ii).

Definition 1.15

Let n > 1 be an integer and A € GLn(Z) an invertible matrix.

Let the cyclic group Z act on z"

by
lev = A-v

We write

T(ntl,A) = Z" = 7

for the corresponding split extension.
Let n > 2. We call a matrix A € GLn(Z)< of Lorentz type if

it is diagonalizable and its eigenvalues are

-1
AT PN

where X is positive real and all a, satisfy Iail = 1.



Nonunipotent matrices A € SLZ(Z) with positive eigenvalues

are of Lorentz type. Any matrix A € GLQ(Z) with characteristic

polynomial x4-4x3+4x2—4x+1 is of Lorentz type.

We have the following obvious result describing the classification

of the T (nsA).

Proposition 1.16

Let n > 1 be an integer and A,A' € GL (Z) . Then:

(1) p(n+1,A) E D(n+l,A)a= A s GL,(Z) conjugate to A‘ or A

(ii) T(n+l,A) s commensurable.with T(n+l,A")s=> A" is 6L

conjugate to A'> for some r.s € Z\{0}.

Theorem 1.17

Let n > 1 be an integer. Then the following hold:

(i) If T < E(n,1) 1is a subgroup that acts discontinuously and
qqasitransitive]y on affine space and T is not nilpotent
by finite then T contains a subgroup PO of finite index

so that T, is isomorphic to a group ["(n+1,A)} where

0
A € GL (Z) s of Lorentz type.
rn
(i1) Every T{(n+l,A),where A is of Lorentz type can be embedded
into E(n,l) as a discontinuous quasitransitive group of

affine transformations.



Proposition 1.16 and Theorem 1.17 give a description of the ab-

stract commensurability classes of groups T < E(n,1) which act
discontinuously and quasitransitively on affine space and that
are abelian by cyclic, relative to the GLn(W) conjugacy classes
of certain matrices in GLn(Z) .

The groups Pi(n+1,k,m) and T(n+l1,A) are all torsionfree,so

they are all fundamental aroups of n+l-dimensional complete compact
affine Lorentz-manifolds.(space-times). Qur results imply that
every fundamental group of a manifold of this type is abstractly

commensurable with some T.(n+l,k,m) or T(n+l,A).

The Bieberbach theorems say that in each dimension there are only
finitely many isomorphism types of discontinuous, quasitransitive
groups of euclidean affine motions and they are all abstractly
commensurable. In addition to the above classification of the
abstract commensurability classes of discontinuous, quasitransi-
tive groups of Lorentz affine motions we can add the following
result on the possible isomorphism types.

Theorem 1.18

Let n > 1 be an integer, H < E(n,1) be a subgroup that acts
simply transitively on affine space. Fix a subgroup T < H that
acts discontinuously and quasitransitively. Then the following

set of groups which act discontinuously and quasitransitively

{A < E(n,1)}] (i) anH= T, (i1) [A:T] < «}

falls into finitely many isomorphism classes.

Theorem 1.13 is proved in [12 ] . The proof uses methods from

[23 7.

We thank Dan Segal for many helpful discussions.



2. Groups acting discontinuously and quasitransitively on

affine space

In this section we shall give a proof of Theorem 1.3. We start
off by establishing some technical results. Our proof will work
by induction on the dimension of V. First of.-all we describe a

device to divide out subspaces from V.

If the group H acts on the set. S .and S' < S 1is a subset we

write

8]

Stab, (") {h € H| hS' ¢ 5"}

for the stabilizer of S' in H. Suppose now that V 1is a

finite dimensional real vectorspace and V0 < V a subspace.
By ry " we denote the natural homomorphism
0

Stab

: v
"V, GL (V)

o) » GL(V/Vy)

We also have the homomorphism

: ldl

0
g wt V0+zt V0+gzt+wt
pV [ =
0\0 1 1 1

The-kerne1 of oy clearly 1is
0

(Stab > RFF(V/V,)

Py aL(v) (Vo))

ker Py = Stab (q(VO)) mjx_l(ker ry ).
0 A FF(V) 0
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Lemma 2.1 :

Let V be a finite dimensional real vectorspace, T < gff(V)
a subgroup that acts discontinuously and quasitransitively on
V s a shbspace with

(V). Assume that VO <
(Vo)

(1) A(r) < Stabg,

(1) ker p, N T acts quasitransitively on &(Vy).
0

en op r acts discontinuously and quasitransitively on
Th v ) ts di ti 1 d it itivel
0

miV/VO).

Proof

Clearly pVO(F) acts quasitransitively on az(V/VO).

Let K be a compact set in m(V/VO). Choose a compact set

K' < (V) so that the image of K' in cn(V/VO) is K and so

that the translates of K n m(VO) under ker py NT exhaust

0
mxvo). Every coset 8 € p, (T) with K n 6K # @ has then an
0
element y € 6 with yK' n K' # . Hence Py (Ir) acts dis-

0
continuously.
The obvious spaces VO to which Lemma 2.1 can be applied are the

spaces generated by the translations in T:

l w
Re{w € V | ( ) € I}
0 1

Returning to the situation described in Theorem 1.3 we have
fixed a type of G < GL({(V) and we are considering G-linear groups

r < Aff(V). Let V0 < V be a subspace with

MT) < Stabgy vy (Vo)



For inductive purposes it is then necessary to describe some

properties of the group

Stabs(V,) < 6.

ol

Or rather its image in GL(V/VO). For this we need a theorem of

Morozov and Platonov [ 20] [21 ] . See also [ 6 ].

Proposition 2.2

Let G be a linear algebraic reductive group over IR. Let H < G
be a Zariski closed subgroup. Assume that the unipotent radical
of H is nontrivial. Then the normalizer NG(H) of H 1in G

is contained in a (proper) parabolic subgroup of G.

The following is an obvious consequence of the above result.

Corollary 2.3

Let G be a tinear reductive algebraic group over IR with

rkm G < 1. If H s a Zariski closed subgroup then only the
following two cases are possible.

(1) The connected component of H is reductive, with rkRH < 1,

(1) Ng(H) is a subaroup of -a group P which is isomorphic to a

semidirect product P = S =® K where S is soluble and K
is compact.

Proof:

The parabolic subgroums of G are of the type mentioned in (ii).
a

The following proves for some groups G that a G-linear group

is virtually polycyclic. The result is contained in Raghunathan

(22 ].



Lemma 2.4

Let H be a connected Lie-group which is a semidirect product

of a compact group K over a soluble normal group S. Then any

discrete subgroup of H 1is virtually polycyclic.

Another result needed is the following special case of a theorem

by Auslander [ 2 }.

Proposition 2.5

Let V be a finite dimensional vectorspace. T < WAff(V) a

discrete subgroup. Then

is soluble.

Here ﬁo stands for the connected component of the topological
closure of the subgroup H < GL(V). If G 1is a linear semisimpie
Lie-group with finitely many connected components and so that

rkHQG = 1, we put

_ 0
XG = 67 /K ,

where K < c? g s called the
symmetric space attached to G. It is homeomorphic to md for

is a maximal compact subgroup. X

some d. For the almost IR-simple real groups we list the

dimensions of X from [14 ]

G
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G dim Xe
O(n,1) n
U{n, 1) 2n

Sp(n,1) 4n
F4II 16

We prove:

Proposition 2.6

Let G be a semisimple real Lie-group with finitely many connected
components and of real rank 1. Assume further that G 1is not
isogenous to an almost direct product K x Q(2,1) where K 1is

compact. Let
p: G > GL(V)
be a faithful representation (i.e. ker p = 1). Then

dim V > dim XG

Proof:

G is an almost direct product G = KXH, where H 1is almost
R -simple with rkn(H) =1 and R is compact. p defines a
faithful representation of H and hence a nontrivial represen-
tation of the complexification 'YE of the Lie algebra of H.
Note that '?E is simple except for H isogenous to 0 (3,1),
in this case . =k, () ® A (C). From the tables in [25]

we see which irreduzible representations of O(E are real. On the
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other hand we get from Weyls dimension formula [15] a Tower bound
for the minimal dimension of an irreducible representation of
?@' The combination gives the following table of minimal dimen-

sions of irreducible nontrivial modules V for the various groups H.

H isogenous to N -dim Vo3
O(n,1) n+l for n # 2
U(n,1) 2n+2
Sp(n,1) dn+4
F4H 26

Note that Spin{2,1) has a two-dimensional representation via

the eXceptiona] isomorphism

Spin(2,1) & > sL

Proof of Theorem 1.3

As mentioned before we proceed by induction on the dimension of
V. The result is known in dimensions 1, 2, 3. See [ 9 ]. In

fact in dimensions 1 and 2 our claim is more or less obvious.

dimensional
Let now V be an n > 3/vectorspace and T < QAff(V) a subgroup

that acts discontinuously and quasitransitively on a(V). If the
group of translations T} is nontrivial then we use Lemma 2.1,

Corollary. 2.3, Lemma 2.4 and the induction hypothésis to finish.

We assume now that ?} = <1>. We now distinguish two cases:
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‘1) A(T) s discrete in G.

Since T 1is a finitely generated linear group, we may replace
r by a torsionfree subgroup of finite index (Selbergs theorem

[22]). Then T acts without fixed points on o(V). It follows
that
e V)

is a compact manifold of dimension n = dim V. By Poincaré-duality

we see that
HY(TLR) 2 W' (m (M(V)),R) = H'(M=m(V),R) * R.

On the other hand A(T') < G being discrete and torsionfree it
is well known that A(T) ® T acts discontinuously and without
fixed points on XG' By Proposition 2.6 T 1is also the fundamen-

tal group of the manifold

\'e

T
which is of dimension < n. This implies that the cohomological
dimension of T s strictly less than n. This is a contradic-

tion. Note that since the dimension of V is > 3 the exceptional

case in Proposition 2.6 cannot occur.

2) A(r') 1is not discrete.

Then the group

is a nontrivial connected solvable group by Ausianders theorem

(2.5). We write S for its Zariski-closure. If S contains uni-



~

potent elements, that is if the unipotent radical of S s non-
trivial then by Corollary 2.3 ' and Lemma 2.4 we are finished.
If S contains no unipotent elements it is a torus. Then the

centralizer C (3) of § 4in G has finite index in the

G
normalizer NG(E). Let FO be a subgroup of finite index in T
so that Iy centralizes S. Put
r =x“1(3)nr<r
1 0—
Since PO centralizes A(Fl) the commutator
(75T,
is contained in the group. of translations 3}“ .So T4 lTies in

the centre of L. Take a nontrivial element

YEI'l

Let VY be the eigenspace for the eigenvalue 1 of A(y).

vY = {v eV [(ln-?\(y))-\) =0} € V.

The space VY is left invariant by y({,) since vy s central in

Ty - We prove now:

There is a unique coset VY+Z so that the affine subspace
V +z
(*) (Y )
1
is left invariant by .

This follows easily from the fact that A{y) 1is semisimple and

hence 1-x{y) 1is invertible on V/VY.



By conjugating the group FO we may assume that =z = 0. The group
Iy then also leaves invariant the affine space 01(VY)' It follows
that Ty acts discontinuously and quasitransitively on a:(Vy).

We replace now Ty by. a torsionfree subgroup of finite index.

The manifolds
(V)
r} " oand (W)

are compact and have distinct dimensions. Since T, is the
fundamental group of both, the argument using the cohomological

dimension of Ty produces a contradiction.

Proof of Corollary 1.5

We may assume that G < GL(V) 1is an algebraic group since the
result is clearly true.of G 1is not algebraic. We have already
proved that T is virtually polycyclic. Let A be a torsionfree
soluble subgroup of finite index in T. A 1is an extension of an

Ve

abelian kernel by X(A). We write A(A) for the Zariski closure

——

of A(a) in G. A(A) 1is either a torus in which case A(A) s
abelian or contains unipotent elements. If X(A) contains uni-

botent elements then XA(A) 1is contained in a parabolic P sub-
group of G (Proposition 2.2). P is an almost semidirect product:
P=KxS where K 1is compact and S 1is a split extension
S=UxR where U is unipotent of class < 2. We now use the

fact that the image of X(A) in k/F (F = Kpa S) 1is abelian.
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3. Unipotent simply transitive groups of affine Lorentz-motions

In this section we shall analyse unipotent groups of affine Lorentz-
motions that act simpiy transitively on affine space. We start

off by constructing some examples.

Let n > 1 be an integer. We fix an n-1-dimensional real vector

-1 on the vector space

space with basis W = IR
R x Wx R

we consider the quadratic form
q{x,W,y) = 2xy + wwt
which is of signature (n,1). As in the introduction we define
0 (n.1) = 0(a.R)
O(n-1) = {o: W~ W | o is linear and oo’ = E__4}.

t

g W
E(n,1) ={( ) g€ O(n,1), we R x W x R} ,
0 1
1 t
1 -V -5 Vv
un(i,1) = {[ 0 E 4 vt | veW} < 0(n,1).
0 1
A -v - %A' vyt
P(n,1) = { 0 o} A'lovt | re RY, ved, oeb(n-1))
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Here En—l is the (n-1)x(n-1) identity matrix.

Un(n,1) s a maximal unipotent subgroup of O(n,1). P(n,1) is
a minimal parabolic subgroup of O(n,1). For wu,v € ¥, r,s € IR
we introduce the following elements of E(n,1) which have their

linear parts in Un(n,l).

1 -V - élvvt r
0 En-l v ut
L(vsr,u,s): = € E(n,1)
0 0 1 S
0 0 0 1

The following is a simple computation.

Lemma 3.1
Let W = Rn_l be an n-1 dimensional real vector space,
usu',v,v' € W; r,s,r',s' € R. Then:

(i)  L{vir,yu,s)-L(v';r',u',s') =

L{vev'ir+r' - vu't - %s'vvt,u+u'+s'v, s+s'),
(ii) L(v;r,u,s)-1 = L(—v;-r—vuﬁ+%svvt, -U+sv,-s)

(iii) [L(vir,u,s), L{v';r',u',s')]
= L(O;v'ut - vu't + %sv'v't - %s'vvt, S'v-sv‘,O).

We normalise commutators of elements g¢g,h of a group G as:

1 -1

[g,h]l = ghg "h

Lemma 3.1 will often be used without further mention &n the proofs

to follow.
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For elements w € W and s €IR we also define:

L ' 1.2
gw(s). = L{sw; E SWW, 5 5w, S ).

We have defined gw(s) to satisfy:

0 -W 0 0
0 0 wt 0
9,(s) = exp(s )
0 0 1
0 0 0 0

This shows that the gw(s) define a unipotent 1l-parameter sub-

group. We are ready to introduce our groups.

Definition 3.2

Let W = H%n_l be an n-l-dimensional vector space. lUe also fix

a linear map

‘satisfying wz = 0 and an element

w € W.
G(y): = {L{w(u);r,u,0) | u €W, r €R}

G(p,w): = {G(y),G6(y)+g (s) | s eR}.



The following elementary proposition describes the group theoretic

structure of the G(y,w).

Proposition 3.3

Let W =R n-1 be an n-1-dimensional real vector space, Y: W > W

a linear map with wz = 0 and w € W. Then we have:

(i) G(ﬂ) and G(y,w) are unipotent subgroups of E(n,1}.
(ii) G(¥) 1is normal in G(¢Y,w)

(iii) There is an exact diagram of groups
l“r'..

o

0-R > G(¥) > W=>0

l

G(Y.w)
}
R

0

[ ]

where 6(r) = L(0;r,0,0).
(iv) ©6(R) 1is central in G(¢,w).

The following explains why we have introduced the G(y,w).

Proposition 3.4

let W = R n-1 be an n-l-dimensionan real vector space ¢¥: W » W
a linear map with wz = 0 and w € W. Then:
(i) G(¥,w) acts simply transitively on (R x W x IR) .

(ii) every subgroup U of E(n,1) with A(U) < Un(n,1) that
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acts simply transitively on ®R(R x W x R} is equal to
one of the G(y,w).

(iii) every unipotent subgroup of E(n,l) that acts simply
transitively on ,@{IR x W x R) 1is E(n,1) conjugate to

a group G(y,w).

(1) Follows since G{¢,w) 1is transitive and the stabiliser of
0
(1)
(ii) We only sketch a proof here. For a point P € o{ R x WxIR)

is trivial.

there is a unique vy € U with

Writing down the conditions for the possible y to have a
fixed point, we arrive at the required result.
(iii) Any unipotent subgroup of .0(n,1) 1is conjugate to a sub-

group of Un(n,1).

The classification of the G(y,w) wup to conjugacy in E(n,1)

is described by:

Proposition 3.5

Let W-= R n-1 be an n-1-dimensional real vector space Y,P': W > U

two linear maps with wz = w‘z =0 and w,w'€W. Then the

following are equivalent:
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(1) there is a g € E{n,1) with

g G(v,w)g T = GV ,W")

(ii) there is a A €R" and a o € O(n-1) with

Aowo-l s Azwot = w'

w’

Proof:

Observe that if h € Un(n,1) 1is nontrivial and g € Q(n,1) s an

-1

element with- ghg € Un{n,1l) then it follows that g € P(n,1).

After this apply Lemma 3.6

Lemma 3.6 :

n-1

Let W = R be an n-1-dimensional real vector space yY: W + W

a linear map and w € W. Let furthermore

A -y - % A luwt r
0 g A Loyt ut
g = -1
0 0 A 3
0 0 0 1
be an element from P(n,1). Then:
gG(lp,w)g_1 = G(Aowc_l, szct).

Lemma 3.6 is proved by a simple computation. Nofe that an endo-

n-1 1

morbhism v: R »—m”' with ¢2 = 0 can by a conjugation from

O(n-1) be put into the form
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0 My
0 0
.0 )
0 0
0,
\0
with the |u1| uniquely determined up to order. This makes it

then easy to derive a normal form for the conjugacy classes of

the G(y,w).

To classify the G($,w) wup to isomorphism we introduce the Lie

algebras of these groups.

Definition 3.7.:.

Let L be a field and Tet W =L" 1 be an n-1-dimensional
L-vectorspace. For an endomorphism ¢: V = V and an element

w € V we introduce the following product on the vectorspace

L x Wx L

[(ryv,s), (r',v',s')] =

= (w(v‘)vt - w(v)v't - swv't + s'wvt, sy(v') - s'Y(v),0).
We call the.so defined algebra ql_(;p,w).

The product [ , ] on (aéw,w) is antisymmetric, it is a Lie

algebra structure if and only if the map
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Wx W >t

(uov) > yi)evt

is symmetric. This is always 50 in the cases which interest
us here (wz = 0).

If L=R and y: W+ W s an endomorphism with wz = 0 and

if w €V then Oy (¥,w) -is the Lie  algebra of G(¢y,w). For

this consider the representation

f: (de,w) + End(R x W x R x IR)

0 ~p{u)-sw 0 r

0 0 tp(u)t+swt ut
8: (ryu,s) ~

0 0 0 3

0 0 0 0

We have

exp(e(O),(lb,W)) = G(y,w).

Over any field L the algebras coﬁw,w) can be classified up to

L-isomorphism. We give only a partial answer here.



Definition 3.8

Let n > 1, k be integers with 0 < k <L . Fora field L

let W be a vectorspace of dimension n-1 with basis

el’fl""’ek’fk’e2k+1""’en-1

Let wk be the endomorphism of Nk defined by

For any 0 < k < —= we define the Lie-algebra,

4 [ (n+1,k) = 0w, ,0)

It is easy to prove the following classification result. See also

Proposition 6.2.

Proposition 3.9

Let. L be a field and W = Ln'1 an n-1-dimensional k-vector-
space. Let y: W + W be an endomorphism and w € W. Then the
Lie algebra tgLQbAH) is isomorphic to exactly one of the above

defined Ez,:_(n+1,k).

In table 1 we have compufed a multiplication tab1e for the Lie
algebras 2,&(n+l,k). Proposition 3.9 and Proposition 3.4

then imply Theorem 1.8.



4) Simply transitive groups of euclidean motions

We shall describe here the simply transitive groups of euclidean
motions in a way which will be convenient for us in the next

chapter.

Let V = R" be a real vector space with basis. On the chosen

basis we consider the quadratic form
q = X]*+ ...+ X

We write O(n) for its orthogonal group. We let furthermore
t

g v
€(n) = { ( ) | g € 0(n), v e V}
0 1

be the group of euclidean motions on or(V).

We shall now define some subgroups of &(n) which act simply

transitively on o {V).

Definition 4.1

Let 0 < d< n>1 be integers. We put
Vg = Tlxgs-onx)) €V | X = ... = x4 = 0},
d _ - - -
V - {(Xl,...,xn) EVI Xd+1 = e - xn - O}c
e Vy > G (d).
be a continuous homomorphism with discrete kernel. We define the

group
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e(u) 0 wt
t d
E(e,d) = { 0 E u lu e Vg w e V™ ],
0 0 1

The set €(e,d) is a subgroup of E(n) Note that for an € to
exist it is necessary that [ﬂ%g] > d. Here ([x] 1is the biggest

integer smaller than the real number x.

Proposition 4.1

Let 0 < d,d’” <n >0 be integers.

(i) The groups €(e,d)for homomorphisms
€ vd+.0(d)

act simply transitively on ou(V).
(ii) If €(e,d),€(c'd') are two groups attached to homomorphisms

witﬁ discrete kernels:
ex Vy > 0(d) , e': Vg~ 0(d")
then E(e,d) is €(n) conjugate to E(e'\d')if and only if:

d = d' and 3 g€ 0(d). , h e 0(n-d)

-1 -1

with €'(uh ~) = ge(u)g

The proof of Proposition 4.1 is easy. The following result shows
that the E(e,d) are essentially all simply transitive subgroups

of E(n).



Proposition 4.2

Let n > 0 be an integer. Suppose that H < €(n) 1is a group
that acts simply transitively on affine space. Then there is an

0 ¢ d <n and a homomorphism with discrete kernel e: V, + 0(d)

d
so that H is conjugate in €(n) to E(e,d).

To.prove Proposition 4.2 we need:

Lemma 4.3 :
Let n > 0 be an integer. Suppose that H < €(n) 1is a compu-
tative group that acts simply transitively on affine space. Then

H = <3}(n), that is H s the full group of translations.

Proof:

We proceed by induction on n. The result is clear for n = 1.

Suppose now that n > 2. The group H acts by conjugation on

T E(n) and hence on V = lJE(n)' It Teaves invariant the spaces
L ) , . .

U; and Ull . Note that since H 1is commutative , = H

acts trivially on U}:.

Thé'group A(H) 1is a commutative connected subgroup of @ (n),

hence we have

dim(A(H)) < [3]

(] e

‘It follows that

oL

dim (U}{) < n.
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The stabilizer

xS
Hl = stabH(o'l( U’H ))

acts simply transitively on ot((fal ). The result follows by

induction.

Proof of Proposition 4.2

The group H acts by conjugation on the space of all translations

. _ o
TE(n) and hence on V = UE(n)' It leaves the spaces VU, and
\JH“invariant. We put

Hy = stab (ot ( u}‘_;*)).
H1 acts simply transitively on OL(IJ;l). By a theorem of
Auslander [ 1] H1 is a connected soluble group. Hence
A(Hl) <Q(n) 1is commutative. The kernel

H2 = ker(x: H1 +0(n))
. . i ol - . .
is subgroup of transiations in U.H , hence H2 is discrete.
H2 acts by conjugation on the discrete group HZ‘ Since A(Hl)

is compact H1 has to centralize H2. For a given g € H1 we

consider the map

[gs ]: h "'[g’h]

The commutator subgroup of H1 being central, the map [g, ]

is a homomorphism of the connected group H, into the discrete

group HZ’ It follows that H1 is commutative. By Lemma 4.3
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IS .
H acts by translations on o\(lT; ). We consider the

1
homomorphism

s 0 o . .
The image of e stabilizes U, and leaves U, pointwise
fixed. Finally we conjugate the pair of subspaces (I; and

0:# by an orthogonal matrix into the standard pair.

The above shows that -the groups H < &(n) that act simply transi-

tively on affine space are all split extensions

Q>R > H-RP = 0

with a+b = n and Rb acts orthogonally on RY. Conversely, it
is clear that every split extension of this type can be embedded

into £(n) as a simply transitive group of euclidean motions.
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5) Nonunipotént simply transitive groups of affine Lorentz-

motions

Here we shall describe the simply transitive groups of affine
Lorentz-motions which contain nonunipotent elements. To do this
we introduce the following subgroups of P(n,1). Here W =IRn'1

is an (n=zl)-dimensional real vector space with chosen basis.

A0 0
p(n,1) = { [0 o 0 | re® ,o0e 0(n-1)§,
0 o0 AT?
1 -y -%vvt
€(n,1) = { 0 o oV jo € 0(n-1), v € W},
0 0 1

Proposition 5.1

tet n > 1 be an integer.

(i) Let H < E{(n,1)be a subgroup that acts simply transitively
on affine space. Then H is E(n,1) conjugate to a group
Hy with A(Hl) < P(n,1).

(ii) Ltet H < E(n,1)be a subgroup that acts simply transitively

on affine space. If H satisfies A(H) < P(n,1), then
either A(H) < é(n,l) or X(H) 1is P(n,1) conjugate to

a subgroup of D(n,l1).
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(i) Since H 1is a soluble group the Zariski closure A(H)} of
A(H) is also soluble. It is then conjugate to a subgroup
of the minimal paraboiic P(n,1) of O0(n,1).

(i1) Let U be the unipotent radical of the Zariski closure of
H. By [ 11 U also acts simply transitively on affine space.
So by proposition 3.4 it is equal to a G(y,w). H normalizes
U and hence by lemma 3.6 it follows that H < €(n,1), unless
Yy = 0 and w = 0. This being the case A(H) 1is a torus

and as such P(n,1) -conjugate to a subgroup of D(n,1l).

We shall now seperately discuss the two cases (A(H) < €(n,1) or

D(n,1)) which have come up in Proposition 5.1.
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A) Groups with A(H) ¢ D(n,1)

We keep here the conventions of section 4 concerning the coordi-

nate subspaces W, and W9 of the vectorspace W = Rr"L

Definition 5.2

Let 0 < d < n-1> 0 be integers, and W = R"1

a real vector-

space. Let
n: R x Wy xR~ 0(d)

be a homomorphism so that n restricted to (O,Nd,O) ‘has discrete

kernel. Define

1 0 0 0 r
0 n{r,w,s) 0 0 vE d
D (dsh) = { ¢ | IrsseR,meW ,vel” }.
0 0 E 0 W
0 0 0 1 s
0 0 0 0 1

Let 0 < dp<dy<n-1>1 be integers, and W =R~

vectorspace. Let

be a homomorphism with discrete,kerne1 so that the eigenspace for

“the trivial character of the torus
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M{w) 0
{ ‘ € W, }
(; 0 e ) o 4 =

is Nd . Let furthermore
2
T: W -+ IR
dy
be a homomorphism. Define
TN o 0 0 0
0 0 0
U(Wl)
0 0 0
D, (d;u>1) = 0 0 0 1 0
0 0 0 O
0 0 0 O 0

The following is the

0 (n-1)

e T Wpwy )

1

Ir,ng, W EW, f(WZ’wl)ewdz’
2
veW ) .

reason for the above definitions.



_46_

Proposition 5.3

Let n > 1 be an integer.

(1) The sets Dl(d,n) and Dz(dl,u,r) attached to data d,n
and dl,u,T as in definition 5.2 are subgroups of E(n,1)
that act simply transitively on n+l-dimensional affine space.

(i) Let n > 1 be an integer. Let H < E(n,l) be a subgroup
that acts simply transitively on affine space and that
satisfies A(H) < D(n,1). Then H is E(n,1)-conjugate to
one of the qroups Dl(d,n) or Dz(dl,u,r) witn appropriate

data.

Proof:

The group H may be parametrized as

eT(r,w,s) 0 0 ,
0 g(r,w,s) 0 wt
H = { . . t(r,u.s) lr,s €eRR, wEW},
0 0 0 1

with functions

T: R Wx]R -+ R
o: Rx WxR + 0(n-1).

T,0 have to satisfy certain functional equations coming from the

fact that - H 1is a group. These equations together with the fixed

.

point freeness of H dimply =t(r,w,s) = v(0,wo(r,0,s),0). This
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5
implies that H 1is the product of the following two of its Qroups:

1 0 0 r

0 o(r,0,s) 0 0
Hy = { lr,s €R J

0 0 1 s

0 0 0 1

eT(O,w,O) 0 0
t

0 g(0,w,0) 0 W }

H. = € WY,
2 = 1 . . T(0.W,0) g |"f
0 0 0 1

H2 acts as a simply transitive group of euclidean motions on
(0 x Wx 0) < m(Rx WxIR), We use section 4 to find d and

the homomorphism & with discrete kernel.

Assume then t(0,w,0) = 0 for all w € W. The computation of the
commutators [Hl’HZ] shows that H. has to conjugate to a grdup

of type Dj(d,n).

If t{0,w,0) # 0 for some w €W, the computation of the commu-

tators [H Hy] shows that o(r,0,s) =1 for all r,s € R. After

1!
this the same analysis of commutators shows that H dis conjugate
to a group df type Dz(dl,u,r). Note that there is an element

w €W so that o(0,w,0) - E__, is invertible on the orthogonal

complement of the eigenspace of the trivial character of the torus

{o(0,w,0) | w € W}.



Note that there is a certain obvious overlap amongst the groups of
type Dl(d,n) and Dz(dl,u,r). We have not included the classi-
fication of the E(n,1) conjugacy cliasses of the above groups.
This can be done by elementary means but is rather messy.and
includes the introduction of finer invariants (such as the eigen-

spaces) of the homomorphisms € and n,T.

Note that the Lie groups H of type D,(d,n) are all split

extensions
a b
0 +-R >H-» R -1

where b > 2 and Rb acts on R through a homomorphism
€ IRb+‘0(a) such that the dimension of the connected component
of the kernel of € does not exceed 2. The groups H of type

D2(d1,p,r) are split extension

0+R* > H >R > 1

where a > 2 and IRb acts on IR® through a homomorphism

b

e: R° » R* x O(a-2) - GL (IR) where R* acts trivially apart from

1-dimensional eigenspaces for the identical character and its inverse.

A1l these groups can easily be classified up to isomorphism.



B) Groups with A(H) S €(n,1)

We introduce the fo11oﬁing subspaces of our real vectorspace

R x W x IR:
W= {(r,0,0)|r ¢ RY, M= {(r,w,0)|r @R, w € W},

together with the groups:

£yt t

v g v o

R = {( ) lv € W 1}, R = {( )|geE(n,1), v € W}.
01 - 01 -

We start off with a group H < E(n,1) that acts simply transitively

on affine space and satisfies A(H) < €(n,1). WNote that the groups

HO = H n 5 is normal in H and satisfies H/H, 2 IR.

0
We write H for the Zariski-closure of H and UH for its uni-

potent radical. By a theorem of Auslander UH also acts simply

transitively on affine space. Since A(UH) < Un(n,1) by section

3 we find Uy = G(y,,w,) for appropriate y, and w,. The

following gives a normal form for the subgroups Ho-i H which

are of codimension 1



Proposition 5.4

Llet H be a group with H < E(n,1) that acts simply transitively

on affine space and satisfies A(H) < €(n,1). H can be conjugated

1]

by an element of E(n,l) so that H HNnR 1is of one of the

0
following shapes:

(a)

1 . t
1 0 -w(wz,w3) 0 -zw(wz,w3) w(wz,wa) r
€ (W) 0 0 0 wt
3 1 d
t t = 1
{' 0 E 0 w(wz,w3) Wy | WiEH
t
0 0 0 E 0 W |(w2,w3)€wdl,
0 0 0 0 1 0 weW, o,
2
0 0 0 0 0 1 r eR

Here e: W > d is a homomorphism with discrete kernel and
d2 1

2

p: Wy =+ Wy n W™ is a homomorphism with 4% = 0 and for

1 1

appropriate integers d,,d, with d; < d,.

1272
(b)
1 0 0 0 r
t
0 e(wz,r) 0 0 Wy .
t 1
il o 0 E 0 W |”1€”d1"“2€“ ,relR}
0 0 0 1 0
0 0 0 0 1

d
Here e€: IR x W LI O(dl) is a homomorphism and d1 is an

appropriate integer.
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Proof:

L]

We define H1 = (H n G(wH)) . H1 is a connected group hence

there is a subvectorspace V < so that

I () B )u(y r
0 E lb(v)t vt
HiR = { reR, veVv]

0 0 1 0

0 0 0 1

The group
H, = stab viou
2 sta H(O’L( - =))
L

acts simply transitively on o (V™ n W) and satisfies

An analysis analogous to that in section 3 together with. some

commutator computations finishes the result.

Note that groups of type (a), (b) in the above proposition all act

simply transitively on the affine subspace o(lW).

Proof of Theorem 1.9

This result can now be read of from the normal forms in Proposition
5.3 and 5.4. Under (ii) we have given an internal description of
the groups Dl(d,n). (iii) corresponds to the groups Dz(d,u,r).
(iv), {(v) corresponds to the cases (a), (b) in Proposition 5.4
respectively. Here a commutator computation shows how the quotient

H/H0 = R acts on Ho' a
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6) Groups acting discontinuously and quasitransitively on

Lorentz space

We shall prove here our results on the abstract comﬁensurability
classes. of groups that act discontinuously and quasitransitively
on Lorentz space. The theorem of Fried and Goldman (1.5) reduces
this problem to the study of the abstract commensurability
classes of lattices in groups of affine Lorentz transformations

that act simply transitively on affine space.

We first treat the case of unipotent groups. Let U < E(n,l) be
a unipotent group acting simply transitively on affine space and
let U be its Lie algebra. Let T < U be a subgroup that acts

discontinuously and quasitransitively on affine space. We write
M. (T) <
g(T) < U

for the Malcev completion of T. MQ(P) can be described as the

radicable hull of T, [16], [ 24]1. We put

Mg(T): = exp™ (Mg (1))

VA(Q(P) is a.rational Lie subalgebra of W with the property that
the map

R @muﬂm(F) > U

is an isomorphism. That is M,(T) 1is a Q-form of the real Lie
Q

algebra W .
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Given a Lie algebra JM over @ and an isomorphism of Lie a1gebrés
IR'QQJ{ > W

we may construct a group T < U 1in the fd]]owing way. Choosé,
as 1s always possible, a Z -lattice uo(z < u#{ invariant under

the bracket and define
I = <exP(e(V“zz) >

to be the group generated by the set exp(B(uuZ)) . I' acts dis-
continuously and quasitransitively on affine space and has the

property .Alw(r) = 8(M). The set exp(e(dqz)) is enclosed as
Iy <exp(8(u5)) < T,

between the groups Fl,P2 that act discontinuously and quasitransi-

tively on affine space and satisfy ]F2/Fl| < o, [19 1.

It is well known that two torsionfree finitely generated hi]potent
groups are abstractly commensuréb]e if and only if the Lie algebras
“«Q(rl)’ \Anm(rl) of their rational Malcev completions are
isomorphic, [13]. So, to describe the abstract commensurability
classes of the groups T we have to find the Q-forms of the real
Lie algebras ‘(,l(n+1,k) and ‘i.tz(n+1,k). To do this we introduce

a class of Lie algebras which might be of independent interest.'
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Definition 6.1

Let L be a field and let k,m > 0 be integers. Let

be L-vectorspaces of the indicated dimensions. We write ei’fi’gi
for the canonical basis elements of E,F,G respectively and

define the linear isomorphism

F > E ;  f, = e

Put

W Ee Fa& G.

let

be a linear map.

Let furthermore S € Symk(L) be a symmetric kxk matrix with
entries in L and det(S) # 0. On the L vectorspace of

dimension 2k+m+2
Lo W &L

we define the product

where r,s,r',s' € L, u = e+f+g, u



C*)
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We write codk,m,w,S) for the vectorspace L ® W & L with the

product [ , ].

omgk,m,w,S) is always a nilpotent Lie algebra of nilpotency
class 3. Writing z = (1,0,0) and T = (0,0,1), we find the

following defining relations for c?ﬂk’m'w’(sij))'

[t.e;] = -op(ey)-z i= 1,...,k,
[Tyl = meymop(fy)-2 =1k,
[t,9;] = -og(95)-2 i=1,...,m,
[ei,ej] =0, [fj,fj] =0 i, = 1,...,k,
[ei,gj] =0, [f1,gj] = 0 =1, wk3i = 1,
[gi,gj] =0, i, = 1,...,m,
[ei’fj] = Sij.z i, = 1,...,k.
Note that

UQL(IPDW) = O)L(k,m,cp,Ek)

where O}dw,m) is one of the Lie algebras defined in section 3

and k,m,¢ are appropriately chosen. Similarly

i.é’z(n+l,k,8) - Qh(k,n-l—Zk $)

D[p].’zi

for appropriate ®1 9-
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Proposition 6.2

Let L be a field and let O)L(k,m,cp,S) and O}L(k',m',(p',s') be
two of the Lie algebras defined in 6.1. Then the following are
equivalent:

(1) ch(k,m,w,S) is isomorphic to O}L(k',m',w‘,S')-

(ii) kX = k', m=m', and there are X € GL_ (L) and Y € GLm(L),

i
and o € LN{0} so that:

, S = aX s X',

Y.

oG = “g

Proof:

The proof is obtained by writing down a.linear isomorphism 8

on the natural basis given in definition 6.1. 6 is. a Lie algebra
isomorphism if certain relations between the entries of 6 hold.
An elementary analysis of these relations implies proposition 6.2.

Juj

Proposition 6.2 can be used to classify the Lie algebras
0}dk,m,w,8). For the linear map ¢ we have only to consider the
two possibilities ¢ = 0, ¢, = 0. Next, we have to classify
symmetric nondegenerate kxk matrices S Up to the equivalence

relation:
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*

'~ 5 & 5" o= aeXSX' with a € L¥, X ¢ 6L, (L).

Over the field L of real numbers S and S' are equivalent if

they have the same or opposite signatures; Two symmetric matrices
$,S'e Symk(m) can only be equivalent over L =Q if they have
the same or opposite signatures. We note here the following

obvious consequence of the theorem of Hasse and Minkowski

- Proposition 6.3

Let 'k > 1 be an integer and let S,S' € Symk(m) be positive
definite symmetric matrices. The following are equivalent
(i) S'" % S over @,

(i1) 3 ¢« €@ with o > 0 such that

(aX-det s)(det s')71 € 0*? and
k(k-1
cp(S)-(dEtés)’“)(“Ba)f" © s (s) for all prines.p.

Here C_(S) and (asb) are the usual Hasse symbols at p.



- 58 -

Proposition 6.3

Let K < L be fields. Let (%L(k,m,w,S) be a Lie algebra as
defined in 6.1. Let ™ < %L(k,m,m,S) be a K-.Lie algebra so

that the natural map
L@Km.-+%dkmm£)

is an isomorphism. Then there is a K - linear map @' and an

S' € Symk(K) so that

" = qwdk,m,m',S')

as K - Lie algebras.

Proof:

The result is clear for k = 0. So we assume that k > 1. We
choose in C}L(k,m,?,S) its natural basis z,eﬁ,fi,gi,r which
satisfy the relations (#). We shall construct now in "® a
K-basis which also satisfies our relations (*).

We have

[F}ts[m: "K] = K'E

with 2z = mz for some = € L. This follows since the Lie algebra

qh(k,m,w,S) has a similar property. Furthermore the commutator

algebra
[ %, "]

has dimension k+1 and is contained in Le<z,e >.  MWe

1,...,ek

choose a basis E,él,...,ék of [®,%]. The elements e.



satisfy [éi’éj] =0 for 1,j =1,...,k since
(0, M, [/, ™I = 0.

The center of the Lie algebra M /[["%,A]1,M] has dimension k+m
and its preimage in "W 1is contained.in L.<z,e1,...,ek,gl,...,gk>.

We add elements to obtain a basis:

Z,el,...,ek,gl,...,gk

of this space. Clearly the ei,ﬁ. all commute with each other.

J
We choose
T = VO +TT0T
fp=vptmpe
fk = vy + M

<>

with @, € L, To £ 0,

; € L SZ,€15--5€1 501505 9,> SO that

1'

E,é,...,ek,fl,...,?k,ﬁi,...,ﬁm,f is a basis of “W .

By a simple computation we find

This shows that the [T,?l],...,[f,?k] are L-linearly independent.

-1

and that TiTo

e K for i =1,...,k.
We change our basis so that My = .0 =T = 0 and so that

(+) [t,f

with A, € K,
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We now show how to enforce [%i’%j] =0 for i,j, = 1,...,k.
Consider the following bilinear -map which is induced by the

commutator

B ['X,‘X]/ F -

kz X g7 Kz

~

Here F = K <2,él,...,ék,?1,...,?k> and E = K <Z,804. .8, >,

B is nondegenerate, since this is true over L. It follows that
we can change the fi by elements from E so that they satisfy
[?i,?j] =0 for i,j = 1,...,k. We then change the e, so that
(+) 1is satisfied. Note that a simple computation using the Jacobi

identity shows that the matrix (Sij) defined by

{ei’fj] = Sijz

is symmetric.
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Proof of Theorem 1.10, 1.11, 1.14, 1.17

Let T < E(n,1) be a subgroup that acts discontinuously and
quasitransitively on affine space.. Let H be its kristallographic
hull (Theorem 1.5).' H < E{n,1) acts simply transitively on

affine space and A =HaAT is of finite index in T. H can

be conjugated to one of the types of groups described in sections

3 and 5.

A) H 1is unipotent

By section 3 H is conjugate to G(y,w) for suitable ¢y and

w. The Lie algebra u«m(a) is isomorphic over @ to some Lie
algebra (gm(k,m,m,s). [t is a simple matter to see that A

has tobe nilpotent of nilpotency class < 3 and has to satisfy (ii)
of Theorem 1.11. In Theorem 1.14 we have for every isomorphism
class of Cgm(k,m,w,s) constructed a particularly nice group
P.(n+I}k,m) that acts discontinuously and quasitransitively on

affine space and sat1sf1es~ﬂ (Ti(n+l,k,m) %W (kym,@,8). It is
clear from the results of th1s section that Theorem 1.14 is valid.
B) H_satisfies T(H) < D(n,1)

We conjugate H so that H = Dl(d,n) or Dz(dl,u,r). The group
of all translations J < E(n,1) 1is the unipotent radical of H.
By [ 2] A(a) s discrete in €(n,1) or R* x ¢(n,1). In the
first case A is virtually abelian. In the second the image of

A(Aa) in R* has to be discrete and hence cyclic. So in this

case A is virtually abelian by cyclic. This proves Theorem 1.10.

In case A is not virtually abelian take a subgroup by € A
of finite index with® X(44) n £(n,1) = <1>. by has a5 N T as

abelian normal subgroup. It is clear that a generator of the
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cyclic group AO/AO N T acts by a Lorentz type matrix on the
discrete group Ag N T < J. This proves Theorem 1.15 (i). It
is obvious that évery group of the type described in (ii) is a
lattice in a simply transitive group H < E(n,1) with

A(H) < D(n,1).

C) H_ satisfies A(H) < E(n,1)

In this case [ 2] implies that T is virtually nilpotent.
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Table 1
1 2
L (n+l,k) L™ (n+1,k) for
(v,z] = 0 0
[‘E,f]-_] = -ey -8y 1 < i<
[ei,ej] = 0 0 all 1i,]
[fi,fj] = 0 0 1 < i,3
(g,e;]1 = 0 0 all i
[E,fi] = 0 0 1 < j <
1 for i =3
§.. =
1 0 for 1 #
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